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Abstract. In recent years, there have been several fruitful interchanges of
methods between the fields of sparse and low-rank recovery on the one hand
and quantum information theory on the other hand. One way to under-
stand this seemingly surprising coincidence is that the analysis of vector-
and matrix-valued randomized constructions plays an important role in both
fields. An example is the realization that certain matrix-valued large devi-
ation bounds can be employed to substantially simplify and generalize the
analysis of low-rank matrix recovery schemes.

In this workshop, the participants worked to identify and collaborate on
further mathematical problems that are being researched in parallel by the
two communities. Topics that have been discussed include

• Tools for the analysis of vector- and matrix-valued randomized con-
structions and their application to phase retrieval problems

• Conversely, tools for de-randomizing such protocols, based, e.g., on
spherical designs.

• Uncertainty relations, e.g., for the task of lower-bounding the number
of measurements required for signal identification.

• Time-frequency methods (known as phase-space methods in physics).
• Matrix- and tensor norms: computational tools, complexity, relaxations

and their application to tensor recovery.
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Introduction by the Organisers

The mini-workshop Mathematical Physics meets Sparse Recovery, organised by
David Gross (Freiburg), Felix Krahmer (Göttingen), Rachel Ward (Austin), and
Andreas Winter (Bellaterra) successfully initiated intensive communication be-
tween researchers in two different areas. Among the participants there were, on
the one hand, nine researchers focusing on mathematical signal processing, in par-
ticular on sparse recovery and related questions, and, on the other hand, seven
mathematical physicists who have contributed to quantum information theory.
The connection between these fields first started to arise with the works of David
Gross, one of the workshop organizers, who demonstrated that certain problems
in quantum information theory are closely related to problems in low-rank matrix
recovery [1]. So tools developed in mathematical physics can help solve mathe-
matical signal processing problems. Following up on his results, a collaboration
between David Gross, his PhD student Richard Küng, also a workshop participant,
and Felix Krahmer, another organizer, started [4], strengthening the connection
between the fields. This collaboration laid the foundation for the mini-workshop.

From their collaboration experience, they realized that one of the biggest obsta-
cles to an intensified collaboration between the fields was the often quite different
mathematical language and notation used in the two fields, it was decided that a
substantial part of the workshop should be devoted to communicating to the re-
spective other group the way of thinking and the terminology employed. Another
substantial part was to be devoted to communicating the general research goals to
find collaboration projects, and the third intended pillar was organized discussions
in small groups.

The workshop started by two introductory talks of about 90 minutes each by
participants representing the sparse recovery community. Dustin Mixon gave a
general overview of mathematical signal processing problems on a very broad level
and Holger Rauhut continued by providing a more technical introduction to the
methods currently used. The goal of these two talks was to communicate the
type of problems arising in the signal processing community to those participants
from quantum information theory who were experts on relevant methods while
not having applied them to mathematical signal processing before. Reciprocat-
ing, Andreas Winter gave a similar 90 minute talk introducing the problems and
mathematical methods at the center of quantum information theory.

After these introductions, the workshop proceeded as follows: days were kicked
off by a one hour talk requested the previous day. After that, the participants
were divided into collections of small, mixed groups that started working on specific
questions. Topics that received significant attention by those groups are as follows:

Tight large-deviation bounds for sums of random matrices. This theory was
essential to set up the connection between the two communities. Originally devel-
oped by A. Winter to treat quantum information problems, large-deviation bounds
for sums of random matrices were introduced into the theory of sparse and low-
rank recovery by D. Gross and later greatly refined at the hands of J. Tropp.
Joel Tropp presented the state of the art and the most pressing problems as he
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sees the theory. A concrete problem – removing a sometimes spurious logarith-
mic dimension factor in front of the generally exponentially small large deviation
probability – created particular interest. While the problem was not solved during
the workshop, collaborations have been initiated as a result.

A conjectured “matrix arithmetic-geometric mean inequality.” Recently, a non-
commutative extension of the well-known arithmetic-geometric mean inequality
for vectors was proposed by B. Recht and C. Ré [2], and this conjecture was
communicated to the workshop participants by Felix Krahmer and Rachel Ward.
Such an inequality is of interest in machine learning and signal processing as it
would give theoretical justification to the observed effect that without-replacement

sampling schemes outperform with-replacement sampling schemes in randomized
sequential optimization algorithms. Although this inequality has been verified in
certain special cases, neither a general proof nor a counter-example has been found.
While the conjecture was not resolved during the workshop, Marius Junge made
initial discoveries towards finding a counter-example to the conjecture using free
probability and recent techniques he had devised for related matrix problems.

The nascent theory of tensor recovery. After having treated sparse vectors
and low-rank matrices, the signal analysis community has recently turned their
attention to the theory of learning low-rank tensors from underdetermined mea-
surements. Tensor problems likewise appear in quantum mechanics, where many-
body wave functions are just elements in large tensor spaces. After extremely
well-received talks by Y.-K. Liu about applications in natural language processing
and by Z. Stojanac on recent ideas for tensor norm relaxations based on theta bod-
ies, several discussions ensued. A mixed group tried to devise measurements that
are incoherent w.r.t. all low-rank tensors – generalizing previous such constructions
that the quantum community routinely uses for matrices. The prospect of proving
results for completely symmetric tensors was discussed. V. Cevher introduced the
physicists to dual smoothing techniques that might speed up numerical methods
for computing tensor norms. There was an extensive discussion as to whether
tests for quantum separability based on symmetric extensions could give rise to
well-performing convex proxies for tensor rank.

