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Abstract. Negative curves play a prominent role in the geometry of pro-
jective surfaces. They occur naturally as the irreducible components of ex-
ceptional loci of resolutions of surface singularities, at the same time, they
are closely related to the geometry of the effective cone, and thus form an
important building block of the Minimal Model Program. In the case of sur-
faces, classes of negative curves span extremal rays of the Mori cone. Any
knowledge about them on a given surface reveals important information on
linear series as well.
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Introduction by the Organisers

The miniworkshop Negative curves on algebraic surfaces gathered together a vari-
ety of mathematicians interested in this subject with a wide spread of backgrounds
and professional experience. Participants came from several European countries
(France, Germany, Great Britain, Hungary, Norway, Poland, Sweden) and from the
United States. Their expertise ranged from advanced graduate students through
post-docs to established senior researchers. This variety of experience and back-
ground greatly contributed to generating stimulating discussions during the work-
shop and the working group sessions, leading to what we believe will be the basis
for several research collaborations in the near future.
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The theme of the workshop

The primary goal of our meeting was to understand curves on algebraic sur-
faces, a classical area of mathematics, giving rise to a vast array of research with
connections to subjects ranging from differential geometry and number theory to
seemingly unrelated fields such as ergodic theory.

The workshop revolved around the following long standing conjecture which
recently has attracted quite a lot of attention in the field of linear series as well
(see e.g. [1], [3], [7], [8], [10], [12]).

Conjecture 1 (Bounded Negativity Conjecture (BNC)). Let X be a smooth pro-
jective surface over the complex numbers. Then there exists a constant bX such
that

(C2) ≥ −bX
for all reduced effective curves C on X.

The conjecture is known to hold in a number of cases (as proven in [1]), never-
theless, it is wide open in general. It is of great interest because negative curves
appear naturally in different branches of algebraic geometry: a natural source
of examples are irreducible components of exceptional divisors on resolutions of
surface singularities.

For a classical connection, elaborating on Nagata’s famous conjecture, Segre
[15], Gimigliano [9], Harbourne [11] and Hirschowitz [13] came to a striking geo-
metric conjecture (part of what is called the SHGH-conjecture in the literature)
stating that the only negative curves on the blow up of projective plane P2 in
s ≥ 10 points are the (−1) curves.

Considerable recent work leading to exciting partial results (see [5], [6], [2], [14],
[4]), has been devoted to proving the SHGH conjecture; the efforts include large
amounts of computer experiments.

In spite of these efforts, much of the area surrounding negative curves on surfaces
remains to be explored. For instance, it is at present not even known if the self-
intersection numbers of reduced curves on blow ups of P2 are bounded from below
– as would be the case for blow ups of generic points in P2, with bound −1, if the
SHGH conjecture is true.

The modus operandi of our workshop was to devote half of the available time to
research in groups focusing on concrete subproblems. One of the working groups
was in fact devoted to discussing exactly the above aspect of the conjecture. It
turns out that one obtains interesting examples by looking at curves (on the blow
ups of P2) coming from arrangements of lines in the projective plane.

It has been observed that there is an intriguing relation between highly negative
curves on the one hand and counterexamples to a seemingly unrelated problem
on containment relations between various symbolic and usual powers of ideals of
planar points.

A second working group took up the question of boundedness for Shimura
curves on ball quotients, in an attempt to reproduce the finiteness results of [1]
for Shimura curves with negative self-intersection in quaternionic Hilbert modular
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surfaces. During the workshop we have learned that there is an unpublished result
due to Margulis (communicated to us by Domingo Toledo and Misha Kapovich)
that uses ergodic theoretic methods to show that there are only finitely many
embedded totally geodesic subvarieties of at least half the dimension in certain
locally symmetric varieties. This would cover at least the case of smooth Shimura
curves on ball quotients.

There seems to be a reasonable chance that these ideas can be extended to the
case of arbitrary Shimura curves, with the help of Ratner type theorems, but the
status of such a statement is unclear. A major difference to the vector bundle
methods applied in [1] in the Hilbert modular case is that the ergodic theoretic
way does not give rise to effective BNC bounds.

The third working group considered the question of possible higher-dimensional
generalizations of the Bounded Negativity Conjecture. Several results and exam-
ples were given; nevertheless, it appears that most of the natural generalizations
are false.

The structure of the workshop

The aim of the workshop was twofold: to gather together experts working on
the three different aspects mentioned above, and to stimulate collaboration by
discussing open problems in the field.

For this reason every day consisted of two main activities:

- research talks, two to three in the morning; and
- working group discussions, in the afternoon.

A list of possible questions to work on during the workshop was distributed via
email well ahead of the workshop. During the first day, final selections were made.
Three main areas of interest emerged from the discussion: negative curves in arith-
metic settings, bounded negativity for cycles on higher dimensional varieties, and
local negativity and containment relations. Consequently three working groups
were formed. The workshop was just the starting point to ignite collaborations on
the chosen problems. The working groups continue their efforts. The outcome of
these discussions will hopefully appear elsewhere.
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Abstracts

Arakelov (In)equalities

Stefan Müller-Stach

(joint work with Th. Bauer, B. Harbourne, A. L. Knutsen, A. Küronya, X.
Roulleau, T. Szemberg)

Since this was the first talk of the conference, I intended to recall one of the main
theorems of the seven authors paper [1], jointly with Th. Bauer, B. Harbourne, A.
L. Knutsen, A. Küronya, X. Roulleau and T. Szemberg. It claims that bounded
negativity holds for certain arithmetic curves.

Let X = Γ\H × H be a compact (quaternionic) Hilbert modular surface, i.e., a
quotient of two copies of the upper half plane by an arithmetic group. Further-
more, let C ⊂ X be any integral curve on X .

Theorem 1: One has KXC + 2C2 ≥ 4δ, where 2δ := KXC + C2 − 2(g − 1) and
g is the geometric genus of C. Equality holds if and only if C itself is a Shimura
curve Γ′\H.

A proof using Higgs bundles can be found in [3]. As a corollary one gets KXC =
4(g − 1) for Shimura curves, since

KXC = 2KXC + 2C2 − 4δ = 4(g − 1).

We give a proof of the following Thm. 3.5 in [1]:

Theorem 2: Let C be any integral Shimura curve on X as above. Then C2 ≥
−6c2 is bounded from below and for the geometric genus one has g ≤ 1 + c2 +
√

c22 + c2δ. In particular, there exist only a finite number of such curves with
C2 < 0.

Proof: We use the following inequality of Miyaoka [2]:

P (α) =
α2

2
(C2 + 3KXC − 6(g − 1)) − 2α(KXC − 3(g − 1)) + 3c2 − c21 ≥ 0

for all α in [0, 1]. In our case we get

P (α) = α2(3δ − C2) + α(C2 − 2δ) + c2 ≥ 0.

The minimum is attained at

α0 =
2δ − C2

2(3δ − C2)
.
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We may assume that C2 < 0 and hence C2 < 2δ. Then α0 is non-zero and in
[0, 1]. Non-negativity of P (α0) implies that

C2 ≥ 2δ − 2c2 − 2
√

c22 + c2δ.

So for δ ≥ 3c2, one gets

C2 ≥ 2δ − 2δ

3
− 4δ

3
= 0.

We may thus assume that C2 < 0 and δ < 3c2. Hence

C2 ≥ 2δ − 6c2 ≥ −6c2.

Miyaoka [2] has also shown that for C 6= P1 and KXC > 3(g − 1), one has

(KXC − 3(g − 1))2 − c2(KXC + δ − 2(g − 1)) ≤ 0.

From this we get in a similar way

g ≤ 1 + c2 +
√

c22 + c2δ ≤ 1 + 3c2

if C2 < 0. Hence one has boundedness of the invariants g = g(C) and KXC which
implies the finiteness. QED.

Remarks: In the proof it is sufficient to have that KXC > 3(g− 1). In this way,
the proof also works for surfaces other than Hilbert modular surfaces, but only for
curves with the property that KXC > 3(g − 1). However, on ball quotients X =
Γ\B2 the method fails, as there one has KXC+3C2 = 6δ, and hence KXC = 3(g−
1). On the first day of the conference Domingo Toledo informed us that one can
probably use Ratner type theorems to prove bounded negativity also in the case of
ball quotients. More generally, for embedded totally geodesic subvarieties in locally
symmetric varieties of at least half the dimension, one should have finiteness.
Apparently this result has already been known to Margulis, Gromov and others
around 1990 or earlier. During the Mini-Workshop we tried to understand this
idea. The method does not give effective lower bounds however.
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Twisted Teichmüller curves

Martin Möller

(joint work with Christian Weiss)

The Hilbert modular surfaces XD = H2/SL2(oD) carry an infinite collection of
well-studied Hirzebruch-Zagier cycles. These can be defined as the twists of the
diagonal in H2 by a matrixM ∈ GL2(K), i.e. as the image of {(M z,Mσ z), z ∈ H}
in XD, where σ is a generator of the Galois group of K = Q(

√
D). In the context

of the bounded negativity conjecture these curves have been candidates but turned
out to not provide a counterexample: For given D only a finite number of them
have negative self-intersection.

