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Introduction by the Organisers

The workshop Adaptive Statistical Inference, organised by Mark Low (Wharton),
Axel Munk (Göttingen) and Alexandre Tsybakov (Paris) was attended by over 50
participants. The majority of the talks presented at this workshop can be clustered
in the following thematic groups: adaptive nonparametric estimation in regression
and machine learning, adaptation to the unkown sparsity in high-dimensional mod-
els, adaptive testing, adaptation to the unknown function in statistical inverse
problems, adaptation for confidence and credible sets. Two larger survey talks
have been given by O. Lepski on ”Adaptive estimation over anisotropic functional
classes via oracle approach” and by A. van der Vaart on ”Confidence in Credible
Sets”. PhD students presented their work in a ”Young researcher’s session” Tues-
day evening. On Wednesday a memorial session dedicated to the remembrance of
Laurent Cavalier (Marseille) was held.

Adaptive nonparametric estimation.
The talk of Oleg Lepski deals with adaptive estimation in gaussian white noise

model. It gives a classification of optimal rates of convergence of estimators on
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anisotropic Besov and Nikolskii classes under Lq-norms. The method is based on
new oracle inequalities for aggregation of linear estimators.

The talk of Lucien Birgé concentrates on adaptation to unknown distribution
of errors in nonparametric regression. A universal procedure is suggested that
adaptively achieves the optimal rates in the Helliger distance independently of the
form of the noise.

Johannes Schmit-Hieber studies the problem of simultaneous adaptive estima-
tion in L2 and L∞ norms, and he suggests a new procedure based on wavelet
thresholding that achieves this task.

Alexander Rakhlin addresses the problem of comparison of the behavior of min-
imax risk in nonparametric estimation and minimax regret in statistical learning,
showing that the rates for both quantities coincide when the complexities of the
underlying functional classes are not too large.

Victor-Emmanuel Brunel gives a new insight into adaptive nonparametric es-
timation of convex sets and convex polytopes. He derives the optimal rates of
convergence on classes of polytopes and suggests an adaptive procedure attaining
this rate.

High-dimensional inference in regression models.
The talk of Arnak Dalalyan reports some refined results on the behavior of the

Lasso estimators in high-dimensional linear regression when the Gram matrix of
the problem is of low rank. In particular, the estimators are shown to automatically
adapt to small rank in the sense of improving the prediction error.

The talk of Sara van de Geer is devoted to asymptotic confidence intervals for
the parameters of high-dimensional linear regression based on Lasso type estima-
tors.

Guillaume Lecué shows that the restricted eignevalue assumption, which is cru-
cial for the study of Lasso-type methods, holds under weaker moment conditions
than the sub-gaussianity supposed in the previous work.

Olga Klopp shows that varying coefficients models can be embedded into the
framework of random matrix regression models. She proposes methods of esti-
mation in this setting and derives optimal rates of convergence up to logarithmic
factors.

Peter Bühlmann suggests an estimation procedure in high-dimensional mixture
regression model. He introduces a summary parameter characterizing the mixture
and studies the rates of estimation of this parameter when the dimension can be
much larger than the sample size.

High-dimensional matrix models and graphical models.
The talk of Florentina Bunea deals with the problem of estimation of large

covariance matrices having a banded structure. She introduces a new method,
which is computationally feasible and adaptively attains the optimal rates both in
Frobenius and operator norm.

Bin Yu discusses in her talk the problem of community detection in networks
via a spectral clustering algorithm with regularisation. She shows adavantages
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of the regularised algorithm as compared to the non-regularised one in terms of
relaxing the assumptions on the model.

The talk of Anru Zhang is devoted to matrix completion in the situation when
only a subset of rows and columns of an approximately low-rank matrix are ob-
served. A new method of matrix recovery is proposed and it is shown that it
achieves the optimal rate over certain classes of approximately low-rank matrices.

Harrison Zhou considers the problem of estimation of the individual entries of a
precision matrix in Gaussian graphical model. He characterizes the conditions on
the maximum degree of the graph, the dimension of the model and the sample size
n such that each entry of the matrix can be adaptively estimated at the parametric√
n rate.
Adaptive testing hypotheses.
The talk of Michael Nussbaum discusses the methods of adaptive nonparametric

testing on Sobolev ellipsoids of unknown radius.
Cristina Butucea considers testing hypotheses about large matrices observed in

gaussian white noise. She derives minimax separation rates of testing the presence
of a small cluster in such a matrix.

Statistical inverse problems.
Thorsten Hohage discusses Poisson inverse problems and highlights the contri-

butions of Laurent Cavalier. He extended his work to nonlinear operators and
analyzed nonlinear Tikhonov regularisation in this conetxt. To this end he showed
an uniform exponential deviation inequality for the sup over a class of functionals
of a Poisson proces.

Housen Li extended a multiscale estimation technique due to Nemirovski to de-
convolution problems. He introduced a new estimator and a variational technique
which allows to prove adaptation over a large scale of functions.

Tengyuan Liang studies the properties of the atomic norm constrained min-
imization procedure for the general statistical inverse problem setting. He also
provides a lower bound on the minimax risk for this setting, which depends on
dimension, sample size and volume ratio driven by the geometry of the model.

Adéläıde Olivier studies nonparametric estimation of the division rate function
for a size-structured particle model from observing the life lengths of the particles
that lived before a fixed time. She proposes a nonparametric estimator that attains
the minimax optimal rate.

Markus Reiss analyzes the risk hull technique in an inhomogeneous sequence
model. Estimation becomes first of all a model selection problem. He shows that
the risk hull method gives adaptation to the unknown sparseness. Computational
issues for the resulting estimators is addressed. This is based on previous joint
work with Laurent Cavalier.

Confidence and Adaptation
Lutz Dümbgen revisits the classical problem of confidence bands for distribution

functions. He constructs tighter confidence bands as the usual ones. This approach
unifies the benefits of Kolmogoroff’s and Berk-Jone’s bands. To this end the
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local uniform sub-excponential condition is established which allows to prove an
exponential inequality of the sup of a calibrated process satisfying this condition.

Max Sommerfeld considers the problem of confidence statements for modes and
their location in the context of circular data. He extends the SiZer methodology
to this case and characetrizes the wrapped Gaussian kernel as the only one which
generates a circular scale space. The connection to topological data analysis is
highlighted.

Aad van der Vaart disucsses the question to what extend adaptation of credible
sets can be achieved in the Bayesian nonparametric setting. He focuses on the
empirical Bayes method to cope with unknown smoothness. This is analyszed in
a sequence model which resembles polynomial degree of ill posedness. It is shown
that a minimax contraction rate of the posterior in Soboloev classes is obtained.
However, this has to fail when the smoothness index is unknown. Counterexam-
ples for the validity of empirical Bayes are shown and weaker formulations of the
problem are discussed. To this end the polished tail condition is introduced and a
certain form of adaptation for empirical Bayes credible sets is shown.

Miscellaneous topics.
Robert Nowak studies the recovery of the best arm in multi-armed bandit prob-

lems. This work suggests a rate optimal algorithm, which is a modification of the
upper confidence bound procedure using a finite sample version of the law of the
iterated logarithm.

Laszlo Györfi closes the workshop by discussing an open problem for stationary
gaussian time series. ”Is it possible to learn the best predictor almost surely in a
strongly consistent way?” Partial answers are given.
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Abstracts

A robust adaptive estimator for regression

Lucien Birgé

(joint work with Yannick Baraud and Mathieu Sart)

Our purpose is to present a new method for adaptively estimating a regression
function when little is known about the shape and scale of the errors and that
can cope with error distributions as different as Gaussian, Uniform, Cauchy or
even with a unimodal unbounded density. To be more precise, let us describe the
framework we want to deal with.

We observe n independent random variables X1, . . . , Xn each Xi with an un-
known distribution Pi on a measurable space (X ,A ) and our aim is to use
the vector X = (X1, . . . , Xn) of observations to estimate their joint distribution

P =
⊗n

i=1 Pi, that is to find a random approximation P̂(X) =
⊗n

i=1 P̂i(X) of P
based on the observed variables Xi. To measure the quality of the approximation

of P by P̂ we need a distance on the set of product measures on X n. It is known
from Le Cam’s work that a very convenient one is that (here denoted by h) derived
from the Hellinger distance h:

h2

(
n⊗

i=1

Pi,

n⊗

i=1

Qi

)
=

n∑

i=1

h2(Pi, Qi) =
1

2

n∑

i=1

∫ (√
dPi −

√
dQi

)2
.

We recall that the Hellinger distance h is the bounded distance on the set of all
probabilities on X given by

h2(R, T ) =
1

2

∫ (√
dR

dµ
−
√
dT

dµ

)2

dµ ≤ 1,

where µ is an arbitrary positive measure which dominates both R and T , the result
being independent of the choice of µ.

We measure the quality of an estimator P̂ by its quadratic risk EP[h
2(P̂(X),P)]

with respect to the distance h, the notation EP meaning that X has the joint
distributionP. This framework is suitable for the analysis of fixed design regression
models on R

n, for which X = R with Xi = fi + εi for 1 ≤ i ≤ n, the εi
being assumed to be i.i.d. with density p with respect to the Lebesgue measure
µ. Therefore Xi has density p(· − fi) with respect to µ and X the density s =
⊗n

i=1p(· − fi) with respect to µ⊗n.
The simplest case of fixed design regression occurs when the function i 7→ fi is

constant and equal to θ ∈ Θ ⊂ R. It corresponds to the case of i.i.d. variables Xi

with density p(·−θ) and to a parametric model with a single translation parameter

θ. The problem is then to find an estimator θ̂ = θ̂(X) for θ so that

P̂ = P⊗n

θ̂
with

dPθ̂

dµ
= p(· − θ̂).
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If θ0 obtains, that is P = P⊗n
θ0

, the quadratic risk of P̂ or, equivalently, of θ̂, writes

Eθ0

[
h2
(
P⊗n

θ̂
, P⊗n

θ0

)]
= Eθ0

[
nh2

(
Pθ̂, Pθ0

)]
,

where Eθ stands for EP⊗n
θ

. Since the risk is a function of the unknown parameter

θ0, a common way (although not the only one) of evaluating the performance of an

estimator θ̂ is via its maximum quadratic risk RM (θ̂) = supθ∈Θ Eθ[nh
2
(
Pθ̂, Pθ

)
].

This leads to the notion of minimax risk for the problem at hand:

RM (Θ) = inf
θ̂
sup
θ∈Θ

Eθ

[
nh2

(
Pθ̂, Pθ

)]
,

where the infimum runs over all possible estimators θ̂ of θ. An optimal estima-

tor θ̃ is therefore one that minimizes RM (θ̂). Unfortunately, computing RM (Θ)
exactly is generally an intractable optimization problem and we merely look for

approximately optimal estimators θ̃ satisfying

sup
θ∈Θ

Eθ

[
nh2

(
Pθ̃, Pθ

)]
≤ CRM (Θ),

where C is a constant which does not depend on n.
Typically, classical estimators based on empirical moments or quantiles or the

Maximum Likelihood Estimator do satisfy such requirements only in special cases
(depending on the properties of p) and not the same for all estimators. Our new
construction provides a rather general solution to this problem for all unimodal
densities p when p is known but it can also deal with the case when p is only
approximately known. It is based on a family of models S which are approximating
sets for the unknown parameter f and it tends to select the best model (the
one providing the best compromise between the approximation error of f by the
model and the estimation error on the model, which usually depends on its size)
among all of them. This construction is based on an estimation of the differences
h2(t, s)−h2(t′, s) for all points t, t′ belonging to the union of all available models.
The relevant estimator for this quantity has been designed by Baraud in [1].

The complete construction and the analysis of its performance are to be found
in arXiv : http://arxiv.org/abs/1403.6057. The procedure also applies to
other statistical frameworks like density estimation and regression with a random
design.

References

[1] Y. Baraud, Estimator selection with respect to Hellinger-type risks, Probab. Theory Relat.
Fields 151 (2011), 353–401.
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Adaptive estimation of convex polytopes and convex bodies

Victor-Emmanuel Brunel

We are interested in two models. The first one consists of observing a sample
of i.i.d. random variables, with uniform distribution on some unknown subset of
R

d, d ≥ 1. The second one consists of a regression setup, where the regression
function is the indicator on some unknown subset of Rd, d ≥ 1.

In both cases, we estimate the unknown set under two possible assumptions.
First, we assume that the unknown set is a convex polytope with r vertices, and
r ≥ d + 1 is a known integer. Second, we assume that the unknown set is any
convex body, and we give the corresponding minimax rate of convergence. In
the polytopal case, if r is not known, we propose an adaptive estimator which
achieves the same rate of convergence as in the known r case. In addition, we
show that this adaptive estimator achieves the optimal rate of convergence in
case of misspecification, i.e., when the true set is not a polytope, but any convex
body. To finish, we discuss the optimality, in terms of rate of convergence, of our
estimators in the polytopal and known r case.

References

[1] V.-E. Brunel, Adaptive Estimation of Convex Polytopes and Convex Sets from Noisy Data,
Electronic Journal of Statistics 7 (2013), 1301–1327.

[2] V.E. Brunel, Adaptive estimation of polytopal and convex support, Submitted.
(arXiv:1309.6602)

[3] V.E. Brunel, A universal deviation inequality for random polytopes, Submitted.
(arXiv:1311.2902)

[4] A. P. Korostelev, A? B. Tsybakov, Minimax Theory of Image Reconstruction, Springer, NY
(1993).

A new approach for large-scale inhomogeneous data

Peter Bühlmann

(joint work with Nicolai Meinshausen)

Our goal is to construct an estimator which can deal with inhomogeneities in large-
scale data where the sample size and the dimension might be very large. Besides
the challenge of dealing with heterogeneous data, we aim for a procedure which is
computationally feasible for large scales.

We consider a mixture of regressions model:

Yi = XT
i Bi + εi (i = 1, . . . , n),(1)

where Yi ∈ R, Xi ∈ R
p, and the regression coefficient vector Bi ∈ R

p is allowed
to change for every subject i = 1, . . . , n. The Bi’s are random variables from a
distribution FB . We always assume that the εi’s are uncorrelated from the Xi’s
and the Xi’s are independent from the Bi’s so that there is no information from
X to the mixture regression coefficients B. The following examples fit to the
framework.
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Known groups of observations. Every sample corresponds to a group g ⊆
{1, . . . , n}, and there are G such groups which build a partition of {1, . . . , n}.
In every group g, we assume that Bi ≡ bg for all i ∈ g. Thus, the model in (1) is
a finite mixture of G regression coefficients with known mixture components.

