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Introduction by the Organisers

Kähler groups are groups that occur as fundamental groups of closed Kähler man-
ifolds. They include all the fundamental groups of smooth complex projective
varieties, and an interesting open problem is to find out whether this inclusion
is strict. Kähler groups form a very restricted subclass of the class of all finitely
presentable groups. Traditionally, restrictions arose mostly from Hodge theory
and from rational homotopy theory, but over the years many other techniques –
such as harmonic maps and geometric group theory – have been brought to bear
on the subject.

The workshop brought together 16 participants from Europe, the United States
and India, all of whom are actively working in the subject, approaching it from
different directions: some from complex algebraic geometry, and others from geo-
metric group theory, or from differential geometry and analysis. The purpose was
to review the progress made in the area in the last 10 years or so, and to discuss
open problems. The form of the discussions evolved during the week, with many
more formal lectures in the first half, and more informal discussions and problem
sessions during the second half of the week. Many of the formal lectures gave rise
to followup discussions during the informal sessions. There were 13 formal lectures
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altogether. On Wednesday a lengthy informal session was held, that also included
the first problem session. There was another problem session on Thursday evening,
and final wrap-up discussion on Friday.

It is much easier to prove restrictions on Kähler groups, than it is to exhibit
interesting, non-obvious, examples. During the workshop, the lectures by Dimca,
Kapovich and Panov were devoted to methods and attempts at constructions, and
this was also in important topic of discussion during the informal and problem ses-
sions. Linear representations of Kähler groups, and, more generally, the question
of how close to linear a general Kähler group might be, appeared in one form or
another in the lectures of Klingler, Brunbarbe, Maubon and Eyssidieux. The main
problem arising from these lectures and subsequent discussions is: are there infi-
nite Kähler groups with no linear representation with infinite image? The natural
conjecture is that such groups should exist, and the challenge is to construct them.
One interesting suggestion for a construction would be the search for a complex
hyperbolic analogue of the work of Panov and Petrunin in real hyperbolic geome-
try.

While many lectures had an algebro-geometric and/or Hodge theoretic flavour,
there were other directions. Methods of D-modules applied to the topology of vari-
eties, notably cohomology, appeared in the lectures of Schnell and Wang. Methods
of geometric group theory and coarse geometry featured prominently in several
lectures, particularly those of Delzant. The methods of geometric group theory
quickly lead to the class of “fibered” Kähler groups: those that map to surface
groups, and the corresponding Kähler manifolds map homolomorphically to com-
plex curves. The lecture by Mahan also used geometric group theory methods.
The lecture by Py was devoted to other factorization theorems through complex
curves proved by applications of harmonic maps.
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Abstracts

Cuts in Kähler groups

Thomas Delzant

The aim of these two lectures is to explain our joint paper [1] with Misha
Gromov. The main result can be stated as follows :

Let X be a compact Kähler manifold. Assume that its fundamental group G
has a subgroup H such that G/H is stable at infinity, and H cuts G at infinity in
at least 3 relative ends, then there exists a finite (unramified) cover of X, say X1,
which admits a holomorphic map to a hyperbolic compact Riemann surface S so
that H ⊃ K, the kernel of G1 = π1(G1)→ π1(S). In particular if G is hyperbolic
and Kähler it does not admits a convex subgroup H such that the number of
relative ends is greater than 2, unless it is a virtual surface group.

According to Napier and Ramachandran (GAFA, 2009) the hypothesis of sta-
bility at infinity is not useful; the necessity of at least three ends is however
fundamental, as one can see for example in the case of abelian groups.

In the first lecture, we explain some elementary facts about the topology at
infinity of a group; we recall Freudenthal’s definition of ends, and extend this
definition to relative ends or “cuts”. Let G be the fundamental group of a compact
manifold X . We prove that a subgroup H cuts G at infinity if and only if there
exists a H−equivariant, H−proper map from the universl cover of X to a H-tree,
called the Freudenthal map.

In the second lecture we recall Gromov-Schoen theory. Such a proper map to a
tree can be (under certain conditions) promoted as a H-equivariant harmonic map
to the tree of finite energy. This map is proved to be pluriharmonic and therefore
admits a complexification by a codimension one complex foliation of X , whose
leaves are defined by a quadratic differential, and contained in the compact levels
of the Freudenthal map. A Tischler-like theorem for such foliations on Kähler
manifolds is stated: if one leaf is compact, then all leaves are. The branching
of the tree forces the existence of a multiple leaf. One prove that all leaves are
compact, and a finite cover is constructed by geometric arguments.

Some examples are discussed. The main corollary is that a “small cancellation”
group cannot be Kähler unless it is a surface group. Better, a morphism from
a Kähler group to a small cancelation group factorizes through a virtual surface
group.