Hirzebruch-Zagier cycles are special instances of the following class of of curves.
An immersed algebraic curve C → XD is called Kobayashi geodesic, if the universal
covering has the form z 7→ (z, ϕ(z) after maybe renumbering the components
and with an appropriate choice of a base point. The first examples of Kobayashi
geodesics arose from modular embeddings of triangle groups ([1]). An infinite series
of these curves have been constructed in [3], arising from dynamically optimal
billiard tables with a genus two unfolding. They are called Teichmüller curves
and there are one or two such curves C for given D > 5. If z 7→ (z, ϕ(z)) is
the universal covering map of C → XD and if M ∈ GL2(K), then the image of
{(M z,Mσ ϕ(z)), z ∈ H} is again a Kobayashi geodesic CM in XD, that is called
twisted Teichmüller curve in [5].

All the classification questions solved for Hirzebruch-Zagier cycles (volumes,
components, intersection numbers and geometry of the intersection points) since
the 70s have their natural analogs for twisted Teichmüller curves. The first ques-
tion has been answered by Weiss in [5]. We state the case with least number of
technical conditions.

Theorem 1 ([5]). For D ≡ 5 mod 8 the volume of CM equals the volume of C
times deg(XD(M) → XD) , where XD(M) is the level covering of XD uniformized
by the group SL2(oD) ∩M SL2(oD)M−1.

The volumes of twisted diagonals is much smaller (for given M). In fact Weiss
proves that in many cases the preimage of a Teichmüller curve in a level covering
of a Hilbert modular surface is connected. On the other hand it is well-known that
the preimage of the diagonal decomposes into many components.

Weiss also gives a bounds for the number of different twisted Teichmüller curves
for given det(M) and computer provides evidence for a classification, but this
problem as well as the other questions are presently open.

There are other constructions of Teichmüller curves, notably using Prym covers,
that can be used to construct Kobayashi geodesics on Hilbert modular surfaces.
To a Kobayashi geodesic C on can associate the ratio λ2 = (C ·L1)/(C ·L2) where
Li are the line bundles associated to the natural foliations of the Hilbert modular
surface. This invariant is called Lyapunov exponents and it is invariant under
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twisting. It is thus a ways to detect truly different constructions of Kobayashi
geodesics.

Theorem 2 ([2], [4], [5]). There exist Kobayashi geodesics on Hilbert modular
surface with Lyapunov exponents 1, 1/2, 1/3, 1/5, 1/7.

Here, Hirzebruch-Zagier cycles correspond to λ2 = 1 and the curves constructed
in [3] correspond to λ2 = 1/3. No other rational numbers are presently known
to arise as Lyapunov exponents of a Kobayashi geodesic and the construction of
Kobayashi curves with other Lyapunov exponents is an interesting open problem.
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Distinguished Line Bundles for Complex Surface Automorphisms with
Positive Entropy

Paul Reschke

By work of Gromov [4], Yomdin [6], and Friedland [3], the topological entropy
of a compact Kähler surface automorphism is exhibited completely in the coho-
mological actions induced by the automorphism. A consequence of this result is
that the entropy of any such automorphism is either zero or the logarithm of a
Salem number. (A Salem number is a real algebraic integer greater than one whose
Galois conjugates are itself, its inverse, and possibly some even number of points
on the unit circle.) We present a refined cohomological characterization of the
condition that an automorphism f of a complex projective surface X has positive
entropy: f has entropy log(λ) > 0 if and only if there is a nef and big line bundle
L ∈ Pic(X) such that S(f∗)L = 0, where S(t) is the minimal polynomial for the
Salem number λ. Moreover, we show that this condition is sharp: if f has entropy
log(λ) > 0, then there is ample line bundle L ∈ Pic(X) such that S(f∗)L = 0 if
and only if no curve on X is periodic for f . (Here, S(f∗) is the naturally defined
Z-module endomorphism obtained from the Z-module endomorphism f∗ and the
polynomial S(t) ∈ Z[t].)

An idea of the Workshop is to use dynamics to prove the Bounded Negativity
Conjecture for complex projective surfaces that admit automorphisms with posi-
tive entropy. When attention is restricted to dynamically minimal automorphisms–
that is, automorphisms that give an infinite orbit to every curve with -1 as its self-
intersection–work by Cantat [2] shows that automorphisms with positive entropy
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only arise on tori, K3 surfaces, Enriques surfaces, or certain blow-ups of P2. (More
generally, any automorphism with positive entropy will only arise on a blow-up
of one these types of surfaces.) The Bounded Negativitiy Conjecture follows from
the adjunction formula in the first three cases; the configurations of blow-ups in
most of the known examples of automorphisms with positive entropy on rational
surfaces are such that the surfaces have effective anti-canonical bundles–so that
the Bounded Negativity Conjecture again follows from the adjunction formula.
However, Bedford and Kim [1] have shown that there are automorphisms with
positive entropy on rational surfaces where no multiple of the anti-canonical bun-
dle is effective. Proving the Bounded Negativity Conjecture for surfaces admitting
dynamically minimal automorphisms with positive entropy would thus yield some
new information; removing the constraint of dynamical minimality would of course
yield a great deal of new information.

We note that the proof of the refined cohomological characterization of positive
entropy described above has a connection to the Bounded Negativity Conjecture.
Given an automorphism f of a complex projective surjective X whose entropy
is log(λ) > 0, there are unique nef (but not big) classes e+ and e− in NS(X)R
such that f∗e+ = λe+, f∗e− = λ−1e−, and e+.e− = 1. The starting point for
the refined characterization is the observation by Kawaguchi [5] that a nef and big
class of the form u = ae++be− with a > 0 and b > 0 will have intersection 0 with a
curve on X if and only if the curve is periodic for f . To prove the characterization,
we take a line bundle L ∈ Pic(X) satisfying L2 > 0 and S(f∗)L = 0 (where S(t)
is the minimal polynomial for λ) and show that the sequence

{λ−n((f∗)n + ((f−1)∗)n)[L]}n∈N

(which approaches ([L].e+)e+ + ([L].e−)e−) eventually becomes nef and big. This
conclusion would be immediate if the Bounded Negativity Conjecture were known,
but instead requires a more subtle argument (using the effectiveness of some mul-
tiple of L) for the time being.
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Real counterexample to the containment I
(3)

⊂ I
2 and line

arrangements

Piotr Pokora

The first part of my talk is based upon the joint work with A. Czapliski, A. G lówka
- Habura, G. Malara, Magdalena Lampa - Baczyńska, Patrycja  Luszcz - Świdecka
and Justyna Szpond [1], and the second part is based upon my recent unpublished
researches.

The so-called containment problem is very interesting subject in the theory
of linear series and also combinatorial algebraic geometry. Roughly speaking,
we are interested in the relations between the symbolic and ordinary powers of
homogeneous ideals of points, lines and other subvarieties of projective spaces.
One of the most interesting and recent problem can be formulated in the following
way.

Problem 1. Consider a set of points Z = {P1, ..., Ps} ∈ P2 over an arbitrary field
and denote by I = I(P1) ∩ ... ∩ I(Ps), where I(Pi) is the ideal of a point Pi for
i ∈ {1, ..., s}. Does the containment

(1) I(3) ⊂ I2

hold?

In the situation of points, I(m) = I(P1)m∩ ...∩ I(Ps)m and I(m) corresponds to
the set of homogeneous polynomials vanishing along Z with multiplicities at least
m.

One year ago M. Dumnicki, T. Szemberg and H. Tutaj - Gasińska [2] gave the
first counterexample to the containment (1) over the complex numbers. Today we
also know that there exist some counterexamples to the above containment over
fields of finite characteristic [3]. In [1] using the example of the Böröczky extremal
configurations of lines over R (which deliver the maximal possible number of triple
points) we showed that (1) doesn’t hold.

This is worth to point out that this kind of line configurations is relevant for
the so-called Harbourne constants.

Let P = {P1, . . . , P2} ⊂ P2 be a set of fixed points and denote by f : XP → P2

the blow up of P2 at P .
Then we define the following constants

H(P) = inf
C reduced curve on XP

C2

s
.