Correlated Bi’s. When having strong positive correlation among neighboring
Bi’s (neighboring w.r.t. the sample ordering i), we have a smooth trend for the
regression coefficients Bi’s (w.r.t. i). The model in (1) is then a random coefficient
linear model with smooth trend.

Contaminated samples. We might assume that a large fraction (1 − δ) of the
Bi’s assumes a fixed value b, and there is a smaller fraction δ of outliers where Bi’s
can take other values in R

p. The model (1) can then be viewed from the viewpoint
of robust statistics for guarding against some outliers, and the (groups of) outliers
are unknown.

In [1] the following main issues are covered: (i) a definition of a new “maximin”
parameter bmaximin which is an important “summary quantity” of all the possible
values Bi so that prediction and interpretation in heterogeneous models remains
powerful; (ii) establishing estimation rates for the “maximin” parameter bmaximin,
covering also the high-dimensional setting where the dimension p might be much
larger than sample size n; (iii) showing that the estimator can be computed, in
some circumstances, with a very efficient linear program allowing for very large
scales.

References

[1] N. Meinshausen and P. Bühlmann, Maximin effects in inhomogeneous large-scale data,
Preprint.

Convex banding of the covriance matrix

Florentina Bunea

(joint work with Jacob Bien and Luo Xiao)

The estimation of large covariance matrices of a random vector with entries that
are or can be ordered is an intensely studied problem in stochastic processes, spatial
statistics and general high dimensional inference. When the population matrix is
banded or approximately banded, a number of theoretically and practically optimal
estimators have been proposed in the last six years. With very few exceptions,
the theoretically optimal estimators are not adaptive, and the estimates that are
practically performant do not have established theoretical properties. Moreover,
most existing theoretical analyses are restricted to population covariance matrices
with bounded operator norm.

We introduce a new estimator, the hierarchically banded estimator, which is the
solution of a computationally feasible convex optimization problem. During this
procedure, one successively penalizes nested triangular corners of the current can-
didate estimate, using the sample covariance matrix in the first step. Since these
ensembles are nested, the new penalty is not a simple variation on the existing



Adaptive Statistical Inference 731

group-type penalties and poses new challenges. We show that the procedure can be
implemented successfully and efficiently. The proposed estimator achieves, adap-
tively, the minimax optimal convergence rates in Frobenius and operator norm.
These results are established over classes of banded or semi-banded population
matrices, and members of these classes are allowed to have diverging operator
norm.

Formally, we assume to have observed X1, . . . , Xn independent copies of a p-
dimensional vector X with mean zero and covariance matrix Σ. We assume that
the marginals of X have sub-Gaussian distribution. We let Σ̂ denote the sample
covariance matrix. For a given tuning parameter λ, we define our estimator as

(1) P̂ = argmin
P

{
‖P − Σ̂‖2F + λ‖P‖∗2,1

}
,

where ‖ · ‖F is the Frobenius norm, and

‖P‖∗2,1 =
p−1∑

ℓ=1

√√√√
ℓ∑

m=1

w2
ℓm‖Psm‖22,

with

wℓ,m =

√
ℓ

ℓ−m+ 1
, for 1 ≤ m ≤ ℓ, 1 ≤ ℓ ≤ p− 1,

and sm = {(j, k) : |j − k| = p − m}. In [1] we showed that, although the
original convex problem (1) is not separable, its dual is. We therefore employ a
Block Coordinate Descent algorithm to solve the dual, and use the primal-dual
relationship to reconstruct the solution to (1).

The following theorem shows that our estimator can also be regarded as a ta-
pering estimator. However, the tapering function is not pre-specified in functional
form prior to estimation, as in existing work, and is implicitly and recursively
defined as below, in a fully data-dependent manner.
Theorem 1. The convex banding estimator, P̂ , can be written as a tapering
estimator with a Toeplitz, data-dependent tapering matrix, P̂ = T̂ ∗ Σ̂:

T̂sm =

{
1m for m = p (diagonal)∏p−1

ℓ=m
[ν̂ℓ]+

w2
ℓm+[ν̂ℓ]+

1m for 1 ≤ m ≤ p− 1

where ν̂ℓ satisfies λ
2 =

∑ℓ
m=1

w2
ℓm

(w2
ℓm+ν̂ℓ)2

‖R̂(ℓ)
sm‖2, R̂(1) = Σ̂ and for ℓ = 1, . . . , p−2,

and for each m ≤ ℓ, we have

R̂(ℓ+1)
sm =

[ν̂ℓ]+
w2

ℓm + [ν̂ℓ]+
R̂(ℓ)

sm ,(2)

and 1m ∈ Rm denotes the vector of ones.
Immediate consequences of this theorem are: (1) The estimator P̂ is, as desired,

banded; (2) P̂ is positive definite, with high probability.
We showed in [1] that, if the population covariance matrix has bandwidth K,

this value will be recovered by the bandwidth of the estimator, with high proba-
bility, under minimal signal strength conditions on the entries of Σ.
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The following theorem is an oracle inequality, with leading constant one for the
bias term. It shows that the proposed estimator achieves the best bias-variance
trade-off with respect to the Frobenius norm, with high probability.

Theorem 2. If maxi,j |Σij | ≤M , for some constant M and λ = x
√
log p/n then,

with high probability,

‖P̂ − Σ‖2F ≤ inf
B∈Rp×p

{
‖Σ−B‖2F + C1

K(B)p log p

n

}
+ x2

p log p

n
,

for some constant C1, and where K(B) denotes the bandwidth of a generic matrix
B.

From this theorem one obtains immediately the minimax optimal rates, up to
logarithmic terms, over the class of exactly banded matrices and over the class of
approximately banded matrices:

‖P̂ − Σ‖2F
p

≤ CK log(p)/n,

and

‖P̂ − Σ‖2F
p

≤ C

(
log p

n

) 2α+1
2α+2

.

Moreover, Theorem 2 shows that this rate analysis can be performed directly over
the unifying framework provided by the class of semi-banded matrices, which we
introduced in [1] and give below:

(3) G(K) =

{
Σ : max

ij
|Σij | ≤M and ‖Σ−B‖2F ≤ CpK log p/n,

}

for some banded B with bandwidth K, and some constant C > 0.
We also show that, over the class of banded matrices with possibly diverging

bandwidth K, our estimator achieves adaptively the minimax rate in operator
norm, up to logarithmic factors:

‖P̂ − Σ‖op ≤ CK
√
log p/n,

with high probability, under a minimal signal strength condition.

References
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Tests for high-dimensional sparse matrices

Cristina Butucea

(joint work with Yuri I. Ingster, Ghislaine Gayraud)

The talk is based on the papers [1] and [2], concerning sharp minimax tests in
high-dimensional matrices containing a sparse signal structured as a submatrix.

In [1], we have a N ×M matrix

Yj = sij + ξij , i = 1, ...,M, j = 1, ..., N,

with ξij i.i.d. with standard Gaussian distribution, and sij ∈ R. We test the null
hypothesis that there is no signal in the large matrix against the alternative that
there exists some submatrix of size n ×m with significant elements in the sense
that sij = a > 0. We propose a test procedure and compute the asymptotical
detection boundary a so that the maximal testing risk tends to 0 as m, M → ∞,
n, N → ∞, p = n/N → 0 and q = m/M → 0. We prove that this boundary
is sharp minimax asymptotically under some additional constraints. Relations
with other testing problems are discussed. We propose a testing procedure which
adapts to unknown (n,m) within some given set and compute the adaptive sharp
rates.

In [2], we generalize the previous results to matrix-valued Gaussian sequence
model, that is, we observe a sequence of high-dimensional M × N matrices of
heterogeneous Gaussian random variables xij,k for i ∈ {1, ...,M}, j ∈ {1, ..., N}
and k ∈ Z. The standard deviation of our observations is ǫks for some ǫ > 0 and
s ≥ 0. This model can be seen as a Gaussian white noise model where the signal
is an additive function of M × N coordinates and observed in a mildly ill-posed
inverse problem.

We give sharp rates for the detection of a sparse submatrix of size m× n with
active components. A component (i, j) is said active if the sequence {xij,k}k has
mean {θij,k}k within a Sobolev ellipsoid of smoothness τ > 0 and total energy∑

k θ
2
ij,k larger than some r2ǫ . Our rates involve relationships between m, n, M

and N tending to infinity such that m/M , n/N and ǫ tend to 0, such that a test
procedure that we construct has asymptotic minimax risk tending to 0.

We prove corresponding lower bounds under additional assumptions on the
relative size of the submatrix in the large matrix of observations. Except for
these additional conditions our rates are asymptotically sharp. Lower bounds for
hypothesis testing problems mean that no test procedure can distinguish between
the null hypothesis (no signal) and the alternative, i.e. the minimax risk for testing
tends to 1.
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On the Prediction Loss of the Lasso and Total Variation Penalization

Arnak S. Dalalyan

(joint work with Mohamed Hebiri and Johannes Lederer)

In recent years, considerable effort has been devoted to establishing sharp the-
oretical guarantees for the prediction performance of the Lasso. Although for a
variety of settings various types of risk bounds are already available, the predic-
tion performance of the Lasso is still not completely understood. In this work, we
improve the sharpest known risk bounds to gain new insight into the prediction
performance of the Lasso.

We study the prediction performance of the Lasso only for Gaussian linear
regression models with deterministic design. More specifically, the model reads as

(1) y = Xβ∗ + ξ, ξ ∼ σ∗Nn(0, In),

where y := (y1, . . . , yn)
⊤ ∈ R

n is the response vector, X := (x1, . . . ,xp) ∈ R
n×p

the design matrix (for which we assume, without loss of generality, that ‖xj‖22 ≤ n
for all j ∈ {1, . . . , p}), ξ ∈ R

n the noise vector, and In denotes the identity matrix.
We recall that the Lasso is any solution of the convex optimization problem

(2) β̂Lasso
λ ∈ argmin

β

{ 1

2n
‖y −Xβ‖22 + λ‖β‖1

}
,

that can be efficiently solved even for very large values of p and n. The magni-
tude of the tuning parameter λ > 0 determines the amount of penalization and,
therefore, has a crucial influence on the performance of the Lasso.

The main findings of the present work (see [1] for more details) can be summa-
rized as follows.

(1) We prove that the Lasso estimator used with the universal choice of the

tuning parameter λ =
√
2 log(p)/n has a prediction loss at least propor-

tional to log(p)
n × rank(X), where rank(X) is the rank of X.

(2) For sparse vectors β∗ with support J∗ = {j ∈ {1, . . . , p} : β∗
j 6= 0} and

for covariates that are strongly correlated in the sense that all irrelevant
covariates {xj : j 6∈ J∗} are close to the linear span of relevant covariates
{xj : j ∈ J∗}, we show that choosing a tuning parameter λ that is sub-
stantially smaller than the universal one leads to a considerable gains in
terms of prediction loss. We present a simple manner to incorporate the
geometry of the covariates into the tuning parameter that provides fast
rates of prediction when the covariates are strongly correlated.

(3) For really sparse vectors, that is, for s∗ considerably smaller than n (for
example, s∗ is fixed and n → ∞), there are methods that satisfy fast
rate bounds for prediction irrespective of the correlations of the covari-
ates. For Lasso prediction, we exhibit a counter-example showing that
it is impossible to get fast rate bounds without imposing some relatively
strong constraints on the correlations of the covariates. This is true even
if we allow for oracle choices of the tuning parameter λ, that is, if we allow
for λ that depend on the true regression vector β∗ and the noise level σ∗.
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(4) Finally, previously known results imply fast rates for prediction with the
Lasso in the following two extreme cases: First, when the covariates are
mutually orthogonal, and second, when the covariates are all collinear.
But how far from these two extreme cases can a design be such that it still
permits fast rates for prediction with the Lasso? For the first case, the
case of mutually orthogonal covariates, this question has been thoroughly
studied in the literature, whereas there were only a few results in the
second case. We fill this gap by proving that if the irrelevant covariates
are within a constant (Euclidean) distance of the linear span of the relevant
covariates, then the Lasso atteins the fast rates of prediction.

As a consequence of the obtained risk bounds, we show that the total-variation
penalized least-squares estimator achieves the nearly parametric rate (logn)2/n
when the unknown signal is piecewise constant.
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Worst possible sub-directions in high-dimensional statistics

Sara van de Geer

This work is motivated by the need for confidence intervals in high-dimensional
models. For the standard linear model a de-sparsifying technique has been intro-
duced in [4] This technique has been extended to generalized linear models in [2].
We examine further extensions. As an example, consider an n× p data matrix X
consisting of i.i.d. rows with distribution P . Let Σ̂ be the empirical inner product
matrix, and Σ0 := EΣ̂ be the theoretical inner product matrix. We are interested
in estimating the precision matrix Θ0 := Σ−1

0 . Let Θ̂ be an estimator, for exam-
ple based on the graphical Lasso or the node-wise Lasso. Then as de-sparsified
version, we propose

Θ̂de−sparsified = Θ̂ + Θ̂T − Θ̂T Σ̂Θ̂.

One can now decompose:

Θ̂de−sparsified −Θ0 = −Θ0(Σ̂− Σ0)Θ0 − rem1 − rem2

where
rem1 := (Θ̂−Θ0)

T (Σ̂− Θ̂−1)Θ̂ = (Θ̂−Θ0)
T (Σ̂Θ̂− I)

and
rem2 := Θ0(Σ̂− Σ0)(Θ̂− Θ̂0).

The first term is linear in Σ̂−Σ0 and deriving asymptotic normality for each of its
entries is straightforward. The challenge is now to prove that the two remainder
terms can be neglected. For the graphical Lasso, this problem is studied in [1].

More generally, the main issue when studying single components or low-dimen-
sional sub-components of the unknown parameter, is the anti-projection of the
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information for the parameter of interest on the nuisance parameters. To clarify
this in an example, consider the linear model

Y = Xβ0 + ǫ

and the Lasso

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖2n + 2λ‖β‖1

}
,

where ‖v‖2n := vT v/n. The de-sparsified Lasso is

β̂de−sparsified = β̂ + Θ̂TXT (Y −Xβ̂)/n

where Θ̂ is obtained by the node-wise Lasso. One now has the decomposition

β̂de−sparsified − β0 = Θ̂TXT ǫ/n− rem1

where

rem1 = (Θ̂T Σ̂− I)(β̂ − β0).