References

[1] T. Delzant, Misha Gromov Cuts in Kähler groups, Progr. Math., 248, Birkhäuser, Basel,
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536 Oberwolfach Report 09/2014

Non-finiteness properties of the fundamental groups of smooth

projective varieties

Alexandru Dimca

(joint work with S. Papadima, A. Suciu)

Since a smooth connected projective variety X is homotopy equivalent to a finite
simplicial complex, its fundamental group G = π1(X, x0) is finitely presentable.
One may ask which additional finiteness properties such a group may enjoy in
general, or if one imposses some extra conditions on X , e.g. by asking that the
universal cover X̃ of X is a Stein manifold.

As an example, if X is a product of smooth projective curves of genus g > 1,
then X is a classifying spaceK(G, 1) and the universal cover X̃ is a Stein manifold,
being a product of discs. Note that it is very exceptional for a group G to have a
classifying space K(G, 1) which is a finite complex.

In the paper [2] we have constructed smooth hypersurfaces Y in a product of

curves as above, such that the universal cover Ỹ of Y is a Stein manifold but Y
has very bad finiteness properties, reflected by the fact that Ỹ is (d−1)-connected

but has an infinite homotopy group πd(Ỹ ), where d is the dimension of Y . In
particular, such a fundamental group does not have a classifying space K(G, 1)
which is a finite complex.

It is even easier to construct affine smooth varieties with such properties, see the
paper [1], where we show that such a ’bad’ hypersurface can be constructed in the
complex affine space Cn for n ≥ 3 by choosing a sequence of integers (k1, ..., kn)
with kj > 0 and setting

Y : x1(x1 + 1) · · · (x1 + k1)x2(x2 + 1) · · · (x2 + k2) · · ·xn(xn + 1) · · · (xn + kn) = a,

for a generic a ∈ C.
To prove such results, one relates the usual finiteness properties Fn and FPn

considered in geometric group theory to the theory of twisted cohomology jumping
loci, for which we refer to [3]. Similar techniques have been used in our recent paper
[4] to treat finiteness properties of Torelli groups.

In addition, one uses the complex Morse theory which studies the change in the
topology when we pass from the generic fiber of a Lefschetz pencil to the total
space (whose topology in our cases is very simple). The new ingredient is that our
Lefschetz pencils involve infinitely many critical points, which lead in the end to
infinitely many cells to be attached.
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of smooth projective varieties, J. Reine und Angew. Math. Crelle 629 (2009), 89–105.
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Symmetric differentials I

Bruno Klingler

I gave two talks on symmetric differentials. The first one was devoted to my re-
cent joint work with Brunebarbe and Totaro [4] (and was continued by Yohan
Brunebarbe). In the second one I tried to explain the results obtained by Bogo-
molov and De Oliveira in [2] and [3].

1. Symmetric differentials and linear representations of the

fundamental group

Let X be a compact connected Kähler manifold. The Hodge decomposition

Hi(X,C) =
⊕

i=p+q

Hp(X,ΛqΩ1
X)

tells us that the exterior algebra Λ•Ω1
X (which is a purely holomorphic object)

completely controls the Betti cohomology of X . Our work with Brunebarbe and
Totaro started with the following question: what is the link between the symmetric
algebra S•Ω1

X and the topology of X?
Notice that if one denotes by O(1) the relatively ample line bundle on the

projective bundle π : PΩ1
X → X of hyperplanes of Ω1

X , then π∗O(i) = SiΩ1
X and

H0(X,SiΩ1
X) = H0(PΩ1

X ,O(i)). Hence global symmetric differentials on X are
controlled by the positivity properties of O(1) on PΩ1

X .
I spent my first talk describing the relation between global symmetric differ-

entials on X and the finite dimensional representation theory of the fundamental
group π1(X). I first recalled the following theorem and its proof:

Theorem 1.1. (Hitchin, Simpson, Arapura, Katzarkov, Zuo) Let X be a compact
connected manifold and r a positive integer. Suppose H0(X,SiΩ1

X) = 0 for 0 <
i ≤ r. Then:

(1) the character variety Hom(π1(X), GL(r,C)//GL(r,C) is a finite set of
points.

(2) Any semi-simple representation ρ : π1(X)→ GL(r, F ), F a non-archime-
dean local field, has bounded image.

Then I stated our main result and explained its proof for k a field of positive
characteristic:

Theorem 1.2. (Brunebarbe, Klingler, Totaro) Let X be a compact connected

Kähler manifold. Suppose H0(X,S>̇0Ω1
X) = 0. Then any representation

ρ : π1(X)→ GL(r, k)

(k any field, r any integer) has finite image.

