
Mathematisches Forschungsinstitut Oberwolfach

Report No. 17/2014

DOI: 10.4171/OWR/2014/17

Real Algebraic Geometry With A View Toward Systems
Control and Free Positivity

Organised by
Didier Henrion, Toulouse

Salma Kuhlmann, Konstanz

Victor Vinnikov, Beer-Sheva

6 April – 12 April 2014

Abstract. New interactions between real algebraic geometry, convex op-
timization and free non-commutative geometry have recently emerged, and
have been the subject of numerous international meetings. The aim of the
workshop was to bring together experts, as well as young researchers, to in-
vestigate current key questions at the interface of these fields, and to explore
emerging interdisciplinary applications.

Mathematics Subject Classification (2010): 12D15, 13P10, 13P15, 14M12, 14P05, 14P10, 14Q05,

14Q10, 47LXX, 49M29, 49N35, 52A20, 52A27, 52A41, 90C22, 90C26, 93B25, 93B40, 93B51.

Introduction by the Organisers

Hilbert, in the 1880s and 1890s, was the first to study the connection between
positive polynomials and sums of squares. He considered this topic so important
that he included a central open question in his list of mathematical problems.
Artin–Schreier’s solution of Hilbert’s 17th problem in the 1920s marked the be-
ginning of real algebra. The subject continued to develop, with the fundamental
Positivstellensatz (a description of positive polynomials on a basic closed semial-
gebraic set) discovered by Krivine and Stengle in the 1960s and the 1970s, and it
was reinvigorated in the 1990s through new connections with functional analysis
and moment problems, resulting in new denominator free Positivstellensätze of
Schmüdgen, Putinar and Jacobi–Prestel.

The discovery of efficient algorithms, combined with the growing power of
electronic computation in general, gave results on positive polynomials, sums of
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squares, and moment problems a central role in polynomial optimization. Con-
versely, problems in optimization have been shaping very recent research directions
in real algebra. The implementation of semidefinite programming has generated
difficult questions in convex real algebraic geometry. Relations to control theory
and engineering initiated questions on positivity in a non-commutative setting.
Analogues from the traditional commutative theory served successfully as excel-
lent guiding principles in the non-commutative case, leading to startling recent
results.

The aim of the workshop was to bring together researchers working in

(A) real algebraic geometry (positive polynomials, sums of squares, and mo-
ment problems),

(B) linear matrix inequalities (LMIs), systems and control, optimization, and
(C) non-commutative and free positivity.

While some of the participants were well aware of the connections between the
different areas, others were more or less of newcomers to the interdisciplinary scene.
There was also a large number of young researchers, both graduate students and
juniour faculty members.

To create a synergy between these different groups the organizers have asked
11 participants to give talks of 50 minutes that would present a topic to a mixed
audience of non-specialists and specialists. These survey-expository talks were
scheduled during the morning sessions, with regular research talks of 40 min-
utes scheduled in the afternoons (except for Friday, when there were no survey-
expository talks). The survey-expository talks were roughly divided according to
the three main areas mentioned above,

(A) M. Schweighofer, M. Marshall, Y. Yomdin, B. Reznick, and H. Woerde-
man,

(B) J.-B. Lasserre, P. Brändén, and M. Safey El Din,
(C) K. Schmüdgen, J. W. Helton, and J. Ball,

though of course some of them crossed the boundaries.
Here is a summary of some of the main topics discussed at the workshop.

Positive polynomials and sums of squares

M. Schweighofer described representations of positive and strictly positive poly-
nomials as weighted sums of squares, including the matrix valued case and with
an emphasis on degree bounds (both of which are of particular importance for ap-
plications). A variety of far reaching new results on degree bounds were the main
topic of the talk of G. Blekherman. B. Reznick discussed explicit constructions of
positive polynomials that are not sums of squares, from Hilbert’s original papers
through the first explicit examples of Motzkin and Robinson till the most recent
results. T. Netzer showed an interesting new application of real algebra techniques
to a class of graph-theoretic problems. F. Vallentin presented some very explicit
results on invariant sums of squares. The talk of J. Ball was primarily devoted
to the free non-commutative setting, but he discussed the commutative case as a
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motivation, with certain weighted hermitian sums of squares decompositions that
originated with the work of J. Agler in the early 1990s and played since a central
role in operator theory and function theory on the unit polydisc in Cd. These
“Agler decompositions” were a central theme in the talks of H. Woerdeman (were
they were related to both the author’s earlier work on the trigonometric moment
problem and to determinantal representations of polynomials), and of M. Dritschel.

Moment problems

M. Marshall gave a state-of-the-art survey, including a new approach based on
localization, for the (full) moment problem on a basic closed semialgebraic set;
he discussed both the existence and the uniqueness of the representing measure.
M. Infusino described the moment problem in an infinite dimensional setting; the
results were hitherto unknown to most participants, and led to a lively discussion.
Y. Yomdin presented a broad subject of moment vanishing problems and related
topics that were virtually unknown in the real algebra community. H. Woerde-
man described his work on the truncated two-dimensional trigonometric moment
problem for a class of absolutely continuous measures.

LMIs and hyperbolic polynomials

LMI is the name traditionally used in systems control to refer to spectrahedra
which are feasibility sets of semidefinite programming problems. Spectrahedral
cones are always hyperbolic cones associated to some hyperbolic polynomial, and
one of the main conjectures in the area (the generalized Lax conjecture) is that
these two classes of cones actually coincide; this is equivalent to the existence of
certain determinantal representation for hyperbolic polynomials. P. Brändén gave
a survey of hyperbolic polynomials and spectrahedral cones, icluding the recent
application to the proof of the Kadisonn–Singer conjecture in operator algebras
(by Marcus, Spielman, and Srivastava). C. Hanselka presented a new proof (using
quadratic forms rather than algebraic geometry) of the fact that any homogeneous
hyperbolic polynomial in three variables admits a determinantal representation.
E. Shamovich introduced a natural generalization of the notion of hyperbolicity
for higher codimensional subvariaties of the projective space. M. Kummer gave a
startling new result on determinantal representations, obtained using real algebra
and the full power of the Positivstellensatz, that goes some of the way towards
establishing the generalized Lax conjecture.

Systems control and optimization

In his talk, J.-B. Lasserre surveyed the use of algebraic certificates of positivity
and the resulting hierarchies of semidefinite programming problems in non-convex
optimization. A. A. Ahmadi described the use of linear matrix inequalities (LMI)
to approximate the joint spectral radius, a quantity ruling the decay or growth rate
of the norm of the product of given matrices. J. W. Helton argued that the struc-
ture of dimension-free LMI problems, ubiquitous in linear robust control problems,
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can be inferred from properties of non-commutative polynomials. J. Ball comple-
mented this point of view, and he explained how results from non-commutative
algebra and operator theory can be exploited in linear robust control. LMI prob-
lems coming from sum-of-squares decomposition of multivariate polynomials are
now common in systems theory, especially in signal processing, and H. Woerder-
mann explored such connections in the bivariate trigonometric case for filtering
problems.

Non-commutative and free positivity

K. Schmüdgen gave a general overview of the setting, methods, and results
of non-commutative real algebraic geometry. J. Cimpric presented new non-
commutative Postivsellensätze for matrix polynomials. The talk of A. Thom
discussed the case of group rings with applications and relations to a variety of
problems in group theory and operator algebras. J. W. Helton gave an overview
of the free real algebraic geometry, with a special emphasis on the motivation
coming from LMIs appearing in systems control. Free polynomial optimization
was discussed by S. Burgdorf. The talk of J. Ball described function theory, op-
erator theory, and system theory, related to the free non-commutative versions of
such classical domains as the unit polydisc or the unit ball in Cd, with a central
role being played by certain non-commutative weighted hermitian sums of squares
decompositions.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting J. William Helton and Bruce Reznick in the “Simons
Visiting Professors” program at the MFO.
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Abstracts

On LP and SDP Certificates of Positivity

Jean-Bernard Lasserre

In many problems in control, optimal and robust control, one has to solve global
optimization problems of the form: P : f∗ = minx { f(x) : x ∈ K }, or, equiv-
alently, f∗ = max{λ : f − λ ≥ 0 on K}, where f is a polynomial (or even a
semi-algebraic function) and K is a basic semi-algebraic set. One may even need
solve the “robust” version min{f(x) : x ∈ K; h(x,u) ≥ 0, ∀u ∈ U} where U
is a set of parameters. For instance, some static output feedback problems can
be cast as polynomial optimization problems whose feasible set K is defined by a
polynomial matrix inequality (PMI). And robust stability regions of linear systems
can be modeled as parametrized polynomial matrix inequalities (PMIs) where pa-
rameters u account for uncertainties and (decision) variables x are the controller
coefficients.

Therefore, to solve such problems one needs tractable characterizations of poly-
nomials (and even semi-algebraic functions) which are nonnegative on a set, a topic
of independent interest and of primary importance because it also has implications
in many other areas.

We will review two kinds of tractable characterizations of polynomials which are
nonnegative on a basic closed semi-algebraic set K ⊂ Rn.
• The first type of characterization is when knowledge on K is through its

defining polynomials, i.e., K = {x : gj(x) ≥ 0, j = 1, . . . ,m}, in which case some
powerful certificates of positivity can be stated in terms of:

- a weighted linear combination of the (gj) whose weights are some sums of
squares (SOS), or

- positive linear combinations of powers of the defining polynomials (gj) (with
positive scalars as weights).

For instance, depending on which type of positivity certificate is chosen, this
allows to define a hierarchy of (semidefinite) SDP-relaxations or LP-relaxations
of problem P. In both hierarchies each optimization problem is convex (an SDP
or an LP) and each hierarchy provides an associated monotone sequence of lower
bounds converging to f∗. In fact, finite convergence of the SOS hierarchy is generic
and one may also extract global minimizers.
• The second type of characterization is when knowledge on K is through mo-

ments of a measure whose support is K. In this case, checking whether a polyno-
mial is nonnegative on K reduces to solving a sequence of generalized eigenvalue
problems associated with a countable (nested) family of real symmetric matrices
of increasing size. When applied to P this results in a monotone sequence of upper
bounds converging to the global minimum f∗, which complements the previous
sequence of upper bounds.

These two (dual) characterizations provide convex inner (resp. outer) approxi-
mations (by spectrahedra) of the convex cone of polynomials nonnegative on K.
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Positive polynomials, sums of squares, degree bounds and semidefinite
representations

Markus Schweighofer

(joint work with Christoph Hanselka)

All students of mathematics should know that every polynomial in one variable
nonnegative on the real line is a sum of two squares of polynomials:

Theorem 1. Suppose f ∈ R[X ] and f ≥ 0 on R. Then there exist p, q ∈ R[X ]
such that f = p2 + q2.

Proof. By the fundamental theorem of algebra, f is a product of linear polynomials
in C[X ] corresponding to the multiset of complex roots of f (i.e., the roots counted
with multiplicity). Since f is nonnegative, the real factors appear with an even
multiplicity. Since f is real, the non-real factors appear in complex-conjugated
pairs. Any division of the multiset into two complex-conjugated parts, now leads

to a complex polynomial p+
◦
ıq (p, q ∈ R[X ]) such that

f = (p− ◦ıq)(p+ ◦ıq) = p2 + q2

where
◦
ı ∈ C denotes the imaginary unit. �

Note that this theorem can be reformulated in the following more systematic style
(since a complex polynomial taking real values on the line is automatically real):

For all f ∈ C[X ] with f ≥ 0 on R, there exists p ∈ C[X ] such that f = p∗p.

Here
◦
ı
∗
= −◦ı and X∗ = X : We denote by ∗ the complex conjugation and extend

it on an involution on polynomial rings by considering the variables to be formally
self-adjoint. We also have obvious degree bounds in the above: If d ∈ N such that
deg f ≤ 2d, then deg p ≤ d follows immediately.

The following non-trivial generalization of Theorem 1 to matrix polynomials pos-
itive semidefinite on the real line was folklore at least since the 1960s (see for
example [1]). Here ∗ acts as before but in addition transposes the matrices.

Theorem 2. Suppose F ∈ C[X ]s×s and F � 0 on R. Then there exists P ∈ C[X ]
such that F = P ∗P .

Taking the trace on both sides of the equation F = P ∗P yields
∑s

i=1 Fii =∑s
i,j=1 P

∗
ijPij . Using this, it is easy exercise to show that we get the same kind

of automatic degree bounds as before. The most elementary proof of Theorem 1
has been given (for the case F ∈ R[X ]s×s) by Choi, Lam and Reznick [2, Section
7]. The rough idea of their proof is by completing the square successively with
respect to the different variables one by each. To compensate for the impossibility
of division in the polynomial ring, during this process multipliers have to be intro-
duced which can be neutralized using the fundamental theorem of algebra. In [2],
this neutralization involves very tricky computations. In the first part of the talk,
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we present a new and very “clean” way to do this neutralization using basic linear
algebra instead of computations. This yields arguably the easiest known proof of
Theorem 2.

With a little more work, this new argument also allows to show that the determi-
nant of the factors in the factorization can be described with the maximal possible
freedom (compare to the proof of Theorem 1):

Theorem 3 (Hanselka & S., Ball & Rodman). Suppose F ∈ C[X ]s×s and
g ∈ C[X ] such that F � 0 on R and detF = g∗g. Then there exists P ∈ Cs×s

such that F = P ∗P and detP = g.

Theorem 3 was already known in the case where g and g∗ have no common zero [1,
Theorem 3]. Our question whether it is already known in the above stated general
form, reached Joe Ball and Leiba Rodman who negated it and at the same gave an
alternative unpublished proof which is however based on a considerable amount of
the theory of matrix polynomials [3]. Our investigations were initially motivated
by the fact that the algorithm described in [4] to compute the decomposition in
Theorem 2 seems to use (at least weaker versions of) Theorem 3 [5] even though
no version of this theorem is stated let alone proved in [4] (note also that the
authors of [4] claim to give a system-theoretic proof of Theorem 2 [4, page 5660,
last paragraph] which does not seem to be the case since they use the equation
Q∗(λ∗i )vi = 0 in [4, page 5665] without any proof but this equation is almost
equivalent to the existence of the decomposition).

The second part of the talk was a survey on modern versions of Theorems 1 and
2 which we state in the following synthesized way:

Theorem 4 (Schmüdgen 1991, Putinar 1993, Hol & Scherer 2005). Let m,n ∈ N,
g1, . . . , gm ∈ A := R[X1, . . . , Xn] and set g0 := 1 ∈ A. Consider the basic closed
semialgebraic set

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0},
and the matricial quadratic modules

T (s) :=





m∑

i=0

gi
∑

j

P ∗ijPij | Pij ∈ As×s



 (s ∈ N),

and the ordinary quadratic module T := T (1). The following are equivalent:

(a) There exist t ∈ N and h1, . . . , ht ∈ A such that
∏

i∈I hi ∈ T for all I ⊆
{1, . . . , t} and {x ∈ Rn | h1(x) ≥ 0, . . . , ht(x) ≥ 0} (and therefore also its
subset S) is compact.

(b) There exists h ∈ T such that {x ∈ Rn | h(x) ≥ 0} is compact.
(c) There exists N ∈ N such that N −∑n

i=1X
2
i ∈ T .

(d) For all p ∈ A there is an N ∈ N such that N + p ∈ T .
(e) S is compact and for every f ∈ A with f > 0 on S, we have f ∈ T .
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(f) S is compact and for all s ∈ N and all F ∈ R[X ]s× with F ≻ 0 on S, we have
f ∈ T (s).

The backward implications are obvious whereas the forward implications are not:
We don’t know if there is an easy direct proof of (a)⇒(b). The hardest implica-
tions are (a)⇒(c) (or even (b)⇒(c)): This is the essence of Schmüdgen’s celebrated
1991 theorem [6] whose first algebraic proof was found by Wörmann [7]. All proofs
of Schmüdgen’s Theorem use Krivine’s (classical) Positivstellensatz from real al-
gebraic geometry [8] (reproved by Stengle [9] and Prestel [10]). The implication
(c)⇒(d) is just a few lines of tricky identities. Implication (d)⇒(e) was just a
by-product in the article [11] by Putinar but got famous due to its numerous
applications. The easiest known proof today stems from Marshall [14]. Finally,
(d)⇒(f) is a theorem due to Hol & Scherer [12]. See [13, 14, 15].

The advantage of modern versions of Theorems 1 and 2 such as Theorem 4 is that
they work in severable variables instead of only one and that they allow to consider
positivity on arbitrary basic closed semialgebraic sets.

The big drawback of the modern versions is that there no obvious or “clean” degree
bounds. The degree bounds instead depend on the geometry [13, 17, 18, 19, 20].
Indeed, the validity of these theorems even strongly relies on the possibility of
huge degree cancellations. Related to this, strict positivity is in general needed
although the certificate is only for nonnegativity.