This remainder term can be handled using the KKT-conditions. Let now, for
j ∈ {1, . . . , p}, Xj be the j-th column of X and X−j := {Xk}k 6=j be the remaining

columns. Let XjP̂X−j := X−j γ̂j be the approximate projection of Xj on X−j

obtained using the Lasso for the regression of Xj on X−j. Let XjÂX−j := Xj −
XjP̂X−j = Xĉj be the approximate anti-projection. We call ĉj the approximate
worst possible sub direction for estimating β0

j . The de-sparsified estimator is

β̂j,de−sparsified =
(XjÂX−j)

T (Y −X−jβ̂−j)

(XjÂX−j)TXj

where β̂−j := {β̂k}k 6=j .
We show in [3] that

|β̂j − β0
j | ≤

|(XjÂX−j)
T ǫ|

(XjÂX−j)TXj

+
λ‖γ̂j‖1

(XjÂX−j)TXj/n
+ rem1

whereas

|β̂j,de−sparsified − β0
j | ≤

|(XjÂX−j)
T ǫ|

(XjÂX−j)TXj

+ rem1.

In other words, by de-sparsifying one removes the bias

λ‖γ̂j‖1
(XjÂX−j)TXj/n

due to the ℓ1-penalty on coefficients of the approximate projection of Xj on the
other variables. The remainder term rem1 is moreover small due to the approxi-
mate orthogonality of XjÂX−j and XjP̂X−j.

Consider now a general high-dimensional model. We define worst possible sub-
directions in a similar way and bounds for parameters of interest of the ℓ1-penalized
M-estimator that involve the ℓ1-norm of the worst possible sub-direction. This
serves as first step toward de-sparsifying which aims in a first stage at removing
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this bias and in the second stage at showing that a linear, asymptotically nor-
mal term is dominating the other (remainder) term. As intermediate goal, the
de-sparsified estimator can be used for variable selection without imposing irrep-
resentable conditions.
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Confidence Bands for a Distribution Function: A New Look at the
Law of the Iterated Logarithm

Lutz Dümbgen

(joint work with Jon A. Wellner)

Let F̂n be the empirical distribution function of independent random variables
X1, X2, . . . , Xn with unknown distribution function F on the real line. It is
well-known that the stochastic process

(
F̂n(x)

)
x∈R

has the same distribution as(
Ĝn(F (x))

)
x∈R

, where Ĝn is the empirical distribution of independent random

variables U1, U2, . . . , Un with uniform distribution on [0, 1]. This enables us to
construct confidence bands for the distribution function F . A well-known classical
method are Kolmogorov-Smirnov confidence bands: Let

Un(t) := n1/2(Ĝn(t)− t),

and let κKS
n,α be the (1− α)-quantile of

‖Un‖∞ := sup
t∈[0,1]

|Un(t)|.

Then with probability at least 1− α,

F (x) ∈ [F̂n(x) ± n−1/2κKS
n,α] for all x ∈ R.

Equality holds if F is continuous. Since Un converges in distribution in ℓ∞([0, 1])
to standard Brownian bridge U, κKS

n,α converges to the (1 − α)-quantile κKS
α of

‖U‖∞. In particular, these simultaneous confidence intervals have width O(n−1/2)
uniformly in x ∈ R.
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Another method, based on a goodness-of-fit test by Berk and Jones (1979), was
introduced by Owen (1995): Let κBJ

n,α be the (1 − α)-quantile of

TBJ
n := n sup

t∈(0,1)

K(Ĝn(t), t),

where

K(s, t) := s log
s

t
+ (1− s) log

1− s

1 − t

for s ∈ [0, 1] and t ∈ (0, 1). This leads to an alternative confidence band for F :
With probability at least 1− α,

(1) nK(F̂n(x), F (x)) ≤ κBJ
n,α for all x ∈ R.

As shown by Jager and Wellner (2007), the asymptotic distribution of TBJ
n remains

the same if one replaces K(s, t) by a more general function; in particular, one may
interchange its two arguments. Moreover,

κBJ
n,α = log log(n) + 2−1 log log log(n) +O(1).

From this one can deduce that (1) leads to confidence intervals with length at most

2
(
2γnF (x)(1 − F (x))

)1/2
+ 2γn where γn :=

κBJ
n,α

n
= (1 + o(1))

log logn

n
,

uniformly in x ∈ R. Hence they are substantially shorter than the Kolmogorov-
Smirnov intervals for F (x) close to 0 or 1. But in the central region, i.e. when F (x)
is bounded away from 0 and 1, they are of width O(n−1/2(log logn)1/2) rather than
O(n−1/2). An obvious goal is to refine these methods and combine the benefits of
the Kolmogorov-Smirnov and Berk-Jones confidence bands.

A key for our new procedures is a suitable variant of the law of the iterated
logarithm (LIL). In what follows we consider the logistic function ℓ : R → (0, 1),

ℓ(x) =
ex

1 + ex
=

1

e−x + 1
.

Further let C,D : (0, 1) → [0,∞) be given by

C(t) := log log
e

4t(1− t)
= log log

( e

1− (2t− 1)2

)
≥ 0,

D(t) := log(1 + C(t)2) ≥ 0.

Note that C(t) = C(1 − t), D(t) = D(1− t), and, as t ↓ 0,

C(t) = log log(1/t) +O
(
log(1/t)−1

)
,

D(t) = 2 log log log(1/t) +O
(
(log log(1/t))−1

)
.

Note also that

lim
t→1/2

C(t)

(2t− 1)2
= lim

t→1/2

D(t)

(2t− 1)4
= 1.

Now let X = (X(t))t∈T be a nonnegative stochastic process on a set T ⊂ (0, 1).
The following general condition plays a crucial role:
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Local uniform sub-exponentiality (LUSE). There exist a real constantM ≥
1 and a non-increasing funtion L : [0,∞) → [0, 1] such that L(c) = 1 − O(c) as
c ↓ 0, and

(2) Pr
(

sup
t∈[ℓ(a),ℓ(a+c)]∩T

X(t) > η
)

≤ M exp(−L(c)η)

for arbitrary a ∈ R, c ≥ 0 and η ∈ R.

Theorem 1. Suppose that X satisfies LUSE. For arbitrary ν > 1 and Lo ∈ (0, 1)
there exists a real constant Mo ≥ 1 depending only on M , L(·), ν and Lo such
that

Pr
(
sup
t∈T

(
X(t)− C(t)− νD(t)

)
> η

)
≤ Mo exp(−Loη) for arbitrary η ≥ 0.

Example 1. Let X(t) = U(t)2/(2t(1 − t)) with standard Brownian bridge U on
T = (0, 1). Then LUSE is satisfied with M = 2 and L(c) = e−c.

Example 2. Let Xn(t) = nK(Ĝn(t), t). Then LUSE is satisfied with M = 2
and L(c) = e−c. This leads to the following new goodness-of-fit test: The null
hypothesis that F is equal to a given continuous distribution function Fo is rejected
at level α if the test statistic

Tn,ν(Fo) := sup
x∈R

(
nK(F̂n(x), Fo(x)) − C(Fo(x)) − νD(Fo(x))

)

exceeds the (1 − α)-quantile of sup(0,1)(Xn − C − νD). This test has high power
for a variety of problems. To verify this, the following inequality for K is crucial:

K(x, t) ≤ c implies that |x− t| ≤
{√

2c x(1− x) + c,√
2c t(1− t) + c.

Example 3. Let Tn = {tn1, tn2, . . . , tnn} with tni := i/(n + 1). Further let
Un:1 < Un:2 < · · · < Un:n be the order statistics of U1, U2, . . . , Un. Now we define
X̃n(tni) = (n+1)K(tni, Un:i). Then LUSE is satisfied withM = 2 and L(c) = e−c.
This leads to a confidence band for F : Let κ̃ = κ̃n,ν,α be the (1 − α)-quantile of

supTn
(X̃n − C − νD). Further let −∞ = Xn:0 < Xn:1 ≤ Xn:2 ≤ · · · ≤ Xn:n <

Xn:n+1 = ∞ be the order statistics of X1, X2, . . . , Xn. Then with probability at
least 1− α, the following is true: For 0 ≤ j ≤ n and Xn:j ≤ x < Xn:j+1,

F (x) ∈ [anj , bnj ],

where an0 := 0, bnn := 1 and

anj := min
{
u ∈ [0, 1] : nK(tnj , u) ≤ C(tnj) + νD(tnj) + κ̃

}
if j > 0,

bnj := max
{
u ∈ [0, 1] : nK(tn,j+1, u) ≤ C(tn,j+1) + νD(tn,j+1) + κ̃

}
if j < n.

It turns out that this confidence band is asymptotically equivalent to Owen’s (1995)
band in the tail regions but substantially more accurate in the central region. Its
maximal width is of order O(n−1/2).
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An open problem on strongly consistent learning of the best
prediction for Gaussian processes

László Györfi

(joint work with Alessio Sancetta)

Let {Yn}∞−∞ be a stationary, ergodic, mean zero Gaussian process. The predictor
is a sequence of functions g = {gi}∞i=1. It is an open problem whether it is possible
to learn the best predictor from the past data in a strongly consistent way, i.e.,
whether there exists a prediction rule g such that

(1) lim
n→∞

(E{Yn | Y1, . . . , Yn−1} − gn(Y1, . . . , Yn−1)) = 0 almost surely

for all stationary and ergodic Gaussian processes.
In [1] we summarized some positive and negative findings in this respect.
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Inverse Problems with Poisson Data: Pioneering contributions of L.
Cavalier and recent developments

Thorsten Hohage

We consider inverse problems described by an operator equation

(1) F (u) = g

with a possibly nonlinear injective forward operator F : D(F ) ⊂ X → L1(M)
where M ⊂ R

d is a smooth manifold with data. Let u† ∈ D(F ) denote the exact
solution, g† := F (u†), and suppose that F (u) ≥ 0 for all u ∈ D(F ). We assume

that data G̃t =
∑N

i=1 δxi are drawn from a Poisson process with density tF (u†),
where t > 0 can typically be interpreted as an exposure time, and study the
convergence of estimators as t→ ∞. It will be convenient to define Gt := G̃t/t.

Such inverse problems typically occur in photonic imaging applications such as
Positron Emission Tomography (PET), confocal fluorescence microscopy, coherent
x-ray imaging, and inverse scattering problems with low energy densities.
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To our knowledge the setup above was first considered in the paper [2] by
Cavalier & Koo. In this work the authors studied PET, where the forward operator
F is given by the Radon transform. They obtained the following results: On
projected Besov balls Fs

pq := {u ∈ Bs
pq : u ≥ 0, ‖u‖spq ≤ R} with p, q ∈ [1,∞]

and s > 2/p the minimax rate for this problem is of order O(t−s/(2s+3)). For
known smoothness this rate can be obtained by thresholding of empirical vagulette
coefficients in a wavelet-vagulette decomposition of the Radon transform F . For
unknown smoothness the rate O((t/ ln t)−s/(2s+3)) can be obtained. Later the
results in [2] were extended to more general linear forward operators by Antoniadis
& Bigot [1].

In the following we will study regularization of nonlinear inverse problems (1)
by nonlinear Tikhonov (or penalized maximum likelihood) regularization

(2) ûα ∈ argmin
u∈B

[
S(Gt, F (u)) + α‖u− u0‖2X

]
.

Here we assume for simplicity that X is a Hilbert space. u0 ∈ X is some initial
guess (e.g. u0 = 0). ‖u − u0‖2X can be replaced by more general convex penalty
functionals R(u). Then one obtains convergence with respect to the Bregman
distance of R.

A first idea for the choice of S is the log-likelihood functional S0(Gt, g) =∫
M
g dx −

∫
M
ln(g) dGt. Note that E[S0(Gt, g) − S0(Gt, g

†)] = KL(g†, g) (the
Kullback-Leibler divergence) and

S0(Gt, g)− S0(Gt, g
†)−KL(g†, g) =

∫
− ln

g

g†
(dGt − g†dx)

Our analysis relies on uniform estimates of the right hand side by concentration
inequalities, which are not applicable unless ‖g/g†‖∞ is uniformly bounded in g.
Therefore, we introduce a shift parameter τ ≥ 0, define T (g†, g) := KL(g†+τ, g+τ)
and S(Gt, g) = Sτ (Gt, g) =

∫
M
g dx−

∫
M
ln(g + τ) (dGt + τdx) such that

Sτ (Gt, g)− Sτ (Gt, g
†)− T (g†, g) =

∫
− ln

g + τ

g† + τ
(dGt − g†dx).

Now if

(3) sup
u∈B

‖F (u)‖Hs <∞

and τ > 0, then it can be shown based on results in [7] that there exists C > 0
such that

(4) P

[
sup

g∈F (B)

∣∣∣∣
∫

ln
g + τ

g† + τ
(dGt + τdx)

∣∣∣∣ ≥
ρ√
t

]
≤ exp

(
− ρ

C

)

for all t, ρ ≥ 1 (see [8]).
To show rates of convergence for ill-posed problem some sort of smoothness

condition has to be imposed. Since first suggested (with ϕ(x) = x) in [5], such
conditions are often formulated in the form of variational inequalities: We assume



742 Oberwolfach Report 13/2014

that there exists β ∈ (0, 1] and a concave, increasing function ϕ : [0,∞) → R with
ϕ(0) = 0 such that for all u ∈ B

(5) β‖u− u†‖2 ≤ ‖u− u0‖2 − ‖u† − u0‖2 + ϕ
(
T (F (u†), F (u))

)
.

We point out that a Hölder source condition u† = (F ∗F )νw with ν ∈ (0, 1/2] for a
bounded linear operator F in Hilbert spaces implies a variational source condition

with ϕ(t) = ct
2ν

2ν+1 . Moreover, as opposed to standard spectral source condition
u† = ψ(F ∗F )w, variational source conditions in Hilbert spaces (or equivalent
concepts) even allow sharp converse results [3].

Theorem: (see [8]) Suppose that (3) and (5) hold true. Then with the a-priori
parameter choice rule −1

α ∈ ∂(−ϕ)(t−1/2) the risk is bounded by

(6) E
[
‖ûα − u†‖2

]
= O

(
ϕ
(
t−1/2

))
t→ ∞.

Without a-priori knowledge of the function ϕ the Lepskĭı-type balancing principle

αbal := max
{
j ∈ N : ‖uαj − uαk

‖ ≤ 8r−j/2 for k = 0, . . . , j − 1
}

with αj = α0r
−j , r > 1 leads to the risk bound

(7) E
[
‖ûαbal

− u†‖2
]
= O

(
ϕ
(
ln(t)t−1/2

))
t→ ∞.

A disadvantage of Tikhonov regularization is the fact that the objective fun-
tional is non-convex in general, and it may have many local minima. An alternative
is to linearize the operator and use a Newton-type method: Choose αk = α0ρ

k for
some ρ ∈ (0, 1) and set

uk+1 ∈ argmin
u∈B

[S (Gt, F
′[uk](u − uk) + F (uk)) + αkR(u)] .

