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Abstract. Tumour cell invasion is an essential hallmark in the progression
of malignant cancer. Thereby, cancer cells migrate through the surrounding
tissue (normal cells, extracellular matrix, interstitial fluid) towards blood or
lymph vessels which they penetrate and thus access the blood flow. They
are carried by blood circulation to distant locations where they extravasate
and develop new tumours, a phenomenon known as metastasis. The invasive
spread of cancer cells is highly complex – it involves several mechanisms, like
diffusion, chemotaxis and haptotaxis; these in turn are conditioned by and
influence the subcellular dynamics.

Mathematical models offer a powerful tool to gain insight into the com-
plicated biological processess connected to tumour invasion and have also
stimulated advanced mathematical research. Some of the new developments
in the field of biomedical oncology were inspired by such models. A signifi-

cant challenge arises due to the interactions of cancer cells with a complicated
and structured microenvironment of healthy tissue. Many of the models of
cancer cell migration are based on partial differential equations (PDEs) in-
cluding spatial heterogeneity, orientational tissue structure, tissue stiffness
and deformability. Specific settings relate to reaction-diffusion equations,
transport equations, continuum equations, and to their multi-scale analysis,
to local and global existence and uniqueness, to pattern formation, blow-ups
and invasions. A further approach involves agent-based models providing a
characterisation of cell migration by way of simulating the (inter)actions of
autonomous agents (individual cells, collective dynamics) and aiming for as-
sessing their effects on the entire system. (Abstract continues on the next
page.)
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In this meeting we covered the full spectrum between macroscopic PDE mod-
els and microscopic individual based models with the common goal of mod-
elling cancer cell migration. Of particular interest was the derivation of macro-
scopic properties from microscopic details. Similar multiscale models have
been used in other contexts (such as chemotaxis for example), and we gained
some significant insight from the collaborations in this workshop. In this one
week meeting we posted nine open ended problems (outlined below), which
will form the seed for new collaborations going far beyond this workshop.

Introduction by the Organisers

The traditional understanding of cancer is the view that through mutations a very
aggressive cell type is created, which grows unlimited, is able to evade treatment
and, at later stages, invades into other parts of the body (metastasis). All cells of
the tumour were considered as basically identical clones. In recent years, however,
the picture has changed drastically. It is now well accepted that cancer does not
describe one disease, or one type of aggressive cells, but rather a complicated
interaction of many abnormal features (Merlo et al. 2006, [10, 11]). Hanahan and
Weinberg state in their 2011 hallmark paper [11]:

. . . tumours are more than insular masses of proliferating cancer

cells. Instead they are complex tissues composed of multiple dis-

tinct cell types that participate in heterotypic interactions with one

another. . . . tumours can no longer be understood simply by enu-

merating the traits of the cancer cells but instead must encompass

the contributions of the “tumour microenvironment” to tumouri-

genesis.

Most of the existing time-continuous models for cancer invasion can be assigned
to three categories:

Microscopic models are concerned with the events at the subcellular level ini-
tiating and controlling (tumour) cell migration. These processes are usually char-
acterised with systems of ordinary differential equations (ODEs) for the concen-
trations of the involved biochemical substances. ODE models have been used on
the microscopic level to focus on the expression of matrix degrading enzymes and
proteolysis [3], whereas others emphasise cell polarisation and onset of lamellipod
protrusion [17], a crucial step in integrin-mediated haptotactic motility. Yet other
models (see e.g., [8, 16, 18, 19, 20]) pay attention to the integrin dynamics, i.e.
binding of receptors on the cell surface to soluble (chemoattractant molecules) and
insoluble (tissue fibers) components of the peritumoral environment. A still open
question is which subcellular processes are essential for the invasive behavior and
what should be the level of detail one has to account for in order to provide a real-
istic, yet simple enough description. This issue can only be successfully addressed
by way of interdisciplinary cooperations.

In the mesoscopic framework, tumour cell migration is characterised by Boltz-
mann-like kinetic transport equations for the cell density function. Unlike gas
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theory, the integral operators here do not model particle collisions, but charac-
terise innovations (both w.r.t. speed and direction) of the cell velocities, which
are also triggered by cell-tissue and cell-cell interactions ([6, 8, 14, 16, 18, 22]).
Bellomo et al. (2010) proposed a general framework for such kinetic models on
the mesoscopic level (also allowing for the inclusion of the “cell state” to reflect
dynamics on the microlevel) that they called the kinetic theory of active particles

(KTAP). Open questions in this context relate to the choice of turning kernels
in the integral operators, a realistic modelling of the turning rates, and the well-
posedness in less regular function spaces, under less restrictions on the data.
Another approach on the mesoscopic level are individual based models (IBMs),
or agent-based models such as cellular automata, cellular Potts models or lattice
gas models. They have attracted particular interest in the last years and have
been applied to cancer cell invasion ([7, 12, 26]) to analyse collective effects at the
macroscopic cell population level starting from microscopic cell interactions. One
focus of the meeting was to compare the IBM models with the above mentioned
kinetic equation approach.

Macroscopic descriptions can be derived from mesoscopic models by means of
averaging leading to evolution equations for the moments of the cell distribution
function (see, e.g., [8, 14]). Apart from the kinetic setting, macroscopic models
for cell migration were also derived using mass conservation and mechanical force
balance, respectively the theory of mixtures [25]. Further models for cell popula-
tion migration that rely on mass balance equations were proposed by Gatenby et
al. (2006), Anderson et al. (2000) and Chaplain (2008), for example.

From a point of view of mathematical analysis, most of the resulting PDE sys-
tems are far from fully understood. Especially the typically occurring taxis-type
nonlinear cross-diffusive terms give rise to numerous challenges. These already
occur at the level of basic existence theory, but beyond this also concern ques-
tions related to the structure-generating potential of the respective systems, the
latter often being related to certain dynamical processes of singularity formation.
Although quite a number of corresponding results has been derived for various ver-
sions of the paradigmatic Keller-Segel chemotaxis system ([13, 15, 27]), in presence
of more complex interactions such as in coupled chemotaxis-haptotaxis systems,
the knowledge is much less complete, and the analysis yet concentrates on topics
of global existence ([23, 24]).

Combining two or all three of these modelling levels leads to a multiscale set-
ting, which has received increasing interest over the last decade. Many of the
models– in particular those involving couplings between micro and mesoscales –
align to the mentioned general KTAP by Bellomo et al. (2010). Another class
of multiscale models connecting the microscopic and macroscopic levels of cancer
cell migration was considered e.g., by Meral et al. [19, 20], where the focus was
on the effect of subcellular events on the tumour cell motility with a more or less
detailed description of the microscopic dynamics.
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The information content can be much increased with such approaches, however,
a model should still be as simple as possible. Keeping this balance is a nontrivial
modelling task; the level of detail has to be chosen according to the phenomena
one would like to focus. Transforming their interconnections into mathematical
models has to be done correspondingly and is again not straightforward, due to
complex events taking place at different time and space scales.

