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Introduction by the Organisers

Coherent structures play a significant role in the transport andmixing of passive
and active scalars in fluids. Such structures occur at spatial scales ranging from
the geophysical to the nanofluidic. Understanding such structures is of consider-
able topical interest due to climate change concerns and biotechnological advances.
Unambiguously identifying coherent structures is difficult due to many technical
reasons, one of which is that viewing the time evolution of frozen-time information
(e.g., contours of vorticity) does not in and of itself describe the transport of fluid
particles. This has led to the development of a variety of ad hoc diagnostic tools
for identifying coherent structures, algorithmically efficient methods for visualis-
ing such structures, and also theoretical descriptions that are valid under idealised
conditions (e.g., assuming availability of infinite-time data sets). As these meth-
ods become increasingly sophisticated and efficient, questions regarding their true
connection to transport in experimental and observational data remain.
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Topics discussed at the workshop included:

Experimental and observational work. Substantial new experimental work
has been done in fluid mixing, thanks in part to significantly improved digital
imaging technology.

Mathematical tools in LCS detection and studying mixing. These include
tools such as invariant manifolds, Kolmogorov-Arnol’d-Moser (KAM) surfaces,
minimum flux curves/surfaces, minimum length-increase curves and transfer-op-
erator decompositions. How do the insights obtained from the simplest models
(periodic models with associated lobe dynamics, quasi-periodic or single-frequency
dominated models) extend to theoretical results for more realistic situation of
finite-time noisy data, possibly including stochastic effects?

Diagnostic tools for LCS detection and studying mixing. Examples in-
clude Finite-Time and Finite-Size Lyapunov Exponents, relative and absolute dis-
persion, complexity of fluid trajectories, and asymptotic ergodic methods applied
to finite-time data. One of the main challenge in the field is to understand inter-
relationships between these diagnostic tools.

Computation and visualisation of LCS. These relate to the efficient compu-
tation of LCS based on either diagnostic or mathematical tools. Examples include
efficient methods for scientific visualisation of LCS, parallel computations of La-
grangian trajectories, and handling challenging data sets.

We, the organizers, were pleased to see people from rather different areas in-
teract with each other, stimulated by interesting talks, a very lively poster session
and the special Oberwolfach spirit. We are sure that many coming scientific con-
tributions to the theory and applications of mixing and transport will have their
origin at this workshop.
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Estimating long term behavior of flows without trajectory integration: the
infinitesimal generator approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Kathrin Padberg-Gehle (joint with Gary Froyland)
Set-oriented numerical analysis of time-dependent transport . . . . . . . . . . . 258

Mark A. Stremler (joint with Shane Ross, Piyush Grover, Pankaj Kumar,
Pradeep Rao)
Quantifying transport through the relative motion of (almost) coherent
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Wenbo Tang (joint with Christopher Luna, Aditya Drumuntarao)
Biological reactions with coherent structures . . . . . . . . . . . . . . . . . . . . . . . . 261



Mixing, Transport and Coherent Structures 217

Stefan Siegmund (joint with Luu Hoang Duc)
A new concept of local metric entropy for finite-time nonautonomous
dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Qinghai Zhang
Classifying Lagrangian fluxing particles through a fixed curve for
non-autonomous flows: Theory and applications . . . . . . . . . . . . . . . . . . . . . 264

Kevin Mitchell (joint with John Mahoney)
Propagation barriers for fronts in fluid media with general
time-dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Nicholas T. Ouellette (joint with Haitao Xu, Eberhard Bodenschatz)
Path lengths in turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Sanjeeva Balasuriya
Flow barriers in realistic flows, and their relationship to invariant
manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Thomas Peacock
The impact of windage on the structure of material transport at the ocean
surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Jeroen S. W. Lamb (joint with Mark Callaway, Doan Thai Son, Martin
Rasmussen)
The dichotomy spectrum for random dynamical systems and pitchfork
bifurcations with additive noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Vered Rom-Kedar (joint with Ruty Mundel, Erick Fredj, Hezi Gildor)
Comments on characterizing fluid flow mixing . . . . . . . . . . . . . . . . . . . . . . 276

Erik Bollt (joint with Tian Ma)
Finite time curvature and a differential geometry perspective of shape
coherence by nonhyperbolic splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Massimiliano Giona (joint with Fabio Garofalo, Stefano Cerbelli)
Transport in microchannels: interaction between solenoidal and potential
fields with noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279





Mixing, Transport and Coherent Structures 219

Abstracts

Coherent structures in quasi-two-dimensional turbulence experiments

Robert E. Ecke

Quasi two-dimensional (2D) fluid flows represent an ideal testing ground for con-
cepts of mixing, passive scalar transport, and nonlinear scale transfer processes.
Experiments performed over the past decade on soap films [1, 4] and on stratified
salt layers [2, 3, 5, 7, 8, 10, 11] have elucidated many important features of coherent
structures. In addition to their important role in transport and mixing, coherent
structures can also be related to turbulent cascade mechanisms [4, 10, 11]. For
example, the mechanism in 2D turbulence [9] for the direct enstrophy cascade is
the stretching of vortex patches in hyperbolic regions of the flow. This feature can
be quantitatively captured by considering the spatially-resolved enstrophy flux [4]
and demonstrating that enstrophy is preferentially forward in hyperbolic regions
of the flow field. Fig. 1 shows a representative quasi two-dimensional flow, ob-
tained using particle tracking velocimetry, where the tiny streaks are very short
particle paths and the longer colored path is representative of a Lagrangian par-
ticle trajectory. Using the high-resolution (both space and time) velocity field,

Figure 1. Streak image of quasi two-dimensional fluid flow. Also
shown is a particle path color coded according to its speed.

one can compute an arbitrary number of Lagrangian trajectories of the flow. This
approach can be used to investigate two particle dispersion in 2D turbulence [5].
These quasi two-dimensional experiments remain an important tool for elucidat-
ing the role of coherent structures, both Eulerian and Lagrangian, in real fluid
flows. Although Eulerian coherent structure identification does not help elucidate
energy transfer in the inverse energy cascade of 2D turbulence [6], recent results
suggest that Lagrangian coherent structures may be more helpful in that context.
There are certainly many more important concepts that can be tested and refined
using quasi-2D experiments and, in cooperation with mathematicians, physicists
and geophysicists, the future looks bright for new discoveries and insights.
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Ocean mixing and dispersion: Combining theory and observations

Hezi Gildor

Studying ocean mixing and dispersion is difficult because the processes are inter-
mittent in time, highly nonlinear, and very inhomogeneous in space. Moreover,
these processes span a wide range of spatial and temporal scales, and all these
scales interact with all other scales in a non-linear manner making it hard to
evaluate the importance of processes since even a weak perturbation can produce
significant changes. The so-called “submesoscale” processes, composing of motions
on a scale of a few kilometers, form a gap in both observations and understanding
of processes with spatial scale between few tens of km (which can be studied us-
ing satellites data) and very fine-scale (centimeters to meters turbulent motions)
which can be studied using microstructure turbulence profilers.

Recent advances in ocean observing systems enable us to reconstruct quasi-
synoptic maps of ocean surface velocity field, over large areas and at high spatial
(hundreds of meter) and temporal (30 min) resolutions. These surface current
observations allow the computation of Lagrangian trajectories of many virtual
particles. Based on these trajectories, one can compute various measures for mix-
ing (such as absolute and relative dispersion) and identified Lagrangian Coherent
Structures (LCS) using various methods (such as Finite-Time and Finite-Size Lya-
punov Exponents).
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I will present few studies based on surface currents observed by High-Frequency
(HF) radar for current measurements in the Gulf of Eilat (northern Red Sea) and
on simple toy models.

Evidence for submesoscale barriers to horizontal mixing [3]: Using the
HF radar dataset of surface currents that we collected at high spatial (300 m) and
temporal (30 min) resolutions, we demonstrate experimentally the existence of
temporary barriers to mixing. This has important implications for the dispersion
of pollutants, nutrients, larvae, etc., and therefore for a wide range of predictions.
We were able to also verify the existence of these barriers by aerial-photographs.
In addition, the dependency of the absolute dispersion on time is not as expected
from diffusion-like behavior and is different on the two sides of the barriers.

Deducing an upper bound to the horizontal eddy diffusivity using
a stochastic Lagrangian model [2]: We present a method for estimating the
upper bound of the horizontal eddy diffusivity using a non-stationary Lagrangian
stochastic model. First, we identify a mixing barrier using a priori evidence (e.g.,
aerial photographs or satellite imagery) and using a Lagrangian diagnostic cal-
culated from observed or modeled spatially non-trivial, time-dependent velocities
[for instance, the relative dispersion (RD)]. Second, we add a stochastic compo-
nent to the observed velocity field. The stochastic component represents sub-grid
stochastic diffusion and its mean magnitude is related to the eddy diffusivity. The
RD of Lagrangian trajectories is computed for increasing values of the eddy diffu-
sivity until the mixing barrier is no longer present. The value at which the mixing
barrier disappears provides a dynamical estimate of the upper bound of the eddy
diffusivity. The erosion of the mixing barrier is visually observed in numerical
simulations, and is quantified by computing the kurtosis of the RD at each value
of the eddy diffusivity. We demonstrate our method using the double gyre circu-
lation model and apply it to high frequency radar observations of surface currents
in the Gulf of Eilat.

When complexity leads to simplicity: Ocean surface mixing simplified
by vertical convection [1]: In many applications, for example, when studying
submesoscale (100m – 20 km) dynamics, the flow field in the ocean is three di-
mensional. The effect of weak vertical motion on the dynamics of materials that
are limited to move on the ocean surface is an unresolved problem with important
environmental and ecological implications (e.g., oil spills and larvae dispersion).
We investigate this effect by introducing into the classical horizontal time-periodic
double-gyre model vertical motion associated with diurnal convection. The classi-
cal model produces chaotic advection on the surface. In contrast, the weak vertical
motion simplifies this chaotic surface mixing pattern for a wide range of param-
eters. Melnikov analysis is employed to demonstrate that these conclusions are
general and may be applicable to realistic cases. This counter intuitive result that
the very weak nocturnal convection simplifies ocean surface mixing has significant
outcomes.
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Optimal stirring for maximal mixing

Charles R. Doering

We address the challenge of optimal incompressible stirring to mix an initially
inhomogeneous distribution of passive tracers. As a measure for mixing we adopt
the H−1 norm of the scalar fluctuation field. This ’mix-norm’ is equivalent to (the
square root of) the variance of a low-pass filtered image of the tracer concentra-
tion field, and is a useful gauge even in the absence of molecular diffusion. This
mix-norm’s vanishing as time progresses is evidence of the stirring flow’s mixing
property in the sense of ergodic theory. For the case of a periodic spatial domain
with a prescribed instantaneous energy or power budget for the stirring, we de-
termine the flow field that instantaneously maximizes the decay of the mix norm,
i.e., the instantaneous optimal stirring—when such a flow exists. When no such
’steepest descent’ stirring exists, we determine the flow that maximizes that rate
of increase of the rate of decrease of the norm. This local-in-time stirring strategy
is implemented computationally on a benchmark problem and compared to an
optimal control approach utilizing a restricted set of flows.
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Mixing, manifolds and reaction fronts in laminar flows

Tom Solomon

We are conducting experiments that investigate the effects of mixing on reactions
in fluid flows. Studies of these advection-reaction-diffusion (ARD) processes ben-
efit significantly from recent advancements in theories of chaotic advection. In
particular, analysis techniques for mixing based on manifolds and finite-time Lya-
punov exponents can be adapted to the case of reacting impurities. This is a
subject with significant practical applications to a wide range of ARD systems,
including microfluidic chemical and biological devices, cellular-scale processes in
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Figure 1. Top left: BIMs (in red) act as local barriers to front
in an oscillating vortex chain. Top right: BIMs (in blue) pin reac-
tions fronts in a disordered flow with an imposed wind (blowing
downward). Bottom: spatially-random flow and BIMs (in red)
that block an evolving front (green contour lines).

biological systems, oceanic ecosystems (such as plankton blooms), ignition fronts
in supernova explosions, and the spreading of a disease in a moving population.

To understand how reaction fronts propagate in ARD systems, we have adapted
manifold techniques developed to analyze chaotic mixing. We define burning in-
variant manifolds (BIMs) that act as barriers to propagating fronts, similar to
invariant manifolds that block passive mixing. However, BIMs are one-way bar-
riers, blocking fronts that propagate in one direction but not the other. We use
the BIM approach to identify barriers to front propagation in vortex chain flows
and spatially-disordered flows, as well as pinning of fronts in vortex chains and
disordered flows with imposed winds, see Fig. 1.

Coherent structures and transport in three-dimensional unsteady flows

Michel Speetjens

(joint work with Neehar Moharana, Ruben Trieling, Herman Clercx)

Scalar transport (additives, chemical species, heat) in 3D deterministic flows is
key to a wide variety of industrial and natural fluid flows of size extending from
microns to hundreds of kilometers. Fluid advection plays a central role in scalar
transport and is an essentially Lagrangian process. This advances a Lagrangian
perspective based on the properties of fluid trajectories as a natural way for its
description. Mass and momentum conservation “organise” these trajectories into
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Figure 1. 3D Poincaré section of unperturbed (left) and per-
turbed (right) time-periodic sphere-driven flow [3].

coherent structures that geometrically determine the transport properties. 3D
unsteady flows admit the highest dynamic freedom and, in consequence, exhibit the
greatest diversity in coherent structures and richness in transport characteristics.

The present study concerns 3D time-periodic flows, where coherent structures
emerge as periodically-recurring material entities in the associated stroboscopic
maps. A class of structures of great (practical) relevance are invariant closed
surfaces, with tori and spheroids as basic kinds. Studies in literature generally
concern the former; investigations on the latter are rare. The different topol-
ogy (spheroids/tori are singly/doubly-connected) implies fundamentally different
dynamics [1]. Tori accommodate windings of trajectories and respond to perturba-
tions as per 3D counterparts of the well-known KAM/Poincaré-Birkhoff theorems
[2]. Spheroids accommodate 2D (chaotic) Hamiltonian dynamics [3]. Simulation
of their response to weak fluid inertia in an interior flow in a finite cylinder revealed
remarkable behaviour: formation of intricate coherent structures by merger of thin
shells and tubes [1, 4]. A recent study exposed essentially similar behaviour in an
exterior flow driven by a rotating sphere and subjected to an artificial perturbation
[3]. This demonstrated the universal nature of the observed response scenario.

The 3D time-periodic sphere flow is composed of step-wise reorientations of a
steady base flow ū = ū0 + ū′, with ū0 a Stokes flow and ū′ a divergence-free
perturbation ū′, driven by rotation of the sphere about the z-axis.

Perturbation can trigger invariant spheres with 2D Hamiltonian dynamics (“2D
mode”) or structures as in the above-mentioned cylinder flow [3]. Former and
latter are demonstrated in Fig. 1 by the Poincaré section (black markers) of a
single tracer (released at the red marker) in a 2-step flow (rotation about about z
and x-axes).

The formation of shells and tubes upon perturbation is the result of the so-called
averaging that happens for Lagrangian motion with “slow” and “fast” components
[5]. Perturbation of chaotic regions within invariant spheres results in significant
motion parallel to said spheres (two “fast” components) and weak radial motion
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(one “slow” component). The “slow” component is on average constant and thus
to good approximation acts as a constant of motion (“adiabatic invariant” [5]).

Hence the spheroidal shells. This averaging process breaks down near elliptic
islands within the original invariant surfaces due to essentially different (local)
dynamics: one “fast” and two “slow” components parallel and transverse, respec-
tively, to the original closed orbits. The “slow” components, rather than becoming
individual adiabatic invariants, cause one (local) adiabatic invariant1 with toroidal
level sets defined by coalescence of elliptic orbits on adjacent spheres [6]. Hence
the tubes.