If S and R are convex, a convex optimization problem has to be solved in each
Newton step. Here the choice of the stopping index corresponds to the choice of α.
Under an additional assumption on the local approximation quality of F ′ (a tan-
gential cone condition) we can show similar results as for Tikhonov regularization
(see [6]).
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Sparse high-dimensional varying coefficient model: non-asymptotic
minimax study

Olga Klopp

(joint work with Marianna Pensky)

One of the fundamental tasks in statistics is to characterize the relationship be-
tween a set of covariates and a response variable. In the present work we study
the varying coefficient model which is commonly used for describing time-varying
covariate effects. It provides a more flexible approach than the classical linear
regression model and is often used to analyze the data measured repeatedly over
time.

Let (Wi, ti, Yi), i = 1, . . . , n be sampled independently from the varying coeffi-
cient model

(1) Y = WT f(t) + σξ.

Here the noise variables ξi are independent and σ is known, W ∈ R
p are random

vectors of predictors, f(·) = (f1(·), . . . , fp(·))T is an unknown vector-valued func-
tion of regression coefficients and t ∈ [0, 1] is a random variable with the unknown
density function g. We suppose that W and t are independent. The goal is to
estimate vector function f(·) on the basis of observations (Wi, ti, Yi), i = 1, . . . , n.

Since its introduction by Cleveland, Grosse and Shyu [1] and Hastie and Tib-
shirani [3] many methods for estimation and inference in the varying coefficient
model have been developed. Existing methods typically provide asymptotic eval-
uation of the precision of the estimation procedure under the assumption that
the number of observations tends to infinity and is larger than the dimension of
the problem. Recently few authors consider still asymptotic but high-dimensional
approach to the problem. Wei et al. [7] applied group Lasso for variable selection,
while Lian [5] used extended Bayesian information criterion. Fan et al. [2] applied
nonparametric independence screening. Their results were extended by Lian and
Ma [6] to include rank selection in addition to variable selection.

One important aspect that has not been well studied in the existing literature
is the non-asymptotic approach to the estimation, prediction and variables se-
lection in the varying coefficient model. Some interesting questions arise in this
non-asymptotic setting. One of them is the fundamental question of the mini-
max optimal rates of convergence. The minimax risk characterizes the essential
statistical difficulty of the problem. It also captures the interplay between differ-
ent parameters in the model. To the best of our knowledge, our work presents the
first non-asymptotic minimax study of the sparse heterogeneous varying coefficient
model.
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Modern technologies produce very high dimensional data sets and, hence, stim-
ulate an enormous interest in variable selection and estimation under a sparse
scenario. In the present work, we consider the case when the solution is sparse,
in particular, only few of the covariates are present and only some of them are
time dependent. We consider a quite flexible and realistic scenario where the time
dependent covariates possibly have different degrees of smoothness and may be
spatially inhomogeneous.

In order to estimate f , following Klopp and Pensky [4], we expand it over a basis
(φl(·)), l = 0, 1, . . . ,∞, in L2([0, 1]) with φ0(t) = 1. Expansion of the functions
fj(·) over the basis, for any t ∈ [0, 1], yields

(2) fj(t) =

L∑

l=0

ajlφl(t) + ρj(t) with ρj(t) =

∞∑

l=L+1

ajlφl(t).

If φ(·) = (φ0(·), . . . , φL(·))T and A0 denotes a matrix of coefficients with elements

A
(l,j)
0 = ajl, then relation (2) can be re-written as f(t) = AT

0 φ(t) + ρ(t), where
ρ(t) = (ρ1(t), · · · , ρp(t))T . Combining formulae (1) and (2), we obtain the follow-
ing model for observations (Wi, ti, Yi), i = 1, . . . , n:

(3) Yi = Tr(AT
0 φ(ti)W

T
i ) +WT

i ρ(ti) + σξi, i = 1, . . . , n.

Below, we reduce the problem of estimating vector function f to estimating matrix
A0 of coefficients of f .

We construct a minimax optimal estimator using the block Lasso which can be
viewed as a version of the group LASSO. However, unlike in group LASSO, where
the groups occur naturally, the blocks in block LASSO are driven by the need to
reduce the variance as it is done, for example, in block thresholding. In particular,
for each function fj , j = 1, · · · , p, we divide its coefficients into M + 1 different
groups where group zero contains only coefficient aj0 for the constant function
φ0(t) = 1 and M groups of size d ≈ logn where M = L/d. We denote aj0 = aj0
and ajl = (aj,d(l−1)+1, · · · , aj,dl)T the sub-vector of coefficients of function fj in
block l, l = 1, · · · ,M . Let Kl be the subset of indices associated with ajl. We
impose block norm on matrix A as follows

(4) ‖A‖block =

p∑

j=1

M∑

l=0

‖ajl‖2.

Observe that ‖A‖block indeed satisfies the definition of a norm and is a sum of
absolute values of coefficients aj0 of functions fj and l2 norms for each of the block
vectors of coefficients ajl, j = 1, · · · , p, l = 1, · · · ,M .

We construct an estimator Â of A0 as a solution of the following convex opti-
mization problem

(5) Â = argmin
A

{
n−1

n∑

i=1

(
Yi − Tr(ATφ(ti)W

T
i )
)2

+ δ‖A‖block
}
,

where the value of δ is the regularization parameter.
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Our estimator does not require the knowledge which of the covariates are in-
deed present and which are time dependent. It adapts to sparsity, to heterogeneity
of the time dependent covariates and to their possibly spatial inhomogeneous na-
ture. In order to ensure the optimality, we derive minimax lower bounds for the
risk and show that our estimator attains those bounds within a constant (if all
time-dependent covariates are spatially homogeneous) or logarithmic factor of the
number of observations. The analysis is carried out under the flexible assumption
that the noise variables are sub-Gaussian. In addition, it does not require that the
elements of the dictionary are uniformly bounded.
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The restricted eigenvalue assumption under weak moment assumption

Guillaume Lecué

(joint work with Shahar Mendelson)

We prove that iid random vectors that satisfy a rather weak moment assumption
can be used as measurement vectors in Compressed Sensing. In many cases, the
moment assumption suffices to ensure that the number of measurements required
for exact reconstruction is the same as the best possible estimate – exhibited by
a random gaussian matrix. In Compressed Sensing (see, e.g., [5] and [8]), one
observes linear measurements yi =

〈
Xi, x0

〉
, i = 1, ..., N of an unknown vector

x0 ∈ R
n, and the goal is to identify x0 using those measurements.

Given the measurements matrix Γ = N−1/2
∑N

i=1

〈
Xi, ·

〉
ei, a possible recovery

procedure is the basis pursuit algorithm, defined by

x̂ ∈ argmin
(
‖t‖1 : Γt = Γx0

)
.

A well known question is to identify conditions on the vectors X1, ...., XN that
ensure that if x0 is s-sparse, that is, if it is supported on at most s coordinates, the
unique minimizer of the basis pursuit algorithm is x0 itself. The matrix Γ satisfies
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the exact reconstruction property in Σs, the set of all s-sparse vectors in R
n, if

every x0 ∈ Σs has this property.
A standard choice of a measurements matrix Γ is when X1, ..., XN are indepen-

dent, isotropic and L-subgaussian random vectors. Recall that a random vector

X in R
n is isotropic if for every t ∈ R

n, E
〈
X, t

〉2
= ‖t‖22, and it is L-subgaussian

if for every t ∈ R
n and every p ≥ 2, ‖

〈
X, t

〉
‖Lp ≤ L

√
p‖
〈
X, t

〉
‖L2 .

One may show that if the Xi’s are random vectors that are independent,
isotropic and L-subgaussian, then with high probability Γ satisfies the exact re-
construction property for s-sparse vectors as long as N & s log(en/s) [10], and this
number of measurements cannot be improved (see Proposition 2.2.18 in [7]).

The reason behind this result, and many others like it, is that isotropic sub-
gaussian matrices act on Σs in an isomorphic way, when N & s log(en/s).

Such a property is called the Restricted isometry property (RIP) (see, for ex-
ample [4, 6, 11]). A matrix Γ satisfies the RIP in Σs if for every t ∈ Σs,

(1− δ)‖t‖2 ≤ ‖Γt‖2 ≤ (1 + δ)‖t‖2,

for some fixed 0 < δ < 1.
Proving the RIP for subgaussian matrices uses the fact that tails of linear

functionals
〈
X, t

〉
decay faster than the corresponding gaussian variable. Thus,

it seemed natural to ask whether the same type of estimates hold in cases where
linear functionals exhibit a slower decay – for example, when X is sub-exponential,
and the linear functionals satisfy that ‖

〈
X, t

〉
‖Lp ≤ Lp‖

〈
X, t

〉
‖L2 for every t ∈ R

n

and every p ≥ 2.
Proving the RIP for a sub-exponential ensemble is a much harder task than

for subgaussian ensembles (cf. [3]). Moreover, the RIP does not exhibit the same
behaviour as in the gaussian case. Indeed, one may show that for sub-exponential
ensembles, RIP holds with high probability only when N & s log2(en/s), and this
estimate is optimal as can be seen whenX has independent, symmetric exponential
random variables as coordinates [3].

On the other hand, the result in [9] (see Chapter 7 there) shows that exact recon-
struction can still be achieved by isotropic sub-exponential measurement vectors
when N & s log(en/s) – the same number of measurements needed for the gaussian
ensemble.

Clearly, this estimate cannot be based on the RIP, and one may ask whether
weaker tail assumptions on the measurement vectors may still lead to exact recov-
ery with the ‘gaussian’ number of measurements.

The main result presented here is precisely in this direction:

Theorem A. There exist absolute constants c0, c1 and c2 and for every α ≥ 1/2
there exists a constant c3(α) that depends only on α for which the following holds.
Let X = (xi)

n
i=1 be a random vector on R

n such that

(1) There are κ1, κ2, w > 1 that satisfy that for every 1 ≤ j ≤ n, ‖xj‖L2 = 1,
and for p = κ2 log(wn), ‖xj‖Lp ≤ κ1p

α.
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(2) There are u, β > 0 that satisfy for every t ∈ Σs ∩ Sn−1,

P
(
|
〈
X, t

〉
| > u

)
≥ β.

If

N ≥ c0 max
{
s log(en/s), (c3(α)κ1)

2(κ2 log(wn))
max{2α−1,1}

}

and X1, ..., XN are independent copies of X , then, with probability at least 1 −
2 exp(−c1β2N)− 1/wκ2nκ2−1, Γ = N−1/2

∑N
i=1

〈
Xi, ·

〉
ei satisfies the exact recon-

struction property in Σs1 for s1 = c2u
2βs.

It follows from Theorem A, that a random matrix with iid centered entries
that have variance 1 and an Lp moment bounded by p for p = 2 logn can be
used as a measurement matrix, and just as in the gaussian case, requires only
N & s log(en/s) measurements.

Just as noted for sub-exponential ensembles, Theorem A cannot be proved using
the RIP, and its proof must take a different path.

Note that we proved a stronger result: under the same assumptions as in The-
orem A, the measurement matrix Γ satisfies the Restricted eigenvalue assumption
as introduced in [2].
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Adaptive estimation over anisotropic functional classes via oracle
approach

Oleg Lepski

We address the problem of adaptive minimax estimation in white gaussian noise
model under Lp–loss, 1 ≤ p ≤ ∞, on the anisotropic Nikolskii classes. We present
the estimation procedure based on a new data-driven selection scheme from the
family of kernel estimators with varying bandwidths. For proposed estimator
we establish so-called Lp-norm oracle inequality and use it for deriving minimax
adaptive results. We prove the existence of rate-adaptive estimators and fully
characterize behavior of the minimax risk for different relationships between reg-
ularity parameters and norm indexes in definitions of the functional class and of
the risk. In particular some new asymptotics of the minimax risk are discovered
including necessary and sufficient conditions for existence a uniformly consistent
estimator. Consider the sequence of statistical experiments (called gaussian white
noise model) generated by the observation Xε =

{
Yǫ(g), g ∈ L2

(
R

d, νd
)}

ε
where

(1) Yε(g) =

∫
f(t)g(t)νd(dt) + ε

∫
g(t)W (dt).

Here ε ∈ (0, 1) is understood as the noise level which is usually supposed sufficiently
small.

The goal is to recover unknown signal f from observation Xε on a given cube
(−b, b)d, b > 0. The quality of an estimation procedure will be described by Lp-
risk, 1 ≤ p ≤ ∞, defined in (2) below and as an estimator we understand any
Xε-measurable Borel function belonging to Lp

(
R

d, νd
)
. Without loss of generality

and for ease of the notation we will assume that functions to be estimated vanish
outside (−b, b)d.

Thus, for any estimator f̃ε and any f ∈ Lp

(
R

d, νd
)
∩ L2

(
R

d, νd
)
we define its

Lp-risk as

(2) R(p)
ε

[
f̃ε; f

]
=
{
E
(ε)
f

(∥∥f̃ε − f
∥∥q
p

)} 1
q

, q ≥ 1.

Here and later ‖ · ‖p, 1 ≤ p ≤ ∞, stands for ‖ · ‖p,(−b,b)d and E
(ε)
f denote the

mathematical expectation with respect to the probability law of Xε.

Let F be a given subset of Lp

(
R

d, νd
)
∩L2

(
R

d, νd
)
. For any estimator f̃ε define

its maximal risk by R(p)
ε

[
f̃ε;F

]
= supf∈F

R(p)
ε

[
f̃ε; f

]
and its minimax risk on F is

given by

(3) φε(F) := inf
f̃ε

R(p)
ε

[
f̃ε;F

]
.

Here infimum is taken over all possible estimators. An estimator whose risk is
proportional to φε(F) is called minimax on F.

Let
{
Fϑ, ϑ ∈ Θ

}
be the collection of subsets of Lp

(
R

d, νd
)
∩ L2

(
R

d, νd
)
, where

ϑ is a nuisance parameter which may have very complicated structure.
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The problem of adaptive estimation can be formulated as follows: is it possible

to construct a single estimator f̂ε which would be simultaneously minimax on each
class {Fϑ, ϑ ∈ Θ}, i.e.

R(p)
ε

[
f̂ε;Fϑ

]
∼ φε(Fϑ), ε→ 0, ∀ϑ ∈ Θ?

We refer to this question as the problem of adaptive estimation over the scale of
{Fϑ, ϑ ∈ Θ}. If such estimator exists we will call it optimally or rate-adaptive.

In the present paper we will be interested in adaptive estimation over the scale

Fϑ = N~r,d

(
~β, ~L

)
, ϑ =

(
~β,~r, ~L

)
,

where N~r,d

(
~β, ~L

)
is an anisotropic Nikolskii class.

Let (e1, . . . , ed) denote the canonical basis of Rd. For function g : Rd → R
1

and real number u ∈ R define the first order difference operator with step size u
in direction of the variable xj by

∆u,jg(x) = g(x+ uej)− g(x), j = 1, . . . , d.