An ingenious idea of Helton and Nie however surmounts partially these difficulties
in cases where S is stricly convex and the polynomial to represent is of degree
one [20, 21, 22, 23]. In Theorem 4, instead of applying (e) to the degree one
polynomial, they apply (f) to the Hessians of certain polynomials defining the
set S locally and write the degree one polynomial as a double integral over an
expression involving this Hessian. This leads to strong theorems about semidefinite
representability of large classes of convex semialgebraic sets. Indeed, it is an
open question if all convex semialgebraic sets are projections of spectrahedra (i.e.,
solution sets of linear matrix inequalities). Even if one is interested in sums of
squares representations of polynomials rather than matrix polynomials, it can be
of great help to study the case of matrix polynomials.
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[8] J.-L. Krivine: Anneaux préordonnés, J. Analyse Math. 12 1964 307–326
[9] G. Stengle: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry, Math. Ann.

207 (1974), 87–97
[10] A. Prestel: Lectures on formally real fields, Rio de Janeiro: IMPA (1975), reprinted in:

Lecture Notes in Mathematics 1093, Springer-Verlag, Berlin, 1984
[11] M. Putinar: Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J.

42 (1993), no. 3, 969–984
[12] C.W.J. Hol, C.W. Scherer: Matrix sum-of-squares relaxations for robust semi-definite pro-

grams, Math. Program. 107 (2006), no. 1-2, Ser. B, 189–211
[13] A. Prestel, C.N. Delzell: Positive polynomials, From Hilbert’s 17th problem to real algebra,

Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001
[14] M. Marshall: Positive polynomials and sums of squares, Mathematical Surveys and Mono-

graphs, 146, American Mathematical Society, Providence, RI, 2008
[15] M. Laurent; Sums of squares, moment matrices and optimization over polynomials, Emerg-

ing applications of algebraic geometry, 157270, IMA Vol. Math. Appl., 149, Springer,
New York, 2009, updated versions available at http://homepages.cwi.nl/~monique/files/
moment-ima-update-new.pdf

[16] A. Prestel: Bounds for representations of polynomials positive on compact semi-algebraic
sets, Valuation theory and its applications, Vol. I (Saskatoon, SK, 1999), 253260, Fields
Inst. Commun., 32, Amer. Math. Soc., Providence, RI, 2002

[17] M. Schweighofer: On the complexity of Schmüdgen’s Positivstellensatz, J. Complexity 20
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Noncommutative Positivity and Positivstellensätze

Konrad Schmüdgen

This talk is about various versions of Positivstellensätze for general noncommu-
tative ∗-algebras. Let A be a unital ∗-algebra with involution a → a∗. There
are various methods to define positive elements of A. An important and powerful
method is based on ∗-representations. A ∗-representation of A is a homomorphism
π of A into the algebra of linear operators on a unitary space (Vπ , 〈·, ·〉) such that

〈π(a)ϕ, ψ〉 = 〈ϕ, π(a∗)ψ〉, ϕ, ψ ∈ Vπ, a ∈ A.
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If R is a family of ∗-representations of A, then the set

A(R)+ = {a = a∗ ∈ A : 〈π(a)ϕ, ϕ〉 ≥ 0 for ϕ ∈ Vπ, π ∈ R}
is a quadratic module. Noncommutative Positivstellensätze express elements of
such quadratic modules A(R)+ in terms of (weighted) sums of squares. Here
elements of the form x∗x with x ∈ A are called (hermitean) squares in A. A number
of different types of such Positivstellensätze are reviewed in the talk. Among them
are Positivstellensätze for algebras of free type without denominators (as proved
by W. Helton, S. McCullough and their coworkers) and Positivstellensätze for
Weyl algebras and enveloping algebras (as proved by the author). Matrices over
algebras lead to unexpected new phenomena and new types of Positivstellensätze.
This was elaborated in joint work with Y. Savchuk [1].

In the second part of the talk a generalization of Marshall’s Positivstellensatz
[2] to noncommutative ∗-algebras is presented [3, Theorem 4]. This result leads
to a unified approach to a number of strict Positivstellensätze for Weyl algebras,
enveloping algebras and quantum algebras obtained by the author. The main
technical tool for these results are appropriate bounded ∗-algebras of fractions.

Finally, a number of open problems are stated ( mainly taken from [1, Section
11]. One important open problem concerns the Weyl algebra: Is each hermitean
element of the Weyl algebra which is represented by a positive symmetric operator
in the Schrödinger representation a sum of squares with denominator?
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Computation of the Joint Spectral Radius with Optimization
Techniques

Amir Ali Ahmadi

1. The JSR

Given a finite set of real n× n matrices A := {A1, . . . , Am}, their joint spectral
radius ρ(A) is defined as

(1) ρ (A) = lim
k→∞

max
σ∈{1,...,m}k

‖Aσk
· · ·Aσ2

Aσ1
‖1/k ,

where the quantity ρ(A) is independent of the norm used in (1). The joint spectral
radius (JSR) is a natural generalization of the spectral radius of a single matrix
and it characterizes the maximal growth rate that can be obtained by taking prod-
ucts of arbitrary length, of all possible permutations of A1, . . . , Am. This concept
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was introduced by Rota and Strang [7] in the early 60s and has since emerged in
many areas of application such as stability and control of switched linear systems,
computation of the capacity of codes, continuity of wavelet functions, convergence
of consensus algorithms, and many others; see [5] and references therein. In par-
ticular, the switched linear dynamical system

(2) xk+1 = Aixk, i ∈ {1, . . . ,m},
is asymptotically stable under arbitrary switching (i.e., attracts all initial conditions
x0 ∈ Rn to the origin for all possible switching sequences {Ai}) if and only if
ρ(A) < 1.

In almost all application areas mentioned above, the question of interest is to
compute the JSR given the input matrices or simply decide whether it is less than
one. In recent years, several algorithms have emerged to compute (or approximate)
the JSR using optimization methods. These techniques often involve a search for
a Lyapunov function of some algebraic structure that certifies stability of the
dynamical system in (2).

2. Our recent work on the subject

Semidefinite programming for upper bounding the JSR (with Jungers,
Parrilo, Roozbehani [3]). In this work, we describe a “general recipe” for design-
ing polynomially sized semidefinite programs that give upper bounds on the JSR.
Our paper establishes a correspondence between sets of LMIs and certain fami-
lies of finite automata whose states denote unknown Lyapunov functions as SDP
decision variables and whose transitions are labeled with matrices A1, . . . , Am.
Our main theorem states that if the finite automaton satisfies a certain language-
theoretic property, then a feasible solution to the SDP certifies an upper bound
on the JSR. These upper bounds come with worst-case approximation guarantees.
For example, we describe an SDP with m decision matrices of size n × n and
m2 LMI constraints that produces an upper bound ρ̂ on ρ with the guaranteed
accuracy of

1
4
√
n
ρ̂(A) ≤ ρ(A) ≤ ρ̂(A).

Dynamic programming for JSR of rank-one matrices (with Parrilo [4]).
We show that in the special case where the matrices A1, . . . , Am have rank one, the
JSR can be computed exactly in O(m3+m2n). The algorithm is based on dynamic
programming and comes from a connection we make between this problem and
the maximum cycle mean problem in graph theory [6].

Existence of “bad” examples for optimization-based techniques (with
Jungers [2]). We show that for any positive integer d, there are families of
switched linear systems—in fixed dimension and defined by two matrices only—
that are stable under arbitrary switching but do not admit (i) a polynomial Lya-
punov function of degree ≤ d, or (ii) a polytopic Lyapunov function with ≤ d
facets, or (iii) a piecewise quadratic Lyapunov function with ≤ d pieces. This



990 Oberwolfach Report 17/2014

implies that there cannot be an upper bound on the size of the linear and semidef-
inite programs that search for such stability certificates. This is in contrast with
(non-switched) linear systems that, if stable, always admit a quadratic Lyapunov
function.

Sos-convex Lyapunov functions (with Jungers [1]). We show that if the
JSR is less than one, there always exists an sos-convex Lyapunov function that
proves it. Sos-convex Lyapunov functions are polynomial Lyapunov functions
that have an algebraic certificate of convexity; they can be found efficiently by
semidefinite programming. We show via an explicit example, however, that the
minimum degree of an sos-convex Lyapunov function can be arbitrarily higher
than a (non-convex) polynomial Lyapunov function. On the other hand, we show
that ensuring convexity of a Lyapunov function is crucial for certifying stability of
nonlinear switched systems.

3. Open questions

We state two fundamental open questions regarding the computation of the
JSR.

Problem 1 (decidability of stability). Is there an algorithm that can take as
input m matrices of dimension n with rational entries, halt in finite time, and
output the correct yes-no answer as to whether their JSR is strictly less than one?

Problem 2 (the rational finiteness conjecture). Consider any product
Aσ1

. . . Aσk
of some length k with σi ∈ {1, . . . ,m}. It is well-known and easy

to establish that

(ρ(Aσ1
. . . Aσk

))1/k ≤ ρ(A1, . . . , Am).

Note that the ρ on the left is simply the spectral radius while the ρ on the right
is the JSR. If A1, . . . , Am have rational entries, is it true that equality is always
achieved at a finite k?

A positive answer to Problem 2 implies a positive answer to problem 1.

References

[1] A. A. Ahmadi and R. Jungers. SOS-convex Lyapunov functions with applications to non-
linear switched systems. In Proceedings of the IEEE Conference on Decision and Control,
2013.

[2] A. A. Ahmadi and R. Jungers. On complexity of Lyapunov functions for switched linear
systems. In Proceedings of the 19th World Congress of the International Federation of
Automatic Control, 2014.

[3] A. A. Ahmadi, R. Jungers, P. A. Parrilo, and M. Roozbehani. Joint spectral radius and path-
complete graph Lyapunov functions. SIAM Journal on Optimization and Control, 2014. To
appear.

[4] A. A. Ahmadi and P. A. Parrilo. Joint spectral radius of rank one matrices and the maximum
cycle mean problem. In Proceedings of the 51st IEEE Conference on Decision and Control,
2012.

[5] R. Jungers. The joint spectral radius: theory and applications, volume 385 of Lecture Notes
in Control and Information Sciences. Springer, 2009.



Real Algebraic Geometry 991

[6] R. Karp. A characterization of the minimum cycle mean in a digraph. Discrete mathematics,
23(3):309–311, 1978.

[7] G. C. Rota and W. G. Strang. A note on the joint spectral radius. Indag. Math., 22:379–381,
1960.

Positive matrix polynomials

Jaka Cimprič

Let Mn(R[x]) be the algebra of all real matrix polynomials of size n in several
variables and write Sn(R[x]) = {H ∈Mn(R[x]) | HT = H}. In my talk I discussed
the following problems:

(1) (One-sided Real Nullstellensatz) Given G1, . . . , Gm ∈ Mn(R[x]), charac-
terize all F ∈ Mn(R[x]) such that F (a)v = 0 for all a ∈ Rd and all v ∈ Rn

satisfying G1(a)v = . . . = Gm(a)v = 0.
(2) (One-sided Positivstellensatz) Given G1, . . . , Gm ∈ Sn(R[x]), characterize

all F ∈ Sn(R[x]) such that vTF (a)v > 0 for all a ∈ Rd and all v ∈ Rn for
which vTGi(a)v ≥ 0 for all i.

The first problem has been solved in [1] by the following result:

Theorem. Given G1, . . . , Gm, F ∈Mn(R[x]), the following are equivalent:

(1) F (a)v = 0 for all a ∈ Rd and v ∈ Rn for which G1(a)v = . . . = Gm(a)v =
0.

(2) F belongs to the smallest real left ideal of Mn(R[x]) which contains
G1, . . . , Gm. (Here a left ideal J ofMn(R[x]) is real if for everyH1, . . . , Hk ∈
Mn(R[x]) such thatHT

1 H1+. . .+H
T
k Hk ∈ J+JT we have thatH1, . . . , Hk ∈

J .)

For m = 1, the second problem is related to the famous Finsler’s Lemma. I
discussed the following conjecture and its variants:

Conjecture. For every F,G ∈ Sn(R[x]), the following are equivalent:

(1) vTF (a)v > 0 for all a ∈ Rd and v ∈ Rn for which vTG(a)v ≥ 0.
(2) There exist sos polynomials s, t and matrix polynomials A1, . . . , Ak such

that (1 + s)F = In +
∑k

i=1 A
T
i Ai + tG.

This conjecture is false in general (even for G = g · In where g ∈ R[x] and In
is the identity matrix) but it is true in several interesting special cases. A more
general variant of this conjecture (where the terms AT

i Ai have weights) is true for
G = g · In but even that variant fails in general.

The details will appear in [2].
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Freeness of Line Arrangements

Jean Vallès

A hyperplane arrangement is a finite collection of distinct hyperplanes
A = (H1, . . . , Hm) of kn when it is affine of Pn

k
when it is projective. One could say

that the story of hyperplane arrangements A, in particular of line arrangements,
begins with the following two problems:

(1) counting the number of connected components of Rn \ A,
(2) prove Sylvester’s affirmation: “any finite set of points of the real plane,

having the property that any two secant line is a three secant line, is
aligned”. Such sets of points are called Sylvester-Gallai-Configurations
(SGC for short).

I first recall the beautiful formula of Zaslavski (cf. [4]) that gives an answer
to problem (1) in terms of combinatorics of A; more precisely the number of
chambers and also the number of bounded chambers are given by the evaluation
of the Poincaré polynomial in 1 and −1. Then I present the Hesse and Dual Hesse
arrangements (cf. [1]) showing that there exists SGC over the field C.

•

•

• •

•

•

•

•

•

Figure 1. Hesse arrangement of 12 lines

The vector bundle TPn(− logA) of vector fields tangent to the line arrangement
A was introduced by Saito (cf. [2]). When this vector bundle splits as a sum of
line bundles of degrees (−an ≤ . . . ≤ −a1) the corresponding arrangement is called
free with exponents (a1 ≤ . . . ≤ an) (cf. [1]). For instance, on the projective
plane, the Hesse and Dual Hesse arrangements are free with exponents (4, 7) and
(4, 4).

One main issue in the theory of arrangements is to what extent the sheaf
TPn(− logA) depends on the combinatorial type of A, defined as the isomorphism
type of the lattice LA of intersections of hyperplanes in A. This lattice is partially
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ordered by reverse inclusion, and is equipped with a rank function given by codi-
mension (cf. [1]). An important conjecture of Terao (reported in [1]) asserts that
if A and A′ have the same combinatorial type, and TPn(− logA) splits as a direct
sum of line bundles (i.e. A is free), the same should happen to TPn(− logDA′).

In Logarithmic bundles and Line arrangements, an approach via the standard
construction, written in collaboration with Daniele Faenzi (cf. arXiv:1209.4934),
we prove this conjecture on the complex projective plane up to 12 lines.

Our point of view is to study the sheaf TPn(− logA) relating it to the finite col-
lection Z of points in the dual space P̌n associated with A (we write A = AZ when
Z = {z1, . . . , zm} satisfies Hi = Hzi for all i, where Hz ⊂ Pn denotes the hyper-
plane corresponding to a point z ∈ P̌n). Our first result is that TPn(− logDAZ

) is
obtained via the so-called standard construction from the ideal sheaf IZ(1). More
precisely, denoting by F the incidence variety F = {(x, y) ∈ Pn× P̌n | x ∈ Hy} and
by p and q the projections onto Pn and P̌n, we prove that:

TPn(− logDAZ
) ≃ p∗(q∗(IZ(1))).

Next we show that a line arrangement AZ with a point of multiplicity k is
free with exponents (k, k + r) if and only if c2(TP2(− logDAZ

)) = k(k + r). Here,
by definition, AZ free with exponents (k, k + r) means that TP2(− logDAZ

) ≃
OP2(−k)⊕OP2(−r−k), and we write Chern classes on Pn as integers, with obvious
meaning. For real arrangements, using a theorem of Ungar (cf. [3]), we push this
criterion to points of multiplicity k − 1, under the assumption that k ≤ 3r + 5.
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Hyperbolic polynomials and spectrahedral cones

Petter Brändén

The first part of this talk is a survey talk on hyperbolicity cones and spectrahedral
cones, with focus on recent developments on the generalized Lax conjecture. In
the second part we show how the recent proof by Marcus, Srivastava and Spielman
[9] of the Kadison–Singer problem may be generalized to the setting of hyperbolic
polynomials.

A homogeneous polynomial h(x) ∈ R[x1, . . . , xn] is hyperbolic with respect to
a vector e ∈ Rn if h(e) 6= 0, and if for all x ∈ Rn the univariate polynomial
t 7→ h(te− x) has only real zeros. If A1, . . . , An are symmetric real matrices, let
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A(x) = x1A1 + x2A2 + · · · + xnAn. If A(e) ≻ 0, then the polynomial det(A(x))
is hyperbolic with respect to e = (e1, . . . , en)

T . The hyperbolicity cone of a hy-
perbolic polynomial h may be defined as the closure of the connected component
of

{x ∈ Rn : h(x) 6= 0}
which contains e. Hyperbolicity cones are closed basic semialgebraic convex cones,
see [12]. The hyperbolicity cone of det(A(x)) is a spectrahedral cone:

Λ+ = {x ∈ Rn : x1A1 + x2A2 + · · ·+ xnAn � 0}.
The generalized Lax conjecture predicts that the converse is true:

Conjecture 0.1 (Generalized Lax conjecture). Hyperbolicity cones are spectrahe-
dral.