Emergence of shells and tubes and their interaction is inextricably linked to
periodic entities. Restriction to invariant spheres in the “2D mode” results in
“periodic lines”, i.e. material curves that consist of individual periodic points of
either elliptic or hyperbolic type. The former are the centers of elliptic islands;
the latter are the origin of pairs of stable-unstable 1D manifolds that densely
fill the chaotic regions. Perturbation causes hyperbolic and elliptic segments of
periodic lines to give way to isolated periodic points in 3D of focus-type and node-
type, respectively [2]. The 1D/2D manifold pairs of nodes, consistent with the
response of the chaotic regions associated with the underlying hyperbolic points,
proliferate within shells. This is demonstrated in Fig. 2 by the 1D unstable (red)
and 2D stable (green) manifold of a period-3 node. The 2D manifolds of foci
also proliferate within shells (not shown) due to the dominance of shell formation
outside the original elliptic islands. The 1D manifolds of foci, on the other hand,
are an exception. Elliptic segments of periodic lines are unperturbed limits of foci
and corresponding 1D manifolds; the aforementioned correlation between elliptic
segments and foci extends to the associated 1D manifolds of the latter. Thus the
1D manifolds become the centers of the tubes that emanate from the perturbed
elliptic islands. This is demonstrated in Fig. 2 by the 1D unstable manifolds (blue)
of a cluster of period-3 foci (red markers), which run through the tubes.

The manifold behaviour enables tube-shell merger in two distinct ways. First,
shells and tubes centre on the 2D and 1D manifolds, respectively, of the foci.
This happens at the inner shell in Fig. 2 (2D manifold not shown) and is in
accordance with [2]. Second, manifolds of nodes obstruct radial proliferation of
the 1D manifold of the foci, causing deflection into a shell (outer shell in Fig.
2). Important to note is the absence of foci here, signifying that an essentially
different mechanism than at the inner shell is at play, namely the property that
1D/2D manifolds cannot intersect—and thus cross—2D manifolds of the same
type.

The behaviour of spheroids, despite fundamental differences with tori, has cer-
tain parallels with the latter. Chaotic sections on spheroids survive as shells in a
way reminiscent of KAM tori emanating from perturbed non-resonant tori. Elliptic
islands on spheroids give way to new structures (i.e. tubes) by locally interrupting
shell formation in a manner akin to resonant tori disintegrating into clusters of

1Local in the sense of existing only in the direct vicinity of the original elliptic islands.
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Figure 2. Manifold dynamics in perturbed sphere-driven flow [3].

higher-order tubes embedded in local chaotic zones. Hence, (non-)chaotic sectors
on spheroids are in this sense counterparts to (non-)resonant tori.

Further studies to unravel the response of invariant spheroids to perturbation
and the resulting formation of intricate coherent structures are in progress. More-
over, experimental studies to validate the observed phenomena are underway.
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Observations of Lagrangian transport in the Adriatic Sea from
GPS-tracked surface drifters

Daniel Carlson

(joint work with Lorenzo Corgnati,Carlo Mantovani, Marcello Magaldi, Annalisa
Griffa, Enrico Zambianchi, Pierre M. Poulain)

While most large-scale studies of population connectivity use numerical ocean
model output to compute statistics of thousands of virtual particles, large uncer-
tainties persist as models have limited spatial resolution and often do not reproduce
observed ocean variability. Furthermore, scale-dependent dispersion on the surface
ocean remains an important open subject in physical oceanography. Lagrangian
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observations from surface drifters come with their own set of problems, most no-
tably limited numbers, sampling bias, finite lifetime, and position uncertainties
from wind and wave effects. Despite their limitations, surface drifter trajectories
provide important observations of surface ocean transport.

Twenty six GPS-tracked surface tracked drifters were deployed in the central
Adriatic Sea in May 2013 to investigate surface transport and to identify La-
grangrian pathways. Or particular interest are transit times between the Italian
peninsula and the east coast (Croatia and Albania) as well as transit times between
the network of marine protected areas (MPAs) in the Adriatic Sea.Preliminary re-
sults reveal transit times between MPAs in the central and southern Adriatic that
vary from a few days to a few months. None of the drifters released in this experi-
ment reached the Albanian coast. The drifters exited the Adriatic Sea by the end
of July 2013 with several traveling to the Ionian Sea.

The drifter trajectories observed were determined by ambient environmental
conditions (currents, winds, waves, stratification, etc.). Therefore, to determine
the degree to which the present results can be extrapolated, the May 2013 drifter
trajectories will be compared to a historical dataset of over 300 drifter trajectories
in the Adriatic Sea. Additionally, the atmospheric and oceanographic conditions
during the May 2013 experiment will be compared to climatological conditions.
Future work will include tracking of thousands of virtual particles using output
from a Regional Ocean Modeling System (ROMS) simulation of the Adriatic Sea
during the same time period.

Lagrangian descriptors and their applications to geophysical flows

Ana M. Mancho

(joint work with Stephen Wiggins, Jezabel Curbelo, Carolina Mendoza)

We report new techniques, which we refer to as Lagrangian descriptors (LD), for
revealing geometrical structures in phase space that are valid for aperiodically
time dependent dynamical systems [1]. These are based on the integration, for a
finite time, along trajectories of an intrinsic bounded, positive geometrical and/or
physical property of the trajectory itself. Let |F(x)| denote this property, let x(t)
be a trajectory satisfying x(t∗) = x∗ and defined on the time interval (t∗−τ, t∗+τ).
Then |F(x(t))| is a scalar valued function of t that depends parametrically on x∗

and t∗. We can consider its Lγ norm:

M(x∗, t∗)v,τ =

(∫ t∗+τ

t∗−τ

|F(x(t))|γ dt
)β

,

where β = 1 if γ ≤ 1 and β = 1/γ if γ > 1. Here |F(x(t))| can be the mod-
ulus of the velocity, or the modulus of the acceleration, or the modulus of the
time derivative of the acceleration. LD highlight invariant manifolds by means
of abrupt changes across the manifolds that denote lack of regularity of the un-
derlying function over these lines. The visualization of this effect requires long
enough integration times τ . Heuristic arguments supporting the performance of
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LD are given in [1, 3, 7, 2]. Additionally, analytical arguments based on explicit
calculations on a benchmark problem having a hyperbolic fixed point with stable
and unstable manifolds are given in [1]. Computations of LD for an explicitly
three dimensional, aperiodically time-dependent vector field, the time dependent
Hill’s spherical vortex [1], confirms a full agreement between the features provided
by LD and those obtained from the direct manifold calculation [4]. LD are also a
useful tool for analyzing elliptic regions in time dependent flows (see discussions
in [1, 3, 2]).

Lagrangian descriptors have been applied to geophysical flows defined as data
sets such as the Antarctic polar vortex in the southern stratosphere [5, 6]. Compar-
isons of the performance of LD with both finite time Lyapunov exponents (FTLEs)
and finite size Lyapunov exponents (FSLEs) in this geophysical flow confirm a bet-
ter performance of LD. The maps of LD systematically display sharper plots that
facilitate the identification of Lagrangian coherent structures and lobe dynamics.
For instance in [5] routes of transport that cross the Antarctic polar jet are identi-
fied. This would not have been possible using FTLE since they provide a blurred
pattern, full of spurious structures. In [5] LD features provide a picture where
Rossby wave breaking evidence is found in the interior of the vortex, while these
features are unnoticed with other Lagrangian approaches. A full comparison of
the performance of LD versus FTLE and other Lagrangian techniques, such as
finite time averages, is reported in [1].

Frame invariance is related to how LD perform in different coordinate systems.
Under coordinate transformations the results obtained from LD transform accord-
ing to the manner in which the type of invariant objects that they are expected
to recover transform. However, we note that in general these invariant objects are
not preserved under arbitrary coordinate transformations, for instance they are
not preserved for those time dependent transformations in which a new reference
system is built by subtracting from the old coordinates one of its trajectories.
A thorough discussion of these issues may be found in [7]. If the coordinates of
a dynamical system are transformed, the values of the LD at specific points of
space will certainly change with the reference frame, but the edges at which LD
changes abruptly—which are the features containing the Lagrangian information—
are transformed with the change of coordinates in the same manner in which the
manifolds themselves are transformed.
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Reacting flows and turnstiles

John R. Mahoney

(joint work with Kevin A. Mitchell)

In this work, we analyze the interplay between front propagation and the canon-
ical turnstile structure of dynamical systems theory. The result is our modified
structure, the burnstile, which accounts for both dynamical contributions. We
show how many features carry over naturally, and several new ones emerge. In
particular, it is necessary to account for the one-sided nature of the new burning
invariant manifolds, and their ability to form swallowtails.

We frame this work by posing a toy problem. Imagine an ocean bay where the
flow near the bay mouth is well-modeled by a separatrix under tidal (periodic)
driving. This of course leads to a turnstile (Fig. 1(left)) in the fluid dynamics
that describes the transport of fluid in and out of the bay [1]. Now, consider
a hypothetical algae bloom just outside the bay mouth that threatens to invade
the bay, causing ecological harm. We wish to prevent this invasion by applying
algaecide to the ocean surface. Suppose that the algaecide is applied once every
tidal cycle, and that it is perfectly effective and then immediately degrades.

Our motivating question is: Where should we apply this algaecide in order to
most effectively prevent invasion?

We illustrate the result of three protocols in Fig. 1(middle). The first column
is a control, showing the unchallenged progress of algae. Notice that by the third
cycle, it has penetrated the turnstile and will shortly overwhelm the whole bay.
In the first attempt we treat a rectangular strip that spans the channel. This
is clearly insufficient. The second attempt makes use of the underlying turnstile
structure, targeting the E0 lobe. This is a step in the right direction, but notice
that at 2T the algae has grown outward to occupy a “fattened” E0 lobe. The algae
missed by this treatment then goes on to invade, resulting in little improvement
from the control. The last treatment is applied to a lobe that has been “fattened”
by an amount v0T . This is closer to complete, however the treated region does not
properly account for the shape of the algae. Due to the expanding algae dynamic,
even this small leak results in eventual failure.

The answer lies in considering the invariant manifolds of the joint dynamics—
the so-called burning invariant manifolds (BIMs) [2, 3, 4, 5]. By modifying the
set-based definitions of lobes to naturally account for this one-to-many map (small
algae blobs to larger ones), we find that the modified lobes are bounded by BIMs.
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Figure 1. Left: Turnstile describing fluid transport across the
bay mouth. Middle: Algae invades from the left. Illustration of
control and three treatment protocols. Right: Algae treatment
based on burnstile lobes is effective and efficient.

In a fashion analogous to the advective case, we combine segments of stable and
unstable BIM to form the burnstile. This structure correctly describes the mecha-
nism by which front propagation to the right is facilitated by the flow. Specifically,
it provides efficient treatment protocols that entirely prevent the algae invasion.

This simple theory raises as many questions as it answers. We conclude with a
few of these questions.

In Fig. 1(right), both the modified E−1 and E0 lobes were used to prevent in-
vasion. However, these lobes have different areas (this is not an area preserving
system). Depending on system parameters, one or the other lobe may be larger.
What more can be said about this lobe sequence? Is there just one locally small-
est lobe? To what questions are the other lobes the answer? Does allowing for
continuous time treatment offer more efficiency?

A burnstile (or turnstile) structure requires the existence of a primary intersec-
tion point (pip). What are the physical consequences of losing a pip? In particular,
what is the relation between pip-free systems and “ballistic” front progress? Can
the theory be amended to smoothly accommodate this loss?

A number of potential extensions suggest themselves: non-isotropic, non-homo-
genous front speed; curvature-dependent front speed; and maybe of most signifi-
cance, fuzzy fronts, or simply diffusion in flows.

Acknowledgements. The present work was supported by the US National Sci-
ence Foundation under grants PHY-0748828 and CMMI-1201236.
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Figure 1. Left: Trajectories of three surface buoys in River
Danube in the vicinity of a groyne field. Middle: Laboratory
setup with a single groyne and the floating particles used for
the PTV- measurements. Right: FSLE ridges (colored) and the
largest flushing times (black) at t = 0s. The groyne is marked as
a black rectangle.
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Metamorphosis of stable manifolds in unsteady aperiodic river flows

Márton Zsugyel

(joint work with Tamás Tél and János Józsa)

Field measurements around a sequence of groynes were carried out [1] in River
Danube in order to characterize mixing. GPS-equipped floating buoys were re-
leased close to each other, see Fig. 1(left), and the buoy-pair distance evolutions
were analyzed. The available low number of buoys indicated chaotic spreading in
the vicinity of the groynes. For a detailed characterization of the mechanisms we
carried out appropriate (PTV-based) laboratory measurements, see Fig. 1(middle),
too. This provided a surface velocity field in which millions of numerical particle
trajectories were simulated and chaotic indicators were calculated.

The stable manifold of a (moving) saddle point is visualized at a given time
as the set of initial positions characterized with the largest flushing time (black
line in Fig. 1(right)) around a groyne head, i.e. the time elapsing until the particle
flows out of the observation area. We can see that the ridges (reddish colors in
Fig. 1(right)) of the Finite-Size Lyapunov exponent (FSLE) field approximately
coincide with the largest flushing times. In a detailed study we demonstrated how
particles starting from the black line of Fig. 1(right) at t = 0s converge along a
time-dependent stable manifold of an ever changing shape to a chaotic saddle by
time t = 18s and finally separate again along an unstable manifold by time t = 36s
[2].
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Similar stable manifold metamorphoses are expected to occur in any fluvial
environment with strong shear zones.

References
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Finite-Size Lyapunov Exponents and Lagrangian Coherent Structures

Daniel Karrasch

(joint work with George Haller)

The Finite-Size Lyapunov Exponent (FSLE) is a popular Lagrangian diagnostic
of trajectory separation in finite-time dynamical systems. The FSLE infers a local
separation exponent for each initial condition x0 over a different time interval of
length τ(x0; δ0, r), i.e. the separation time. Here, δ0 > 0 is the initial distance of
neighboring particles and r > 1 is a separation factor of interest; see [1] for more
details and references. Another popular Lagrangian diagnostic is the Finite-Time
Lyapunov Exponent (FTLE), for which integration time is fixed and the separation
of infinitesimal neighbors is measured.

The FSLE has been used in the detection of specific coherent flow features. In
particular, ridges of the FSLE field have been proposed as indicators of hyper-
bolic Lagrangian Coherent Structures (LCS), which are most repelling or most
attracting material surfaces over a given time interval [t0, t]. This idea is based on
a heuristic analogy with the FTLE field and an observed visual similarity of the
FSLE and FTLE fields, cf. [2] and Peikert’s abstract in this report.

In [1], we discuss in detail some marked differences between the FSLE and
FTLE that contradict the broadly presumed equivalence of these two scalar fields.
The differences stem from irregularities of the FSLE field, which include local
ill-posedness, spurious ridges, insensitivity to changes in the dynamics past the
separation time, and intrinsic jump-discontinuities.