H(s) = inf
P∈(P2)(s)

H(P).

H = inf
s
H(s).

The last constant is called the global Harbourne constant.
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In the same spirit one defines a special variation of the above constants for
configurations of lines and we denote them by HL(P), HL(s), HL respectively. To
clarity the infimum in HL(P) is taken over proper transforms of line arrangements.

The main result for HL can be formulated in the following way.

Theorem 2. Suppose that L is a configuration of d lines over the complex num-
bers. Then HL ≥ −4.
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Observational connections between local negativity and containment
conjecture counterexamples.

Brian Harbourne

Synergistic progress has been made recently on two seemingly independent prob-
lems, the first being to find new upper bounds on the extremal average negativity
of plane curves and the second being to find failures of certain containments of
symbolic powers of ideals of points in ordinary powers. Reasons for this synergism
remain mysterious.

More specifically, the first problem is to compute

inf
(deg(C))2 −∑

i(multpi
(C))2

s

where the infimum is taken over all reduced plane curves C. Here, for simplicity,
take the points pi to be the singular points of C and s to be the number of

singular points. (For later use, let φ(C) denote
(deg(C))2−

∑
i
(multpi (C))2

s
.) The

second problem is to find ideals I ⊂ k[P2] of finite point sets Z ⊂ P2 such that
I(2r−1) 6⊆ Ir for some value of r ≥ 2, where k is the ground field. (Here, given
points p1, . . . , ps, we define the symbolic power I(m) by I(m) = ∩iI(pi)

m.)
The connection between these two problems is purely observational: the singular

points of reduced curves C with φ(C) < −2 seem to give examples of points sets
Z whose ideals I have I(2r−1) 6⊆ Ir (usually with r = 2), and point sets Z whose
ideals I satisfy I(2r−1) 6⊆ Ir seem to be the singular points of reduced curves C
with φ(C) < −2. Examples of either phenomenon are quite rare, so this correlation
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could just be coincidence, and yet examples of the one have been used to find
examples of the other which are unlikely to have been found otherwise.

In fact, over the complex numbers, as of the time of this talk, only three classes
of examples of curves C with φ(C) < −2 were known. The first example consists
of taking Cn to be the 3n lines defined by (xn − yn)(xn − zn)(yn − zn). Then
the points are the n2 + 3 points consisting of the n2 points of intersection of
xn − yn = 0 and xn − zn = 0 and the three coordinate vertices. In this case
φ(Cn) > −3, but limn→∞ φ(Cn) = −3. The second class is similar, but defined
over the reals [C. et al]. The third, due to P. Pokora, takes C to be a configuration
of 21 lines known as the Klein configuration. In this case, C has 49 singular points
and φ(C) = −3.

The first example above initially arose as a curve C whose set Z of singular
points have ideal I with I(3) 6⊆ I2 [DST]. It was then noticed by T. Szemberg
that φ(C) was about −3. Then Pokora gave the example where C is the curve
consisting of the 21 lines of the Klein configuration, which has φ(C) = −3. A
version of the Klein configuration can be defined in P2(F) where F is a finite
field with |F| = 7; the speaker checked that the singular points of C in the finite
field case give an ideal I with I(3) 6⊆ I2. Thus the connection has run both ways.
Moreover, additional instances of the connection occur in positive characteristics
[BCH, HS]. For example, the result of [DST] carries over without significant change
[HS] to positive characteristics. All other previously known examples in positive
characteristics of finite points sets in PN having ideals I for which I(Nr−N+1) 6⊆ Ir

involve taking all but one of the points of PN over a finite field F [HS]. The example
coming from the Klein configuration in characteristic 7 is new in that one excludes
not just 1 point but 8 points (specifically, one excludes the F-points of the conic
x2 + y2 + z2 = 0).

The fact that examples of reduced plane curves C with φ(C) < −2 seem to give
rise to examples of ideals I with I(2r−1) 6⊆ Ir, and vice versa, raises the question
of whether there is a deeper reason for this connection. The main goal of this talk
is to raise the question of whether such a deeper reason exists, and if so, what it
might be.

The examples in positive characteristic merit a brief comment. For the examples
for which one takes all but one point of P2(F) over a finite field F, the curve C
consists of all of the lines defined over F which do not contain the excluded point.

In this case one always obtains φ(C) = s4−(s2+s)s2

s2+s
≈ −s and, for certain values of

r depending on the characteristic and on |F|, one has I(2r−1) 6⊆ Ir. (Full disclosure
requires mentioning that taking C to be the union of all of the lines in P2(F) also
gives φ(C) ≈ −3, but the ideal I of all of the points does not seem to lead to any
examples of I(2r−1) 6⊆ Ir.)

Motivation for the first problem comes from the Bounded Negativity Problem;
this is the question of whether it is true, given fixed points p1, . . . , ps ∈ P2, that
inf((deg(C))2 − ∑

i(multpi
(C))2) is finite, where the infimum is over all reduced

curves C ⊂ P2. In exploring this problem, one looks for curves C for which
(deg(C))2 −∑

i(multpi
(C))2 is especially negative. In order to compare examples
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for different choices of s and different choices of points pi, it is helpful to consider

λ = inf
(deg(C))2 −∑

i(multpi
(C))2

s
where the infimum now is taken over all reduced curves C, all sets of s points pi
and all s.

By taking s points on any given plane curve C, we see that λ ≤ −1. By taking
the s =

(

d
2

)

singular points of a union of d general lines as d → ∞, we see that
λ ≤ −2. It was only in the last few weeks that examples φ(C) < −2 have been
found, so examples are still quite rare.

Examples of ideals I of points in PN with I(Nr−N+1) 6⊆ Ir are also still quite
rare. Motivation for looking for them is the theorem of Ein-Lazarsfeld-Smith
[ELS] that I(Nr) ⊆ Ir holds for all such ideals I and all r. Huneke then asked
if it is always true that I(3) ⊆ I2 when N = 2. In fact, it is possible to show in
many cases that I(Nr−N+1) ⊆ Ir holds for ideals I of points in PN , leading to the
containment conjecture of the speaker that I(Nr−N+1) ⊆ Ir always holds [B. et al].
The examples above show that this conjecture is false, but understanding when
and why failures of the containment occur is an open problem.
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Finiteness of extremal rays in the cone theorem

John Lesieutre

Suppose that X is a projective variety of dimension n with terminal singulari-
ties. The basic structure theorem for the Mori cone NE(X) is the cone theorem:

Theorem 1 ([2]). Suppose that (X,∆) is a dlt pair with ∆ effective. Then

(1) There exists a countable set of rational curves Cj ⊂ X, with 0 < −(KX +
∆) · Cj ≤ 2 dimX, such that

NE(X) = NE(X)(KX+∆)≥0 +
∑

R≥0[Cj ].
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(2) If H is any ample divisor on X and ǫ > 0,

NE(X) = NE(X)(KX+∆+ǫH)≥0 +
∑

finite

R≥0[Cj ].

In the statement of (1), the number of extremal rays can indeed be infinite:
there might be infinitely many rays accumulating on the hyperplane K⊥

X . The
standard example of this phenomenon is to take X the blow-up of P2 at nine or
more very general points. This is a smooth rational surface containing infinitely
many (−1)-curves, each generating an extremal class on NE(X)KX<0. Aside from
this example and some simple variants on it (e.g. products, projective bundles),
there are not many examples known in which the number of rays is not simply
finite.

Early on in the study of the minimal model program, it was asked whether
this might always be the case, so that the only examples of divisors with infinitely
many rays are uniruled.

Conjecture 2 ([1], Problem 4-2-5). Suppose that (X,∆) is a klt pair with κ(X,∆) ≥
0. Then the set of curves Cj in Theorem 1 may be taken to be finite.

There are several cases in which Conjecture 2 is easily verified.

Proposition 3. The decomposition

NE(X) = NE(X)(KX+∆)≥0 +
∑

finite

R≥0[Cj ]

holds with only a finite sum on the right hand side if (X,∆) is a klt pair satisfying
any of the following conditions:

(1) either KX + ∆ or ∆ is big;
(2) dimX = 2 and κ(X,∆) ≥ 0;
(3) X is smooth, dimX = 3, ∆ = 0, and κ(X,∆) ≥ 0.

Uehara pointed out that this question has a negative answer in the generality
of klt pairs: there exists a Calabi-Yau threefold X and a divisor ∆ such that there
are infinitely many (KX +∆)-negative flopping curves [3][4]. Uehara suggests that
the conjecture might nevertheless hold in the case ∆ = 0.