These multiscale settings offer interesting mathematical challenges as they usually
consist of several types of differential equations (like kinetic transport, ordinary,
and parabolic differential equations), or of individual based stochastic processes
(IBMs, cellular Potts models etc.). Moreover, due to their high dimensionality
and the different scales under consideration, full micro-meso-macro models pose
nontrivial problems with respect to simulations. A way to overcome numerical
difficulties is to deduce macroscopic limits of the corresponding kinetic equation,
but due to the highly nonlinear couplings and the large gaps between the scales,
it is in general not clear how to specify such a limit in a rigorous manner, unless
generous assumptions are made about the kernels involved in the haptotaxis and
chemotaxis operators on the mesolevel ([21, 28]).

The participants of the meeting brought expertise in all relevant fields outlined
above. At the beginning of the workshop days, leading experts introduced a cer-
tain topic and they presented their respective view of the cancer invasion problem.
Later, groups formed to discuss interrelations between the different approaches, to
identify interesting mathematical problems, and to discuss the biological implica-
tions of these models. First ideas were very promising and we expect considerable
progress towards the common goal of understanding, modeling and controlling
cancer invasion.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Living Systems, Complexity, and Mathematics – A Personal Quest
Toward a Mathematical Theory of Living Systems

Nicola Bellomo

This lecture is devoted to the development of mathematical tools for the modeling,
qualitative analysis, and simulations of complex systems in life and human sciences.
Specifically, systems of many living individuals interacting in a non-linear manner.
The presentation is developed through three steps:

I: Detailed analysis of the common complexity features of living systems;

II: Derivation of a unified mathematical approach based on suitable develop-
ments of methods of the kinetic theory, where interactions described by theoretical
tools of stochastic evolutive game theory;

III: A critical analysis of applications and related analytic and computational
problems looking ahead to research perspectives.

The presentation aims at providing an answer to the following questions:

Do complex living systems exhibit common features and which are the mathe-

matical structures able to capture them?

Can these structures act as a paradigm for the derivation of models in life

science?

Can an overview of applications suggest hallmarks toward a mathematical theory

of living systems?

Part I: The first part of the lecture is devoted to understand the main common
features of living, hence complex, systems. As it is known, it is very difficult to
understand and model these systems based on the sole description of the dynamics
and interactions of a few individual entities localized in space and time. In fact,
interactions are nonlinearly additive and their modeling should take into account
the ability of living entities to develop specific strategies based on the states and
localization of the surrounding entities [1],[2]. Specifically the following features
can be considered:

(1) Heterogeneous ability to express a strategy;
(2) Nonlinear interactions and learning ability;
(3) Darwinian selection and time as a key variable;
(4) Tipping points detecting rare non predictable events.

As it is known, the hint to look for appropriate structures can contribute non
only to modeling, but also to the development of mathematical sciences [3]. Indeed,
as observed by Gromov [3], structures might include a descriptive ability of physical
reality which goes beyond the specific field, which they refer to.

Part II: The second part presents a unified mathematical approach to derive
a mathematical structure suitable to retain, as far as it is possible, the aforesaid
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common features and to provide the conceptual basis for the derivation of specific
models. The hallmarks toward this search can be summarized as follows:

i) The overall system is subdivided into functional subsystems constituted
by entities, called active particles, whose individual micro-scale state is
called activity, where this variable refers to their ability to develops specific
strategies also based on interactions.

ii) The micro-scale state of each functional subsystem is defined by a suitable,
time dependent, probability distribution over the micro-scale state, which
includes position, velocity, and activity variables.

iii) Interactions are modeled by stochastic, evolutive games, where the state
of the interacting particles and the output of the interactions are known
in probability, and where the rules of interactions evolve in time due to
the learning ability of the active particles.

iv) The evolution of the probability distribution is obtained by a balance
of particles within elementary volume of the space of the micro-states,
where the dynamics of inflow and outflow of particles is determined by
interactions. Detailed calculations yield a system of nonlinear integro-
differential equations [1].

Part III: The third part focuses on applications in various fields of life sciences.
More in detail:

• The dynamics of multicellular systems where interactions can generate
both modification of biological functions and mutations with Darwinian
selection, and proliferative destructive events [4],[5] also related to inter-
actions with the external environment.

• Derivation of flux limited chemotaxis models from the underlying descrip-
tion at the cellular scale [6] with special focus on the celebrated Keller and
Segel model [7],[8].

• Pedestrian crowd dynamics viewed as a large system of interacting entities
[9].

The final critical analysis focuses on the detection of rare events, namely the
so-called black swan [10], and looks at designing a mathematical theory of living
systems based on the mathematical tools presented in Part II. This challenging
objective is pursued by linking the aforesaid mathematical structure to theories
modeling interactions specific of each class of systems under consideration.
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The role of multiple communication pathways on collective cell
movement: insights from modeling self-organised animals and

Dictyostelium Discoideum cells

Raluca Eftimie

Cancer is the result of loss of co-ordination among different cell processes, such as
cell-cell communication, cell proliferation, cell differentiation and cell migration.
In many cases, the same cell-cell communication pathways control multiple pro-
cesses involved in cancer progression (e.g., the Wnt signaling pathway, which has
been associated with breast cancer, controls cell migration, differentiation and pro-
liferation). Here we propose hypotheses on the role of cellcell communication on
the movement and segregation of cells that interact via slightly different commu-
nication pathways. To this end, we present some results on the interplay between
communication, movement and spatial segregation of cells and animals. First, we
focus on investigating the role of communication on collective movement of self-
organised particles/animals [1], and show that the simultaneous use of multiple
communication mechanisms leads to unexpected aggregative and movement be-
haviours (which cannot be predicted by the behaviours of the subpopulations that
use only one communiation mechanisms). In particular, it can also lead to chaotic
movement [2]. Next we focus on Dictyostelium Discoideum, a classical toy model
for understanding biological processes in development, and discuss the effect of two
mutually inhibitory cell-cell signalling pathways (cAMP and DIF-1) on the coor-
dinated movement and segregation of different cell types. We show that cAMP
alone can control the movement and spatial segregation of cells, while in combina-
tion with DIF-1 it controls the de-differentiation of cells and their proportionality
inside the slug.

References
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DTI-based multi-scale modelling and simulation of glioma growth

Christian Engwer

(joint work with Thomas Hillen, Markus Knappitsch, Christina Surulescu)

We present a DTI based model for glioma tumor growth and spread. Based diffu-
sion tensor imaging the model allows to incorporate local structural information.
We assume that cancer cells use neuronal fibre tracts as invasive pathways. DTI
is able to provide information about fibre orientation, thus opening the way for
patient specific modelling of glioma invasion.