Phase space and time-frequency methods. Inspired by an earlier talk by G.
Pfander on time-frquency analysis and sparse recovery, D. Gross presented un-
published work on phase space support-rank uncertainty relations and their role
in proving lower bounds to low-rank matrix recovery problems. A collaboration
between Gross and Pfander was initiated with the goal to generalize these results
from discrete to continuous Gabor systems.

Stability of PhaseLift. The ill-defined inverse problem of retrieving an unknown
complex vector from “amplitude” measurements – i.e. linear measurements that
are ignorant towards complex phases – has received considerable attention in the
field of mathematical signal processing over the last few years. Moreover, problems
of this type are also of considerable interest for doing quantum state tomography
– an important subfield of quantum information theory [5]. During the course of
the workshop, H. Rauhut and R. Küng started to tackle the important problem
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of proving stability guarantees for PhaseLift in the presence of noise for certain
measurement setups – most notably random coded diffraction patterns [6]. Al-
though the problem could not be fully solved during the workshop, partial results
have been obtained and yet another ongoing collaboration (between H. Rauhut, R.
Küng and D. Gross) arose. In this context, also a connection in the other direction
arose, namely F. Krahmer and Y.-K. Liu started a collaboration with the goal to
apply mathematical tools developed and applied in the context of phase retrieval
problems to problems in quantum information.

Statistical trade-offs in low-rank recovery. It had been observed numerically [5]
that the performance of low-rank based estimators for quantum state tomography
displays the following behavior: Assume the total number of experimental samples
taken is constant. There is the freedom to use these samples to either estimate a
few linear functions of the unknown low-rank matrix to a high precision, or many
distinct functions more coarsely. Maybe surprisingly, it turns out that the perfor-
mance of the estimator is largely independent of that choice. This is of relevance
to physical experiments – but the physicists failed to find a theoretical explanation
for this behavior. M. Gutta suggested an approach based on asymptotic properties
of the maximum likelihood estimator, while R. Saab proposed to use results about
the behavior of right-inverses of near-isometric embeddings to attack the prob-
lem. Both ideas seem promising, and a collaboration between the aforementioned
researchers, D. Gross and A. Winter to further pursue these questions has been
initiated.

To conclude, this mini-workshop was by all accounts a great success. Through
this meeting, certain mathematical language and notation barriers were overcome,
and each community became aware of new problems and common interests among
the other community, as well as new applications to problems and techniques
already known. At the same time, several new collaborations formed between
researchers in mathematical signal processing and quantum information theory,
and concrete results to open problems have already been established. We expect
a number of papers to come out of this meeting in the coming years.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Compressed sensing: Variations on a theme

Dustin G. Mixon

Compressed sensing has been an exciting subject of research over the last decade,
and the purpose of this talk was to provide a brief overview of the subject. First,
we considered certain related topics (namely image compression and denoising)
which led up to the rise of compressed sensing. In particular, wavelets provide a
useful model for images, as natural images tend to be approximated by linear com-
binations of particularly few wavelets. This sparsity model has enabled JPEG2000
to provide particularly efficient image compression with negligible distortion. Ad-
ditionally, this model has been leveraged to remove random noise from natural
images [20].

Considering natural images enjoy such a useful model, one may ask whether
the model can be leveraged to decrease the number of measurements necessary to
completely determine an image. For example, an MRI scan might require up to 2
hours of exposure time, and then the image might be compressed with JPEG2000
after the fact, meaning most of the measurements can be effectively ignored. So is
it possible to simply measure the important parts of the image and not waste time
in the image acquisition process? This is the main idea underlying compressed

sensing, as introduced by Candès, Romberg and Tao [16] and Donoho [19].
In compressed sensing, one is faced with finding the sparsest vector (i.e., the one

with the fewest nonzero entries) which solves an underdetermined linear system.
Solving this problem is generally NP-hard [26], but one may convexify the problem
by instead finding the vector with the smallest ℓ1 norm. Perhaps surprisingly, this
solves the original problem for “most” underdetermined linear systems, as the only
requirement is for the set of solutions to the linear system to be slanted properly
relative to the ℓ1 ball. Indeed, ℓ1 minimization has been used for applications such
as deconvolution [25, 29], regression [30], and sparse approximation [17]. However,
compressed sensing is different from these prior applications of ℓ1 minimization
because one may choose the “sensing” matrix in the underdetermined linear system
so as to guarantee ℓ1 recovery of the sparsest vector.

There are many different types of guarantees for compressed sensing. For the
scenario in which the sensing matrix is drawn randomly every time a sparse vector
is to be measured, one may ask for ℓ1 recovery with high probability, and this non-
uniform guarantee is characterized by a phase transition which has been completely
resolved in [3]. We may also ask for a uniform guarantee: that the sensing matrix is
fixed and must allow for ℓ1 recovery of all sufficiently sparse vectors simultaneously;
this is characterized by the so-called null space property, as introduced in [18].
Finally, one may ask for a uniform guarantee with stability, meaning the presumed
sparse vector may actually have small entries in place of zero entries, and also
one may add a small amount of unknown noise to the measurements, and yet
ℓ1 minimization will produce a correspondingly close approximation of the true
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“nearly sparse” vector. One popular condition on the sensing matrix which implies
such a guarantee is the restricted isometry property, and a version of this guarantee
is proved in [9]. There are several known families of random matrices which satisfy
the restricted isometry property with high probability [6, 24, 27, 28].