In dimension 3, the conjecture is closely related to the study of surfaces with
infinitely many negative curves. If X is a terminal threefold of Kodaira dimension
0, then KX =

∑

aiEi, with Ei a set of rigid divisors. If there are infinitely
many KX -negative extremal rays, then infinitely many must be contained in some
component E0. Only finitely many of these give rise to divisorial contractions,
and so there are infinitely many flipping contractions of curves contained in E0.
These curves are all contractible on E0 itself, and so their strict transforms give
infinitely many negative curves on the minimal resolution Ẽ0.

Conjecture 4. Suppose that Y is a terminal projective threefold. Then the number
of minimal models Xi that can be reached via the KY -MMP is finite.

This conjecture includes cases in which Y has infinitely many minimal models!
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Proposition 5. Conjecture 2 implies Conjecture 4.

Proof. Let T be the decision tree for the KY -MMP: that is, let T be a tree with
a node for each variety Zi that can be encountered in the course of a run of the
KY -MMP, and an edge between two nodes if the nodes are connected by a flip or
divisorial contraction.

Conjecture 2 implies that each node of T has at most finitely many children,
since at each stage of the MMP there are only finitely many choices of extremal
contraction. Moreover, T does not contain any infinite paths, by termination of
flips in dimension 3. By König’s lemma, a finitely branching tree with no infinite
paths must in fact be finite, and so there are only finitely many possible end results
of the MMP. �

It seems to be difficult, however, to control the number of possible outcomes
of the MMP without directly bounding the number of extremal rays at each step
and proving Conjecture 2 directly. The following slightly restricted version of
Conjecture 4 seems more amenable to other approaches, and indeed is closely
related to questions about Zariski decomposition in dimension 3.

Conjecture 6. Suppose that Y is a terminal projective threefold. Then the number
of minimal models Xi that can be the outcome of the KY -MMP with scaling by an
ample divisor H on Y is finite.
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Quantitative aspects of Zariski chamber decompositions on surfaces

Thomas Bauer

(joint work with Michael Funke, Sebastian Neumann, David Schmitz)

Zariski chambers are natural pieces into which the big cone of an algebraic surface
decomposes – they account for the variation of the stable base locus of big line
bundles. From joint work of the author with Küronya and Szemberg [2] they are
known to be locally polyhedral and locally finite in number. Beyond these geomet-
ric properties we are interested in Zariski chambers from two further perspectives:

• a metric point of view (How big are the chambers?), and
• a combinatorial point of view (How many chambers are there on the sur-

face?).
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For a smooth projective variety X and a big divisor D on X , denote by

B(D) :=
⋂

m>0

Bs(mD)

the stable base locus of the linear series |D|. A guiding question is

How does B(D) vary with D?

In studying this question, it is preferable to work with an approximation introduced
by Ein, Lazarsfeld, Mustata, and Popa [6], the augmented base locus

B+(D) :=
⋂

A

B(D −A)

(where the intersection is taken over all ample Q-divisors A). It has the advantage
of depending only on the numerical equivalence class of D, and it can be extended
to real classes in the big cone Big(X). The big cone then naturally decomposes
into subsets where B+(D) is constant, and the basic question then is:

How do these subsets look like?

While this seems to be a hard problem in general, the picture is particularly pleas-
ant when X is a surface: In that case, there is by [2] a locally finite decomposition
of Big(X) into rational locally polyhedral subcones (called Zariski chambers) such
that the following holds:

(i) In the interior of each of the subcones the base loci B and B+ are constant.
(ii) On each of the subcones the volume function is given by a single polynomial

of degree two.
(iii) In each subcone the support of the negative part of the Zariski decompo-

sition of the divisors in the subcone is constant.

The metric aspect: How big are the chambers? In work with D. Schmitz [4] we
investigated the question whether it is possible to compare Zariski chambers with
respect to their “size”. A natural approach is suggested by work of Peyre [7] and
Derenthal [5], who (in an arithmetic context) employ a concept of nef cone volume
for Del Pezzo surfaces. The latter is defined as the volume of the cross section

Nef(X) ∩ {ξ ∈ NSR(X) −KX · ξ = 1}
or, alternatively, of the truncated cone

Nef(X) ∩ {ξ ∈ NSR(X) −KX · ξ ≤ 1}
(One checks that there is a well-defined Lebesgue measure on the Néron-Severi
vector space NSR(X).) This volume concept naturally generalizes to arbitrary
smooth surfaces (in fact, to arbitrary smooth varieties) and can be used to measure
the sizes of Zariski chambers Σ ⊂ Big(X) through their cone volume Vol(Σ, A)
with respect to an ample line bundle A. We provide in [4] a method to determine
the cone volumes of Zariski chambers from the nef cone volumes of blow-downs:

Theorem. Let X be a smooth projective surface of Picard number ρ, and let Σ be
a Zariski chamber that is supported by a set S of s irreducible curves. Then:

• If S contains a curve E with E2 < −1, then Vol(ΣP ) = ∞.
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• Otherwise S consists of s pairwise disjoint (−1)-curves and

Vol
(

Σ,−KX

)

=
(ρ− s)!

ρ!
· Vol

(

Nef(πS(X)),−KX

)

,

where πS is the blow-down of S.

This result allows one in particular to explicitly determine the volumes of all
Zariski chambers on Del Pezzo surfaces.

The combinatorial aspect: How many chambers are there on the surface? Given a
smooth projective surface X , consider the chamber number

z(X) := # {Zariski chambers on X} ∈ N ∪ {∞} .
In view of [2], the number z(X) is the answer to the following questions that
amount to asking how “complicated” X is from the point of view of linear series:

• How many different stable base loci can occur in big linear series on X?
• How many essentially different Zariski decompositions can big divisors on
X have?

• How many “pieces” does the volume function vol : Big(X) → R have?

If X contains only finitely many negative curves (e.g., when X is a Del Pezzo sur-
face), then finding z(X) is a finite problem, as z(X) is determined by the number
of negative definite principal submatrices of the intersection matrix of the negative
curves on X . While this information may be sufficient from a purely theoretical
point of view, it provides no immediate practical way to actually compute z(X),
because the naive approach of checking all principal submatrices has exponential
complexity – for instance, on the blow-up of P2 in 8 general points there are 2240

such submatrices. In work with M. Funke and S. Neumann [1] we developed an
algorithm that computes z(X) via a backtracking strategy that drastically reduces
the number of matrices to check. This can be applied in particular to Del Pezzo
surfaces:

Theorem. Let Xr be the blow-up of P2 in r general points with 1 ≤ r ≤ 8.

(i) The number z(Xr) of Zariski chambers on Xr is given by the following
table. (N(Xr) denotes the number of negative curves.)

r 1 2 3 4 5 6 7 8

N(Xr) 2 3 6 10 16 27 56 240

z(Xr) 2 5 18 76 393 2 764 33 645 1 501 681

(ii) The maximal number of curves that occur in the support of a Zariski cham-
ber on Xr is r.

Interestingly, it turns out that the computation of chamber numbers is much
more challenging on surfaces like the Schur quartic [9]

x(x3 − y3) − z(z3 − w3) ,

which is famous for containing 64 lines (cf. [10] and [8]). When we tried to use
the algorithm from [2] in order to determine how many chambers are supported
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by the 64 lines, we found that it takes an inordinate amount of time – to the
point of becoming impractical in such situations. Only with an improved algo-
rithm [3], which makes the computation of a large number of determinants much
more efficient, was it possible to find out that the Schur quartic has precisely

8 260 383 569

Zariski chambers that are supported by lines.
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Local positivity and Newton–Okounkov bodies

Alex Küronya

(joint work with Victor Lozovanu)

This is an account of joint unpublished work with Victor Lozovanu. Newton–
Okounkov bodies serve to capture the behaviour of we all global sections of all
multiples of a given big Cartier divisor at the same time. Building on earlier work of
Okounkov and many others, in their current form Newton–Okounkov bodies were
first studied by Kaveh–Khovanskii [3] and Lazarsfeld–Mustaţă [5]. For explicit
examples see [5] and [4] for instance. Here we will explore the implications to local
positivity of line bundles.

Let X be a smooth projective variety of dimension n over the complex number
field, Y• an admissible flag, D a big line bundle onX . The choice of the flag Y• gives
rise to a rank n valuation νY•

on the function field C(X) of X , which, evaluated
on the global sections of multiples of D, yields a convex body ∆Y•

(D) ⊆ Rn, the
Newton–Okounkov body of D.
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A result of Jow [2] claims that the set of all Newton–Okounkov bodies forms a
universal numerical invariant, more specifically, if D and D′ are two big Cartier
divisors on X , and

∆Y•
(D) = ∆Y•

(D′)

for all admissible flags Y• on X , then D and D′ are numerically equivalent. To
take this philosophy a step further, it is feasible to expect that local positivity of
D at a point x ∈ X is determined by the set

{∆Y•
(D) | (Y•)n = {x}} .