Starting from a multiscale model involving subcellular (micro-scale) and indi-
vidual (meso-scale) cell dynamics, we do a parabolic scaling and obtain a reaction-
diffusion-transport for the tumor cell density equation on the macro-scale. The
mathematical modelling follows the multiscale approach proposed by [6]. The sub-
cellular dynamics lead to additional advective phenomena, which corresponds to
haptotactic movement [2]. Proliferation is modelled on the meso-scale and relies
on the go-or-grow hypothesis, which states that cancer cells can either move or
proliferate [5]. We use scaling arguments to deduce an advection-diffusion-reaction
model on the macro-scale.

On the micro-scale integrin receptors of the cell bind to aligned ECM fibres,
where Q(t,x) denotes their fibre volume fraction. The dynamics of the integrin
receptors are modelled as an ODE:

ẏ = k+(R0 − y)Q − k−y,

with R0 overall number of receptors of the cell and y(t) those receptors bound to
ECM at t. On the meso-scale we observe densities p(t,x,v,y) of moving cells and
r(t,x,y) of resting cells, at position x, with velocity v, internal state y, at time t.
Formulating a kinetic transport model we get the following PDE system:

∂tp+∇x · (vp) +∇y · (G(y)p) = L[λ]p− α(x)p +
βq

ω
r − l(N)p,

∂tr = α(x)

∫

V

pdv − βr + g(N)r − l(N)r.

With receptor dynamics G(y, Q) := k+(R0 − y)Q − k−y and a turning operator

Lp = −λ(y)p +

∫

V

λ(y)K(x,v,v′)p(v′)dv′

which describes velocity changes of the cells due to the turning kernel K(x,v,v′).
The probability for a chosen direction depends on the orientation distribution

q(x, v̂) of tissue fibres. We choose K(x,v,v′) = q(v̂)
ω with ω =

∫

V q(v̂)dv = sn−1

a scaling constant, as proposed in [4], according to our assumption that cells
choose new directions of movement due to contact guidance. On the meso-scale
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we consider a logistic growth law with the gain factor g(N) = cg and a loss term
l(N) = clN , cg, cl ≥ 0.0. Using a parabolic scaling we obtain the macroscopic
equation

∂tN0 − cD∇∇ (DT (x)N0)− λ1cD∇ (u(x)N0) =
α

α+ β
cgN0 − clN

2
0 ,

with the total tumor cell density N0, a velocity u, and a diffusion coefficient DT .
The macroscopic parameters DT and u are computed from patient specific DTI

data and are spatially varying. We observe regions where the system is diffusion
dominated and regions where it is drift dominated. Numerical simulations of this
non-linear degenerated parabolic equation with spatially varying anisotropic ten-
sors are performed using first order discontinuous Galerkin (dG) scheme in space
and an implicit Euler scheme in time. For the dG scheme we have chosen locally
mass conservative WIPG scheme. The non-linearities are handled using an outer
Newton scheme for each time step. The numerical simulations are implemented
using the DUNE framework [1].

Using DTI data of a young healthy male we simulate the growth of a highly
localised tumor. Compared to pure diffusion based models, the tumor shapes are
much more structured, and we clearly observe preferential growth along the white
matter tracks. This approach illustrates how a full pipeline from patient specific
data to individual simulation results can work.

References

[1] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R.,
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switching of human melanoma cells between proliferative and invasive states. Cancer Res.
68, 650-656 (2008)

[6] Kelkel, J., Surulescu, C.: A multiscale approach to cell migration in tissue networks. Math-
ematical Models and Methods in Applied Sciences 23 (2012)

A Stochastic Multiscale Model for Acid Mediated Cancer Invasion

Sandesh Athni Hiremath

(joint work with Christina Surulescu)

Cancer research is not only a fast growing field involving many branches of science,
but also an intricate and diversified field rife with anomalies. One such anomaly is
the consistent reliance of cancer cells on glucose metabolism for energy production
even in a normoxic environment. glycolysis is an inefficient process for energy
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production and used normally only during hypoxic conditions. So it is somehow
paradoxical for cancer cells to rely on such mechanism, given their high demand
for energy (e.g., for proliferation). An emerging conjecture aiming to explain this
behavior is that cancer cells preserve this aerobic glycolytic phenotype for its use
in invasion and metastasis. As per authors knowledge, Gatenby [3] was the first to
use this hypothesis to model cancer invasion. However, no intracellular dynamics
were taken into account. Although, the papers [11] and [12] include intracellular
mechanisms attributing to the reverse pH gradient of tumor microenvironment,
they completely neglect spatial dynamics. We shall build upon the above models
and [8] to propose a new model for cancer invasion depending on the dynamics of
extra and intracellular protons. Since intracellular processes are not only highly
intricate but also random, we include a noise functional in the intracellular proton
dynamics, which altogether culminates in a stochastic multi-scale model having
the following form:

∂tHi = −T (Hi, He) + S1(v)−Q(Hi) +HiF (χt)

∂tHe = T (Hi, He)− S2(v)He +∆He

∂tC = Λ1(Hi)ω1C(1 − η1C − η2N) +∇.(D(C,N)∇C)

∂tN = −Λ2(He)ω2CN,

where

(1) Hi is the intracellular proton concentration of cancer cells.
(2) He is the extracellular proton concentration due to cancer cells.
(3) C is the cancer cell density.
(4) N is the normal cell density.
(5) χt is a stochastic process representing noise.

In case of a growing and decaying type of proliferation function Λ1(Hi) (which
is biologically motivated) numerical simulations indicate that, due to the large
perturbations in Hi induced by some sample paths of the noise functional F (χt),
cancer cells may exhibit a behavior of dormancy and even extinction. Although,
monte-carlo average of the sample paths predicts the invasive behavior of the
cancer cells, individual sample paths sheds light on the hidden struggle of cancer
cells to survive in extreme pH conditions.
We also analyze the wellposedness of the model and show the boundedness and
existence of the weak solution for a finite 2D domain and for finite time interval.
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Keller-Segel systems with critical diffusion

Philippe Laurençot

The aim of this talk is to review some properties of solutions to the Keller-Segel
system

∂tu = div (∇A(u)− u∇v) , t > 0 , x ∈ R
d ,(1)

τ∂tv = ∆v − αv + u , t > 0 , x ∈ R
d ,(2)

(u, τv)(0) = (u0, τv0) , x ∈ R
d ,(3)

with a particular focus on the critical diffusion case A(u) = u2(d−1)/d. In (1), u
denotes the density of cells which evolves under the combined effect of diffusion
which spreads the cells in space and chemotaxis which induces a biased movement
of the cells towards high gradients of the chemoattractant with concentration v.
According to (2) the latter is produced by the cells and diffuse in space while being
degraded at rate α ≥ 0. Other data in (1)-(3) are the space dimension d ≥ 2, τ ≥ 0,
the (possibly nonlinear) diffusion coefficient A′ which is a non-negative function,
and the initial conditions which are assumed to be smooth and satisfy

(4) u0 ∈ L1(Rd; (1 + |x|2) dx) , u0 ≥ 0 , v0 ∈ L1(Rd) ∩H1(Rd) , v0 ≥ 0 .