The celebrated Helton–Vinnikov theorem [5] implies that Conjecture 0.1 holds
for three variables. Indeed, the Helton–Vinnikov theorem states that each hyper-
bolic polynomial in three variables of degree d is a definite determinantal polyno-
mial defined by matrices of size d. This solved a conjecture of Peter Lax from 1959.
Algebraic conjectures that imply of Conjecture 0.1 were formulated in [5]. These
were disproved in [1]. Further recent progress on Conjecture 0.1 are reported in
[2, 7, 8, 10, 11, 13].

Recently Marcus, Spielman and Srivastava [9] proved the notorious Kadison–
Singer problem [6] by proving a stronger version of a conjecture of Weaver [14].
Below we show how these results may be generalized [3] to concern hyperbolic
polynomials and hyperbolicity cones.

Suppose h is hyperbolic with respect to e ∈ Rn. The eigenvalues of x ∈ Rn are
λ1(x) ≥ · · · ≥ λd(x), where

h(te− x) = h(e)

d∏

i=1

(t− λi(x)).

The trace, rank and spectral radius of x ∈ Rn are defined as for matrices:

tr(x) =

d∑

i=1

λi(x), rank(x) = #{i : λi(x) 6= 0} and ρ(x) = max
1≤i≤d

|λi(x)|.

If the lineality space of Λ+ is trivial, then ρ is a norm on Rn.

Theorem 0.2. Let ǫ > 0. Suppose h is hyperbolic with respect to e. Let u1, . . . ,um

∈ Λ+ be such that

rank(ui) ≤ 1 for all 1 ≤ i ≤ m,
tr(ui) ≤ ǫ for all 1 ≤ i ≤ m, and
u1 + u2 + · · ·+ um = e.

Then there is a partition A ∪B = {1, . . . ,m} such that

max
{
ρ(uA − e/2), ρ(uB − e/2)

}
≤
√
2ǫ+ ǫ2,
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where uC =
∑

j∈C uj.

Theorem 0.2 follows from the following theorem.

Theorem 0.3. Let ǫ > 0. Suppose h is hyperbolic with respect to e. Let v1, . . . ,vm

be random vectors in Λ+ (with finite supports) such that

rank(vi) ≤ 1 for all 1 ≤ i ≤ m,
Etr(vi) ≤ ǫ for all 1 ≤ i ≤ m, and
E(v1 + v2 + · · ·+ vm) = e.

Then

P

[
λmax

(
m∑

i=1

vi

)
≤ (1 +

√
ǫ)2

]
> 0.

The main work in proving Theorem 0.3 goes into bounding the zeros of mixed
characteristic polynomials :

χu1,...,um
(t) = (1−Du1

) · · · (1−Dum
)h(x)

∣∣∣
x=te

,

where u1, . . . ,um ∈ Λ+ and

Du =

n∑

j=1

uj
∂

∂xj
, where u = (u1, . . . , un)

T .

Problem 0.4. Maximize the largest zero of χu1,...,um
(t) under the constraints

u1, . . . ,um ∈ Λ+, tr(ui) ≤ ǫ for all 1 ≤ i ≤ m, and u1 + u2 + · · ·+ um = e.

It has been conjectured the maximum in Problem 0.4 is attained for

u1 = u2 = · · · = uk−1 = (ǫ/d)e,uk = (ρ/d)e,uk+1 = · · · = um = 0,

where ρ ≤ ǫ and k are determined by the constraints. An equivalent [3] conjecture
is the following:

Conjecture 0.5. The maximal zero in Problem 0.4 is achieved for vectors which
are all in the interior of Λ+, or identically zero.
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Free Real Algebraic Geometry and Linear Matrix Inequalities

Bill Helton

Thanks to Klep and McCullough for many contributions to the talk. The subject
is polynomials in free noncommutative variables x = (x1, . . . , xg). We evaluate
them on matrix variables X = (X1, . . . , Xg). To define properties such as

p is PosSemiDef ⇒ q is PosSemiDef

Free Real Algebraic Geometry

Here is a viewpoint to where things stand in Free RAG.
Free Postivstellensatz Status Free Behavior versus Classical
q ≻ 0 on p � 0 compact Good Similar
q � 0 on a free convex set Great Better
q � 0 on p � 0 Poor ?

Free Nullstellensatz
for finitely generated left ideals

Hilbert (complex) Good Better
Real Nullstellensatz Good Better

For algebras which are not free see Schmüdgen’s talk.

A tracial free RAG is emerging, due to Klep and Schweighofer.

Free Convexity

Free basic semi algebraic sets are convex if and only if they are solution sets to
some LMI.

There are theorems classifying “analytic” free changes of variables from one free
convex set to a ball (they are extremely rare). More general change of variables
theory is progessing but a very open area.

Alas, the talk ran out of time.
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Real Algebraic Geometry, Positive Polynomials, and Moments

Murray Marshall

A connection between positive linear functionals and measures is provided by the
extended version of Haviland’s theorem given in [11]:

Theorem 1. Suppose A is an R-algebra, X is a Hausdorff space and ˆ : A →
C(X) is an R-algebra homomorphism. Let Pos(X) := {a ∈ A | â ≥ 0 on X}.
Suppose there exists p ∈ Pos(X) such that for each integer k ≥ 1 the set

Xk := {α ∈ X | p̂(α) ≤ k}
is compact. Then, for any linear function L : A → R satisfying L(Pos(X)) ⊆
[0,∞), there exists a positive Borel measure µ on X such that ∀ a ∈ A, L(a) =∫
â dµ.

See [5], [6] for the original version of Haviland’s theorem. The representation
theorem of T. Jacobi [7] also plays a central role in the theory:

Theorem 2. Suppose A is an R-algebra, M is an archimedean quadratic module
of A, and

XM := {α : A→ R | α is an R-algebra homomorphism, α(a) ≥ 0 ∀a ∈M}.
For a ∈ A define â : XM → R by â(α) := α(a). Give XM the weakest topology
such that â is continuous for each a ∈ A. Then, for a ∈ A, the following are
equivalent:

(1) â ≥ 0 on XM .
(2) a+ ǫ ∈M for all real ǫ > 0.

See [1], [8] and [16] for early versions of Jacobi’s theorem. See [12] for a simple
proof. Applications of Haviland’s theorem and Jacobi’s theorem are given in [4]
and [11]. The results in [4] extend results presented earlier, in the group algebra
case, in [2]. Some of the results in [11] extend results presented earlier, in the
preordering case, in [9] and [10]. Recent results in [13] explain how the results in
[11] can be used:

– to reformulate the multivariate moment problem in terms of extension of
PSD linear functionals on R[x] := R[x1, . . . , xn] to PSD linear functionals on the
localization of R[x] at p, for suitably chosen p, e.g., p = 1 + x21 + · · · + x2n or
p = (1 + x1)

2 · · · (1 + x2n);

– to prove new results concerning existence and uniqueness of the measure µ
and density of C[x] in the Lebesgue Space Ls(µ) for various s ∈ [1,∞);

– to give new proofs of old results of B. Fuglede [3], A.E. Nussbaum [14], L.C.
Petersen [15], M. Putinar and F.-H. Vasilescu [17] and [18], and K. Schmüdgen
[19], results which were proved previously using the theory of strongly commuting
self-adjoint operators on Hilbert space.

Another application of results in [11], which was overlooked at the time when
[13] was being prepared, and which extends a result of A.E. Nussbaum [14], is the
following one:
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Theorem 3. Suppose L : R[x]→ R is linear and PSD. Suppose for j = 1, . . . , n−1

(1) ∃ a sequence {qjk}∞k=1 in C[x] such that lim
k→∞

L(|1− (1 + x2j )qjkqjk|2) = 0.

Then there exists a positive Borel measure µ on Rn such that L = Lµ. If condition
(1) holds also for j = n then the measure µ is determinate.
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Positivestellensätze in Graph Theory

Tim Netzer

(joint work with Andreas Thom)

It is an important topic in extremal graph theory to describe universal inequalities
between homomorphism- or subgraph-densities. For this purpose one can use sums
of squares techniques in certain graph algebras. We will introduce the topic and
then prove several Positivstellensätze. They all show that up to an arbitrarily
small error, any valid inequality can be proven via sums of squares.

Real Symmetric Determinantal Representations of Ternary
Hyperbolic Polynomials

Christoph Hanselka

In 1958 [5] conjectured, that every hyperbolic polynomial in three variables has
a definite symmetric determinantal representation: A polynomial h ∈ R[X,Y, Z]
homogeneous of degree d is called hyperbolic with respect to a direction e ∈ R3, if
h(e) > 0 and every real line parallel to e intersects the zero set of h in only real
points. In other words that means for every a ∈ R3 the univariate polynomial
h(Te + a) ∈ R[T ] has only real roots. h is said to admit a definite symmetric
determinantal representation, if there exist real symmetric matrices A,B,C ∈
Symd(R) such that

h = det(XA+ Y B + ZC)

and xA + yB + zC is positive definite for some point (x, y, z) ∈ R3.

The result has been proven by Helton and Vinnikov in the 2000’s in [4], based
on earlier works in [1, 2] using the theory of theta functions on the jacobian of
the curve defined by the polynomial. The connection to Lax’ conjecture has been
noted in [6].

We present a new and in most parts quite elementary proof by characterizing the
characteristic polynomials of symmetric matrices over the univariate polynomial
ring R[X ] via a hyperbolicity like condition. Viewing the coordinate ring of the
affine curve belonging to such a polynomial as an R[X ]-algebra, we get the trace
form of that extension, which is an everywhere positive semidefinite quadratic
form by the realness assumption on its roots. Restricting this form to a suitabe
fractional ideal will let us find an orthonormal basis with respect to this form.
From there it is easy to get a symmetric matrix with the given characteristic
polynomial. A similar approach has been used by Bender in [3], where he considers
characteristic polynomials of matrices over any integral domain and specifically
over the integers.
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Determinantal Representations of Space Curves

Eli Shamovich

(joint work with Victor Vinnikov)

The notion of a real hypersurface hyperbolic with respect to a real point off the
hypersurface has been described by L. Hörmander and L. G̊arding in their study
of linear partial differential equations (see in particular [1]). It is clear that if a
hypersurface admits a definite determinantal representation, then it is hyperbolic.
It was shown by J. W. Helton and V. Vinnikov in [2] that every hyperbolic plane
curve admits a definite determinantal representation. However, for hypersurfaces
in Pd, where d ≥ 3 this theorem fails.

In this talk we will generalize the notion of hyperbolicity to subvarieties X ⊂ Pd

of arbitrary codimension ℓ. The reference point will be an ℓ − 1-dimensional real
subspace of Pd. We will also define the notion of Livsic-type determinantal repre-
sentations. Both of this notions are intimately tied to the associated hypersurface
to X in Gr(ℓ − 1, d), the Grassmannian of ℓ − 1-dimensional planes in Pd. In
particular we will focus on a special subclass of Livsic-type determinantal repre-
sentations that we call very reasonable. For those representations the associated
hypersurface admits a determinantal representation as well.

Next we will consider the case of curves and show that every curve admits a very
reasonable Livsic-type determinantal representation. Furthermore, if the curve is
real and hyperbolic with respect to some ℓ−1-dimensional real subspace, then the
curve admits a Livsic-type determinantal representation that is definite.
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Noncommutative functions and balls, and robust control

Joseph A. Ball

(joint work with Gilbert Groenewald, Sanne ter Horst)

We consider first the classical case of holomorphic functions of a single variable.
We define the classical Schur class S(U ,Y) to consist of all holomorphic functions
from the unit disk D into the space of contractive operators BL(U ,Y) between
two Hilbert spaces U and Y. The following result gives two other equivalent
formulations for the class S(U ,Y).
Theorem 1. Given a function S : D→ L(U ,Y), the following are equivalent:

(1) S is in the Schur class S(U ,Y).
(2) The kernel KS(z, w)) :=

I−S(z)S(w)∗

1−zw is a positive kernel on D (KS(z, w) =

H(z)H(w)∗ for some H : D→ L(X ,Y) for some Hilbert space X ).
(3) There exists a system matrix [ A B

C D ] : [XU ]→
[
X
Y

]
with ‖[ A B

C D ]‖ ≤ 1 so that

S(z) has the transfer-function realization S(z) = D + zC(I − zA)−1B.

For holomorphic functions mapping the polydisk Dd into contraction operators
from U to Y, such a result is not possible due to the failure of the von Neumann
inequality if d > 2 (see [2] for a full discussion). To remedy the situation we
define the Schur-Agler class SAd(U ,Y) on the polydisk Dd (the d-fold Cartesian
product of the unit disk D with itself) to consist of all S : Dd → L(U ,Y) such that
‖S(T )‖ ≤ 1 whenever T = (T1, . . . , Td) is a d-tuple of strict contraction operators
on a fixed separable infinite-dimensional Hilbert space H; here we use the standard
multivariable notation: if n = (n1, . . . , nd) ∈ Zd

+, then we set zn = zn1

1 · · · znd

d and
T n = T n1

1 · · ·T nd

d and we define S(T ) =
∑

n∈Zd

+

Sn ⊗ T n ∈ L(U ⊗ H,Y ⊗ H)
assuming that the series converges in some suitable topology. The following result
is due to Agler [1].

Theorem 2. Given a function S : Dd → L(U ,Y), the following are equivalent:

(1) S is in the Schur-Agler class SAd(U ,Y).
(2) There is a Hilbert space space X and a spanning orthogonal family of pro-

jections {Pk : k = 1, . . . , d} on X (so PkPj = δk, jPk and
∑d

k=1 Pk = IX )
and a function H : Dd → L(X ,Y) so that the defect kernel I − S(z)S(w)∗
can be decomposed as I−S(z)S(w)∗ = H(z)(I−L(z)L(w)∗)H(w)∗ where

we set L(z) =
∑d

k=1 zkPk.
(3) There is a Hilbert space space X and a spanning orthogonal family of

projections {Pk : k = 1, . . . , d} on X as in statement (2) above together
with a system matrix [ A B

C D ] : [XU ] →
[
X
Y

]
with ‖[ A B

C D ]‖ < 1 so that S(z)
has the multidimensional transfer-function realization S(z) = D + C(I −
L(z)A)−1L(z)B where as in (2) L(z) = z1P1 + · · ·+ zdPd.

We remark that this result has been extended to the setting where the polydisk
Dd is replaced by a domain D in Cd defined by DQ = {z ∈ Cd : ‖Q(z)‖ < 1}
for some prescribed matrix polynomial in d variables (see [5, 6]); in this case the
statements remain the same but one replaces L(z) by Q(z).
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We discuss next a noncommutative version of Theorem 2. Rather than a holo-
morphic function S(z) in the commuting complex variables z = (z1, . . . , zd), we
now let z = (z1, . . . , zd) be a d-tuple of freely noncommuting indeterminates; thus
monomials such as z1z2 and z2z1 are to be considered as distinct. We let Md be the
monoid of all words α = iN · · · i1 where each letter ij comes from the alphabet con-
sisting of the letters 1, . . . , d; we also include the empty word ∅ in Md which serves
as the unit element for the multiplication defined by concatenation of words. For
α = iN · · · i1 we associate the noncommutative monomial zα = ziN · · · zi1 . Given
a d-tule T = (T1, . . . , Td) of operators on some Hilbert space H, an adaptation of
the noncommutative functional calculus leads to the definition Tα = TiN · · ·Ti1
(where now the products are operator composition rather than just concatenation
of symbols). Given a noncommutative formal power series S(z) =

∑
α∈Md

Sαz
α

with coefficients Sα in L(U ,Y) (the space of bounded linear operators from the
Hilbert space U to the Hilbert space Y), written as S(z) ∈ L(U ,Y)〈〈z〉〉, and given
a d-tuple of operators T = (T1, . . . , Td) as above, we define S(T ) ∈ L(U⊗H,Y⊗H)
by S(T ) =

∑
α∈Md

Sα ⊗ Tα ∈ L(U ⊗ H,Y ⊗ H) whenever the infinite series con-

verges in some appropriate sense. For L(z) = E1z1 + · · · + Edzd a linear pencil
with coefficients Ej ∈ CM×N finite matrices, we say that the formal power se-
ries S(z) ∈ L(U ,Y)〈〈z〉〉 is in the noncommutative Schur-Agler class SAL(U ,Y)
if S(T ) is defined for any T = (T1, . . . , Td) for which ‖L(T )‖ < 1 and then also

‖S(T )‖ ≤ 1. Here we define L(T ) =
∑d

k=1 Ek⊗Tk ∈ L(CN⊗H,CM⊗H) whenever
T = (T1, . . . , Td) ∈ L(H)d. A special case of the following result (where the pencil
L(z) is required to be of a special admissible form) was obtained in [8]; the more
general form stated here is a consequence of still more general results obtained in
[3].

Theorem 3. Given a formal power series S(z) ∈ L(U ,Y)〈〈z〉〉 and given a matrix
pencil L(z) = E1z1 + · · ·+ Edzd, the following are equivalent.

(1) S(z) is in the noncommutative Schur-Agler class SAL(U ,Y).
(2) S(z) has a noncommutative Agler decomposition: there exists a Hilbert

space X and a formal power series H(z) ∈ L(X ⊗ CM ,Y) so that

I − S(z)S(w)∗ = H(z) (I − (IX ⊗ L(z))(IX ⊗ L(w))∗)H(w)∗.