Our aim is to recover projective geometric information from Okounkov bodies as-
sociated to the divisor D. The more specific goal is characterize divisors having a
given point in their restricted/augmented base loci. Combining our observations
with results from [1], we arrive at descriptions of nef/ample divisors in terms of
their Okounkov bodies. The main statements go as follows:

Theorem A. With notation as above, x ∈ B(D) if and only if there exists a flag
Y• centered at the point x ∈ X such that 0 ∈ ∆Y•

(D).
As a consequence, D is nef if and only if for every x ∈ X there exists a flag Y•

centered at x such that 0 ∈ ∆Y•
(D).

Theorem B. With notation as above, x ∈ B+(D) if and only if there exists a flag
Y• centered at the point x with Y1 ample, and a positive real number ǫ > 0 such
that ∆ǫ ⊆ ∆Y•

(D).
As a consequence D is ample precisely if this condition holds for all points

x ∈ X .
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Global generation of toric vector bundles and cohomology vanishing

Sandra Di Rocco

(joint work with K. Jabbusch, G Smith)

The projectivization of a toric vector bundle is an algebraic variety characterized
by a reach combinatorial structure coming from the torus action and at the same
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time having a geometrical structure less rigid compared to the one of toric varieties.
They provide therefore an important testing ground in Algebraic Geometry.

Recently the existence of indecomposable toric vector bundles E such that P(E)
is not a Mori dream space has been shown in [2], making this class of variety
particularly interesting in connection with the Minimal Model Program.

Let X be a toric variety and let T be the dense torus acting on it.
Definition. A toric vector bundle is a locally free sheaf E whose total space
V (E) has a T action with respect to which the projection map π : E → X is
T -equivariant. Moreover it is required that T acts linearly on the fibres of E.

If E is a toric vector bundle then P(E) also inherits a T -action for which the
projection map P(E) → X is T -equivariant.

Notice, moreover, that P(E) is a toric variety if and only if E = L1 ⊕ . . .⊕ Lr

for line bundles Li on X.
Toric vector bundles have been extensively studied, see [6, 7, 8]. They are

characterized by a sequence of decreasing filtered vector spaces, indexed by the
edges of the fan defining the toric variety X.

Klaychko used the theory of toric vector bundles on P2 as main ingredient in
his prove of the Horn conjecture.

Our motivation comes from two central conjectures in Algebraic Geometry.
The first one is the belief (more than an explicit conjecture) that smooth toric

varieties should be projectively normal. Recall that a projective algebraic variety
X →֒ PN is projectively normal if and only if the multiplication maps

SymkH0(X,OX(1)) → H0(X,OX(k))

are surjective for all k ≥ 2. M. Green in [3, 4] proved an interesting connection
between projective normality and higher syzygies with vanishing properties of
vector bundles. Consider the vector bundle given by the kernel of the evaluation
map: ML = ker(H0(X,L) ⊗ OX → L). Then H1(X,∧kML ⊗ Lj) = 0 for k ≤ 2
and j ≥ 1 would prove that the embedding is projectively normal and the ideal is
generated by quadrics. Vanishing for higher k extend to criteria for the so called
Green’s property Np.

When X is toric the vector bundle ML is a toric vector bundle. In [5] it was
established that ML is moreover globally generated.

Because globally generated line bundles on toric varieties have vanishing higher
cohomology it is natural to ask whether this property extends to higher rank. An
affirmative answer would prove the above long standing conjecture.

Our second motivation is Fujita conjecture. This conjecture states that if L is an
ample line bundle on a complex manifold X then KX ⊗ Lm is globally generated
for m ≥ dim(X) + 1 and it is very ample for m ≥ dim(X) + 2. The globally
generation statement has been shown to be true up till dimension 4 (Reider proved
it in dimension 2, Ein and Lazarsfeld in dimension 3 and Kawamata in dimension
4.) In its full generality the conjecture is known to be true only for toric varieties,
as shown by Mustaţǎ. For the tautological line bundle, ξE , on a projectivized
vector bundle P(E) the conjecture is directly related to the global generation or
very ampleness of the toric vector bundle Symk(E)⊗KX⊗det(E) for t ≥ dim(X).
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When X is a toric variety it is again a question about the global generation of a
toric factor bundle.

For line bundles on toric varieties there is a tight connection between generation
of global sections and numerical positivity. This relation is essentially due to the
convex geometrical interpretation of the global sections of L. Recall that any line
bundle has an associated lattice polytope, PL, cut out by hyperplanes with normal
vectors dual to the rays of Σ and whose lattice points correspond to a basis for
the vector space H0(X,L). Viceversa any such polytope defines a line bundle on
X. Let σ(t) be the collection of cones of dimension t in the defining fan Σ and let
mσ be the associated character in the dual lattice, then the following statements
are equivalent:

(1) L is globally generated
(2) L is globally generated at each torus fixed point x(σ), for all σ ∈ Σ(dim(X)).
(3) PL = Conv{mσ}σ∈Σ(dim(X)).
(4) L · Cρ = distance(mσ,mσ′) ≥ 0 for each invariant curve associated to

ρ = σ ∩ σ′ ∈ Σ(dim(X) − 1).
(5) L · C ≥ 0 for every curve C.

To what extent these properties carry out to higher rank bundles? An example
of a nef but not globally generated toric vector bundle was found in [5], where
explicit criteria for nefness and ampleness are established. Our aim is to answer
the following two questions:
Q1: Which numerical positivity implies global generation? Are ample toric vector
bundles globally generated?
Q1: Do globally generated vector bundles enjoy higher cohomology vanishing?

In order to gain a better understanding we propose a more convex geometrical
interpretation of global sections of vector bundles which allows to have an effective
criterion for global generation.

Let rank(E) = r. To every σ ∈ Σ(dim(X)) we associate a compatible basis
e(σ) = (e1, . . . , er) of Cr and to each ei a (possibly empty) polytope Pei , defined
using the filtration of the vector bundle E. We denote such collection with PE =
{Pei , ei ∈ e(σ)} and call it the parliament of polytopes associated to E. Let Li be
the line bundle on X defined by the polytope Pei . We show that

H0(X,E) =
⊕

m∈PE

Cχm

where χm is the global section defined by the character m.
Moreover we prove the following criterion.

Proposition [1] The following assertions are equivalent

(1) E is globally generated.
(2) E is globally generated at all fixed points x(σ).
(3) For every σ ∈ Σ(dim(X)) Pei 6= ∅ for every ei ∈ e(σ) and the correspond-

ing decomposable vector bundle L1 ⊕ . . . ⊕ Lr is globally generated at
x(σ).
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Thanks to this criterion we were able to easily construct toric vector bundles
and check their global generation, providing answers to the two questions above.
A1[1] There are ample but not not globally generated toric vector bundles on
smooth toric varieties.
A2 [1] There are globally generated toric vector bundles on smooth toric varieties
with non vanishing higher cohomology.
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Local Positivity and Cayley Polytopes

Anders Lundman

For a smooth projective variety X and a line bundle L on X there are various
notions for measuring the local positivity of L at a point x ∈ X . We consider the
osculating space Tk

x(X,L ) of order k for various k ∈ N := {0, 1, . . .}. Recall that
Tk
x(X,L ) is defined as P(im(jkx)) where im(jkx) is the image of the jet map

jkx : H0(X,L ) → H0(X,L ⊗ (OX/m
k+1
x )).

Observe that when k = 1 the osculating space T1
x(X,L ) is simply the projective

tangent space at x. In this setting we say that L is k-jet spanned if jkx is onto.
It is natural to ask to what extent fixing the dimension of the osculating space
at every point determines the pair (X,L ). One theorem in this direction is the
following characterization of the k-th Veronese embedding.

Theorem([7]) Let N =

(

n+ k
k

)

−1, then a closed embedding of a projective

smooth n-fold X →֒ PN , over any algebraically closed field, is the k-th Veronese
embedding of Pn if and only if Tk

x(X,L ) ∼= PN for all points x ∈ X.

Similarly there are characterizations of balanced rational normal surface scrolls
[1] and abelian varieties [6] in terms of their osculating spaces. Here we are in-
terested in the case when (X,L ) is a smooth polarized toric variety. As might
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be expected there are simple combinatorial characterisations of the dimension of
Tk
x(X,L ) in terms of the polytope PL associated to (X,L ) (see [5] and [11]).