To date, there are a few open problems in compressed sensing. First, while there
are several random constructions of matrices satisfying the restricted isometry
property, explicit constructions are notoriously terrible by comparison [5, 8]. This
problem of “finding hay in a haystack” is common in combinatorics; for example,
there is currently no explicit n-vertex graph which contains neither a clique nor
an independent set of size 2 log2 n, they such graphs are known to exist by the
probabilistic method. Second, there are many applications in which the sensing
matrix is plagued with coherent column vectors, thereby preventing sparse recovery
of vectors which are supported on the corresponding entries. However, there might
be other types of recovery guarantees which may be proved in this case; there has
been success along these lines, for example, in the case where the columns form an
oversampled discrete Fourier transform matrix [12]. Finally, compressed sensing
primarily focuses on signals which are sparse in an orthonormal basis (such as
wavelets), but for some applications, signals are instead sparse in an overcomplete
dictionary, and the theory for this case is almost nonexistent at the moment [10].

To motivate the next part of my talk, I introduced the Netflix problem. In
2006, Netflix offered a US $1 million prize to improve its movie rating prediction
algorithm. Here, the idea is that movie ratings can be organized in a matrix with
rows indexed by movies and columns indexed by users. However, since most users
have yet to view most movies, Netflix does not have access to most of the entries of
this matrix. Fortunately, if we had all of the entries of this matrix, we can assume
that principal component analysis would describe the columns of this matrix as
essentially lying in a low-dimensional subspace. As such, one might attempt to fill
in the blanks by assuming the desired matrix has low rank. This is the motivation
behind low-rank matrix completion.

For this problem, one is inclined to find the matrix of minimal rank given the
linear measurements available. This is strikingly similar to the problem of com-
pressed sensing, except now we seek to minimize the number of nonzero singular
values. As such, the natural relaxation to consider is minimizing the nuclear norm,
i.e., the sum of the singular values. Indeed, when completing a low-rank matrix
from randomly reported entries, this relaxed optimization is effective provided the
low-rank matrix we intend to recover is not localized at any particular entry [21].

When the linear measurements of the matrix are not entries, but linear com-
binations of the entries, the problem goes by a different name: low-rank matrix

recovery. One important application of this problem is phase retrieval. For this
inverse problem, one seeks to recover an input vector from the entrywise absolute
value of the output of a known linear operator. By squaring these absolute val-
ues, each can be identified as a linear combination of entries of the input vector’s
outer product [7]. As such, one can hope to recover this rank-1 outer product
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by low-rank matrix recovery [11]. To date, there are various guarantees for phase
retrieval via low-rank matrix recovery [13, 14, 15, 22].

Along the lines of low-rank matrix recovery, there are a few open problems which
remain. First, a prominent application of phase retrieval via low-rank matrix re-
covery is X-ray crystallography, in which the measurements are masked Fourier
transforms. Each mask corresponds to an exposure of a small object that one
would like to image, but the object is so small that each exposure contributes to
its destruction; as such, one would like to image the object with as few exposures
as possible. Taking n to denote the dimensionality of the image, it is shown in [14]
that log4 n exposures suffice to image the object. Recently, [22] showed that log2 n
exposures suffice. Both of these results provide a non-uniform guarantee, and they
do not prove stability. On the other hand, [4] provides a uniform guarantee for
recovery from logn exposures, but using a different recovery method (i.e., not
convex optimization). For both recovery methods, [15] and [1] prove stability for
more general measurement ensembles. However, it remains to guarantee stability
for masked Fourier transforms. It would also be interesting to find guarantees for
other important measurement ensembles, such as the short-time Fourier transform.
Finally, low-rank matrix recovery is invariably solved using semidefinite program-
ming, which is rather slow in general, and so it is desirable to find speedups for
particular instances (such as the instances corresponding to phase retrieval).

The last part of my talk discussed future directions related to compressed sens-
ing. First, given a convolution of a sparse function with a function of rapid decay,
one can expect to determine the two functions, especially if the nonzero entries of
the sparse function are sufficiently separated. This problem is called blind decon-

volution. In general, if you are given a convolution of two functions, each belonging
to a known signal class, then you might be able to recover both functions. Taking
inspiration from phase retrieval, notice that each entry of the convolution can be
expressed as a linear combination of the entries of the outer product of the two
functions. As such, one can hope to recover this rank-1 outer product from the
convolution using low-rank matrix completion [2]. A related problem is calibra-

tion, in which you wish to find the sparsest solution to an underdetermined linear
system, but you only know the matrix up to a parameterized family; if the param-
eterization is linear, then each entry of the output vector is a linear combination
of entries from the outer product of the parameter vector and the sparse vector.
Recently, there has been a lot of success applying this sort of bilinear compressed

sensing to deblur images from multiple blurred exposures [23]. This would be an
interesting direction for the community to pursue.
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Compressive Sensing and Low Rank Matrix Recovery

Holger Rauhut

Compressive sensing and low rank matrix recovery (matrix completion) aim at
recovering objects (usually signals) of small complexity within a high-dimensional
ambient space from a small number of linear measurements [12, 8, 9, 5]. In stan-
dard compressive sensing, small complexity is modeled via sparsity, i.e., it is as-
sumed that the vectors under consideration have a sparse representation in terms
of a suitable basis, or at least are well-approximated by such an expansion. An ex-
tension of compressive sensing assumes that a matrix to be recovered is of low rank
[10, 3, 13]. These fields have gained substantial attention in recent years with a lot
of activity in applied mathematics, physics, electrical engineering and computer
science. On the one hand, this theory leads to fundamentally new approaches for
certain signal processing applications and on the other hand, the involved math-
ematics is highly nontrivial and triggered many activities in areas such as convex
optimization, harmonic analysis and random matrix theory.