We also establish mathematical conditions under which select FSLE ridges do
signal the presence of nearby FTLE ridges, which in turn mark hyperbolic LCS
under further conditions. To that end, we introduce a new separation metric, the
Infinitesimal-Size Lyapunov Exponent (ISLE), as the δ0 → 0 limit of the FSLE.
We also show examples in which FSLE ridges fail to satisfy our conditions, and
indeed do not correspond to nearby FTLE ridges.
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Figure 1. Ultrasound measurements of flow in a liquid metal
electrode, without current and with current density 125 mA/cm2.
The presence of current speeds and organizes the thermal convec-
tion. Additional measurements at other current densities show
that mixing time decreases as current density increases, with a
sharp onset near 50 mA/cm2. Faster mixing improves battery
rate capability.
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Mixing and coherent structures in a liquid metal electrode

Douglas Kelley

(joint work with Donald R. Sadoway)

Coherent structures open the way for analysis and control of complex systems.
One system of interest is the liquid metal battery [1, 2], a new and economic
technology for grid-scale storage of electrical energy. Adding storage capacity to
Earth’s electrical grids would dramatically reduce cost and improve reliability by
accommodating short-term demand variations and enabling the broad deployment
of wind and solar generation. Because these batteries are entirely liquid, mixing
directly affects battery performance: their rate-limiting process is mass transport
in the positive electrode, and flow is driven by both thermal and electromagnetic
forces. We use ultrasound velocimetry to measure mixing in a liquid metal elec-
trode and study its variation with electrical current density, as shown in Fig. 1.
We find that the flow becomes more ordered and faster when current density ex-
ceeds a threshold value. Our observations are consistent with previous studies of
magnetoconvection and imply that electrical current promotes mixing, which im-
proves battery performance. Next we will build stochastic system models similar
to those recently developed for convection [3].
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Investigations of the braid theory approach for identifying coherent
structures

Margaux Filippi

(joint work with Thomas Peacock, Jean-Luc Thiffeault, Michael Allshouse,
Marko Budǐsić)

Knowledge of the ocean surface dynamics is crucial to many areas of oceanog-
raphy, ranging from marine ecology to heat transport and climate. To better
understand surface mixing, we survey methods to detect Lagrangian Coherent
Structures (LCS), which are barriers to transport between distinct dynamical re-
gions in the flow. Whereas most techniques rely on an extensive knowledge of the
flow field, we seek methods to detect LCS from sparse data sets, such as floats
trajectories. Based on the work of Jean-Luc Thiffeault [1] and Michael Allshouse
[2], we investigate transport barriers from drifter trajectories with braid theory.

Consider sparse floaters drifting at sea, and map their trajectories onto a plane,
as illustrated in Fig. 1(left). Now project them onto a space-time plane, represent-
ing each trajectory by a strand evolving with time (see Fig. 1(middle)). Because of
the physical nature of the drifters, the trajectories do not intersect. However, the
strands can entangle, or cross. We then construct a braid : a geometric object con-
sisting of non-intersecting strands evolving with time, with sequenced crossings.
Fig. 1(right) shows the braid representation of the initial trajectories.

Next, we assign indices and directions to the crossings: define σi (σ
−1
i ) as the

clockwise (counter-clockwise) crossing between the ith and (i+1)th strands, when
viewed from the top. Then, the braid diagram in Fig. 1(rigth) is translated to
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σ1σ
−1
2 . We thus build blocks of crossings written as sequences of crossings: the

initial geometric data is thereby expressed algebraically. Now, consider three par-
ticles and a material line, or loop, initially wrapped tightly around two of the
particles. By interchanging the particles according to the braid crossing sequence
above, the line is stretched. With iterations of the action of the braid, the length
of the line grows exponentially. From the braid crossing sequence, we infer the
material line growth rate, which enables us to determine the degree of entangle-
ment of the initial trajectories. Finally, coherent structures are defined by particle
trajectories that travel together and do not entangle. Transport barriers can be
identified using the growth of line around trajectories and looking at regions with
slow rates. Allshouse and Thiffeault refined the method: the pair-loop algorithm
they developed [2] looks at pairs of trajectories. For each pair, the crossing se-
quence is calculated and applied to the loop enclosing this pair. This method then
finds the particles entangled by each loop and determines which particles lie within
invariant regions.

To study the chaotic advection of fluid particles on a plane, we use Hackborn’s
[3] rotor-oscillator, which consists of a rotating cylinder (rod) and its longitudinal
oscillation. This system has also been used to study flow separation by Weldon et
al [4]. The velocity field is defined by a stream function as given by Hackborn:

(1) ψ(x, y) =
1

2
log[f(x, y)] +

∫ ∞

0

g(x, k) cos(ky) dk,

with the y-axis parallel to the axis of oscillation, c the initial rod position, and:

f(x, y) =
1− 2e

πy

2 cos[π(x−c)
2 ] + eπy

1 + 2e
πy

2 cos[π(x+c)
2 ] + eπy

,

g(x, k) =
2[tanh k cosh kx− x sinh kx] coshkc

sinh 2k + 2k
+

+
2[cothk sinhkx− x cosh kx] sinh kc

sinh 2k − 2k
.

Fig. 2 shows the calculated field for a non-dimensional rotor-oscillator flow.
Trajectories are then analyzed in braidlab, a matlab module developed by Thif-
feault.
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The asymptotic dynamics of inertial particles with memory

Mohammad Farazmand

(joint work with Gabriel P. Langlois, George Haller)

The motion of finite-size (or inertial) particles moving in an ambient fluid flow
is of interest in many engineering and environmental applications. The inertial
particle dynamics is modeled by the Maxey–Riley (MR) equation [1]

ẏ = u(y, t) + w(t),

ẇ + κµ1/2 d

dt

∫ t

t0

w(s)√
t− s ds+ µw = −∇u(y, t)w +R

[
Du

Dt
(y, t)− g

]
,

(1)

which describes the motion of a small spherical particle. Here, y : R+ → D rep-
resents the particle position and w : R+ → Rn is the instantaneous deviation of
the particle velocity from the fluid velocity u. The constants µ≫ 1, R and κ are
dimensionless parameters and g is dimensionless gravitational acceleration. The
total derivatives D

Dt and
d
dt refer to derivatives along fluid and particle trajectories,

respectively. Therefore, Du
Dt is the acceleration of the fluid.

To simplify the equation, the fractional-order derivative κµ1/2 d
dt

∫ t

t0

w(s)√
t−s

ds

(also referred to as the memory term) has been routinely neglected in the studies
of inertial particle dynamics. Recent experimental and numerical studies (see [2]
and references therein), however, indicate some important qualitative changes in
the behavior of the solutions of MR in the presence of the memory term.

Here we present an analytic study of the impact of the fractional-order derivative
on the solutions of the MR equation. In particular, we show that the fractional-
order derivative changes some fundamental properties of the solutions including
smoothness [3], asymptotic behavior and the convergence rate to this asymptotic
state.

Rescaling time by introducing τ = t/ǫ where ǫ = 1/µ≪ 1, we find an equivalent
integral equation for (1). Applying a Gronwall-type inequality [4] to this integral
equation we get the following result.
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Theorem 1. Assume ‖∇u‖∞ < M1, 2‖Du
Dt − g‖∞ < M2 and ǫ < 1

M1

. Then we
have

(i) |w(τ)| ≤ |w0|+ǫM2

1−ǫM1

, ∀τ ≥ 0,

(ii) |w(τ)| ≤ ǫM2/(1− ǫM1), for τ large enough,

where w0 = w(t0) is the initial relative velocity.

A corollary of the above theorem is that the set {(y, w, t) : |w| ≤ ǫM2/(1−ǫM1)}
is an asymptotically attracting invariant set for the MR equation (1). Moreover,
the rate of convergence to this set can be shown to be algebraic: t−3/2. Numerical
simulations suggest the existence of a globally attracting slow manifold in this set
(see Fig. 1).
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Lagrangian Coherent Structures from Video Streams of Jupiter

Alireza Hadjighasem

(joint work with George Haller)

1. Introduction

Jupiter’s fast rotation - one rotation over 10 hours - creates strong jet streams,
smearing its clouds into linear bands of dark and light zonal belts that circle the
planet on lines of almost constant latitude. Such a high degree of axisymmetry is
absent in our own atmosphere. Moreover, Jupiter has the largest and longest-living
known atmospheric vortex, the Great Red Spot (GRS). Such vortices abound in
nature, but GRS’s size, long-term persistence, and temporal longitudinal oscilla-
tions make it unique.

Here, we uncover, for the first time, unsteady material structures that form the
cores of zonal jets and the boundary of the GRS in Jupiter’s atmosphere. We
perform our analysis on a velocity field extracted from a video footage acquired
by the NASA Cassini spacecraft.

2. Background: Lagrangian coherent structures

Consider a two-dimensional unsteady velocity field

(1) ẋ = v(x, t), x ∈ U ⊂ R
2, t ∈ [t0, t],

which defines a two-dimensional flow over the finite time interval [t0, t] in the
spatial domain U . The flow map F t

t0(x0) : x0 7→ xt of (1) then maps the initial
condition x0 at time t0 to its evolved position xt at time t. The Cauchy–Green
(CG) strain tensor associated with (1) is defined as

Ct
t0(x0) = DF t

t0

⊤
DF t

t0 ,

where DF t
t0 denotes the gradient of the flow map, and the symbol ⊤ indicates

matrix transposition. The CG strain tensor is symmetric and positive definite,
thus has two positive eigenvalues 0 < λ1 ≤ λ2 and an orthonormal eigenbasis
{ξ1, ξ2}, defined as

Ct
t0(x0)ξi(x0) = λi(x0)ξi(x0), |ξi(x0)| = 1, i ∈ {1, 2}.

We shall suppress the dependence of CG invariants on t0 and t for notational sim-
plicity.
A general material line (composed of an evolving curve of initial conditions) expe-
riences both shear and strain in its deformation. As argued in [1, 2], the averaged
straining and shearing experienced within a strip of ǫ-close material lines will gen-
erally differ by an O (ǫ) amount over a finite time interval due to the continuity of
the finite-time flow map.

We seek a Lagrangian Coherent Structure (LCS) as an exceptional material line
around which O (ǫ) material belts show no O (ǫ) variation in the length-averaged
Lagrangian shear or strain over the time interval [t0, t]. This implies that an LCS
is a stationary curve for the averaged Lagrangian shear or strain functionals.
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2.1. Shearless LCS: stationary curves of averaged shear. Specifically, a
shearless LCS is a material line whose averaged shear shows no leading order vari-
ation with respect to the normal distance from the LCS. Farazmand et al. [1] show
that such curves are null-geodesics of a Lorentzian metric. The most robust class
of these null-geodesics turns out to be composed of smooth chains of tensorlines
(trajectories of the eigenvector fields of CG) that connect singularities of the CG
field. Out of all such possible chains, one builds parabolic LCS (generalized jet
cores) by identifying tensorlines closest to being neutrally stable (cf. [1] for details).

2.2. Strainless LCS: stationary curves of averaged strain. Similarly, a
strainless LCS is a material line whose averaged strain shows no leading order
variation with respect to the normal distance from the LCS. As shown by Haller
and Beron-Vera [2], such stationary curves of the tangential stretching functional
coincide with the null-geodesics of another Lorentzian metric that are tangent to
one of the vector fields

(2) η±λ (x0) =

√
λ2(x0)− λ2

λ2(x0)− λ1(x0)
ξ1(x0)±

√
λ2 − λ1(x0)

λ2(x0)− λ1(x0)
ξ2(x0),

We refer to closed orbits (limit cycles) of the vector fields (2) as elliptic LCS. The
outermost orbit of such a family of limit cycles serves as a coherent Lagrangian
vortex boundary. It is infinitesimally uniformly stretching, i.e., any of its subsets
stretches exactly by a factor of λ over the time interval [t0, t]. Limit cycles of η±λ (x0)
only tend to exist for λ ≈ 1, guaranteeing a high degree of material coherence for
the Lagrangian vortex boundary.

3. Results

We used the ACCIV algorithm of Asay-Davis et al. [3] to extract a time-resolved
atmospheric velocity field from video footage taken by the NASA Cassini Orbiter.
The ACCIV algorithm yields a high density of wind velocity vectors, which is ad-
vantageous over the limited number of vectors traditionally obtained from manual
cloud tracking.

Observational records of Jupiter go back to the late 19th century, indicating
that Jupiter’s atmosphere is highly stable in the latitudinal direction. Therefore,
the average zonal velocity profile as a function of latitudinal degree is an important
benchmark for examining the quality of the reconstructed velocity field.

In Fig. 1A, we compare our temporally averaged zonal velocity profile obtained
form ACCIV algorithm with the profile reported by Limaye [4]. Limaye’s profile is
based on Voyager I and Voyager II images, covering 144 Jovian days. Our velocity
profile is based on video footage captured by Cassini Orbiter during its flyby in
route to Saturn in 2000, just covering 24 Jovian days. Despite these differences in
the data, the two profiles show sufficiently close agreement.

Using the extracted time-resolved velocity, we applied the geodesic theory of
LCS reviewed in Section 2 to the detection of a coherent Lagrangian boundary for
the GRS, and of the cores of eastward- and westward-moving zonal jets (Fig. 1B).
Advected images (not shown here) of the extracted LCS confirm their sustained
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Figure 1

coherence and organizing role in cloud transport and mixing. We will report
further details and results elsewhere.
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Distribution of particle displacements in biomixing

Jean-Luc Thiffeault

The experiments of Leptos et al. [1] show that the displacements of small particles
affected by swimming microorganisms achieve a non-Gaussian distribution, which
nevertheless scales diffusively. We use a simple model where the particles undergo
repeated ‘kicks’ due to the swimmers to explain the shape of the distribution.

Leptos et al. study the microscopic algae Chlamydomonas reinhardthii. They
measure experimentally the probability density function (PDF) of tracer displace-
ments, ρXt

(x). Thus, ρXt
(x) dx is the probability of observing a particle displace-

ment Xt ∈ [x, x+ dx] after waiting a time t. The range of t is chosen small enough
that the swimmers are ‘ballistic,’ so their velocity is roughly constant.
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At zero volume fraction (φ = 0), the distribution ρXt
(x) is Gaussian, due solely

to molecular diffusivity. For higher number densities, exponential tails appear and
the Gaussian core broadens. Leptos et al. fit their the distribution to the sum of
a Gaussian and an exponential:

ρXt
(x) =

1− f√
2πδ2g

e−x2/2δ2g +
f

2δe
e−|x|/δe.

They observe the scalings δg ∼ Agt
1/2 and δe ∼ Aet

1/2, where Ag and Ae depend

on φ. They call this a diffusive scaling, since x ∼ t1/2. Their point is that this is
surprising, since the distribution is not Gaussian.

Our goal is to derive the PDF of displacements ρXt
(x) from a simple model.

We use the model described by Thiffeault & Childress [2] and improved by Lin
et al. [3], which in spite of its simplicity captures the important features observed
in experiments.

We assume there are N swimmers in a volume V , so the number density of
swimmers is n = N/V . Initially, each swimmer travels at a speed U in a uniform
random direction. They keep moving along a straight path for a time τ , so that
each traces out a segment of length λ = Uτ . After this a new direction is chosen
randomly and uniformly, and the process repeats—each swimmer again moves
along a straight path of length λ. Though far from realistic, this model captures
many essential features of the system, as found in [2, 3].

We wish to follow the displacement of an arbitrary ‘target fluid particle.’ The
swimmers are all simultaneously affecting this fluid particle, but in practice only
the closest swimmers significantly displace it. It is thus convenient to introduce
an imaginary ‘interaction sphere’ of radius R centered on the target fluid particle,
and count the number Mt of ‘interactions,’ that is the number of times a swimmer
enters this sphere. (Our treatment applies to two-dimensional systems simply by
changing ‘sphere’ to ‘disk’ and ‘volume’ to ‘area.’) Fig. 1A illustrates the situation.

When Nt/τ is large and R is not too large, the distribution of Mt is well
approximated by a Poisson distribution:

(1) P{Mt =M} ≃ 1

M !
〈Mt〉Me−〈Mt〉,

where the mean is given by the volume swept by the interaction sphere in time t:

(2) 〈Mt〉 ≃ nπR2λ (t/τ).