This theorem can be seen as creating symmetric differentials from topology. As
any such differential vanishes on the rational curves ofX it might have applications
for studying hyperbolicity of compact Kähler manifolds. On the other hand notice
that many algebraic varieties do satisfy the assumptions of theorem 1.2: a classical
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result of Schneider states that any smooth subvariety of PN
C of dimension at least

N/2 has no symmetric differential. All these examples have finite fundamental
group. I expect that anyX as in theorem 1.2 should have a finite étale fundamental
group.

2. The work of Bogomolov and De Oliveira

I first explained the following result [1]:

Proposition 2.1. (Bogomolov-De Oliveira) For m ≥ 2, H0(X,SmΩ1
X) is not a

topological invariant.

This motivates the definition by Bogomolov and De Oliveira of the subclass of
closed symmetric differentials (generalizing the classical notion in degree 1). In
some special cases they show that their existence forces strong topological restric-
tions on X .

Definition 2.2. A symmetric form ω ∈ H0(X,SmΩ1
X) is said to be:

(1) exact on an open set U of X if ω|U = (df1)
m1 · · · (dfk)

mk where fi ∈ O(U)
and

∑
imi = m.

(2) closed on X if is exact in a neighborhood of a general point of X.
(3) closed of the first kind on X if there exists a covering (Ui) of X such that

ω|Ui
is exact for all i.

I explained the proof of the following result [3]:

Theorem 2.3. (Bogomolov-De Oliveira) Let X be a smooth projective complex
variety. Let ω ∈ H0(X,S2Ω1

X) of rank 2 and closed of the first kind. Then:

(a) There exists a finite unramified Galois covering f : X ′ → X such that f∗ω
comes from a symmetric two-form on the Albanese of X ′.

(b) The group π1(X) is infinite. More precisely there exists a finite index
subgroup of π1(X) with infinite abelianisation.
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Cohomology jump loci

Christian Schnell

LetX be a topological space, and denote by Char(X) = Hom
(
π1(X),C∗

)
the space

of characters of the fundamental group. Each character ρ ∈ Char(X) determines
a rank-one local system Cρ on X . The cohomology jump loci of X are the sets

Σk
m(X) = { ρ ∈ Char(X) | dimHk(X,Cρ) ≥ m }.

When X is sufficiently nice – for example, homotopy-equivalent to a finite CW-
complex – Char(X) is an affine algebraic variety, and every Σk

m(X) is a closed
algebraic subvariety. For k = 1, the cohomology jump loci only depend on the
fundamental group of X ; for k ≥ 2, they only depend on X up to homotopy.

In the late 1980s, Beauville and Catanese conjectured that when X is a compact
Kähler manifold, every irreducible component of Σk

m(X) should be a translate
of an affine torus by a point of finite order. The proof of the conjecture was
recently completed by Wang [8], who also spoke at the workshop. Let me briefly
outline the history of this result. Beauville [2] showed that positive-dimensional
components of Σ1

1(X) correspond (more or less bijectively) to morphisms from
X to compact Riemann surfaces of genus ≥ 2. Arapura [1] showed that every
irreducible component of Σk

m(X) is a translate of an affine torus, but left open
the question of whether the translates are by points of finite order. Simpson [7]
proved the conjecture for smooth projectiveX , with the help of the Schneider-Lang
criterion from transcendence theory. Campana [3] deduced from Simpson’s result
that the conjecture is true for Σ1

1(X); an alternative argument, using methods
from geometric group theory, was later given by Delzant [4]. Pink and Roessler [5]
reproved Simpson’s theorem by using reduction to positive characteristic. More
recently, I found a third proof [6] that uses some results about Hodge modules on
abelian varieties; this argument was extended by Wang to prove the conjecture in
all cases.
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Symmetric differentials II

Yohan Brunebarbe

(joint work with Bruno Klingler, Burt Totaro)

In my talk I explained the proof of the following result:

Theorem 0.1. (see [1], theorem 0.1) Let X be a compact Kähler manifold. Sup-
pose that there is a finite-dimensional complex representation of its fundamental
group ρ : π1(X)→ GLn(C) with infinite image. Then X has a nonzero symmet-
ric holomorphic differential form, i.e. a nonzero element of some H0(X,SkΩ1

X),
k ≥ 1.

First, using classical Hodge theory and the results that Bruno explained in his
talk, I showed how to reduce the proof of theorem 0.1 to the special case where
ρ has discrete image and is the monodromy of a polarizable complex variation of
Hodge structures. Theorem 0.1 is then a consequence of the following result:

Theorem 0.2. (see [1], theorem 3.1) A compact complex manifold which supports
a polarizable complex variation of Hodge structures with infinite and discrete
monodromy has a nonzero symmetric holomorphic differential form, i.e. a nonzero
element of some H0(X,SkΩ1

X), k ≥ 1. Moreover, if the corresponding period map
is immersive in at least one point of X , then the cotangent bundle Ω1

X of X is big.

