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Introduction by the Organisers

The workshop Enumerative Combinatorics organized by Mireille Bousquet-Mélou
(Bordeaux), Michael Drmota (Vienna), Christian Krattenthaler (Vienna), and
Marc Noy (Barcelona) took place on March 2-8, 2014. There were over 50 par-
ticipants from the US, Canada, Australia, Japan, Korea, and various European
countries. The program consisted of 13 one hour lectures, accompanied by 17
shorter contributions and the special session of 5 presentations by Oberwolfach
Leibniz graduate students. There was also a lively problem session led by Svante
Linusson. The lectures were intended to provide overviews of the state of the
art in various areas and to present relevant new results. The lectures and short
talks ranged over a wide variety of topics including classical enumerative prob-
lems, algebraic combinatorics, asymptotic and probabilistic methods, statistical
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physics, methods from computer algebra, among others. Special attention was
paid throughout to providing a platform for younger researchers to present them-
selves and their results. This report contains extended abstracts of the talks and
the statements of the problems that were posed during the problem session.

This was the first workshop held on Enumerative Combinatorics. The goal of
the workshop was to bring together researchers from different fields with a common
interest in enumeration, whether from an algebraic, analytic, probabilistic, geo-
metric or computational angle, in order to enhance collaboration and new research
projects. The organizers believe this goal was amply achieved, as demonstrated
by the strong interaction among the participants and the lively discussions in and
outside the lecture room during the whole week.

On behalf of all participants, the organizers would like to thank the staff and
the director of the Mathematisches Forschungsinstitut Oberwolfach for providing
such a stimulating and inspiring atmosphere.
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Abstracts

Rational Associahedra

Drew Armstrong

(joint work with N. Loehr, B. Rhoades, G. Warrington, N. Williams)

Given a rational number x ∈ Q \ {−1,− 1
2 , 0} there exist unique coprime integers

a, b ∈ Z with 0 < a < |b| or 0 < b < |a| such that

x =
a

b− a
.

We will always make the identification x↔ (a, b). Given this, we define the Catalan
number function Cat : Q ∪∞ → Z ∪∞ by

Cat(x) = Cat(a, b) :=
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Note that for n ∈ N, Cat(n) = Cat(n, n + 1) = 1
n+1

(

2n
n

)

is the usual Catalan

number [8] and Cat(n, kn + 1) is the Fuss-Catalan number [6]. Observe that the
function Cat : Q ∪∞ → Z ∪∞ is symmetric about x = − 1

2 and from this fact we
obtain

Cat

(

1

1− x

)

= Cat

(

x

1− x

)

.

We call this common value the derived Catalan number:

Cat′(x) := Cat

(

1

1− x

)

= Cat

(

x

1− x

)

.

Finally, observe the following identity, which we call rational duality:

Cat′(x) = Cat′(1/x).

We will see that rational duality can be categorified as Alexander duality of rational
associahedra.

Next let a, b be positive coprime integers and consider the rectangle between
Euclidean coordinates (0, 0) and (b, a). A lattice path from (0, 0) to (b, a) staying
above the diagonal is called a rational Dyck path. Bizley [4] proved that the number

of rational Dyck paths is Cat(a, b) = 1
a+b

(

a+b
a,b

)

. More generally [1], one can show

that the number of Dyck paths with k vertical runs are given by rational Narayana

numbers

Nar(a, b; r) =
1

a

(

a

k

)(

b− 1

k − 1

)

,
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Figure 1. An example of a “rational triangulation”

and the number of Dyck paths with rj vertical runs of length j are given by rational

Kreweras numbers

Krew(x; r) =
1

b

(

b

r0, r1, . . . , ra

)

.

For the next construction we assume that 0 < a < b. Consider a rational Dyck
path, shoot “lasers” of slope a/b from the right of each vertex of the path until it
hits the path again. Send each laser to the ordered pair of “x-coordinates” where
it touches the path (rounding up for the right endpoint). This defines a set of
noncrossing chords in a convex (b + 1)-gon, which we call a rational triangulation.
See Figure 1. Note that each rational triangulation has exactly a− 1 chords, one
coming from each up step of the path. Let Ass(a, b) denote the abstract simplicial
complex whose vertex set is a subset of the set of chord of a convex (b + 1)-gon
and whose maximal faces are the rational triangulations. We call this the rational

associahedron.

Theorems. [2]

• Ass(n, n+ 1) is the classical associahedron.
• Ass(n, kn+1) is the generalized cluster complex studied by Fomin-Reading
[5] and Athanasiadids-Tzanaki [3].
• Ass(x) has Cat(x) maximal faces and (reduced) Euler characteristic Cat′(x).
• Ass(x) is shellable and hence homotopy equivalent to a wedge of Cat′(x)
many (a− 1)-dimensional spheres.
• Ass(x) has h-vector given by the Narayana numbers Nar(x; k).
• Ass(x) has f -vector given by the rational Kirkman numbers

Kirk(x; k) :=
1

a

(

a

k

)(

b+ k − 1

k − 1

)

.
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Figure 2. The complexes Ass(2, 5) (blue) and Ass(3, 5) (red) in-
side Ass(4)

Figure 3. A rational parking function

Notice that 0 < a < b are coprime if and only if 0 < b − a < b are coprime.
Notice also that Ass(a, b) and Ass(b − a, b) have the same Euler characteristic
Cat′(a, b) = Cat(b−a, b) (recall “rational duality”). What does this mean? Figure
2 shows the complexes Ass(2, 5) (blue) and Ass(3, 5) (red) as subcomplexes of the
classical associahedron Ass(4, 5) = Ass(4). Note that Ass(a, b) and Ass(b − a, b)
bipartition the vertices of Ass(b− 1). We conjectured and then Brendon Rhoades
proved [9] that these complexes are Alexander dual. That is, if you delete the
vertices of Ass(a, b) from Ass(b − 1) and all faces containing them, then what
remains has a deformation retract onto Ass(b− a, a).

Finally, given a Dyck path from (0, 0) to (b, a) we label the up steps with the
numbers {1, 2, . . . , a} such that numbers in the same column increase going up.
We call the result a rational parking function. See Figure 3. Let PF(a, b) be the
character of Sa acting on parking functions by permuting labels (and reordering
so labels increase in columns). We have the following results.
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Theorems. [1]

• The complete homogeneous expansion is

PF(a, b) =
∑

r⊢a

1

b

(

b

r0, r1, . . . , ra

)

hr,

where the sum is over r = 0r01r1 · · · ara with
∑

i ri = b. Note that this is
the same as

PF(a, b) =
∑

r⊢a

1

b
mr(1

b)hr.

• Then using the Cauchy product identity gives the power sum expansion

PF(a, b) =
∑

r⊢a

bℓ(r)−1 pr
zr

.

That is, the number of parking functions fixed by σ ∈ Sa is b#cycles(σ)−1.
In particular, the total number of parking functions is ba−1.
• Using the Cauchy product identity again gives the Schur expansion

PF(a, b) =
∑

r⊢a

1

b
sr(1

b)sr.

As a special case, we call the multiplicities of the hook Schur functions that
rational Schröder numbers

Schrö(x; k) :=
1

b
s[a−k,1k](1

b) =
1

b

(

a− 1

k

)(

b+ k

a

)

.

We remark that the Schr̈oder numbers are related to the reversed Narayana num-
bers Nar(x; a − k) as the Kirkman numbers are related to the Narayana numbers
Nar(x; k). Thus all three sequences of numbers are equivalent. Symmetric q, t-
analogues of these numbers are currently of much interest, as they are related to
HOMFLY polynomials of torus knots [7].
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Multivariate juggling probabilities

Jérémie Bouttier

(joint work with Arvind Ayyer, Sylvie Corteel and Fraņcois Nunzi)

This talk is based on [1], where we introduce multivariate generalizations of the
models introduced in [2] (see these references for motivations and justifications
regarding the relevance of these models).

Figure 1. Transition graph for h = 4 and ℓ = k = 2.

We concentrate on the simplest case, describing a juggler juggling randomly
with a fixed finite number of balls. The mathematical setting is that of a Markov
chain on a finite state space. Let k, ℓ be two nonnegative integers and set h = k+ℓ.
The state space is the set of words of length h on the alphabet {•, ◦} containing
exactly ℓ instances of • (representing balls) and k instances of ◦ (representing
vacant sites). The transitions are obtained as follows: at each time step, remove
the first letter of the word, append ◦ at the end, then replace one of the k + 1
resulting instances of ◦ by •. More precisely, we replace the (i+ 1)-th occurrence
of ◦ with probability xi (i = 0, . . . , k), where x0, . . . , xk are nonnegative real
parameters summing up to 1. Figure 1 displays the transition graph for ℓ = k = 2
and h = 4. In the uniform case x0 = · · · = xk = 1/(k + 1), we recover the
model considered in [2]. It is not difficult to check that the chain is irreducible for
x0, xk > 0 and that x0 > 0 suffices to ensure the existence of a unique stationary
distribution. Our main result is the following.
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Theorem 1 ([1]). Let y(m) = xm+ · · ·+xk. The stationary probability of a state
B = b1 · · · bh in our Markov chain is equal to

(1) π(B) =
1

Z

∏

i:bi=•

y (#{j < i, bj = ◦})

with Z = hℓ(y(0), . . . , y(k)), hℓ denoting the complete homogeneous symmetric
polynomial of degree ℓ.

We may prove this result by two approaches: either by a direct check (leading
to an interesting reformulation in terms of integer partitions) or, more combina-
torially, by introducing another Markov chain on some “enriched” state space, for
which the stationary distribution will be “simple”. More precisely, the stationary
probabilities of the enriched states should match exactly the monomials obtained
in the expansion of π(B), as the word B varies. It turns out that the enriched
states can be seen as partitions of the set {1, . . . , h + 1} in k + 1 blocks. The
stationary probability of such a set partition is then obtained by attaching to each
arch of the partition a weight xb where b is the number of blocks that it covers.

We then consider several generalizations of the model. First, we may consider
extensions to infinite state spaces, in which the juggler can throw balls arbitrarily
high and/or keep infinitely many balls in the air. In all cases, we obtain an explicit
invariant measure of the chain, as well as a necessary and sufficient condition for
the model to be positive recurrent. Second, we may consider extensions where the
number of balls is allowed to fluctuate: we find the multivariate generalizations
of the so-called add-drop and annihilation models introduced in [2]. Again, we
obtain explicit expressions for their stationary distributions. We also find that, in
the annihilation model, the stationary distribution of the model is attained in h
time steps regardless of initial state.
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A simple recurrence formula to count maps by edges and genus

Guillaume Chapuy

My talk at the Oberwolfach Enumerative Combinatorics meeting is based on a
joint paper with Sean R. Carrell (University of Waterloo, Canada), in which we
establish a simple recurrence formula for the number Qn

g of rooted orientable maps
counted by edges and genus [2]. This formula gives by far the fastest known way
of computing these numbers, or the fixed-genus generating functions, especially
for large g. Our formula is a consequence of the KP equation for the generating
function of bipartite maps, coupled with a Tutte equation, and it was apparently
unnoticed before. It is similar in look to a formula discovered by Goulden and
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Jackson for triangulations [4], and indeed our method to go from the KP equation
to the recurrence formula can be seen as a combinatorial simplification of Goulden
and Jackson’s approach (together with one additional combinatorial trick). These
formulas have a very combinatorial flavour, but finding a bijective interpretation
is currently unsolved.

Recall that a map is a connected graph embedded in a compact connected
orientable surface in such a way that the regions delimited by the graph, called
faces, are homeomorphic to open discs. Loops and multiple edges are allowed. A
rooted map is a map in which an angular sector incident to a vertex is distinguished.
Rooted maps are considered up to oriented homeomorphisms preserving the root
sector. A quadrangulation is a map in which every face has degree 4. The first
ingredient of our work is a classical bijection, that goes back to Tutte, between
bipartite quadrangulations with n faces and genus g, and rooted maps with n
edges and genus g. It is illustrated on Figure 1.

Figure 1. Tutte’s bijection between general maps and bipar-
tite quadrangulations. Root corners are indicated by arrows.

The second ingredient, that can be attributed to Goulden and Jackson [4] (al-
though it was known before in the mathematical physics literature), is the fact that
the multivariate generating function H ≡ H(z, w;p) of bipartite maps, where z
marks the number of edges, w marks the vertices, and an infinite collection of
variables p = p1, p2, . . . marks the face degrees, is a solution of the KP equation:

−H3,1 +H2,2 +
1

12
H14 +

1

2
(H1,1)

2 = 0,(1)

where indices indicate partial derivatives with respect to the variables pi, for exam-

ple H3,1 := ∂2

∂p3∂p1
H . This non trivial fact takes its roots in the deep connections

between maps and the group algebra of the symmetric group, and in the fact that
map generating functions can be expressed with Schur functions. No combinatorial
interpretation of this statement is known in the world of maps.

From there, using only simple combinatorial arguments, we were able to get a
closed recurrence formula for the number Qn

g of rooted maps of genus g with n
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edges (which is also the number of rooted bipartite quadrangulations of genus g
with n faces). More precisely our main result is the following recurrence relation:

n+ 1

6
Qn

g =
4n− 2

3
Qn−1

g +
(2n− 3)(2n− 2)(2n− 1)

12
Qn−2

g−1+

1

2

∑

k+ℓ=n
k,ℓ≥1

∑

i+j=g
i,j≥0

(2k − 1)(2ℓ− 1)Qk−1
i Qℓ−1

j ,

for n ≥ 1, with the initial conditions Q0
g = 1{g=0}, and Qn

g = 0 if g < 0 or n < 0.

This recurrence formula is extremely simple compared to other existing methods
to count maps. In particular, approaches based on Tutte equations (such as [1,
3]) require to add O(g) additional variables in order to obtain closed recurrence
formulas. With the help of our formula, it is very easy to get, for each g ≥ 0, a
closed form for the generating function Qg(t) =

∑

n≥0 Q
n
g t

n.

The Oberwolfach meeting and a crucial improvement

During the conference a participant (Éric Fusy) asked me the following simple
question: could you also keep track of the face number in your recursion? We had
not thought of this question before, and it turned out that the answer was (almost
straightforwardly) yes. This led to the following result. Let M i,j

g be the number
of rooted maps of genus g with i vertices and j faces. Then we have the following
recurrence relation:

n+ 1

6
M i,j

g =
(2n− 1)

3

(

M i−1,j
g +M i,j−1

g +
(2n− 3)(2n− 2)

4
M i,j

g−1

)

+
1

2

∑

i1+i2=i
i1,i2≥1

∑

j1+j2=j,
j1,j2≥1

∑

g1+g2=g
g1,g2≥0

(2n1 − 1)(2n2 − 1)M i1,j1
g1 M i2,j2

g2 ,

for i, j ≥ 1, with the initial conditions that M i,j
g = 0 if i + j + 2g < 2, that if

i + j + 2g = 2 then M i,j
g = 1{(i,j)=(1,1)}, and where we use the notation n =

i+ j + 2g − 2, n1 = i1 + j1 + 2g1 − 1, and n2 = i2 + j2 + 2g2 − 1.

This last result is remarkable, in particular because it contains (as the very
special case of one-face maps, i.e. j = 1), the Harer-Zagier recurrence formula [5].
It is surprising that the Harer-Zagier formula, that has been known for years (and
whose all other proofs I know really rely on the very particular nature of one-face
maps) has such a simple generalization to arbitrarily many faces. This formula
and the one for Qn

g seem “too simple” compared to our present understanding of
maps, and we hope to learn much looking for bijective interpretation of them.
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A triangular gap of size two in a sea of dimers on a 60◦ angle

Mihai Ciucu

(joint work with Ilse Fischer)

In their paper [10] from 1963, Fisher and Stephenson have introduced the concept
of the correlation of two monomers in a sea of dimers, and based on their precise
numerical findings conjectured that this correlation is rotationally invariant in the
scaling limit. In a series of articles (see [3][4][5][9]), the first author has extended
the problem of Fisher and Stephenson to the situation when one is allowed to have
any finite number of gaps, each of an arbitrary size, and has shown that a close
parallel to electrostatics emerges: As the distances between the gaps approach
infinity, their correlation is given by the exponential of the electrostatic energy of
a two dimensional system of charges that correspond to the gaps in a natural way.

This parallel to electrostatics has been extended in [6] and [7], where it was
shown that the discrete field of the average tile orientations approaches, in the
scaling limit, the electric field.

One particular aspect of this analogy is the behavior of the correlation of gaps
near the boundary of lattice regions, which turns out to be in close connection with
the behavior of charges near conductors. In [4] it was shown that the asymptotics of
the correlation of gaps on the triangular lattice near a constrained zig-zag boundary
is given by a variant of the method of images from electrostatics, in which the image
charges have the same signs as the original ones. The case of a free boundary was
considered in [8], where it was shown that the correlation of a single gap of size two
with a free lattice line boundary on the triangular lattice is given, in the scaling
limit, precisely by the method of images from electrostatics.

In this paper the analogy to the method of images is given more substance by
establishing it in a more complex setting, in which the gap has not just one image
(as it was the case in [4] and [8]), but five. Indeed, we consider a triangular gap
of size two in a 60◦ degree angular region on the triangular lattice whose sides are
zig-zags. The gap has two direct images in the two sides of the angular region,
which generate further images in the sides, to a total of five images of the original
gap. The main result of this paper is that the asymptotics of the correlation of
the gap with the corner of the angular region, as the distances between the gap
and the sides grow large, is given by a numerical constant times the exponential of
one sixth of the electrostatic energy of the 2D system of charges consisting of the
gap viewed as a charge, together with its above five images. The proof is based
on Kuo’s method of graphical condensation [11].
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We note that, from the point of view of the literature on plane partitions
and their symmetry classes (see for instance [13], [1], [14] and [12]), two other
results of this paper represent generalizations of the cyclically symmetric, self-
complementary case, first solved by Kuperberg in [12] (see [2] for a simple proof).
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Steep tilings: from Aztec diamonds and pyramids to general
enumeration

Sylvie Corteel

(joint work with Jérémie Bouttier, Guillaume Chapuy)

An Aztec diamond of order ℓ consists of all squares of a square lattice whose
centers (x, y) satisfy |x| + |y| ≤ ℓ. Here ℓ is a fixed integer, and the square lattice
consists of unit squares with integer coordinates, so that both x and y are half-
integers [2]. See Figure 1 for ℓ = 4. The Aztec diamond theorem states that the
number of domino tilings of the Aztec diamond of order ℓ is 2ℓ(ℓ+1)/2 [2]. A more
precise result [3] states that the generating polynomial of these tilings with respect
to the minimum number of flips needed to obtain a tiling from the one with all

horizontal tiles is
∏ℓ

i=1(1 + q2i−1)ℓ+1−i. See below for the definition of a flip.
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Figure 1. (a) The Aztec diamond of size 4, with its minimal
tiling consisting only of horizontal dominos; (b) Another tiling of
the same region.