By induction, the k-th order difference operator with step size u in direction of
the variable xj is defined as

(4) ∆k
u,jg(x) = ∆u,j∆

k−1
u,j g(x) =

k∑

l=1

(−1)l+k

(
k

l

)
∆ul,jg(x).

Definition 1. For given vectors ~r = (r1, . . . , rd), rj ∈ [1,∞], ~β = (β1, . . . , βd),

βj > 0, and ~L = (L1, . . . , Ld), Lj > 0, j = 1, . . . , d, we say that function g : Rd →
R

1 belongs to the anisotropic Nikol’skii class N̄~r,d

(
~β, ~L

)
if

(i) ‖g‖rj,Rd ≤ Lj for all j = 1, . . . , d;

(ii) for every j = 1, . . . , d there exists natural number kj > βj such that

(5)
∥∥∥∆kj

u,jg
∥∥∥
rj,Rd

≤ Lj|u|βj , ∀u ∈ R, ∀j = 1, . . . , d.

Recall that the consideration of white gaussian noise model requires f ∈ L2

(
R

d
)

that is not always guaranteed by f ∈ N̄~r,d

(
~β, ~L

)
. So, later on we will study

the functional classes N~r,d

(
~β, ~L

)
= N̄~r,d

(
~β, ~L

)
∩ L2

(
R

d
)
which we will also call

anisotropic Nikol’skii classes.

Let N~r,d

(
~β, ~L

)
be the anisotropic Nikol’skii functional class. Put

1

β
:=

d∑

j=1

1

βj
,

1

ω
:=

d∑

j=1

1

βjrj
, Lβ :=

d∏

j=1

L
1/βj

j ,

and define for any 1 ≤ s ≤ ∞

τ(s) = 1− 1/ω + 1/(sβ), κ(s) = ω(2 + 1/β)− s.
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Set finally p∗ =
[
maxj=1,...,d rl

]
∨ p and introduce

a =





β
2β+1 , κ(p) > 0;

1−1/ω+1/(βp)
2−2/ω+1/β , κ(p) ≤ 0, τ(p∗) > 0;

ω(p∗−p)
p(p∗−ω(2+1/β) , κ(p) ≤ 0, τ(p∗) ≤ 0, p∗ > p;

0, κ(p) ≤ 0, τ(p∗) ≤ 0; p∗ = p.

δε =





Lβε
2, κ(p) > 0;

Lβε
2| ln(ε)|, κ(p) ≤ 0, τ(p∗) ≤ 0;

L
1−2/p
τ(p)

β ε2| ln(ε)|, κ(p) ≤ 0, τ(p∗) > 0.

Lower bound of minimax risk

Theorem 1. Let q ≥ 1, L0 > 0 and 1 ≤ p ≤ ∞ be fixed. Then for any ~β ∈
(0,∞)d, ~r ∈ [1,∞]d and ~L ∈ [L0,∞)d there exists c > 0 independent of ~L such
that

lim inf
ε→0

inf
f̃ε

sup
f∈N~r,d

(
~β,~L
) δ

−a

ε R(p)
ε

[
f̃ε; f

]
≥ c,

where infimum is taken over all possible estimators.

Let us make several remarks.
10. Case p∗ = p. We note that there is no a uniformly consistent estimator

over N~r,d

(
~β, ~L

)
if

(6) τ(p)1[2,∞)(p) + κ(p)1[1,2)(p) ≤ 0,

and this result seems to be new. As it will follow from the next theorem the
latter condition is necessary and sufficient for nonexistence of uniformly consistent

estimators over N~r,d

(
~β, ~L

)
under Lp-loss, 1 ≤ p ≤ ∞. In the case of L∞-loss, (6)

is reduced to ω ≤ 1 and the similar result was recently proved in [1] for the density
model.

20. Case κ(p) ≤ 0, τ(p∗) ≤ 0, p∗ > p. The lower bound for minimax risk given
in this case by

(
Lβε

2| ln(ε)|
) ω(p∗−p)

p(p∗−ω(2+1/β)

is new. It is interesting that the latter case does not appear in the dimension
1 or, more generally, when isotropic Nikolskii classes are considered. Indeed, if
rl = r for all l = 1, . . . d, then p∗ > p means r > p that, in its turn, implies
τ(p∗) = τ(r) = 1 > 0. It is worth mentioning that we improve in order the lower
bound recently found in [1], which corresponds formally to our case p∗ = ∞.

30. Case κ(p) ≤ 0, τ(p∗) > 0. For the first time the same result was proved
in [3] but under more restrictive assumption κ(p) ≤ 0, τ(∞) > 0. Moreover, the

dependence of the asymptotics of the minimax risk on ~L was not optimal.

Adaptive upper bound
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For any ℓ ∈ N
∗ and L0 > 0 set Θ = (0, ℓ]d × [1,∞]d × [L0,∞)d and later on we

will use the notation ϑ ∈ Θ for the triplet
(
~β,~r, ~L

)
. Denote P = Θ × [1,∞] and

introduce

Pconsist =
{
(ϑ, p) ∈ P : τ(p)1[2,∞)(p) + κ(p)1[1,2)(p) > 0

}
∪
{
(ϑ, p) ∈ P : p∗ > p

}
.

The latter set consists of the class parameters and norm indexes for which a uni-
form consistent estimation is possible. Introduce L∗ = minj:rj=p∗ Lj and

δε =





Lβε
2, κ(p) ≥ 0;

Lβ(L
∗)

1
a ε2| ln(ε)|, κ(p) ≤ 0, τ(p∗) ≤ 0;

Vp
(
~L
)
ε2| ln(ε)|, κ(p) ≤ 0, τ(p∗) > 0.

Let q ≥ 1, L0 > 0 and ℓ > 0 be fixed. One can construct estimators f̂ and

f̂ (const) for which the following results hold.

Theorem 2. 1) For any (ϑ, p) ∈ Pconsist such that p ∈ (1,∞), ~r ∈ (1,∞]d and

κ(p) 6= 0 there exists C > 0 independent of ~L for which

lim sup
ε→0

sup
f∈N~r,d

(
~β,~L
) δ

−a

ε R(p)
ε

[
f̂ ; f

]
≤ C.

2) For any (ϑ, p) ∈ Pconsist, p ∈ {1,∞} there exists C > 0 independent of ~L for
which

lim sup
ε→0

sup
f∈N~r,d

(
~β,~L
) δ

−a

ε R(p)
ε

[
f̂ (const); f

]
≤ C.

3) For any (ϑ, p) ∈ Pconsist such that p ∈ (1,∞), ~r ∈ (1,∞]d and κ(p) = 0

there exists C > 0 independent of ~L for which

lim sup
ε→0

sup
f∈N~r,d

(
~β,~L
)δ

−a

ε (| ln(ε)|) 1
pR(p)

ε

[
f̂ ; f

]
≤ C.

Some remarks are in order.
10. Combining the results of Theorems 1 and 2 we conclude that optimally-

adaptive estimators under Lp-loss exist over all parameter set Pconsist if p ∈ {1,∞}.
If p ∈ (1,∞) such estimators exist as well except the boundary cases κ(p) = 0 and
minj=1,...,d rj = 1.

20. We remark that the upper and lower bound for minimax risk differ each

other on the boundary κ(p) = 0 only by (| ln(ε)|) 1
p -factor. Using (1, 1)-weak type

inequality for strong maximal operator, [2], one can prove adaptive upper bound

on the boundary minj=1,...,d rj = 1 containing additional (| ln(ε)|) d−1
p -factor. Note,

nevertheless, that exact asymptotics of minimax risk remains an open problem.
30. We obtain full classification of minimax rates over anisotropic Nikolski

classes if p ∈ {1,∞)} and ”almost” full one (except the boundaries mentioned
above) if p ∈ (1,∞). We can assert that δaε is minimax rate of convergence on

N~r,d

(
~β, ~L

)
for any ~β ∈ (0,∞)d, ~r ∈ (1,∞]d and ~L ∈ (0,∞)d. Indeed, for given ~β
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and ~L one can choose L0 = minj=1,...d Lj and the number ℓ ∈ N
∗ as an any integer

strictly larger than maxj=1,...d βj.
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The Multiresolution Statistics for Nonparametric Regression and
Inverse Problems

Housen Li

(joint work with Markus Grasmair, Axel Munk)

The problems of nonparametric regression and deconvolution are considered for
sub-Gaussian data. A key concept is themultiresolution (semi-)norm ‖·‖B, defined
as

‖SNu‖B := sup
B∈B

1√
#ΓN ∩B

∣∣∣∣∣
∑

x∈ΓN∩B

u(x)

∣∣∣∣∣ for u ∈ C([0, 1]d),

where SN is the point evaluation on the regular grid ΓN of [0, 1]d and B the set of
all cubes. This norm has been studied in nonparametric regression problems by
many people, such as [1, 2, 3, 4]. In a more general setting of statistical inverse
problems, we have studied two multiscale estimates: one in variational form, and
the other in constraint form. Both of them take the multiresolution (semi-)norm
as data-misfit-measure and the homogeneous Sobolev norm as complexity penalty.

Convergence rates of both approaches are derived in terms of distance function
which describes how well the truth can be approximated by functions in the range
of the adjoint of forward operator. One crucial point of our results lies in the
interpretation of the distance function. This reduces to analyze the asymptotic
behavior of the following approximation problem

min{‖2Dku−
∑

x∈ΓN

cxD
kϕx‖L2 : ‖(cx)x∈ΓN‖B∗ ≤ t} as t → 0,

where ϕx is the solution to

(−1)k∆kϕx = δx − 1.

In one dimension case, it relates to the approximation property of B-splines. We
have further derived explicit convergence rates, and have shown their optimality
and partial adaptivity for certain Sobolev classes. However, in higher dimensions,
we do not know the approximation property, especially the behavior of coefficients
(cx)x∈ΓN , thus failing to obtain any concrete rate of convergence.
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Geometrizing Statistical Linear Inverse Problems

Tengyuan Liang

(joint work with Tony Cai, Alexander Rakhlin)

Ill-posed inverse problems including high dimensional regression, trace regression,
sign vector recovery, orthogonal matrix recovery and permutation matrix recovery
pose many challenges for engineers, applied mathematicians and statisticians in
the past few years, with techniques such as Dantzig selector, nuclear norm min-
imization developed to attack each problem. In a recent paper, Chandrasekaran
et al. introduced the atomic norm in convex geometry to address a wide class
of linear inverse problem simultaneously in the noiseless setting. In our paper,
we attack the general linear inverse problems in noisy setting following this line
of research. A statistical general linear inverse problem can be formulated in the
following way: we want to recover a p dimensional hidden parameter (a vector,
matrix or tensor), given n observations of linear transformations of the hidden
parameter with independent additive noise. Our research is two folded. Firstly,
we show that the local upper bound on rate of convergence of the atomic norm
constrained minimization procedure depends on three mathematical terms cap-
turing local convex geometry. In addition, we prove the minimum sample size
to ensure the statistical convergence and optimization feasibility of the procedure
in terms of dimension, Gaussian width and atomic norm. Secondly, we provide
global statistical minimax lower bound for general linear inverse problem, which
depends on dimension, sample size and volume ratio driven by the geometry. This
is a joint work with Tony Cai and Alexander Rakhlin.
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Optimal Exploration in Multi-Armed Bandit Problems

Robert Nowak

(joint work with Sébastien Bubeck, Kevin Jamieson, and Matt Malloy)

This paper introduces a new algorithm for the best arm problem in the stochas-
tic multi-armed bandit (MAB) setting. Consider a MAB with n arms, each with
unknown mean payoff µ1, . . . , µn in [0, 1]. A sample of the ith arm is an inde-
pendent realization of a sub-Gaussian random variable with mean µi. The goal
of the best arm problem is to devise a sampling procedure with a single input δ
that, regardless of the values of µ1, . . . , µn, finds the arm with the largest mean
with probability at least 1 − δ. More precisely, best arm procedures must satisfy
supµ1,...,µn

P(̂i 6= i∗) ≤ δ, where i∗ is the best arm, î an estimate of the best arm,
and the supremum over all sets of means such that there exists a unique best arm.

The best arm problem has a long history dating back to the 1950s
[Bechhofer(1958)]. The last decade has seen a flurry of activity providing new
upper and lower bounds; see [Even-Dar et al.(2002), Mannor and Tsitsiklis(2004),
Jamieson et al.(2013), Karnin et al.(2013)]. The best results show that the
best arm can be reliably identified using order

∑
i∆

−2
i log log∆−2

i sam-
ples, coming within a doubly logarithmic factor of the lower bound of
[Mannor and Tsitsiklis(2004)]. Based on the classic work of [Farrell(1964)], we
show that in fact that lower bound is not tight, and that the doubly logarithmic
factor is necessary. This is a consequence law of the iterated logarithm (LIL), and

implies that no procedure can satisfy sup∆1,...,∆n
P(̂i 6= i∗) ≤ δ and use fewer than∑

i∆
−2
i log log∆−2

i samples in expectation for all ∆1, . . . ,∆n.
The LIL also motivates a novel approach to the best arm problem. Specifically,

the LIL suggests a natural scaling for confidence bounds on empirical means, and
we follow this intuition to develop a new algorithm for the best-arm problem. The
algorithm is an Upper Confidence Bound (UCB) procedure [Auer et al.(2002)]
based on a finite sample version of the LIL, and so the algorithm is called lil’UCB.
By explicitly accounting for the log log factor in the confidence bound and using a
novel stopping criterion, our analysis of lil’UCB avoids taking naive union bounds
over time, as well as the wasteful “doubling trick” employed in algorithms that
proceed in epochs [Karnin et al.(2013), Jamieson et al.(2013)]. However, like the
algorithm in [Karnin et al.(2013)], lil’UCB is order optimal in terms of the number
of samples used to determine the arm with the largest mean.
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Sharp Adaptive Nonparametric Testing for Sobolev Ellipsoids

Michael Nussbaum

(joint work with Pengsheng Ji)

Consider the Gaussian white noise model in sequence space

Yj = fj + n−1/2ξj , j = 1, 2, ...

with signal f = {fj}∞j=1 and ξj ∼ N (0, 1) independent. For some ρ, β,M > 0,

consider hypotheses of ”no signal” vs. an ellipsoid with l2-ball removed:

H0 : f = 0 against Ha : f ∈ Σ(β,M) ∩Bρ,

Bρ =
{
f ∈ l2 : ‖f‖22 ≥ ρ

}
, Σ(β,M) = {f :

∞∑

j=1

j2βf2
j ≤M}.