(3) There is a Hilbert space X and a system matrix [A B
C D ] :

[
X⊗CM

U

]
→

[
X⊗CN

Y

]
with ‖[ A B

C D ]‖ ≤ 1 such that S(z) is given by

S(z) = D + C(I − (IX ⊗ L(z))A)−1(IX ⊗ L(z))B.

Remark 3.1: We remark that the proof of (1) ⇒ (2) in Theorem 3 from [8, 3] is
adapted from the proof of (1)⇒ (2) in Theorem 2 for the commutative case in [1]:
there is an infinite-dimensional cone-separation argument, working with formal
power series coefficients in [8] and working with the results of noncommutative
operator-tuple evaluation of formal power series (or “noncommutative functions”
in the sense of Kaliuzhnyi-Verbovetskyi–Vinnikov [15]) in [3]. Similarly, the proof
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of (2) ⇒ (3) in Theorem 3 is yet another instance of the “lurking isometry” argu-
ment used originally in [1].

Remark 3.2: An observation of Alpay and Kaliuzhnyi-Verbovetskyi [4] is that,
in the definition of the noncommutative Schur-Agler class SAL(U ,Y), it suffices
to check the contractivity of S when acting on finite matrices of arbitrary sizes,
i.e., on T ∈ ∪∞n=1BL((Cn×n)d). Here in general we let BL(L(H)d) denote the
set of d-tuples T = (T1, . . . , Td) of operators on H such that ‖L(T )‖ < 1. As
a consequence of this observation, we may consider an element S of the formal
noncommutative Schur-Agler class SAL(U ,Y) as a function on ∪∞n=1BL(Cn×n)d

with values in ∪n=1BL(U ,Y)⊗Cn×n (the closed unit ball of the space of operators
L(U⊗Cn,Y⊗Cn) which is graded in the sense that S maps BL(Cn×n)d into BL(U⊗
Cn,Y ⊗Cn) for each n = 1, 2, . . . . It is easily verified from the tensor structure of
this functional calculus that the following additional axioms are satisfied:

(I) S(ΓTΓ−1) = ΓS(T )Γ−1 for any T = (T1, . . . , Td) ∈ BL((Cn×n)d) (where
ΓTΓ−1 = (ΓT1Γ

−1, . . . ,ΓTdΓ
−1) and it is assumed that Γ is such that

ΓTΓ−1 is again in the noncommutative ball BL((Cn×n)d)).
(II) S(T (1) ⊕ T (2)) = S(T (1)) ⊕ S(T (2)) for all T (1) ∈ BL((Cn1×n1)d) and

T (2) ∈ BL((Cn2×n2)d).

A result of Kaliuzhnyi-Verbovetskyi–Vinnikov [15] having roots in the much earlier
work of Taylor [18] says that, with mild additional assumptions (local bounded-
ness), conversely any graded function S mapping ∪∞n=1BL(Cn×n)d into ∪n=1B(L(U
⊗Cn,Y ⊗Cn) satisfying (I) and (II) (called a “noncommutative function”) arises
from a formal power series S(z) =

∑
α Sαz

α as above with explicit formulas for
the “Taylor-Taylor” coefficients Sα. In view of all these observations, we see that
condition (1) in Theorem 3 can be adjusted to read:

(1′) S is a noncommutative function mapping the noncommutative ball
∪∞n=1BL(Cn×n)d to the noncommutative ball ∪∞n=1B(L(U ⊗ Cn,Y ⊗ Cn).

We note that Agler-McCarthy [3] use the noncommutative-function formulation
from the start in their proof of Theorem 3; they also are able to allow a general
noncommutative polynomial matrix Q(z) in place of the noncommutative matrix
pencil L(z). We also note that Helton-Klep-McCullough [13, 14] have studied such
noncommutative ball maps which are proper: the boundary of the noncommutative
ball on the domain side maps to the boundary of the noncommutative ball on the
range side.

Finally, it is of interest to point out that the intersection of the Schur-Agler class
SAL(U ,Y) with linear functions can be identified with completely contractivemaps
between certain operator spaces (see [17]). In the case when the operator spaces
are operator algebras, one can read off the Arveson-Stinespring dilation theorem
(see [17, Corollary 7.7]) from the linear case of the realization theorem (part (3)
of Theorem 3): details on these matters will appear in [10].

There is a converse question: given a noncommutative matrix pencil L(z) and a
formal power series S(z) defined via a system matrix [A B

C D ] as in statement (3) of
Theorem 3, when is it the case that S is in the noncommutative Schur-Agler class
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SAL(U ,Y)? In the context of this question, it is more convenient to formulate the
question with the strict noncommutative Schur-Agler class SAo

L(U ,Y) rather than
the Schur-Agler class as discussed up to now: here we say that S ∈ L(U ,Y)〈〈z〉〉
is in the strict Schur-Agler class SALo(U ,Y) if ‖S(T )‖ ≤ r for some r < 1 for all
T ∈ L(H)d with ‖L(T )‖ < 1. The following result appears in [9], at least for the
case where the pencil L(z) is assumed to have a special “admissible” form which
we do not go into here. Results of this type go under the name strict Bounded
Real Lemma in the engineering literature (see e.g. [11] and [19]).

Theorem 4 With L an “admissible” matrix pencil and S(z) ∈ L(U ,Y)〈〈z〉〉 de-
fined via a compatible system matrix [ A B

C D ] as in part (3) of Theorem 3, then
S ∈ SAo

L(U ,Y) if and only if there exists an intertwining pair (H,H ′) (H > 0,
H ′ > 0 and (IX ⊗ L(z))H = H ′(IX ⊗ L(z))) so that the strict Linear Matrix
Inequality [

A∗ C∗

B∗ D∗

] [
H 0
0 I

] [
A B
C D

]
−
[
H ′ 0
0 I

]
< 0,

holds, or equivalently, there exist an invertible intertwining pair (Γ,Γ′) so that
∥∥∥∥
[
Γ 0
0 I

] [
A B
C D

] [
Γ′−1 0
0 I

]∥∥∥∥ < 1.

It is interesting to note that the analogue of Theorem 4 for the commutative case
(i.e., given S(z) defined on the polydisk via a system matrix [ A B

C D ] as in Theorem
2, characterize in terms of A,B,C,D when S(z) is in the commutative Schur-
Agler class SAd(U ,Y)) fails; this is one instance of the sharp contrasts between
the commutative multivariable setting and the free noncommutative multivariable
setting.

It can be argued that Theorem 4 appeared earlier, at least implicitly, in the
robust control literature of the 1980s and 1990s as we now explain. For L(z) =
E1z1 + · · · + zdEd with coefficients Ej ∈ CM×N and a matrix A ∈ CN×M , we
define the structured singular value µL(A) by

µL(A) =
1

inf{‖L(z)‖ : I − L(z)A singular, z = (z1, . . . , zd) ∈ Cd} .

Motivation comes from the analysis of Linear-Fractional-Transformation (LFT)
models for structured uncertainty in Robust Control Theory (see [11, 19]). The
key property of µL(A) is the characterization of when µL(A) < 1:

µL(A) < 1⇔ I − L(z)A invertible for all z ∈ Cd with ‖L(z)‖ ≤ 1.

There was intensive effort to compute µL(A) in the 1980s and 1990s (see [19] and
the references there). An early observation was that there is a computable upper
bound given by

µ̂L(A) = inf{‖DAD′−1‖ : D,D′ invertible with D′L(z) = L(z)D for all z ∈ Cd}.
It is not hard to see that µ̂L(A) < 1 if and only if there exist a strictly positive
intertwining pair (H,H ′) (so H > 0, H ′ > 0 with H ′L(z) = L(z)H for all z ∈ Cd)



Real Algebraic Geometry 1005

which solves the strict LMI
A∗HA−H ′ < 0.

It is always the case that µL(A) ≤ µ̂L(A) but there are a number of results in
the literature explaining how the gap in between can be arbitrarily bad in various
precise senses. There are also results on the high level of computational complexity
involved in computing µL exactly. On the other hand at some point it occurred to
people to consider the relaxed problem where one lets the variable z = (z1, . . . , zd)
be operators T = (T1, . . . , Td) on a fixed separable Hilbert space H (e.g., H = ℓ2

for concreteness). This leads one to consider instead the relaxed version of µL(A)
defined by

µ̃L(A) =
1

inf{‖L(T )‖ : I − L(T )(A⊗ IH) singular, T = (T1, . . . , Td) ∈ L(H)d}
.

Then it is not difficult to establish that

µL(A) ≤ µ̃L(A) ≤ µ̂L(A).

Moreover, one can find structured uncertainty interpretations for the quantity
µ̃L(A) (in terms of robustness of stability and performance with respect to time-
varying parameter uncertainty rather than just stationary parameter uncertainty,
or, in a more sophisticated version, with respect to specification of admissibility
sets for the set of input-output pairs of the true plant around the set of input-
output pairs for the nominal plant—see [11] for details) which are just as com-
pelling as the original motivation for µL(A). The following result, announced
without proof in [12], due essentially to Paganini [16] which in turn drew on
earlier work of Shamma and Magretski-Treil (see [11] for details), then gives a
structured-uncertainty interpretation for the upper bound µ̂(A); again this result
is obtained explicitly in [16, 11] only for linear pencils L of a certain special form
which we do not define precisely here.

Theorem 5 With notation as above, µ̃(A) = µ̂(A). Thus, I − L(T )(A ⊗ IH) is
invertible for all T = (T1, . . . , Td) ∈ L(H)d with ‖L(T )‖ ≤ 1 if and only if there is
a strictly positive structured solution (H,H ′) of the strict LMI A∗HA−H ′ < 0.

What’s more, Theorems 3, 4, 5 are closely related in that one can easily get
from one to another by simple known manipulations. In particular, an attempt
was made to derive Theorem 5 from Theorem 4 in [9] but a technical gap remained;
based on the analysis in [16] it is now possible to complete this proof (details will
appear in [10]). Conversely, it is possible to go from Theorem 5 to Theorem 4
by simple manipulations (especially the Main Loop Theorem [19, page 284]). It
is also interesting to note that the proof of Theorem 5 from [16, 11] also uses
a cone-separation argument, but in a more elementary finite-dimensional setting
when compared to the argument in the proof of Theorem 3 in [8, 3].

References

[1] J. Agler, On the representation of certain holomorphic functions defined on a polydisc, in:
Topics in Operator Theory: Ernst D. Hellinger Memorial Volume (L. de Branges, I. Gohberg,
and J. Rovnyak, eds.) pp. 47–66, Oper. Th. Adv. and Appl. 48, Birkhäuser, Basel, 1990.
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Vanishing of Polynomial Moments and of Iterated Integrals

Yosef Yomdin

We consider momentlike expressions of the form

mk =

∫

Ω

P k(x)q(x)dx,

where Ω ⊂ Rn is a bounded domain, and P and q are polynomials in x ∈ Rn.
We study here the “Moment vanishing problem” for mk, i.e. our goal is to give
necessary and sufficient conditions on Ω, P, q for vanishing of mk, k = 0, 1, . . . ,.
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Recently, moment vanishing problems of various specific forms appeared in
Qualitative Theory of ODEs, in Inverse problems (in particular, in Algebraic sig-
nal sampling), in Representation Theory, and in study of Algebras of Differential
Operators, as related to the Jacobian Conjecture. In particular, let us consider
the Abel differential equation

(1) y′ = p(x)y2 + q(x)y3.

A solution y(x) of (1) is called “closed” on [a,b] if y(a)=y(b). Study of closed
solutions of (1) is directly related to the classical Hilbert 16-th (= Smale 13-th)
and the Poincare Center-Focus problems. The last problem consists (in case of
equation (1)) in providing necessary and sufficient conditions on p, q, a, b for (1) to
have all its solutions closed (center).

It turns out that a rather accurate “first order” approximation of such “center

conditions” is provided by the vanishing of mk =
∫ b

a
P k(x)q(x)dx, where P =

∫
p.

Higher order approximations of the center conditions are provided by the vanish-
ing of the higher Melnikov functions, which are linear combinations of iterated
integrals of the form

∫
p
∫
q
∫
q . . .

∫
p.

In recent 20 years an important algebraic-analytic structure has been connected
to the Moment vanishing: Composition Algebra of polynomials. The study of this
structure significantly improved our understanding of moment vanishing, as well
as of closed solutions of (1). Very recently, a complete and effective solution of the
one-dimensional polynomial Moment vanishing problem has been finally produced
by F. Pakovich in [8]. On this base, a serious progress has been achieved in [2, 3]
in study of center conditions for polynomial Abel equation (1).

In this talk some of these new results and some open questions related to mo-
ment vanishing have been presented. In particular, we’ve started with a very short
review of the classical results of J. Wermer ([10]) describing vanishing conditions
for moments on a closed curve in Cn. We’ve also mentioned a remarkable devel-
opment of Wermer’s theory by G. Henkin and P. Dolbeault ([5]), and by R. A.
Walker ([9]). In somewhat more details recent results of Pakovich ([8]) have been
presented. Very recent results of M. Briskin on vanishing of iterated integrals on
Pakovich spaces ([1]) have been shortly mentioned. And only in answering the au-
ditory’s questions the Mathieu conjectire ([7]), its solution for tori by Duistermaat
and Van der Kallen ([6]), and some recent developments by W. Zhao towards the
Jacobian Conjecture (compare [4] and references therein) have been mentioned.
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Exact algorithms in effective real algebraic geometry: from complexity
results to practical computations

Mohab Safey El Din

Many important results in combinatorial and computational geometry (see e.g.
[12, 22]), in theoretical computer science (see e.g. results on non-negative matrix
factorization [1] or game theory [16]) rely on effective real algebraic geometry.
Polynomial system solving over the reals has also many applications in engineering
sciences, e.g. in robotics [2], and control theory [11] among other areas.

Typical computational challenges in real algebraic geometry are: deciding the
emptiness of semi-algebraic sets, performing geometric operations such as pro-
jection (quantifier elimination), answering connectivity queries (roadmaps), com-
puting the real dimension or computing the Euler-Poincaré characteristic, Betti
numbers, etc.

Huge efforts have been invested during the last 25 years to derive algorithms
that improve the doubly exponential complexity in n of Cylindrical Algebraic
Decomposition [13]. This has led to algorithms for deciding the emptiness of semi-
algebraic sets (in time (sD)O(n)) [7], performing one-block quantifier elimination
[6], computing the real dimension [19], answering connectivity queries (in time

(sD)O(n2)) [12, 8]; see [9] for a self-contained overview.
Critical point methods are at the heart of these results. They consist in ex-

tracting important properties of semi-algebraic sets from the critical points of a
well-chosen map. These are points at which the differential (of the map) is not sur-
jective; local extrema of the map are reached at its critical points. These methods
were used in combination with the introduction of infinitesimals that deform the
input. This allows us to obtain cheap reductions to smooth and bounded semi-
algebraic sets but affects the cost of arithmetic operations and hence practical
performance.

It has been a long-standing problem to obtain efficient implementations for real-
world problems based on critical point methods. Indeed, it requires to improve the
exponents in the complexity bounds by introducing new algebraic and geometric
techniques to avoid the use of infinitesimals. One successful research direction
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is to identify properties of critical points or polar varieties and to exploit them
computationally using algorithms of elimination theory.

This trend started with [3] and has been developed for a decade (e.g. [21,
20, 4, 17, 14] and references therein) to understand the properties of these sets of
points. We refer to [5] for an exposition of properties of polar varieties. Once these
properties are understood, they can be exploited to design geometric procedures
for solving.

In this talk, we present an overview of critical point methods. We highlight
recent advances that lead to practically fast algorithms for deciding the existence
of real solutions of polynomial systems.
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Some old and new results and examples on psd forms which are not sos

Bruce Reznick

(joint work with Greg Blekherman)

I am pleased to report on my activities at Oberwolfach Workshop was “1415: Real
Algebraic Geometry With A View Toward Systems Control and Free Positivity”. I
gave a morning survey talk “Some old and new results and examples on psd forms
which are not sos” at 09:15 on Thursday 10 April. This talk was “blackboard”
and not “beamer”, so I cannot link to a .pdf. All the material in the “old” part
can be found in [8, 9, 10]; the “new” material is in papers yet to be written with
Greg Blekherman – see [1].

There are two main questions in the new material: one relates to maximizing
the number of zeros which an irreducible psd ternary form of a given degree may
have, the other involves the construction of extremal hyperplanes which separate
certain well-known psd-not-sos ternary sextics from the cone of sos ternary sextics.