Figure 2. (a) The two types of bricks used in the construction of
pyramid partitions; (b) The ”minimal” pyramid partition, from
which all others are obtained by removing some bricks; (c) A
pyramid partition.

A pyramid partition is an infinite heap of bricks of size 2×2×1 in R3, as shown
on Figure 2. A pyramid partition has a finite number of maximal bricks and
each brick rests upon two side-by-side bricks, and is rotated 90 degrees from the
bricks immediately below it. The empty pyramid partition is the pyramid partition
with a unique maximal brick. We denote by an the number of pyramid partitions
obtained from the empty pyramid partition after the removal of n bricks. The
generating function P (q) =

∑

n anq
n was conjectured by Kenyon [4] and Szendrői

[5]. It was computed by Ben Young [6] using a generalization of the domino
shuffling algorithm [3]:

P (q) =
∏

k≥0

(1 + q2k−1)2k−1

(1− q2k)2k
.

Aztec diamond and pyramid partitions are closely related. Indeed a pyramid
partition can be seen as a tiling of the whole plane. In this setting the removal of
a brick corresponds to the flip of two dominos. The goal of this paper is to show
that these are indeed part of the same family of tilings that we call steep tilings.
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Recall that a domino is a 2× 1 (horizontal domino) or 1× 2 (vertical domino)
rectangle whose corners have integer coordinates. Fix a positive integer ℓ, and
consider the oblique strip (of width 2ℓ) which is the region of the xy plane com-
prised between the lines y = x and y = x − 2ℓ. A tiling of the oblique strip is
a set of dominos whose interiors are disjoint, and whose union R is “almost” the
oblique strip in the sense that

(1) {(x, y) ∈ R2, |x− y − ℓ| ≤ ℓ− 1} ⊂ R ⊂ {(x, y) ∈ R2, |x− y − ℓ| ≤ ℓ+ 1}.

Figure 3. Left: a steep tiling of the oblique strip of width
2ℓ = 10. North- and east-going (resp. south- and west-going)
dominos are represented in green (resp. orange). Outside of the
displayed region, the tiling is obtained by repeating the “funda-
mental patterns” surrounded by thick lines.

Following a classical terminology [1], we say that a horizontal (resp. vertical)
domino is north-going (resp. east-going) if the sum of the coordinates of its top
left corner is odd, and south-going (resp. west-going) otherwise. We are interested
in tilings of the oblique strip which are steep in the following sense: going towards
infinity in the north-east (resp. south-west) direction, we eventually encounter only
north- or east-going (resp. south- or west-going) dominos. Figure 3 displays an
example of such a tiling.

Proposition 1. Given a steep tiling of the oblique strip of width 2ℓ, there exists
a unique word w = (w1, . . . , w2ℓ) on the alphabet {+,−} and an integer A such
that, for all k ∈ {1, . . . , ℓ}, the following hold:

• for all x > A, (x, x − 2k) is the bottom right corner of a domino which is
north-going if w2k−1 = + and east-going if w2k−1 = −,

• for all x < −A, (x, x− 2k+ 2) is the top left corner of a domino which is
west-going if w2k = + and south-going if w2k = −.

Example 1. The steep tiling of Figure 3 corresponds to the word w = (+ + + +
+−−−++).

A steep tiling is called pure if there is no “gap” between covered and uncovered
squares on each of the two lines y = x and y = x− 2ℓ, i.e. if there exists two half
integers a, b such that the following two conditions hold:
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(1) the unit square centered at (x, x) is covered if x ≥ a and uncovered if
x < a.

(2) the unit square centered at (x, x− 2ℓ) is covered if x ≤ b and uncovered if
x > b.

We denote by Tw the set of pure steep tilings of asymptotic data w, considered up
to translation along the direction (1, 1).

In order to state our main result, we need to introduce the notion of flip. A flip
is the operation consisting of replacing a pair of horizontal dominos forming a
2 × 2 block by a pair of vertical dominos, or vice-versa. A flip can be horizontal-
to-vertical or vertical-to-horizontal with obvious definitions. We say that the flip
is centered on the k-th diagonal if the center of the 2×2 block lies on the diagonal
y = x − k, for 0 < k < 2ℓ. For each word w ∈ {+,−}2ℓ, there exists a unique
element of Tw, called the minimal tiling, such that every element of Tw can be
obtained from it using only flips. Our main results are the two following theorems:

Theorem 2. Let w ∈ {+,−}2ℓ be a word. Let Tw(q) be the generating function
of pure steep tilings of asymptotic data w, where the exponent of q records the
minimal number of flips needed to obtain a tiling from the minimal one. Then one
has:

Tw(q) =
∏

i<j
wi=+,wj=−

i−j odd

(

1 + qj−i
)

∏

i<j
wi=+,wj=−

i−j even

1

1− qj−i
.

Theorem 3. Let w ∈ {+,−}2ℓ be a word. Let Tw ≡ Tw(x1, . . . , x2ℓ−1) be the
generating function of pure steep tilings of asymptotic data w, where the exponent
of the variable xi records the number of flips centered on the i-th diagonal in a
shortest sequence of flips from the minimal tiling. Then one has:

Tw =
∏

i<j
wi=+,wj=−

i−j odd

(1 + xixi+1 . . . xj−1)
∏

i<j
wi=+,wj=−

i−j even

1

1− xixi+1 . . . xj−1
.
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The Tutte polynomial and planar maps

Julien Courtiel

Intended as a generalization of the chromatic polynomial [1, 2], the Tutte poly-
nomial is a graph invariant playing a fundamental role in graph theory. It has
strong connections with the Potts model in statistical physics. This model consists
in colouring the vertices of a graph and counting all such configurations according
to the number of monochromatic edges (edges whose endpoints have the same
colour).

Given a connected graph G, the Tutte polynomial of G, denoted by TG, is
the generating function of spanning subgraphs of G counted by the number of
components and the cyclomatic number (i.e. the minimal number of edges one
needs to remove from the graph to make it acyclic), respectively denoted by cc(S)
and cycl(S) for a subgraph S:

(1) TG(x, y) =
∑

S subgraph of G

(x− 1)cc(S)−1(y − 1)cycl(S).

This talk introduces two parts of my PhD work dealing with this polynomial.

Spanning forests in planar maps

(joint work with Mireille Bousquet Mélou)

A planar map is a connected graph properly embedded in the sphere. The
enumerative and asymptotic properties of planar maps are well understood nowa-
days, thanks to a broad range of enumerative methods: Tutte’s recursive ap-
proach, Schaeffer’s bijections, matrix integrals... Many physicists, combinatorists
and probabilists now devote their work to planar maps equipped with an additional
structure. As such, a lot of current research is oriented towards the Potts model
on several families of planar maps [3, 4, 5, 6, 7]. As mentioned in the introduction,
this also means counting maps weighted by their Tutte polynomial.

We study a one-variable specialization of the Tutte polynomial. This special-
ization is obtained by setting to 1 the variable that counts the number of cycles,
and can be also seen as a certain limit q → 0 in the Potts model. Combinatorially,
we simply count planar maps equipped with a spanning forest, also named forested
maps.

The resulting generating function F (z, u) keeps track of the size of the map (the
number of faces or edges; variable z) and of the number of trees in the forest (minus
one; variable u). In particular, the specialization u = 0 counts maps equipped with
a spanning tree, a case which had been solved by Mullin a long time ago [8]. We
have characterized in a purely combinatorial way the generating function F (z, u)
as the solution of a system of functional equations.

The first question we asked is the nature of the series F . We have shown that
F (z, u) is D-algebraic, meaning that it satisfies a differential equation in z with
polynomial coefficients. Furthermore, we have been able to compute the explicit
differential equations in many cases. These equations are huge, but we have good
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reasons to believe that they can not be reduced. We have also proved that these
generating functions are not D-finite, which means that they do not satisfy any
linear differential equation in z for a generic value of u.

The series F (z, u) has a natural combinatorial interpretation where the natural
domain for u is [−1,+∞) rather than [0,+∞). Indeed, one can see F (z, v − 1) as
the generating function of maps equipped with a spanning tree, where v counts
now the number of internally active edges. (This notion will be defined in the next
section.) We have thereby studied the asymptotic behaviour of the coefficients of
zn in F (z, u), when u is a fixed number in [−1,+∞). A phase transition occurs at
u = 0 (where one enumerates maps equipped with a spanning tree): When u > 0,

the asymptotic regime is standard for planar maps (µn n− 5
2 ) but when u < 0 we

have established a very unusual asymptotic behaviour in µn n−3 (lnn)−2. It is the
first time to our knowledge that such a regime is seen in the world of maps.

A general framework for edge activities

My work also deals with the Tutte polynomial per se, in a different (but con-
nected) perspective. As already mentioned, the Tutte polynomial TG(x, y) has
non-negative coefficients in x and y. Tutte found in 1954 a combinatorial inter-
pretation for these coefficients, proving that TG(x, y) counts spanning trees of G
by the number of internal and external ”active” edges [2]:

(2) TG(x, y) =
∑

T spanning tree of G

xintact(T ) yextact(T ).

The notion of activity involves a linear order on the edges. Some decades later,
Bernardi gave a similar characterization with a notion of activity involving this
time an embedding of the graph [9]. One also finds in the literature notions of
partial edge activity. For example, Gessel and Sagan have defined a so-called DFS-
activity for external edges [10].

I have found a general framework that unifies these (non equivalent) notions
of activity. I thus defined a notion of ∆-activity which includes as special cases
all these definitions. I gave several proofs of the equivalence between (1) and (2).
Also, I clarified the underlying combinatorics, already discussed in a former paper
of Gordon and Traldi [11].
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T-system combinatorics: from friezes to arctic curves

Philippe Di Francesco

(joint work with Rodrigo Soto Garrido)

The octahedron relation is the following system of recursion relations for a
quantity Ti,j,k, i, j, k ∈ Z:

(1) Ti,j,k+1Ti,j,k−1 = Ti+1,j,kTi−1,j,k + Ti,j+1,kTi,j−1,k

It can be understood as a 2+1-dimensional dynamical system, in which k plays
the role of discrete time. This equation must be supplemented with some ini-
tial condition which consists of a pair (k, t) where k is a stepped surface k =
{(i, j, ki,j)|i, j ∈ Z} where |ki+1,j − ki,j | = |ki,j+1 − ki,j | = 1 for all i, j ∈ Z., and
t = (ti,j)i,j∈Z are initial values to be assigned along the stepped surface k, namely
we have to impose the intial condition Ti,j,ki,j = ti,j for all i, j ∈ Z.

Various restrictions of this equation have first appeared in the physics literature
under the name of T -systems, originally introduced in the context of integrable
quantum spin chains with Lie algebra symmetry [11]. The simplest of these is
the so-called A1 T -system, and consists of imposing the extra boundary condition
T0,j,k = T2,j,k = 1 and restricting to indices i = 0, 1, 2. Denoting by Tj,k = T1,j,k,
the A1 T -system reads for j, k ∈ Z with j + k = 0 mod 2:

(2) Tj,k+1Tj,k−1 = 1 + Tj+1,kTj−1,k

Equivalently, we may picture Tj,k as variables defined at the vertices of the square
lattice {(j, k) ∈ Z2|j + k = 1mod2}, and such that the determinant for each ele-
mentary square is 1. This is nothing but the Coxeter-Conway frieze condition [2].
Initial data for the latter are of the form (k, t) where k is a path k = {(j, kj), j ∈ Z}
with |kj+1−kj | = 1 for all j, and t = (tj)j∈Z the initial value assignment Tj,kj = tj
for all j. A frieze corresponds usually to taking tj = 1 for all j, and gives rise to
only non-negative integers Tj,k for j, k ∈ Z.

The octahedron equation and the various T -systems based on Lie algebras were
shown [4] to be particular mutations in suitable, possibly infinite rank cluster
algebras [6]. As such, they enjoy the Laurent property, which implies that the
solution Ti,j,k is a Laurent polynomial of the initial data ti,j for all k. This explains
the integrality of the friezes, however the positivity relies on a stronger conjecture
and partial result that the Laurent polynomials have always non-negative integer
coefficients. For the octahedron and T -system equations (1-2), this can be proved
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by formulating the general solution as the partition function for a statistical model
with Boltzmann weights that are positive Laurent monomials of the initial data
ti,j [13, 3].

The T -systems are discrete integrable systems, namely there exist quantities
that are conserved modulo the equation of evolution. Alternatively, these systems
may all be solved exactly using the existence of a flat connection on their solutions
[1, 3]. By interpreting these in terms of weighted directed graphs or networks,
and configurations of non-intersecting paths on them, it is possible to express
the solution Ti,j,k as a sum over dimer configurations (or matchings) of a graph
coded by the initial data surface k, with weights expressed in terms of the initial
values ti,j . In the case of the T -system with “flat” initial data surface k(0), with

k
(0)
i,j = 1 + i+ j mod 2, the corresponding graph is known to be the Aztec graph,

dual to the so-called Aztec diamond. The latter may be cut out of the square
lattice Z2 with edges connecting nearest neighbor vertices, by isolating the domain
inside the tilted square of size k {(x, y) ∈ Z2||x − i − 1

2 |+ |y − j − 1
2 | ≤ k}. The

configurations of the model are obtained by occupying edges with dimers in such a
way that each vertex of the Aztec graph belongs to exactly one dimer, and the face
centered at (a+ 1

2 , b+
1
2 ) receives the weight (ta,b)

1−Da,b , where Da,b is the total
number of dimers covering the edges of the face (a, b), while the total weight of
the configuration is the product of all face weights. Summing over configurations
produces clearly a Laurent polynomial of the initial values ta,b with non-negative
integer coefficients.

Dimer models have been the subject of intensive study, in particular their ther-
modynamic limit of large size and small mesh, in which the dimer configurations
display very different qualitative phases depending on the shape of the covered
graphs. For the Aztec diamond with uniform weights (ti,j = 1 for all i, j, so that

Ti,j,k = 2k(k+1)/2), one can show that each corner induces a crystalline phase in
which each square is adjacent to exactly one dimer, whereas the dimer configura-
tions gain entropy as one goes away from the corners. The separation of phases is
along the famous “arctic circle” [7].

This is easily explained by considering the density function [10]:

(3) ρi,j,k = ∂t0,0LogTi,j,k

∣

∣

∣

t0,0=1
= 〈1 −D0,0〉

which measures the average over dimer configurations of the quantity 1 − D0,0

around the square labelled (0, 0). We may derive a simple linear recursion relation
for ρ by simply differentiating the octahedron equation (1):

2(ρi,j,k+1 + ρi,j,k−1) = ρi+1,j,k + ρi−1,j,k + ρi,j+1,k + ρi,j−1,k

with the initial condition that ρi,j,0 = 0 and ρi,j,1 = δi,0δj,0. Solving this recursion
gives access to the large k behavior of ρuk,vk,k for fixed u, v with |u| + |v| ≤ 1.
The generating series ρ(x, y, z) =

∑

i,j,∈Z;k∈Z+
xiyjzkρi,j,k is a simple rational

fraction, and the singularity locus from its denominator immediately give the
phase separation, along the circle 2(u2 + v2) = 1, using the theory of multivariate
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(a) (b)

Figure 1. Contour plot (a) of the actual density ρi,j,k for k = 77 as
a function of (i, j) for some sample doubly periodic initial data ti,j =
ti+2,j+2 = ti+m,j−m for m = 3, and the corresponding asymptotic
arctic curve (b).

asymptotics [12]. The above simple argument relies on the existence of a simple
solution for the T -system for uniform initial values on the flat stepped surface k(0).

However there are other simple solutions [5] for the surface k(0) with non-
uniform values of ti,j , namely those that are doubly periodic with ti+2,j+2 = ti,j
and ti+m,j−m = ti,j for some fixed m > 0. In this case, we may write the solution
Ti,j,k of (1) explicitly as a Laurent monomial of the Ti,j,ℓ, ℓ = 0, 1, 2, 3, that is also

a Laurent polynomial of the ti,j with 2k(k+1)/2 terms. Differentiating again the
octahedron relation we get a linear recursion for the density in the form:

(4) ρi,j,k+1 + ρi,j,k−1 = λi,j,k(ρi+1,j,k + ρi−1,j,k) + (1− λi,j,k)(ρi,j+1,k + ρi,j−1,k)

with λi,j,k an explicit function of the ti,j ’s which turns out to be triply periodic:
λi+2,j+2,k = λi+m,j−m,k = λi+1,j+1,k+2. As a consequence, the generating func-
tion ρ(x, y, z) is again a rational fraction, and we may again derive its singularity
locus explicitly. For m ≥ 2, the resulting algebraic arctic curve has generically m
real connected components: an exterior higher degree curve tangent to the bound-
ing square replacing the arctic circle, still separating the frozen crystalline corners
from the disordered phase, but there are also (m − 1) 4-cusp inner curves each
corresponding to a new facet-like (or pseudo-crystalline) phase within which the
dimer configurations are pinned to some sublattice, albeit retaining some entropy.
This is illustrated in Fig.1 for m = 3, where we have represented (a) the contour
plot of some sample solution ρi,j,k of (4) and (b) the corresponding degree 14
arctic curve. This exact result illustrates the general theory of [8, 9].

More generally, we may consider for a general cluster algebra say of geometric
type, with skew-symmetric exchange matrixBi,j coding a quiverQ, and a mutation
relation of the form:

xkx
′
k =

∏

tails i→k
inQ

xi +
∏

heads k→j
inQ

xj ,
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the analogue of the density ρi = ∂tLogxi

∣

∣

t=1
, defined as the first order variation

of any cluster variable xi w.r.t. some initial cluster data t. The latter obeys the
linearized mutation equation:

ρk + ρ′k = λk

∑

tails i→k

ρi + (1 − λk)
∑

heads k→j

ρj

with λk = yk/(1 + yk), where yk =
∏

j x
Bj,i

i . In analogy with the above results,
it would be interesting to classify the “B- and y-finite” cluster algebras, namely
those for which the equations for ρ will be periodic, possibly by restricting the
set of allowed mutations. Our octahedron equation with particular periodic initial
conditions gives an example of these, by noting that the corresponding infinite
quiver is de facto folded into a finite quiver with the B- and y-finiteness property,
when allowing only mutations at vertices with two tails and two heads.
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Generalized Quandrangulation Relation for Constellations and
Hypermaps

Wenjie Fang

Quandrangulations, constellations and hypermaps are all classes of combinatorial
maps. A combinatorial map is simply a graph embedded onto a surface, with the
condition that it cuts the surface into topological disks called faces.