Consider α-tests φ and their worst case type II error over the alternative:

(1) Ψn(φ, ρ, β,M) := sup
f∈Σ(β,M)∩Bρ

(1− En,fφ) .

Ingster [8] found the critical rate for ρ → 0, the so-called separation rate ρn ≍
n−4β/(4β+1), where a nontrivial type II error behaviour occurs:

0 < lim inf inf
φ α-test

Ψn and lim sup inf
φ α-test

Ψn < 1− α.

This rate is known as the optimal rate for nonparametric testing. As in non-
parametric estimation (cf. Pinsker [13]), the step from optimal minimax rate to
optimal constant has been made, with the result by Ermakov [3]:

Suppose α ∈ (0, 1) and ρn ∼ (cn)
−4β/(4β+1)

for some c > 0. Then

(2) inf
φ α-test

Ψn(φ, ρ, β,M) = Φ(zα − cM−1/4βηβ) + o(1)

where zα is the upper α-quantile of N(0, 1) and ηβ = (2β+1)1/2(4β+1)−1/2−1/4β.
We address the question of sharp minimax adaptive testing, that is the question

of whether this constant can be attained by tests which do not depend on (β,M).
For minimax estimation with l2-loss over ellipsoids Σ(β,M), cf. Efroimovich and
Pinsker [2], Golubev [6], Tsybakov [16]. Adaptation to Pinsker’s constant is pos-
sible there, without a penalty such as rate loss. For testing, Spokoiny [15] showed

that for adaptation to (β,M), there is a rate penalty of order (log logn)
1/2

. Es-
sentially this result concerns adaptation to β only; indeed M is irrelevant for the
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optimal rate. Moreover, for adaptation to β only, Ingster and Suslina [9] obtained

a sharp constant, within the (log logn)
1/2

rate loss framework. Adaptation to
both parameters (β,M) is an open problem.

We first consider the problem of adaptation to M only, assuming β known.

Theorem 1. Suppose c > 0, 0 < M1 < M2 < ∞ and ρn ∼ (cn)
−4β/(4β+1)

.
Then there is no test φn satisfying En,0φn ≤ α+ o(1) and both relations

Ψn(φn, ρn, β,Mi) ≤ Φ(zα − cM
−1/4β
i ηβ) + o(1), i = 1, 2.

In view of (2), adaptation to M only is impossible at the separation rate. We now

replace the constant c in ρn ∼ (cn)
−4β/(4β+1)

by a sequence cn → ∞ arbitrarily
slowly. Then Φ(zα − cnM

−1/4βηβ) → 0, and taking the standard log-asymptotics
approach, it turns out that adaptation to Ermakov´s constant is possible.

Theorem 2. Assume cn → ∞ and cn = o(nK) for every K > 0. If ρn =

(cnn)
−4β/(4β+1)

then there exists a test φn fulfilling En,0φn ≤ α+ o(1) and for all
M > 0

lim sup
n

1

c2n
log Ψn(φn, ρn, β,M) ≤ −

M−1/2βη2β
2

.

Ermakov [4] showed that the r. h. s. above is also the best achievable for tests
possibly depending onM . Hence there is no ”penalty for adaptation” here, except
that one has to change the optimality criterion. Proofs for this case are in [10].

For the problem of full adaptation to (β,M), we first state a lower asymptotic
risk bound for known M and unknown β ∈ [β1, β2], a variation of a result of
Ingster and Suslina [9]. Assume that 0 < β1 < β2 and that M > 0 is fixed. Let D
be arbitrary and define a radius sequence ρn,β,M by

(3) (ρn,β,M)
(4β+1)/4β

= n−1M1/4βη−1
β

(
(2 log logn)

1/2
+D

)
.

Then for any sequence of tests φn satisfying En,0φn ≤ α+ o(1)

(4) sup
β∈[β1,β2]

Ψn(φn, ρn,β,M , β,M) ≥ (1− α)Φ (−D) + o(1).

Here the test sequences φn are assumed not to depend on β (but possibly on M);
the radius ρn,β,M depends on β and M . The concept of a radius ρn varying with
β (inside the risk supremum) has been introduced by Spokoiny [15] in the context
of rate adaptivity. In the refinement of [9], Ermakov’s constant M−1/4βηβ enters
the critical radius ρn,β,M as well.

The attainability of the bound (4) is shown in [9] for tests depending on M .
We show it for tests not depending on M , establishing adaptivity in (β,M).

Theorem 3. Assume that 0 < β1 < β2 and 0 < M1 < M2 are fixed. Let D be
arbitrary and let ρn,β,M be the radius sequence in (3). Then there exists a test φn
fulfilling En,0φn ≤ α+ o(1) and

sup
β∈[β1,β2],M∈[M1,M2]

Ψn(φn, ρn,β,M , β,M) ≤ (1− α)Φ (−D) + o(1).

It turns out that there is no additional penalty for M being unknown, and there
is no need to consider tail probabilities.
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Ingster and Suslina [9] establish their lower bound (4) for lp- ellipsoids of
smoothness r with shrinking lq- ellipsoids of smoothness s removed, and also Besov
classes, but not for sup-norm settings. Lepski and Tsybakov [12] prove a sharp
minimax result in testing when the alternative is a Hölder class with a sup-norm
ball removed. This represents a testing analog of the minimax estimation result of
Korostelev [11] and also a sup-norm analog of Ermakov [3]; for the regression case
cf. [5]. When β is given, Dümbgen and Spokoiny [1] establish a sharp adaptivity
result with respect to the size parameter M only. The case of unknown (β,M)
seems to be an open problem for sup-norm testing; for the estimation case cf. [7].
But in [1] a test is given which is adaptive rate optimal without a log logn-type
penalty. Rohde [14] considers the sup-norm case for regression with nongaussian
errors, combining methods of [1] with ideas related to rank tests.
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Nonparametric estimation of the division rate of a Piecewise
Deterministic Markov Process: an age model on a tree

Adéläıde Olivier

(joint work with Marc Hoffmann)

We study the evolution of a system of particles. We focus on an individual
feature of the particles: their age (but it could be their size, etc.). The evolution of
the system is driven by two phenomenons. First particles evolve deterministically,
here they age. Secondly particles split randomly: a particle of age a splits into
two particles of age 0 at a rate B(a). The division rate B is an unknown function
we want to estimate.

Recently, Doumic et al. in [2] proposed a nonparametric estimation of the
division rate B for a size-structured model (where a particle of size x splits in two
particles of size x/2 at a rate B(x)). Their main observation scheme is composed
of n cells belonging to the ⌊log2(n)⌋ first generations. In this work we aim at
estimating nonparametrically B observing the evolution of the system until a fixed
time T . More precisely we observe the life lengths of the particles that lived before
T . Intrinsic difficulties are linked to this observation scheme which is radically
different from the previous study [2]. Observing the system between 0 and T
introduces first an intricate dependence between datas and also a sampling bias.
Intuitively particles that split quickly are more likely to be observed. Bansaye et al.
[1] proved the first a law of large numbers which makes appear a so called biased
density, different from the density associated to B. It enable us to find proper

weights to overcome the bias and to recover B through a weighted estimator B̂T .
The weights are estimated since the bias depends on B.

The number of observed particles between 0 and T is random and its expectation
when T is large is equivalent to exp(λBT ) where λB is the first eigenvalue of the
partial differential equation which describes macroscopically the system, see [3].
We complete the existing law of large numbers giving a rate of convergence for
the empirical means. We then exhibit a rate a convergence for our estimator. In

squared-loss error over a compact of estimation, B̂T centered and renormalized

by
(
exp(λBT/2)

)2β/(2β+1)
is tight uniformly on a restricted class of B, if the

Hölder-regularity β is large enough. Our estimator is not adaptive with respect to
the regularity since the rate is valid for a good choice of window parameter that
depends on β. We see here that the magnitude of the speed depends on B, the
unknown function we are estimating. Finally we tested numerically our estimator.
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On optimal rates for estimation, statistical learning, and online
regression

Alexander Rakhlin

(joint work with K. Sridharan and A. Tsybakov)

We consider the problem of regression in three scenarios: (a) regression with ran-
dom design under the assumption that the model F is correctly specified, (b)
distribution-free statistical learning with respect to a reference class F ; and (c)
online regression with no assumption on the generative process. To fix notation,
let X be some set and F be a class of functions from X to [−1, 1].

The minimax risk for the first problem (setting (a)) can be written as

Wn(F) = inf
f̂

sup
f∈F

E‖f̂ − f‖2

where the infimum is over all estimators based on n i.i.d. observations {(Xi, Yi)}ni=1

distributed as: Xi ∼ PX and Yi = f(Xi) + ǫi, f ∈ F . Here, ǫi is a zero-mean
noise, and hence the regression function is f ∈ F ; ‖ · ‖ denotes the L2(PX)-norm.

In the setting of statistical learning, no assumption is placed on the distribution
PXY of (X,Y ), and the problem is phrased as that of forming a predictor that
performs comparably to the best element of the class F :

Vn(F) = inf
f̂

sup
PXY

{
E(f̂(X)− Y )2 − inf

f∈F
E(f(X)− Y )2

}

Once again, f̂ is formed based on an i.i.d. sample of n points from PXY .
Finally, in the online regression scenario, we place no distributional assumptions

on the sequence (x1, y1), . . . , (xn, yn). To make the problem well-posed, we are
asked to predict the sequence sequentially as follows: on round t = 1, . . . , n, we
observe xt ∈ X , make prediction ŷt and observe the outcome yt. The minimax
regret in this problem is

Rn(F) = inf
A

sup
(x1,y1),...,(xn,yn)

{
1

n

n∑

t=1

(ŷt − yt)
2 − inf

f∈F

1

n

n∑

t=1

(f(xt)− yt)
2

}

where the infimum is taken over all prediction algorithms.
The first problem described above is often studied in the literature on nonpara-

metric estimation, the second falls within the purview of statistical learning theory,
and the third is studied within the online learning community. It is recognized
that complexity of the class F plays the key role in determining the minimax be-
havior; the importance of entropy in the study of estimation goes back to Le Cam,
Ibragimov and Khas’minskii, and Birgé. Within the setting of statistical learning
the importance of entropy was established in the work of Vapnik and Chervonenkis
and in subsequent works on uniform law of large numbers within empirical process
theory. The corresponding complexities for online learning have only been found
in the past few years. But do these three problems really differ from the minimax
point of view?
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In this talk, we show that the three problems are, in fact, closely related. In
particular, let N (ǫ,F , dn) be the covering number of F at scale ǫ with respect
to empirical pseudometric dn. Suppose that logN (ǫ,F , dn) ≤ ǫ−p. Then, for

p ∈ (0, 2), both Vn(F) and Wn(F) exhibit the rate of n− 2
2+p . Furthermore, if

we place the same assumption on a sequential covering number of F rather than

on N (ǫ,F , dn), then the same behavior of n− 2
2+p can be shown for Rn(F). Both

Vn(F) and Rn(F) behave as n−1/p for p > 2, signifying a phase transition at p = 2,

while Wn(F) continues to behave as n− 2
2+p for any p. Beyond the equivalence of

rates in terms of n, it follows that an algorithm for the third problem can be con-
verted into an algorithm for the first two. Given the new techniques (based on the
idea of relaxations) for solving sequential problems such as online regression, there
is now hope for developing novel computationally-efficient methods for statistical
learning and estimation.

Sparse model selection under heterogeneous noise: exact penalisation
and data-driven thresholding

Markus Reiß

(joint work with Laurent Cavalier)

We consider the following sequence space model

(1) Xλ = fλ + ξλ, λ ∈ Λ,

where (fλ) are the real-valued coefficients of a signal and the noise variables (ξλ) ∼
N(0,Σ) have a diagonal covariance matrix Σ = diag(σ2

λ). Here Λ is a finite, but
large index set. This heterogeneous model may appear in several frameworks where
the variance is fluctuating, for example in heterogeneous regression, coloured noise,
fractional Brownian motion models or especially in statistical inverse problems.
For the latter setting the general literature is quite exhaustive, but mostly focusses
on specific questions like universal thresholding, asymptotic minimax rates or level-
wise thresholding. The aim here is to estimate the unknown parameter vector
(fλ) from the observations (Xλ) under general and unknown sparsity constraints.
To this end a penalised empirical risk criterion, based on the so-called risk hull
approach, is proposed for general families of possibly data-driven selection rules.
This can be viewed as a (data-dependent) model selection procedure and results
in a sparse oracle-type inequality.

Model selection is a core problem in statistics. One of the main reference in
the field dates back to the information criterion AIC by Akaike, but there is a
huge amount of more recent work on this subject, in particular a precise anal-
ysis for high-dimensional and sparse data. Model selection is usually linked to
the choice of a penalty and its precise choice is the main difficulty in model se-
lection both from a theoretical and a practical perspective. Moreover, there is
a close relationship between model selection and the popular thresholding pro-
cedure with a false discovery rate (FDR) approach for the threshold choice, cf.
[Abramovich et al (2006)]. The idea is that the search for a “good penalty” in
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model selection is indeed very much related to the choice of a “good threshold” in
wavelet procedures. Our main structural assumption is that the parameter vector
(fλ) of interest is sparse, while we do neither know the position nor the number
of non-zero entries.

Our goal is to select among a family of models the best possible one, by use
of a data-driven selection rule. In particular, one has to deal with the special
heterogeneous nature of the observations, which must be reflected by the choice
of the penalty. The heterogenous case is much more involved than the direct
(homogeneous) model. Indeed, there is no more symmetry inside the stochastic
process that one needs to control, since each empirical coefficient has its own
variance. The problem and the penalty do not only depend on the number of
coefficients that one selects, but also on their position. The penalty is in this sense
non-local. We treat the case of general families of data-driven selection rules first
and then specify to the full subset selection procedures and the computationally
much easier thresholding rules via an FDR-type control. Using our model selection
approach, the procedures are almost exact minimax (up to a factor 2 compared to
[Golubev (2011)]). Moreover, the procedure is fully adaptive. Indeed, the sparsity
index γn is unknown and we obtain an explicit penalty, valid in the mathematical
proofs and directly applicable in simulations.