Let P3,2k denote the cone of psd ternary forms of degree 2k and let Σ3,2k ⊆ P3,2k

denote the cone of sos ternary forms: p ∈ P3,2k if and only if p(x, y, z) ≥ 0 for
(x, y, z) ∈ R3 and p ∈ Σ3,2k if and only if there exist ternary forms hj of degree
k so that p =

∑m
j=1 h

2
j . We review two essential “old” examples of forms in

P3,6 \ Σ3,6 from the 1960s. The first is Robinson’s simplification [11] of Hilbert’s
original construction [4]. Let H := {(±1,±1, 1), (±1, 0, 1), (0,±1, 1)} be eight
points in R3, viewed projectively. There is a pencil of ternary cubics vanishing
at H, generated by F (x, y, z) = x(x2 − z2) and G(x, y, z) = y(y2 − z2). As an
illustration of Cayley-Bacharach, F and G have a 9th common zero at (0, 0, 1).
Let K(x, y, z) = (x2 − z2)(y2 − z2)(z2 − x2 − y2). Then K is singular at H and
for some λ > 0, F 2 +G2 + λK ∈ P3,6 (i.e., is psd.) Let R = F 2 +G2 + 1 ·K; R
turns out to be symmetric as well as psd:

R(x, y, z) = x6 + y6 + z6 − (x4y2 + x4z2 + x2y4 + x2z4 + y4z2 + y2z4)

+3x2y2z2.

Since R(0, 0, 1) = 1 > 0 and any cubic which vanishes on H is zero there, it follows
that R is not sos. (In fact, R has two additional zeros at infinity: (1,±1, 0).)
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The second example is Motzkin’s original example [7], which is proved in detail
in, e.g., [9, p.257]. The same argument shows that for any c ∈ (0, 3],

Mc(x, y, z) := x4y2 + x2y4 + z6 − cx2y2z2 ∈ P3,6 \ Σ3,6.

For the first question, in 1980, Choi, Lam and I [2] proved that there is an
integer α(k) with the property that if p(x, y, z) is a real psd ternary form of degree
2k which has more than α(k) distinct zeros (viewed projectively), then there exists
an indefinite ternary form h so that p = h2q. We showed that α(2) = 1, α(2) = 4,
α(3) = 10. More generally, k2 ≤ α(k) ≤ 3

2k(k − 1) + 1 for k ≥ 4, with the upper
bound coming from Petrovskii’s work on ovals. We (Greg and I) are now able to
show that α(4) ≥ 17. This uses a variation of Robinson’s argument; starting with
a 4× 4 grid, rather than a 3× 3 one, and creating three zeros at infinity. (See [1]
for the explicit zeros and coefficients of several examples.)

In 1893, Hilbert [5] proved that for a psd form p of degree 2k, there exists a psd
multiplier p1 of degree ≤ 2k−4 so that pp1 is a sum of three squares of forms. The
17-zero form has the property that there is a unique quadratic multiplier making it
sos, but the product is a sum of four squares, not three, so an octic may genuinely
need a quartic multiplier. We also construct an octic with 16 zeros, two of which
vanish to 4th order in one direction. This strongly suggests that α(4) = 18 is
possible. (The ovals bound is 19). In the 1990s, my PhD student William Harris
gave a family of even symmetric decics [3] with 30 zeros, so α(5) ≥ 30. One
particular instance of this family, W , has no quadratic multiplier making it sos,
let alone a sum of three squares:

W (x, y, z) = 16
∑

x10− 36
∑

x8y2 +20
∑

x6y4+57
∑

x6y2z2− 38
∑

x4y4z2.

(The sums above should be taken so as to make W symmetric.)
We conjecture that α(k) ≥ k2 + 1 for all k ≥ 3, and using these examples, and

results from [2] can prove it for all but five values of k, the largest being for forms
of degree 46.

One application arises in Q3,2k, the dual cone to P3,2k under the standard
“Fischer” inner product. It is proved in [8] that if Z(f) = {(ai, bi, ci)} and the
|Z(f)| linear forms {(aix+ biy + ciz)

2k} are linearly independent, then any form

|Z(f)|∑

i=1

λi(aix+ biy + ciz)
2k, (λi > 0)

has no other expression as a sum of 2k-th powers of linear forms. The a priori lower

bound on “maximal width” is (k+1)(k+2)
2 . These examples of ternary forms with

many zeros satisfy the linear independence condition and produce wider examples:
e.g., 30 vs. the “minimal” upper bound of 21 when k = 5.

We turn briefly to separating hyperplanes. Suppose q ∈ Qn,2k and [q, h2] = 0
for a specific form f of degree k. A consideration of [q, (h+ th′)2] for real t shows
that [q, hh′] = 0 for all h′. The family Mc /∈ Σ3,6 for c > 0, hence for each
such c, there exists qc ∈ Q3,6 so that [qc,Mc] < 0. However, it is now easy to
show that there is no single q so that [q,Mc] < 0 for all such c > 0. Indeed, if
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[q, x4y2 + x2y4 + z6 − cx2y2z2] < 0 for all c > 0, then [q, x4y2 + x2y4 + z6] =
[q, x4y2] + [q, x2y4] + [q, z6] ≤ 0, which implies that [q, x4y2] = [q, x2y4] = [q, z6] =
0, and so [q, (x2y)2] = 0. It follows from the previous remark that [q, x2y2z2] = 0,
a contradiction.

On the other hand, using the work of Blekherman as a suggestive guide, it is
not hard to construct specific separating hyperplanes based on evaluation at the
9 points of an Cayley-Bachrach set for ternary cubics. For example, if

H(p) := 3
∑

±,±′

p(±1,±′1, 1) +
∑

±

p(±3, 0, 1) +
∑

±

p(0,±3, 1)− 196
31 p(0, 0, 1),

then it is not hard to show that H(M3) < 0 but H(q2) ≥ 0 for any ternary cubic
q. There is considerable flexibility in this (extremal) example; “3” can be replaced
by any real t > 2. This example is simpler than the one in [6, pp.16-17].

For the Robinson form R, we can show that for β > 0,

Hβ(p) :=
∑

±,±′

p(±1,±′1, 1),+β
(∑

±

p(±1, 0, 1) +
∑

±

p(0,±1, 1)
)
− 4β

4+βp(0, 0, 1)

is such an extremal hyperplane separating R from Σ3,6. Other separating hyper-
planes for R were discussed in [8, pp. 142-146].

We hope that proofs and generalizations of all these assertions will appear in a
future publication.
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The autoregressive filter problem for two variables, and related
problems

Hugo J. Woerdeman

The two variable autoregressive filter problem concerns the following. Given ck =
c−k ∈ C, k = (k1, k2) ∈ {0, . . . , n} × {0, . . .m} =: Λ. Find a polynomial p(z, w) =∑n

r=0

∑m
s=0 prsz

rws so that p 6= 0 on D
2
(i.e., p is stable) and

1̂

|p|2 (k) :=
1

(2π)2

∫ 2π

0

∫ 2π

0

e−ik1θe−ik2φ

|p(eiθ, eiφ)|2 dθdφ = ck, k = (k1, k2) ∈ Λ.

Here D = {z ∈ C : |z| < 1} is the open unit disk and D is its closure.
The solution to the one-variable analog can be traced back to the works of

Carathéodory, Toeplitz, Szegő, Yule and Walker around the 1920s. While in
this classical one variable case positive definiteness of the finite Toeplitz matrix
(ck−l)

n
k,l=0 is necessary and sufficient for the existence of a solution, the two vari-

able case is significantly more involved and was solved in 2004 in [4]. As a corollary
a two variable Fejér-Riesz factorization is derived in [4]: a two variable trigonomet-
ric polynomial q(z, w) of degree (n,m), which is strictly positive on the bitorus,
can be factored as |p|2 with p as above if and only if

rank[(ck−l)k∈{1,...,n}×{0,...,m},l∈{0,...,n}×{1,...,m}] = nm,

where ck = 1̂
q (k) is the kth Forurier coefficient of 1

q ; see also [2, Theorem 3.4.1],

where the matrix valued version appears.
A major step in the proof of the autoregressive filter result is the derivation of

a two-variable analog of the Christoffel-Darboux formula: for a stable degree (n,m)
polynomial p(z, w) with its reverse defined by←−p (z, w) =∑n

r=0

∑m
s=0 prsz

n−rwm−s,
we have that

p(z, w)p(z1, w1)−←−p (z, w)←−p (z1, w1) =

(1− ww1)
∑

i

gi(z, w)gi(z1, w1) + (1 − zz1)
∑

i

hi(z, w)hi(z1, w1),

where g1, . . . , gm are polynomials of degree at most (n,m− 1) and h1, . . . , hn are
polynomials of degree at most (n−1,m). The polynomials gi and hi may be found
via Cholesky factorizations of the inverse of the doubly Toeplitz matrix (ck−l)k,l∈Λ.
A three or more variable analog of the Christoffel-Darboux formula has not been
established yet. It is clear, as we will see below, that such a generalization will
not be straightforward.

As observed in [3], it is interesting to note that the two variable Christoffel-
Darboux formula provides a way to prove von Neumann’s inequality for two vari-
able rational inner functions. The classical von Neumann inequality states that
for an analytic function f : D → D and a Hilbert space strict contraction T we



1014 Oberwolfach Report 17/2014

have that ‖f(T )‖ ≤ 1. If we now take a pair T = (T1, T2) of commuting strict con-
tractions on some Hilbert space and use the Christoffel-Darboux formula above,
then

p(T1, T2)p(T1, T2)
∗ −←−p (T1, T2)←−p (T1, T2)∗ =

∑

i

gi(T1, T2)(I − T2T ∗2 )gi(T1, T2)∗ +
∑

i

hi(T1, T2)(I − T1T ∗1 )hi(T1, T2)∗

is positive semidefinite. Thus

‖
←−p
p
(T1, T2)‖ ≤ 1 = ‖

←−p
p
‖∞ = sup

(z,w)∈D2

|
←−p (z, w)
p(z, w)

|.

In other words,
←−p
p satisfies the von Neumann inequality. The two variable von

Neumann inequality goes back to [1], where the proof uses the theory of unitary
dilations. An overview of the results above may be found in the monograph [2].

In three or more variables, many open questions remain. In [5] it was shown
that for the stable polynomial

p(z1, z2, z3) = 1 +
11

60
z1z2z3

(
z21z

2
2 + z22z

2
3 + z23z

2
1 − 2z1z2z

2
3 − 2z1z

2
2z3 − 2z21z2z3

)
,

triples of commuting strict contractions (T1, T2, T3) exist so that ‖
←−p
p (T1, T2, T3)‖ >

1. Partial results seem to indicate that the theory of determinantal represen-
tations may be crucial to obtain a full understanding here. Indeed, denoting
Zn = ⊕d

i=1ziIni
, one may consider the polynomial p(z1, . . . , zd) = det(I −KZn),

where K is a contraction. It was shown in [5] that the rational inner function

f(z) = znp̄(1/z)
p(z) = det[(Zn −K∗)(I −KZn)

−1] satisfies

(0.1) ‖f(T1, . . . , Td)‖ ≤ 1

for d-tuples of commuting strict contractions (T1, . . . , Td). To what extent de-
terminantal representations provide a complete characterization of rational inner
functions thst satisfy the von Neumann inequality, is a topic of ongoing research.
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Can moment relaxation methods solve (efficiently) polynomial
optimization problems?

Bernard Mourrain

(joint work with Abril Bucero)

We study the problem of computing the infimum of a real polynomial function f
on a closed basic semialgebraic set S and the points where this infimum is reached,
if they exist:

inf
x∈Rn

f(x)

s.t. g01(x) = · · · = g0n1
(x) = 0

g+1 (x) ≥ 0, ..., g+n2
(x) ≥ 0

where f, g0i , g
+
j ∈ R[x], g = (g0;g+). The corresponding semi-algebraic set is

S(g) = {x ∈ Rn | g01(x) = · · · = g0n1
(x) = 0, g+1 (x) ≥ 0, ..., g+n2

(x) ≥ 0}.

Relaxation methods based on Semi-Definite Programming are known to compute
a lower approximation of the optimum. We show that exact relaxations which
reach the minimum in a finite number of steps can be constructed to compute the
minimum and points where the minimum is reached or to detect that there is no
minimizer.

More precisely, when the infimum is reached, a Semi-Definite Program hierarchy
constructed from the Karush-Kuhn-Tucker ideal is always exact and the vanishing
ideal of the KKT minimizer points is generated by the kernel of the associated
moment matrix in that degree, even if this ideal is not zero-dimensional. This
relaxation allows to detect when there is no KKT minimizer.

In the case of optimization with no constraint, using the gradient of f yields
an exact relaxation. In the case of constraints, the usual approach consists in in-
troducing Lagrange multipliers. The corresponding gradient constraints yield an
exact relaxation, which defines the Karush-Kuhn-Tucker minimizers. We analyze
the variety defined by the KKT equations and its relation with the Fritz John
variety, containing all the minimizer points of f on S(g). We show that these
minimizers can be computed by an exact relaxation. We prove that the exactness
of the relaxation depends only on the real points which satisfy these constraints.
This exploits representations of positive polynomials as elements of the preorder-
ing modulo the KKT ideal, which only involves polynomials in the initial set of
variables.

The approach provides a uniform treatment of different optimization problems
considered previously. Applications to global optimization, optimization on semi-
algebraic sets defined by regular sets of constraints, optimization on finite semial-
gebraic sets and real radical computation are presented.

For the effective solution of the optimization problem, we introduce border basis
reduction techniques, which combined with a reconstruction method from moment
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sequences yields an algorithm to compute the minimum of f and the minimizers
when they are in finite number.
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Singular numbers of products of operators (including matrices)

Ken Dykema

(joint work with Hari Bercovici, Benôıt Collins, Wing-Suet Li, Dan Timotin)

1. The additive Horn problem and Schubert calculus

In 1962, A. Horn [7] conjectured an answer to the question, (asked by Weyl
in 1912): which triples (α, β, γ) arise as eigenvalue sequences

(
λ(A), λ(B), λ(C)

)

(each listed according to multiplicity and in nonincreasing order) for n × n Her-
mitian matrices A,B,C satisfying A+B + C = 0?

Horn defined sets H(n) of triples (I, J,K) of subsets of {1, . . . , n}, with |I| =
|J | = |K|, by a recursive algorithm. We will call such (I, J,K) Horn triples.
Hown’s conjecture is now a theorem, due to work of many authors, prinicipally
Klyachko [9], Knutson and Tao [11] and S. Johnson [8]. (Also others were involved;
see Fulton’s review article [6] for a fuller description.)

Theorem ([8], [9], [11]). A triple (α, β, γ) of nonincreasing real sequences

α = (α1, . . . , αn), β = (β1, . . . , βn), γ = (γ1, . . . , γn)

arises as eigenvalue sequences (λ(A), λ(B), λ(C)) of n× n Hermitian matrices A,
B and C satisfying A+B + C = 0 if and only if

n∑

i=1

αi +
n∑

j=1

βj +
n∑

k=1

γk = 0

and for all (I, J,K) ∈ H(n), we have

(1.1)
∑

i∈I

αi +
∑

j∈J

βj +
∑

k∈K

γk ≤ 0.

The inequality (1.1) is called the (additive) Horn inequality associated to the
triple (I, J,K).

It is now recognized that Horn’s set of triples H(n) is the set of all (I, J,K)

satisfying the Littlewood–Richardson rule: c
(n)
IJK > 0. The LR-coefficient c

(n)
IJK is

obtained by a counting algorithm. These are commonly denoted cνλ,µ for partitions
of integers λ, µ and ν, defined from I, J and K.
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Schubert calculus can be used to show that the Horn inequality for a triple
(I, J,K) always holds. A flag inMn(C) is a family E = (E1, . . . , En) of projections
with Eℓ ≤ Eℓ+1 and rank (Eℓ) = ℓ. Writing

I = {i(1) < i(2) < · · · < i(r)}

the Schubert variety S(E, I) is the set of all projections P such that rank (P ) = r
and

rank (P ∧Ei(ℓ)) ≥ ℓ (1 ≤ ℓ ≤ r).
To prove that the Horn inequality (1.1) always holds, is suffices to show that for
arbitrary flags E, F and G in Mn(C), we have S(E, I) ∩ S(F, J) ∩ S(G,K) 6= ∅.
Finding P ∈ S(E, I)∩S(F, J)∩S(G,K) is called solving the Schubert intersection
problem.

The cohomology ring of the Grassmannian can be used to show

c
(n)
IJK > 0 =⇒ S(E, I) ∩ S(F, J) ∩ S(G,K) 6= ∅

and this proves the “easier direction” of Horn’s conjecture (that the Horn inequal-
ities hold whenever A+ B + C = 0).

Belkale [1] showed that the set of Horn inequalities for those (I, J,K) with

c
(n)
IJK = 1 determines the convex body defined by all the Horn inequalities (so

those with c
(n)
IJK > 1 are redundant).

2. A multiplicative Horn problem

A multiplicative version of Horn’s problem is: given n × n matrices A and B
whose singular numbers are known, what can the singular numbers of AB be?
The answer, for invertible matrices A and B, is the following result of Klyachko.
(Another multiplicative Horn problem, about eigenvalues of unitary matrices, was
solved by Belkale [2].)