In mathematical terms, given measurements

y = Ax

of a vector x ∈ RN (or a matrix) we would like to reconstruct x in the underde-
termined case that A ∈ Rm×N with m ≪ N . Obviously without further informa-
tion, reconstruction is impossible, but the small complexity assumption (sparsity
or low rank) may help out. While the naive approaches of ℓ0-minimization and
rank minimization are NP-hard in general [12], tractable alternatives including
ℓ1-minimization and nuclear norm minimization have been introduced. Usually,
random measurement matrices A are considered in this context. In fact, a typical
result in compressive sensing [6, 12, 18] states that

m ≥ Cs ln(N/s)

Gaussian random measurements are sufficient for stable recovery of s-sparse vec-
tors via ℓ1-minimization with high probability. Similarly,

m ≥ Cr(n1 + n2)

Gaussian random measurements are sufficient for recovery of n1 × n2 matrices of
rank r via nuclear norm minimization with high probability [2, 10].

In practice, structure is often required in the measurement process, which leads
to the study of structured random matrices in this context [23, 17], [12, Chapter
12]. Similarly guarantees as just outlined hold, for instance, for random partial
Fourier matrices and extensions [5, 6, 30, 21, 23, 27, 28], partial random circu-
lant matrices (modeling subsampled random convolutions) [22, 29, 24, 16], time-
frequency structured random matrices [19, 20, 16] and scattering matrices arising
in radar [15].
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Recently, an interesting application of low rank matrix recovery in phase re-
trieval problem has triggered a high research activity [1, 4, 14]. In fact, the phase
retrieval problem can be recast as recovering a rank one matrix.

Extensions to recovery of low rank tensor are currently also under investiga-
tions, but it is much harder than in the matrix case to derive theoretical recovery
guarantees. Preliminary results can be found in [26, 25] and in the references
therein.

The reader is referred to the overview papers [7, 11, 23] and books [9, 12] for
further information on compressive sensing and low rank recovery.
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A Spectral Algorithm for Latent Dirichlet Allocation

Yi-Kai Liu

(joint work with Animashree Anandkumar, Dean P. Foster, Daniel Hsu, Sham
M. Kakade)

Document topic modeling is a popular task in machine learning and natural lan-
guage processing, where one is given a large collection of documents, and one wants
to learn a small number of topics that describe them. This task can be formally
defined in different ways. One approach is to assume that each document was
generated by first choosing a random topic h from some distribution, and then
choosing random words x1, x2, x3, . . . independently from some distribution that
depends on h (so that x1, x2, x3, . . . are conditionally independent given h). Latent
Dirichlet allocation (LDA) is one model that has this structure.

In [1], we presented a spectral algorithm for learning the LDA model. The
algorithm works by estimating the second- and third-order moments of the word
distribution. The second-order moment is used to compute a whitening transfor-
mation, which exposes the low-rank structure in the third-order moment tensor.
The third-order moment tensor is then randomly projected down to a matrix,
which reveals the parameters of the LDA model. This algorithm compares favor-
ably with existing methods based on expectation-maximization (EM).

Subsequent work [2] shows that this algorithm can be generalized to learn a
large class of “multi-view” latent variable models. These algorithms can be sim-
ply described in terms of symmetric orthogonal tensor decompositions, which can
be computed using the tensor power method. One open question is whether these
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methods can be made more robust to the effects of noisy data, statistical uncer-
tainty, and incorrect modeling assumptions.
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Theta bodies

Željka Stojanac

(joint work with Holger Rauhut)

We are interested in low-rank tensor recovery via small number of measurements.
We consider a generalization of the matrix singular value decomposition to tensors
called canonical decomposition (CP-decomposition) and the corresponding notion
of rank and norm (tensor nuclear norm). However, the CP-decomposition and
therefore its norm are in general NP-hard to compute. To overcome this difficulty
we suggest closed convex relaxations of the tensor nuclear norm called theta bodies
(introduced first by Lovász [5]) which can be computed via semidefinite program-
ming. In the following, we will introduce theta bodies and show on an example of
relaxation of the nuclear norm of 2 × 2 matrices how to build the corresponding
semidefinite program.

A central problem in optimization is to find the maximum value of a linear
function over a set S ∈ Rn, i.e., solving

max
x

〈c,x〉 s.t. x ∈ S

which is equivalent to

max
x

〈c,x〉 s.t. x ∈ cl (conv (S)) ,

where cl (conv (S)) denotes the closure of the convex hull of the set S. For example,
in linear programming the set S is a polyhedron S = {x ∈ Rn : Ax ≤ b}.

We are interested in the case where S is a real algebraic set, i.e., a set of all real
solutions to a finite set of polynomials. To be more precise, if a polynomial ideal I
is generated by a finite set of polynomials, I = 〈f1, f2, . . . , fm〉, the set S is the real
algebraic variety of the ideal I, i.e., S = νR (I) = {x ∈ Rn : f(x) = 0, ∀ f ∈ I} =
{x ∈ Rn : fi(x) = 0, ∀ i = 1, . . . ,m} .

The closure of the convex hull of an arbitrary set S ⊂ R
n and therefore also

the closure of the convex hull of S = νR (I) can be obtained as

cl (conv (νR (I))) = ∩
{
x ∈ R

n : ℓ(x) ≥ 0 for all ℓ affine s.t. ℓ|νR(I) ≥ 0
}
.

However, already checking for a single polynomial ℓ ∈ R[x] whether it is nonnega-
tive on a set νR (I) can be a difficult task. A natural idea is to relax the condition
ℓ|νR(I) ≥ 0 into something easier to check. One possibility to obtain the hierarchy
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of the convex relaxations is restricting only to affine polynomials which are k-sos
mod I, i.e. to polynomials that can be written as

ℓ(x) = σ(x) + g(x), where σ ∈ Σ2k, g ∈ I,
with Σ2k denoting the sum of squares (sos) polynomials of degree at most 2k in
R[x]. To be more precise,

σ ∈ Σ2k if ∃h1, h2, . . . , ht with deg(h1), . . . deg(ht) ≤ k s.t. σ(x) =
t∑

i=1

h2
i (x).