Recall that a holomorphic vector bundle on a compact complex manifold is nef
(resp. big) if the tautological quotient line bundle OE(1) on the projective bundle
P(E) of hyperplanes in E has the corresponding property.

Let us give an idea of the proof of theorem 0.2 in the special case where the
period map φ̃ : X̃ → D is everywhere immersive. Recall that the period domain D
is a complex manifold which is homogeneous under a semisimple real Lie group G
of noncompact type, and that the period map is π1(X)-equivariant with respect to
the monodromy representation ρ : π1(X) → G ⊂ GLn(C). Griffiths and Schmid
(cf. [3], theorem 9.1) defined a G-invariant hermitian metric on D. Because the

period map is an immersion, one can pull back this metric to X̃. This defines a
π1(X)-equivariant hermitian metric on X̃ , hence a hermitian metric on X . It turns
out that this metric is Kähler, has nonpositive holomorphic bisectional curvature
and negative holomorphic sectional curvature (here the horizontality of the period
map plays a crucial role; see [1], section 3 for the details). It follows (cf. [1],
theorem 1.1) that the cotangent bundle Ω1

X is nef and big. In particular, X has a
lot of symmetric differentials.

If the period is just generically immersive, then it is still possible by some trick
to show the bigness of Ω1

X (but of course Ω1
X won’t be nef in general). In the
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general case, as the image Γ of the monodromy is discrete, the period map in-
duces a map φ : X → D/Γ. Suppose to simplify that Γ is torsion-free. Let Y
be a resolution of singularities of the image of φ : X → D/Γ. As Γ is infinite,
Y is positive dimensional. The period map defines on Y a polarizable complex
variation of Hodge structures with infinite and discrete monodromy. Moreover, as
now its period map is generically immersive, the precedent discussion shows that
the cotangent bundle Ω1

Y of Y is big. Finally, one obtains symmetric forms on X
by pulling-back symmetric forms on Y along the rational map X 99K Y .

At the end of the talk we said a few words about an extension of theorem 0.2
to non-compact varieties:

Theorem 0.3. (see [2]) Let U be a smooth complex algebraic variety which sup-
ports an integral variation of polarized Hodge structures with infinite monodromy.
Then, for any smooth compactification X of U such that D = X − U is a simple
normal crossing divisor, there exists k ≥ 1 such that SkΩ1

X(logD) has a nonzero
section. Moreover, if the corresponding period map is immersive in at least one
point of U , then the logarithmic cotangent bundle Ω1

X(logD) of the pair (X,D)
is big.
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Polyhedral complexes and topology of projective varieties

Michael Kapovich

This talk is based on our work with János Kollár [3] and my own paper [2].
This work is motivated by

Question 0.4. What are fundamental groups of (possibly) singular (complex)
projective varieties.

It is well-known (and goes back to Serre) that singular reducible projective
varieties can have arbitrary finitely-presented (fp) groups. The main question is
what happens if one imposes some control on singularities and the irreducibility
assumption. Simpson in [4] proved that every finitely-presented group appears as
the fundamental group of an irreducible projective variety; he further asked if such
variety can be chosen to have only normal crossing singularities. Our main results
are:

Theorem 0.5. (Kapovich, Kollár, [3]) Every fp group appears as π1(Z) for some
2-dimensional projective variety Z with (simple) normal crossing singularities.
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Corollary 0.6. (Kapovich, Kollár, [3]) Every fp group G appears as the funda-
mental group of the link of a 3-dimensional isolated (complex) singularity.

Theorem 0.7. (Kapovich, [2]) Every fp group appears as π1(Z) for some irre-
ducible 2-dimensional projective variety Z whose singularities are normal crossings
and Whitney umbrellas.

EliminatingWhitney umbrellas in this theorem remains an open problem. Proof
of Theorem 0.7 is based on a combination of hyperbolic and algebraic geometry
described in the following diagram:

Group presentation −→ Hyperbolic orbifold

y

Projective variety ←− Generic Dirichlet domain

The first arrow in this diagram is the following variation on a recent theorem
of Panov and Petrunin [5]:

Theorem 0.8. (Kapovich, [2]) For every fp group G there exists a convex-
cocompact subgroup Γ < PO(3, 1) where every finite order element is a Cartan
involution, so that G ∼= π1(H

3/Γ).

The second arrow is related to the following conjecture (which appears as a
theorem in the erroneous paper [1]):

Conjecture 0.9. Suppose that Γ < PO(3, 1) is a discrete torsion-free subgroup,
then for a generic choice of a base-point x ∈ H3, the corresponding tiling Dx of
H3 by Dirichlet fundamental domains of Γ (with respect to x) is simple.