Theorem ([10]). For decreasing, strictly positive sequences of length n, α, β and
γ, there exist matrices A,B,C ∈ Mn(C) whose singular numbers are α, β, γ, re-
spectively, and such that ABC = 1 if and only if

n∏

i=1

αi

n∏

j=1

βj

n∏

k=1

γk = 1

and, for all (I, J,K) with c
(n)
IJK = 1,

∏

i∈I

αi

∏

j∈J

βj
∏

k∈K

γk ≤ 1

In particular, α, β, γ are singular number sequences s(A), s(B), s(C) of some
matrices with ABC = 1 if and only if logα, log β, log γ are eigenvalue sequences
λ(A′), λ(B′), λ(C′) of some Hermitian matrices with A′ +B′ + C′ = 0.
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We generalize the above theorem to the case of non-invertible matrices. The
goal is, for arbitrary sequences α, β with α1 ≥ · · · ≥ αn ≥ 0 and β1 ≥ · · · ≥ βn ≥ 0,
to find

Sα,β := {s(AB) | A,B ∈Mn(C), s(A) = α, s(B) = β}.
Theorem ([3]). Sα,β is the set of ν = (νj)

n
1 , ν1 ≥ · · · ≥ νn ≥ 0 such that for all

(I, J,K) with c
(n)
IJK = 1, we have

(2.1)
∏

i∈I

αi

∏

j∈J

βj ≤
∏

k∈K

νk and
∏

i∈Ic

αi

∏

j∈Jc

βj ≥
∏

k∈K
c

νk,

where K = {n+ 1− k | k ∈ K}.
The proof depends on an interpolation result of Bercovici, Li and Timotin,

from [5].

3. Horn problems in finite von Neumann algebras

Our goal is to investigate certain infinite dimensional analogues of the Horn
problems, namely, in finite von Neumann algebra. To summarize without going
into detail, a self-adjoint element b in a finite von Neumann algebra, instead of an
eigenvalue seqncence, has a non-increasing, right continuous eigenvalue function
λb : [0, 1] → R and for an arbitrary element b in a finite von Neumann algebra,
instead of the sequence of singular numbers, there is the singular value function
sb = λ|b|.

Theorem ([4]). Real-valued, nonincreasing, right continuous functions f, g, h on
[0, 1] arise as the eigenvalue functions of self–adjoint elements a, b, c in a finite
von Neumann algebra satisfying a + b + c = 0 if and only if for every n, their
discretizations f (n), g(n), h(n), obtained by averaging over the intervals [ jn ,

j+1
n ],

satisfy the Horn inequalities (1.1) for all (I, J,K) ∈ H(n) with c
(n)
IJK = 1.

Theorem ([3]). Nonnegative, nonincreasing right-continuous functions u, v, w on
[0, 1] arise as singular value functions of elements a, b, c in a finite von Neumann
algebra satisfying ab = c if and only if for every n, the discretizations of their
logarithms (log u)(n), (log v)(n), (logw)(n), satisfy the log versions of the inequali-
ties (2.1), namely

∑

i∈I

(log u)
(n)
i +

∑

j∈J

(log v)
(n)
j ≤

∑

k∈K

(logw)
(n)
k

∑

i∈Ic

(log u)
(n)
i +

∑

j∈Jc

(log v)
(n)
j ≥

∑

k∈K
c

(logw)
(n)
k ,

where −∞ is allowed as a value, for all (I, J,K) ∈ H(n) with c
(n)
IJK = 1.

Both of these results can be seen as modest evidence for a positive solution
to Connes’ embedding problem. Indeed, they say that as far as eigenfunctions of
sums and singular values of products goes, the possibilities in arbitrary finite von
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Neumann algebras are the same as in von Neumann algebras that are embeddable
in Rω.

The proofs of the two theorems above depend crucially on the following con-
structive solution of the Schubert intersection problem, which may also be inter-
esting for strictly finite dimensional phenomena.

Theorem ([4]). Given (I, J,K) with c
(n)
IJK = 1, there is a lattice polynomial Q

(involving operations ∧ and ∨) in 3(n− 1) variables, such that for any flags E, F
and G in Mn(C), letting

P = Q(E1, . . . , En−1, F1, . . . , Fn−1, G1, . . . , Gn−1),

we have P ∈ S(E, I) ∩ S(F, J) ∩ S(G,K).
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The moment problem on infinite dimensional basic semi-algebraic sets

Maria Infusino

(joint work with Tobias Kuna and Aldo Rota)

The infinite dimensional moment problem naturally arises from applied fields deal-
ing with the analysis of complex systems like many-body systems in statistical
mechanics, spatial ecology, stochastic geometry, etc. Since such a system consists
of a huge number of identical components, the essence of its investigation is to
evaluate selected characteristics (usually correlation functions), which encode the
most relevant properties of the system. These characteristics are indeed the only
ones that give a reasonable picture of the qualitative behaviour of the system.
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It is therefore fundamental to investigate whether a given candidate correlation
function actually represents the correlation function of some random distribution.
This problem is well-known as realizability problem and can be interpreted as a
moment problem posed in an infinite dimensional setting.

The classical multivariate moment problem asks whether a given multisequence
of real numbers (mα)α∈Nd

0
is the moment sequence of some non-negative finite

measure with fixed support K ⊆ Rd with d ∈ N. However, at an early stage, this
problem has also been generalized to the case of infinitely many variables (see [1]
for more details on this topic). Here, eachmn in the starting sequence (mn)n∈N0

is
an element of the tensor product of n copies of a certain infinite dimensional space
(e.g. for each n, mn is a generalized function of n variables in Rd) and the support
of the measure is assumed to be a non-linear subset of this space (examples of
supports are the set of all L2 functions, the cone of all non-negative generalized
functions, the set of all signed measures). In this general setting, the realizability
problem is nothing but a moment problem on a space of functions.

This interpretation has been first introduced in [7], where the authors give
necessary and sufficient conditions for a pair of symmetric functions ρ1(x) and
ρ2(x, y), x, y ∈ X , to be the first two correlation functions of a point process,
namely a probability on the space of all locally finite configurations of points in a
topological space X . Basically, they provide a solution for a particular instance of
the realizability problem on point configuration spaces, treating it as an infinite
dimensional truncated moment problem. (Recall that the moment problem is
called truncated if the starting sequence is finite and full when it is an infinite one).
The results presented in this talk are based on this approach, which is thought to
shed some light on the problem to identify relevant explicit necessary and sufficient
realizability conditions out of the rather inexplicit ones already known in literature.

We have recently observed in [5] that the various spaces of configurations, as
well as several other function spaces on which the realizability problem has been
posed in the applications, are actually defined by uncountable many polynomial
constraints on the space of generalized functions on Rd. This led us to analyze
the full infinite dimensional moment problem on basic semi-algebraic sets of gen-
eralized functions on Rd. It is well-known that the semi-algebraic structure of the
support of the representing measure plays a fundamental role in the study of the
classical finite dimensional moment problem (see e.g. [2, 14, 13, 12, 8, 10]). Com-
bining the techniques recently developed in [9] to treat the moment problem on
closed basic semi-algebraic sets of Rd with the classical results about the moment
problem on nuclear spaces [1, 15], we derived necessary and sufficient conditions
for an infinite sequence of generalized functions to be the moment sequence of a
finite measure concentrated on a basic semi-algebraic set. In this way, we deter-
mined realizability conditions that can be more easily verified than the Haviland
type conditions introduced by Lenard in [11]. Our conditions are indeed given
by the non-negativity of the generalized Riesz functional on the quadratic module
generated by the polynomials defining the semi-algebraic set. The new ideas em-
ployed in the proof of these conditions can be also applied to the finite dimensional
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moment problem and allow us to extend the result in [9] to basic semi-algebraic
sets of Rd defined by an uncountable family of polynomials.

As already mentioned, the semi-algebraic structure is a common feature in many
instances of the realizability problem. For example, our result applies to the set of
all Radon measures, the set of all the measures having bounded Radon-Nikodym
density w.r.t. the Lebesgue measure, the set of all sub-probabilities, the set of
all multiple and simple configurations. In particular, the realizability problem for
point configurations is very important in applications in statistical mechanics. In
this context, it is more convenient and also more natural to have a characterization
of the support of the realizing measure in terms of correlation functions rather than
moment functions as in [5]. A vital problem for the applicability of our result is to
find the smallest possible number of realizability conditions, namely to determine
a representation of the considered support as a semi-algebraic set defined by as
few polynomials as possible, [6].

One question that is still open is to generalize the results already obtained for
the full realizability problem on basic semi-algebraic sets of generalized functions
to the truncated case. In fact, it would be extremely interesting to obtain real-
izability conditions of positive semidefinite type as in [5] rather than the ones of
the Haviland type given in [7], which are still the only known conditions for the
truncated case. A result of this kind would be a great step forward in the theory of
both finite and infinite dimensional moment problem, and it would have a strong
impact on the applications.

The results obtained in [5] also suggest to investigate the question of approxi-
mating polynomials non-negative on a basic semi-algebraic set of generalized func-
tions via elements of the associated quadratic module. This is a crucial problem
in real algebraic geometry and it has been extensively studied in relation to the
finite dimensional moment problem. In the case when the basic semi-algebraic set
K is compact in Rd, using the famous Putinar Positivstellensatz [13], it is possible
to prove that the cone of non-negative polynomials on K coincides with the clo-
sure of the associated quadratic module w.r.t. the finest locally convex topology
on R[x1, . . . , xd]. In the case of K non-compact, there have been negative results
which suggested to consider the closure of the quadratic module w.r.t. other kind
of topologies. This idea was recently developed in [4] and generalized in [3]. It
would be interesting to investigate these techniques in the infinite dimensional
case, since a result in this direction could be employed to get approximations
for the solutions of polynomial optimization problems and thus bounds for some
material properties of great physical interest.
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Non-commutative Real Algebraic Geometry and Applications to
Group Rings

Andreas Thom

(joint work with Tim Netzer and Jesse Peterson)

Let Γ be a discrete countable group. Let H be a complex Hilbert space and U(H)
the group of unitary operators on H . A unitary representation is a homomorphism
π : Γ → U(H). There are always many unitary representations, the most obvious
being the left regular representation λ : Γ→ U(ℓ2Γ), where ℓ2Γ is a Hilbert space
with an orthonormal basis {δg | g ∈ Γ} and λ(g)δh := δgh. We denote by C[Γ] the

complex group ring C[Γ] :=
{∑

g∈Γ agg | finite sum
}
.

This is a ring with the obvious addition and with multiplication extending the

group multiplication. Setting
(∑

g agg
)∗

=
∑

g āgg
−1, we endow C[Γ] with an

involution. We define the cone of hermitian sums of squares as follows:

Σ2(C[Γ]) :=

{
n∑

i=1

ξ∗nξi | n ∈ N, ξi ∈ C[Γ]

}
.

Lemma 0.1. The element 1 ∈ C[Γ] is an algebraic interiour point in the convex
cone Σ2(C[Γ]).
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Corollary 0.2. The following conditions are equivalent:

(1) For all ε > 0, a+ ε ∈ Σ2(C[Γ]).
(2) π(a) ≥ 0 in all unitary representations.

Proof. Use a standard separation argument and the GNS construction. �

We denote by Fn the free group on n generators. A more refined characterization
of positivity is available for the free group.

Theorem 0.3. The following conditions are equivalent:

(1) We have a ∈ Σ2(C[Fn]).
(2) π(a) ≥ 0 in all unitary representations.
(3) π(a) ≥ 0 in all finite-dimensional unitary representations.

The corresponding result also holds for Z2 by a deep result of Claus Scheiderer;
see [7]. It fails for Z3.

Conjecture 0.4. The same holds for fundamental groups of surfaces.

It is known that 2⇔ 3 for surface groups by a deep result of Lubotzky-Shalom;
see [1]. The equivalence 2 ⇔ 3 for F2 × F2 is equivalent to a positive solution to
Connes’ Embedding Problem; see [3, 4].

Let A,B be unital ∗-algebras. We say that a linear map ϕ : A→ B is completely
positive if for all n ∈ N, the map 1Mn

⊗ ϕ : Mn(A) → Mn(B) maps sums of
hermitian squares to sums of hermitian squares. We denote the hermitian part of
A by Ah and call A real-reduced if a∗1a1+ · · ·+a∗nan = 0 implies a1 = · · · = an = 0.

Theorem 0.5 (see [2]). Let A be a real reduced unital ∗-algebra. If a ∈ A is her-
mitian and a 6∈ Σ2(A), then there exists a completely positive R-linear functional

ϕ : Ah → R,

for some real closed field R ⊃ R, such that ϕ(1) = 1 and ϕ(a) < 0.

This result allows to give a new proof of Theorem 0.3.

Proof of Theorem 0.3: Take a ∈ C[Fn]h with a 6∈ Σ2(C[Fn]). Find ϕ : C[Fn]h →
R, for some real closed field R ⊃ R, such that ϕ(1) = 1 and ϕ(a) < 0. Perform the
GNS-construction (π,H, ξ) over C and cut down to a finite-dimensional subspace
to find contractions

A1, . . . , An ∈Md(C),

such that 〈a(A1, . . . , An)ξ, ξ〉 = ϕ(a) < 0. Lift the A′is to unitaries over C:

Ui :=

(
Ai

√
1−AiA∗i√

1−A∗iAi −A∗i

)
, 1 ≤ i ≤ n.

Tarski’s Transfer Principle gives unitary matrices over C. �

Another consequence of the same technique:

Theorem 0.6 (Helton-Klep-McCullough). Let C〈x1, . . . , xn〉 be the free algebra
on self-adjoint generators. Let L(x) be a monic linear pencil with coefficients in
symmetric k × k-matrices. The following conditions are equivalent:
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(1) p ∈ C〈x1, . . . , xn〉 lies in the quadratic module generated by L(x), i.e.,

p =
∑

i

s∗i si +
∑

j

v∗jL(x)vj .

(2) p(A1, . . . , An) ≥ 0 whenever A1, . . . , An ∈Md(C)h satisfy

L(A1, . . . , An) ≥ 0

as a kd× kd-matrix.

Proof. Same argument as before. �

There are explicit bounds on d. Indeed, for fixed p ∈ C〈x1, . . . , xn〉 with k sum-
mands of degree m, it is enough check Md(C)h with d = mk. Using this approach
it is harder to get bounds on the degrees of si’s and vj ’s in the representation

p =
∑

i

s∗i si +
∑

j

v∗jL(x)vj .

Any approach like this to F2 × F2 should first be able to deal with the group Z2.

Question 0.7. Can one do such an argument to understand the case Z2 better?

We now turn to a discussion of Kazhdan’s Property (T). Assume that Γ is
generated by g1, . . . , gn. We set ∆ := 2n−∑n

i=1 gi + g−1i – the Laplace operator
with respect to the generating set. It is well-known that the group Γ has Kazhdan’s
Property (T) if and only there exists ε > 0, such that

sp(π(∆)) ⊂ {0} ∪ [ε, 4n]

for all unitary representations of Γ. Equivalently, we get:

Corollary 0.8. The group Γ has Kazhdan’s Property (T) if and only there exists
ε > 0, such that

π(∆2 − ε∆) ≥ 0

for all unitary representations of Γ.

We set

ωC(Γ) :=

{∑

g

agg ∈ C[Γ] |
∑

g

ag = 0

}
.

This is an two-sided ideal in C[Γ], called the augmentation ideal. Clearly, ∆ ∈
ωC(Γ). It was shown in [2] that Σ2ωC(Γ) = Σ2(C[Γ]) ∩ ωC(Γ).

Theorem 0.9 (see [2]). If H1(Γ) = 0, then ∆ is an interiour point of the convex
cone

Σ2(ωC(Γ)) ⊂ ωC(Γ)h.

Proof. Use the Completely Positive Separation Theorem. �

Remark 0.10. Ozawa showed with an elementary argument that the element ∆ is
an interiour point of Σ2ωR(Γ) ⊂ ωR(Γ)h for every Γ.
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Theorem 0.11 (Ozawa, see [5]). The group Γ has Kazhdan’s property (T) if and
only if there exists ε > 0, such that

∆2 − ε∆ ∈ Σ2(ωC(Γ)).

Let Γ := 〈g1, . . . , gn | R〉, where R ⊂ Fn is a set of defining relations. The group
Γ is called finitely presented if one can choose R finite.

Theorem 0.12 (Shalom, 2000). Every group Γ with Kazhdan’s Property (T) is a
quotient of a finitely presented group with Kazhdan’s Property (T).

Ozawa’s new proof [5]: Any computation that shows that ∆2 − ε∆ ∈ Σ2(ωC(Γ))
can only use finitely many relations r1, . . . , rm ∈ R. But then, Λ := 〈g1, . . . , gn |
r1, . . . , rm〉 also has Kazhdan’s Property (T ), and Λ ։ Γ. �

We end by mentioning some results about traces on group rings. For any ∗-
algebra A, we denote by [A,A] the linear span of all commutators in A, i.e.,

[A,A] := span{ab− ba | a, b ∈ A}.
A trace on A is a linear functional τ : A → C that satisfies τ(ab) = τ(ba), i.e.,

τ([A,A]) = 0.

Theorem 0.13 (Klep-Schweighofer). The following conditions are equivalent if
and only if the Connes Embedding Problem has a positive solution.

(1) For all ε > 0, a+ ε ∈ Σ2(C[F2]) + [C[F2],C[F2]].
(2) For all n ∈ N and pairs u, v ∈ U(n), we have tr(a(u, v)) ≥ 0.

Surprisingly, for many groups the following analogue can be proved:

Theorem 0.14 (see [6]). If Γ is a group like SL3(Z) or SL2(Z[1/2]), then the
following conditions are equivalent.