Quadrangulations are combinatorial maps with all faces of degree 4. In 1999,
Jackson and Visentin discovered in [1] the following enumerative relation between
ordinary quadrangulations in genus g and bipartite quadrangulations, i.e. with
vertices colored black and white, with marked vertices in genus at most g.

Q(g)
n = 22gB(g,0)

n + 42g−2B(g−1,2)
n + . . .+B(0,2g)

n =

g
∑

g′=0

22g
′

B(g′,2(g−g′))
n

Here, n is the number of edges, and g the genus. Q
(g)
n counts ordinary quan-

drangulations, and B
(g,k)
n counts bipartite quadrangulations with k marked black

vertices. This relation expresses the number of colored objects on higher genus as
a weighted sum of numbers of colorless objects on lower genera. This relation is
later extended by the same authors in [2] to any maps with faces of even degree,
possibly with arbitrary restriction on face degrees.

In our work, we present a generalization of this simple enumerative relation to
constellations and hypermaps. Constellations extend the notion of bipartiteness
on combinatorial maps to an arbitrary number m of colors. On the other hand,
a hypermap can be seen as a “colorless” constellation. We obtain the following
simple relation between m-constellations and m-hypermaps with m colors.

H
(g)
n,m,D =

g
∑

i=0

m2g−2i
∑

k1,...,km−1≥0
k1+···+km−1=2i

c
(m)
k1,...,km−1

C
(g−i,k1,...,km−1)
n,m,D

Here, n is the number of hyperedges, g is the genus, and D denotes an arbitrary

restriction on hyperface degree. H
(g)
n,m,D countsm-hypermaps, and C

(g−i,k1,...,km−1)
n,m,D

counts m-constellations with ki marked vertices for each color i. We also proved

that coefficients c
(m)
k1,...,km−1

are all positive integers, hinting the possibility of a

combinatorial interpretation. This result is obtained using algebraic method, with
the interpretation of combinatorial maps as factorization of the identity element
in Sn, and a theorem on characters by Littlewood in [3].
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Vertically symmetric alternating sign matrices and a multivariate
Laurent polynomial identity

Ilse Fischer

(joint work with Lukas Riegler)

Consider the following rational function P

∏

1≤i<j≤n

z−1
i + zj − 1

1− ziz
−1
j

and let R denote the function we obtain after symmetrizing it, that is R =
SymP with Sym f(z1, . . . , zn) =

∑

σ∈Sn

f(zσ(1), . . . , zσ(n)). Since P (z1, . . . , zn) =

P (z−1
n , . . . , z−1

1 ), it is obvious that R(z1, . . . , zn) = R(z−1
1 , . . . , z−1

n ), however, com-
puter experiment suggest that also

R(z1, . . . , zi−1, zi, zi+1, . . . , zn) = R(z1, . . . , zi−1, z
−1
i , zi+1, . . . , zn).

This is the special case s = 0 of the following conjecture.

Conjecture 1 (Fischer, Riegler). For integers s, t ≥ 0, consider the following
rational function Ps,t

s
∏

i=1

z2s−2i−t+1
i (1 − z−1

i )i−1
s+t−1
∏

i=s+1

z2i−2s−t
i (1 − z−1

i )s
∏

1≤p<q≤s+t−1

1− zp + zpzq
zq − zp

and let Rs,t = SymPs,t. If s ≤ t then

Rs,t(z1, . . . , zi−1, zi, zi+1, . . . , zs+t−1) = Rs,t(z1, . . . , zi−1, z
−1
i , zi+1, . . . , zs+t−1)

for all i ∈ {1, 2, . . . , s+ t− 1}.
In the talk I first explained how we came up with this conjecture in an attempt

to prove a conjecture on a refined enumeration of vertically symmetric alternating
sign matrices. An alternating sign matrix is a quadratic 0, 1,−1 matrix such that
the non-zero entries alternate and sum up to 1 in each row and column. Next we
give an example of such an object













0 0 1 0 0
1 0 −1 0 1
0 0 1 0 0
0 1 −1 1 0
0 0 1 0 0













,
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which is in fact symmetric with respect to the vertically axis. Vertically symmetric
alternating sign matrices have been enumerated by Kuperberg [3]. In [1], I pre-
sented the following conjecture on a refined enumeration of vertically symmetric
alternating sign matrices.

Conjecture 2. The number of (2n+1)×(2n+1) vertically symmetric alternating
sign matrices where the first 1 in the second row is in column i is

(

2n+i−2
2n−1

)(

4n−i−1
2n−1

)

(

4n−2
2n−1

)

n−1
∏

j=1

(3j − 1)(2j − 1)!(6j − 3)!

(4j − 2)!(4j − 1)!
.

In [2], this was shown that a consequence of Conjecture 1 implies Conjecture 2.

Theorem 1. If Rs,t(z1, . . . , zs+t−1) = Rs,t(z
−1
1 , . . . , z−1

s+t−1) for all 1 ≤ s ≤ t then
Conjecture 2 is true.

In the talk, I have also sketched the proof of the following partial result towards
proving Conjecture 1:

Theorem 2. Suppose

(1) Rs,t(z1, . . . , zs+t−1) = Rs,t(z
−1
1 , . . . , z−1

s+t−1)

if t = s and t = s+ 1, s ≥ 1. Then (1) holds for all s, t with 1 ≤ s ≤ t.

Coming back to the special case mentioned in the beginning: another result we
have obtained is the following.

Theorem 3. The coefficient of zi in R(z, 1, . . . , 1) is the number of (2n + 1) ×
(2n+ 1) vertically symmetric alternating sign matrices where the unique 1 in the
first column is in row n+ i+ 1.

Conjecture 1 implies R(z, 1, . . . , 1) = R(z−1, 1, . . . , 1), which has from the point
of view of Theorem 3 the explanation that reflecting a (2n+1)×(2n+1) vertically
symmetric alternating sign matrix A = (ai,j) with an+i+1,1 = 1 along the vertically
axis transforms it into a matrix with an+1−i,1 = 1. This makes it plausible that
R(z1, . . . , zn) is a certain generating function of vertically symmetric alternating
sign matrices, which, once the weight is identified, could also imply the fact that
R is invariant under replacing zi by z−1

i .
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Pulling self-avoiding walks from a surface.

Anthony J. Guttmann

(joint work with Stu Whittington and Iwan Jensen)

In recent years a mixture of analytic and probabilistic techniques have been used
to prove previously conjectured values of the critical point of self-avoiding walks
(SAWs) in the bulk and self-avoiding walks attracted to a surface, in both cases
on the hexagonal lattice. We now consider the more general problem of SAWs
originating in and attracted to a surface of the square lattice, but with their end-
point vertex pulled away from the surface, in a direction normal to the surface.
This models a number of important experiments on DNA and other bio-polymers.
A number of results can be proved analytically, and careful numerical work based
on new and more efficient enumeration algorithms allows the phase diagram to be
constructed very accurately.

The q, t-Schröder Polynomial and the Superpolynomial of Torus Knots

Jim Haglund

The q, t-Schröder polynomial Cn(q, t, z) was originally defined by the speaker as
a weighted sum over lattice paths, and shown [8] to have an interpretation in
terms of the representation theory of diagonal harmonics. We overview this result
and also discuss another interpretation for Cn(q, t, z), first noticed by E. Gorsky,
as the superpolynomial of a (n, n + 1) torus knot. It follows from the diagonal
harmonic interpretation that Cn(q, t, z) = Cn(t, q, z), and we introduce a more
general function Cn(q, t, w, z), which conjecturally satisfies the relations

Cn(q, t, w, z) = Cn(t, q, w, z) = Cn(q, t, z, w).(1)

We also discuss a more general conjecture of the speaker which expressesCn(q, t, w, z)
in terms of Macdonald polynomials, which implies (1).

A Dyck path is a lattice path from (0, 0) to (n, n) consisting of unit North and
East steps which never goes below the line y = x. Given a Dyck path π as in
Figure 1, let ai = ai(π) denote the number of squares in the ith row (from the
bottom) which are to the right of π and to the left of the diagonal x = y, where
1 ≤ i ≤ n. We let area(π) denote the sum of the ai. Furthermore let dinv(π)
denote the number of pairs (i, j), 1 ≤ i < j ≤ n, with either

ai = aj or ai = aj + 1.(2)

Next define the reading order of the rows of π to be the order in which the rows
are listed by decreasing value of ai, where if two rows have the same ai-value, the
row above is listed first. For the path of Figure 1 the reading order is

row 6, row 4, row 5, row 3, row 2, row 7, row 1(3)
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1

2

1

1

0

0

2

Figure 1. A Dyck path, with row lengths on the right. The area
statistic is 1 + 1 + 2 + 1 + 2 = 7.

Finally let bk = bk(π) be the number of inversion pairs as in (2) which involve the
kth row in the reading order and rows before it in the reading order. For the path
of Figure 1, we have

b1 = 0, b2 = 1, b3 = 1, b4 = 1, b5 = 2, b6 = 3, b7 = 1.(4)

Note dinv is the sum of the bk, and that values of i for which bi > bi−1 correspond
to tops of columns in π (where we define b0 = −1 so that b1 > b0).

One way of defining the q, t-Schröder polynomial from [8] is

Cn(q, t, z) =
∑

π

tareaqdinv
∏

bi>bi−1

(1 + z/qbi).(5)

Here the sum is over all Dyck paths π from (0, 0) to (n, n). For the path π in
Figure 1, the weight assigned to π in the right-hand-side of (5) is

t7q9(1 + z)(1 + z/q)(1 + z/q2)(1 + z/q3).(6)

We note that Cn(q, t, 0) is Garsia and Haiman’s q, t-Catalan sequence [5].
Dunfield, Gukov, and Rasmussen [4] hypothesized the existence of a superpoly-

nomial knot invariant PK(a, q, t) of a knot K which would contain the HOMFLY
and Jones polynomials as limiting cases, as well as having other desirable prop-
erties. Possible definitions of the superpolynomial for torus knots T(m,n) have
recently been suggested by Angnanovic and Shakirov [2] (see also [1]), Cherdnik
[3], and Oblomkov, Rasmussen, and Shende [11]. All three methods seem to give
the same superpolynomial, and in fact Gorsky and Negut [6] have proved the de-
scriptions in [2] and [3] do in fact give the same superpolynomial. The description
in [2] is in terms of Macdonald polynomials, and Gorsky and Negut note this
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is the same Macdonald polynomial expression for Cn(q, t,−a) in [8], using the
Cherednik parameterization. Gorsky and Negut also give a constant-term expres-
sion for Cn(q, t, z), or equivalently an expression as a weighted sum over Tesler
matrices. Their results also apply to general T(m,n) torus knots, where m,n is any
pair of relatively prime positive integers. See [7] for further background on the
superpolynomial.

Let

Cn(q, t, w, z) =
∑

π

tareaqdinv
∏

bi>bi−1

(1 + z/qbi)
∏

ai>ai−1

(1 + w/tai),(7)

where a0 = −1.
Conjecture 1

Cn(q, t, w, z) = Cn(t, q, w, z) = Cn(q, t, z, w).(8)

We now describe some more technical conjectures which embed the conjectured
symmetry relations (8) in the theory of Macdonald polynomials and diagonal har-
monics. For any symmetric function f(X), let ∆f be the linear operator defined

on the Macdonald basis H̃µ via

∆f H̃µ(X ; q, t) = f [Bµ]H̃µ(X ; q, t),(9)

where Bµ(q, t) =
∑

i t
i−1(1 − qµi)/(1− q).

Conjecture 2

Cn(q, t, w, z)|zawb = ∆en−b
〈en, haen−a〉(10)

Let P be a parking function, viewed as a placement of the integers 1 through
n just to the right of the North steps of a Dyck path, with strict decrease down
columns.

Conjecture 3 For any integer k, 0 ≤ k ≤ n,

∆en−k
en =

∑

π

∑

P∈PF(π)

tareaqdinv(P )Fdes(read(P)−1)

∏

ai>ai−1

(1 + w/tai)|wk ,(11)

where PF(π) is the set of parking functions for π, and F is the quasisymmetric-
function weight attached to P . (See Chapters five and seven of [9] for a definition
of dinv(P ) , and also the quasisymmetric function weight attached to P .)

The case k = 0 of (11) is the “shuffle conjecture” from [10]. By taking the
scalar product of (11) with haen−a, one can show (11) implies (10), which in turn
implies (8).
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Restricted Lattice Walks in Three Dimensions

Manuel Kauers

(joint work with Alin Bostan, Mireille Bousquet-Mélou, Stephen Melczer)

Nearest neighbour walks in the quarter plane have been studied intensively
during the past few years in the combinatorial community. Thanks to the efforts
of a variety of authors using a variety of quite different techniques, we now know
for every step set S ⊆ {−1, 0, 1}2 \ {(0, 0)} whether the generating function

a(x, y, t) =

∞
∑

n=0

∑

i,j

an,i,jx
iyjtn ∈ Q[x, y][[t]]

for the number an,i,j of all lattice walks in N2 that start at (0, 0), consist of n
steps, each step taken from S, and which end at (i, j) is D-finite or not. To be
D-finite means to satisfy a linear differential equation with polynomial coefficients.
For details on this classification, see [2, 3, 4, 5, 6, 7, 8] and the references given
there.

With the classification of walks in the quarter plane being complete, we turn
the attention to the analogous problem in three dimensions: for every step set
S ⊆ { − 1, 0, 1}3 \ {(0, 0, 0)} we consider the generating function

a(x, y, z, t) =

∞
∑

n=0

∑

i,j,k

an,i,j,kx
iyjzktn ∈ Q[x, y, z][[t]]

for the number an,i,j,k of all lattice walks in N3 that start at (0, 0, 0), consist of n
steps, each step taken from S, and which end at (i, j, k). The question is again for
which step sets S this generating function a(x, y, z, t) is D-finite, and for which it
is not.

Compared to the 2D case, the 3D case offers new technical difficulties as well
as new combinatorial phenomena. In the talk at MFO, we have given an overview
over some first results that we obtained. The first difficulty in 3D is the number
of cases: while there are only 256 different models in 2D, there are more than
67 million different models in 3D. Even after applying obvious symmetries and
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discarding trivial cases, we are left with more than 11 million cases, way too
many for an exhaustive investigation. We decided to focus on the models S ⊆
{ − 1, 0, 1}3 \ {(0, 0, 0)} with at most six different directions, i.e., |S| ≤ 6. Up to
symmetries, these are some 35000 cases.

For these 35000 step sets we attempted to determine whether the corresponding
generating functions are D-finite. We applied the following three techniques.

(1) The algebraic kernel method. This method is based on determining a
certain group associated to the step set and forming the so-called orbit sum
in order to obtain an expression for the generating function as the positive
part of a rational function, thus implying D-finiteness. This method is
a direct generalization of the main technique used for 2D models [5]. It
applies when the group is finite and the orbit sum is nonzero.

(2) Projection to lower dimensions. This method exploits the fact that there
is a significant number of step sets in 3D for which at least one of the
dimensions is redundant. Such models are in a natural bijection with the
models in 2D, and these have already been classified. Note however that
the projection does not in all cases lead to one of the known step sets
S ⊆ {−1, 0, 1}2 \ {(0, 0)}. In addition, there also arise models with certain
distinguishable steps in the same direction. Two particularly annoying
instances are the models {(−1, 0), (−1, 0)′, (−1,−1), (−1, 1), (1, 1), (1, 0)}
and {(1, 0), (1, 0)′, (1, 1), (1,−1), (−1,−1), (−1, 0)}, which are D-finite and
algebraic, respectively. Altogether we encountered 527 inherently differ-
ent 2D models, 118 of which were proved to have D-finite (or algebraic)
generating functions. The remaining 409 models are believed to be non-
D-finite.

(3) Decomposition. Some step sets can be written as a direct product of lower
dimensional step sets. For example, the 3D step set

S = {(−1,−1,−1), (1, 0,−1), (0, 1,−1), (−1,−1, 1), (1, 0, 1), (0, 1, 1)}

can be written as {(−1,−1), (1, 0), (0, 1)} × {−1, 1}. A 3D lattice walk
with the model S can thus be interpreted as a pair of lattice walks, one
in 2D by the model {(−1,−1), (1, 0), (0, 1)}, and one in 1D by the model
{−1, 1}. The generating function for the 3D model can be expressed as
a Hadamard-product of the two generating functions of the lower dimen-
sional models. Since D-finiteness is preserved under Hadamard-product,
decompositions can sometimes be used to recognize that a 3D model has
a D-finite generating function.

Each step set may or may not have a finite group, may or may not be pro-
jectable, and may or may not be decomposable. For seven of the eight possible
combinations, there are examples. Only for finite group / projectable / not de-
composable, there are no step sets with at most six steps. Some 20000 cases don’t
seem to have a finite group, and are not projectable, and are not decomposible.
We believe that the generating function for these models are not D-finite. The
smallest example of this class is {(−1,−1, 1), (0, 1,−1), (1, 1, 0)}.
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There are 23 models which have a finite group but are neither projectable
nor decomposable. Four of them have a non-zero orbit sum, so the algebraic
kernel method routinely implies that their generating functions are D-finite. The
remaining 19 models are mysterious. Despite intensive calculations on a super-
computer we were not able to find conjectured D-finite equations for any of these
models using the first 5000 terms of the expansions of a(1, 1, 1, t), a(0, 1, 1, t),
a(1, 0, 1, t), a(1, 1, 0, t), a(0, 0, 1, t), a(0, 1, 0, t), a(1, 0, 0, t), or a(0, 0, 0, t). It may
still be that some of the 19 models satisfy an equation that is too big to be
recovered from 5000 terms, but the equipment available to us does not permit the
computation of a significant number of additional terms at a reasonable cost. Also,
although there do exist quite large equations for some step sets that we recognized
as D-finite (the largest equation we found required 20000 terms), it is noteworthy
that even when one series a(x0, y0, z0, t) for some choice x0, y0, z0 ∈ {0, 1} has only
a very large equation, there was always at least one other choice x1, y1, z1 ∈ {0, 1}
for which a(x1, y1, z1, t) satisfies a much smaller equation. The fact that for the 19
mysterious models we did not find any equation for any choice may be an indication
that their generating functions are perhaps not D-finite. If so, this would be a
remarkable mismatch to the situation in 2D, where it has been observed that a
generating function is D-finite if and only if the model has a finite group.

Full details on our results will be made available in [1].
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The Selberg integral and Young books

Jang Soo Kim

(joint work with Suho Oh)

The Selberg integral is the following integral first evaluated by Selberg [4] in
1944:

Sn(α, β, γ) =

∫ 1

0

· · ·
∫ 1

0

n
∏

i=1

xα−1
i (1 − xi)

β−1
∏

1≤i<j≤n

|xi − xj |2γdx1 · · · dxn(1)

=

n
∏

j=1

Γ(α+ (j − 1)γ)Γ(β + (j − 1)γ)Γ(1 + jγ)

Γ(α+ β + (n+ j − 2)γ)Γ(1 + γ)
,

where n is a positive integer and α, β, γ are complex numbers such that Re(α) > 0,
Re(β) > 0, and Re(γ) > −min{1/n,Re(α)/(n − 1),Re(β)/(n− 1)}. We refer the
reader to Forrester and Warnaar’s exposition [1] for the history and importance
of the Selberg integral.