These relaxations are called theta bodies [1, 4]. In particular, for a fixed k ∈ N

the k-th theta body of I is defined as

THk (I) = {x ∈ R
n : ℓ(x) ≥ 0, for all ℓ affine and k-sos mod I} .

Thus, the theta bodies of I form a hierarchy of closed convex relaxations [4]

TH1(x) ⊇ TH2(x) ⊇ · · · ⊇ THk(x) ⊇ THk+1(x) · · · ⊇ cl (conv (νR (I))) .
Since we are not restricting to a particular basis of the ideal, we have to be able to
do the computations at the level of the ideal I and therefore it is essential to find
the Groebner basis of the ideal I with respect to some monomial ordering. The
good monomial orderings will be the one that respect the degree [1], for example
graded lexicographic [3] or graded reverse lexicographic ordering [3] which is used
in the latter.

In the following, we will illustrate how to build a semidefinite relaxation of
the unit nuclear norm ball for 2 × 2 matrices. We will work with polynomials in
R[x] = R[x11, x12, x21, x22], where a matrix X ∈ R2×2 is of the form

X =

(
x11 x12

x21 x22

)
.

First, we define an ideal J such that its algebraic variety νR(J ) is the set of
all rank one unit norm matrices so that cl (conv (νR(J ))) is the unit nuclear norm
ball. Notice that the ideal

J =
〈
x12x21 − x11x22, x

2
11 + x2

12 + x2
21 + x2

22 − 1
〉

satisfies the desired property.
Secondly, we define a Groebner basis of the ideal I with respect to an appro-

priate ordering. In our example, the generators of the ideal form a Groebner basis
of the ideal J with respect to the graded reverse lexicographic ordering.

Next we find the appropriate basis B = {f0 + I, f1 + I, . . .} of R[x]/I. For
simplicity, we look only at standard monomial bases of R[x]/I. In addition, we
assume that each element in the basis B = {fi + I} of R[x]/I is represented by
the polynomial whose degree equals the degree of its equivalence class, and that
B is ordered so that deg(fi + I) ≤ deg(fi+1 + I). The ordered subset of the basis
B of degree at most k is denoted by Bk. The basis of R[x]/I we need to find is
the so called Θ-basis which satisfies the following two properties

(1) B1 = {1 + I, x1 + I, . . . , xn + I}
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(2) if deg(fi + I), deg(fj + I) ≤ k then fifj + I is in the R-span of B2k.

For simplicity, in our example we are interested only in the first theta body TH1(J )
and therefore we need to find only the subsets B1 and B2 of the basis B

B1 = {1 + J , x11 + J , x12 + J , x21 + J , x22 + J }

B̂2 =
{
x11x12 + J , x11x22 + J , x

2

12 + J , x12x22 + J , x
2

21 + J , x21x22 + J , x
2

22 + J
}
,

where B2 = B1 ∪ B̂2.
The next step consists in computing the so-called combinatorial moment matrix

MBk
(y). We first need to define a vector [x]Bk

which contains all the elements
from the set Bk in order. Then one forms a matrix XBk

= [x]Bk
[x]TBk

whose (i, j)-
th entry is of the form [XBk

]i,j = fifj + I. Since deg(fi + I), deg(fj + I) ≤ k, by
the second property of the theta basis fifj + I is in the R-span of B2k. Thus, for
all i, j there exist unique coefficients λl

i,j ∈ R such that

[XBk
]i,j = fifj + I =

∑

fl+I∈B2k

λl
i,j (fl + I) .

To obtain the combinatorial moment matrix one linearizes the elements of B2k

[MB2k
(y)]i,j =

∑

fl+I∈B2k

λl
i,jyl.

In our example, the combinatorial moment matrix is of the form

MB2
(y) =




y0 y1 y2 y3 y4
y1 −y5 − y6 − y7 + 1 y8 y9 y10
y2 y8 y5 y10 y11
y3 y9 y10 y6 y12
y4 y10 y11 y12 y7




,

with the following table where in the first row the monomial f represents the f+J
element of the basis B

1 x11 x12 x21 x22 x2

12 x2

21 x2

22 x11x12 x11x21 x11x22 x12x22 x21x22

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12
.

Finally, we are ready to define the relaxations. The THk(I) is the closure of

QBk
(I) = πRn

{
y ∈ R

B2k : MBk
(y) � 0, y0 = 1

}
,

where πRn is a projection on the variables y1, y2, . . . , yn, see [4, 1].
In our example, the first theta body is of the form

TH1(J ) = cl (QB1
(J )) = πR4

{
y ∈ R

B2 : MB2
(y) � 0, y0 = 1

}
.

So far, we are able to prove that TH1 coincides with the nuclear norm unit ball
for 2 × 2 matrices. The generalization of this fact to arbitrary sized matrices is
still open, see [6].

For 3rd order tensors we use a similar idea, i.e., we define the ideal I such that its
algebraic variety νR (I) contains all rank one unit norm tensors. In this scenario,
minimization of the norm induced by TH1 (I) under an affine constraint seems
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to work well experimentally for low-rank tensor recovery. However, theoretical
guarantees still remain an open question, see [6].
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SIC-POVMs vs WSSUS: Quantum Information Theory meets

Channel Estimation

Götz E. Pfander, Pavel Zheltov

Gabor frames play a central part in time-frequency analysis. Aside from being
used in science and engineering to analyze and synthesize signals with respect to
components localized in time and frequency, finite dimensional Gabor frames, that
is, Gabor frames on finite Abelian groups, have been employed in mathematical
physics to construct mutually unbiased basis and symmetrically information com-
plete positive operator valued measures, referred to as SIC-POVMs. Below, we
describe some recent findings on the geometry of Gabor frames and describe an
engineering motivated application of SIC-POVMs in the realm of the estimation
problem for so-called “wide sense stationary with uncorrelated scatterers”, that
is, WSSUS, channels.