Moreover, in [11], David Perkinson has characterized all polarized smooth toric
surfaces and threefolds (X,L ) such that for every point x ∈ X and for a fixed
k ∈ N, L is k-jet spanned, but not (k + 1)-jet spanned at x. If one, in his
classification, considers only embeddings given by a complete linear series |L |,
then (X,L ) has the structure of a projective bundle with fibers isomorphic to
(Pr,OPr(k)). Explicitly in the case of a surface, (X,L ) is either a Veronese em-
bedding or a P1-bundle over P1. In the case of threefolds (X,L ) is either a
Veronese embedding or a P1-bundle over a smooth toric surface.

The characterisation in [11] is based on convex geometry. The resulting clas-
sification is in fact stated in terms of the polytopes associated to (X,L ). That
the complete embeddings appearing in the classification are projective bundles
stems from the fact that the associated polytopes have a Cayley structure of type
[P0 ∗ P1]k. Recall that if P0, . . . , Pr are polytopes in Rs then [P0 ∗ · · · ∗ Pr]k :=

Conv((P0×~0, P1×kê1, . . . , Pr×kêr) ⊂ Rs+r where e1, . . . , er is a basis of Zr. Our
main results is a generalization of Perkinsons classification to arbitrary dimension.

Theorem([10]) Let (X,L ) be a smooth polarized toric variety and let PL be
the polytope associated to the complete linear series |L |. The line bundle L is
k-jet spanned but not (k + 1)-jet spanned at every point x ∈ X if and only if
P ∼= [P0 ∗ P1]k for some lower dimensional polytopes P0 and P1 and every edge of
P contain at least k + 1 lattice points.

In algebro geometric language if (X,L ) is associated to a Cayley polytope
P = [P0 ∗ P1]k, then there exist an explicit birational morphism π : X ′ → X ,
where X ′ is a projective fiber bundle with fiber F ∼= P1 and π∗

L |F ∼= OP1(k) for
all fibers F . Here X ′ = P(L0 ⊕ L1), where the Li are line bundles on the toric
variety associated to (the inner-normal fan of) the Minkowski sum P0 + P1 (see
[4] for details).

An other way of measuring the local positivity of a nef line bundle L on a
smooth projective variety X is via so called Seshadri constants. For any point
x ∈ X Jean-Pierre Demailly [3] defined the Seshadri constant at x as the real
number:

ǫ(X,L ;x) := inf
C⊆X

L · C
mx(C)

.

Here the infimum is taken over all irreducible curves C passing through x and
mx(C) is the multiplicity of C at x. Unfortunately Seshadri constants are in gen-
eral very hard to compute and as a consequence there are few classification results
in the general setting. However when X is toric one might expect that Seshadri
constants could be captured by convex geometric properties of the polytope asso-
ciated to (X,L ). This is indeed the case and in [8] Atsushi Ito showed that on
toric varieites local positivity expressed in terms of Seshadri constants is related
to the existens of a Cayley structure. More to the point Ito showed that if (X,L )
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is a polarized toric variety, then PL
∼= [P0 ∗P1]1 if and only if ǫ(X,L , x) = 1 at a

very general point. To incorporate local positivity expressed in terms of Seshadri
Constants we extend our main result to the following form.

Theorem([10]) Let (X,L ) be a smooth polarized toric variety, let PL be the
corresponding smooth polytope and let k ∈ N. Then the following are equivalent:

(1) s(L , x) = k at every point x ∈ X.
(2) s(L , x) = k at the fixed points and at the general point.
(3) ǫ(X,L ;x) = k at every point x ∈ X.
(4) ǫ(X,L ;x) = k at the fixed points and at the general point.
(5) PL

∼= [P0∗P1]k for some lower dimensional polytopes P0 and P1 and every
edge of P has length at least k.

Here s(L , x) is the largest natural number k such that L is k-jet spanned at x ∈ X

The above result has two facets. On the one hand it gives a characterisation of
a large class of generalised Cayley polytopes and thereby generalise the character-
isations of Perkinsson and Ito (in the smooth setting). It would be intriguing to
find a similar algebro geometric characterisation of all general Cayley polytopes, at
least in the smooth setting. On the other hand our results provide an equivalence
between Seshadri constants and the numbers s(L , x) for smooth toric varieties.
The exact nature of the relationship between s(L , x) and ǫ(X,L ;x) is in gen-
eral an open and interesting question, very much related to Demailly’s original
motivation for introducing Seshadri constants [2], [9].
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Mori dream hypersurfaces in products of projective spaces

John Christian Ottem

In my talk I presented a few results about the birational structure of hypersurfaces
in products of projective spaces. These hypersurfaces are in many respects simple
as algebraic varieties, but it turns out that they can have surprisingly complicated
behaviour from the viewpoint of birational geometry. For example, a hypersurface
of tridegree (2, 2, 3) in P1 × P1 × P2, has infinite birational automorphism group
and the effective cone is rational non-polyhedral.

A natural question is when such hypersurfaces are so-called Mori dream spaces.
These varieties were introduced by Hu and Keel in [2] as a class of varieties with
good birational geometry properties. By definition, a variety is Mori dream if its
Cox ring is finitely generated. This ring is essentially defined as

R(X) =
⊕

D∈Pic(X)

H0(X,D).

Choosing a presentation for the Cox ring gives an embedding of X into a sim-
plicial toric variety Y such that each small modification of X is induced from a
modification of the ambient toric variety Y (see [2]). From this one shows that the
Minimal Model Program can be carried out for any divisor and has a combinatorial
structure as in the case of toric varieties.

Being a Mori dream space is a relatively strong condition and there are classical
examples of varieties that are not. Perhaps the most famous of these is Nagata’s
counterexample to Hilbert’s 14th problem, in which he proves that the blow-up of
P2 along the base-locus of a general cubic pencil has infinitely many (−1)-curves.
This blow-up is clearly not a Mori dream space since each of the (−1)-curves would
require a generator of the Cox ring.

When X is a hypersurface in Pm × Pn, the Picard number is 2, so this phe-
nomenon can not occur. However, there are other obstructions to having finitely
generated Cox ring. Here the main interesting case occurs when m = 1. In the
case m,n ≥ 2, it is straightforward to show that the Cox ring of X is quotient
of that of Pm × Pn by the defining polynomial, and so X is clearly a Mori dream
space. For hypersurfaces in P1 × Pn we have the following:

Theorem. Let X be a very general hypersurface of bidegree (d, e) in P1 × Pn and
let Hi = pr∗i O(1). Then X is a Mori dream space if and only if it belongs to the
following cases:

• d ≤ n in which case the Cox ring has the following presentation

R(X) = k[x0, x1, y0, . . . , yn, z1, . . . , zd]/I

where I is generated by d+ 1 forms of bidegree dH2.
• e = 1, in which case X is a projective bundle over P1.

In all other cases, we have

Eff(X) = Mov(X) = Nef(X) = R≥0H1 + R≥0(neH2 − dH1),

but Eff(X) is not closed. Hence X is not a Mori dream space.
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In each case one can describe the birational structure of X fairly explicitly using
the defining polynomial of X . To show that some of the hypersurfaces are not Mori
dream spaces, a degeneration argument is used.

As a pleasant by-product we get simple analogues of many classical pathologies
in birational geometry:

(i) A surface with Nef(X),Eff(X),Mov(X) all rational polyhedral, but Eff(X)
not closed. This is true for surfaces of large bidegrees in P1 × P2.

(ii) A rational surface with infinitely many (−1)-curves. The blow-up of P2

along the base-locus of two degree e curves embeds as a (1, e)-hypersurface in
P1 × P2. For example, Nagata’s example is a (1, 3)-hypersurface.

(iii) A non-ample line bundle with positive intersection numbers with any curve.
If X is a hypersurface of bidegree (3, 3) in P1 × P2, then the line bundle L =
O(2H2−H1) satisfies L2 = 0 and L ·C > 0 for every curve C ⊂ X . Such examples
where first constructed by Mumford using projective bundles over curves of genus
≥ 2.

(iv) A Calabi-Yau threefold with infinitely many (−1,−1)-curves. If X has
tridegree (2, 2, 3) in P1×P1×P2, then one can consider the two projections p13, p23 :
X → P1 × P2. These projections are generically 2 : 1, and so X possesses two
pseudoautomorphisms σ1, σ2 given by interchanging the two sheets of the double
cover. It can be shown that σ1, σ2 generate an infinite subgroup of Bir(X).