Assuming for simplicity that

(5) A(r) = rm for some m ≥ 1 ,

different qualitative behaviors of solutions to (1)-(3) are expected according to the
value of m and can be roughly summarized as follows:

(i) if m > mc := 2(d− 1)/d, then solutions exist globally,
(ii) if m ∈ [1,mc), then solutions exist globally for suitably small initial data,
(iii) if m ∈ [1,mc), then solution blow up in finite time for suitably large initial

data,
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(iv) if m = mc, a further threshold parameter appears, namely the mass M0 :=
‖u0‖1 of the initial condition for u, and separates two different behaviors:
there is a critical value Mc(d) > 0 of the mass such that the solutions
exist globally if M0 ∈ [0,Mc(d)] and, given any M0 > Mc(d), there are
initial data (u0, v0) satisfying ‖u0‖1 = M0 and such that the corresponding
solution (u, v) to (1)-(3) blows up in finite time.

It is worth pointing out that, in contrast to the critical case m = mc, there are
solutions blowing up in finite time for m ∈ [1,mc) for all positive values M0 of the
mass of the initial condition u0.

When τ = 0, that the above picture is true is by now well-known but that
it is true as well for τ > 0 was only established rather recently, in particular
the occurrence of finite blowup as depicted in (iii), see [CS12], [CS14], [MWxx],
[Wi13]. Concerning the critical case m = mc with τ = 0, the existence of a critical
mass Mc(2) = 8π is known for a long time in space dimension 2 and is proved
in [BCL09], [ST09a], [ST09b] in higher space dimensions d ≥ 3. An interesting
connection with functional inequalities (the logarithmic Hardy-Littlewood-Sobolev
inequality if d = 2 and a modified Hardy-Littlewood-Sobolev inequality if d ≥ 3)
is established in [BCL09], [DP04]. Additional results have been obtained when
m = mc and τ = 0:

(1) Existence and stability of integrable self-similar solutions with mass in the
range (0,Mc(d)).

(2) Existence and stability of steady states with critical mass Mc(d), d ≥ 2.
(3) Existence and non-existence of integrable self-similar solutions.
(4) Identification of a stable and non-self-similar blowup regime for initial data

with mass in (Mc(2),Mc(2) + δ) for δ sufficiently small.

When m = mc and τ > 0, the results obtained so far are sparser and include:

(1) Global existence of solutions if M0 ∈ (0,Mc(d)) [BL13], [CC08], [Mi13].
(2) Finite time blowup for radially symmetric solutions in space dimension

two [MWxx].
(3) Existence of global (self-similar) solutions with a mass greater thanMc(2) =

8π [BCD11].
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[CS14] Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic-
parabolic Keller-Segel system in dimension 2. Acta Appl. Math., 129, 135-146 (2014)

[DP04] Dolbeault, J., Perthame, B.: Optimal critical mass in the two-dimensional Keller-
Segel model in R

2. C. R. Math. Acad. Sci. Paris, 339, 611–616 (2004)
[Mi13] Mizoguchi, N.: Global existence for the Cauchy problem of the parabolic–parabolic

Keller–Segel system on the plane. Calc. Var. Partial Differential Equations, 48, 491–
505 (2013)

[MWxx] Mizoguchi, N., Winkler, M.: Blow-up in the two-dimensional parabolic Keller-Segel
system. Preprint

[Na95] Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv.
Math. Sci. Appl., 5, 581–601 (1995)

[ST09a] Suzuki, T., Takahashi, R.: Degenerate parabolic equation with critical exponent de-
rived from the kinetic theory. I. Generation of the weak solution. Adv. Differential
Equations, 14, 433–476 (2009)

[ST09b] Suzuki, T., Takahashi, R.: Degenerate parabolic equation with critical exponent de-
rived from the kinetic theory. II. Blowup threshold. Differential Integral Equations, 22,
1153–1172 (2009)

[Wi13] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic
Keller–Segel system. J. Math. Pures Appl. (9), 100, 748–767 (2013)

A Review of Possible Applications Related to Cell-Extracellular
Matrix Interaction

Luigi Preziosi

From the biological point of view, it is nowadays recognized that the different
interactions of the cells with the extracellular matrix (ECM) play a fundamental
role both in cell motion and in tumour and tissue development. On the other hand
very little is done from the modelling point of view in spite of the importance that
such interactions can have in medicine and in tissue engineering.

For instance, probably due to its importance in bacterial motion and to the
number of interesting examples in that area, many mathematical models focus on
chemotaxis, i.e., the motion toward regions with higher concentrations of a soluble
chemoattractant, some on haptotaxis, i.e., the motion toward regions with higher
concentrations of cellular adhesion sites or substrate-bound chemoattractant, but
almost none focused on durotaxis, i.e., the motion toward regions with a higher
rigidity of the subtratum. On the other hand, it is known [8] that when the
substratum is heterogeneous from the mechanical point of view, cells tend to move
away from softer regions toward stiffer regions. Also cells move towards stretching
forces and compressive forces.

There are two processes involved in the response of cells to mechanical cues:
mechanosensing and mechanotransduction. The former has to do with the way
cells sense the mechanical forces around, which is mediated by the opening or
closing of suitable ion channels and by the complex interplay among the actin cy-
toskeleton, the adhesion complexes, the transmembrane adhesion protein (e.g.,
the integrin family) and the ECM. Understanding, modeling and reproducing
mechanosensitive devices in vitro is fundamental to build sensors, e.g., pressure,
shear, and tactile sensors.



1092 Oberwolfach Report 19/2014

The latter has to do with the response of the cells to mechanical cues. This can
be done either directly, by the expression of genes in the nucleus that is pulled by
the actin cytoskeleton, or through the activation of several chemical pathways.

It is known (see, for instance [1], [7]) that cancer is related to the loss of con-
tact inhibition from its beginning and that ECM stifffness and cell tensile stress
influence both proliferation and death. In addition at later stages cancer develop-
ment is characterized on one hand by the activation of matrix degrading enzymes
pathways that cause the rapture of basement membranes, and on the other hand
by the excessive production of ECM that trigger the invasion of the surrounding
tissue by tumour cells.

In addition, many diseases are related to incorrect mechanotransduction and
therefore the understanding and the mathematical modelling of mechanotrans-
duction pathways would be of great importance. For instance, [6]

• Atrial fibrillation might be due an abnormal conversion of mechanical
stress into intracellular gradient of electrical activity;

• Intimal hyperplasia can be related to the stretch activated signalling cas-
cades due to the presence of stents and grafts;

• Scleroderma and diabetic nephropathy is due to an abnormal accumulation
of ECM;

• Glomerulosclerosis is due to the stretching of mesangial cells via ECM and
integrins due to glomerular hypertension;

• Enphysema is due to enhanced ECM breakdown;
• Pulmonary fibrosis and all other fibrosis characterizing many aging dis-
eases are due to the excessive production of ECM.