For G being a finite Abelian group1, and CG = {x : G −→ C}, that is, CG is a
|G|-dimensional vector space with vector entries indexed by elements in the group
G, we define unitary translation operators Tk : CG −→ C

G, k ∈ G, by

Tkx (n) = x(n− k), n ∈ G.

A modulation operator on CG is pointwise multiplication with a character ξ ∈ Ĝ
on G, that is, with a group homomorphism ξ mapping G into the multiplicative
group S1 = {z ∈ C : |z| = 1},

Mξx (n) = ξ(n)x(n), n ∈ G.

Combining translation and modulation, we obtain the time-frequency shift op-

erator π(λ), λ = (k, ξ) ∈ G× Ĝ, that is,

π(λ) : CG −→ C
G, x 7→ π(λ)x = π(k, ξ)x = MξTkx = ξ(·)x(· − k) .

1Recall that any finite Abelian group is a product of cyclic groups.
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A Gabor system is then given by

(ϕ,Λ) = {π(λ)ϕ}λ∈Λ ,

where Λ is a subgroup (or just a subset) of G × Ĝ. If (ϕ,Λ) spans CG, it forms

a so-called Gabor frame. Gabor frames (ϕ,Λ) on subgroups Λ ⊆ G × Ĝ share a

number of remarkable properties based on the fact that π : G× Ĝ −→ L(CG,CG),
λ 7→ π(λ), is a so-called projective representation [4].2 For example, using the
adjoint subgroup

Λ◦ = {µ ∈ G× Ĝ : π(λ)π(µ) = π(µ)π(λ) for all λ ∈ Λ}

of a group Λ ⊆ G × Ĝ we can formulate the following classical result from Gabor
analysis attributed to Wexler–Raz and Ron–Shen [5, 4, 13].

Theorem 1. Let Λ be a subgroup of G× Ĝ. Then (ϕ,Λ) is a frame for CG if and

only if (ϕ,Λ◦) is a linear independent set; and (ϕ,Λ) is a tight frame for C
G if

and only if (ϕ,Λ◦) is an orthogonal set.

As a consequence, having Λ = G × Ĝ, hence, Λ◦ = {0} ⊆ G × Ĝ and ϕ 6= 0
implies that (ϕ,Λ) is a ‖ϕ‖|G|-tight frame.

In the recent development of a sampling theory for operators, the question of

constructing Gabor systems (ϕ,G×Ĝ) in general linear position has been relevant
[9, 11]. Indeed, with the linear map (and a corresponding matrix) Vϕ given by

Vϕ : CG −→ C
G×Ĝ, Vϕx(λ) = 〈x, π(λ)ϕ〉,

the following uncertainty principles were established [7, 8]. In the following, ‖u‖0
denotes the number of nonzero entries in a vector u.

Theorem 2. If G is a cyclic group, then for almost every ϕ ∈ CG, the rows of

Vϕ are in general linear position, and, consequently, ‖Vϕx‖0 ≥ |G|2 − |G| + 1 for

every x ∈ CG. If the order of G is prime, then for almost all ϕ ∈ CG we have that

all minors of Vϕ are nonzero and ‖Vϕx‖0 + ‖x‖0 ≥ |G|2 + 1 for all x ∈ CG.

The result does not extend to non-cyclic groups. An open question in this realm
is the following. For G cyclic does there exist ϕ ∈ CG with set equality3

{
(‖x‖0, ‖Vϕx‖0), x ∈ C

G
}
=

{
(‖x‖0, |G|2 − |G|+ ‖x̂‖0), x ∈ C

G
}
?

As alluded to above, Theorem 2 has an application in terms of communications
engineering and radar [10, 6]. Indeed, time-varying communications channels are
frequently modeled as linear combinations of time-frequency shift operators, each
representing a point scatterer. The task at hand is to design a sounding signal ϕ
so that the respective channel response Hϕ allows one to decipher H . In case that

2It is, in fact, up to isomorphisms, the only irreducible faithful projective representation of

G× Ĝ on CG.
3
x̂ denotes the Fourier transform of x.



Mini-Workshop: Mathematical Physics meets Sparse Recovery 1067

we have a priori knowledge of the time-frequency shifts Λ caused by the paths the
signals travel, then we aim to identify an operator from the class

HΛ =
{∑

λ∈Λ

cλπ(λ), cλ ∈ C

}
, Λ ⊆ G× Ĝ.

In case that Λ is not known but small, then, we aim to identify the class of
operators

Hs =
{∑

λ∈Λ

cλπ(λ), cλ ∈ C , Λ ∈ G× Ĝ with |Λ| ≤ s
}
.

It is easy to observe that Theorem 2 implies that if G is cyclic, then there exists
ϕ such that the map

Φ : HΛ −→ C
G, H 7→ Hϕ =

(∑

λ∈Λ

ηλπ(λ)
)
ϕ =

∑

λ∈Λ

ηλ π(λ)ϕ = V ∗
ϕ η,

is injective for all Λ with |Λ| ≤ |G|, that is, V ∗
ϕ |Λ is injective. Similarly, we have

that Φ acts injectively on Hs if 2s ≤ |G|. In applications, though, injectivity is
not sufficient and we require that V ∗

ϕ |Λ is well conditioned, that is, we require the
existence of Bϕ,Λ and Aϕ,Λ with

Aϕ,Λ‖η‖2 = Aϕ,Λ‖H‖HS ≤ ‖V ∗
ϕ η‖2 = ‖ΦH‖2 = ‖Hϕ‖2 ≤ Bϕ,Λ‖η‖2, H ∈ HΛ,

and Bϕ,Λ/Aϕ,Λ small. Here, ‖H‖HS denotes the Hilbert-Schmidt norm of H and
the first equality follows from the fact that {π(λ)}λ∈Λ forms an orthonormal system
with respect to the Hilbert-Schmidt inner product, see, for example, the overview
article [9]. While for generic Λ vectors ϕ are known that guarantee injectivity,
only in case that Λ is a subgroup, we can easily obtain ϕ with Bϕ,Λ = Aϕ,Λ. For
example, with δ0 ∈ CG denoting the vector which is 1 at 0 and 0 else, we have
(δ0, G× {0}) is an orthonormal basis and hence Aδ0,G×{0} = 1 = Bδ0,G×{0}.