Let us now consider these probabilities within the context of the Leptos et al.
[1] experiments. The velocity of the swimmers is peaked at around U ∼ 100µm/s.
Their volume fraction is less than 2.2%. Assuming spherical organisms of radius
5µm, this gives a number density n ≃ 4.2×10−5µm−3. The maximum observation
time is about t ∼ 0.3 s, so that a typical swimmer moves by a distance λ ∼ 30µm.
From (2), we find

〈Mt〉 ≃ .004× (R/1µm)2.

Hence, for R = 20µm (an interaction disk with a radius four times the swimmer’s),
we have 〈Mt〉 ≃ 1.58. This is at the highest densities used in the experiments.
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(A) A swimmer moving inside a vol-
ume V along a series of straight paths,
each of length λ and in a uniform ran-
dom direction.
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Figure 1

We conclude that a typical fluid particle is only strongly affected by about one
swimmer. The only displacements that a particle feels ‘often’ are the very small
ones due to all the faraway swimmers. We thus expect the displacement PDF to
have a central Gaussian core (since the central limit theorem will apply for the
small displacements), but strongly non-Gaussian tails. This is what is observed,
and we will spend the remainder of the talk making this more precise.

Now that we have examined how often swimmers interact with a sphere of
radius R centered around a target particle, we will look at how the particle gets
displaced. Following Lin et al. [3], we start from a distribution of displacements
∆λ ≥ 0 induced by a single swimmer. Each time a swimmer enters the interaction
sphere we have an ‘encounter,’ which causes a displacement of the target particle
in a random direction ψk; thus, after M encounters, the displacement in some
fixed direction is

XM =
M∑

k=1

∆λ cosψk,

where each encounter has random i.i.d. values of the displacement ∆λ.
The probability density of XM is related to that of Xt, the displacement after

a time t, by

(3) ρXt
(x) =

∞∑

M=0

ρXM
(x)P{Mt =M},

where P{Mt =M} is given by Eq. (1). Fig. 1B shows the PDF ρXt
(x), normalized

to unit standard deviation. The PDF was obtained by sampling from the single-
swimmer displacements ∆λ for a squirmer-type swimmer [3]. The fit to the data is
good, though the tails are a bit depressed. This may be due to the use of a swimmer
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model that entrains particles slightly less far than the actual organism. Eckhardt
& Zammert [4] have obtained better fit by invoking an anomalous diffusion model.
In a future publication we will investigate whether our model can account for more
details of the Leptos et al. experiment.
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Transfer operator approaches to identifying and tracking coherent
structures and quantifying mixing and transport

Gary Froyland

The study of transport and mixing processes in dynamical systems is partic-
ularly important for the analysis of mathematical models of physical systems.
In the autonomous setting, the use of transfer operators (PerronFrobenius op-
erators) to identify invariant and almost-invariant sets, which are barriers to
transport and mitigate mixing, has been particularly successful, with applica-
tions to molecular dynamics, astrodynamics, physical oceanography, and fluid dy-
namics. In the nonautonomous (time-dependent) setting, coherent sets [1, 2], a
time-parameterised family of minimally dispersive sets, are a natural extension of
almost-invariant sets. The present work introduces a new analytic transfer oper-
ator construction [3] that enables the calculation of finite-time coherent sets (sets
are that minimally dispersive over a finite time interval). This new construction
also elucidates the role of diffusion in the calculation and we show how proper-
ties, such as the spectral gap of the constructed operator and the regularity of
singular vectors, scale with noise amplitude. The construction can also be applied
to general Markov processes on continuous state space. In the presence of hyper-
bolic dynamics we demonstrate numerically that under increasing flow duration,
the boundaries of coherent sets increasingly align with fundamental stable and
unstable manifolds [4].
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Self-consistency requirements for Lagrangian Coherent Structures

George Haller

1. Introduction

Lagrangian Coherent Structures (LCS) were originally defined in [2] as locally
most attracting, repelling or shearing material surfaces. Such surfaces are ex-
pected to shape trajectory patterns in finite-time, aperiodic dynamical system.
The LCS acronym has, however, also become a generally used term to describe
visual patterns obtained from applications of various flow diagnostics.

Despite this trend, a diagnostic tool should satisfy a minimal set of mathemati-
cal self-consistency requirements before its output features can be called LCS. This
is not unlike insisting on a minimal set of requirements that a heuristic numerical
solver should satisfy before we refer to its output as a solution of a differential
equation.

Here, we propose a set of self-consistency requirements for LCS detection, with
a more detailed account appearing in [3].

2. Objectivity

A fundamental principle of mechanics is that material response should be in-
dependent of the observer [1]. This principle of objectivity prompts us to add
Coriolis and centrifugal forces to Newton’s equations in a rotating frame, so that
the resulting material response by a particle is just the same as in an inertial
frame.

LCS are all about describing coherence in material response. Any LCS definition
or detection method should therefore be invariant under Euclidean coordinate-
changes of the form

y = Q(t)x+ p(t),

with Q(t) denoting a time-dependent proper orthogonal tensor, and p(t) denoting
a time-dependent translation [4].

3. Finite-time nature

Fluid flows that call for LCS analysis typically evolve aperiodically in time, and
the structures of interest in them have a finite life span. Over such finite times,
classic asymptotic concepts, such as stability, stable and unstable manifolds, or
chaotic advection become mathematically undefined.

An LCS detection principle should therefore rely on a correct finite-time adap-
tion of these asymptotic concepts. This is often challenging to satisfy, as classic
notions of stability and instability lose their distinguishing power over finite time
intervals due to the continuity of the flow map.
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4. Lagrangian invariance

The word Lagrangian in the LCS acronym implies that the structure identified
as LCS evolves with the flow, forming an invariant manifold in the extended phase
space.

Several diagnostic approaches assess flow coherence over sliding time windows
[t0, t0+T ], with the initial time t0 sweeping through the observational time period.
This approach effectively analyzes a sequence of different finite-time dynamical
systems, and the results from the analysis will not form an invariant manifold in
the extended phase space for aperiodic flow.

5. Continuity

LCS approaches generally utilize diagnostic fields computed from the flow.
These scalar field are meant to decide if any given trajectory belongs to an LCS
or not. Consequently, an LCS diagnostic for smooth flows should at least be con-
tinuous, otherwise it will classify the same point differently under two different
directions of approach.

LCS detection tools that apply the flow map to all initial conditions for the
same length of time tend to be continuous. Diagnostic tools that apply the flow
map to different initial condition over different time intervals may have intrinsic
discontinuities.
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Differential descriptions for characteristic curves and their possible
role in flow analysis

Tino Weinkauf

(joint work with Holger Theisel, Hans-Christian Hege)

The properties of a flow can be explained by considering the motion of particles. A
particle moves with the flow on its trajectory or path line, which is a line consisting
of all point locations visited by the particle over time. Real-world flow experiments
often make use of other characteristic curves for visualization purposes: a streak
line consists of a large number of particles, which have been injected into the flow
one after another from the same location. A common way to achieve this effect
in a flow lab is to constantly release smoke from a nozzle. It moves with the flow
and thereby forms the streak line. A time line is another means of visualizing a
flow. It is created by an instantaneous release of smoke from a slit: the initially
straight line of smoke is transported by the flow and rolls up in vortices.
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Figure 1. Vortex core line (red) in the center of swirling streak lines.

It is well-known that stream and path lines can be expressed using ordinary dif-
ferential equations (ODE). This allows conclusions about important properties of
these particle trajectories. For example, it is possible to determine their curvature
without actually computing the trajectories themselves. Many important methods
of computer-based flow analysis rely on the simple, yet powerful, representation
of particle trajectories using ordinary differential equations. Other examples are
steady-state topology and core lines around which particle trajectories exhibit a
swirling motion.

The situation is different for streak and time lines. Existing descriptions are
purely geometric, which does not allow conclusions about their inherent properties.
We developed a general scheme to describe all four types of characteristic curves
of flow fields - stream, path, streak, and time lines - as tangent curves of a derived
vector field. Thus, all these lines can be obtained by a simple integration of an
autonomous ODE system. Details can be found in our corresponding publications
[1, 2].

With this differential description of characteristic curves, a large number of fea-
ture extraction and analysis tools becomes available for all types of characteristic
curves, which were previously only available for stream and path lines. This is the
case because the inherent properties of streak and time lines can now be expressed
in a compact mathematical form.

Fig. 1 shows a core line in the center of swirling streak lines. This may lead
to a new characterization of vortex structures. In [1], we describe how to find an
attractor using this method, which cannot be found using many other methods
including FTLE.

As a side effect, streak and time lines can often be computed significantly faster
using the new approach. This gives rise to new possibilities in flow visualization.
In [3], we describe an approach to create non-cluttered streak line visualizations,
which strongly benefits from the faster computation scheme. Fig. 2 shows exam-
ples.
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Figure 2. Uncluttered visualizations of streak lines in the double
gyre (left) and in the flow behind a cylinder (right).
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Spectral methods for computing Lagrangian coherent structures

Clarence W. Rowley

(joint work with Matthew O. Williams, Irina I. Rypina)

We present a method for determining finite-dimensional approximations of the
Perron-Frobenius and Koopman operators directly from experimental data. The
approach amounts to a spectral collocation method: one chooses any desired basis
for the space of observables (functionals on the phase space), and test functions
that are Dirac measures centered at the locations of the available data. The
result is a finite dimensional approximation of the Koopman operator that can be
directly used to approximate the Koopman eigenfunctions or slightly modified to
reveal coherent structures such as almost invariant or coherent sets [2, 3]

Consider a discrete-time dynamical system evolving on a vector space, V , with
dynamics x 7→ f(x). Let F be a vector space of functionals on V . The Koopman
operator is a linear operator K : F → F given by

Kψ(x) = ψ(f(x)).

Now, suppose we have a (vector-valued) observable, a function g : V → Rm. If ϕj

denote eigenfunctions of K, then assuming we can expand

g(x) =

∞∑

j=1

vjϕj(x),

these coefficients vj ∈ Cm are called the Koopman modes associated with the
observable g [4, 5].

Dynamic Mode Decomposition (DMD) was introduced in [7], and may be viewed
as an algorithm for computing Koopman modes [5]. The version of the DMD
algorithm used here is described in [8], and differs slightly from the original. Sup-
pose one has two sets of data {x1, . . . , xn}, {y1, . . . , yn} for xj , yj ∈ V , such that
yj = f(xj). Arrange the data into matrices

X =
[
x1 x2 · · · xn

]
, Y =

[
y1 y2 · · · yn

]
,
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and define the matrix

A = Y X+

where X+ denotes the Moore-Penrose pseudoinverse. Then the DMD eigenvalues
and DMD modes of the given dataset are the eigenvalues and eigenvectors of A.
It is shown in [5, 8] that these approximate eigenvalues of the Koopman operator,
and the corresponding Koopman modes vj , for the observable g(x) = x. This is a
useful algorithm for obtaining information about the Koopman operator directly
from data; however, it does not give us an explicit approximation of the Koopman
operator, or a method for computing Koopman eigenfunctions, ϕj .

We present a method we call Extended DMD, in which we approximate the
Koopman operator using a weighted residual method. First, choose a basis
{ψ1, . . . , ψN} for a subspace SN of F , and expand any function ϕ ∈ SN as

ϕ(x) =

N∑

j=1

ajψj(x),

where aj ∈ R. If PSN
denotes a projection onto SN , we then expand

PSN
Kϕ(x) =

N∑

j=1

bjψj(x),

where bj ∈ R. The approximate matrix representation of the Koopman operator
is simply the matrix that maps a = (a1, . . . , aN) to b = (b1, . . . , bN). Defining a
set of test functions Wj ∈ F∗, for j = 1, . . . ,M , we have

b = Ψ+
XΨY a,

with

ΨX =



〈ψ1,W1〉 · · · 〈ψN ,W1〉

...
...

〈ψ1,WM 〉 · · · 〈ψN ,WM 〉


 ,

ΨY =



〈ψ1 ◦ f,W1〉 · · · 〈ψN ◦ f,W1〉

...
...

〈ψ1 ◦ f,WM 〉 · · · 〈ψN ◦ f,WM 〉


 ,

(1)

where 〈·, ·〉 denotes the natural pairing. For arbitrary choices ofWj , these pairings
or inner products may require a lot of data to compute. We pick

Wj(x) = δ(x− xj),
where δ is the Dirac measure and xj is the j-th column of X . With this choice
(which corresponds to a collocation method), Eq. (1) becomes

ΨX =



ψ1(x1) · · · ψN (x1)

...
...

ψ1(xM ) · · · ψN (xM )


 , ΨY =



ψ1(y1) · · · ψN (y1)

...
...

ψ1(yM ) · · · ψN (yM )


 .
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The approximate matrix representation of the Koopman operator is then

K = Ψ+
XΨY .

This choice of test functions,Wj , is a pragmatic one that allows the inner products
to be computed directly from data. Another choice is a Galerkin method, in which
Wj = ψj . Although the inner products in (1) are not computed explicitly, the
Extended DMD method converges almost surely to a Galerkin method asM →∞
if a random sampling strategy is used. Therefore, the convergence of the finite
dimensional approximation, K, to the Koopman operator, K, is guaranteed as
long as SN → F as N →∞.

We illustrate the above method with a number of examples and using a variety of
choices of basis functions. The method is equivalent to DMD if the basis functions
are the components of the full state, ψi(x) = 〈x, ei〉, where ei denotes the i-th
unit vector. However, we have also used Legendre polynomials, Fourier modes,
indicator functions on rectangles (Ulam’s method), radial basis functions, and
simple spectral elements, which appear to be more versatile as they can represent
larger subsets of F . For a linear system, the Koopman eigenfunctions may be
computed analytically, and we verify that the Extended DMD method recovers
the exact eigenfunctions. We then use the method to compute isochrons of the
van der Pol oscillator, and find almost-invariant sets and finite-time coherent sets in
a double gyre example, using techniques in [3, 1, 2]. Finally, we use the method to
compute coherent sets in the Philippine Sea, using trajectories from 200 simulated
drifters, obtained from numerical simulations presented in [6].
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Network approaches to transport and mixing

Emilio Hernández-Garćıa

(joint work with Enrico Ser-Giacomi, Vincent Rossi and Cristóbal López)

Our understanding of transport and mixing in fluid flows has been greatly ex-
panded in the last decades by focusing on Lagrangian approaches, that effectively
consider trajectories of fluid particles as the orbits of dynamical systems.

One class of the techniques developed in this context, roughly labeled as set-
oriented methods, considers the motion of regions of fluid in a probabilistic setting
and assess properties such as invariance, coherence, or low leakage. The central tool
is the transfer matrix, a discrete approximation to the Perron-Frobenius operator
associated to the fluid flow, in which the fluid domain is discretized into small
boxes. This approach has demonstrated its power to detect almost-invariant sets
in abstract dynamical systems and in geophysical applications [1, 2], and has been
generalized to track the motion of coherent moving sets also in oceanic flows [3].

Connectivity, internal and external coherence and mixing are important factors
for the efficacy of Marine Protected Areas (MPAs) as biodiversity conservation
tools. With this application in mind, we have applied set-oriented methods to the
flow computed by the NEMO eddy resolving model of circulation in the Mediter-
ranean Sea [4]. The aim was to extract oceanic regions which are well mixed
internally but with weak mixing/exchange/connectivity with the surrounding wa-
ters. Whereas the standard methods to extract almost-invariant sets based on
eigenvectors of the transfer matrix seem suited to this, we find two main limita-
tions: First, the requirement of strong internal mixing is not explicitly taken into
account. Second, the method in its simplest form seeks for partitions of the fluid
domain into regions of similar size.