Among the previous examples only some papers devoted to cancer modelling
have paid attention to the effect of the microenvironment and on the possibility
of healing tumours by normilizing the surrounding environment (see, for instance,
[2], [5]).

Understanding the mechanical interplay between cells and the surrounding en-
virronment is also of crucial importance in tissue engineering. In fact, the fate
of stem cells depend not only on genetic and molecular mediators, e.g., growth
factors and transcription factors, but also on the interactions they have with the
surroundings, which include ECM elasticity and morphology and ECM mediated
stress.

One amazing evidence of the importance of the mechanical characteristics of
the environment is the observation that stem cells differentiate in different cell
types according to the stiffness of the substratum [1]. For instance, they are likely
to become

• neurons if the ECM stiffness well below 1 kPa;
• adipocytes in the range 0.1-2 kPa;
• skeletal muscle cells in the range 3-20 kPa;
• osteoblasts above 20 kPa.
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It seems that this is one of the reason of the unsuccess in using stem cells to cure
neudegenerative diseases. In fact, scars in the neural tissue are too stiff for the
stem cells to be neurogenic.

Stem cell fate is also sensitive to the morphology of the adhesion sites, e.g.,
smaller areas are more adipogenic while larger areas are more neurogenic or os-
teogenic depending on the substrate stiffness [4].

The common aim of all these observations is the construction of proper stem cell
niche to culture them and to govern their differentiation in order to build tissues
in vitro. In this respect, a valuable support could be given by the development of
proper mathematical and mechanical models.

Another area of interest is the optimization of scaffolds in which cells can grow
to build artificial tissues. One of the project we were involved had the aim of
identify the morphological characteristics of an artificial scaffold able to enhance
the motility of fibroblasts and keratocytes. This was needed in order to speed up
wound healing, in particular for burns.

This requires the undestanding of the migration strategies and the aspects
favouring or hampering cell motion. It was found that the elasticity of the nucleus
plays a crucial role as well as the ability of the cell to actively exert traction forces
via the adhesion sites. We then presented an energetic approach that allowed to
identify a criterium for a cell to pass through a regular network of fibres [3]. The
criterium compares the ratio of some parameters related to the traction force the
cell can exert on the ECM and the density of active adhesion sites versus the
nucleus rigidity with a function of the ratio of the nucleus versus microchannel
size. A cellular Potts model allowed then to prove that the optimal size of the
microchannel is a bit larger than the diameter of the nucleus [9], [10] and smaller
than the size of the nucleus.

References

[1] Butcher, D.T., Alliston, T., Weaver, V.: A tense situation: forcing tumour progression.
Nat. Rev. Cancer 9, 108-122 (2009)

[2] Chaplain, M., Graziano, L., Preziosi, L.: Mathematical modelling of the loss of tissue
compression responsiveness and its role in solid tumour development. Math. Med. Biol. 23,
197-229, (2006)

[3] Giverso, C., Grillo, A., Preziosi, L.: Influence of nuclear deformability on cell entry
into cylindrical structures. Biomech. Model. Mechanobiol. 13, 481-502 (2014)

[4] Guilak, F., Cohen, D.M., Estes, B.T., Gimble, J.M., Liedtke, W., Chen, C.S.: Control
of stem cell fate by phisical interactions the the extracellular matrix. Cell Stem Cell 5, 1726
(2009)

[5] Hohme, S., Drasdo, D.: Biomechanical and nutrient controls in the growth of mammalian

cell populations. Math. Popul. Studies 17 166-187 (2010)
[6] Ingber, D.: Mechanobiology and diseases of mechanotransduction. Annals Medicine 35,

1-14 (2009)
[7] Kass, J., Erler, M., Dembo, M., Weaver, V.: Mammary epithelial cell: Influence of

ECM composition and organization during development and tumorigenesis. Int. J. Biochem
Cell Biol 39, 1987-94 (2007)

[8] Lo, C.M., Wang, H.B., Dembo, M., Wang, Y.L.: Cell movement is guided by the rigidity
of the substrate. Biophys. J. 79, 144152 (2000)



1094 Oberwolfach Report 19/2014

[9] Scianna, M., Prezisi, L., Wolf, K.: A Cellular Potts Model simulating cell migration on
and in matrix environments. Math. Biosci. Engng. 10, 235–261 (2013)

[10] Scianna, M., Preziosi, L.: Modeling the influence of nucleus elasticity on cell invasion in
fiber networks and microchannels. J. Theor. Biol. 317, 394-406 (2013)

On a multiscale model involving cell contractivity and its effects on
tumor invasion

Christian Stinner

(joint work with Gülnihal Meral, Christina Surulescu, Michael Winkler)

Invasion of tumor cells is an important step for metastasis and is governed by
several subcellular processes. A number of them affect the contractivity, by which
we describe the ability of the cancer cells to adapt their shape and orientation
according to the surrounding tissue. In [1], we propose a multiscale model focusing
on the influence of the cell contractivity on tumor cell migration. It takes into
account both the subcellular (microscopic) level, where changes of contractivity
are initiated, and the macroscopic level of the cell population and aims to assess
their interdependence. More precisely, our model accounts on the microscale for
integrin binding to soluble and insoluble components present in the peritumoral
environment, which is seen as the onset of biochemical processes leading to changes
in the cell’s ability to contract and modify its shape. On the macroscale of the
cancer cell population this leads to modifications in the diffusion and haptotaxis
performed by the tumor cells and implicitly to changes in the tumor environment.

Denoting by c and v the densities of cancer cells and tissue fibers of the extra-
cellular matrix (ECM), respectively, by l the concentration of proteolytic residuals
(resulting from the degradation of ECM by cancer cells), by y1 and y2 the concen-
trations of integrins bound to ECM fibers and proteolytic residuals, respectively,
and by κ the contractivity function, we arrive at the following PDE-ODE system
which involves in particular haptotactic and chemotactic cross-diffusion as well as
a temporal delay (see [1]):
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in (0, T ) × Ω endowed with homogeneous Neumann boundary conditions, where
Ω ⊂ R

n is a bounded smooth domain and n ≤ 3.
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We provide the local well-posedness of (1) by using a fixed point argument and
the method of steps (see [1]). Furthermore, we prove the existence of a global so-
lution within a suitable concept of weak solutions (see [2]). The proof of the global
existence is based on the construction of a functional which inter alia involves the
cell and tissue densities in the diffusion and haptotaxis terms, respectively, and
which has a quasi-dissipative property. The latter is used as a starting point for
the derivation of a series of integral estimates finally allowing for the construction
of a generalized solution to (1) as the limit of solutions to suitably regularized
problems. We further present numerical simulations to illustrate the effect of con-
tractivity on the migration of cancer cells in our model (see [1], [2]).
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Modelling Brain Tumor Spread Using an Anisotropic PDE Model

Amanda Swan

(joint work with Thomas Hillen)

Brain tumours of glial cell origin, or gliomas, are currently one of the most diffi-
cult cancers to treat. Mean survival with treatment is only about a year. Brain
tissue architecture offers many challenges for treatment, thus leaving lots of room
for potential improvement. Currently, standard treatment involves surgery when
possible, with radiation being administered uniformly beyond the visible tumour
boundary. We suggest that if a mathematical model could predict the cancer cell
distribution beyond what is visible, a more appropriate treatment boundary could
be prescribed.