In this talk we review Stanley’s combinatorial interpretation of the Selberg
integral when α = β = 1 and 2γ = m is a nonnegative integer by introducing
certain permutations called Selberg permutations. Then we define “Selberg books”
which are in natural bijection with special Selberg permutations. We also define
“Young books” and show that there is a very simple relation between the number
of Selberg books and that of Young books. Young books are a generalization of
both of shifted Young tableaux of staircase shape and standard Young tableaux
of square shape. Using the relation between Selberg books and Young books and
the Selberg integral formula we get a formula for the number of Young books.

Let A(n,m) be the following set of letters

A(n,m) = {xi : 1 ≤ i ≤ n} ∪ {a(k)ij : 1 ≤ i < j ≤ n, 1 ≤ k ≤ m}.
A permutation of A(n,m) is called a Selberg permutation if the following conditions
hold:

• x1, x2, . . . , xn are in this order,

• a
(k)
ij is between xi and xj for 1 ≤ i < j ≤ n and 1 ≤ k ≤ m.

Let SP (n,m) denote the set of Selberg permutations of A(n,m).
Stanley [6] showed that

∫ 1

0

· · ·
∫ 1

0

n
∏

i=1

∏

1≤i<j≤n

|xi − xj |mdx1 · · · dxn =
n!|SP (n,m)|

(n+mn(n− 1)/2)!
.

By (1) we have

(2) |SP (n,m)| = 2n(n+mn(n− 1)/2)!

n!

n
∏

j=1

(jm)!!((j − 1)m)!!2

m!!(2 + (n+ j − 2)m)!!
,

where

(2k)!! = (2k)(2k − 2) · · · 2, (2k − 1)!! = (2k − 1)(2k − 3) · · · 1.
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We now define Selberg books which are in natural bijection with Selberg per-
mutations. We then define Young books which are defined similarly as Selberg
books.

The shifted staircase of size n is the shifted partition (n, n− 1, . . . , 1). We will
identify the shifted staircase of size n with its shifted Ferrers diagram.

Let λ(1), λ(2), . . . , λ(m) be shifted staircases of size n. We identify the cells in
the ith row and ith column of λ(1), λ(2), . . . , λ(m) to a single cell and call it the ith
diagonal cell. An (n,m)-Selberg book is a filling of the m-tuple (λ(1), λ(2), . . . , λ(m))
with integers 1, 2, . . . , n+m

(

n
2

)

such that for each shifted staircase the integer in
the ith row and jth column is bigger than the integer in the ith diagonal cell and
smaller than the integer in the jth diagonal cell and smaller. Let SB(n,m) be the
set of (n,m)-Selberg books.

There is a natural bijection between SB(n,m) and SP (n,m) as follows. For
B ∈ SB(n,m), define the corresponding permutation π = π1π2 . . . πn+mn(n−1)/2

by

πℓ =







xi, if B has the integer ℓ in the ith diagonal cell,

a
(k)
ij , if B has the integer ℓ in the ith row and jth column

of the kth shifted staircase.

By (2) we have

(3) |SB(n,m)| = 2n(n+mn(n− 1)/2)!

n!m!!n

n
∏

j=1

((j − 1)m)!!2(jm)!!

(2 + (n+ j − 2)m)!!
.

An (n,m)-Young book is an (n,m)-Selberg book with the additional condition
that for each shifted staircase the integers are increasing along each row and col-
umn. Let Y B(n,m) be the set of (n,m)-Young books.

For B ∈ SB(n,m) or B ∈ Y B(n,m), let ai be the integer in the ith diagonal cell
for 1 ≤ i ≤ n. We define the diagonal gap of B to be the sequence (d1, . . . , dn−1)
where di = ai+1−ai−1 is the number of integers between ai and ai+1. We denote
by SB(n,m; d1, . . . , dn−1) and the set of (n,m)-Selberg books with diagonal gap
(d1, . . . , dn−1). We define Y B(n,m; d1, . . . , dn−1) similarly.

Kim and Oh [2] showed that

(4)
∑

d1,...,dn−1≥0

|SB(n,m; d1, . . . , dn−1)|
td1
1 . . . t

dn−1

n−1

d1! . . . dn−1!
=
∏

i<j

(ti+ti+1+· · ·+tj−1)
m.

Postnikov [3] showed that

(5)
∑

d1,...,dn−1≥0

|Y B(n, 1; d1, . . . , dn−1)|
td1
1 . . . t

dn−1

n−1

d1! . . . dn−1!
=
∏

i<j

ti + ti+1 + · · ·+ tj−1

j − i
.

Using (4) and (5) one can show that

(6) |SB(n,m; d1, . . . , dn−1)| = (1!2! · · · (n− 1)!)
m · |Y B(n,m; d1, . . . , dn−1)|,

(7) |SB(n,m)| = (1!2! · · · (n− 1)!)
m · |Y B(n,m)|.
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By (3) and (7) we get the number of (n,m)-Young books:

(8) |Y B(n,m)| = 2n(n+mn(n− 1)/2)!

n!m!!n

n
∏

j=1

((j − 1)m)!!2(jm)!!

(j − 1)!m(2 + (n+ j − 2)m)!!
.

If m = 1 in (8), then we get the hook length formula for the number of shifted
standard Young tableaux of staircase shape (n, n − 1, . . . , 1). If m = 2 in (8),
the we get the hook length formula for the number of standard Young tableaux
of square shape (n, n, . . . , n). This gives an algebro-combinatorial proof of the
Selberg integral for α = β = 1 and γ ∈ {1/2, 1}.

The ultimate goal of this research is to find a combinatorial proof of the Selberg
integral when r = α− 1, s = β − 1 and m = 2γ are nonnegative integers. We can
achieve this goal for r = s = 0 and m ∈ {1, 2} if we solve one of the following two
problems because there is a combinatorial proof for the (regular and shifted) hook
lengh formula.
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Counting and typical parameters for phylogenetic networks

Colin McDiarmid

(joint work with Charles Semple, Dominic Welsh)

It is well known how to count phylogenetic trees (rooted binary trees, either fully
labelled or with just the leaves labelled). But what about phylogenetic networks,
where we allow reticulation nodes, corresponding to evolutionary processes such
as recombination and hybridisation?

For a finite set X , a phylogenetic network on X (see for example [3]) is a rooted
acyclic directed graph with the following properties:

(i) the (unique) root is a vertex with in-degree 0 and out-degree two;
(ii) a vertex (leaf) with out-degree zero has in-degree one, and the set of

vertices with out-degree zero is X ; and
(iii) all other vertices either have in-degree one and out-degree two (tree ver-

tices), or in-degree two and out-degree one (reticulation vertices).
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Tree-child and normal networks are subclasses of networks of particular interest.
We discuss approximate counting formulae for the numbers of labelled general,

tree-child, and normal phylogenetic networks on n vertices. These formulae are of
the form 2γn logn+O(n), where the constant γ is 3

2 for general networks, and 5
4 for

tree-child and normal networks. We shall also see that the numbers of leaf-labelled
tree-child and normal networks with ℓ leaves are both 22ℓ log ℓ+O(ℓ).

We work with a configuration model much as for random cubic graphs, and
find that upper bounds are quite straightforward, depending on the numbers of
leaves. For the lower bound for general networks, we use the result of Robinson and
Wormald [2] that almost all cubic graphs have a Hamilton circuit. For tree-child
and normal networks we use an explicit construction.

Further we find the typical proportions of leaves, tree vertices, and reticulation
vertices for each of these classes of networks.

(i) Almost all n-vertex general networks have o(n) leaves and (12 + o(1))n
reticulation vertices.

(ii) Almost all n-vertex tree-child and normal networks have (14+o(1))n leaves

and (14 + o(1))n reticulation vertices.
(iii) Almost all ℓ-leaf leaf-labelled tree-child and normal networks have (1 +

o(1))ℓ reticulation vertices and (4 + o(1))ℓ vertices in total.

These results are taken from [1].
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A survey of the switching method for combinatorial estimation

Brendan D. McKay

(joint work with Verle Fack, Catherine Greenhill, Mahdieh Hasheminezhad)

The switching method, also called the method of perturbations and other names,
is a family of techniques for approximate counting of combinatorial objects. The
basic idea is to partition the space into parts, and provide one or more operations
(“switchings”) on objects that sometimes move them between parts. By counting
how often the switchings and their inverses apply, we obtain information about
the relative sizes of the parts.

One application of the switching method is in the bounding of tails of distribu-
tions, which in the model we have described refers to bounding the sizes of minor
parts. The process is described in terms of a directed graph whose vertices are
the parts and whose edges show possible trajectories of switchings. Bounds on the
statistics of switchings gives a linear program for the part sizes, which has a special
form often allowing explicit solution. The case where the graph is acyclic apart
from loops was solved in [1], while the general case was solved in [3]. In [2] a good
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approximation was given to the generalization where multiple types of switchings
are employed simultaneously.
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The scaling limit fo uniform random plane maps, via the
Ambjørn-Budd bijection

Grégory Miermont

(joint work with Jérémie Bettinelli, Emmanuel Jacob)

The topic of limits of random maps has met an increasing interest over the
last two decades, as it is recognized that such objects provide natural model of
discrete and continuous 2-dimensional geometries [4, 5]. Recall that a plane map is
a cellular embedding of a finite graph (possibly with multiple edges and loops) into
the sphere, considered up to orientation-preserving homeomorphisms. By cellular,
we mean that the faces of the map (the connected components of the complement
of edges) are homeomorphic to 2-dimensional open disks. A popular setting for
studying scaling limits of random maps is the following. We see a map m as a
metric space by endowing the set V (m) of its vertices with its natural graph metric
dm: the graph distance between two vertices is the minimal number of edges of a
path linking them. We then choose at random a map of “size” n in a given class
and look at the limit as n → ∞ in the sense of the Gromov–Hausdorff topology
[13] of the corresponding metric space, once rescaled by the proper factor.

This question first arose in [11], focusing on the class of plane quadrangulations,
that is, maps whose faces are of degree 4, and where the size is defined as the
number of faces. A series of papers, including [19, 14, 21, 15, 10], have been
motivated by this question and contributed to its solution, which was completed
in [16, 22] by different approaches. Specifically, there exists a random compact
metric space S called the Brownian map such that, if Qn denotes a uniform random
(rooted) quadrangulation with n faces, then the following convergence holds in
distribution for the Gromov–Hausdorff topology on the set of isometry classes of
compact metric spaces:

(1)

(

9

8n

)1/4

Qn
(d)−−−−→

n→∞
S.

Here, if X = (X, d) is a metric space and a > 0, we let aX = (X, ad) be the rescaled
space, and we understand a map m as the metric space (V (m), dm).

Le Gall [16] also gave a general method to prove such a limit theorem in a
broader context, that applies in particular to uniform p-angulations (maps whose
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faces are of degree p) for any p ∈ {3, 4, 6, 8, 10 . . .}. When this method applies,
the scaling factor n−1/4 and the limiting metric space S are the same, only the
scaling constant (9/8)1/4 may differ. One says that the Brownian map possesses a
property of universality, and one actually expects this property to hold for many
more “reasonable” classes of maps, see for instance [6, 2, 1].

A robust and widely used bijective encoding in obtaining such results is the
Cori–Vauquelin–Schaeffer bijection [12, 23] and its generalization by Bouttier–
Di Francesco–Guitter [8], see for instance [18, 20]. However, this bijection becomes
technically hard to manipulate when dealing with non-bipartite maps (with the
notable exception of triangulations).

In the work [7], we continue this line of research with another fundamental
class of maps, namely uniform random plane maps with a prescribed number of
edges. The key to our study is to use a combination of the Cori–Vauquelin–
Schaeffer bijection, together with a recent bijection due to Ambjørn and Budd
[3], that allows to couple directly a uniform (pointed) map with n edges and a
uniform quadrangulation with n faces, while preserving distances asymptotically.
This allows to transfer known results from uniform quadrangulations to uniform
maps, in a way that is comparatively easier than a method based on the Bouttier–
Di Francesco–Guitter bijection.

We letMn be the set of rooted plane maps with n edges, andM•
n be the set of

rooted and pointed plane maps with n edges, i.e., of pairs (m, v∗) where m ∈ Mn

and v∗ is a distinguished element of V (m).
Similarly, we let Qn (resp. Q•

n) be the set of rooted (resp. rooted and pointed)
quadrangulations with n faces.

The Ambjørn–Budd (AB) bijection provides a natural coupling between a uni-
form random element (Qn, v∗) of Q•

n, and a uniform random element (M•
n , v∗) of

M•
n. Using this coupling, it was observed already [3, 9] that the “two-point func-

tions” that govern the limit distribution of the distances between two uniformly
chosen points in M•

n and Qn coincide. In this work we show that much more is
true.

Theorem. Let (Qn, v∗) and (M•
n, v∗) be uniform random elements of Q•

n andM•
n

respectively, that are in correspondence via the Ambjørn–Budd bijection. Then
we have the following joint convergence in distribution for the Gromov–Hausdorff
topology

(

(

9

8n

)1/4

M•
n,

(

9

8n

)1/4

Qn

)

(d)−−→
n→∞

(S,S),

where S is the Brownian map.

A very striking aspect of this is that the scaling constant (9/8)1/4 is the same
for M•

n and for Qn. This implies in particular that

n−1/4dGH(M
•
n, Qn)

P−−−−→
n→∞

0

where dGH is the Gromov–Hausdorff distance beween two compact metric spaces,
which, to paraphrase the title of [17], says that “the AB bijection is asymptotically
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an isometry.” Although obtaining this scaling constant is theoretically possible
using the methods of [20], the computation would be rather involved.

At the cost of an extra “de-pointing lemma,” this implies our main result:

Corollary. Let Mn be a uniformly distributed random variable in Mn. The fol-
lowing convergence in distribution holds for the Gromov–Hausdorff topology

(

9

8n

)1/4

Mn
(d)−−−−→

n→∞
S

where S is the Brownian map.
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Diagonals and D-finite functions

Marni Mishna

(joint work with Stephen Melczer)

1. Introduction

D-finite functions satisfy linear differential equations with polynomial coeffi-
cients. As innocuous as that may sound, they have been a rich treasure trove
for number theorists, computer algebraists, and combinatorialists for over thirty
years. Despite deep investigations from several different angles, they still hold
many mysteries. For example, Gilles Christol conjectured over 20 years ago that
all D-finite globally bounded functions are diagonals of rational functions [4]. This
would imply that combinatorial classes with D-finite generating functions are very
structured, but yet we have no firm grasp on the anatomy of such classes.

This abstract considers the connections between diagonals of rational functions;
D-finite functions; and Asymptotic enumeration, particularly in the context of lat-
tice path enumeration. There are many connections between these notions, exem-
plified by new explicit asymptotic enumeration results for lattice paths restricted
to the first orthant, in d-dimensions.

2. Diagonals, D-finite functions, and asymptotic enumeration

The diagonal of the multivariate series

f(x1, . . . , xk) =
∑

i0,i1,...,ik

a(i1, . . . , ik)x
i1
1 . . . xik

k

is defined as the series

∆f(x1, . . . , xk) =
∑

n≥0

a(n, . . . , n)xn
1 .

If the series g(x) is algebraic, satisfying P (g(x), x) = 0 for some bivariate poly-
nomial P (x, y), then Furstenberg [5] showed that it can be expressed as a diagonal
of bivariate rational function, for example:

g(x) = ∆
x2Px(x, xy)

P (x, xy)
.
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Diagonals of D-finite multivariate functions are also D-finite [7, 4], and there
exist effective methods to translate between the system of differential equations
satisfied by f(x1, . . . , xk) and the differential equation satisfied by ∆f , although
they are generally limited to a small number of variables owing to the underlying
Gröbner bases computations.

Christol’s conjecture considers the reverse direction, and begs the question is
there a way to translate from the defining differential equation, to a diagonal
formulation? There is a clear benefit to a diagonal data structure over the dif-
ferential equation, thanks to recent developments in mulitvariate asymptotics, ex-
emplified by the recent book of Pemantle and Wilson [9]. This burgeoning field
provides a path to access the complete asymptotic developments for a(n, . . . , n)
given f(x1, . . . , xk).

3. Lattice path models

Recent results in lattice path enumeration illustrate the harmony of these three
subjects very well. A lattice path model is defined by a set of vectors S ⊆ Zd

and a convex region R ⊆ Zd containing the origin. The combinatorial class is
comprised of all finite sequences of elements of S, or walks w = s1, s2, . . . , sn such
that every partial sum remains in the region. Our particular interest is the family
of models using so-called small steps S ⊆ {0, 1,−1}d, which remain in the first
orthant R ⊆ Nd.

These two restrictions seem strict, but the remaining models are still qutie
insightful and structured. For example, when d = 2, there are only 79 non-
isomorphic models, and they are well studied as a family. The models with D-
finite generating functions succumb, with one exception, to an algorithmic strategy,
known as the orbit sum method. It is a variant of the kernel method, but it was
tailored in this case by Bouquet-Mélou and Mishna [3].

This method expresses the generating functions as diagonals of rational func-
tions. The remaining model is algebraic, and hence by Furstenburg’s result, it is
also a diagonal of a rational function.

Observation. All D-finite small step lattice path models in restricted to N2 have
generating functions which are globally bounded and which can be expressed as
diagonals of rational functions.

As lattice path models can encode many other combinatorial classes, this ob-
servation may be more general than it initially appears.

4. Asymptotic enumeration of highly symmetric models

in d dimensions

Next consider an explicit example of how to chain together the orbit sum
method, and multivariable analytic combinatorics to deduce explicit asymptotic
enumeration results.

A model S is highly symmetric if the following is true: s = (s1, . . . , sd) ∈ S
implies that the vector where si is replaced by −si in s is also in S. The model
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is symmetric across every axis. There are five non-isomorphic models in d = 2:

Set x = x1, x2, . . . , xd and x = 1
x . Define Q(x, t) to be the generating function

counting the number of walks of length n with marked endpoint and S(x) =
∑

s∈S xs1
1 xs2

2 . . . xsd
d . Finally, define

R(x, t) =
(x1 − x1) · · · (xd − xd)

(x1 · · ·xd)(1 − tS(x))

G(x, t)/H(x, t) =
R (x1, . . . , xd, x1 · · ·xd · t)

(1− x1) · · · (1− xd)
with G,H polynomials.

Then, applying the orbit sum method we can show that

(1) Q(x, t) = ∆G(x, t)/H(x, t).