To overcome these limitations we realize that the representation of the flow
in terms of a transfer matrix defines a graph or network in which nodes are the
discrete boxes decomposing the fluid domain, and weighted and directed links are
associated to each entry in the transfer matrix, giving an effective flow between
them. We have access then to the great variety of powerful methods to partition
a network into pieces according to different criteria, a task named community
detection in the modern network theory literature [5]. Among the many algorithms
available, we choose Infomap [6], because it overcomes the two above mentioned
limitations, and because of its computational efficiency.

Fig. 1 shows an example of the partition obtained by the Infomap algorithm
on the network defined by the transfer matrix in the Mediterranean for a 30-days
flow. The colors denote values of the coherence ratio, which is the fraction of fluid
remaining in the region after the considered period with respect the initial one.
Note the diversity in sizes of the obtained regions. Adjustment of the integration
times to time scales of biological relevance for marine larvae allows assessment of
connectivity features of the MPAs already established in the Mediterranean, and
provides new insightful information for the design of new ones [4].
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Figure 1. Partition of the Mediterranean into self-coherent re-
gions by means of the Infomap algorithm applied to the network
defined by a 30-days transfer matrix of surface Mediterranean
flow. Colors give values of the coherence ratio ρ. White lines are
mean streamlines.
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Stirring by microorganisms

Bruno Eckhardt

(joint work with Stefan Zammert)

The collisions between the molecules in a liquid and pollen grains causes the irreg-
ular motion of the grains that is known as Brownian motion. Since the kicks are
uncorrelated, the dispersal of the grains follows the usual dispersal law 〈x2〉 ∝ t
and the probability density function (pdf) of the positions is Gaussian. In active
suspensions, obtained by adding artificial swimmers [1] or small microorganisms
[2], observations show that the dispersion law remains normal, but the pdf becomes
non-Gaussian. We have used concepts of continuous time random walks to model
the dispersal and the probability distribution and have obtained good fits to the
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observations [3]. In ongoing work we explore the transition to normal dispersal
for longer times, and the origin of the trapping that gives rise to the non-normal
dispersals.
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Atmospheric coherent structures and aerobiological invasions

Shane D. Ross

(joint work with Amir E. BozorgMagham, David G. Schmale)

Techniques uncovering transport barriers and structures in environmental flows
are poised to make a considerable impact on the field of ecology [1, 2]. In partic-
ular, Lagrangian coherent structures (LCS) provide a new means for discussion of
spatiotemporal characteristics of the passive transport and mixing of atmospheric
pathogen populations, paving the way for new management strategies regarding
the spread of infectious diseases affecting plants, domestic animals, and humans,
including identification of probable source regions and forecasts of regions at high
risk. Observations of airborne microorganism using autonomous unmanned aerial
vehicles have revealed that ‘clouds’ of high concentration remain coherent over
times of 6–9 hours (determined from auto-correlation of measurements), corre-
sponding to cloud widths of 20–200km [3]. This time-scale of coherence is in
the same range as the time between hyperbolic LCS passages past the sampling
location, based on data-assimilated (re-analysis) pastcast wind data [4]. Further-
more, patchiness and abrupt changes in concentration of microbial populations
are correlated with hyperbolic LCS passage [5, 4], suggesting that the (a) sampled
populations are airborne long enough to be stirred by the atmosphere and (b)
hyperbolic LCS play a role in partitioning atmospheric populations into coherent
regions over time-scales of < 24 hours [6].

These observations suggest that having reliable forecasts of hyperbolic LCS may
contribute to quantitative prediction of microbial concentrations and possible aer-
obiological invasions. However, chaotic atmospheric dynamics lead to unavoidable
forecasting errors in the wind velocity field, which compounds errors in LCS fore-
casting, imposing certain limits on the forecasting parameters [7]. To obtain more
reliable (short-term, < 24 hours) predictions of atmospheric LCS features, we have
incorporated two concepts. First is the effect of unresolved turbulent motion; this
consideration leads naturally to a stochastic finite-time Lyapunov exponent (SF-
TLE) field and the resultant stochastic LCS. The second concept is ensemble
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FTLE/LCS forecasting using individual members of the ensemble wind field fore-
casts [8]. We find that the hyperbolic LCS based on a deterministic flow field
persist, and in terms of determining source regions for samples, attracting LCS
partition the probabilistic source regions into discrete high probability clumps [9].

We consider further notions that may be particularly relevant in an ecological
context, such as sampling times which may lead to the most diverse populations
(in terms of origins) sampled sequentially at a geographically fixed location [9]. If
we consider an n-dimensional (n = 2, 3) time-dependent vector field v(x, t) over
the domain D×T where D ⊂ R

n is the spatial domain and T is the time-interval
of interest, this allows us to define a flow map φ : D → D which gives the location
of the particle seeded at (x, t) and integrated over a time interval τ (which could
be positive or negative), denoted as φτt (x). Consider the curve of particles which
were integrated for a time τ since passing through the location x at time t within
the interval [t1, t2],

S(x, τ, t1, t2) = {φτt (x) | t ∈ [t1, t2]}

If τ > 0 (τ < 0) we refer to S(x, τ, t1, t2) as the destination (source) points, which
were released (collected) at point x at a time t, where t (in the interval [t1, t2]) pa-
rameterizes the release (collection) time. Under certain modest assumptions which
hold to a good approximation in geophysical flows, the strain along S(x, τ, t1, t2)
is related to the FTLE, providing a new interpretation of this concept, as well
as providing a connection between the local FTLE (the time-series of FTLE at
the point x) and the geographic diversity of passive biological samples collected
at x (which correspond to the τ < 0 case where sampling occurs over an interval
[t1, t2]).
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Visualization-oriented comparison of Finite-Time and Finite-Size
Lyapunov Exponents

Ronald Peikert

(joint work with Armin Pobitzer, Filip Sadlo, Benjamin Schindler)

The finite-time Lyapunov exponent (FTLE) has become a popular tool in numer-
ical flow visualization [6]. An alternative often used in oceanography is the finite-
size Lyapunov exponent (FSLE) [1]. A first direct comparison between FTLE and
FSLE was made by Boffetta et al. [2]. They argued that the FTLE is not capable
of recognizing the relevant structures, namely the boundaries between chaos and
large-scale mixing regime. A recent paper by Karrasch & Haller [4] lists a number
of theoretical limitations of FSLE. In Ref. [5] we showed that FTLE and FSLE,
if appropriately calibrated, produce comparable results which can be interchange-
ably used for most purposes in numerical flow visualization. Differences in image
quality are mostly due to other factors such as the computational approach, pa-
rameter settings, and the sampling rate. In our study a version of FSLE has been
used where the initial distance between particle pairs is infinitesimal, in contrast
to Aurell’s original definition [1], but in accordance with Karrasch’s ISLE [4].

Computation of FSLE and FTLE is often based on particle pairs seeded on the
nodes of a uniform grid [3], implying a quantization of the range of directions into
a set of only four directions. The effect of this is an angle-dependent underesti-
mation of FTLE and FSLE values, leading to visible artifacts in both FTLE and
FSLE images, especially if short advection times are used [5]. In principle, quanti-
zation effects can be reduced by using a larger set of neighbor particles. However,
a better computational approach is to use the Cauchy-Green tensor as an implicit
representation of neighbor particles. Its advantage is that no directional quantiza-
tion occurs, even if gradient estimation is done simply by finite differences using
the four grid neighbors. Higher quality gradient estimators can be used if FTLE
or FSLE data are generated for a subsequent ridge extraction [7].

FTLE-based visualization depends crucially on the advection time. With in-
creasing advection time the apparent ridges are expected to converge to LCS. In
this talk we demonstrate this on two examples of time-periodic analytical velocity
fields, where LCS can be determined using the Poincaré map. In a real-world ex-
ample of a tidal flow, however, we show that short advection times, as compared
to the (quasi-)period length, are needed for a meaningful visualization.

As visualization tools, FTLE and FSLE can be seen as dual approaches, both of
which are based on the advection time τ and the dispersion factor r. In an FTLE
image, τ is a parameter, and r is a dependent variable, while in an FSLE image
these roles are swapped. Mapping FTLE or FSLE values monotonically to color
indices is equivalent to mapping the dependent variable. Typically, the mapping
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is chosen strictly monotonic within an “interesting” subrange and constant out-
side of it. Under this assumption, we were able to generate highly similar FSLE
images, given an FTLE image, and vice versa, by finding the parameter value that
maximizes correlation of the pair of (color index) images. Differences still exist,
especially for short advection times, and it would be a worthwhile goal to further
analyze them. However, we showed that differences are less fundamental than has
been suggested in literature.
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Chaotic advection in a three-dimensional, Ekman-driven eddy

Irina I. Rypina

(joint work with Larry J. Pratt, Tamay M. Özgökmen, Peng Wang, Hank Childs,
Yana Bebieva)

Most applications of the dynamical systems approach have been to two-dimensional
(2D) or quasi-2D flows, where transport is studied at various depths or isopycnals.
Application to 3D flows is challenging, and so examples are rare. We have been
working on one such 3D case, investigating chaotic advection in a fully three-
dimensional Navier-Stokes flow in a rotating cylinder. This idealization of an iso-
lated ocean eddy is driven from above by a surface stress and has both horizontal
swirl and overturning.

In the steady, axially-symmetric flow, each trajectory lives on a torus. These
invariant tori, which act as material barriers, start to break when a symmetry-
breaking disturbance is added. Both the steady and the time-dependent symmetry-
breaking disturbances are considered. Importantly, not all tori are destroyed for
moderate values of perturbation; some survive and act as barriers in the perturbed
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system. This result is consistent with an extension of the KAM theorem to 3D,
volume preserving flows.

Using a combination of high-resolution spectral-element modeling, linear analyt-
ical theory, weakly-nonlinear resonance analysis, and a phenomenological model,
we explored the behavior of the system over a parameter range appropriate for
the ocean mesoscale and submesoscale. For shallow eddies the flow was dominated
by thin resonant layers sandwiched between unbroken tori, and the stirring rate
was weak. Moderately deep eddies had thicker resonant layers, wider-spread chaos
and more rapid stirring. This trend reversed for deep eddies, where the vertical
rigidity imposed by strong rotation limited the stirring.

Chaos is induced into the flow either by the breakup of the central axis into
stable and unstable manifolds in 3d or by resonances. A methodology was derived
that describes the resonant condition, the breakup of resonant tori, the geometry
of the flow near the resonances, and the resonance widths. This and a version of
the KAM theorem are used to interpret our findings.

The results for the steady case can be found in [1]; the analysis of the time-
dependent system is currently being written up.
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Estimating long term behavior of flows without trajectory integration:
the infinitesimal generator approach

Oliver Junge

(joint work with Gary Froyland, Péter Koltai)

Analysis of the long-term behavior of flows can be broadly classified into geometric
methods and statistical methods. Geometrical methods include the determination
of fixed points, periodic orbits, and invariant manifolds. Invariant manifolds of
fixed points or periodic orbits act as barriers to transport as trajectories may not
cross the manifolds transversally. Statistical methods include determining the dis-
tribution of points in very long trajectories of a very large set of initial points (i.e.
a physical invariant measure [11], often possessing an invariant density) and the
identification of meta-stable or almost-invariant sets [3, 5, 4]. Almost-invariant
sets partition the phase space into almost dynamically disconnected regions and
are important for revealing global dynamical structures that are often invisible to
an analysis of trajectories. These metastable dynamics also go under the names of
persistent patterns, or strange eigenmodes, both of which are realisable as eigen-
functions of a transfer operator. Frequently, the boundaries of maximally almost-
invariant sets (those sets which are locally closest to invariant sets) coincide with
certain invariant manifolds [7].
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Our focus in the present talk, which subsumes the work of [6], is on statistical
methods, although we demonstrate via case studies the relationships to geometri-
cal methods. The most commonly used tool for statistical methods is the transfer
operator (or Perron-Frobenius operator). Fixed points of the transfer operator cor-
respond to invariant densities, while eigenfunctions corresponding to real positive
eigenvalues strictly less than one provide information on almost-invariant sets.
In practice, one typically constructs a finite-rank numerical approximation of a
transfer operator and computes large spectral values and eigenfunctions for this
finite-rank operator. The construction of the finite-rank approximation requires
the integration of many relatively short trajectories with initial points sampled
over the domain of the flow. It is this use of short trajectories that gives the
transfer operator approach additional stability and accuracy when compared with
computations based upon very long trajectories. Long trajectories continually ac-
cumulate small errors from imperfect numerical integration and finite computer
representation of numbers; these small errors quickly grow in chaotic flows. While
the transfer operator approach is very stable, it still requires the computation of
many small trajectories which can be very time consuming in some systems. The
approach we describe in the present work obviates the need for any trajectory
integration at all and works directly with the vector field.

Our approach exploits the fact that the evolution of probability densities u =
u(t) can be described by generalized solutions of the abstract Cauchy problem
∂tu = Au. The Perron–Frobenius operator is the evolution operator of this equa-
tion, and has the same eigenfunctions as the operator A. The operator A is an
unbounded hyperbolic (if the underlying dynamics is deterministic) or elliptic (if
the deterministic dynamics is perturbed by white noise) partial differential opera-
tor. Standard techniques allow us to approximate the eigenmodes we are interested
in: finite difference, finite volume, finite element and spectral methods yield such
discretizations; see [10, 8, 9, 1, 2] and the references therein.
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Set-oriented numerical analysis of time-dependent transport

Kathrin Padberg-Gehle

(joint work with Gary Froyland)

Set-oriented numerical methods involving transfer operators have only recently
been recognized as powerful tools for analyzing and quantifying transport processes
in time-dependent systems.

The key objects of interest are regions in the phase space of a dynamical sys-
tem that remain coherent under the dynamics. Almost-invariant sets [1, 2, 3] are
spatially fixed regions, while coherent sets [4, 5] move about with minimal disper-
sion. Almost-invariant and coherent sets can be efficiently identified via Perron-
Frobenius operators (or transfer operators). These linear Markov operators can
be approximated within a set-oriented framework and subdominant eigenvectors
or singular vectors of the resulting stochastic matrices are heuristically used to
determine the phase space structures of interest. Most of the previous work ad-
dressing optimality criteria for these sets deals with finite-state Markov chains,
i.e. discretized transfer operators, and is thus purely finitary. In particular, the
crucial role of diffusion is obscured in these descriptions.

Building on recent fundamental work by Froyland [5] we describe a unified func-
tional analytic setting for optimal almost-invariant and coherent set constructions,
allowing us to verify the assumptions underlying the finitary framework in [2, 4].
Moreover, we introduce a variation of the coherent set construction that is suited to
tracking coherent sets over several finite-time intervals. We discuss the differences
and similarities in the mathematical and numerical constructions and explore the
role of diffusion, the influence of the finite-time duration and time-directionality.
More details can be found in [6].

Transfer operators can also be employed to estimate finite-time expansive be-
havior along trajectories in autonomous and nonautonomous dynamical systems.
Finite-time entropy (FTE) captures nonlinear stretching directly from the entropy
growth experienced by a small localised density evolved by the transfer operator.
Within the set-oriented approach an approximation of the FTE field is obtained
very efficiently and gives similar results to finite-time Lyapunov exponent calcu-
lations. The FTE-concept is introduced in [7], see also [8] for related previous
work.
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Quantifying transport through the relative motion of (almost)
coherent sets

Mark A. Stremler

(joint work with Shane Ross, Piyush Grover, Pankaj Kumar, Pradeep Rao)

There is a clear need to understand and predict time-dependent transport in flows
with very complex dynamics, such as in the motion of pollutants in the atmosphere
and oceans. The identification of various coherent structures, including Lagrangian
Coherent Structures (LCS) [6, 9], Finite Time Coherent Sets (FTCS) [4], and
Almost Invariant Sets (AIS) [3], is generating important insight regarding the role
of dynamical structure in the evolution of complex systems. These approaches give
a detailed view of the spatial complexity of the dynamics in a system over a finite
time window. Determining how this finite-time structure can be pieced together
to give information about long-time global behavior of the system can be difficult.