The heterogeneity also appears in the minimax lower bounds where the coef-
ficients in the least favourable model will go to the larger variances. In the case
of known sparsity γn, we consider also a non-adaptive threshold estimator and
derive its minimax upper bound. This estimator exactly attains the asymptotic
lower bound for typical specifications of the noise levels (σ2

λ) and is thus exact
minimax.
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Simultaneously adaptive estimation for L2- and L∞-loss

Johannes Schmidt-Hieber

Consider the Gaussian white noise model dYt = f(t)dt+n−1/2dWt, t ∈ [0, 1] and
let H(β,Q) denote the Hölder ball of index β and radius Q. It is well-known that
the minimax rate for estimation overH(β,Q) with respect to L2-loss is n−β/(2β+1).
For L∞-loss, that is, if the loss function is the uniform norm/ supremum norm on
[0, 1], the minimax rate becomes (n/ logn)−β/(2β+1). Even if the Hölder index β
of the underlying true function is unknown, these rates can be achieved.
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Construction of such adaptive estimators for either L2- or L∞-loss is well-
understood. For L∞-adaptation, hard wavelet thresholding can be used. In prac-
tice, this leads, however, to conservative reconstructions in the sense that with
high probability no artifacts are included but also rather little of the signal is re-
covered. In contrast, blockwise thresholding which gives L2-adaptation with the
’clean’ rates n−β/(2β+1) results in much better reconstructions, but has the draw-
back that occasionally artificial spikes appear causing the L2-adaptive estimator to
be suboptimal by a log(n)-factor with respect to L∞-loss (for a precise statement
see Theorem 3 in [3]).

A with respect to L2- and L∞-loss simultaneously adaptive procedure will in-
herit the good properties of both methods; because it must also detect small
L2-signal, the procedure will behave similar as blockwise thresholding with (due
to the sharp L∞-rate) less severe artificial spikes.

In the following, let us motivate the construction of the estimator. Decomposing
f with respect to the wavelet ψ, we find f =

∑
j≥0

∑
k dj,kψj,k, ignoring the scaling

coefficients in our heuristic. The transformed observations Yj,k :=
∫ 1

0 ψj,k(t)dYt
are just the empirical wavelet coefficients dj,k + n−1/2ǫj,k with ǫj,k ∼ N (0, 1),
i.i.d. Given f ∈ H(β,Q) implies that there is a constant c, depending on β

and Q, with |dj,k| ≤ c2−
j
2 (2β+1) for all j, k. Let Jn,2 and Jn,∞ are chosen such

that 2Jn,2 ≍ n1/(2β+1) and 2Jn,∞ ≍ (n/ logn)1/(2β+1). Now consider the empirical
wavelet coefficients dj,k + n−1/2ǫj,k. All relevant information for adaptive esti-
mation of f with respect to L2 lies on resolution levels up to Jn,2. On higher
resolutions, the noise dominates the L2-signal. The same is true for Jn,∞ and
L∞-loss. Therefore, we can divide the wavelet decomposition into three parts

f =

Jn,∞∑

j=0

∑

k

dj,kψj,k

︸ ︷︷ ︸
L2- and L∞-signal

+

Jn,2∑

j=Jn,∞+1

∑

k

dj,kψj,k

︸ ︷︷ ︸
L2- but no L∞-signal

+

∞∑

j=Jn,2+1

∑

k

dj,kψj,k.

︸ ︷︷ ︸
neither L2- nor L∞-signal

Empirical wavelet coefficients lying in the first part contain signal with respect to
both L2- and L∞-loss and are driven by noise in the third part of the decompo-
sition. According to the keep-and-kill paradigm in wavelet estimation, we wish
to find a procedure keeping empirical wavelet coefficients on low resolutions up
to Jn,∞ and killing them on resolutions larger than Jn,2. The critical regime are
the resolution level between Jn,∞ and Jn,2 on which empirical wavelet coefficients
contain L2-signal but are pure noise from the L∞-perspective. Including or ex-
cluding the empirical wavelet coefficients from our reconstruction will always lead
to suboptimal rates with respect to one of the two losses.

Before studying the general problem, let us consider the case that the smooth-
ness index β and the radius of the Hölder ball Q are known in advance. As men-

tioned above there is a constant c = c(β,Q) with |dj,k| ≤ c2−
j
2 (2β+1). Whenever

|Yj,k| is larger than c2−
j
2 (2β+1), it is therefore advisable to estimate the wavelet
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coefficient by truncation of Yj,k, which motivates the estimator

d̂j,k := sign(Yj,k)
(
|Yj,k| ∧ c2−

j
2 (2β+1)

)
.

It is not difficult to prove that the estimator f̂ =
∑

j,k d̂j,kψj,k achieves simulta-

neously the minimax rates over L2- and L∞-loss. Notice, that this estimator does
not follow the classical keep-and-kill wavelet thresholding idea. In fact, it acts
the opposite way by keeping small empirical wavelet coefficients and truncating
(comparably) large ones. Alternatively, one could view the estimator as projection

of the empirical wavelet coefficients on the (by the inequalities |dj,k| ≤ c2−
j
2 (2β+1)

slightly enlarged) parameter space.
The question is now, whether we can learn from that for the adaptive problem,

where β and Q are unknown and d̂j,k thus not computable. Estimation of the
smoothness index β is very difficult in itself if the true function is ’non-regular’.
We can, however, make the following heuristic: If the truth is a regular function,

then the bound c2−
j
2 (2β+1) can be estimated rather precisely, whereas if the true

function is irregular (roughly speaking, for most points the function lies locally
in a smoother space) then simultaneous adaptation for L2- and L∞-loss becomes
similar to simultaneous adaptation for L2- and pointwise loss for which no trun-
cation is needed (cf. [1]). In the latter case we may therefore work with a rough
upper bound of the truncation level.

Based on the derived heuristics, an estimator can now be constructed which
adapts simultaneously over Hölder balls with the clean L2- and L∞-rates. Details
are in [3].

To conclude, simultaneous estimation with respect to different loss functions
enhances and robustifies estimators but might also lead to new procedures and new
insights. Many questions remain open (some of them were posed to me by other
participants during the workshop). (1) Is it possible to adapt over all Lp-norms
simultaneously? (2) Is there an estimator that simultaneously adapts for L2- and
L∞-loss with the clean rates but now for f and its derivatives (cf. also [2]) ? (3)

The approach presented above relies crucially on the bounds |dj,k| ≤ c2−
j
2 (2β+1).

Can the ideas be generalized for parameter spaces for which tight inequalities for
each wavelet coefficient are unavailable? (4) Is there a more general approach
to simultaneous adaptation, in the sense that we can better decide under which
conditions simultaneous estimation is possible and how an estimator should be
constructed?
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The WiZer, inferred persistence of shape parameters and application
to stem cell stress fibre stuctures

Max Sommerfeld

(joint work with Stephan Huckemann, Kwang-Rae Kim, Axel Munk, Florian
Rehfeldt, Jochaim Weickert, Carina Wollnik)

We generalize the SiZer of Chaudhuri and Marron (1999, 2000) for the detection
of shape parameters of densities on the real line to the case of circular data. The
wrapped Gaussian is shown to be the unique choice for this purpose if we require
that with increasing levels of smoothing no spurious features are introduced. Based
on this we introduce the concept of inferred persistence of shape features and apply
this to the analysis of early differentiation in adult human stem cells from their
actin-myosin filament structure.

So far, mode and bump hunting has been investigated mainly in the context of
(multivariate) density estimation and real line regression.

We are concerned with circular densities for which rigorous inference methods
for the number and location of modes have not been provided so far, to the best
of our knowledge. Recently, [4] suggested a circular version of the SiZer, however,
without providing a circular scale space theory or methods assessing the statistical
significance of empirically found modes.

In our work we extend the concept of causality and the SiZer methodology
to circular data, inspired on the one hand, by [4] and on the other hand, by a
problem arising in studies of early differentiation of human stem cells. We call our
estimator based on wrapped Gaussians the WiZer [6]. To this end we

1) propose circular scale space axiomatics,
2) show that under reasonable assumptions the wrapped Gaussian kernel

gives the one and only semi-group guaranteeing causality,
3) assess asymptotically the statistical significance of shape features under

smoothing with a wrapped Gaussian,
4) and define inferred persistence over smoothing scales of shape features.
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Confidence in credible sets?

Aad van der Vaart

(joint work with Botond Szabo, Harry van Zanten)

In Bayesian nonparametrics posterior distributions for functional parameters are
often visualized by plotting a center of the posterior distribution, for instance
the posterior mean or mode, together with upper and lower bounds indicating a
credible set, i.e. a set that contains a large fraction of the posterior mass (typically
95%). The credible bounds are intended to visualize the remaining uncertainty in
the estimate. In this talk we study the validity of such bounds from a frequentist
perspective in the case of priors that are made to adapt to unknown regularity.

It is well known that in infinite-dimensional models Bayesian credible sets are
not automatically frequentist confidence sets, in the sense that under the assump-
tion that the data are in actual fact generated by a “true parameter”, it is not
automatically true that they contain that truth with probability at least the cred-
ible level. For a prior of a fixed “regularity level” the (lack of) coverage can be
understood in terms of a bias-variance trade-off: Bayesian credible sets typically
have good frequentist coverage in case of undersmoothing (using a prior that is less
regular than the truth), but coverage zero and be far too small in the other case.
Simulation studies corroborate theoretical findings, and show that the problem of
misleading uncertainty quantification is a very practical one.

The solution to undersmooth the truth, which gives good uncertainty quantifi-
cation, is unattractive for two reasons. First it leads to a loss in the quality of the
reconstruction, e.g. by the posterior mode or mean. Second the true regularity
of the functional parameter is never known and hence cannot be used to select a
prior that undersmoothes the right regularity. Therefore, in practice it is common
to try and “estimate” the regularity from the data and thus to adapt the method
to the unknown regularity. Bayesian versions of this approach can be implemented
using empirical or hierarchical Bayes methods. Empirical Bayes methods estimate
the unknown regularity using the marginal likelihood for the data in the Bayesian
setup. Hierarchical Bayes methods equip the regularity parameter with a prior
and follow a full Bayesian approach.

In this talk we concentrate on the empirical Bayes approach in the context of
linear Gaussian inverse problems. The observation is a sequence X = (X1, X2, ...)
satisfying

Xi = κiθ0,i +
1√
n
Zi, i = 1, 2, . . . ,(1)

where θ0 = (θ0,1, θ0,2, ..) ∈ ℓ2 is the unknown parameter of interest, the κi’s are
known constants (transforming the truth) and the Zi are independent, standard
normally distributed random variables. The rate of decay of the κi’s determines
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Figure 1. Empirical Bayes credible sets. The true function is
drawn in black, the posterior mean in blue and the credible set in
grey. We have n = 104, 106, 108 and 1010, respectively.

the difficulty of the statistical problem of recovering θ0. We consider the so-called
mildly ill-posed case where

C−2i−2p ≤ κ2i ≤ C2i−2p,(2)

for some fixed p ≥ 0 and C > 0. In particular, the choice p = 0 corresponds to the
ordinary signal-in-white-noise model, whereas p > 0 gives a true inverse problem.

For α > 0 we define a prior measure Πα for the parameter θ0 in (1) by

Πα =
∞⊗

i=1

N(0, i−1−2α).(3)

The coordinates θi are independent under this prior. Since the corresponding
coordinates of the data are also independent, the independence is retained in the
posterior distribution, which by univariate conjugate Gaussian calculation can be
seen to be

Πα(·|X) =
∞⊗

i=1

N
( nκ−1

i

i1+2ακ−2
i + n

Xi,
κ−2
i

i1+2ακ−2
i + n

)
.(4)

The prior (3) put mass 1 on Sobolev spaces and hyperrectangles of every order
strictly smaller than α, and hence expresses a prior belief that the parameter
is regular of order (approximately) α. Indeed it can be shown that if the true
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parameter θ0 in (1) belongs to a Sobolev space of order α, then the posterior dis-
tribution contracts to the true parameter at the minimax rate n−(1+2α)/(1+2α+2p)

for this Sobolev space. A similar result can be obtained for hyperrectangles. On
the other hand, if the regularity of the true parameter is different from α, then
the contraction can be much slower than the minimax rate.

The suboptimality in the case the true regularity is unknown can be overcome
by a data-driven choice of α. The empirical Bayes procedure consists in replacing
the fixed regularity α in (4) by (for given A, possibly dependent on n)

α̂n = argmax
α∈[0,A]

ℓn(α),(5)

where ℓn is the marginal log-likelihood for α in the Bayesian setting: θ|α ∼ Πα

and X |(θ, α) ∼ ⊗iN(κiθi, 1/n). This is given by

ℓn(α) = −1

2

∞∑

i=1

(
log
(
1 +

n

i1+2ακ−2
i

)
− n2

i1+2ακ−2
i + n

X2
i

)
.(6)

If there exist multiple maxima, any one of them can be chosen.
The empirical Bayes posterior is defined as the random measure Πα̂n(·|X) ob-

tained by substituting α̂n for α in the posterior distribution (4), i.e.

Πα̂n(·|X) = Πα(·|X)
∣∣∣
α=α̂n

This adapted posterior can be shown to contract to the true parameter at the
(near) minimax rate within the setting of Sobolev balls and hyperrectangles.

For fixed α > 0, let θ̂n,α be the posterior mean corresponding to the prior Πα

(see (4)). The centered posterior is a Gaussian measure that does not depend on
the data and hence for γ ∈ (0, 1) there exists a deterministic radius rn,γ(α) such
that the ball around the posterior mean with this radius receives a fraction 1− γ
of the posterior mass, i.e. for α > 0,

(7) Πα

(
θ : ‖θ − θ̂n,α‖ ≤ rn,γ(α)|X

)
= 1− γ.

In the exceptional case that α = 0 we define the radius to be infinite. The empirical
Bayes credible sets that we consider in this paper are the sets obtained by replacing
the fixed regularity α by the data-driven choice α̂n. Here we introduce some more
flexibility by allowing the possibility of blowing up the balls by a factor L. For
L > 0 we define

(8) Ĉn(L) = {θ ∈ ℓ2 : ‖θ − θ̂n,α̂n‖ ≤ Lrn,γ(α̂n)}.
By construction Πα̂n(Ĉn(L)|X) ≥ 1− γ iff L ≥ 1.

We are interested in the performance of the random sets Ĉn(L) as frequentist
confidence sets. Ideally we would like them to be honest in the sense that

inf
θ0∈Θ0

Pθ0

(
θ0 ∈ Ĉn(L)

)
≥ 1− γ,

for a model Θ0 that contains all parameters deemed possible. In particular, this
model should contain parameters of all regularity levels. At the same time we
would like the sets to be adaptive, in the sense that the radius of Ĉn(L) is (nearly)
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bounded by the optimal rate for a model of a given regularity level, whenever θ0
belongs to this model. It is well known that this is too much to ask, as there do
not exist confidence sets with this property, Bayesian or non-Bayesian. For the
present procedure we can explicitly exhibit examples of “inconvenient truths” that
are not covered at all.