The first model of this type was proposed by Swanson [1] in 2000. This model
used diffusion to model cell movement, allowing for spatial heterogeneity of the
diffusion coefficient. It was proposed that the rate of diffusion was higher in the
white matter tracts. It was later discovered that cells not only travelled faster
in the white matter tracts, but that they actually travelled along them. Our
model thus incorporates anisotropy, where we allow the diffusion coefficient to vary
both spatially and directionally. We begin with a transport equation describing
individual cell movement at a mesoscopic scale, then perform a parabolic scaling
to obtain the macroscopic diffusion equation [2], [3]. After adding a logistic growth
term with growth rate r, we obtain

ut(x, t) = ∇∇(Dc(x)u(x, t)) + ru(x, t)(1 − u(x, t)),
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where u(x, t) gives the cancer cell density at location x and time t, and Dc(x)
is the anisotropic diffusion tensor at location x. This is obtained using Diffusion
Tensor Imaging (DTI), which measures rates of diffusion in the brain.

Finally, the results of our model simulations are compared to real patient data.
Preliminary results are promising, indicating that our model could help doctors
to prescribe radiation treatment regions based on the cancer cell density beyond
the visible tumour boundary.
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Global dynamics of a coupled chemotaxis-haptotaxis system for cancer
invasion

Youshan Tao

(joint work with Michael Winkler)

This talk addresses a coupled chemotaxis-haptotaxis system modeling cancer cell
invasion of surrounding tissue (cf. [1]), which describes the interplays between
the cancer cell density, the concentration of a matrix-degrading enzyme and the
density of extracellular matrix (ECM). In addition to random movement, cancer
cells are supposed to bias their movement both towards increasing concentrations
of urokinase plasminogen activator by chemotaxis, and towards increasing densities
of the non-diffusible ECM through detecting the macromolecules adhered therein
by haptotaxis. It is assumed that the cancer cells undergo birth and death in a
logistic manner, competing for space with the ECM. The MDE is assumed to be
produced by cancer cells, and to diffuse and decay, whereas the ECM is assumed
to be degraded upon contact with MDE. We first discuss the global existence and
boundedness of the solutions to the system for appropriate parameter conditions
(cf. [9] and [10]). Then we consider the dominance of chemotaxis whenever the
initial ECM density is “small” in certain sense (cf. [9]). We next study the
asymptotic behavior of solutions when the initial cell density has a positive lower
bound in addition to some smallness assumption on initial ECM density (cf. [8]).
Finally, we briefly review some related results for haptotaxis-only system (cf. [11]
[4], [3], [6]) and for coupled chemotaxis-haptotaxis system (cf. [7], [2], [5]).
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On a mathematical model of tumor growth based on cancer stem cells
with chemotactic sensitivity

José Ignacio Tello del Castillo

We consider a simple mathematical model of tumor growth based on cancer stem
cells. The model consists of four differential to describe the evolution of different
subpopulations of cells: cancer stem cells (CSC), progenitor cells, differentiated
cells and dead cells. The problem is considered in a moving boundary domain.
The model is considered for the early stage of the cancer when the tumor size is
small and necrosis is not present. Experiments show that the growth of the tumor
at this stage follows an exponential growth. CSC?s mitosis may originate two CSC
or two progenitor cells through symmetric division or one of each class through
asymmetric division. Regulation of symmetric or asymmetric division is a complex
process which depends on a range of conditions, as concentration of cytokines,
growth factors etc, existing in the microenvironment of the cell. The regulation
process still posseses several steps not well understood. The system includes non-
local terms of integral type in the coefficients to modelize the process. Under some
restrictions in the parameters we study the stability of the homogeneous steady
state. The analysis uses a sub and super solutions approach based on a comparison
principle.
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Challenges in modeling interacting and migrating cell populations

Anja Voss-Böhme

Cancers have been proposed to result from defects of tissue organization. To de-
duce the consequences of existing hypotheses on carcinogenesis and to provide a
basis for experimental testing and theoretical understanding, mathematical mod-
els are essential. However, there is considerable freedom in the choice of the
mathematical model and the criteria for appropriate model selection are not well-
defined. Cell-based models, such as interacting particle systems (IPS) and proba-
bilistic cellular automata (PCA), provide a spatio-temporal framework to describe
and analyze interacting cell populations in developing tumors. Such models have
been successfully applied to study characteristic collective cell behaviors that re-
sult from specific cellular interaction rules. There are considerable differences in
the construction of these models, in particular concerning the implementation of
cell motility. In the talk, we compare exemplary IPS and PCA models where one
cell occupies one lattice node to spatially more resolved models, such as the cel-
lular Potts model. We will expose the mechanistic structures of these models and
discuss their implications for modeling and mathematical analysis.
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Principles of cell migration in physiology and cancer