In an alternative approach, the braiding of a small number of trajectories in
a flow can give information regarding the temporal complexity in the system over
long periods of time [1]. The braiding of three or more trajectories can yield a non-
zero topological entropy, h, which for C∞ diffeomorphisms (such as for fluid flow)
is equal to the maximal growth rate of smooth arcs under iteration of the flow map
[8]. If the trajectories are periodic in time, application of the Thurston-Nielsen
Classification Theorem [2, 13] quantifies h based on information from a single
period, and Handel’s isotopy stability theorem [7] guarantees that this value is a
lower bound on h for any isotopic diffeomorphism. The existence of trajectories
moving on a pseudo-Anosov braid guarantees that non-trivial material lines in
at least a portion of the surrounding fluid will experience exponential stretching
[1, 12]. Even for aperiodic flows, an ensemble of appropriately chosen trajectories
can give a good approximation of the topological entropy [11]. Despite the power
of this topology-based approach, however, it cannot give any information about
the extent of the spatial complexity in the flow. In the worst-case scenario, the
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exponential stretching is restricted to a set of measure zero. Furthermore, it can
be challenging to identify the ‘correct’ trajectories for the analysis [11].

We are exploring the merger of these two points of view: using (almost) coherent
sets to identify the spatial complexity of a system over finite time, and using
the braiding of trajectories from different (almost) coherent sets to quantify the
temporal complexity that comes from the relative motion of these sets. Our initial
investigation has focused on exploring a simple time-periodic viscous flow in a two-
dimensional lid-driven cavity (LDC). For a range of system parameters, there exist
AIS in this flow that periodically interchange position, giving what we refer to as
Almost Cyclic Sets (ACS) [10]. Periodically continued trajectories from these ACS
generate a pseudo-Anosov braid, predicting that a minimum level of exponential
stretching is achieved in some portion of the domain. For viscous flows such as
this LDC, it is observed that the resulting chaotic transport covers a significant
portion of the domain. Thus, these initial results suggest that there is value in
this merged viewpoint.

Identification of ACS comes from considering the eigenspectrum of the Perron-
Frobenius operator (PF): the eigenvectors define the spatial extent of the ACS,
and the corresponding eigenvalues give a measure of their coherence. Varying
the system parameters in the LDC leads to bifurcations in the structure of these
eigenvectors [5]. With these bifurcations come changes in the corresponding braid
topology, and these different braids predict different minimum bounds on h. These
changes in the entropy bounds are clearly reflected in the actual stretching of ma-
terial lines in the flow [5]. Thus, in this system, bifurcations in the ACS structure
correspond well with changes in the underlying topological ‘skeleton’ of the stir-
ring. It is an open question whether this relationship between bifurcations in the
PF eigenspectrum and changes in the entropy of the system holds more generally.

As the structure of the LDC flow becomes more complex, we find that eigen-
vectors from a given spectrum become more variable in the ACS structure they
identify. Including trajectories from ACS identified by multiple eigenvectors tends
to increase the accuracy of the lower bound on h. However, at present it is not
clear in general how many eigenvectors should be considered in order to achieve
sufficient accuracy. An increase in complexity also gives rise to the possibility of
aperiodic behavior; a future step for this work will be to use FTCS in identifying
braiding trajectories.
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Biological reactions with coherent structures

Wenbo Tang

(joint work with Christopher Luna, Aditya Drumuntarao)

Coherent structures are ubiquitous in environmental and geophysical flows. They
are finite-time entities that inhibit or enhance passive scalar transport over some
time interval. Recent advances in the identification of finite-time transport barriers
have enabled the extraction of organizing templates for passive scalars in the limit
of infinitesimal diffusion.

With finite diffusion, scalars can escape barriers formed by the organizing struc-
tures via random walk. Reaction further complicates the system as the scalar
quantities also interact and evolve in addition to advection-diffusion. Dynamical
systems approach has been shown to be successful in analyzing reaction processes
in the infinite-time or time-periodic flow case for open flows. Over finite time, it is
unclear how reaction processes can be related to the finite-time entities developed
for passive scalars.

A convenient tool to extract finite-time Lagrangian stretching rate is the Finite-
Time Lyapunov Exponent (FTLE). Although it has been shown that highlighting
features of FTLE field do not necessarily correspond to exponential stretching
transverse to the coherent structures, and transport barriers are not directly avail-
able just from the FTLE field itself; a quick evaluation of the complexity of the
flow field can be revealed. For simple flows, FTLE highlighters (ridges of FTLE
or FTLE gradient) typically serve as the effective boundaries for different chaotic
mixing behaviors. In [1], we have shown that for a Bickley jet flow, the coherent
structures demarcated by the FTLE field give rise to different dispersion statistics
when finite diffusion is represented by random walk processes. As such, diffusion
processes are similar within similar types of coherent structures.

In this presentation, we show, by using example of an autocatalytic reaction,
that reaction processes can also be tied to finite-time measures of the Lagrangian
stretching rate, which varies quite significantly in different types of flow topologies.
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In particular, we consider the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP)
equation embedded in a flow with two oscillating gyres. In this setting, there
is only one stable state of the system, where the reacting scalar field saturates
to the carrying capacity specified by the FKPP reaction. However, we show that
the finite-time reaction, in terms of the variability of the average scalar concen-
tration at finite-time, is intimately related to the FTLE field. In fact, it is the
early-stage advection-diffusion-reaction that sets the scalars into different effective
reaction rates. Over long time, the scalar bulk reaction rate falls onto the same
curve (with cases of different starting disturbances reaching that curve at different
times). The reaction process can be separated into four different stages, and a
model for the evolution of effective reaction can be constructed based on these
stages. We show that the model based on FTLE represents the variabilities from
the actual simulations well.

With autocatalytic reaction, only one stable state exists, and hence the long-
term scalar behavior is trivial. In our very recent study, we show that, when two
stable states from a bi-stable reaction process is placed together, flow structures
can serve as the incubator for certain states—with small disturbances released in
high-stretching, stochastic regions, the disturbances quickly homogenize with the
ambient, where the system asymptotes. As comparison, for small disturbances
released within transport barriers, the coherent structures serve as incubators for
the disturbance state, and over significantly long time, the scalar field can asymp-
tote to the disturbance state. This highlights the importance of flow topology on
diffusion-reaction processes.
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A new concept of local metric entropy for finite-time nonautonomous
dynamical systems

Stefan Siegmund

(joint work with Luu Hoang Duc)

Let J ⊂ R be compact and (X(t))t∈J ⊆ Rn be a family of subsets of Rn indexed
by J . Then X := {(t, x) ∈ J × Rn : x ∈ X(t)} is a (trivial) fibre bundle over the
base space J . We write |J | := maxJ−min J . A continuous map ϕ : J×X → X is
called a finite-time nonautonomous dynamical system (FTNDS) on X over J , if for
t, u, s ∈ J and x ∈ X(s) the properties ϕ(s, s, x) = (s, x) and ϕ(t, u, ϕ(u, s, x)) =
(t, ϕ(t, s, x)) hold. For ease of notation we identify ϕ with the two-parameter
family of maps ϕ(t, s) = ϕ(t, s, ·) : X(s) → X(t) ⊆ Rn, t, s ∈ J , and the defining
properties read as

ϕ(s, s)x = x and ϕ(t, u) ◦ ϕ(u, s)x = ϕ(t, s)x.
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Let ϕ be an FTNDS on X over J and γ ∈ R. The finite-time metric entropy
(FTME) with weight γ at (t0, x0) ∈ X is defined by

hγt0(x0) := lim
ε→0

hγt0(x0, ε), with hγt0(x0, ε) := −
1

|J | log
µ
(
Bγ

t0(x0, ε)
)

µ
(
B(x0, ε)

) ,

where the orbit neighborhood Bγ
t0(x0, ε) is defined for (t0, x0) ∈ X, ε ≥ 0 by

Bγ
t0(x0, ε) :=

{
x ∈ X(t0) : sup

t∈J
‖ϕ(t, t0)x − ϕ(t, t0)x0‖ e−γ(t−t0) ≤ ε

}
.

Our concept of FTME is different from the probabilistic concept of finite-time
entropy (FTE) introduced by Froyland and Padberg-Gehle [1] which is based on
a smoothed transfer operator.

We prove a finite-time version of Pesin’s entropy formula [4] by relating the
FTME to the sum of all finite-time Lyapunov exponents (FTLE) λi(t0, x0, T ),
i = 1, . . . , n, which are not less than γ. More precisely, for x0 ∈ X(t0), the
finite-time version of Pesin’s entropy formula states that

0 ≤
n∑

i=1

(
λi(t0, x0, T )− γ

)+ − hγt0(x0) ≤
n log 2 + log Γ(n2 + 1)− n

2 log π

T

where a+ = max{a, 0} and J = {0, T } for T > 0.
FTME can be expressed in terms of Lyapunov exponents and is frame-indepen-

dent in the sense of Haller (see [2] and the references therein). We show that for
autonomous differential equations

ẋ = f(x), t ∈ [0, T ], x ∈ U ⊆ R
n,

with C2 function f : U → Rn and T > 0, the frame-dependent, weighted FTME
field
(1)

x 7→ H(x) := hγ(x,T,f(x))(x), with γ(x, T, f(x)) =
1

T
log
‖f(ϕ(T, 0, x))‖
‖f(x)‖ ,

exhibits ridge and trough-like coherent structures which approach classical invari-
ant manifolds as T → ∞. The weight γ(x, T, f(x)) measures the exponential
stretching along the vector field. See Figs. 1 and 2, which were produced by Tino
Weinkauf (with integration time T = 2) during the workshop.
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Figure 1. Vector field, invariant manifolds (left) and weighted
FTME field (1) for ẋ1 = x1 − x2, ẋ2 = −x2 (blue ≃ 0, red ≃ 1).

Figure 2. Vector field, invariant manifolds (left) and weighted
FTME field (1) for ẋ1 = −x1, ẋ2 = x21+x2 (blue ≃ 0, red ≃ 2.25).

Classifying Lagrangian fluxing particles through a fixed curve for
non-autonomous flows: Theory and applications

Qinghai Zhang

The uniqueness of the solution of an nonautonomous ODE dx

d t = u(x, t) admits a

flow map φ : RD×R×R→ R
D that maps the initial position p(t0) of a Lagrangian

particle p, the initial time t0, and the time increment τ to p(t0+τ), the position of
p at time t0 + τ . The shorthand notations −→p = φτt0(p0) and

←−p = φ−τ
t0+τ (p(t0 + τ))

are used if t0 and τ are clear from the context. One well-known characteristic curve
of the flow map is a pathline, Φ±k

t0 (p) :=
{
φ±τ
t0 (p) : τ ∈ (0, k)

}
. In comparison, a

backward streakline [2] is the loci of all particles that will pass continuously through
a fixed seeding location M ,

Ψ−k
t0 (M) :=

{
φ−τ
t0−k+τ (M) : τ ∈ (0, k)

}
.

where the time increment k > 0.
A fluxing particle to a fixed simple curve L̃N over the time interval (t0, t0 + k)

is a particle p whose pathline Φ+k
t0 (p) properly intersects L̃N at least once. The

sign of an intersection (xI , tI) is defined as SI = sgn(n
L̃N

(xI) · u(xI , tI)) where

n
L̃N

is the unit normal of L̃N ; it determines the type of the flux as an out-flux if
SI = +1, or an in-flux if SI = −1. The fluxing index of a fluxing particle is the
sum of the signs of all the intersections. The flux set of index n through a simple
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curve L̃N over (t0, t0 + k), denoted Fn
L̃N

(t0, k), is the point set of all the fluxing

particles of index n at time t0.

Given a fixed simple curve L̃N , a velocity field, and a time interval (t0, t0 + k),
the fluxing index defines an equivalence class on the points of the plane. Clearly
the flux sets Fn

L̃N
(t0, k) with n ∈ Z are pairwise disjoint and partition R2. The

rest of this report concerns the explicit construction of the flux sets.
The winding number of an oriented closed curve γ around a point1 x ∈ R2 \ γ

is the number

wγ(x) :=
θ(1)− θ(0)

2π
,

where θ : [0, 1] → R is the continuous function as the angle of γ(t) in the polar
coordinate system whose pole is at x, i.e. γ(t) = x+ ρ(t) (cos θ(t), sin θ(t)).

The winding region (WR) Wγ associated with an oriented closed planar curve
γ is

Wγ :=
⋃

n∈Z\{0}
Wn

γ , Wn
γ :=

{
x ∈ R

2 : wγ(x) = n
}
,

where Wn
γ is the WR of index n.

In [2], the donating region of a fixed simple open curve L̃N is constructed by
its preimage and the backward streaklines seeded at L and N . The following
definition generalizes this notion using WRs.

Definition 1 (Generalized donating regions). For a given velocity field u(x, t),

the donating region (DR) associated with a simple open curve L̃N over the time
interval (t0, t0 + k) is the WR of a closed curve γD,

D
L̃N

(t0, k) :=WγD
,

γD := L ∪ L̃N ∪N ∪Ψ−k
t0+k(N) ∪←−N ∪ φ−k

t0+k

(
ÑL

)
∪←−L ∪Ψ−k

t0+k(L),

where γD is called the generating curve of the DR and is oriented by the closed

vertex sequence L→ N →←−N →←−L → L. Also, Dn
L̃N

(t0, k) :=Wn
γD

.

A DR D
L̃N

(t0, k) is normal if the backward streaklines Ψ−k
t0+k(L) and Ψ−k

t0+k(N)
neither self-intersect nor intersect each other. As a key observation, the set of loops{
γD

L̃N
(t0+τ,k−τ) : τ ∈ [0, k]

}
is a homotopy class, which, together with the Hopf

theorem, eventually leads to the equivalence of DRs to flux sets [1].

Theorem 1 (Generalized DRs in two dimensions). A normal DR of a simple open

curve L̃N is index-by-index equivalent to the flux set of L̃N ,

Dn
L̃N

(t0, k) = Fn
L̃N

(t0, k), ∀n ∈ Z,

1The winding number of γ around a point x ∈ γ can be defined appropriately so that the
DRs Dn

L̃N
(t0, k)’s in Definition 1 satisfies Theorem 1 and form a pairwise disjoint partition of

R2. It can also be generalized to higher-dimensional spaces; see [1].
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where n
L̃N

is chosen to be the outward unit normal of D+

L̃N
or the inward unit

normal of D−
L̃N

.

A scalar function f is a conserved scalar of u if, for any τ ∈ R,

(1)
d

dτ

∫

φτ
t0

(M)

f(x, t0 + τ)dx = 0,

where t0 is a fixed time and M a fixed compact manifold with boundaries. The
Reynolds transport theorem then leads to flux identities [1] as follows:

Theorem 2 (DR flux identities2). Let L̃N be a fixed simple open curve whose C1

discontinuities form a set of measure zero. If a scalar function f satisfies (1) and
the DR D

L̃N
(t0, k) is normal, then
∫ t0+k

t0

∫

L̃N

f u · n
L̃N

ds dt =
∑

n∈Z

|n|
∫

Dn

L̃N
(t0,k)

f(x, t0)dx.