Here simplicity of a tiling means that for every k-dimensional face c of the tiling,
its residue Resc (with respect to the tiling) is a simplicial complex isomorphic to
the face-complex of the boundary of 3 − k-simplex. In other words, every edge
of the tiling is shared by exactly 3 facets and every vertex is shared by exactly 4
facets. The partial result which suffices for our purposes is

Theorem 0.10. (Kapovich, [2]) Suppose that Γ < PO(3, 1) is a discrete subgroup
without unipotent elements, such that each nontrivial finite order element is a
Cartan involution. Then for a generic choice of x, the Dirichlet tiling Dx is simple
away from its vertices.

The last arrow is a minor variation on the main construction in [3] which con-
verts a finite hyperbolic polyhedral complex with a single facet, to an irreducible
projective variety V . Normal crossings in V correspond to simplicity of edges in
the Dirichlet tiling; Whitney umbrellas come from Cartan involutions in Γ. Irre-
ducibility of V comes from transitivity of the action of Γ on facets of the Dirichlet
tiling Dx.
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The following conjecture is motivated by Theorem 0.5 and our the current state
of knowledge of Kähler groups:

Conjecture 0.11. Every finitely-presented group appears as a subgroup of some
Kähler group. (In particular, the word problem for Kähler group is not solvable.)

Acknowledgments. Partial financial support for this work was provided by the
NSF grants DMS-09-05802 and DMS-12-05312.
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On the second cohomology of Kähler groups

Julien Maubon

(joint work with Bruno Klingler, Vincent Koziarz)

We are interested in the second cohomology of Kähler groups, i.e. fundamental
groups of closed Kähler manifolds, and more precisely in the following question
of Carlson and Toledo: Is it true that any infinite Kähler group Γ has (virtually)
H2(Γ,R) 6= 0? A positive answer to this question would provide strong evidence
to a conjecture of the same authors which says that the only cocompact lattices in
semisimple Lie groups which are Kähler are the obvious ones, namely the lattices
in Lie groups of Hermitian type.

LetM be a closed Kähler manifold and let Γ be its fundamental group. Assume
Γ is infinite.

It is easily seen that H2(Γ,R) 6= 0 holds if π2(M) is trivial. By the Hard
Lefschetz Theorem, its generalization by Simpson [5] to the case of local systems,
and by a theorem of Reznikov [4], the result is also true if Γ admits a non locally
rigid representation in GL(n,C) for some n, or in the isometry group of a Hilbert
space.

We will assume that Γ admits a linear representation ρ in GL(n,C), and that
this representation is unbounded, irreducible, and reductive. All known Kähler
groups admit such a representation (although there exist non linear Kähler groups
by [6]). This representation can be assumed to be locally rigid and by Simpson [5],
it is therefore the monodromy of a polarized complex variation of Hodge structure
(C-VHS for short) on the Kähler manifold M .
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This means that for some non degenerate Hermitian form h of signature (p, q)
on Cn, the representation ρ takes values in U(h), and that there is a U(h)-period

domain D and a holomorphic horizontal map f from the universal cover M̃ of M
to D which is ρ-equivariant. The map f is called the period map. The period
domain is an open U(h)-orbit in a flag manifold in Cn, and therefore a complex
manifold. More precisely, for some positive integers k ≥ 2 and r1, . . . , rk, D is the
space of flags F = ({0} = F 0 ⊂ F 1 ⊂ F 2 ⊂ . . . ⊂ F k = Cn) such that for all
i = 1, . . . , k, dimF i/F i−1 = ri and (−1)ih is positive definite on the h-orthogonal
complement of F i−1 in F i. The horizontality of the period map f corresponds to
Griffiths transversality condition on C-VHS, see [2], and means that if for some

x ∈ M̃ , f(x) is the flag F = ({0} = F 0 ⊂ F 1 ⊂ F 2 ⊂ . . . ⊂ F k = C
n), then the

differential of f maps the holomorphic tangent space of M̃ at x in the horizontal

subspace HF :=
⊕k

i=1 Hom(F i/F i−1, F i+1/F i) of the holomorphic tangent space
of D at F. The horizontal distribution H := {HF, F ∈ D} defines a holomorphic
subbundle of the holomorphic tangent bundle of D. We call φi the composition of
df with the projection HF → Hom(F i/F i−1, F i+1/F i).

The period domain projects to the symmetric space X associated to U(h), but
this projection is never holomorphic unless D = X . On the other hand, for each
i = 1, . . . , n−1, there is a holomorphic projection νi from D to an open U(h)-orbit
Di in the Grassmaniann of (r1 + . . . + ri)-dimensional subspaces in Cn, which is
given by νi(F) = F i. Note that φi can be interpreted as the differential of νi ◦ f .