In some applications, the channel is assumed to have stochastic components.
In this situation, the coefficients ηλ, λ ∈ Λ, are random variables and we can
ask whether a stochastic operator H supported on Λ can be determined from its
stochastic response Hϕ to a deterministic input signal ϕ.

Here, we shall address a slightly refined question. We assume that the compo-
nents of η are zero mean and attempt to recover only the covarianceRη = E[ηη∗] ∈
C(G×Ĝ)×(G×Ĝ) from only the output covariance RHϕ = E[Hϕ(Hϕ)∗] ∈ CG×G. A
dimension counting argument shows that a priori this problem is ill-posed. Hence,
we introduce a sparsity prior and consider

stoHΓ =
{ ∑

λ∈G×Ĝ

cλπ(λ), E[ηληµ] 6= 0 only for (λ, µ) ∈ Γ
}
, Γ ⊆ (G× Ĝ)× (G × Ĝ) ,

respectively

stoHs =
{ ∑

λ∈G×Ĝ

cλπ(λ), E[ηληµ] 6= 0 for at most s (λ,µ) ∈ (G× Ĝ)× (G× Ĝ)
}
.
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A trivial computation yields

RHϕ(m,n) = E[Hϕ(m)Hϕ(n)]

= E[
∑

λ∈G×Ĝ

η(λ)π(λ)ϕ(m)
∑

µ∈G×Ĝ

η(µ) π(µ)ϕ(n)]

=
∑

λ∈G×Ĝ

∑

µ∈G×Ĝ

π(λ)ϕ(m)π(µ)ϕ(n)E[η(λ)η(µ)],

and for H ∈ stoHΓ, in bra-ket notation,

RHϕ =
∑

(λ,µ)∈Γ

Rη(λ, µ) |π(µ)ϕ〉〈π(λ)ϕ|

Now, Rη with H ∈ stoHΓ can be recovered from RHϕ if and only if the rank
one operators {|π(µ)ϕ〉〈π(λ)ϕ|}(λ,µ)∈Γ are linearly independent [12, 14]. Unfortu-
nately, Theorem 2 does not generalize to this setting, namely, if |G| > 3, there

exists Γ of cardinality 3|G|+1 < |G×Ĝ| where linear independence is not achieved.
The set Γdiag = {(λ, λ), λ ∈ G × Ĝ} ⊆ C(G×Ĝ)×(G×Ĝ) is of particular im-

portance in communications engineering and radar. Many stochastic channels in
communications engineering (or targets in radar) are assumed to have the Wide
Sense Stationary with Uniform Scattering (WSSUS) property [3], that is, that the
random variables ηλ are zero mean with

E[ηληµ] = δ(λ− µ)C(λ), λ, µ ∈ G× Ĝ.

The function C(λ) ≥ 0 is called the scattering function of the target. It represents
the variances of all individual scatterers. The goal of determining C(λ) corresponds
to identifying stoHΓdiag

. Respective results in [17] are summarized as follows.

Theorem 3. For G cyclic, ϕ 6= 0, the matrix with columns {|π(λ)ϕ〉〈π(λ)ϕ|}
λ∈G×Ĝ

is invertible. Its condition number is max
λ∈G×Ĝ

|Vϕϕ(λ)|/min
λ∈G×Ĝ

|Vϕϕ(λ)|
which is lower bounded by

√
|G|+ 1. The lower bound is achieved if |Vϕϕ(λ)|,

λ 6= 0, is constant, that is if (ϕ,G× Ĝ) is an equiangular frame.

Note that a vector ϕ with (ϕ,G × Ĝ) being an equiangular frame is gen-
erally referred to as fiducial vector in the literature, and if ϕ is fiducial, then
{|π(λ)ϕ〉〈π(λ)ϕ|}

λ∈G×Ĝ
is referred to as symmetrically information complete pos-

itive operator valued measure [2, 1, 16]. “Symmetric” refers to the fact that
〈
|π(λ)ϕ〉〈π(λ)ϕ|, |π(µ)ϕ〉〈π(µ)ϕ|

〉
HS

= |〈π(λ)ϕ, π(µ)ϕ〉|2

is constant for µ 6= λ; “information complete” indicates that {|π(λ)ϕ〉〈π(λ)ϕ|}
λ∈G×Ĝ

is complete in the space of Hilbert-Schmidt operators on CG, and “positive oper-
ator valued measure” describes, in short, that

∑

λ∈G×Ĝ

|π(λ)ϕ〉〈π(λ)ϕ| = Identity.
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where here and in the following we assume that ‖ϕ‖2 = 1/
√
G. This property

allows us to compute the biorthogonal basis of {|π(λ)ϕ〉〈π(λ)ϕ|}
λ∈G×Ĝ

which
leads to the following scattering function reconstruction formula and respective
channel estimation procedures [17].