The above theorem states that the flux through a fixed curve during the interval
(t0, t0 + k) can be converted to an integral at the initial time t0. It has a number
of applications in numerical PDEs and multiphase-flow simulations; see [3] and [4]
for two examples.
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Propagation barriers for fronts in fluid media with general
time-dependence

Kevin Mitchell

(joint work with John Mahoney)

The passive advection of inert particles in fluid flows is important both for its
direct relevance to fluid mixing and for its broader connection to Hamiltonian
dynamics and chaos. Here, we consider the generalization of advective transport
to “active” media, specifically to media that support some kind of front propaga-
tion: for example, the expansion of chemical reaction fronts in microfluidic mixers,
plankton blooms in large-scale oceanic flows, phase transitions in liquid crystals,

2This is a generalization of [2, Theorem 4.11]
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or even the spread of disease within a mixing population. We have been partic-
ularly motivated by recent table-top experiments of chemical reaction (Belasov-
Zabotinsky) fronts propagating through magnetohydrodynamically driven quasi-
two-dimensional flows [1, 2, 3, 4, 5]. This laboratory system has demonstrated a
range of complex dynamical phenomena, from percolation-type behavior, to the
locking of the reaction profile to periodic driving, to pinning of reaction fronts to
fluid vortices.

Previously, a three-dimensional dynamical systems model was used to analyze
the propagation of individual front elements [6, 7, 8]. In terms of the (x, y) position
of a front element and the orientation angle θ of the tangent to the front, one finds

ẋ = ux + v0 sin θ,

ẏ = uy − v0 cos θ,
θ̇ = −ux,x sin θ cos θ − ux,y sin2 θ + uy,x cos

2 θ + uy,y sin θ cos θ,

(1)

where (ux, uy) is the fluid velocity field and v0 is the front propagation speed in the
local fluid frame. The invariant manifolds of this system, called burning invariant
manifolds (BIMs), are important, robust, one-sided barriers to front propagation in
time-independent or periodically driven flows. BIMs play a central role in guiding
the propagating fronts through the medium, determining the patterns formed by
the fronts, and providing a theoretical foundation to explain many of the observed
laboratory phenomena.

Historically, the application of invariant manifold theory was restricted to time-
periodic flows. More recently, however, the study of Lagrangian Coherent Struc-
tures (LCS) have greatly extended the applicability of invariant manifold tech-
niques to the general case of aperiodic, and even turbulent, flows [9, 10]. Over the
past decade, interest in LCS techniques has blossomed across a wide range of ap-
plications [11]. Motivated by these developments, we demonstrate here that LCS
techniques can be adapted to construct the most relevant (one-sided) barriers to
front propagation in flows with general time dependence. Our approach follows the
recent work of Farazmand, Blazevski, and Haller [12], in which transport barriers
were characterized as curves of minimal Lagrangian shear.

Following [12], we obtain a one-sided hyperbolic barrier r(τ) to front propaga-
tion, described as a curve of zero Lagrangian shear, satisfying 〈dr/dτ,D dr/dτ〉 =
0, where

(2) D(r, θ) =
1

2
(C(r, θ)Ω − ΩC(r, θ)), Ω =

(
0 −1
1 0

)
,

and where

C(r, θ) = Πxy(∇F )TΠxy(∇F )Πxy

is the “projected” Cauchy-Green strain tensor; Πxy is the projection from the
xyθ tangent-space to the xy tangent-space, and ∇F is the three-by-three gradient
tensor of the map F defined as the time evolution of Eq. (1) over the time interval
of interest. Among the shearless curves satisfying (2), the burning Lagrangian
coherent structure (BLCS) is the one maximizing the compression along the curve.
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Figure 1. Shearless curves for a time-independent flow are
shown in color. The BIM is shown in black. The BLCS curve,
which maximizes the compression (inset), lies very near the BIM.

As an example, Fig. 1 shows the shearless curves satisfying Eq. (2) for a time-
independent alternating vortex flow. The burning invariant manifold (BIM) is
shown for reference. The BLCS is the shearless curve maximizing the average
compression. Notice that the BLCS follows the BIM very closely, providing vali-
dation of our construction.
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Path lengths in turbulence

Nicholas T. Ouellette

(joint work with Haitao Xu, Eberhard Bodenschatz)

Although there is still no general consensus on the optimal definition of a “coherent
structure” in highly unsteady flows, nearly all structure-detection tools and algo-
rithms require knowledge of the flow velocity field. In many situations, however,
and particularly for the case of high-Reynolds-number turbulence experiments, this
information is not available. Instead, experiments tend to resolve either snapshots
of slices of the velocity field, such as a single two-dimensional plane embedded in
the full three-dimensional flow, or the time-resolved trajectories of a small num-
ber of fluid elements that sparsely sample the flow field. Neither traditional nor
modern analysis tools are therefore readily applicable to experimental turbulence
data sets.

It is widely thought that high-aspect ratio, highly rotational structures play a
significant role in turbulent intermittency. The notion of these “vortex worms”
has been invoked to explain various anomalous features of turbulence statistics,
particularly in the Lagrangian framework [1, 2]. If such structures indeed exist
and play an important role in the Lagrangian dynamics of the flow, their signature
should be measurable in the geometric properties of particle trajectories: for a fluid
element caught on a rapidly rotating coherent vortex, the distance travelled by the
particle in time ought to grow in a different fashion from its displacement from its
initial position.

To look for this effect, we recorded the trajectories of tracer particles moving
in a highly turbulent experimental water flow between counter-rotating disks. We
measured the statistics of both the arc length S of the trajectories and the dis-
placement R as a function of time [3]. Although both 〈S2〉 and 〈R2〉 scale as t2,
their difference reveals sub-leading terms: we find that 〈S2 − R2〉 ∼ t3. But we
can construct the difference of these two terms in a different way by including the
covariance 〈SR〉, and, surprisingly, we find that 〈(S − R)2〉 ∼ t3.7. We know of
no theoretical argument that can explain these exponents, but suggest that they
may be related to nontrivial structure in the flow field. Explaining these unusual
scalings may lead to new ways of characterizing the link between flow structure
and turbulence statistics.
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Flow barriers in realistic flows, and their relationship to invariant
manifolds

Sanjeeva Balasuriya

Unambiguously identifying time-varying flow barriers in realistic unsteady flows
faces many difficulties, since velocity fields are usually only available as spatially
and temporally discrete data over a finite time. Despite a lack of agreement
on the definition of flow barriers, a variety of methods for locating them are in
usage. These include—but are not limited to—passively advecting tracers; Finite-
Time Lyapunov Exponents; eigen/singular-vectors of transfer operators; complex-
ity measures along trajectories; curves/surfaces of extremal stretching, or shearing,
or flux, or attraction; ergodic quotient; and topological entropy. Interesting the-
oretical and computationally-efficient advances are being made at a rapid rate
within the context of each proposed method of identifying flow barriers, as were
explored by the many specialists attending this workshop.

Flow barrier detection: As more and more instances of these methods being
applied to oceanographic, atmospheric and experimental data are being reported,
it would be good to be certain of the legitimacy of the conclusions reached in such
studies. As such, several broad questions are of concern:

1. In what way are these definitions related to each other? How is a curve
of extremal deformation related to eigenfunctions of the transfer operator? Is a
mesohyperbolic trajectory associated with an extremal flux? Questions of this sort
can be posed between any two definitions, and demand our attention.

2. What is the accuracy of each definition in identifying flow barriers?
Strangely, there is little analysis of this crucial question. While there is an obvious
disincentive for a proponent of a particular definition to undertake such an inves-
tigation, this is surely scientifically necessary. A major problem in analysing this
is having unequivocal unsteady flow barriers with which to compare.

3. And what is a flow barrier in an unsteady flow anyway? There are sim-
ple counter-examples which show that entities across which there is minimal (or
zero) flux is a bad definition for this—but what is a flow barrier if it is not some
entity associated with minimal transport across it? Should one of the proposed
definitions—say a curve/surface of extremal stretching [10]—be used as the defi-
nition? This is unlikely to hold water, since competing definitions will surely vie
for this, and more and more definitions are being developed thick and fast! Are
there any features which are essential for a flow barrier to possess? For example:

4. Is frame invariance necessary? Not all methods for locating supposed flow
barriers are frame invariant. A continuing debate on this issue is necessary. If,
say, the boundary of an oceanic eddy is identified using some method based on
observations from the earth’s frame of reference, would the same boundary be
identified from the reference frame of a ship travelling alongside it? Alternatively,
if we want to quantify transport in our frame of reference, do we care what result
we get in another frame of reference?

5. In what sense is time-periodicity implicit in some definitions? Real flows
are patently not time-periodic, and thus recent methods that are being used and
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developed ostensibly avoid this restriction. However, consider the standard finite-
time approach of defining a flow map P from a time t1 to another time t2. As an
example, suppose the fact that all eigenvalues of a fixed point a of P are within the
unit circle is used to argue the stability of a. This argument relies on Pn(x)→ a
as n → ∞ for x near a, i.e., repeated applications of P . As a second example,
suppose spectral—say, Koopman—methods based on Fourier series on [t1, t2] are
used. In both examples, the flow has been implicitly assumed time-periodic.

6. Is the time-variation captured? Flow barriers in unsteady flows must vary
with time. If we think of t1 and t2 above as fixed, we are simply addressing the
limited problem of just one iteration of an autonomous map P , thereby ignoring
the time-dependence of flow barriers. For a definition/theory to be legitimate
and useful, it must genuinely incorporate the time-varying nature; it should quite
naturally be able to think of t2 as a varying entity. Thus, addressing objects like
P ’s invariant sets is surely meaningless in a time-varying setting.

Stable and unstable manifolds: Our initial ideas of flow barriers possibly
arose from stable and unstable manifolds of stagnation points in steady flows,
which indubitably form flow separators between regions of distinct fluid motion.
The clear analogue in unsteady flows would be stable and unstable manifolds of
hyperbolic trajectories/sets. The trouble is that to define these, one needs infinite-
time flows. Thus, for an understanding of unsteady flow barriers and associated
transport, further developments are called for:

a. Develop theory of finite-time invariant manifolds: There are some develop-
ments in this regard [12, 7, 8, 13, 9, 15], but theory to specifically locate finite-time
flow barriers, and to establish connections with any diagnostic method, would be
of tremendous value.

b. Quantify flux across intersection/non-intersecting invariant manifolds:
While a segment of stable manifold might be considered a transport barrier, since
such a segment by itself does not partition space, its location relative to other
manifold segments controls how fluid is transported. In nonautonomous flows,
this picture is changing with time, and moreover stable and unstable manifolds can
intersect in an arbitrary fashion. How do such intersections—or lack of such—lead
to transport? For time-periodic flows, transport across a flow barrier composed
from such manifold segments can be quantified [14, 1]. For time-aperiodicity,
a gate-surface idea [11] can be used to quantify time-dependent transport for
nonautonomously perturbed 2D flows [2], but a general theory for more realistic
flows is lacking. Since when we think of flow barriers, there is clearly an intuition
regarding lack of transport across these, the development of theory to quantify
transport explicitly across flow barriers in unsteady flows is highly relevant.

c. Test models with known invariant manifolds: There are unsteady nonchaotic
models in 2D and 3D in which time-varying stable and unstable manifolds are ex-
plicitly known [4]; these apply also to finite time, and their construction explicitly
addresses frame-dependence. Segments of invariant manifolds in nonautonomously
perturbed chaotic 2D flows can also be computed to leading-order using recent the-
ory [3]. In an alternative approach, recent work [5, 6] enables the determination



272 Oberwolfach Report 04/2014

of the control velocity needed to force segments of [un]stable manifolds and hyper-
bolic trajectories to almost follow user-specified time-aperiodic behaviour. Given
the explicit nature of all of these models, they offer yet-to-be-exploited opportu-
nities for testing accuracies of different methods of barrier detection.

In summary: Given the unequivocal nature of invariant manifolds as intuitive
flow barriers in unsteady flows, their further development towards less idealised
flows should be an important avenue we should pursue. These will further assist
in the essential task of evaluating the accuracy of the multitudinous diagnostic
methods in usage.
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The impact of windage on the structure of material transport at the
ocean surface

Thomas Peacock

Transport of material at the ocean surface plays a crucial role in many environmen-
tal processes, from determining the fate of oil slicks to impacting the spawning,
calcification and thermal bleaching of coral reefs. Uncertainty surrounding the
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outcome of recent disasters, such as the Deepwater Horizon oil spill and the de-
bris distribution resulting from the Tohoku tsunami, emphasizes the pressing need
for improved analysis and prediction tools, but it is a substantial challenge to
interpret the intricate tangle of particle trajectories that typically arises for the
spatiotemporally complex flows of the energetic ocean surface.

Recently, the method of Lagrangian Coherent Structures (LCS) has demon-
strated clear potential for providing both insight and predictability based on un-
covering the underlying skeleton of flow transport [1, 2]. A significant factor influ-
encing the surface transport of debris, oil and naturally floating material, however,
is direct surface wind drag [3], which has yet to be accounted for in the LCS ap-
proach. We advance previous LCS work by directly incorporating wind effects
into the analysis, and with application to ocean surface transport at the World
Heritage Ningaloo coral reef in Western Australia, we demonstrate the significant
consequences of accounting for windage. The waters surrounding Ningaloo are
home to a burgeoning oil and gas industry and there is considerable importance in
comprehending complex ocean surface transport in the region to support effective
management and conservation.
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The dichotomy spectrum for random dynamical systems and pitchfork
bifurcations with additive noise

Jeroen S. W. Lamb

(joint work with Mark Callaway, Doan Thai Son, Martin Rasmussen)

Despite its importance for applications, relatively little progress has been made
towards the development of a bifurcation theory for random dynamical systems.
Main contributions have been made by Ludwig Arnold and co-workers [2], dis-
tinguishing between phenomenological (P-) and a dynamical (D-) bifurcations.
P-bifurcations refer to qualitative changes in the profile of stationary probabil-
ity densities [16]. This concept carries substantial drawbacks such as providing
reference only to static properties, and not being independent of the choice of
coordinates. D-bifurcations refer to the bifurcation of a new invariant measure
from a given invariant reference measure, in the sense of weak convergence, and
are associated with a qualitative change in the Lyapunov spectrum. They have
been studied mainly in the case of multiplicative noise [5, 8, 18], and numerically
[1, 11].
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In [6], we contribute to the bifurcation theory of random dynamical systems
by shedding new light on the influential paper Additive noise destroys a pitchfork
bifurcation by Crauel and Flandoli [7], in which the stochastic differential equation

(1) dx =
(
αx− x3

)
dt+ σdWt ,

with two-sided Wiener process (Wt)t∈R on a probability space (Ω,F ,P), was stud-
ied. In the deterministic (noise-free) case, σ = 0, this system has a pitchfork
bifurcation of equilibria: if α < 0 there is one equilibrium (x = 0) which is glob-
ally attractive, and if α > 0, the trivial equilibrium is repulsive and there are
two additional attractive equilibria ±√α. [7] establish the following facts in the
presence of noise, i.e. when σ > 0:

(i) For all α ∈ R, there is a unique globally attracting random fixed point
{aα(ω)}ω∈Ω.

(ii) The Lyapunov exponent associated to {aα(ω)}ω∈Ω is negative for all α ∈
R.

As a result, [7] concludes that the pitchfork bifurcation is destroyed by the additive
noise. (This refers to the absence of D-bifurcation, as (1) admits a qualitative
change P-bifurcation, see [2, p. 473].) However, we are inclined to argue that the
pitchfork bifurcation is not destroyed by additive noise, on the basis of the following
additional facts concerning the dynamics near the bifurcation point, that we obtain
in this paper:

(i) The attracting random fixed point {aα(ω)}ω∈Ω is uniformly attractive only
if α < 0.