Theorem 3. For given positive integers nj with n1 ≥ 2 and nj ≥ n4
j−1 for every

j, β > 0 and M > 0, define θ0 = (θ0,1, θ0,2, ...) by

θ20,i =

{
2−1−2βMn

− 1+2β
1+2β+2p

j , if n
1

1+2β+2p

j ≤ i < 2n
1

1+2β+2p

j , j = 1, 2, . . . ,

0, otherwise

Then the constant M > 0 can be chosen such that Pθ0(θ0 ∈ Ĉnj (Ln)) → 0 as

j → ∞ for every Ln ≪ n(1/2+p)/((1+2β+2p)(2+2β+2p)).

By construction the (fixed) parameter θ0 defined in Theorem 3 belongs to the
hyperrectangle Θβ(M), and in this sense is a “good”, because “smooth” truth.
However, it is an inconvenient truth, as it tricks the empirical Bayes procedure,
making this choose the “wrong” regularity α, for which the corresponding credible
set does not cover θ0.

Intuitively it is not surprising that such bad behaviour occurs, as nonparametric
credible or confidence sets always necessarily extrapolate into aspects of the truth
that are not visible in the data. Honest uncertainty quantification is only possible
by a-priori assumptions on those latter aspects. In the context of regularity this
may be achieved by “undersmoothing”, for instance by using a prior of fixed
regularity smaller than the true regularity. Alternatively we may change the notion
of regularity and strive for honesty over different models. In the latter

spirit we shall show that the empirical Bayes credible sets Ĉn(L) are honest
over classes of “polished” truths.

Definition 2. A parameter θ ∈ ℓ2 satisfies the polished tail condition if, for fixed
positive constants L0, N0 and ρ ≥ 2,

(9)
∞∑

i=N

θ2i ≤ L0

ρN∑

i=N

θ2i , ∀N ≥ N0.

We denote by Θpt(L0, N0, ρ) the set of all polished tail sequences θ ∈ ℓ2 for the
given constants L0, N0 and ρ.

It can be shown that the set of all polished tail sequences is nearly equal to all of
ℓ2 in a topological sense; that the statistical problem does not become easier if one
knows that the true parameter is polished tail; and that almost every parameter
generated from one of the priors Πα is polished tail. Thus, in a sense, assuming
that the true parameter is polished tail is natural.

Under this assumption the adaptive credible sets perform reasonably well.

Theorem 4. For any A,L0, N0 there exists a constant L such that

inf
θ0∈Θpt(L0)

Pθ0

(
θ0 ∈ Ĉn(L)

)
→ 1.(10)
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Furthermore, for A = An ≤ √
logn/(4

√
log ρ ∨ e) this is true with a slowly varying

sequence (L := Ln ≤ C(3ρ3(1+2p))An works).

Impact of Regularization on Spectral Clustering

Bin Yu

(joint work with Antony Joseph)

The problem of identifying communities, or clusters, in large networks is an im-
portant contemporary problem in statistics. Spectral clustering is one of the more
popular techniques for such purposes, chiefly due to its computational advantage
and generality of application. The algorithm’s generality arises from the fact that
it is not tied to any modeling assumptions on the data, but is rooted in intuitive
measures of community structure such as sparsest cut based measures [8], [16],
[10], [13]. Other examples of applications of spectral clustering include manifold
learning [2], image segmentation [16], and text mining [6].

The canonical nature of spectral clustering also generates interest in variants of
the technique. Here, we attempt to better understand the impact of regularized
forms of spectral clustering for community detection in networks. In particular,
we focus on the regularized spectral clustering (RSC) procedure proposed in [1].
Their empirical findings demonstrates that the performance of the RSC algorithm,
in terms of obtaining the correct clusters, is significantly better for certain values
of the regularization parameter. An alternative form of regularization was studied
in [5], and [14].

We attempt to provide a theoretical understanding for the regularization in the
RSC algorithm. Our analysis focuses on the Stochastic Block Model (SBM) and
an extension of this model. We also address the practical issue of the choice of
regularization parameter.

Our results involves understanding the interplay, as a function of the regular-
ization parameter, between the eigen gap and the concentration of the sample
Laplacian. Assuming that there are K clusters, the eigen gap refers to the gap be-
tween the K-th smallest eigenvalue and the remaining eigenvalues. An adequate
gap ensures that the sample eigenvectors can be estimated well, [18], [13], [10],
which leads to good cluster recovery.

The adequacy of an eigen gap for cluster recovery is in turn determined by the
concentration of the sample Laplacian. In particular, a consequence of the Davis-
Kahan theorem [3] is that if the spectral norm of the difference of the sample
and population Laplacians is small compared to the eigen gap then the top K
eigenvector can be estimated well. Denoting τ as the regularization parameter,
previous theoretical analyses of regularization [5], [15], provided high-probability
bounds on this spectral norm. Denoting dmin as the minimum expected degree of
the graph, these bounds have a 1/

√
τ + dmin dependence on τ . In contrast, our

high probability bounds behave like 1/τ as τ varies. The end result is that we
show that one can get a good understanding of the impact of regularization by
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understanding the situation where τ goes to infinity. This also explains empirical
observations in [1], [14] where it was seen that performance of regularized spectral
clustering does not change for τ beyond a certain value. Below are the three main
contributions of the talk.

We attempt to understand regularization for the stochastic block model. In
particular, for a graph with n nodes, previous theoretical analyses for spectral
clustering, under the SBM and its extensions, [15],[5], [17], [7] assumed that the
minimum degree of the graph scales at least by a polynomial power of logn.
Even when this assumption is satisfied, the dependence on the minimum degree is
highly restrictive when it comes to making inferences about cluster recovery. Our
analysis provides cluster recovery results that potentially do not depend on the
above mentioned constraint on the minimum degree. As an example, for an SBM
with two blocks (clusters), our results depend on the average degree, as opposed
to the minimum degree.

Further, we demonstrate that regularization has the potential of addressing a
situation, often encountered in practice, where not all nodes belong to well-defined
clusters. Without regularization, these nodes would hamper with the clustering
of the remaining nodes in the following way: In order for spectral clustering to
work, the top eigenvectors - that is, the eigenvectors corresponding to the largest
eigenvalues of the Laplacian - need to be able to discriminate between the clusters.
Due to the effect of nodes that do not belong to well-defined clusters, these top
eigenvectors do not necessarily discriminate between the clusters with ordinary
spectral clustering. With a proper choice of regularization parameter, we show
that this problem can be rectified. We also demonstrate this on simulated and
real datasets.

Although our theoretical results deal with the ‘large’ τ case, it is observed
empirically that moderate values of τ may produce slightly better clustering per-
formance. Consequently, we also propose a data dependent procedure for choosing
the regularization parameter. The procedure works by providing estimates of the
Davis-Kahan bounds over a grid of values of τ and then choosing the τ that min-
imizes these estimates. We demonstrate that this works well through simulations
and on a real data set.
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Structured Matrix Completion

Anru Zhang

(joint work with Tianxi Cai, T. Tony Cai)

Matrix completion has attracted significant recent attention in many fields includ-
ing statistics, applied mathematics and electrical engineering. Current literature
on matrix completion focuses primarily on independent sampling models under
which the individual observed entries are sampled independently. Motivated by
applications in genomic data integration, we propose a new framework of struc-
tured matrix completion (SMC) to treat structured missingness by design. Specif-
ically, our proposed method aims at efficient matrix recovery when a subset of the
rows and columns of an approximately low-rank matrix are observed. We provide
theoretical justification for the proposed SMC method and derive lower bound for
the estimation errors, which together establish the optimal rate of recovery over
certain classes of approximately low-rank matrices. Simulation studies show that
the method performs well in finite sample under a variety of configurations.
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Asymptotic normality and optimalities in estimation of large Gaussian
graphical model

Harrison Zhou

(joint work with Zhao Ren, Tingni Sun, Cun-Hui Zhang)

Gaussian graphical model, a powerful tool for investigating the relationship among
a large number of random variables in a complex system, is used in a wide range
of scientific applications. A central question for Gaussian graphical model is to
recover the structure of an undirected Gaussian graph. Let G = (V,E) be an
undirected graph representing the conditional dependence relationship between
components of a random vector Z = (Z1, . . . , Zp)

T as follows. The vertex set
V = {V1, . . . , Vp} represents the components of Z. The edge set E consists of
pairs (i, j) indicating the conditional dependence between Zi and Zj given all
other components. In applications, the following question is fundamental: Is there
an edge between Vi and Vj? It is well known that recovering the structure of an
undirected Gaussian graph G = (V,E) is equivalent to recovering the support of
the population precision matrix of the data in the Gaussian graphical model. Let

Z = (Z1, Z2, . . . , Zp)
T ∼ N (µ,Σ) ,

where Σ = (σij) is the population covariance matrix. The precision matrix, de-
noted by Ω = (ωij), is defined as the inverse of covariance matrix, Ω = Σ−1. There
is an edge between Vi and Vj , i.e., (i, j) ∈ E, if and only if ωij 6= 0. Consequently,
the support recovery of the precision matrix Ω yields the recovery of the structure
of the graph G.

Suppose n i.i.d. p-variate random vectors X(1), X(2), . . . , X(n) are observed
from the same distribution as Z, i.e. the Gaussian N

(
µ,Ω−1

)
. Assume with-

out loss of generality that µ = 0. In this paper, we address the following two
fundamental questions: When is it possible to make statistical inference for each
individual entry of a precision matrix Ω at the parametric

√
n rate? When and in

what sense is it possible to recover the support of Ω in the presence of some small
nonzero |ωij |?

The problems of estimating a large sparse precision matrix and recovering its
support have drawn considerable recent attention. In spite of an extensive liter-
ature on the topic, it is still largely unknown the fundamental limit of support
recovery in the Gaussian graphical model, let alone an adaptive procedure to
achieve the limit.

This paper makes important advancements in the understanding of statistical
inference of low-dimensional parameters in the Gaussian graphical model in the
following ways. Let s be the maximum degree of the graph or a certain more
relaxed capped-ℓ1 measure of the complexity of the precision matrix. We prove
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that the estimation of each ωij at the parametric
√
n convergence rate requires

the sparsity condition s ≤ O(1)n1/2/ log p or equivalently a sample size of order
(s log p)2. We propose an adaptive estimator of individual ωij and prove its as-
ymptotic normality and efficiency when n ≫ (s log p)2. Moreover, we prove that
the proposed estimator achieves the optimal convergence rate when the sparsity
condition is relaxed to s ≤ c0n/ log p for a certain positive constant c0. The ef-
ficient estimator of the individual ωij is then used to construct fully data driven
procedures to recover the support of Ω and to make statistical inference about
latent variables in the graphical model.

The methodology we are proposing is a novel regression approach. For any
index subset A of {1, 2, . . . , p} and a vector Z of length p, we use ZA to denote
a vector of length |A| with elements indexed by A. Similarly for a matrix U
and two index subsets A and B of {1, 2, . . . , p} we can define a submatrix UA,B

of size |A| × |B| with rows and columns of U indexed by A and B respectively.

Consider A = {i, j}, for example, i = 1 and j = 2, then ZA = (Z1, Z2)
T and

ΩA,A =

(
ω11 ω12

ω21 ω22

)
. It is well known that

ZA|ZAc = N
(
−Ω−1

A,AΩA,AcZAc ,Ω−1
A,A

)
.

This observation motivates us to consider regression with two response variables
above. The noise level Ω−1

A,A has only three parameters. When Ω is sufficiently
sparse, a penalized regression approach is proposed to obtain an asymptotically
efficient estimation of ωij , i.e., the estimator is asymptotically normal and the
variance matches that of the maximum likelihood estimator in the classical setting
where the dimension p is a fixed constant. Consider the class of parameter spaces
modeling sparse precision matrices with at most kn,p off-diagonal nonzero elements
in each column,

(1) G0(M,kn,p) =

{
Ω = (ωij)1≤i,j≤p : max1≤j≤p

∑
i6=j 1 {ωij 6= 0} ≤ kn,p,

and 1/M ≤ λmin (Ω) ≤ λmax (Ω) ≤M.

}
,

where 1 {·} is the indicator function and M is some constant greater than 1. The
following theorem shows that a necessary and sufficient condition to obtain a√
n−consistent estimation of ωij is kn,p = O

( √
n

log p

)
, and when kn,p = o

( √
n

log p

)

the procedure to be proposed is asymptotically efficient.

Theorem. Let X(i)i.i.d.∼ Np(µ,Σ), i = 1, 2, . . . , n. Assume that kn,p ≤ c0n/ log p
with a sufficiently small constant c0 > 0 and p ≥ kνn,p with some ν > 2. We have
the following probablistic results,

(i): There exists a constant ǫ0 > 0 such that

inf
i,j

inf
ω̂ij

sup
G0(M,kn,p)

P

{
|ω̂ij − ωij | ≥ ǫ0max

{
n−1kn,p log p, n

−1/2
}}

≥ ǫ0.



774 Oberwolfach Report 13/2014

(ii): The estimator ω̂ij proposed is rate optimal in the sense of

max
i,j

sup
G0(M,kn,p)

P

{
|ω̂ij − ωij | ≥M max

{
n−1kn,p log p, n

−1/2
}}

→ 0,

as (M,n) → (∞,∞). Furthermore, the estimator ω̂ij is asymptotically

efficient when kn,p = o
( √

n
log p

)
, i.e., with F−1

ij = ωiiωjj + ω2
ij ,

(2)
√
nFij (ω̂ij − ωij)

D→ N (0, 1) .

Moreover, the minimax risk of estimating ωij over the class G0(k,Mn,p) satisfies,
provided n = O

(
pξ
)
with some ξ > 0,

(3) inf
ω̂ij

sup
G0(M,kn,p)

E |ω̂ij − ωij | ≍ max

{
kn,p

log p

n
,

√
1

n

}
.

The lower bound is established through Le Cam’s Lemma and a novel con-
struction of a subset of sparse precision matrices. An important implication of the
lower bound is that the difficulty of support recovery for sparse precision matrix

is different from that for sparse covariance matrix when kn,p ≫
( √

n
log p

)
, and when

kn,p ≪
( √

n
log p

)
the difficulty of support recovery for sparse precision matrix is just

the same as that for sparse covariance matrix.
It is worthwhile to point out that the asymptotic efficiency result is obtained

without the need to assume the irrepresentable condition or the l1 constraint of
the precision matrix which are commonly required in literature. An immediate
consequence of the asymptotic normality result (2) is to test individually whether
there is an edge between Vi and Vj in the set E, i.e., the hypotheses ωij = 0.
The result is applied to do adaptive support recovery optimally. In addition, we
can strengthen other results in literature under weaker assumptions, and the pro-
cedures are adaptive, including adaptive rate-optimal estimation of the precision
matrix under various matrix lq norms, and an extension of our framework for
inference and estimation to a class of latent variable graphical models.

Reporters: Axel Munk, Alexandre Tsybakov
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