(1) For all ε > 0, a+ ε ∈ Σ2(C[Γ]) + [C[Γ],C[Γ]].
(2) For all f.d. representation π : Γ→ U(n), we have tr(π(a)) ≥ 0.

Proof. We give complete classification of positive traces on C[Γ], using a detailed
study of the von Neumann algebra generated in the GNS-representation, and ideas
coming from Ergodic Theory and the proof of Margulis’ Normal Subgroup Theo-
rem. �

The corresponding problem for SL2(Z) is again much harder and equivalent to
Connes’ Embedding Problem, see [4].

Corollary 0.15. Let Γ := SL2(Q). Let a =
∑

g agg ∈ C[Γ]. The following
conditions are equivalent:

(1) We have a ∈ Σ2(C[Γ]) + [C[Γ],C[Γ]].
(2) The inequalities ae > 0 and

∑
g ag > 0 hold.

Proof. One can show that a 7→ ae and a 7→ ∑
g ag are the only two (extremal)

positive traces on C[Γ]. �
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Degree Bounds in Rational Sums of Squares Representations

Grigoriy Blekherman

(joint work with Greg Smith and Maurizio Velasco)

1. Main Theorem

Let X ⊂ RPn be an irreducible non-degenerate curve with dense real points
with vanishing ideal I and coordinate ring R = R[x0, . . . , xn]/I with the standard
grading.

Let PX,2s ⊂ R2s be the cone of forms of degree 2s that are nonnegative on X
and ΣX,2s ⊂ R2s be the cone of sums of squares of forms on degree d on X . We
are interested in the following question:

Question 1.1. Given an even degree 2s, find an integer k ∈ N depending on s
and invariants of X only, such that for every form p ∈ P2s there exists q ∈ Σ2k

such that pq ∈ Σ2s+2k.

We note that such a bound exists by the Positivstellensatz, however we are in-
terested in explicit bounds, which should be better than bounds known for general
semialgebraic sets [2].

We also observe that such q does not, in general, provide a certificate of non-
negativity of p. This is because X may contain isolated points. However, this
is the obstruction for an irreducible curve: such a sum of squares multiplier q is
certificate of nonnegativity of p, whenever every real connected component of X
is 1-dimensional.

Let regH and regCM denote the Hilbert and Castelnuovo-Mumford regularity of
X respectively. Our main contribution is the following theorem:
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Theorem 1.2. Let X ⊂ Pn be a reduced irreducible non-degenerate curve with
dense real points. Let d and g be the degree and the arithmetic genus of X. If

k = max

(
regH(X), regCM(X)− s− 2,

⌊
2g − 1

d

⌋
+ 1

)
,

then for every form p ∈ PX,2s nonnegative on X there exists q ∈ ΣX,2k such that

pq ∈ ΣX,2s+2k.

It is known that for curves we have regCM(X) ≤ d − n + 2 and regH(X) ≤
regCM(X)− 1 [3]. Thus we immediately obtain the following corollary:

Corollary 1.3. Let X ⊂ Pn be a reduced irreducible non-degenerate curve with
dense real points of degree d and arithmetic genus g. Let

k = max

(
d− n+ 1,

⌊
2g − 1

d

⌋
+ 1

)
.

Then for any form p nonnegative on X there exists a sum of squares q of degree
2k such that pq is a sum of squares on X.

For smooth curves, where arithmetic genus is equal to geometric genus, we can
use Castelnuovo bound for geometric genus (see [1]) to show that

⌊
2g−1

d

⌋
+ 1 ≤

d− n+ 1, so we obtain the following:

Corollary 1.4. Let X ⊂ Pn be a smooth irreducible non-degenerate curve with
dense real points of degree d and arithmetic genus g. Let

k = d− n+ 1.

Then for any form p nonnegative on X there exists a sum of squares q of degree
2k such that pq is a sum of squares on X.

For a planar curve X we have g = 1
2 (d− 1)(d− 2), and therefore

⌊
2g−1

d

⌋
+ 1 =⌊

(d−1)(d−2)−1
d

⌋
+1 =

⌊
d2−3d+1

d

⌋
= d−2; also regCM(X) = d, while regH(X) = d−2.

Thus we have the following uniforms bound for planar curves:

Corollary 1.5. Let X ⊂ P2 be a irreducible planar curve with dense real points
of degree d. Let

k = d− 2.

Then for any form p nonnegative on X there exists a sum of squares q of degree
2k such that pq is a sum of squares on X.

We are currently working on understanding the tightness of the above bounds.
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Determinantal Representations of Hyperbolic Polynomials

Mario Kummer

A homogeneous polynomial h ∈ R[x] = R[x1, . . . , xn] is said to be hyperbolic with
respect to e ∈ Rn, if h does not vanish in e and if for every v ∈ Rn, the univariate
polynomial h(te + v) ∈ R[t] has only real roots. The hyperbolicity cone Ch(e) of
h at e is the set of all v ∈ Rn such that no zero of h(te + v) is strictly positive.
Hyperbolicity cones are semi-algebraic convex cones, as shown for example in [3].

The interest in hyperbolic polynomials was originally motivated by the theory
of partial differential equations (see for example [2, 6]). But lately, interest arose
in the area of optimization, especially semidefinite optimization (see for example
[4, 5, 7]). In particular the connection to polynomials with a definite determinantal
representation has attracted much attention: We say that a homogeneous polyno-
mial h ∈ R[x] has a definite determinantal representation, if there are symmetric
matrices A1, . . . , An ∈ Symd(R) such that

h = det(x1 · A1 + . . .+ xn · An)

and if A(e) = e1A1 + . . .+ enAn is positive definite for some e ∈ Rn. It is easy to
see that such polynomials are hyperbolic with respect to e. An important result of
Helton and Vinnikov [5] says that conversely every hyperbolic polynomial in three
variables has a definite determinantal representation. This holds no longer true for
more than three variables. Actually Brändén [1] found a hyperbolic polynomial h
in four variables such that no power hN admits a definite determinantal represen-
tation (a good review about these topics can be found in [8]). But still one can
ask whether some multiple of any hyperbolic polynomial admits a determinantal
representation. This is exactly what we will prove in the case where the hyperbolic
polynomial has no real singularities:

Theorem. Let h ∈ R[x] be hyperbolic with respect to e ∈ Rn. Assume that h has
no real singularities, i.e. ∇h(v) 6= 0 for all 0 6= v ∈ Rn. Then there is a hyperbolic
polynomial q ∈ R[x], such that q · h has a definite determinantal representation.

This result can be seen as a first step towards the Generalized Lax Conjecture:

Conjecture. Let h ∈ R[x] be hyperbolic with respect to e ∈ Rn. Then there is a
hyperbolic polynomial q ∈ R[x], such that Ch(e) ⊆ Cq(e) and such that q · h has
a definite determinantal representation.
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Spectrahedral cones generated by rank 1 matrices

Roland Hildebrand

Let Sn be the real vector space of n× n real symmetric matrices and S+(n) ⊂ Sn
the cone of positive semi-definite matrices. A subset C of a real affine space A
is called a spectrahedron if for some n there exists an injective affine map f :
A → Sn such that C = f−1[S+(n)]. The map f identifies A with an affine
subspace of Sn, and hence spectrahedra can be seen as intersections of the cone
S+(n) with affine subspaces of Sn. A spectrahedron may have several in a natural
sense non-equivalent such representations, and therefore one must distinguish the
spectrahedron C as a subset of affine space from the pair (C, f), comprised of C
and its representation f . If A is equipped with the structure of a vector space and
the map f is linear, then C is called a spectrahedral cone.

Spectrahedra appear as the feasible sets of semi-definite programs and are thus
of importance for convex optimization [5]. The facial structure of spectrahedra and
spectrahedral cones has been studied in [4]. By their construction, spectrahedra
are convex basic semi-algebraic sets. More precisely, they are algebraic interiors
[2], i.e., they possess a representation as the closure of a connected component of
the Positivstellen set {x ∈ A | p(x) > 0} for some determinantal polynomial p.

Here we consider spectrahedral cones satisfying the following property.

Property 0.1. The cone K ⊂ Rk has a spectrahedral representation by an in-
jective linear map f : Rk → Sn such that every matrix in the image f [K] can be
represented as a sum of rank 1 matrices in f [K].

We shall call such spectrahedral cones rank 1 generated (ROG). One of our
main results is that for a ROG cone, all representations possessing Property 0.1
are equivalent.

Definition 0.2. Let L ⊂ Sn, L′ ⊂ Sn′ be linear subspaces of matrix spaces, and
suppose that n ≤ n′. We call L,L′ isomorphic if there exists an injective linear
map f : Rn → Rn′

with coefficient matrix A ∈ Rn′×n such that the induced map
f̃ : Sn → Sn′ given by f̃ : X 7→ AXAT takes L onto L′.

Theorem 0.3. Let K ⊂ Rk be a k-dimensional ROG cone and let the linear maps
f : Rk → Sn, f ′ : Rk → Sn′ define spectrahedral representations of K, satisfying
the condition in Property 0.1. Then the images of f, f ′ are isomorphic, and the
isomorphism can be chosen as an extension of f ′ ◦ f−1.
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For ROG cones, there is hence essentially no difference between the cone as a
subset of Rk and its representation as a linear section of a positive semi-definite
matrix cone S+(n). In particular, a given point x of a ROG cone K is represented
by a matrix of the same rank independently of the representation, and hence the
rank is an intrinsic property of the point.

In what follows, we shall consider spectrahedra and spectrahedral cones directly
as affine or linear sections of a positive semi-definite matrix cone. We may also
assume that the spectrahedron contains a positive definite matrix by possibly
reducing the size of the matrices. The condition of being ROG can equivalently be
stated in terms of bounded spectrahedra. Namely, the conic hull K of a bounded
spectrahedron C not containing the zero matrix is ROG if and only if C is the
convex hull of the rank 1 matrices in C. Therefore, if C is the compact section of
a ROG spectrahedral cone, then minimizing a linear function over the nonconvex
set of rank 1 matrices in C is equivalent to minimizing this linear function over
the bounded spectrahedron C.

Thus the ROG property is in close relation to the exactness of semi-definite
relaxations of nonconvex problems in the case when the relaxation is obtained
by dropping a rank constraint. Many nonconvex optimization problems which
are arising in computational practice fall into this framework, i.e., they can be
cast as semi-definite programs with an additional rank constraint. It is this rank
constraint which makes the problem nonconvex and difficult to solve. At the
same time, dropping the rank constraint provides a convenient way of relaxing the
problem into an easily solvable semi-definite program.

Examples of ROG cones are

• The cone of all Hankel matrices in S+(n).
• The 15-dimensional moment cone of the ternary quartics, represented by
6× 6 matrices.
• The positive semi-definite matrix cone S+(n).
• Spectrahedral cones of codimension 1, i.e., sets {X ∈ S+(n) | 〈X,Q〉 = 0},
where Q is an indefinite quadratic form.

New ROG cones can be obtained from given ones by a number of procedures.

Faces of ROG cones are again ROG.

Direct products of ROG cones are ROG. Conversely, if a ROG cone K is
a direct product of m lower-dimensional cones, then the factors are also ROG.
The representation of K as a linear section of S+(n) induces a decomposition
Rn =

⊕m
i=1Hi into a direct sum of subspaces. This justifies the definition of

simple ROG cones as those which are not nontrivial direct products.
It can be shown that a simple ROG cone of degree n has dimension at least

2n−1. An example of simple cones of minimal dimension are the cones of positive
semi-definite Hankel matrices, but there exist also other examples.

Full extensions of ROG cones are ROG cones, defined as follows.
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Definition 0.4. Let k, n be positive integers, k < n, and let K ′ = L′∩S+(n−k),
K = L ∩ S+(n) be spectrahedral cones, where L′ ⊂ Sn−k, L ⊂ Sn are linear sub-
spaces. We call K a full extension of K ′ if there exists a direct sum decomposition
Rn = H⊕E into subspaces of dimensions n−k, k, respectively, and a correspond-
ing direct sum decomposition of Sn into subspaces LE = span{xyT + yxT |x ∈
Rn, y ∈ E}, LH = span{xxT |x ∈ H}, with the following properties. The inclu-
sion LE ⊂ L holds, and the subspaces L′ ⊂ Sn−k, LH ∩ L ⊂ Sn are isomorphic.

Every ROG cone of codimension 2 must be a full extension of S+(1)× S+(2).

Intertwinings are constructed from pairs of lower-dimensional ROG cones.

Definition 0.5. Let K1,K2 be ROG cones, let Φ1 ⊂ K1, Φ2 ⊂ K2 be faces
which are isomorphic to a positive semi-definite matrix cone S+(k), and let f :
spanΦ1 → spanΦ2 be an isomorphism between Φ1,Φ2. Define the linear subspace
Λ = {(X1, X2) |X1 ∈ spanΦ1, X2 ∈ spanΦ2, f(X1) + X2 = 0} of the direct
product spanK1× spanK2. Then the projection K of the direct product K1×K2

on the quotient space (spanK1 × spanK2)/Λ is called an intertwining of K1,K2.
It can be shown that intertwinings are also ROG. The families of ROG cones

which have been obtained from chordal graphs in [1],[3] can be constructed as in-
tertwinings and direct products of positive semi-definite matrix cones only. How-
ever, the class of ROG cones which can be obtained as intertwinings of matrix
cones S+(k) is much richer and contains continuous families parameterized by an
arbitrary number of real parameters.

We have also the following result on the structure of the set of extreme rays of
a ROG cone.

Theorem 0.6. Let K be a ROG cone of degree n. Then the number of its isolated
extreme rays does not exceed n. Let the rank 1 matrices x1x

T
1 , . . . , xkx

T
k ∈ S+(n)

generate the isolated extreme rays of K. Then the vectors x1, . . . , xk ∈ Rn are
linearly independent, and there exists a subspace H ⊂ Rn of dimension n − k,
transversal to the linear span of x1, . . . , xk, with the following properties. Let F be
the face of S+(n) given by the convex hull of the set {zzT | z ∈ H}, and define the
cone KF = F ∩ K. Then the cone KF is a ROG cone without isolated extreme
rays, and K is isomorphic to the direct product KF × Rk

+.
The discrete and the continuous part of the set of extreme rays of a ROG cone

K thus generate separate factors of K. The factor generated by the discrete part
is isomorphic to the nonnegative orthant.

Question: For a ROG cone K ⊂ S+(n), the set {x ∈ Rn |xxT ∈ K} defines a
projective algebraic variety. Which irreducible components can occur?
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Realizations via Preorderings with Application to the Schur Class

Michael A. Dritschel

The classical realization theorem gives a variety of characterizations of those func-
tions which are in the Schur class on the unit disk D of the complex plane C; that
is, those functions in the closed unit ball of H∞(D).

Jim Agler found a method for extending this result to the polydisk, though for
dimension d greater than 2, one must consider a (possibly) restricted algebra of
functions along with a different norm. The unit ball for such an algebra is now
commonly known as the Schur-Agler class; the term Schur class usually being re-
served for the unit ball ofH∞(X) when X is a domain in Cd. Among other things,
the realization theorem states that a complex function ϕ on the polydisk is in the
Schur-Agler class if and only if it has a so-called Agler decomposition, expressing
1− ϕϕ∗ as an element of a cone generated by products of certain positive kernels
and kernels of the form 1−ψψ∗, where ψ is a coordinate function. Other equivalent
conditions include the existence of a transfer function representation and a von
Neumann type inequality for suitably restricted tuples of commuting contractions.
The equivalence of all of these conditions makes no a priori assumptions about ϕ,
and it is this which enables the use of the realization theorem in such applications
as Pick interpolation. These results have been vastly generalized, in the spirit of
Agler’s work.

The Agler decomposition has its analogues in real algebraic geometry. For
example, if we have a domain in Rn which is the non-negativity set of a finite col-
lection of polynomials including the polynomial which is identically equal to 1 (a
so-called basic semi-algebraic set), and these polynomials also include 1−ψ2

i where
the ψis are constant multiples of the coordinate functions, then Putinar’s theorem
states that a strictly positive polynomial is in the quadratic module generated by
these polynomials; that is, it is in the cone generated by finite sums of squares
of polynomials times the individual polynomials defining the semi-algebraic set.
If the condition regarding the coordinate functions is dropped, the statement of
Putinar’s theorem is in general false, even if the semi-algebraic set is assumed
to be compact. However the situation can be salvaged in the compact setting
by replacing the quadratic module by a preordering; that is, by considering the
cone generated by finite sums of squares of polynomials times the various prod-
ucts of the polynomials defining the semi-algebraic set. This is the content of
Schmüdgen’s theorem. Further refinements are possible. For example, if only two
polynomials define the compact semi-algebraic set then one can get by with the
quadratic module in Schmüdgen’s theorem (see the book of Prestel and Delzell),
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which because of Andô’s theorem is analogous to what happens in the complex
case with Agler’s realization theorem.