(ii) At the bifurcation point there is a change in the practical observability of
the Lyapunov exponent: when α < 0 all finite-time Lyapunov exponents
are negative, but when α > 0 there is a positive probability to observe
positive finite-time Lyapunov exponents, irrespectively of the length of
time interval under consideration.

(iii) The bifurcation point α = 0 is characterized by a qualitative change in
the dichotomy spectrum associated to {aα(ω)}ω∈Ω. In addition, we show
that the dichotomy spectrum is directly related to the observability range
of the finite-time Lyapunov spectrum.

In light of these findings, we thus argue for the recognition of qualitative properties
of the dichotomy spectrum as an additional indicator for bifurcations of random
dynamical systems. Spectral studies of random dynamical systems have focused
mainly on Lyapunov exponents [2, 9], but here we develop an alternative spec-
tral theory based on exponential dichotomies that is related to the Sacker–Sell
(or dichotomy) spectrum for nonautonomous differential equations. The original
construction due to R.J. Sacker and G.R. Sell [17] requires a compact base set
(which can be obtained, for instance, from an almost periodic differential equa-
tion). Alternative approaches to the dichotomy spectrum [3, 4, 13, 14, 15] hold in
the general non-compact case, and we use similar techniques for the construction
of the dichotomy spectrum by combining them with ergodic properties of the base
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flow. We note that the relationship between the dichotomy spectrum and Lya-
punov spectrum has also been explored in [10] in the special case that the base
space of a random dynamical system is a compact metric space, but our setup
does not require a topological structure of the base.

In analogy to the corresponding bifurcation theory for one-dimensional deter-
ministic dynamical systems, we finally study whether the pitchfork bifurcation
with additive noise can be characterized in terms of a breakdown of topologically
equivalence. We recall that two random dynamical systems (θ, ϕ1) and (θ, ϕ2)
are said to be topologically equivalent if there are families {hω}ω∈Ω of homeo-
morphisms of the state space such that ϕ2(t, ω, hω(x)) = hθtω(ϕ1(t, ω, x)), almost
surely. We establish the following results for the stochastic differential equation
(1):

(i) Throughout the bifurcation, i.e. for |α| sufficiently small, the resulting
dynamics are topologically equivalent.

(ii) There does not exist a uniformly continuous topological conjugacy between
the dynamics of cases with positive and negative parameter α.

These results lead us to propose the association of bifurcations of random dynam-
ical systems with a breakdown of uniform topological equivalence, rather than the
weaker form of general topological equivalence with no requirement on uniform
continuity of the involved conjugacy. Note that uniformity of equivalence trans-
formations plays an important role in the notion of equivalence for nonautonomous
linear systems (i.e. in contrast to random systems, the base set of nonautonomous
systems is not a probability but a topological space), see [12].
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Comments on characterizing fluid flow mixing

Vered Rom-Kedar

(joint work with Ruty Mundel, Erick Fredj, Hezi Gildor)

Fluid mixing is a complex phenomenon - it involves a wide range of spatial and
time scales in a variety of initial and boundary value problems. Nonetheless, some
mathematical principles governing fluid mixing in real flows may be learned by
considering simple toy models. One such principle, the emergence of dividing sur-
faces (the Lagrangian Coherent Structures, LCS [1]) as structures that govern fluid
transport, much discussed in this workshop, was learned from studying transport
in time periodic flows, where stable and unstable manifolds of selected hyperbolic
periodic orbits provide the skeleton for fluid transport and mixing [2]. Three addi-
tional principles, learned from simple models, are pointed out as potentially useful
lessons to be formulated and tested in real flows. 1) Homoclinic scales govern
the nature of the transport by lobes [3]. 2) Weak three dimensional convection
may simplify surface mixing by untangling the dividing surfaces [4]. 3) Resolving
observable functions that distinguish between different coherent structures in the
flow may help in substantial data reduction [6].

1) In time-periodic area preserving two dimensional flows, after proper rescaling
of coordinates and time (roughly, rescale so that the averaged system has a homo-
clinic loop with size of order one and the velocity along the loop central part is also
of order one), two important non-dimensional parameters appear - the amplitude
of the oscillating component of the velocity and its frequency. The dependence of
the tangle on these two parameters may be characterized in quite general settings.
For example, the flux (lobes area divided by the period) dependence on the oscil-
lating frequency is usually non-monotone and the homoclinic tangles at equi-flux
frequencies have some specific structural differences [3, 5]. This phenomenon has
to do with time and length scales that deform the dividing surfaces and is thus
expected to be relevant to the LCS structure in finite time realizations in which
the velocity field has a dominant period which is sufficiently small compared to
the realization time.
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2) The motion of surface particles is often modeled by time-periodic area pre-
serving two dimensional flows, thus, their chaotic mixing is governed in such cases
by homoclinic tangles. In many oceanographic applications, night convection
makes the surface flow non-area preserving. Even though the vertical velocities
are typically much smaller than the horizontal ones, such night convection typi-
cally lead to untangling the manifolds. The bi-directional flux associated with the
homoclinic tangle is thus replaced by unidirectional flux from one region to the
other. This phenomenon is observable at finite time realizations, and is controlled
by appropriate comparison of the homoclinic scales of the oscillatory horizontal
and vertical components [4]. Thus, similar phenomenon is expected to govern
surface LCS geometry in realistic settings.

3) A new family of Lagrangian diagnostics is proposed [6] by which the spatial
structure of extreme values of an observable are monitored. A specific form of it is
suggested for characterizing mixing: the maximal extent of a trajectory in a given
direction (MET). This new diagnostic enables the detection of coherent structures
and their dynamics in two- (and potentially three-) dimensional unsteady flows
in both bounded and open domains. Moreover, besides being an intuitive diag-
nostics, its computation seems much easier compared with all other Lagrangian
diagnostics known to us. It provides new insights regarding the mixing properties
on both short and long time scales and on both spatial plots and distribution
diagrams. The usefulness and applicability of this diagnostic to two dimensional
flows is demonstrated using toy models and a data set of surface currents from the
Mediterranean Sea. It is shown that the size and position of coherent structures
may be identified from the cumulative distribution function of the observable, thus
leading to substantial data reduction.
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Finite time curvature and a differential geometry perspective of shape
coherence by nonhyperbolic splitting

Erik Bollt

(joint work with Tian Ma)

1. Introduction

Recently the notion of coherence has been pushed toward a more rigorous foot-
ing, and particularly within the recent advances of finite-time studies of nonau-
tonomous dynamical systems. Here we recall shape coherent sets proved to corre-
spond to slowly evolving curvature, for which tangency of finite time stable and
unstable foliations plays a central role. Zero-angle curves, meaning non-hyperbolic
splitting, describe boundaries of shape coherent sets. We show a Finite-Time
Curvature evolution field (FTC) is particularly useful in identifying curves that
correspond to persistent shape coherence.

2. Shape Coherence

We recently introduced a definition concerning coherence called shape coherent
sets, motivated by an intuitive idea of sets that “hold together” through finite-time.

Definition (Finite Time Shape Coherence, [1]). The shape coherence factor α
between two measurable nonempty sets A and B under a flow Φt after a finite
time epoch t ∈ 0 : T is,

α(A,B, T ) := sup
S(B)

m(S(B) ∩ ΦT (A))

m(B)
,

where S(B) is a group of transformations of rigid body motions of B.

We proved that angle of the finite-time stable and unstable foliations as defined,

θ(z, t) := arccos
〈f t

s(z), f
t
u(z)〉

‖f t
s(z)‖‖f t

u(z)‖
,

corresponds to level curves, and the zero level curves correspond to slowly evolving
curvature. Furthermore, such curves can be proved to exist and constructed by the
implicit function theorem. Finally considering a Finite-Time Curvature evolution
field (FTC), by,

lǫ,v(x) = {x̂ = x+ ǫsv,−1 < s < 1},
then curvature growth at a point x over a time epoch is defined,

cT (x) := lim
ǫ→0

sup
‖v‖=1

κ(φT [lǫ,v(x)]).

Level curves of this function corresponding a given low threshold can be shown
to correspond to a given significant shape coherence, by use of theorem in [1].
See example of FTC in Fig. 1 and corresponding lowest values corresponding to
outlining shape coherent sets of a Rossby wave.
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Figure 1. The FTC field of Rossby wave and a low threshold.
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Transport in microchannels: interaction between solenoidal and
potential fields with noise

Massimiliano Giona

(joint work with Fabio Garofalo, Stefano Cerbelli)

1. Introduction

A critical analysis of the Literature focusing on transport phenomena and Brow-
nian fluctuations in the presence of deterministic convective fields indicates the
occurrence of a dichotomical splitting into two classes of subproblems, namely the
interactions of thermal and molecular fluctuations either (i) with pure potential
or (ii) pure solenoidal vector fields. This dichotomy can be attributed to a fallout
of Hodge-Helmholtz decomposition of vector fields in two- and three-dimensional
manifolds, where a generic smooth vector field v(x) can be expressed as a sum of a
divergence-free component vs(x), (∇·vs = 0, vs = ∇×A), and of an irrotational
(potential) component vp(x), (∇× vp = 0, vp = ∇φ).

The “Middle-Earth” of vector fields possessing both non-vanishing divergence
and curl remains substantially unexplored. In point of fact, the impetuous rise of
microfluidics provides a relevant technological playground for studying transport
phenomena in the presence of generic rotational and non-solenoidal velocity fields.
This is due to the fact that magnetophoretic, dielectrophoretic and acoustophoretic
flows in microchannels are characterized by the occurrence of a divergence-free
channel flow, coupled for solute and particle transport to the potential velocity
field accounting for the particle interaction with magnetic, electric, and pressure
fields, respectively [1].

As a case study, we consider a simple problem, namely a two-dimensional
acoustophoretic channel flow for micro-, nano-particle separation.

2. Setting of the problem

In non-dimensional form, the Langevin equation for particle motion in a two-
dimensional infinite channel (along the x-direction) in the presence of a steady
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acoustophoretic potential, assuming negligible inertial effect (i.e. overdamped con-
ditions), reads

dx(t) = u(y) dt+
√
2 ε dwx(t), dy(t) = ν sin(2πky) dt+

√
2 ε dwy(t),(1)

where x ∈ (−∞,∞) is the axial coordinate along the channel, y ∈ (0, 1) is the
transverse coordinate, Eq. (1) is equipped with reflecting conditions at y = 0, 1, i.e.,
at the channel walls, u(y) = 6y(1− y) the Poiseuille flow, ε = 1/Pe the reciprocal
of the Péclet number, i.e., the dimensionless molecular diffusivity, sin(2πky) the
nondimensional acoustophoretic contribution k = . . . ,−1, 1, 2, 3, . . . , and ν the
dimensionless acoustophoretic intensity. The associated Fokker-Planck equation
for the probability density function (pdf) p(x, y, t) reads:

∂tp+ u(y) ∂xp+ ν ∂y[sin(2πky) p] = ε
(
∂2xp+ ∂2yp

)
.

where (x, y) ∈ (−∞,∞)×(0, 1), equipped with homogeneous Neumann conditions
at the channel walls ∂yp|y=0,1 = 0. In the long-term/large-distance limit, the mar-

ginal pdf px(x, t) =
∫ 1

0 p(x, y, t) dy approaches the solution of a constant-coefficient

equation ∂tpx = −Ve∂xpx + εe∂
2
xp, where Ve and εe are respectively the effective

velocity and the non-dimensional dispersion coefficient.

3. Results

From moment analysis [2, 3], we obtain that Ve and εe can be estimated ana-
lytically as follows [4]. Consider the transverse advection-diffusion operator:

Ly[g(y)] = −ν ∂y(sin(2πky) g(y)) + ε ∂2yg(y),

where g ∈ L2
[0,1], equipped with homogeneous Neumann boundary conditions,

∂yg|y=0,1. Let ψ0(y) ≥ 0 be the conservation eigenfunction, referred to as the
Frobenius eigenfunction of Ly , i.e. Ly[ψ0(y)] = 0, equipped with the above bound-

ary conditions at y = 0, 1, and normalized to 1,
∫ 1

0
ψ0(y) dy = 1. The effective

velocity Ve is the average of u(y) with respect to ψ0(y), i.e., Ve =
∫ 1

0 u(y)ψ0(y) dy.
The nondimensional effective dispersion coefficient εe is given by:

εe = ε+

∫ 1

0

ψ0(y) [u(y)− Ve] b(y)dy = ε+ ε

∫ 1

0

ψ0(y) [∂yb(y)]
2
dy,

where b(y) is any solution of the elliptic problem (b-equation):

Ly[ψ0(y) b(y)] = ψ0(y) [Ve − u(y)] ,
equipped with homogeneous Neumann conditions ∂yb|y=0,1 = 0.

From the analysis of the b-equation, it is possible to prove analytically that three
dispersive regime can occur depending on k, i.e., on the number and symmetries
of the stable nodes y∗n,k = (1 + 2n)/2k, n = 0, . . . , k − 1, of the acoustophoretic
potential:

• Case-I dispersion - It occurs if u(y∗n,k) = u∗ for any n = 0, . . . , k − 1, and

∂yu(y)|y=y∗

n,k
= 0 for any n = 0, . . . , k − 1, i.e., if all the stable nodes

are characterized by the same axial velocity that in the neighbourhood
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of each y∗n,k is locally quadratic. This is e.g. the case of k = 1. The
qualitative property of Case-I dispersion is that εe vs Pe defines the graph
of a unimodal function, with limε→0 εe/ε = limε→∞ εe/ε = 1.
• Case-II dispersion - It occurs if u(y∗n,k) = u∗ for any n = 0, . . . , k − 1,

and Dumax = maxn=0,...,k−1|∂yu(y)|y=y∗

n,k
> 0, i.e., if all the stable nodes

are characterized by the same axial velocity and at least at one node the
axial velocity is locally linear (shear flow). This is e.g. the case of k = 2
or k = −1. In this case, it can be proved that limε→0 εe/ε = κD > 1.
• Case-III dispersion - It occurs if k > 1 and

∆u∗max = max
m,n=0,...,k−1

|u(y∗n,k)− u(y∗m,k)| > 0,

i.e. in the generic case where there exist several (> 1) stable nodes possess-
ing different axial velocities. This is the case for k ≥ 3. It can be shown
that εe ∼ exp(µkPe), for Pe = 1/ε≫ 1, where µk = ν/πk.

4. Discussion

This simple model indicates that even elementary model flows (a 2-d parallel
Poiseuille flow), coupled to particle transport can give rise to new and highly non
trivial results.

The model considered in Case-III conditions is intrinsically characterized by the
presence of “strong” transport barriers, represented by potential barriers between
two neighbouring stable nodes. Transport across these barriers can occur solely via
stochastic tunneling. Indeed, the phenomenon of stochastic tunneling is responsible
of interesting transient anomalies, such as a super-ballistic scaling in the axial mean
square displacement σ2

x(t) = 〈(x−〈x〉)2〉 ∼ t3 as shown in Fig. 1. This phenomenon
becomes more evident as ε decreases.

Figure 1. σ2
x(t) vs t at k = 3, ν = 1, ε = 1.5 × 10−2. Line (a)

Langevin simulations, line (b) scaling σ2
x(t) ∼ t3.
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A central issue that will be the focus of future investigation is the role of sto-
chastic fluctuations (diffusion) in overcoming strong (potential) and soft (invariant
manifolds) transport barriers in advecting-diffusing phenomena.
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