(v) A rationally connected variety which is not birational to a log Fano. Finally,
using these results, I constructed a counterexample to a question of Cascini and
Gongyo [1], which asks whether every rationally connected variety is birational
to a log Fano variety. It turns out that many Fano fibrations over P1 are not
birational to a log Fano, since they are so-called birationally superrigid, meaning
that they have essentially only one Mori fiber structure.
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Extremal rays on hyperkähler manifolds and relations to Brill-Noether
theory

Andreas Leopold Knutsen

(joint work with C. Ciliberto, and with M. Lelli-Chiesa and G. Mongardi)

A hyperkähler manifold is a simply-connected compact Kähler manifold X car-
rying an everywhere non-degenerate holomorphic 2-form, unique up to scale. In
particular, it has even dimension. By the Beauville–Bogomolov decomposition
theorem, hyperkähler manifolds form one of the three basic building blocks —
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besides Calabi–Yau varieties with zero irregularity and abelian varieties — for
smooth varieties with trivial first Chern class.

Apart from two examples of O’Grady in dimensions 6 and 10, the only examples
known of such manifolds are Hilbert schemes S[k] of k points on K3 surfaces S
and generalized Kummer varieties K [k−1] (which are the subsets of the Hilbert
scheme of k points on abelian surfaces whose sum under the group operation is
zero), together with their deformations. It is known by results of Huybrechts [7]
and Boucksom [3] that rational curves determine the nef and ample cones, just like
for K3s. In other words, extremal rays on hyperkähler manifolds are generated
by limits of classes of rational curves. In the case of the examples above, rational
curves in S[k] or K [k−1] correspond to curves on the surfaces with some partial
normalization carrying a g1k. In the talk I gave an idea of the study of linear series
on normalizations of curves on K3 surfaces [4] and abelian surfaces [8] and the
role of vector bundle methods, as e.g. in [9]. In particular, I showed how these
methods give restrictions on the existence of indecomposable rational curves in
S[k] and K [k] compatible with recent results in [1, 2]. More precisely, assume that
C is a nodal curve on a K3 surface of arithmetic genus p = pa(C) such that a
partial normalization at δ of its nodes carries a g1k (and no normalization at fewer

nodes does). Let R be the rational curve in S[k] determined by this g1k. Then the

class of R in N1(S[k],Z) is given by

(1) R ≡ C − (p− δ + k − 1)rk,

cf. [4], where the notation is explained as follows: We haveN1(S[k],Z) ∼= N1(S,Z)⊕
Z[rk], where rk is the class of a fiber of the Hilbert-Chow morphism µ : S[k] →
Symk(S) over a generic point of the diagonal. The embedding of N1(S,Z) in
N1(S[k],Z) is given by sending the class of a curve C to the class of the curve
{p1 ∪ · · · ∪ pk−1 ∪ x}x∈C , with pi some fixed points outside C. By abuse of nota-
tion we denote the curve class in N1(S[k],Z) still by C. By [4, 5], if the class of R
is not decomposable into two effective nontrivial classes, then

(2) ρ(p, α, kα+ δ) ≥ 0, where α :=
⌊ p− δ

2(k − 1)

⌋

.

This special Brill-Noether inequality implies the inequality

q(R) = 2(p− 1) − (p− δ + k − 1)2

2(k − 1)
≥ −k + 3

2
,

where q is the Beauville-Bogomolov (Q-valued) quadratic form on homology, a
result predicted by a conjecture of Hassett and Tschinkel [6] (and subsequently
proved to hold for any effective 1-cycle R on any polarized variety deformation
equivalent to S[k] with S a K3 surface by Bayer and Macr̀ı in [1]).

On the other hand, by [4], the inequality (2) is also a sufficient condition for
the existence of a δ-nodal curve in a primitive linear system |C| on a general
polarized K3 surface (S,OS(C)) with a normalization carrying a g1k, and such
that no normalization at fewer nodes carries a g1k. This proves the existence of
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rational curves with classes as in (1). In many cases, as explained in [4], these
generate extremal rays.

Similar results hold on generalized Kummer varieties, cf. [8].
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Higher rank interpolation and Bridgeland stability

Jack Huizenga

(joint work with Izzet Coskun)

Fix a zero-dimensional scheme Z ⊂ P2. It is a classical problem to determine the
minimal integer n0 = n0(Z) such that Z imposes independent conditions on curves
of degree n0. Equivalently, this amounts to proving a cohomology vanishing state-
ment H1(IZ(n0)) = 0. We then have that for all n ≥ n0, Z imposes independent
conditions on curves of degree n.

The higher-rank interpolation problem asks for a description of the set of rational
numbers µ ∈ Q which are the slopes of vector bundles E such that E ⊗ IZ has no
cohomology. If E is a vector bundle such that E ⊗ IZ has no cohomology, we say
that E satisfies interpolation for Z. A first result says that the sets of rational
numbers which can occur as solutions to the higher-rank interpolation problem
are all infinite rays.

Proposition ([1]). Fix a zero-dimensional scheme Z ⊂ P2. There is a unique real
number µ0(Z) ∈ R with the following properties.

(1) If µ > µ0(Z), then there is a vector bundle of slope µ with interpolation
for Z.

(2) If µ < µ0(Z), then no vector bundle of slope µ has interpolation for Z.

Thus the higher-rank interpolation essentially amounts to computing the invari-
ant µ0(Z) for various schemes Z. Our results carry out this program for certain
types of schemes.
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Theorem ([1, 2, 3]). The invariant µ0(Z) is explicitly computable if

(1) Z is a general collection of points,
(2) Z is a complete intersection scheme, or
(3) Z is a monomial scheme.

Motivation for the higher-rank interpolation problem comes from the bira-
tional geometry of Hilbert schemes of points and, more generally, moduli spaces
of semistable sheaves. As a consequence of the previous theorem, we explicitly
determine the cone of effective divisors on any Hilbert scheme of points in P2.

We will explain how Bridgeland stability provides a key insight into determining
the solution to the higher-rank interpolation problem.
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Self-intersection numbers of curves on Hilbert Modular Surfaces

Sonia Samol

In 1976 Hirzebruch and Zagier ([4]) calculated the intersection numbers of Hirzebruch-
Zagier curves TN on Hilbert Modular surfaces. The aim of this text is to present
the formula they calculated for the self-intersection numbers of these curves, fol-
lowing the book of van der Geer ([3]).

Let p ≡ 1 mod 4 be a prime, K = Q(
√
p), O the ring of integers of K and a an

ideal in O with Norm(a)= A.

With SL2(O, a) =

{

T ∈
(

O a
−1

a O

)

, detT = 1

}

the quotient Xa = H2/SL2(O, a)

is a non-compact complex surface with finitely many singularities which can be
compactified by adding the cusps to Xa and resolving the singularites created.
Then one gets the Hirzebruch compactification X̄a = Xa ∪ ⋃

k Sk where the Sk

are rational curves.

Definition: A skew-hermitian matrix

B =

(

a
√
D λ

−λ′ b
A

√
D

)

is called a−integral if a and b are integrals and λ ∈ a
−1, where λ′ is the conjugate

of λ.
If there is no integer n > 1 with ( a

n
, b
n
, λ
n

) ∈ Z2 × a
−1, then B is called primitive.
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Definition: For a primitive, a−integral, skew-hermitian matrix B the curve FB

is defined as the image of the set
{

(z1, z2) ∈ H2 ∪ P1(K) : (z2, 1)B

(

z1
1

)

= 0

}

in Xa. With Norm(a)= A the curve FN is defined as

FN :=
⋃

B as above
det(B) = N

A

FB.

Franke ([2]) showed that for a prime discriminant p and p2 ∤ N the curve FN

consists of only one component.
The Hirzebruch-Zagier curve TN is the defined as

TN =
⋃

t ≥ 1
t2|N

FN

t2
,

so for N squarefree one gets TN = FN irreducible. Furthermore, FN is not empty

if χp(NA) 6= 1, where χp(n) =
(

n
p

)

is the Legendre symbol, and compact if N is

not the norm of an ideal in the genus of a.
For the self-intersection number of the curves TN we get the following formula.

Theorem (Hirzebruch-Zagier [4]):

T 2
N =

1

2

∑

n|N

n

(

Hp

(

N2

n2

)

+ Ip

(

N2

n2

))(

χp(n) + χp

(

NA

n

))

,

with

Hp(n) =
∑

x∈Z

x2≤4n
x2≡4n mod p

H

(

4n− x2

p

)

,

H(n) =

{ − 1
12 if n = 0

∑

d2|n h
′
(

− n
d2

)

else
,

h′(∆) =







1
3 if ∆ = −3
1
2 if ∆ = −4

h(∆) if ∆ ≡ 0 or 1 mod 4,∆ ≤ −4
,

where h(∆) is the class number of positive definite primitive binary integral qua-
dratic forms with discriminant ∆ and

Ip(n) =
1√
p

∑

λ∈O
λ>0,λ′>0
λλ′=n

min(λ, λ′).
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The aim is now to find a bound b(Xa) such that T 2
N ≥ b(Xa) for all squarefree N .