Consequently, all highly symmetric models have D-finite generating functions and
we can apply the techniques of [9] to Eq. (1) and determine explicit asymptotic
results.

Theorem (Melczer, Mishna [8]). Let S ⊆ {−1, 0, 1}d \ 0 be a highly symmetric
d-dimensional lattice path model in the first orthant. Then the number of steps
of length n, denoted sn, satisfies:

sn ∼
[

(

s(1) · · · s(d)
)−1/2

π−d/2|S|d/2
]

· n−d/2 · |S|n,

where s(k) denotes the number of steps in S which have kth coordinate 1.

For example, the model with steps only along the axis, S = {e1,−e1, . . . , ed,−ed}
is asymptotically counted by sn ∼

(

2d
π

)d/2 · n−d/2 · (2d)n. Similarly, the model

with all possible steps S = {0, 1,−1}d \ 0 is asymptotically counted by sn ∼
(

(3d−1)d/2

3d(d−1)/2·πd/2

)

· n−d/2 · (3d − 1)n.

5. Future considerations

Our future considerations include: finding ways to better exploit the symmetry
in this case; asymptotic analysis of models with (slightly) less symmetry; trying to
develop a combinatorial understanding of diagonals to prove (or disprove) Chris-
tol’s conjecture; consideration of models that are no longer restricted to small
steps.
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Two variants of a face of the Birkhoff polytope

Alejandro H. Morales

(joint work with Karola Mészáros, Jessica Striker)

1. The Chan Robbins Yuen polytope

The Birkhoff polytope Bn is the polytope of all n×n matrices (bij) with nonneg-
ative real entries that are doubly-stochastic, i.e. the sum of the rows and columns
equals one. The vertices of this polytope are the n×n permutation matrices. This
polytope is important in probability and optimization and has been studied since
the 1940s. However, some basic questions like computing explicitly its volume for
all n [2, 6] and finding explicitly its f -vector [3] remain open.

One face of Bn called the Chan-Robbins-Yuen polytope [4] or CRYn is obtained
by setting the entries bij of the doubly-stochastic matrix to zero if i − j ≥ 2 (see
Figure 1 (a),(b)). This polytope is an example of a flow polytope of the complete
graph on n + 1 vertices. Postnikov-Stanley [10] and Baldoni-Vergne [1] showed
that the (normalized) volume of this polytope is given by an evaluation of the
Kostant partition function at a certain vector. This evaluation is the captivating
product Cat1Cat2 . . . Catn−2 of Catalan numbers. This was proved analytically
by Zeilberger in [13] using an identity closely related to Selberg’s integral. No
combinatorial proof is known. To shed some light on this volume formula we
consider two variants of this polytope.

2. First variant: a face of the alternating sign matrix polytope

A generalization of permutation matrices of importance in statistical mechanics
are alternating sign matrices or ASMs [9]. These are n × n matrices with entries
{0, 1,−1} such that the the sum of the rows and columns equals one, and the
nonzero entries in each row and column alternate in sign. Just as the Birkhoff
polytope Bn is the convex hull of the n×n permutation matrices, one can define a
polytope ASMn as the convex hull of the n× n alternating sing matrices [5, 12].
It turns out that the alternating sign matrices are exactly the vertices of this
polytope. And its volume for all n or its f -vector is also unknown.
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Figure 1. (a) A doubly-stochastic matrix in CRY4, (b) the poly-

tope CRY3, (c) the polytope CRYASM
3 , (d) map from a matrix

in CRY3 to a flow on K4; graph K±
4 associated to CRY±

3 .

The first variant of CRYn we consider in [8] is the corresponding face in ASMn

of all matrices (aij) in ASMn where aij = 0 if i−j ≥ 2. We call this new polytope

CRYASM
n (see Figure 1 (c)). Surprisingly, this polytope is much simpler than the

original CRYn. In fact, we show that CRYASM
n is equivalent to an order polytope

[11] of the type An−1 root poset. Therefore, its vertices are given by reverse order
ideals in the poset (Catn many) and its volume is the number of linear extensions
of this poset, i.e. the number f(n−1,n−2,...,2,1) of standard Young tableaux of shape
(n− 1, n− 2, . . . , 2, 1).

Corollary (Mészáros-M-Striker [8]).

vol(CRYASM
n ) = f(n−1,n−2,...,2,1) =

(

n
2

)

!

1n−13n−2 · · · (2n− 3)1
.

The polytopes CRYn and CRYASM
n have the same dimension

(

n
2

)

and the ver-

tices of the former are a 2n−1-subset of the vertices of the latter. It would be
interesting to see how these two polytopes fit together.

3. Second variant: a flow polytope of a signed complete graph

Given a collection X of m vectors and a vector b all in Zn, let kX(b) be the
number of ways of writing b as an N-linear combination of vectors in X . The
function kX(b) is called a vector partition function.

An important case is when X is the set of positive roots of a root system
where the function kX(b) is called a Kostant partition function. These are very
useful in representation theory for calculations of weight multiplicities and tensor
product multiplicities. For type An−1 we have X = {ei − ej | 1 ≤ i < j ≤ n}
(where ei is the ith standard vector), and for other types like type Dn we have
X = {ei ± ej | 1 ≤ i < j ≤ n}.

If G is a directed acyclic graph on n vertices, let XG be the set of vectors
ei − ej for each edge (i, j) in G with i < j. Note that XG is also a subset of
the positive roots of An−1 mentioned above. In this case, the generating series of
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kG(b) := kXG (b) is

(1)
∑

b∈Zn

kG(b)x
b =

∏

edges (i,j) in G

(1− xix
−1
j )−1.

The flow polytope FG(b) := FXG(b) consists of nonnegative real flows on the
directed edges of G such that the outflow or leak on vertex i is bi. It follows that
the number of lattice points of FG(b) are given by kXG(b).

When G is the complete graph Kn+1 the flow polytope FKn+1(e1 − en+1) is
equivalent to CRYn (see Figure 1 (c)). Postnikov-Stanley [10] and Baldoni-Vergne
[1] showed that the volume of FG(e1− en+1) is given by the value of the partition
function kKn+1(b

′) where b′ only depends on G. Zeilberger [13] used this along
with (1) and a constant term identity to prove the volume formula for CRYn.

One natural question to ask is whether there is an analogue of this result for
other root systems. For this setting, we work with signed graphs G± that have
negative edges (i, j,−) corresponding to the roots ei − ej (i < j) and positive
edges (i, j,+) corresponding to the roots ei + ej (i < j). For this graph, the flow
polytope FG±(b) is defined accordingly. In [7] we show that when b = 2e1, then
the volume of FG±(2e1) is given by a weighted partition function:

Theorem (Mészáros-M [7]). Given a signed graph G± with n vertices then the
volume of the flow polytope FG±(2e1) is

(2) vol(FG±(2e1)) = kdynG± (0, d2 − 1, . . . , dn−1 − 1, dn − 1),

where di is the number of incoming negative edges to vertex i, and kdynG± has the
following generating series:

(3)
∑

b∈Zn

kdynG± (b)xb =
∏

edge (i,j,−) in G±

(1−xix
−1
j )−1

∏

edge (i,j,+) in G±

(1−xi−xj)
−1.

In [7] we look at the flow polytope FK±
n
(2e1) where K±

n is the complete signed

graph with all edges (i, j,±). We call this the signed Chan-Robbins-Yuen polytope

or CRY±
n (see Figure 1 (c)). By (2) its volume is given by kdyn

K±
n
(0, 0, 1, 2, . . . , n−2).

Data suggest that this volume is as interesting as that of the CRYn polytope:

Conjecture (Mészáros-M [7]). vol(CRY±
n ) = 2(n−1)2Cat1Cat2 . . .Catn−1.
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The shape of random combinatorial objects

Igor Pak

(joint work with T. Dokos and S. Miner)

In this talk, we study asymptotics of various classes of permutations, including
123- and 132-avoiding permutations, Baxter permutations and alternating per-
mutations. The permutations are represented as 0 − 1 matrices. We take their
average and scale the function which then converges to a limiting surface we call
the limit shape. We present explicit formulas in some cases and conjectures in
other cases.
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Scaling Limits for Random Graphs from Subcritical Classes

Konstantinos Panagiotou

(joint work with Benedikt Stufler, Kerstin Weller)

Given a connected graph G with vertex set V (G) and edge set E(G) we can
associate naturally to it a metric space (V (G), dG), where dG : V (G)→ N0 denotes
the shortest path distance in G. If G is a random graph, then this metric space
is itself a random variable, and the aim of this research is to study its asymptotic
properties when the size of G becomes large.

The classic example in this context is the case where G = Tn and Tn is a
uniform random tree with n vertices. Aldous [1], see also [4], showed that there is
a constant c > 0, such that as n→∞

(1)

(

V (Tn),
dTn

c
√
n

)

(d)→ T ,
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where T is a continuous metric space, the so-called Brownian continuum random
tree, and the convergence in distribution is in the sense of the Gromov-Hausdorff
topology. This result can be extended to many families of simply generated trees
(or equivalently, conditioned Galton-Watson trees), where up to the rescaling con-
stant the same limiting behavior can be established [1, 2]. The convergence in (1)
may be used to study many properties of large random trees, as for example the
limiting distribution of the height or the distribution of the distances.

By now there are several beautiful results addressing the convergence of the
metric space of many random objects, in particular of many families of random
maps [4, 3]. However, except for trees, there are only very few results about
families of random graphs. In this work we consider scaling limits as in (1) and
extend the validity of this result to a large class of random graphs.

We consider so-called block-stable classes that can be defined as follows. Suppose
that we are given a class B of 2-connected graphs, that may also include the graph
consisting of a single edge. Then we let C = C(B) be the class of all connected
graphs whose blocks, i.e., maximal subgraphs that contain no cut-vertex, are in
B. For example, if B is the class of all 2-connected planar graphs (and the single
edge), then C is the class of all connected planar graphs; if B is the class that
contains only the graph that consists of a single edge, then we recover the class of
trees.

In previous works [5] we showed that a global statistic of a random graph Cn

with n vertices from a block-stable class C is determined by the critical quantity
tB = ρB B′′(ρB), where B(z) is the exponential generating function enumerating
the graphs in B, and ρB is its singularity. In particular, if tB > 1, then Cn is
subcritical in the sense that the largest block in it has typically only O(log n)
vertices; on the other hand, if tB < 1 then Cn typically contains a giant block
with (1− t+o(1))n many vertices. Examples of subcritical classes are outerplanar
and series-parallel graphs, while the class of planar graphs is not subcritical.

Our main result implies that (1) is true if Tn is replaced by a uniform random
graph Cn from a subcritical class with n vertices, and where c = c(B) > 0. Given
the dichotomy described in the previous paragraph, we may expect that Cn looks
“tree-like” in the sense that its global structure is dominated by some underlying
tree and that the macroscopic effect of its blocks vanishes as n → ∞. We show
that this is indeed the case. In particular, we describe the random generation of
a graph from C with n vertices by a two-step procedure. First, we draw a simply
generated tree Sn with n vertices and an appropriate offspring distribution. Then,
in a second independent step we decorate randomly its vertices with blocks from B.
This allows us us to relate the distances in Sn to the distances of the corresponding
vertices in Cn, and the convergence is established. As a side result, we obtain a
combinatorial interpretation of the scaling factor c in (1): it corresponds to the
average distance of two randomly selected vertices in a graph B from B, where the
size of B is itself a random and distributed as in a Boltzmann model.

Our methods cannot be applied to block-stable classes that are not subcritical,
since there the a main contribution to the pairwise distances comes from the
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giant block. It it an open problem to investigate the behavior in this case, and in
particular the class of planar graphs remains as the most important open problem.
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How many random permutations, conjugated by an adversary,
generate Sn?

Robin Pemantle

(joint work with Yuval Peres and Igor Riven)

Let M be a random set of integers greater than 1, containing each integer n
independently with probability 1/n. Let S(M) be the sumset of M , that is, the
set of all sums of subsets of M . How many independent copies of S must one
intersect in order to obtain a finite set?

This problem is the limiting form of a problem arising in computational Galois
theory: How many permutations must one sample uniformly from the symmetric
group Sn before there is at least an epsilon probability that these permutations
generate Sn even when an adversary replaces each one with a conjugate (another
permutation of the same cycle type)?

Dixon showed in 1992 that C(log n)1/2 sufficed, and conjectured that O(1) was
good enough, which was proved shortly thereafter by Luczak and Pyber. Their
constant was roughly 2100 has not been improved until now, though is conjectured
that it can be improved to 5 or 4. We show in fact that 4 permutations suffice
(equivalently, four copies of S have finite intersection).

Combinatorics and algorithms for classes of pattern-avoiding
permutations

Adeline Pierrot

(joint work with F. Bassino, M. Bouvel, C. Pivoteau, D. Rossin)

The notion of pattern in a permutation is a nice and simple notion that raises lots
of fascinating and challenging questions in combinatorics and algorithmics.

In this talk, we present two examples of interactions between combinatorics and
algorithms, in the case of pattern-avoiding permutations.
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The first result provide automatic methods for enumeration and random gen-
eration. More precisely, we present an algorithm which derives a combinatorial
specification for a permutation class given by its basis of excluded patterns. The
second part deals with stack-sorting : we present a polynomial algorithm deciding
whether a permutation given as input is sortable trough two stacks in series.

Both results are algorithms obtained thanks to a combinatorial study of per-
mutations using recusive decompositions. Details can be found in [Pie13].

1. Structure in permutation classes

A permutation of size n is a word of n letters σ = σ1σ2 . . . σn on the al-
phabet [1..n] containing each letter from 1 to n exactly once. A permutation
π = π1π2 . . . πk is a pattern of a permutation σ = σ1σ2 . . . σn (denoted π � σ) if
and only if k ≤ n and there exist integers 1 ≤ i1 < i2 < . . . < ik ≤ n such that
σi1 . . . σik is order-isomorphic to π, i.e. such that σiℓ < σim whenever πℓ < πm.
For example the permutation σ = 316452 contains π = 2431 as a pattern, whose
occurrences are 3642 and 3652. But σ avoids the pattern 2413 as none of its
subsequences of length 4 is order-isomorphic to 2413.

The pattern containment relation � is a partial order on permutations, and
a permutation class C is a downset under this order: for any σ ∈ C, if π � σ,
then we also have π ∈ C. For every set B, Av(B) denotes the set of permutations
avoiding any pattern of B. Every class C can be written as C = Av(B) for a unique
antichain B (i.e., set of pairwise incomparable elements) called the basis of C.

Initiated by [Knu73] almost forty years ago, the study of permutation classes
has since received a lot of attention, mostly with respect to enumerative questions.
Most articles are focused on a given class C = Av(B). Recently, some results
describing general properties of permutation classes have been obtained. Our
work falls into this new line of research.

We present an algorithm which derives a combinatorial specification for a per-
mutation class C = Av(B) given by its basis B of excluded patterns. The spec-
ification is obtained if and only if the class contains a finite number of simple
permutations, this condition being tested algorithmically. This algorithm rely on
the substitution decomposition of permutations, and the simple permutations are
the indecomposable ones. This works takes its root in the theorem of Albert and
Atkinson [AA05] stating that every permutation class containing a finite number
of simple permutations has a finite basis and an algebraic generating function.

By combinatorial specification of a class (see [FS09]), we mean an unambiguous
system of combinatorial equations describing recursively the permutations of C.

By routine algorithms, the specification yields a system of equations satisfied by
the generating function of C, this system being always positive and algebraic, and
a Boltzmann uniform random sampler of permutations in C, using the methods of
[FS09] and [DFLS04] respectively.
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B: finite basis of excluded patterns

Substitution-closed caseGeneral case

Finite number of simple permutations in C = Av(B)?

O(n log n+ p2k) [BBPR13] O(n log n) [BBPR10]

Computation of the set of simple permutations in C

Exit

O(N.ℓp+2.|B|) [PR12] O(N.ℓ4) [PR12]

Iterative computation

[BBPPR12]

Specification for C

Generating function Random sampler

No

Yes

Figure 1. Automatic process from the basis of a permutation
class to generating function and Boltzmann sampler.

2. Stack sorting

Stack sorting has been studied first by Knuth in the sixties [Knu68]. Char-
acterizing the stack-sortable permutations is the historical problem which led to
define permutation patterns. Stack-sorting was then generalized by Tarjan, who
introduced sorting networks [Tar72] allowing to sort more permutations, and many

variations of this problem have been studied afterwards (see [B0́3] for a summary).
Here we study the decision problem “Is a given permutation σ sortable by two

stacks connected in series?”. The existence of a polynomial algorithm answering
this question is a problem that stayed open for a long time, and the problem was
even conjectured NP-complete in 2002.

Given two stacks H and V in series (see Figure 2) and a permutation σ, we
want to sort the elements of σ using the stacks. We take σ as input: the elements
σi are read one by one, from σ1 to σn. We have three different operations:
ρ: Take the next element of σ in the input and push it on top of the first stack H .
λ: Pop the topmost element of stack H and push it on top of the second stack V .
µ: Pop the topmost element of stack V and write it to the output.

If there is a sequence of operations ρ, λ, µ leading to the identity 1 . . . n as
output, the permutation σ is said 2-stack sortable. For example, 2431 is sortable
using the following process:
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HV

ρλµ
σ1 . . . σn

(input)

1 . . . n

(output)

Figure 2. Sorting with two stacks in series.
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The difficulty of this problem, whose statement is however very simple, lies in
the fact that both stacks are considered at once, which gives a great liberty on
which operation to apply at each step, and yields an exponential naive algorithm.

We give a polynomial decision algorithm by introducing a new notion, the
pushall sorting, which is a restriction of the general stack sorting. We first solve
the decision problem in the particular case of the pushall sorting, by encoding
the sorting procedures through a bicoloring of the diagrams of the permutations.
Then we solve the general case by showing that a sorting procedure in the general
case corresponds to several steps of pushall sorting.
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Random planar graphs with given minimum degree

Lander Ramos

(joint work with Marc Noy)

In this work we enumerate planar graphs subject to a condition on the minimum
degree δ, and to analyze the corresponding planar random graphs. Asking for
δ ≥ 1 is not very interesting, since a random planar graph contains in expectation
a constant number of isolated vertices. The condition δ ≥ 2 is directly related
to the concept of the core of a graph. Given a connected graph G, its core (also
called 2-core in the literature) is the maximum subgraph C with minimum degree
at least two. The core C is obtained from G by repeatedly removing vertices of
degree one. Conversely, G is obtained by attaching rooted trees at the vertices
of C. The kernel of G is obtained by replacing each maximal path of vertices of
degree two in the core C with a single edge. The kernel has minimum degree at
least three, and C can be recovered from K by replacing edges with paths. Notice
that G is planar if and only C is planar, if and only if K is planar.