Corollary 4. Let ϕ ∈ CG be fiducial. Then for any WSSUS channel H we have

C(λ) = Rη(λ, λ) =
〈
RHϕ, (|G| + 1)|π(λ)ϕ〉〈π(λ)ϕ| − Identity

〉
HS

= (|G|+ 1)〈π(λ)ϕ|RHϕ|π(λ)ϕ〉 − traceRHϕ.

Confirmation of the so-called Zauner’s conjecture would imply the existence of
a fiducial vector whenever G is cyclic [16]. While the general case is still open, an-
alytic solutions for G cyclic of order |G| = 1, 2, . . . , 15, 19, 24, 35, 48, and numerical
solutions for G cyclic with |G| ≤ 67 are known [15].

The discussion above shows that WSSUS channel identification can be seen
as a problem dual to the problem of determining a density matrix of a quantum
state. In the latter, we attempt to reconstruct a matrix ρ from the inner products〈
ρ, |π(λ)ϕ〉〈π(λ)ϕ|

〉
HS

, so the role of basis and dual basis are interchanged.
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[14] G.E. Pfander and P. Zheltov. Identification of stochastic operators. Applied and Computa-

tional Harmonic Analysis, 36(2):256 – 279, 2014.
[15] A.J. Scott and M. Grassl. Symmetric informationally complete positive-operator-valued

measures: A new computer study. Journal of Mathematical Physics, 51(4), 2010.
[16] G. Zauner. Quantum Designs Foundations of a Non-Commutative Theory of Designs. PhD

thesis, University of Vienna, Austria, 1999.
[17] G.E. Pfander and P. Zheltov. Estimation of overspread scattering functions. Preprint.



1070 Oberwolfach Report 18/2014

Estimating group transformations via convex relaxation

Afonso S. Bandeira

(joint work with Moses Charikar, Yutong Chen, Amit Singer, and Andy Zhu)

Let X be a space of objects and G be a group of transformations acting on X .
Suppose we have n measurements of the form

yi = gi · x+ ǫi,

for i = 1, . . . , n, where x is a fixed but unknown element of X , g1, . . . , gn are un-
known elements of G, and ǫi are independent noise terms. We refer to the statis-
tical estimation problem of the n group elements as the multi-reference alignment

problem.
Of particular interest is the case of alignment of L−dimensional signals, where

G = Z/LZ is the cyclic group of shifts (see [2]). In this case one observes noisy
shifted copies of an unknown signal x ∈ R

L and is tasked with recovering the shifts
(up to a global shift).

The challenge in obtaining the maximum likelihood estimator (MLE) is that
the parameter space is non-convex and is exponentially large in n. We consider a
convex relaxation using semidefinite programming (SDP), considered in [2] for the
particular case of shifted signals. This relaxation is numerically shown to be tight
with high probability for a wide range of parameters, that is, the SDP recovers
the MLE with high probability. The tightness of this SDP is only understood in
very specific instances [1] and understanding this phenomenon in more generality
remains an interesting open problem [1, 4].

This approach is preferable to approaches that compare pairs of observations
yi, yj in order to estimates the pairwise group transformation gig

−1
j and, from

these, obtain estimates for the group elements gi’s [1, 3, 5, 7] as the MLE incor-
porates the likelihood of all possible pairwise group transformations gig

−1
j and

not simply which one is the most likely. Moreover, as opposed to most iterative
heuristics like expectation maximization or simulated annealing this approach does
not risk getting trapped in local optima. Moreover, when the SDP relaxation is
tight, which seems to be often the case (and tightness is easily checked), one is
guaranteed to have found the true MLE. Indeed, numerical tests suggest that the
MLE based approach outperforms existing approaches.

Besides alignment of signals, this method has applications in many problems in-
cluding the problem, in theoretical chemistry, of determining the minimum energy
positions of a set of atoms, the shape matching problem in computer graphics [6],
and the cryo-electron microscopy problem in molecular imaging. In the context of
cryo-electron microscopy a variation is considered, where the measurement model
is of the form

yi = P (gi · x) + ǫi,

where P is a tomographic projection operator.
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Composite self-concordant minimization

Volkan Cevher

We describe a variable metric framework for minimizing the sum of a self-concordant
function and a possibly non-smooth convex function, endowed with an easily com-
putable proximal operator. We theoretically establish the convergence of our
framework without relying on the usual Lipschitz gradient assumption on the
smooth part. An important highlight of our work is a new set of analytic step-size
selection and correction procedures based on the structure of the problem. We
describe concrete algorithmic instances of our framework for quantum (process)
tomography applications and demonstrate them numerically on both synthetic and
real data.

Reporter: Afonso S. Bandeira



1072 Oberwolfach Report 18/2014

Participants

Afonso S. Bandeira

Department of Mathematics
Princeton University
Fine Hall
Princeton, NJ 08544-1000
UNITED STATES

Prof. Dr. Volkan Cevher

Ecole Polytechnique Fédérale de
Lausanne
EPFL STI IEL LIONS
ELE 233 (Bâtiment ELE)
Station 11
1015 Lausanne
SWITZERLAND

Prof. Dr. David Groß

Physikalisches Institut
Universität Freiburg
79104 Freiburg
GERMANY

Prof. Dr. Madalin Guta

School of Mathematical Sciences
The University of Nottingham
University Park
Nottingham NG7 2RD
UNITED KINGDOM

Prof. Dr. Marius Junge

Dept. of Mathematics, University of
Illinois at Urbana-Champaign
273 Altgeld Hall MC-382
Urbana, IL 61801-2975
UNITED STATES

Jun.-Prof. Dr. Felix Krahmer

Institut für Numerische
und Angewandte Mathematik
Georg-August-Universität Göttingen
Lotzestr. 16-18
37083 Göttingen
GERMANY

Richard Küng
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