In [1] T 2
N ≥ −6c2(X̄a) was proven. We have c2(X̄a) =vol(Xa)+l(Xa), where l(Xa)

comes from the cusps, and vol(Xa) = [SL2(O) : SL2(O, a)]2ζK(−1) with ζK(−1)
the Dedekind zeta-function. For K a real quadratic field with discriminant p

ζK(−1) =
1

60

∑

x∈Z

σ1

(

p− x2

4

)

,

where σ1(x) = 0 if x /∈ Z≥1 and σ1(x) =
∑

d|x d if x ∈ Z≥1.
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Convergence of normalised log-eigenvalues of Hermitian metrics on
big line bundles

Catriona Maclean

(joint work with Huayi Chen)

This talk is a report on the contents of the preprint [4].

Suppose that X is a projective smooth variety over a field K which is either the
complex numbers or a non-archimedean field, and let L be a big line bundle on X .
We assume that this line bundle is equipped with two continuous Hermitian met-
rics, φ and ψ and that X is equipped with a volume form µ. Integrating against µ
we then obtain associated Hermitian metrics on each of the spaces H0(nL) = Vn,
which we will denote by φn and ψn. We will be concerned with the following
question : how does the relative geometry of φn and ψn behave as n→ ∞ ?

More precisely, there is for each n a basis for Vn, (e1, . . . , edn
), which is orthonor-

mal for φn and orthogonal for ψn : if we denote the number ψn(ei, ei) by λi for
all i then it is fairly easy to see that

log(maxλi) ∼n→∞ nmax(log(ψ/φ))

which suggests that the normalisation µi = log(λi)
n

may have more interesting con-
vergence properties.

More precisely, we consider the following question : let now Zn be a random
variable which is equal to µi with probabilty 1

dn
. Does the sequence of random

variables Zn converge in probability ? Note that this question is well-defined for
any multiplicative linear series V•, where Vn ⊂ H0(nL) for all n ≥ 0, and it is in
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this form that we have studied this question.

In the case where Vn is the complete linear series H0(nL) and the base field is
the complex numbers, Boucksom and Berman have proved in [2] that the sequence
E(Zn) converges (and have established an important formula for the limit in terms
of equilibrium Monge-Ampere metrics. ) Moreover, when mooreover L is ample
and φ and ψ are Kähler metrics, Berndtsson [1] has proved the convergence (and
has, again, given an important formula for the limit distribution.) We prove the
following theorem :

Theorem
With X , L, φ, ψ, Vn and Zn as above, then provided Vn is of Lazarsfeld-Mustata
ample type, the sequence of random variables Zn converges in probability.

One of the main innovations in the proof is the use of Newton-Okounkov bodies
in this context. The Newton-Okounkov ∆Vn

body is a compact convex body in Rd

associated to a multiplicative linear series V• ⊂ H0(nL) : see [5] and [6] for more
details. It is sometimes possible to rewrite functions of the linear series Vn as a
sum over the points of ∆(Vn) ∩ (Z/n)d, which is a convenient context for proving
convergence theorems (see [3], [7] for more details.)
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Intersection of special cycles on orthogonal Shimura varieties

Fritz Hörmann

This was mainly a historical talk about Siegel-Weil theory which started with the
question of determining representation numbers R(T ) of a positive-definite integral
quadratic form Q. Siegel [6, 7] found the correct generalization of this question to
indefinite forms: The representation numbers have to be replaced by volumes of
certain submanifolds Z(T ) of arithmetic quotients of the Grassmannian associated
with the given indefinite quadratic form. As in the former case, those are indexed
by symmetric integral g × g matrices T . In certain cases, these locally symmetric
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varieties are, in fact, algebraic (Shimura varieties of orthogonal type) and the
volumes of the Z(T ) can be interpreted as their degree in the sense of algebraic
geometry. This was interesting for this workshop because, in dimension 2, these
Shimura varieties give rise to a lot of examples of surfaces (Hilbert modular or
Shimura surfaces) with an interesting class of distinguished curves on them. The
main classical theorems state that the representation numbers R(T ), resp. the
volumes of the Z(T ), are encoded as Fourier coefficients of modular forms (theta
functions) and are, at least in an average over the genus, Eisenstein series, whose
Fourier coefficients can be given in a rather explicit way in terms of Euler products.
The theory of Siegel was considerably advanced by Weil [8]: He realized that the
above results are basically a reformulation of the fact that the Tamagawa number
of any orthogonal group is 2. Kudla and Millson in the 80’s and 90’s refined
this theory [4] and considered the cohomology classes of the Z(T ) in the Betti
cohomology. The result is that, again, the generating series

ΘB(τ) =
∑

T

[Z(T )]B ∪ eg−rk(T ) exp(2πitr(Tτ))

is a Siegel modular form of genus g (with values in a Betti cohomology group
of the locally symmetric variety). Here e is a certain (Euler) cohomology class.
Furthermore, the formula

(1) ΘB(τ1) ∪ ΘB(τ2) = ΘB(

(

τ1
τ2

)

)

for the cup product of two generating series was proven. Together with the previous
result, this gives an explicit formula for the cup product of two classes [Z(T1)]B and
[Z(T2)]B. In the Shimura variety case, one might consider the generating series
ΘCH(τ) with values in the corresponding Chow group of (a compactification of)
this variety instead. Kudla conjectures (cf. [5]):

1. ΘCH(τ) is a modular form itself.
2. Formula (1) holds for the intersection product.

Conjecture 1 was proven for g = 1 by Borcherds [1] and recently for g = 2 by
Bruinier [2]. Conjecture 2 is open. However, in the end of the talk, I sketched a
proof of Conjecture 2 for surfaces. In particular, combined with the Siegel-Weil
theory explained above, this gives a nice proof and interpretation of formulas for
the intersection number of two Hirzebruch-Zagier divisors on Hilbert modular or
Shimura surfaces, respectively. I also reported briefly about my own work [3] about
Kudla’s more recent program on the Arakelov analogue of this theory.
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The effect of fattening in dimension 3

Tomasz Szemberg

(joint work with Thomas Bauer)

Let Z be an arbitrary subscheme in Pn and let IZ be its homogeneous ideal. A
basic question in polynomial interpolation is to determine the initial degree of IZ
defined as

α(IZ ) = min{ d : (IZ )d 6= 0 }.
This is a difficult task in general. For example the Nagata Conjecture predicts
that if Z is a fat points scheme Z = mP1 + . . .+mPs of s ≥ 10 general points in
P2, then

α(IZ ) > m · √s.
This conjecture remains widely open for over 55 years. See [3] for recent general-
izations to general configurations of linear subspaces in Pn.

Fat points schemes have been studied extensively for a long time. Recently,
Bocci and Chiantini in [2] proposed a new approach. Assume that Z is a reduced
subscheme of Pn supported on a finite number of points. Their program is to study
the initial sequence

α(IZ ), α(I
(2)
Z ), α(I

(3)
Z ), . . .

and conclude out of its growing pattern geometrical information about Z, here
J (m) denotes the m–th symbolic power of an ideal J .

In a joint paper with Thomas Bauer [1] we state a conjecture relating sub-
schemes Z with the initial sequence relatively minimal growth to star configura-
tions, see [4] for a very enjoyable introduction to star configurations.

Conjecture 1. Let Z be a finite set of points in projective space Pn and let I = IZ
be the radical ideal defining Z. If

(1) d := α(I(n)) = α(I) + n− 1 ,

then either

α(I) = 1, i.e., Z is contained in a single hyperplane H in Pn

or
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Z consists of all intersection points (i.e., points where n hyperplanes meet)
of a general configuration of d hyperplanes in Pn, i.e., Z is a star config-
uration. For any polynomial in I(n) of degree d, the corresponding hyper-
surface decomposes into d such hyperplanes.

This Conjecture has been proved for n = 2 by Bocci and Chiantini in [2, The-
orem 1.1]. The content of my talk was to present its proof in dimension n = 3.

Theorem (Bauer, Szemberg). The above Conjecture holds in dimension 3.

There are several interesting possible generalizations of Conjecture 1 to star
configurations of higher dimensional linear subspaces. We refer to [1] for details.
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