It is convenient to introduce the following definitions: a 2-graph is a connected
graph with minimum degree at least two, and a 3-graph is a connected graph with
minimum degree at least three. In order to enumerate planar 2- and 3-graphs,
we use generating functions. From now on all graphs are labelled and generating
functions are of the exponential type. Let cn, hn and kn be, respectively, the
number of planar connected graphs, 2-graphs and 3-graphs with n vertices, and
let

C(x) =
∑

cn
xn

n!
, H(x) =

∑

hn
xn

n!
, K(x) =

∑

kn
xn

n!

be the associated generating functions. Also, let tn = nn−1 be the number of
(labelled) rooted trees with n vertices and let T (x) =

∑

tnx
n/n!. The decomposi-

tion of a connected graph into its core and the attached trees implies the following
equation

(1) C(x) = H(T (x)) + U(x),

where U(x) = T (x)−T (x)2/2 is the generating functions of unrooted trees. Since
T (x) = xeT (x), we can invert the above relation and obtain

H(x) = C(xe−x)− x+
x2

2
.

The equation defining K(x) is more involved and requires the bivariate generating
function

C(x, y) =
∑

cn,k y
k x

n

n!
,

where cn,k is the number of connected planar graphs with n vertices and k edges.
We can express K(x) in terms of C(x, y) as

(2) K(x) = C(A(x), B(x)) + E(x),

where A(x), B(x), E(x) are explicit elementary functions.
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From the expression of C(x) as the solution of a system of functional-differential
equations [1], it was shown that

cn ∼ κn−7/2γnn!,

where κ ≈ 0.4104 · 10−5 and γ ≈ 27.2269 are computable constants. In addition,
analyzing the bivariate generating function C(x, y) it is possible to obtain results
on the number of edges and other basic parameters in random planar graphs. Our
main goal is to extend these results to planar 2-graphs and 3-graphs.

Using Equations (1) and (2) we obtain precise asymptotic estimates for the
number of planar 2- and 3-graphs:

hn ∼ κ2n
−7/2γn

2 n!, γ2 ≈ 26.2076, κ2 ≈ 0.3724 · 10−5,

kn ∼ κ3n
−7/2γn

3 n!, γ2 ≈ 21.3102, κ3 ≈ 0.3107 · 10−5.

As is natural to expect, hn and kn are exponentially smaller than cn. Also, the
number of 2-connected planar graphs is known to be asymptotically κcn

−7/226.1841nn!
(see [2]), smaller than the number of 2-graphs. This is consistent, since a 2-
connected has minimum degree at least two.

By enriching Equations (1) and (2) taking into account the number of edges,
we prove that the number of edges in random planar 2-graphs and 3-graphs are
both asymptotically normal with linear expectation and variance. The expected
number of edges in connected planar graphs was shown to be [1] asymptotically µn,
where µ ≈ 2.2133. We show that the corresponding constants for planar 2-graphs
and 3-graphs are

µ2 ≈ 2.2614, µ3 ≈ 2.4065.

This conforms to our intuition that increasing the minimum degree also increases
the expected number of edges.

We also analyze the size Xn of the core in a random connected planar graph,
and the size Yn of the kernel in a random planar 2-graph. We show that both
variables are asymptotically normal with linear expectation and variance and that

EXn ∼ λ2n, λ2 ≈ 0.9618,

EYn ∼ λ3n, λ3 ≈ 0.8259.

We remark that the value of λ2 has been recently found by McDiarmid [3] using
alternative methods. Also, we remark that the expected size of the largest block
(2-connected component) in random connected planar graphs is asymptotically
0.9598n [4]. Again this is consistent since the largest block is contained in the
core.

The picture is completed by analyzing the size of the trees attached to the
core. We show that the number of trees with k vertices attached to the core is
asymptotically normal with linear expectation and variance. The expected value
is asymptotically

C
kk−1

k!
ρkn,
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where C > 0 is a constant and ρ ≈ 0.03673 is the radius of convergence of C(x).
For k large, the previous quantity grows like

C√
2π
· k−3/2(ρe)kn.

This quantity is negligible when k ≫ log(n)/(log(1/ρe)). Using the method of
moments, we show that the size Ln of the largest tree attached to the core is in
fact asymptotically

log(n)

log(1/ρe)
.

Moreover, we show that Ln/ logn converges in law to a Gumbel distribution.
This result provides new structural information on the structure of random planar
graphs.

Our last result concerns the distribution of the vertex degrees in random planar
2-graphs and 3-graphs. We show that for each fixed k ≥ 2 the probability that
a random vertex has degree k in a random planar 2-graph tends to a positive
constant dH(k), and for each fixed k ≥ 3 the probability that a random vertex has
degree k in a random planar 3-graph tends to a positive constant dK(k). Moreover
∑

k≥2 pH(k) =
∑

k≥3 pK(k) = 1, and the probability generating functions

pH(w) =
∑

k≥2

pH(k)wk, pK(w) =
∑

k≥3

pK(k)wk

are computable in terms of the probability generating function pC(w) of connected
planar graphs, which was fully determined in [5].

It is natural to ask why we stop at minimum degree three. The reason is that
there seems to be no combinatorial decomposition allowing to deal with planar
graphs of minimum degree four or five (a planar graph has always a vertex of
degree at most five). It is already an open problem to enumerate 4-regular planar
graphs. In contrast, the enumeration of cubic planar graphs was completely solved
in [6].
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On the exit time from a cone for random walks with drift and
applications to the enumeration of walks in cones

Kilian Raschel

(joint work with Rodolphe Garbit)

This abstract is based on the paper “On the exit time from a cone for random
walks with drift”, see http://arxiv.org/abs/1306.6761.

In this article we consider d-dimensional random walks such that the law of the
increments has all exponential moments. For a large class of cones, we compute
the exponential decay of the probability for such random walks to stay in the
cone up to time n, as n goes to infinity. We show that the latter equals the
global minimum, on the dual cone, of the Laplace transform of the random walk
increments.

Our results find applications in the counting of walks in orthants, a classical
domain in enumerative combinatorics. Given a finite set S of allowed steps, a
now classical problem is to study S-walks in the orthant Q, that is walks confined
to Q, starting at a fixed point x (often the origin) and using steps in S only.
Denote by fS(x, y;n) the number of such walks that end at y and use exactly
n steps. Many properties of the counting numbers fS(x, y;n) have been recently
analyzed (the seminal work in this area is [1]). First, exact properties of them were
derived, via the study of their generating function (exact expression and algebraic
nature). Such properties are now well established for the case of small steps
walks in the quarter-plane, meaning that the step set S is included in {0,±1}2.
More qualitative properties of the fS(x, y;n) were also investigated, such as the
asymptotic behavior, as n→∞, of the number of excursions fS(x, y;n) for fixed
y, or that of the total number of walks,

(1) fS(x;n) =
∑

y∈Q

fS(x, y;n).

Concerning the excursions, several small steps cases have been treated by Bousquet-
Mélou and Mishna [1] and by Fayolle and Raschel [3]. Later on, Denisov and
Wachtel [2] obtained the very precise asymptotics of the excursions, for a quite
large class of step sets and cones. As for the total number of walks (1), only very
particular cases are solved, see again [1, 3]. In a most recent work [4], Johnson,
Mishna and Yeats obtained an upper bound for the exponential growth constant,
namely,

lim sup
n→∞

fS(x;n)
1/n,

and proved by comparison with results of [3] that these bounds are tight for all
small steps models in the quarter-plane. In the present article, we find the expo-
nential growth constant of the total number of walks (1) in any dimension for any
model such that:

(1) The step set S is not included in a linear hyperplane;
(2) The step set S is not included in a half-space u−, with u ∈ Q \ {0};
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(3) The step set allows a path staying in Q from the origin to some point in
the interior of Q.

In the sequel we shall say that a step set S is proper if it satisfies the properties
(1), (2) and (3). Note in particular that the well-known 79 models of walks in the
quarter-plane studied in [1, 3] (including the so-called 5 singular walks) satisfy the
hypotheses above.

Our theorem in combinatorics can be stated as follows. Let S be any proper
step set. The Laplace transform of S,

LS(x) =
∑

s∈S

e〈x,s〉,

reaches a global minimum on Q at a unique point x0, and for any starting point
x ∈ Qδ,

lim
n→∞

fS(x;n)
1/n = LS(x0).

As a consequence, we obtain the following result, which was conjectured in [4]:
Let S ⊂ Zd be a proper step set, and let KS be the growth constant for the total
number of walks (1). Let P be the set of hyperplanes through the origin in Rd

which do not meet the interior of the first orthant. Given p ∈ P , let KS(p) be
the growth constant of the walks on S which are restricted to the side of p which
includes the first orthant. Then KS = minp∈P KS(p).
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Multiple Binomial Sums

Bruno Salvy

(joint work with Alin Bostan and Pierre Lairez)

The computation of definite sums in computer algebra is classically performed by
the method of creative telescoping initiated by Zeilberger [10, 11, 12]. In order to
compute the sum of a sequence (u(n, k)), this method finds an identity of the form

a0(n)u(n+ p, k) + · · ·+ ap(n)u(n, k) = v(n, k + 1)− v(n, k).

Provided that it is possible to sum both sides over k and that the sequence (v(n, k))
vanishes at the endpoints of the domain of summation, the left-hand side — called
a telescoper — gives a recurrence for the sum. The right-hand side is then called
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the certificate of the identity. In the case of multiple sums, this idea leads to
searching for a telescoping identity of the form

(1) a0(n)u(n+ p, k1, . . . , km) + · · ·+ ap(n)u(n, k1, . . . , km) =

v1(n, k1 + 1, k2, . . . , km)− v1(n, k1, . . . , km) + · · ·
+ vm(n, k1, . . . , km + 1)− vm(n, k1, . . . , km).

Again, under favorable circumstances the sums of the sequences on the right-hand
side telescope, leaving a recurrence for the sum on the left-hand side.

This high-level presentation hides practical difficulties. The first one is that it
is important to check that the sequences on both sides of the identities above are
defined over the whole range of summation [1, 2]. The second one is a consequence
of the first one: computing the certificate is not merely a useful by-product of the
algorithm, but indeed a necessary part of the computation. Unfortunately, the
size of the certificate may be much larger than that of the final recurrence and
thus costly in terms of computational complexity.

The same difficulties occur in the differential case, when computing (multiple)
integrals. However, we have showed that integration of multivariate rational func-
tions over cycles can be achieved efficiently without computing the corresponding
certificate [4]. In that case, the algorithm computes a linear differential equation
for the parameterized integral. By passing to generating functions, a large number
of multiple sums can be cast into problems of rational integration. The algorithmic
consequences of this observation form the object of the present work.

More precisely, the algorithm we present handles all multiple sums of the form

(2) Sn :=
∑

k1,...,km

(

a1,1k1 + · · ·+ a1,mkm + c1n+ e1
b1,1k1 + · · ·+ b1,mkm + d1n+ f1

)

× · · ·

×
(

ar,1k1 + · · ·+ ar,mkm + crn+ er
br,1k1 + · · ·+ br,mkm + drn+ fr

)

gk1,...,km,n,

where the coefficients ai,j , bi,j , ci, di, ei, fi are integers, the sum is over all nonneg-
ative integer values that make these binomial coefficients nonzero plus possible
linear inequalities over the indices, and g is the sequence of coefficients of an alge-
braic series. This method also applies to multinomial coefficients, since they can
be rewritten as products of binomial coefficients. The sequence g could also be
taken as the sequence of coefficients of an arbitrary diagonal of a rational power
series. The literature on which sequences can and cannot be encoded into the
diagonal of a rational power series is large. We refer the reader to [3, 5] for more
information on this subject. In particular, it is easy to see that diagonals are
closed under sum, product and differentiation.

A classical example in this area is one of the intermediate steps in Apéry’s proof
of the irrationality of ζ(3), which relies on a linear recurrence for the sum

A(n) =

n
∑

k=0

(

n

k

)2(
n+ k

k

)2

.
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This is exactly of the form above. Our algorithm will first rewrite this as the
sequence of coefficients of the integral of a rational function in 5 variables around
the origin, next this is further simplified automatically as

∮

dt1 ∧ dt2 ∧ dt3
t1t2t3(1 − t1t2 − t1t2t3)− (1 + t1)(1 + t2)(1 + t3)z

.

This triple integral is the generating series of the sequence (A(n)). Our algorithm
from last year [4] computes a linear differential equation it satisfies, which is then
translated into the desired (classical) recurrence:

(n+ 1)3 A (n)− (2n+ 3)
(

17n2 + 51n+ 39
)

A (n+ 1) + (n+ 2)3 A (n+ 2) = 0.

Another example is provided by the sum C(n)

∑

r,s

(−1)n+r+s

(

n

r

)(

n

s

)(

n+ s

s

)(

n+ r

r

)(

2n− r − s

n

)

,

for which telescoper and certificate can be computed [8, p. 33], but not so easily [9,
Section 5.7.6]. It is however, readily encoded into

(1 + t3)
2

t1t2t3(1 + t3(1 + t1))(1 + t3(1 + t2)) + z(1 + t1)(1 + t2)(1 + t3)4
,

from where we get a linear differential equation of order 3, whence the recurrence

(4n+3)(4n+4)(4n+5)C(n)+2(2n+3)(3n2+9n+7)C(n+1) = (n+2)3C(n+2).

Even for simple (as opposed to multiple) sums, our approach may compare
favorably to the direct use of creative telescoping. For instance, the telescoper for

D(n) =

n
∑

k=0

(−1)k
(

n

k

)(

dk

n

)

computed by Zeilberger’s algorithm has order d − 1 [7]. Our algorithm readily
expresses the generating series as

(3)

∞
∑

n=0

D(n)tn =
1

2πi

∮

dy

y + t(1 + y)d − t
.

From there, since only the pole y = 0 tends to 0 when t tends to 0, the generat-
ing series is obtained as the corresponding residue 1/(1 + dt) and the first-order
recurrence D(n+ 1) = −dD(n) follows, showing that D(n) = (−d)n.

In summary, our approach to binomial summation consists in three steps. First,
we use the classical method of generating series (developed, e.g., by Egorychev [6])
to encode binomial sums of the form (2) into integrals of rational functions. We
then use differential creative telescoping methods to compute linear differential
equations satisfied by the generating series, and convert them back to recurrences.
This offers an alternative to discrete creative telescoping for binomial sums. For
a fair comparison, it should be stressed that our method deals only with binomial
sums, while discrete creative telescoping handles other sums that cannot be put
in the form of Eq. (2).
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To get bounds on the computational complexity of our method, and on the
size of the output recurrence, we import results on Picard-Fuchs differential equa-
tions satisfied by integrals of rational functions [4]. This lets us prove a complex-
ity estimate for multiple binomial summation, under the mild assumption that
g = 1 and the sum is over all Nm in Eq. (2). The recurrence has size (order,
degree) that is bounded in terms of the sum of (absolute values of) the parame-
ters ai,j , bi,j, ci, di, ei, fi, raised to an exponent that grows linearly with the num-
ber r of binomial coefficients and the number m of nested sums. The complexity
bound is of the same nature.
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Two enumerative tidbits

Richard Stanley

First tidbit. The first tidbit (with C. Bessenrodt) is a generalization of a classical
result of Carlitz, Roselle, and Scoville [1]. Let λ be a partition of some integer
n ≥ 1. We identitfy λ with its Young diagram. Let λ∗ be the augmented diagram
(shape) obtained by adding a border strip around the southeast boundary of λ.

Place the number 1 in the squares of λ∗/λ. Then place in the square t of λ
the integer nt such that the largest square subdiagram of λ∗ with upper left-hand
corner t, regarded as a matrix, has determinant one. It is easy to see that the
integers nt exist and are unique. The figure below shows this filling for λ = (3, 2).
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Let λ(t) be the largest subdiagram of λ with t as the upper left-hand corner. Let
ut be the number of partitions µ whose diagram is contained in λ(t), i.e., µ ≤ λ(t)
in Young’s lattice. The Carlitz-Roselle-Scoville theorem asserts that nt = ut.

We extend this result in two ways. We give a multivariate refinement of ut,
and we compute not just the determinant, but rather the Smith normal form
(SNF), which a priori need not exist. More specifically, for each square (i, j) of
λ (using matrix coordinates, so (1, 1) is the upper left-hand corner), associate an
indeterminate xij . Define a refinement uλ(x) of uλ by

uλ(x) =
∑

µ⊆λ

∏

(i,j)∈λ/µ

xij .

For t ∈ λ let

At =
∏

(i,j)∈λ(t)

xij .

Theorem. Let t = (i, j). Then Mt has Smith normal form

diag(Aij , Ai−1,j−1, . . . , 1).

The second tidbit (with Fu Liu = ). The second tidbit arose from a
problem submitted by Ron Graham to the New York Times Numberplay Blog of
March 25, 2013. Namely, if S is any 8-element subset of Z, can you two-color
S such that there is no three-term monochromatic arithmetic progression? This
question was finally answered affirmatively by Noam Elkies. His proof involved
the following concept. Let 1 ≤ i < j < k ≤ n and 1 ≤ a < b < c ≤ n. Define
{i, j, k} and {a, b, c} to be compatible if there exist integers x1 < x2 < · · · < xn

such that xi, xj , xk is an arithmetic progression and xa, xb, xc is an arithmetic

progression. Let
(

[n]
3

)

denote the set of all 3-element subsets of {1, 2, . . . , n}. Let

Mn denote the collection of all subsets S of
(

[n]
3

)

such that any two elements of S
are compatible. Elkies needed to look at the elements of M8. He was led to the
following conjectures.

Conjecture 1. #Mn = 2(
n−1
2 ).

Conjecture 2. The number of elements in Mn of maximum size is

g(n) =

{

2m(m−1), n = 2m+ 1

2(m−1)(m−2)(2m − 1), n = 2m.
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Note: The maximum size (number of elements) σ(n) of an element of Mn is
given by

σ(n) =

{

m2, n = 2m+ 1

m(m− 1), n = 2m.

We give proofs of both conjectures. The proof of Conjecture 1 is based on
an observation of Jim Propp that #Mn is equal to the number of antichains (or
equivalently, order ideals) in a certain poset Pn, and hence the number of elements
of the distributive lattice Ln = J(Pn) of order ideals of Pn. By examining the
join-irreducibles of Ln we show that it is isomorphic to the set of all semistandard
Young tableaux of shape (n − 2, n − 3, . . . , 1) with largest part at most n − 1.
Standard results from the theory of symmetric functions imply that the number

of such tableaux is 2(
n−1
2 ), as desired.