Katarina Wolf

Cell migration is a complex process that takes place during a wide range of func-
tions in the organism, reaching from cell positioning during embryogenesis to im-
mune response and tissue regeneration, and can be re-activated during disease,
such as in cancer. Cell locomotion during both normal and malignant processes
is underlaid by several levels of complexity which are: (A) locomotion-preceding
basic requirements1, (B) additional cell type- and environmental context-specific
determinants defining the mode of migration (amoeboid, mesenchymal, collective)
and (C) molecular and functional change of these determinants resulting in transi-
tion between migration modes (=plasticity)2-4. In general, normal and malignant
cell migration share the same basic principles; however, whereas homeostatic cell
migration is tightly regulated in a mostly transient manner, neoplastic migration
represents an exaggerated form of normal migration, with deregulated upregulation
and activation of pro-migratory molecules and extracellular environment compo-
nents. (A) The very basic requirements for cells to change location are (i) coordi-
nated F-actin polymerization and depolymerization underlying repeated protru-
sion at the leading edge and retraction of the trailing edge, (ii) gradients of water
flux, ion concentration and pH, and (iii) physical interaction with the extracellular
surrounding of different dimensionality, structure, and spacing5. F-actin-mediated
protrusion takes place after extracellular stimulation such as by growth factor- or
chemokine- binding, small GTPase (Rac or Cdc42) and PIP2 activation and sub-
sequent actin nucleation and branching mediated by WAVE/WASP and Arp 2/3
complex, together with ADP-mediated filament disassembly6. This can result in
the formation of protrusion structures such as lamellipodia, pseudopodia, filopo-
dia, invadopodia, or blebs7,8. Cell retraction takes place when the rear end slides
forward by Rho/ROCK- or calcium/calmodulin- mediated actomyosin contraction
where F-actin filaments slide against eachother by myosin light chain activation3.
In newer concepts, protrusion and retraction are additionally driven by local hydro-
static pressures regulated by aquaporins and active ion channels (such as leading
edge-localized Na+H+ exchangers) causing water permeation and extrusion and
thus polarized volume change9-11. Often in parallel to ion exchange, protons are
pumped out which causes a local pH increase in the leading edge region and thus a
negative pH gradient along the length axis of the cell12. In line with this, alkaliza-
tion of the leading edge causes actin branching and growth13, whereas acidification
of the trailing edge supports calmodulin-dependent actomyosin contraction12. Fi-
nally, interaction to surrounding substrate is mediated by either adhesion, i.e.
strong attachment via integrins or low adhesion via glycosaminoglycans to extra-
cellular matrix14, or friction induced by confinement5,9,15. Interestingly, whereas
for migration over a smooth surface protrusion-contraction cycles, ion channel ac-
tivity and adhesion is required3,9,16, in porous three-dimensional (3D) networks,
i.e. fibrillar collagen lattices, non-adherent cells, i.e. leukocytes, can move by
means of protrusion and contraction only (amoeboid migration) 17,18, and in
smooth confining channels cells move even independent of protrusion/ contraction
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but by hydrostatic pressure change9,16. These growing amount of knowledge will
feed into the classical model for cell migration consisting of polarization, actin-
mediated protrusion, adhesion and acto-myosin contraction for forward locomo-
tion over a surface1. (B,C) In contrast to laboratory conditions, cell migration in
the multicellular organism takes mainly place within complex extracellular matrix
(ECM) environments. Hence basic concepts on cell migration have been extended
into the 3D context distilling out a number of cell- or ECM-derived parameters
that, together, determine amoeboid (roundish, highly deformable, low adhesive),
mesenchymal (elongated, adhesive, proteolytic) or collective (multicell clusters)
cell migration, mostly in the context on cancer cell migration2,3. As an example,
while for 2D migration adhesion is cruicial, in a 3D environment integrin-mediated
adhesion becomes dispensable and might be replaced by ECM-directed friction
forces of protruding and contracting cells (i.e. leukocytes)17. Further, structural
substrate spacing becomes important in terms of the cells ability to either deform
and adapt (amoboid), or to proteolytically degrade ECM components to shape
a migration path of least resistance (mesenchymal) 19,20. Among a growing list
of additional determinants (cell deformability, extracellular matrix stiffness, hy-
poxia, nutrient deprivation, acidity, micro-RNA), Rho/Rac activity controls cell
rounding or elongation21,22. Further, the presence of cell-cell junctions decides
over single- or collective cell migration. - Obviously the up- or downregulation of
such migration mode-determining molecules or -counterplayers causes reversible
transitions between migration modes, such as the mesenchymal-amoeboid tran-
sion (MAT, AMT), epithelial-mesenchymal transition (EMT, MET) or collective-
amoeboid transition (CAM) (2,23-29 and references therein). The relevance of
different migration modes and transitions for the outcome on cancer disease and
patient survival rate is a matter of current research. In one of the first examples,
Danen and collegues29 show that a switch from collective to single (amoeboid)
movement, although reducing tumor growth, does increase systemic tumor dis-
semination into the lungs which would, in example, hamper surgical tumor resec-
tion and could lead to a more severe organ failure. Anticancer therapy approaches
focus on tumor resection, and the inhibition of tumor proliferation by radio- or
chemotherapy. However, as many cancers are resistant to such approaches, cur-
rent research identifies ways to circumvent tumor resistance (or enhanced survival)
by better targeted therapies, often in combination with surgery or radiotherapy.
Interestingly, many of the same signaling pathways control tumor cell growth,
survival and invasion together, and by for instance targeting tumor survival also
invasion might be inhibited30. One example of increased tumor resistance arises
from the fact that migrating tumor cells invading extracellular tissue are better
protected from radiation-induced tumor apoptosis because ECM binding integrins
send survival signals into the cells. In consequence, anti-beta1-integrin treatment
greatly enhances radiation therapy efficacy in breast cancers31. In summary, in-
hibiting relevant pathways by adequate combination therapies will inhibit tumor
invasion, escape, growth, and resistance together.
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Open Discussion Problems

The participants proposed the following nine problems as discussion subjects dur-
ing the workshop:

(1) Physical movability of cells through obstacles such as small pores.
(2) Mechanics of collective motion.
(3) DTI (diffusion tensor imaging) optimization, and more detailed methods

such as the Q-ball.
(4) Model benchmarks to compare cell movement models.
(5) Is there a cell-free gap region between tumour and normal cells/tissue in

the process of acid-mediated invasion? Mathematical modelling of the
moving boundary problem.

(6) Comparison of movement strategies, individual amoeboid, individual mes-
enchymal, collective. Which strategy is advantageous in what situations?
What are typical invasion speeds for these strategies?

(7) Are there global bounds for the chemotaxis haptotaxis model with tissue
remodelling?

(8) Inverse problems in chemotaxis: How to estimate the chemotaxis sensitiv-
ity function from experimental observations?
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(9) Find simple microscopic and mesoscopic models for collective motion.
Identify the role of a “leader”. Can collective movement develop with-
out a leader? What macroscopic limits do result from this?

Five of these problems were chosen to be studied during the workshop. Here we
report some results and ideas that were generated.

Problem 1) Physical movability through obstacles.
(Engwer, Hatzikirou, Preziosi)

Question: How is cell movement restricted by obstacles, ECM, fibres etc.?

Moving cancer cells are in general easily deformable, with the exception of the
nucleus. In fact, in many cases the nucleus is the limiting component, which
would prevent cells to slip through openings which are too small. The cell nucleus
is deformable to some extent and cells can squeeze through openings. A static
condition for cell squeezing through an obstacle was given in the literature as

traction forces

stiffness
≤ f

(

Rp

Rn

)

,

where Rp is the radius of an (idealized) cylindrical pore, and Rn is the radius of
the cell nucleus. The function f describes the force that needs to be overcome for
movement.

We would like to derive a dynamic, time dependent condition such as

F − hv = 0,

where F is the total force acting on the cell. It can be computed by integration
over the cell boundary. In an ideal, cylindrical situation the force is F = F (Rp, L)
and L is the longest length of the cell as it squeezes through a cylinder. The
function h(normal stress) is computed for an ellipsoid. Then

v =
F (Rp, L)

h(N)
=







0 for Rp ≤ Rc.
0 Rp = R̄p

positive

This means that there is no force generated if the cell radius Rc is smaller than
the pore size. R̄p is a smallest radius that can be passed.