The idea is then to use line bundles over the period domain D or over the
Di’s to produce, via their first Chern classes, the required non trivial element in
H2(Γ,R). Because some of these line bundles, e.g. the canonical bundle, have
good positivity properties in the horizontal directions, see [3] and [1], pulling them
back by the period map we obtain non zero classes in H2(M,R). The question is
then to decide if these classes belong to H2(Γ,R). This is true if the period map
f or its post-composition with one of the projection νi kills π2(M).

Our first result is that under an hypothesis on the period map, namely that for
some 1 ≤ i ≤ k, φi has rank 1, this strategy indeed gives H2(Γ,R) 6= 0, because
in this case νi ◦ f factors through a complex curve (6= CP

1). We also prove that
if the period domain satisfies that ri = 1 for some 1 < i < k, then our hypothesis
on the period map is satisfied.

To understand the effect of the period map f on π2(M), one needs to know
whether there are horizontal 2-spheres in the period domain D which are homo-
topically non trivial. It is known that if N is a fiber of the projection D → X ,
π2(M) is naturally isomorphic to π2(N) ≃ Zk−2. Using Gromov h-principle, we
show that in many cases, there are elements in π2(N) which are homotopic to
horizontal 2-spheres. In particular, when ri ≥ 2 for all 1 < i < k, π2(D) can be
generated by horizontal 2-spheres.
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Cohomology jump loci of compact Kähler manifolds

Botong Wang

Given a connected finite CW-complex X , the space of rank one local systems
on X is canonically isomorphic to the space of rank one representations of the
fundamental group of X . We denote the latter one by Char(X). The rank one
cohomology jump loci of X are defined to be

Σk
l (X) = {ρ ∈ Char(X)| dimHk(X,Lρ) ≥ l}

where Lρ is the local system corresponding to representation ρ.
It is shown first by Simpson [3] that when X is a smooth complex projective

variety, each Σk
l (X) is a finite union of torsion translates of subtori. More recently,

Schnell [2] gave a new proof based on the theory of D-modules. In the first part,
I will give a generalization of Simpson’s theorem to compact Kähler manifolds
using Schnell’s approach. The main step is to show that up to isogeny every
simple polarizable Hodge module defined over Z on a compact complex torus
is the pull-back of a polarizable Hodge module defined over Z via the algebraic
reduction.

In the second part, we work on the opposite direction. We construct a compact
Kähler manifold Y , and show that any other compact Kähler manifold having the
same Σ2

1 as Y is not a projective manifold. The example is essentially same as the
one of Voisin. However, the argument is more natural, and the conclusion can be
stronger. In fact, according to a recent result of Dimca-Papadima [1], any compact
Kähler manifold that is of the same real 2-homotopy type as Y is not a projective
manifold.
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A factorization theorem for harmonic maps of low rank

Pierre Py

(joint work with T. Delzant)

The purpose of this talk was to explain the proof of the following result:

Theorem 1. Let X be a compact Käbler manifold with universal cover X̃. Let G
be a simple Lie group with associated symmetric spaceG/K and let ̺ : π1(X)→ G
be a Zariski dense representation of the fundamental group of X . Let

f : X̃ → G/K

be the associated ̺-equivariant pluriharmonic map. Assume that the complex
rank of df1,0 is 1.

Then, there exists a fibration p : X → Σ of X onto a hyperbolic 2-dimensional
orbifold Σ, such that ̺ factors through the map p∗ : π1(X)→ πorb

1 (Σ) induced by
p.

Let us explain some of the hypothesis of the theorem.

• Here we assume that G is connected, has a simple Lie algebra, and has
trivial center (so that G is the identity component of the isometry group
of its symmetric space).
• Note that we are not assuming that G/K is a Hermitan symmetric space
and that f is holomorphic. However it is known (thanks to classical results
due to Siu and Sampson) that the pull-back by f of the complexified
tangent bundle of G/K has the structure of a holomorphic vector bundle

over X̃ . Hence one can decompose df by type: df = df1,0 + df0,1 and it is
known that df1,0 is holomorphic for the previous holomorphic structure.
Its generic rank is thus well-defined and we are assuming that this rank is
1.
• The conclusion of the theorem means that there exists a homomorphism
ψ : πorb

1 (Σ)→ G such that ̺ = ψ ◦ p∗.

This theorem was established in [2] and several applications of it were given
there. Among these applications we obtained a generalization of a classical theo-
rem of Carlson and Toledo [1] concerning representations of Kähler groups into the
isometry groups of real hyperbolic spaces. In the case where the symmetric space
G/K is the real hyperbolic space, the hypothesis on the rank of df1,0 is always
satisfied thanks to a result of Sampson. We also gave an application concerning
representations of Kähler groups into the Cremona group. But the main purpose
of the talk was to insist on the proof of Theorem 1, which, although it is technical,
should be of interest since factorization theorems in the study of Kähler groups
are always difficult to establish.