For the second conjecture, we use a theorem of Dilworth that the elements
of a finite distributive lattice J(P ) corresponding to maximum size antichains of
P forms a sublattice, necessarily distributive. Thus again we need to find the
number of elements in a distributive lattice Dn . We do this by analyzing the join-
irreducibles of Dn and showing that they are closely related to the join-irreducibles
of M⌊(n+2)/2⌋.
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Floors and Ceilings of the k-Catalan arrangement

Marko Thiel

For a crystallographic root system Φ with ambient space V , we define the k-
Catalan arrangement as the hyperplane arrangement given by all the hyperplanes
Hr

α = {x ∈ V | 〈x, α〉 = r} for α ∈ Φ and −k ≤ r ≤ k. Let us choose a
simple system S for Φ with associated positive system Φ+. Then the number of
regions of the k-Catalan arrangement that are contained in the dominant chamber

C = {x ∈ V | 〈x, α〉 > 0 for all α ∈ S} is the k-th Fuß-Catalan number Cat(k)(Φ)
of Φ [3]. This number also occurs in other contexts: it also counts the k-divisible
noncrossing partitions of Φ as well as the facets of the k-generalised cluster com-
plex of Φ [1]. Why this is so is still somewhat mysterious, as every known proof
of this fact appeals to the classification of irreducible crystallographic root systems.

For a dominant region R of the k-Catalan arrangement, we call the supporting
hyperplanes of facets of R its walls. Those walls of R that do not contain the origin
and have R and the origin at the same side we call the ceilings of R. The other
walls of R we call its floors. We call a hyperplane of the form Hr

α for some α ∈ Φ+

r-coloured. The number of dominant regions of the k-Catalan arrangement that

have exactly i k-coloured floors is the Fuß-Narayana number Nar(k)(Φ, i). We find
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Figure 1. The dominant chamber of the 2-Catalan arrangement
of type B2.

the same numbers as the rank numbers of the poset of k-divisible noncrossing par-
titions of Φ and also as entries of the h-vector of the k-generalised cluster complex
of Φ [1, Definition 3.5.4] [4] [5, Theorem 3.2] [7, Theorem 1]. Similarly, counting
bounded dominant regions by their number of k-coloured ceilings gives the entries
of the h-vector of the positive part of the k-generalised cluster complex of Φ [2,
Conjecture 1.2] [7, Corollary 5].

These coincidences suggest that it is interesting to study the refined enumer-
ation of dominant regions of the k-Catalan arrangement by floors and ceilings.
We find a very close relationship, given by the following theorem.

Theorem ([6, Theorem 1]). For any set M = {Hi1
α1
, . . . , Him

αm
} of hyperplanes in

the k-Catalan arrangement, with ij > 0 for all j ∈ [m], there is a bijection between
the dominant regions R such that all hyperplanes in M are floors of R and the
dominant regions R′ such that all hyperplanes in M are ceilings of R′.

From this we can deduce a number of enumerative corollaries, such as the
following.

Corollary ([1, Conjecture 5.1.24], [6, Corollary 3]). For any i ∈ Z>0 and j ∈ Z≥0,
the number of dominant regions R that have exactly j i-coloured floors equals the
number of dominant regions R′ that have exactly j i-coloured ceilings.
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Tamari lattice, m-Tamari, (a, b)-Tamari and beyond

Xavier Viennot

(joint work with Louis-Francois Preville-Ratelle)

In recent years, much work has been done on the associahedron and its underlying
lattice called the Tamari lattice. The vertices of this lattice are binary trees or
equivalently Dyck paths (or ballot paths), enumerated by the Catalan numbers Cn.
The order relation is generated by the covering relation defined with the so-called
rotation on binary trees, or equivalently a certain elementary transformation on
ballot paths. The number of intervals in the Tamari lattice is given by 2

n(n+1)

(

4n+1
n−1

)

(Chapoton, [4]), and this number also counts the rooted triangulations in the plane.
Motivated by the higher diagonal coinvariant spaces of the symmetric group,

Bergeron [2] introduced the m-Tamari lattice for every integer m by mimicking
the construction defining the covering relation on ballot paths, corresponding to
m = 1. The elements of this lattice are m-ballot paths, that is paths located
above the diagonal with slope 1/m. Much work has been done in algebra and in
combinatorics around these diagonal coinvariant spaces, which are representations
of the symmetric group indexed by a number of sets of variables. The topic
was initiated 20 years ago by Garsia and Haiman, in relation with Macdonald
polynomials, and many deep conjectures are still open even in the bivariate case
(i.e. with two sets of variables). Bergeron conjectured that the number of intervals
in the m-Tamari lattice is the dimension of the alternants of the trivariate higher
diagonal coinvariant spaces. He also conjectured that the number of such intervals

is given by m+1
n(mn+1)

(

(m+1)2n+m
n−1

)

, extending the formula of Chapoton. This last

conjecture was proved by Bousquet-Melou, Fusy and Preville-Ratelle [3].
Some authors [6, 1] extended such combinatorics to paths above a line of rational

slope a/b (where a and b are relatively prime). This is the so-called “rational
Catalan combinatorics” [1]. The problem to find a generalization of the Tamari
lattice for (a, b) is open and the question is posed by Elizalde in his research report
for this workshop.

In the talk of this workshop, we propose a solution to this problem, and a much
more general extension of the notion of Tamari lattice [10], containing m-Tamari
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and (a, b)-Tamari. For any path v, made of elementary north and east steps on
the square grid, we define a poset Tam(v). The elements are the paths u with
the same endpoints as v and weakly above v. Its covering relations are defined
by certain transformations on the paths u that depend on v. If the path v is the
path just above the line ax = by, we get the (a, b)-Tamari lattice, and recover the
particular cases of the ordinary Tamari and m-Tamari lattices.

Then we prove the following three propositions. 1) Tam(v) is a lattice. 2) The
lattice Tam(←−v ), where←−v is the mirror image of v, exchanging east and north steps,
is isomorphic to the dual of Tam(v). Thus (b, a)-Tamari is dual to (a, b)-Tamari.
This property was already briefly mentioned in the thesis of Preville-Ratelle [8],
and it is proved here in full generality. 3) We define a partition of the ordinary
Tamari lattice (on binary trees with n vertices) into 2n−1 intervals I(v), where
each interval is isomorphic to the lattice Tam(v). Thus all the lattices m-Tamari,
(a, b)-Tamari and extensions, are simply contained in the ordinary Tamari lattice.
Note that this embedding of the m-Tamari lattice in the ordinary Tamari lattice
is not the same as some previous embedding already given in the literature.

The key idea is in defining a bijection between binary trees and pair of paths
(u, v), where u is a path above the path v, and where the path v is called the
canopy of the binary tree. This notion of canopy was introduced by Loday and
Ronco (without giving a name) [7], in some algebraic considerations about the 3
Hopf algebra associated to the trilogy: hypercube, associahedron, permutahedron,
with respective dimensions 2n−1, Cn and n!. The bijection between binary trees
and pair of paths (u, v) was introduced in a different form by Delest and Viennot
[5]. We describe here a new version of the bijection which involves a “push-gliding”
algorithm, and fits to our purpose.

By studying the behavior of the canopy via the rotation on binary trees, we
first prove that the set I(v) of binary trees having a given canopy v is an interval
of the (ordinary) Tamari lattice. Then we prove that this interval I(v) is isomor-
phic to the poset Tam(v), using various equivalent definitions of the canopy, and
some combinatorics of binary trees and of the “push-gliding” bijection. The three
propositions above follow immediately. The duality between the lattices Tam(v)
and Tam(←−v ) follows from the simple fact that the mirror image of a binary tree ex-
changes the “right” rotation and the “left” rotation defining the covering relation
in each of theses lattices.

We mention that in a forthcoming paper [9], Preville-Ratelle has proved that
the total number of intervals in the lattices Tam(v), for all the paths v of length n,

is given by 2(3n+3)!
(n+2)!(2n+3)! , which is the same as the number of rooted non-separable

planar maps with n + 2 edges. This gives an answer to some questions posed by
the audience after our talk. Also in his talk at this workshop, Armstrong gave a
construction of a simplicial complex for any pair of relatively prime integers (a, b),
called the rational associahedra Ass(a, b) (see [1]). It will be interesting to compare
the constructions Ass(a, b) and (a, b)-Tamari.
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Connectivity and related properties for graph classes – overview of my
thesis

Kerstin Weller

(joint work with Mireille Bousquet-Mélou and Colin McDiarmid)

There has been much recent interest in random graphs sampled uniformly from
the set of (labelled) graphs on n vertices in a suitably structured class A. An im-
portant and well-studied example of such a suitable structure is bridge-addability,
introduced in [4] in the course of studying random planar graphs. A class A is
bridge-addable when the following holds: if we take any graph G in A and any
pair u, v of vertices that are in different components in G, then the graph G

′

ob-
tained by adding the edge uv to G is also in A. It was shown that for a random
graph sampled from a bridge-addable class, the probability that it is connected is
always bounded away from 0, and the number of components is bounded above
by a Poisson law.

What happens if ’bridge-addable’ is replaced by something weaker? In my the-
sis, this question is explored in several different directions and in my talk I chose
to present two different aspects of my research.

First part – minor-closed classes of graphs
Together with Mireille Bousquet-Mélou, I investigated minor-closed, labelled classes
of graphs. The excluded minors are always assumed to be connected, which is
equivalent to the class A being decomposable - a graph is in A if and only if ev-
ery component of the graph is in A. When A is minor-closed, decomposable and
bridge-addable various properties are known [5], generalizing results for planar
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Excluded C(ρ) Sing. lim pn number Nn root largest
minors of C(z) of comp. comp. Sn comp. Ln

2-connected < ∞ ? ≥ 1/
√

e O(1) n − Rn n − Fn
< 1 Poisson Rn → disc. Fn → disc.

at least < ∞ (1 − ze)3/2 > 0 id. id. id.
a spoon, ≤ 1/

√
e

but no tree

∞ log 0 log n n PD(1)(1/4)

(+
√

) gaussian 1
4
(1 − x)−3/4

∞ 1/
√

0 n1/3 n2/3 ?

gaussian 2
√

x/πe−x

∞ simple 0
√

n
√

n
√
n log n

(path forests) pole gaussian xe−x Gumbel

∞ id. 0 id. id. ?
(forests of

caterpillars)

∞ id. 0 id. id. ?
(max. deg. 2) (+ log)

all conn. graphs ∞ entire 0 n/k k k
of size k + 1 (polynomial) gaussian Dirac Dirac

Table 1. Summary of the results: for each quantity Nn, Sn and
Ln, we give an equivalent of the expected value (up to a mul-
tiplicative constant, except in the last line where constants are
exact) and a description (name or density) of the limit law. The
examples are ordered according to the speed of divergence of C(z)
near its radius ρ. Spoons are graphs made of a triangle with a
path attached to one vertex of the triangle. As we get lower in the
table, the graphs have more components, of a smaller size. The

symbol PD(1)(1/4) stands for the first component of a Poisson-
Dirichlet distribution of parameter 1/4.

graphs. A minor-closed class is decomposable and bridge-addable if and only if
all excluded minors are 2-connected. In our paper [2], we present a series of ex-
amples where the excluded minors are not 2-connected, analysed using generating
functions as well as techniques from graph theory. This is a step towards a classifi-
cation of connectivity behaviour for minor-closed classes of graphs. In contrast to
the bridge-addable case, different types of behaviours are observed and the results
are summarised in Table 1. Furthermore, we investigate a parameter that has not
received any attention in this context yet: the size of the root component. It fol-
lows non-gaussian limit laws (beta and gamma), and clearly deserves a systematic
investigation (work in progress).
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Second part – relatively bridge-addable classes of graphs
Together with my supervisor Colin McDiarmid I generalize the result for bridge-
addable classes of graphs in [4] to relatively bridge-addable classes of graphs where
some but not necessarily all of the possible bridges are allowed to be introduced.
We start with a bridge-addable class A and a host graph H , and consider the set
of subgraphs of H in A. This set of subgraphs is then relatively bridge-addable
with respect to H and the notion was first introduced in [6]. Our connectivity
bound then involves the edge-expansion properties of the host graph H . We also
give a bound on the expected number of vertices not in the largest component.
Furthermore, we investigate whether these bounds are tight, and in particular give
detailed results about random forests in balanced complete multipartite graphs [7].

References

[1] Addario-Berry, L., McDiarmid, C. and Reed, B.: Connectivity for Bridge-Addable Monotone
Graph Classes, Combinatorics, Probability and Computing, 2012, vol. 21, 803–815

[2] Bousquet-Mélou, M., Weller, K.: Asymptotic properties of some minor-closed classes of
graphs, to appear.

[3] Kang, M. and Panagiotou, K. : On the connectivity of random graphs from addable classes,
Journal of Combinatorial Theory, Series B , 2013, vol. 103, pp. 306 – 312

[4] McDiarmid, C., Steger, A. , Welsh, D. J.A.: Random planar graphs, Journal of Combina-
torial Theory, Series B, 2005, vol. 93, pp. 187 – 205

[5] McDiarmid, C.: Random graphs from a minor-closed class, Combinatorics, Probability and
Computing, 2009, vol. 18, pp. 583–599

[6] McDiarmid, C., Weller, K.: Relatively bridge-addable classes of graphs, LATIN 2014.
[7] McDiarmid, C., Weller, K.: Bridge-addability, edge-expansion and connectivity, submitted.

Enumeration of graphs with a heavy-tailed degree sequence

Nick Wormald

(joint work with Pu Gao)

For a positive integer n, let d = (d1, d2, . . . , dn) be a non-negative integer vector.
How many simple graphs are there with degree sequence d? We denote this
number by g(d). No simple exact formula is known for g(d), but some illuminating
formulae have been obtained for the asymptotic behaviour of g(d) as n → ∞,
provided certain restrictions are satisfied by the degree sequence d.

We asymptotically enumerate graphs with a given degree sequence d = (d1, . . . , dn)
satisfying restrictions designed to permit heavy-tailed sequences in the sparse
case (i.e. where the average degree is rather small). For stating such restric-
tions, we often use the notations Mk =

∑n
i=1[di]k for any integer k ≥ 1, where

[x]k = x(x − 1) · · · (x − k + 1) for any nonnegative integer k. Note that M1 is
simply twice the number of edges in the graphs. We also define ∆ = maxi di.

Our general result requires upper bounds on Mk for a few small integers k ≥ 1.
As special cases, we asymptotically enumerate graphs with

• degree sequences satisfying M2 = o(M
9/8
1 );

• degree sequences following a power law with parameter γ > 5/2;
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• degree sequences following a certain ‘long tailed’ power laws;
• bi-valued degree sequences satisfying certain conditions.

A previous result on enumeration of sparse graphs by McKay and the speaker [3]

applies to a wide range of degree sequences but requires ∆ = o(M
1/3
1 ), where ∆

is the maximum degree. This immediately requires ∆ = o(n1/2) . The new result

applies in some cases when ∆ is only barely o(M
3/5
1 ), or o(n2/3). Case (i) above

extends a result of Janson [1, 2] which requires M2 = O(M1) = O(n) (and hence

∆ = O(M1
1/2) = O(n1/2)).

Random graphs with given degree sequence d can be generated by the pairing
model. This is a probability space consisting of n distinct bins vi (representing the
n vertices), 1 ≤ i ≤ n, each containing di points, and all points are uniformly at
random paired (i.e. the points are partitioned uniformly at random subject to each
part containing exactly two points). We call each element in this probability space
a pairing, and two paired points (points contained in the same part) is called a
pair. Let Φ denote the set of all pairings. Then |Φ| equals the number of matchings
on M1 points, and

|Φ| = M1!

2M1/2(M1/2)!
=
√
2(M1/e)

M1/2
(

1 +O(M−1
1 )
)

.

For each pairing P ∈ Φ, consider the multigraph generated by P by representing
bins as vertices and pairs as edges. This has degree sequence d. It is easy to see
that every simple graph with degree sequence d corresponds to exactly

∏n
i=1 di!

distinct pairings in Φ. Hence, letting S(n,d) denote the probability that the
random multigraph generated by the pairing model is simple, we have

g(d) =
|Φ|

∏n
i=1 di!

S(n,d),

and we are left with estimating S(n,d). The results mentioned above are obtained
in this way. In both [3] and [1], S(n,d) is estimated by using what are called
switchings, and in [2] it is done by the method of moments, which will not be
effective when the probability that the graph is simple tends quickly to 0. Our
main result gives an estimate of S(n,d) under certain new conditions. Since these
conditions are quite complicated, we just give some special cases here.

Theorem 1. Let d have minimum component at least 1 and satisfy M2 = o(M
9/8
1 ).

Then with λi,j = didj/M1 and |Φ| given above,

S(n,d) =
(

1 +O(
√

ξ)
)

exp



−M1

2
+

M2

2M1
− M3

3M2
1

+
3

4
+
∑

i<j

(

log(1 + λi,j)
)



 ,

where ξ = M4
2 /M

9/2
1 +M

3/2
2 /M2

1 + 1/M1 and necessarily ξ = o(1).

In the next example, we consider degree sequences d that follow a so-called
power law with parameter γ > 1, i.e. the number ni of vertices of degree i is
approximately ci−γn for some constant c > 0. We relax these conditions a little
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to say that d is a power-law bounded sequence with parameter γ if ni = O(i−γn)
for all i ≥ 1.

Theorem 2. Assume that d is a power-law bounded sequence with parameter
γ > 5/2. Then putting M∗

i = Mi +M1 for i = 2 and 3,

S(n,d) = exp

(

− M2

2M1
− M2

2

4M2
1

+
M2

3

6M3
1

+O(n5/γ−2)

)

.

Note that in the case of a ‘strict’ power law, where d is a sequence with ni =
Θ(i−γn) for i ≤ ∆ = Θ(n1/γ), with 5/2 < γ < 3 constant, the whole exponential
factor in this theorem is exp

(

−Θ(n6γ−2)
)

.
The main advantage of our results over existing ones is for the case when the

degree sequence is far from that of a regular graph. Two special cases of our main
result (to be presented later), exemplify this. One general example is for degree
sequences with only two distinct degrees, which we call bi-valued.

Theorem 3. Let 3 ≤ δ ≤ ∆ be integers depending on n, and assume that di ∈
{δ,∆} for 1 ≤ i ≤ n. Let ℓ denote the number of vertices with degree ∆. If

(a) ∆ = O(
√
δn+∆ℓ) and ξ := (∆7ℓ3+∆3δ4n2ℓ+δ7n3)/(δ4n4+∆4ℓ4) = o(1),

or

(b) ∆ = Ω(
√
δn) and ξ :=

∆5ℓ3

δ3n3
+

∆5ℓ2

δ2n3
+

δ3

n
+

∆3ℓ

n2
= o(1),

then

S(n,d) = exp

(

− M1

2
+

M2

2M1
+

3

4
+
∑

i<j

log(1 + didj/M1) +O
(
√

ξ
)

)

where Mi is simply [∆]iℓ+ [δ]i(n− ℓ).