Alternative way: Use a homogenization procedure, much like in porous media. For
example for a well defined periodic case with clearly known pore sizes. Look at
paths of minimal efforts. Random environments lead to additional challenges.

Future: Metalloproteinases could be included.
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Problem 3) DTI optimization and related models.
(Engwer, Hatzikirou, Preziosi)

Diffusion tensor imaging (DTI) allows us to get an idea of the fiber geometry of
brain tissue. It can, however, not distinguish fiber crossing from homogeneous
tissue. An alternative method is called Q-ball measurements, which do allow to
identify such crossings. However, Q-ball measurements need more effort, and they
are not used in clinical practice. A question arises as to what advantage Q-ball
modelling would bring, and if it is worth the additional effort. Possible, the DTI
information is equally useful in daily treatment planning. To efficiently use the
Q-ball we need to:

• Map Q-ball to appropriate basis functions, for example spherical harmon-
ics. There exists one representation in the Q-ball community, which should
be explored.

• Estimate the number of significant directions, or the number of significant
basis functions and remove insignificant ones. This will give an efficient
approximation.

• Get some information about the fiber structure from the measured Q-ball.
• Derive an effective tumor diffusion tensor, e.g., from a transport equation
framework as done by Hillen et al.

• Alternatively, one could try to directly use the Q-ball information in sim-
ulations of glioma spread.

Problem 6) Comparison of movement strategies.
(Bellomo, Voss-Boehme, Surulescu, Deutsch)

Cancer cells use different strategies to advance into healthy tissue. They can move
as individual amoeboid cells, where they keep a roundish morphology and squeeze
through the ECM wherever there is space. If they elongate, and possibly degrade
the ECM through metalloproteinases, then this movement is called mesenchymal.
Finally, clusters of invading tumor cells have been observed as well, leading to the
concept of collective motion. Several questions arise from these strategies:

(1) Which of these strategies is advantageous for a tumor to invade?
(2) What triggers the transitions between these modes (amoeboid ¡-¿ mes-

enchymal ¡-¿ collective) of movement?
(3) What dynamics arises when all three movement strategies are present?
(4) What are transport properties such as invasion speeds for these strategies?

The movement strategies can be characterized as described by Katarina Wolf in
her classification table. A suitable ODE model could be used to understand the
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dynamics of the transition between the strategies.

dA

dt
= (raa − ram − rac)A+ rmaM + rcaC

dM

dt
= ramA+ (−rma + rmm − rmc)M + rcmC

dC

dt
= racA+ rmcM + (−rca − rcm + rcc)C

where A,M,C denote cell densities for amoeboid, mesenchymal and collectively
moving cell populations, respectively. The transition rates are summarized in the
following table:

A M C
A raa ram rac
M rma rmm rmc

C rca rcm rcc

Migration speeds and mean path lengths can be derived from appropriate spatial
models (PDEs). We propose to use a spatial macroscopic equation to compare
invasion speeds of a Fisher KPP model with and without haptotaxis. Thereby,
the situation without haptotatixs corrresponds to amoeboid and the one with
haptotaxis to mesenchymal motion. A model for collective movement can be
taken from problem No 9). A PDE approach (modeling on the macrolevel) could
be based on the following system:

∂ta = ∇ · (φ1(ρ, µ)∇a) + g1(a,m, µ)

∂tm = ∇ · (φ2(ρ, µ)∇m)−∇ · (χ(µ)ρ∇µ) + g2(a,m, µ)

∂tµ = −δmµ+ βµ(1− µ− ρ)

ρ = a+m

φ(ρ, µ) = ρe(1− ρe)

ρe = ρ+ µ(1− ρ)

µ:=density of tissue fibres;
a:= density of cells performing amoeboid motion;
m:=density of cells performing mesenchymal motion.
c:=density of cells performing collective motion.
The next steps include an analysis of these models. Understanding the phase dia-
grams, identification of travelling waves, and finally, extensions to include integrins
and other adhesion mechanisms.
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Problem 7) Bounds for a haptotaxis-chemotaxis model.
(Stinner, Tao, Hiremath, Winkler, Tello)

The haptotaxis-chemotaxis model with tissue remodelling is given as

ut = δu−∇(χu∇v)−∇(ζu∇w) + µu(1− u− v)

0 = ∆v + u− v

wt = −vw + ηw(1 − w − βu)

where u describes the cancer cells, v the chemoattractant and w the ECM. It is
known that solutions in bounded 2-dimensional domains exists. The question is:
In a 2-D bounded domain is u ∈ L∞(Ω× (0,∞))?

Answer: u is bounded.
Method: Some fancy pancy Lp-estimates. This cannot be generalized to dimen-
sion 3 and higher. Moser Iteration can give us a uniform L∞ bound.

Next question is about asymptotics. Some ideas are for 0 < α < 1 < β. We expect
(u, v, w) → (1, 1, 0) for t → ∞ for µ large enough.

Problem 9) Models for collective movement.
(Swan, Eftimie, Laurençot, Hillen)

The modelling of collective movement is in full swing. We identified several mod-
elling approaches for collective movement, in particular in the context of swarming
and social behavior. The following models can be used, and they should be com-
pared for their ability to describe collective movement.

(1) Non-linear diffusion: We were able to use a microscopic random walk to
derive the non-linear diffusion model of Laurençot: ut = (um)xx. Then
the jump probabilities are

T± = α(u) = um−1.

This choice of jump rates means that a particles jump is more likely for
larger local populations. Individuals will never move if they are alone. This
gives a new interpretation of the porous medium equation in the context
of collective movement. The resulting invasion patterns are invasion waves
with a sharp edge. These swarms have no leader cell.

(2) The Eftimie model:

u+
t + γu+

x = −λ+[u+, u−]u+ + λ−[u+, u−]u−

u−

t − γu−

x = λ+[u+, u−]u+ − λ−[u+, u−]u−

The turning rates are non-local functions of the distributions u+, u−. Un-
der certain conditions on the turning rates, where individuals do not look
behind them, you can observe feather patterns, which correspond to groups
of individuals which leave a swarm. These swarms have no leader cells ei-
ther.
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(3) Bellomo’s model. Nino Bellomo showed simulations of collective movement
of groups of people who evacuate a room. There is no leader but there is
a specific purpose (like an attractive signal) that makes the people move.
They orient among each other.

(4) Preziosi’s model is a measure based setting that can combine discrete
leader cells with a continuous density field of other cells. The latter are
able to follow a leader and show leader-driven collective movement.

Future studies should focus on a comparison of these approaches.

Reporter: Michael Winkler
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