To prove the theorem, we make use of the following two facts:
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(1) First, the harmonic map f is real analytic (being a solution of an elliptic
equation with real-analytic coefficients),

(2) Second, we use the following theorem of Diederich and Mazzilli [3]: if A
is a real-analytic set in Cn and if B denotes the subset of A made of all
points p of A such that A contains a germ of holomorphic curve passing
through p, then B is closed in A.

We then consider the maximal open set O of X̃ on which the foliation defined by

the kernel of df1,0 extends. The set X̃−O has codimension at least 2. The key point
to prove our theorem is to define an equivalence relation on O whose graph will
be a subset of the real-analytic set defined by A0 = {(x, y) ∈ O×O, f(x) = f(y)}.
We use the theorem of Diederich and Mazzilli to prove that this graph is closed.
The idea of defining an equivalence relation whose graph is a complex analytic set
contained in the real-analytic set A0 already appears in the work of Mok [4].

References

[1] J. Carlson and D. Toledo, Harmonic mappings of Kähler manifolds to locally symmetric

spaces, Inst. Hautes Études Sci. Publ. Math. No. 69 (1989), 173–201.
[2] T. Delzant and P. Py, Kähler groups, real hyperbolic spaces and the Cremona group, Compos.

Math. 148, No. 1 (2012), 153–184.
[3] K. Diederich and E. Mazzilli, Real and complex analytic sets. The relevance of Segre vari-

eties., Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7, No. 3 (2008), 447–454.
[4] N. Mok, Strong rigidity of irreducible quotients of polydiscs of finite volume, Math.

Ann. 282, No. 4 (1988), 555–577.

Linear representations of Kähler groups

Philippe Eyssidieux

(joint work with Frédéric Campana, Benôıt Claudon)

I outlined a proof of the following partial positive result in the direction of
the well-known open problem that any torsion free Kähler group is projective. It
implies that a linear Kähler group is virtually projective.

Theorem: Let X be a compact Kähler manifold and ρ : π1(X) → GLn(C)
a linear representation of its fundamental group. Then there exists a smooth
projective variety Y and σ : π1(Y ) → GLn(C) a representation whose image is a
finite index subgroup of Γ. Moreover if ρ is injective, σ can be taken to be injective
too.

The statement was in the first version of [1], with an erroneous proof, and I
explained only the new ingredients developped in [2].

C. Voisin constructed compact Kähler manifolds non having the homotopy type
of a complex projective manifold, howewer the fundamental group of her examples
is projective.

This put an end to a problem attributed to Kodaira asking whether a compact
Kähler manifold could deform to a complex projective manifold.



548 Oberwolfach Report 09/2014

Our approach nevertheless begins with solving Kodaira’s problem for smooth
families of complex tori with a section over a projective base, then, after an étale
cover of the base, for smooth families of complex tori with possibly no section.

One concludes using the results of [1]. The case when σ has Zariski dense image
in a connected semisimple group is a theorem of K. Zuo [4] which we revisited in
loc. cit. The general case proceeds by showing that the Shafarevich variety of ρ
is (after some étale covering) bimeromorphic to a smooth family of complex tori
over a general type base using results of [3].
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Line arrangements with aspherical complements

Dmitri Panov

(joint work with Anton Petrunin)

In this talk I am discussing a class of line arrangements in CP 2, that have an
aspherical complement. Arrangements with aspherical complement are quite rare
and for the moment there is no idea how to classify them.

It is not hard to see that the complement to four generic lines in CP 2 has
non-trivial π2. Indeed, the fundamental group of the complement to such an
arrangement is Z3, at the same time the complement has homotopy type of a
two-dimensional cell complex. One can deduce from this that a sufficiently generic
line arrangement can not have an aspherical complement.

A large class of arrangements with aspherical complements is given by com-
plexifications of real simplicial arrangements (see [1]), i.e., line arrangements in
RP 2 that cut it into triangles. Simplicial arrangements tend to have few double
points and can be thought of as solutions to an extremal problem. Here is one
more extremal problem.

Problem. For a line arrangement and a multiple point x on it define the
multiplicity µ(x) as the number of lines going through x. Let the total multiplicity
of an arrangement be the sum of multiplicities of its points. We ask the following
question: for an arrangement of n lines what is the minimal possible multiplicity?

In order to rule out degenerate cases (such as when all lines pass through one
point), we impose a stability condition. Call an arrangement stable, if the multi-
plicity of each point is less than 2n

3 .
The following result was proven in [3].
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Theorem. The total multiplicity of a stable line arrangement of n lines is

at least (n+3)n
3 . In the case of equality each line intersect others in exactly n+3

3
points.

An example of such an arrangement (when each line intersect others in exactly
n+3
3 points) is given by 6 lines that join 4 generic points in CP 2. Hirzebruch

asked in [2] if all such arrangements are related to complex reflection groups. This
question is still open, but we proved in [4] the following result.