Note that the summation in the exponent in this theorem is easy to express in terms
of δ etc. as there are only three possible values of didj . Also, part (b) applies to

some instances of bi-valued sequences where the minimum degree is around n1/3−ǫ

and simultaneously there are up to nǫ vertices with maximum degree as large as
o(n2/3−ǫ). These are much higher degrees than can be reached by any previously
published results on enumeration of sparse graphs with given degree sequence.

To prove our main result, we estimate S(n,d) using a switching method that
‘eliminates’ loops and multiple edges from random pairings. We extend the defi-
nition of the switchings used in [3] in a natural way to handle loops and multiple
edges of arbitrarily high multiplicities. On the other hand, our method of analysis
of the switchings is very different.
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Problems presented at the problem session

Edited by Svante Linusson

Einar Steingrimsson: The number of 1324-avoiding permutations and

a related conjecture

An occurrence of the pattern 1324 in a permutation a1a2 . . . an of the integers
{1, 2, . . . , n} is a subsequence aiajakaℓ, with i < j < k < ℓ and ai < ak < aj < aℓ.
A permutation avoids 1324 if it has no occurrence of 1324. For example, 2638 is
an occurrence of 1324 in 52763148, whereas 426513 avoids 1324.

Let An(1324) be the number of permutations of length n that avoid 1324. The
problem is to find a closed formula for An(1324) or else the Stanley-Wilf limit for
1324, namely,

SW(1324) = lim
n→∞

n
√

An(1324).

The currently best known published bounds (see [3, Section 3] for attributions)
are

9.47 < SW(1324) < 13.93,

although a new upper bound of 13.73718 has recently been found by Bóna [1],
and a new lower bound of 9.81 by David Bevan (yet unpublished). It seems likely
that the actual number lies between 11 and 12 and, after the presentation of this
problem, Tony Guttmann came up with the estimate SW(1324) ≈ 11.598± 0.003,
based on extrapolation of known values for n ≤ 36.

A conjecture [2, Conjecture 13] whose confirmation would lead to an upper
bound of 13.02 is this, where an inversion is a pair (i, j) with i < j and ai > aj :

Let Ak
n(1324) be the number of permutations in An(1324) with ex-

actly k inversions. Then, for each k, Ak
n(1324) is weakly increasing

as a function of n.

In fact, it is also conjectured in [2, Conjecture 20] that this weakly increasing
property holds for all patterns except the strictly increasing ones.
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[1] M. Bóna: A new record for 1324-avoiding permutations, arXiv:1404.4033.
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Drew Armstrong: The expected length of the longest

k-alternating run of a permutation

For each permutation w ∈ Sn we let ask(w) be the length of the longest “k-
alternating subsequence” in w. That is, the length of the longest sequence

wi1 > wi2 < wi3 > wi4 < · · ·
where |wij − wij+1 | ≥ k for all j. Let ask(n) denote the average length of the
longest k-alternating subsequence:

ask(n) :=
1

n!

∑

w∈Sn

ask(w).

Conjecture: For 1 ≤ k ≤ n− 1 we have

ask(n) =
4(n− k) + 1

6
.

Remark: The case k = 1 was proved by Stanley (http://arxiv.org/abs/math/
0511419v1).

Bonus. Explain why ask(n) depends only on the difference n− k.

Miklos Bona: The probability that a random vertex of a rooted

plane tree is a leaf

Let Tn be the set of all rooted plane trees on vertex set [n] in which the label of
each child is less than that of its parent. It is straightforward to prove by generating
functions or induction that |Tn| = (2n− 3)!!, and that the total number of leaves
in all elements of Tn is (2n + 1)!!/3. Therefore, a randomly selected vertex of a
random tree in Tn has asymptotically 2/3 chance of being a leaf. Is there a simple
combinatorial proof of this fact? (No generating functions, no induction.) In other
words, prove that if pn is the probability that a random vertex of a random element
of Tn is a leaf, then pn converges to 2/3 as n goes to infinity.

Richard Stanley has come up with a simple solution if we assume that L =
lim∞ pn exists. It would still be preferable to find a simple combinatorial proof
that does not need this asumption.

Brendan McKay: Enumeration of sparse symmetric matrices

without 1

Let J, J∗ be subsets of the non-negative integers, and let d = d(n) = (d1, . . . , dn)
be a vector of non-negative integers. Let M(n, J, J∗) be the number of symmetric
matrices whose diagonal entries are drawn from J∗ and off-diagonal entries from J ,
whose row sums are d1, . . . , dn. As usual in graph theory, entries on the diagonal
are counted twice. We are interested in the asymptotic value of M(n, J, J∗) in
the sparse case, where the row sums do not grow very quickly with n. The most
general result completes the case where 0 ∈ J∗ and 0, 1 ∈ J (C. S. Greenhill and B.
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D. McKay, Asymptotic enumeration of sparse nonnegative integer matrices with
specified row and column sums, Adv. Appl. Math., 41 (2008) 459–481). The
requirements that 0 ∈ J∗ and 0 ∈ J are easy disposed of; for example if 0 is not
permitted on the diagonal we can just subtract 1 from each diagonal entry and
2 from each di. However, disposing of the requirement that 1 ∈ J is not so easy.
The simplest non-trivial case is J∗ = {0} and J = {0, 2, 3}.

Colin McDiarmid: Connectivity for an unlabelled bridge-addable

graph class

Call a class A of graphs bridge-addable if, whenever a graph G in A has vertices
u and v in distinct components, then the graph G + uv (obtained by adding the
edge uv) is also in A.

Let Ãn denote the set of graphs in A on n unlabelled vertices. Let us use the
notation R̃n ∈u Ã to indicate that the random unlabelled graph R̃n is sampled
uniformly from Ãn. We make two conjectures about the probability of being
connected.

Conjecture 1 There is a δ > 0 such that, if Ã is bridge-addable and R̃n ∈u Ã,
then

(1) P(R̃n is connected) ≥ δ for each n.

A first step would be to show that there is such a δ which may depend on A -
even that would be interesting. For forests (which are bridge-addable) we have

P(R̃n is connected)→ τ ≈ e−0.5226 ≈ 0.5930 as n→∞, see for example the first
line of table 3 in [1].

The second conjecture is more speculative. Call the class A of graphs decom-
posable when a graph is in the class if and only if each component is.

Conjecture 2 If Ã is decomposable and bridge-addable and R̃n ∈u Ã then

(2) lim inf
n

P(R̃n is connected) ≥ τ.

The fragment size frag(G) of a graph G is the number of vertices less the max-
imum number of vertices in a component. The final conjecture is also a little
speculative.

Conjecture 3 There is a constant c such that, if A is decomposable and bridge-
addable and R̃n ∈u Ã, then E[frag(R̃n)] ≤ c.

For labelled graphs the corresponding statements are known, see e.g. [2].
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Ira Gessel: Enumeration of labeled binary trees and the

enumeration of regions of subarrangements of the Catalan

arrangement

We count labeled binary trees according to the number of left and right ascents
and descents. In the following figure,

vertex 1 is a left descent because it is a left child and is smaller than its parent;
vertex 6 is a right ascent because it is a right child and larger than its parent. Let

Bn(u1, u2, v1, v2) =
∑

T

u
LA(T )
1 u

LD(T )
2 v

RA(T )
1 v

RD(T )
2

where the sum is over all n!Cn = n!
n+1

(

2n
n

)

labeled binary trees on [n], LA(T ) is
the number of left ascents of T , and so on.

The first few values of Bn = Bn(u1, u2, v1, v2) are B1 = 1, B2 = u1+v1+u2+v2,
and B3 = u2

1 + v21 + u2
2 + v22 + 4(u1 + v2)(u2 + v1) + 5(u1v2 + u2v1).

It is surprising that evaluations of Bn(u1, u2, v1, v2) count regions of certain
hyperplane arrangements (all subarrangements of the braid arrangement):

Bn(1, 1, 1, 1) = n!Cn is the number of regions of the Catalan arrange-
ment, xi − xj = 0,±1, for 1 ≤ i < j.

Bn(1, 0, 1, 0) = n! is the number of regions of the braid arrangement,
xi − xj = 0, for 1 ≤ i < j ≤ n.

Bn(1, 1, 1, 0) = (n+1)n−1 is the number of regions of the Shi arrange-
ment, xi − xj = 0, 1 for 1 ≤ i < j ≤ n.

Bn(0, 1, 1, 0) is the number of regions of the Linial arrangement, xi −
xj = 1, for 1 ≤ i < j ≤ n.

Is there a bijective explanation? Such a bijection should lead to additional
results, as there are other interesting specializations (e.g., giving the Eulerian
polynomials) and generalizations of the polynomials Bn(u1, u2, v1, v2) (notably
a symmetric function version, corresponding to trees with repeated labels) and
many generalizations of the arrangements described above that share some of
their properties. If there is no bijective explanation, one could at least hope for
some sort of combinatorial explanation, e.g., perhaps involving Möbius inversion.
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Sylvie Corteel: Combinatorics of Rogers-Ramanujan identites

The Rogers-Ramanujan identities were proved in the 1910s by Rogers and Ra-
manujan. They are

∑

n≥0

qn(n+i)

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
.

with i = 0, 1 and (a, q)n =
∏n−1

i=0 (1− aqi).
A lot of generalizations were done in theXXth century For example the Andrews-

Gordon identities proven in the 60s are

∑

n1,...,nk

q
∑k

j=1 n2
j+

∑k
j=i nj

(q)n1−n2 . . . (q)nk−1−nk
(q)nk

=
(q2k+3; q2k+3)∞

(q; q)∞
θ(qi; q2k+3)∞.

with θ(a, q) = (a; q)∞(q/a; q)∞. They all have combinatorial interpretations in
terms of integer partitions.

Recently, Foda and Wheeler (private communication), gave an interpretation
of the Andrews-Gordon identities’ sum side thanks to cylindric plane partitions
(introduced by Gessel and Krattenthaler (1990s) and then studied by Borodin
(2000s)). A lot of combinatorial problems can be attacked thanks to this new
approach and open some new hope for the combinatorics of the Rogers-Ramanujan
identities.

Another breakthrough is due to Bartlett and Warnaar (2013) followed by Grif-

fith, Ono and Warnaar (2014). They give some A
(2)
2n -analogues of the Rogers-

Ramanujan identities. Namely

∑

λ;λ1≤m

P2λ(1, q, . . . ; q
2n−1) =

(qκ; qκ)∞
(q; q)∞

∏

1≤i<j≤m

θ(qj−i; qκθ(qi+j−1; qκ)∞.

with κ = 2m+ 2n+ 1.
The combinatorial interpretation of this identity (and the other identities of the

paper) is a wide open problem.

Tony Guttmann: The asymptotic behaviour of the enumeration of

Dyck paths weighted by height

Let dn,h be the number of Dyck paths of length 2n and height (maximal y-co-
ordinate) h. Then

D(x, y) =
∑

dn,hx
2nyh.

For y < 1, calculate the asymptotic behaviour of

[x2n]D(x, y) =
∑

h

dn,hy
h,

which I expect to behave as

const.4nµnσ

ng

where both const and µ are y-dependent.
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Solution Robin Pemantle almost immediately produced an argument that σ =
1
3 , and a day later Brendan McKay produced the solution giving the explicit y-
dependence of both const and µ.

Mireille Bousquet-Mélou: Corners in square lattice loops

We consider square lattice walks, with North, South, East and West steps,
starting and ending at the origin. We call them loops. We focus on those that stay
in the first (that is, nonnegative) quadrant {(i, j) : i ≥ 0, j ≥ 0}.

Let Qn(a) be the polynomial that counts quadrant loops of length 2n by the
number of NW and ES factors. For instance, the loop NEENSESWWW contains
one such factor (ES) and contributes a to the polynomial Q5(a).

A recent study of permutations that can be sorted by two parallel stacks [1],
joint with Michael Albert (Dunedin, New-Zealand), has led us to a pair of intrigu-
ing conjectures dealing with Qn(a).
Conjecture The expansion of Qn(a) in powers of (a+ 1) reads

Qn(a) =

n−1
∑

i=0

qi,n(a+ 1)i,

where qi,n ≥ 0. We say that Qn(a) is (a+ 1)-positive.

Evidence for this conjecture. True for n ≤ 200, even if we refine by fixing the
number of horizontal and vertical steps: the polynomials Qi,j(a) that count loops
with 2i horizontal steps and 2j vertical steps seem to be (a+ 1)-positive. Proved
for general loops (unconfined) and for loops confined to the upper half-plane. Also,
we know the value when a = −1, and it is remarkably nice:

Qi,j(−1) =
(

i+ j

i

)

CiCj .

We have no combinatorial explanation of this identity, and its proof is not partic-
ularly easy.

Our second conjecture deals with the exponential growth of the (positive) num-
bers Qn(a), for a ≥ −1, or equivalently, with the radius of the series Q(a, u) =
∑

n≥0 u
nQn(a). We conjecture it to be the same as for unconfined loops, for all

a ≥ −1. The exact (algebraic) value is given in [1], where the reader will also find
details, proofs and (possibly helpful) comments.
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Richard Stanley: D-finiteness of certain series associated with

group algebras

Let G be a group and ZG its integral group algebra. For u ∈ ZG let fu(n) =
[1]un, the coefficient of the identity element of G when un is expanded in terms
of the basis G. Set Fu(x) =

∑

n≥1 fu(n)x
n. If F = Fd, the free group on d

generators, then it is known that Fu(x) is algebraic. This goes back to Chomsky
and Schützenberger and seems first to have been explicitly stated by Haiman. If
G = Zd then it follows from standard facts about D-finite series that Fu(x) is
D-finite, though it need not be algebraic.

Maxim Kontsevich asked whether Fu(x) is always D-finite when G = GL(d,Z).
This remains open, though it is known that the question of whether Fu(x) = 0 is
undecidable. More generally, we can ask for which groups G is Fu(x) algebraic for
all u ∈ ZG, and for which groups is Fu(x) D-finite for all u ∈ ZG.

Nick Wormald: Reduction of degree in the coefficients of a

generating function

Problem: Let [y]k denote y(y − 1) · · · (y − k + 1) and At(y, z) the coefficient
of xt in

log
∑

k≥0

[y]k[z]k
k!

xk.

Clearly At has total degree at most 2t. Show that At has total degree at most
t+ 1 for t ≥ 1.

Notes:

(1) A short solution was quickly found by Ira Gessel, Gilles Schaeffer and
Richard Stanley, each independently.

(2) A similar question: show that for t ≥ 1 the coefficient of xt in

log
∑

k≥0

[y]2m
m!

xm

has degree t+ 1. This was also solved by Ira Gessel, using the solution to
the main problem.

(3) Ira Gessel has obtained the leading coefficients in both questions.
(4) The effect of ‘reduction of degree’ occurring in a similar context is ex-

plained in a paper of Valentin Féray, “Asymptotic behavior of some sta-
tistics in Ewens random permutations” (Electron. J. Probab. 18 (2013),
no. 76, 32 pp).
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Jim Haglund: The sweep map on rational Catalan paths

Let (m,n) be a pair of relatively prime positive integers. Let Grid(m,n) be
the n ×m grid of labelled squares whose upper-left-hand square is labelled with
(n− 1)(m− 1)− 1, and whose labels decrease by m as you go down columns and
by n as you go across rows. For example, Grid(3, 7) is the array

11 4 -3
8 1 -6
5 -2 -9
2 -5 -12
-1 -8 -15
-4 -11 -18
-7 -14 -21

(3)

By a lattice path we mean a sequence of North N steps and East E steps, starting at
the lower-left-hand corner and ending at the upper-right-hand corner. Let D(m,n)

denote the set of lattice paths π for which none of the squares with negative labels
are above π. We call the set of corners which are touched by π the “vertices” of
π. Given a path π, let S(π) be the set of labels of those squares whose upper-left-
hand-corners are vertices of π. A given label in S(π) is called an N label if the
vertex associated to it is the start of an N step, otherwise it is called an E label.
Here is an example:
π = NNNNNNEENE, S(π) = {−10,−7,−4,−1, 2, 5, 8, 1,−6,−3}.

We now define the “sweep map” of [1], denoted φ, from D(m,n) → D(m,n) as
follows: Given π ∈ D(m,n), order the elements of S(π) in increasing order to create
a vector of labels E(π) = (e1, e2, . . . , em+n). Then create a path φ(π) by defining
the ith step of φ(π) to be an N step (E step) if ei is an N label (E label). For
the example above, we have

E(π) = (−10,−7,−6,−4,−3,−1, 1, 2, 5, 8) φ(π) = NNNNENENNE.(4)

Problem: Prove that φ is a bijection from D(m,n) → D(m,n).
If m = n+1 the φ map reduces to the ζ map described on page 50 of [3], which

is known to be a bijection. More generally, in [2] it is shown that φ is a bijection
whenever m = kn+ 1 or m = kn− 1 for some positive integer k.
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Jang Soo Kim: Fillings of the shifted staircase

Let a1 < a2 < · · · < an be a sequence of positive integers. We define Y (a1, a2, . . . , an)
to be the set of fillings of the shifted staircase of size n with 1, 2, . . . ,

(

n
2

)

such that
a1, a2, . . . , an are in the diagonal cells and the entries are increasing from left
to right and from top to bottom. For instance, the following is an element in
Y (1, 3, 8, 10).

We define S(a1, a2, . . . , an) to be the set of fillings of the shifted staircase of
size n with 1, 2, . . . ,

(

n
2

)

such that a1, a2, . . . , an are in the diagonal cells and every
non-diagonal entry is bigger than the diagonal entry in the same row and smaller
than the diagonal entry in the same column. For instance, the following is an
element in S(1, 3, 8, 10).

Kim and Oh showed that

|S(a1, a2, . . . , an)| = |Y (a1, a2, . . . , an)|1!2! . . . (n− 1)!.

Find a bijective proof of the above equation. This problem was motivated from
the Selberg integral formula.

Svante Linusson: Narayana numbers in an identity involving

Semistandard Young Tableaux

Set SSYTr,k(m) to be the number of semistandard Young tableaux on a shape
of two columns of lengths r ≥ l with no number exceeding m. We are interested
in the following quantity.

Y β
r,l(m) := number of SSYTs on two columns r ≥ l with no entry exceeding

m such that the number β appears somewhere in the second column.

In [1] the following identity was proven.

Theorem For m ≥ r ≥ l ≥ 1 and 1 ≤ β < m we have

Y β
r,l(m) =

∑

1≤f≤e≤β

Ne−1,f−1 · SSYTr−f,l−f (m− e),
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where

Ne,f =
1

e

(

e

f + 1

)(

e

f

)

are the Narayana numbers.

The proof is recursive and does not give any insight into why the Narayana
numbers occurr here.

Problem: Find a proof of the formula that explains the presence of the
Narayana numbers.
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