Back in the complex function setting, recent work of Grinshpan, Kaliuzhnyi-
Verbovetskyi, Vinnikov and Woerdeman shows that on the polydisk for dimension
greater than 2, one can recover the entire Schur class by using the appropriate
variant of a preordering. The caveat is that they find it necessary to assume that
the function they are considering is already known to be in the Schur class, and so
there is no direct application to Pick interpolation in the Schur class. Also, they
are missing the crucial transfer function representation needed for interpolation
results, though in a separate paper, they prove in a later paper that a form of
the von Neumann inequality is available. A particularly interesting aspect of
this last work is that the tuples of operators the authors are considering have a
unitary dilation, obtained by showing that they induce a completely contractive
representation of H∞(Dd) and then applying the standard machinery.

This talk has several goals. The first is to place the work of Grinshpan,
Kaliuzhnyi-Verbovetskyi, Vinnikov andWoerdeman in the context of test functions
on a set X , in this way allowing for a much broader class of function algebras. For
example, there are analogues of the algebra H∞(Dd) and the multivariable ana-
logue of the disk algebra, A(Dd), in this setting, which we denote by H∞(KΛ,H)
and A(KΛ,H), respectively. The set X can be topologized and closed in an appro-
priate norm, which allows us to make sense of the analogue of the disk algebra in
this context; that is, elements of our analogue of H∞ which extend continuously
to the closure of X .

Secondly, we give a full version of the realization theorem include the trans-
fer function representation and analogues of the von Neumann inequality, at
least when we have a so-called ample preordering. None of the realization the-
orems requires the precondition that the function under consideration is already
in H∞(KΛ,H). Thus in principle in the ample case, such applications as Agler-Pick
interpolation are possible.

Even if the preordering is not ample, we can show that elements of our gen-
eralized Schur-Agler class have a transfer functions representation, but not that
everything with a transfer function representation is in our algebra. However, the
transfer functions into L(H) do form the unit ball of an algebra having a matrix
norm structure, and so form an operator algebra. We then show in this setting
that certain types of representations (the Brehmer representations over the ana-
logue of the disk algebra and the weakly continuous Brehmer representations over
the analogue of H∞) are completely contractive, implying the existence of a di-
lation of the representation to a so-called boundary representation (without the
assumption of irreducibility). This in turn coincides with representations which
are contractive on the auxiliary test functions, meaning that such representations
are also completely contractive. Since when the preordering is ample the unit ball
of H∞(KΛ,H) coincides with those functions having transfer function representa-
tions, the same then goes for this algebra.
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Of particular interest is the case of the polydisk, since then the ample pre-
ordering gives H∞(Dd,L(H)). Since the auxiliary test functions are not given
constructively, determining if a representation is contractive on these is difficult.
However they are matrix valued functions, and so we are able to conclude that for
H∞(Dd,L(H)), any weakly continuous representation which is 2d−1-contractive is
completely contractive, and that weak continuity can be dispensed with for the
corresponding analogue of the disk algebra.

Finally, we indicate that in the setting of ample preorderings, Andô’s theorem
allows us to instead consider so-called nearly ample preorderings instead. With
this we are able to recover the full power of the results of Grinshpan, Kaliuzhnyi-
Verbovetskyi, Vinnikov and Woerdeman, and at the same time improve the result
mentioned in the previous paragraph by proving that when d ≥ 2, 2d−2-contractive
weakly continuous representations of H∞(KΛ,H) are completely contractive, with
a similar statement to the polydisk case for A(KΛ,H).

Free polynomial optimization

Sabine Burgdorf

Free polynomial optimization can be interpreted in two ways: one can consider
this as optimization of polynomials in free variables or as polynomial optimization
free of any dimension constraints. We want to emphasize the similarity of asymp-
totic convergence of a Lasserre hierarchy for polynomial optimization with respect
to free positivity (i.e. positive semidefiniteness) and to trace-positivity.

To fix the setup let R〈X〉 denote the R-algebra generated freely by n non-
commuting variables X1, . . . , Xn. Its elements are called nc polynomials. We
want to evaluate these polynomials in tuples of symmetric matrices or self-adjoint
operators, hence we endow R〈X〉 with an involution ∗ modeling the transpose
operation on matrices/operators, i.e. ∗ is the (unique) involution which fixes R

and {X1, . . . , Xn} pointwise.

1. Free positivity

Let p, g1, . . . , gr ∈ R〈X〉 be symmetric. The optimization problem we are inter-
ested in is the following

pmin = inf
(H,ϕ,A)

〈ϕ, p(A)ϕ〉(1.1)

s.t. gi(A) � 0 for i = 1, . . . , r

where H is a Hilbert space, ϕ a unit vector in H and A a tuple of bounded
self-adjoint operators on H . Basically we want to find the smallest eigenvalue
p can attain when evaluated in self-adjoint operators satisfying some additional
constraints. For applications we refer e.g. to the talk of Bill Helton.
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The classical Lasserre relaxation using quadratic modules to model positivity
can be transferred to this setup. For this we define the free quadratic module with
respect to g = (g1, . . . , gr) as

QM(g) := {f ∈ R〈X〉 | f =
∑

h∗i hi +
∑

h∗ijgihij ;hi, hij ∈ R〈X〉}
and its truncated counterpart

QM(g)k := {f ∈ QM(g) | deg h∗i hi, deg h∗ijgihij ≤ 2k}.
Since by construction for f ∈ QM(g) and every tuple A of self-adjoint operators
the evaluated polynomial f(A) is positive semidefinite, the following relaxation
gives a lower bound on pmin for any k ≥ deg p:

pk = supλ s.t. p− λ ∈ QM(g)k.(1.2)

One key feature of this relaxation is that it is computable with a semidefinite
program (SDP). Another feature is that when N − ∑X2

i ∈ QM(g) for some
N ∈ N the hierarchy converges asymptotically to pmin – although one might have
pk < pmin for all k ≥ deg p. This follows directly from a Positivstellensatz of
Helton and McCullough [2, Theorem 1.2]

Theorem 1.1 (Helton, McCullough). Let p, gi ∈ R〈X〉 be symmetric and such
that QM(g) contains N −∑X2

i for some N ∈ N. If p is positive semidefinite
for all tuples A of symmetric operators with gi(A) � 0 then for all ε > 0 we have
f + ε ∈ QM(g).

Pironio, Navascués and Aćın gave a constructive proof for this showing addi-
tionally that in the limit the infimum is actually a minimum [4, Theorem 1].

Theorem 1.2 (Pironio, Navascués, Aćın). Let p, gi ∈ R〈X〉 be symmetric and
such that QM(g) contains N−∑X2

i for some N ∈ N. Then pk → pmin as k →∞.
Furthermore, there exists a Hilbert space H, a normalized vector ϕ ∈ H and a tuple
A ∈ B(H)n of self-adjoint operators such that gi(A) � 0 and pmin = 〈ϕ, p(A)ϕ〉.

We want to emphasize that the Hilbert space H might be infinite dimensional.
If the set K = {A ∈ B(H)n | Aj symmetric, gi(A) � 0} is convex there exists
by the addendum of [2, Theorem 1.2] a finite dimensional Hilbert space H where
the optimum is attained. But in general a guarantee to get a finite dimensional
optimizer is not known, and even in the convex case it is not clear whether the
corresponding SDP always gives a finite dimensional optimizing solution as output.
For a further discussion of open problems we refer to Chapter 21 in [1].

2. Trace positivity

The condition of being positive semidefinite under all evaluations is quite strict.
A natural attempt to get a broader set of positive polynomials is to consider
– instead of the smallest eigenvalue – the trace a polynomial can attain under
evaluations in self-adjoint operators. When one defines an appropriate Lasserre
hierarchy as for free positivity it shows the same behavior in terms of asymptotic
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convergence. To be more precise let again p, g1, . . . , gr ∈ R〈X〉 be symmetric. The
optimization problem we are interested in is now the following

pmin = inf
((N,τ),A)

τ(p(A))(2.1)

s.t. gi(A) � 0 for i = 1, . . . , r

where (N, τ) is a finite von Neumann algebra with trace τ and A a tuple of self-
adjoint operators in N . The Lasserre relaxation works here as well. Since the
trace of a commutator pq− qp is always 0 under all evaluations in self-adjoint op-
erators, it is natural to extend the free quadratic module QM(g) by commutators
of polynomials, i.e. we define the tracial quadratic module as

TQM(g) := QM(g) + [R〈X〉,R〈X〉]
and its truncated counterpart

TQM(g)k := QM(g)k + [R〈X〉,R〈X〉].
As in the free case the relaxation

pk = supλ s.t. p− λ ∈ TQM(g)k.(2.2)

gives a lower bound on pmin for any k ≥ deg p and is in fact also computable with
an SDP. By the following Positivstellensatz of Klep and Schweighofer [3, Theorem
3.12] we get asymptotic convergence of the hierarchy for the hypercube.

Theorem 2.1 (Klep, Schweighofer). Let p ∈ R〈X〉 be symmetric and gi = 1−X2
i

for i = 1, . . . , r. If τ(p(A)) ≥ 0 for all tuples A of self-adjoint contractions in
finite von Neumann algebras (N, τ) then for all ε > 0 we have f + ε ∈ TQM(g).

Additionally, the proof of Pironio et al. in the free case can be transferred to a
constructive proof at least if TQM(g) contains 1−∑X2

i .

Theorem 2.2. Let p, gi ∈ R〈X〉 be symmetric and such that TQM(g) contains
1 −∑X2

i . Then pk → pmin as k → ∞. Furthermore, there exists a finite von
Neumann algebra (N, τ) and a tuple A ∈ Nn of self-adjoint operators such that
gi(A) � 0 and pmin = τ(p(A)).

The statement can likely be extended to the case where TQM(g) contains
N −∑X2

i (for some N ∈ N) instead of 1 −∑X2
i using an argument involv-

ing ultrapowers. Again, the underlying Hilbert space which is associated to the
von Neumann algebra of the optimizing solution can be infinite dimensional. In
summary, we get the same asymptotic behavior as in the free case, which indi-
cates that optimizing the trace over finite von Neumann algebras is the appro-
priate setup instead of optimizing the trace only on matrices of finite size. Only
if Connes’ embedding conjecture is true, both optimization problems (finite and
infinite dimensional) would always lead asymptotically to the same result.

Nevertheless, for applications one is in general more interested in finite di-
mensional solutions (as in the free case). For example, trace-positivity appears
naturally in the dual formulation of the completely psd cone, which is a gener-
alization of the cone of completely positive matrices and consists of symmetric
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matrices which have a Gram representation given by tuples of positive semidefi-
nite matrices. This cone plays a crucial role in the investigation of quantum graph
parameters. Unfortunately, there is almost no knowledge about when one can find
a finite dimensional optimal solution apart from an analog flatness criterion as in
the classical case. Therefore further investigation is needed.
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Invariant SOS

Frank Vallentin

Testing that a given polynomial is a sum of squares (SOS) is a fundamental com-
putational problem in real algebraic geometry. Using the Gram matrix method
this can be reduced to the feasibility problem of semidefinite optimization. Gater-
mann and Parrilo [1] developed a general theory to simplify the matrices occurring
in the Gram matrix method when the polynomial at hand is invariant under the
action of a finite matrix group.

In this talk—where I do not claim any originality (I simply think that it is
beautiful mathematics on the boundary of pure and applicable mathematics which
deserves to be more widely known)—I will consider this problem for a polynomial
invariant under a finite group generated by reflections. In this case the computa-
tion can be done rather concretely on the basis of the Chevalley-Shephard-Todd
theory of finite reflection groups (see for example the book by Humphreys [2]).

Here is the theorem: Let G ⊆ GLn(R) be a finite reflection group. It is acting
on the polynomial ring C[x1, . . . , xn] = C[x] by

(gp)(x) = p(g−1x).

The invariant ring is

C[x]G = {p ∈ C[x] : gp = p for all g ∈ G}.
It is generated by basic generators σ1, . . . , σn:

C[x]G = C[σ1, . . . , σn],

and it is even a free algebra. The coinvariant algebra is

C[x]G = C[x]/(σ1, . . . , σn)

which is a graded algebra of dimension |G|. In particular,

C[x] = C[x]G ⊗ C[x]G
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holds. The action of G on the invariant algebra C[x]G is equivalent to the regular

representation of G. Let Ĝ be the set of irreducible unitary representations of G
up to equivalence. Then there are homogeneous polynomials

ϕπ
ij , with π ∈ Ĝ, 1 ≤ i, j ≤ dπ,

where dπ is the degree of π, which form a basis of the coinvariant algebra such
that

gϕπ
ij = (π(g)j)

T



ϕπ
i1
...

ϕπ
idπ


 , i = 1, . . . , dπ

where π(g)j is the j-th column of the unitary matrix π(g) ∈ U(dπ). Now the cone
of G-invariant SOS polynomials equals

p ∈ R[x] : p =

∑

π∈Ĝ

〈P π, Qπ〉, P π is Hermitian SOS matrix polynomial in σi



 .

Here 〈A,B〉 = Tr(B∗A) denotes the trace inner product, the matrix P π is a Her-
mitian SOS matrix polynomial in the variables σ1, . . . , σn, i.e. there is is a matrix
Lπ with entries in C[x]G such that P π = (Lπ)∗Lπ holds and Qπ ∈ (C[x]G)dπ×dπ

is defined componentwise by

[Qπ]kl =

dπ∑

i=1

ϕπ
kiϕ

π
li.

The computational value of this theorem is that one only has to determine basic in-
variants σ1, . . . , σn and a basis ϕπ

ij of the coinvariant algebra. These computations
are independent of the degree of the polynomial p.
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Theta ranks and matroid minors

Raman Sanyal

(joint work with Francesco Grande)

Let V ⊂ Rd be a finite configuration of points. Every linear function (polynomial
of degree ≤ 1) which is non-negative on V has a representation as a sum-of-squares
on V . That is, there are polynomials h1, . . . , hm ∈ R[x] such that

ℓ(p) = h21(p) + h22(p) + · · ·+ h2m(p)

for all p ∈ V . The Theta rank TH(V ) of V is the smallest k such that such a
representation exists for all non-negative ℓ(x) and deg hi ≤ k for i = 1, . . . ,m. It

is easily seen that TH(V ) ≤ |V |− 1 as
√
ℓ(x) can be interpolated by a polynomial
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of degree at most |V | − 1 on V . This is a rough upper bound as can be verified
at the 0/1-cube V = {0, 1}d which has Theta rank TH(V ) = 1. Since we are
dealing with linear polynomials, basic convexity assures us that it suffices to only
consider facet-defining linear functions, that is, those non-negative ℓ(x) such that
V ∩ {ℓ(x) = 0} spans a hyperplane. Here, we also make the general assumption
that V is not contained in a hyperplane. The levelness of V is defined as

lev(V ) := max{|ℓ(V )| : ℓ facet-defining}

Geometrically, this is the minimal number l such that for every facet-defining
hyperplane H , l parallel copies of H suffice to cover all of V . The Theta rank was
introduced by Gouveia, Parillo, and Thomas [2] and it was shown that

TH(V ) ≤ lev(V )− 1

and TH(V ) = 1 in fact characterizes 2-level configurations. It is in general a
(computationally) difficult problem to determine the theta rank of point configu-
rations and we do not have an understanding of point configurations with given
or bounded Theta rank.

In this talk I will consider special point configurations that arise from combi-
natorial objects whose structure allows for insights into geometric/combinatorial
properties of the Theta rank. More precisely, we consider matroid basis configura-
tions. A matroid M = (E,B) is a pair consisting of a finite ground set E and a col-
lection of basis B ⊆ 2E subject to the basis exchange condition: For any B1, B2 ∈ B
and x ∈ B1 \B2 there is a y ∈ B2 \B1 such that (B1 \ x) ∪ y ∈ B. Matroids make
prominent appearances in algebraic geometry [1], combinatorial optimization [5],
and geometric combinatorics [4], to name just a few. There is a multitude of char-
acterizations of matroids and we refer the reader to Oxley’s book [4] for more.
The associated point configuration is then VM = {1B ∈ {0, 1}E : B ∈ B} where
1B is the characteristic vector of B ⊆ E. If M(G) is the matroid associated to a
connected graph G, then B is the collection of spanning trees of G and the convex
hull of VM(G) is the spanning tree polytope.

Similar to graphs, there is a rich theory of minors of matroids, i.e., matroids
obtained by deletion M\e or contraction M/e of elements e ∈ E. Minors are
used to describe forbidden substructures for ‘minor-closed’ properties. Combining
geometric and combinatorial reasoning, we show the following.

Theorem. The class of matroids with Theta rank ≤ k as well as the class of
matroids with levelness ≤ k are minor-closed.

For graphic matroids, the Graph Minor Theorem states that the list of forbidden
minors is finite. For matroids finiteness does not necessarily hold. For the first
non-trivial instance, we can nevertheless give a complete and finite list of forbidden
minors.
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Theorem. The four rank-3 matroids on 6 elements M(K4),W3, P6, Q6 are the
forbidden minors for the class of Theta rank = 1 matroids.

Restricted to graphs, this recover the ubiquitous serial-parallel networks. As an
application, we give the following two equivalent characterizations of this class of
matroids:

The Theta rank 1 matroids are precisely those matroidsM for which the variety
VM is cut out by quadrics. This is a necessary but in general not a sufficient
condition for Theta rank 1; see [2].

The Theta rank 1 matroids are precisely those matroids M for which the ma-
troid base polytope conv(VM ) has minimal PSD-rank in the sense of [3]. Again,
in general, this implication is strict.
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