Theorem. Any stable arrangement of n lines, such that each line intersect
others in n+3

3 points has an aspherical complement.
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Quasiprojective three-manifold groups and complexification of

three-manifolds

Mahan Mj

(joint work with Indranil Biswas)

A group is called quasiprojective (respectively, Kähler) if it is the fundamental
group of a smooth complex quasiprojective variety (respectively, compact Kähler
manifold). Kähler and quasiprojective 3-manifold groups have attracted much
attention of late. In this paper we characterize quasiprojective 3-manifold groups.

We shall follow the convention that our 3-manifolds have no spherical bound-

ary components. Capping such boundary components off by 3-balls does not
change the fundamental group, which is really what interests us here.

Theorem 2. Let N be a compact 3-manifold (with or without boundary). If
π1(N) is a quasiprojective group, then N is either Seifert-fibered or π1(N) is one
of the following

• virtually free, or
• virtually a surface group.

This characterization of quasiprojective 3-manifold groups answers Questions
of Friedl-Suciu.

The following theorem provides an answer to a question of Friedl-Suciu under
mild hypotheses.

Theorem 3. Suppose A and B are groups, such that the free product G = A∗B
is a quasiprojective group. In addition suppose that both A and B admit nontrivial
finite index subgroups, and at least one of A,B has a subgroup of index greater
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than 2. Then each of A,B are free products of cyclic groups. In particular both
A and B are quasiprojective groups.

A good complexification of a closed smooth manifold M is defined by Totaro to
be a smooth affine algebraic variety U over the real numbers such that M is dif-
feomorphic to U(R) and the inclusion U(R) −→ U(C) is a homotopy equivalence.
Totaro asks whether a closed smooth manifold M admits a good complexification
if and only if M admits a metric of non-negative curvature. As an application of
Theorem 2, we prove this in the following strong form for 3-manifolds.

Theorem 4. A closed 3-manifold M admits a good complexification if and only
if one of the following hold:

(1) M admits a flat metric,
(2) M admits a metric of constant positive curvature, and
(3) M is covered by the (metric) product of a round S2 and R.

Curiously, the proof of Theorem 4 is direct and there is virtually no use of the
method or results of earlier work on quasiprojective 3-manifold groups. Our main
tools from recent developments in 3-manifolds are:

(1) The Geometrization Theorem and its consequences.
(2) Largeness of 3-manifold groups.

The basic complex geometric tool is a theorem of Bauer, regarding existence
of irrational pencils for quasiprojective varieties. It is a useful existence result in
the same genre as the classical Castelnuovo-de Franchis Theorem and a theorem
of Gromov.

As a consequence of our results we deduce the restrictions on quasiprojective
3-manifold groups and Kähler 3-manifold groups obtained by previous authors on
the subject, notably Dimca-Suciu, Kotschick, Dimca-Papadima-Suciu and Friedl-
Suciu. and the restrictions on good complexifications of 3-manifolds deduced by
Totaro.

Holomorphic families from the point of view of geometric group theory

Thomas Delzant

Let Xbe a Kähler manifold. A holomorphic family of Riemann surfaces of
genus g over X is a pair (Y, π) where Y is a complex manifold and π : Y → X
a holomorphic submersion with fibers Riemann surfaces of genus g. It is called
non isotrivial if the family of Riemann surfaces Ys = π−1(s) is not constant in the
moduli space of Riemann surfaces. Such a family determines a monodromy, which
is a homomorphism ϕ from the fundamental group π1(X, s0) to the mapping class
group M(S)of the topological surface underlying Ys0 .

A fundamental result, (and in fact the basic result of the theory), due to Parshin
and Arakelov and answering a question of Shafarevich asserts that given a Riemann
surface B the set of families of given genus over B is finite. More generally, the
number of non isotrivial families over a projective manifold X can be bounded in
terms of this manifold.
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A uniform result has even been described by L. Caporaso who proved that the
Hilbert polynomial of a complex surface which is a non singular bundle of genus
p over a base of genus g can only take a finite number of values. A consequence
is that, given a surface Σg (of genus g), and of topological surface S (of genus
p), the cardinal of the subset the set of homomorphisms from the fundamental
group of Σg to the mapping class group of a surface S, which can be realized as
a monodromy is finite modulo conjugacy at the target and automorphism at the
source.

In this lecture, we explain (see [1] for details) how standard methods of geo-
metric group theory (asymptotic cones) combine with the famous Gromov-Schoen
theorem on Kähler groups acting on trees as well as Bestvina-Bromberg-Fujiwara’s
recent study on the asymptotic geometry of the mapping class group to get a bound
in terms of the fundamental group rather than a bound in terms of the manifold.
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-Mathématiques-
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