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Introduction by the Organisers

The workshop Infinite Dimensional Hopf Algebras, organised by Ken Brown (Glas-
gow), Ken Goodearl (Santa Barbara), Tom Lenagan (Edinburgh), and James
Zhang (Seattle), was well attended with 17 participants with broad geographic rep-
resentation from four continents. This workshop was a nice blend of researchers
with various backgrounds. In particular, three related but somewhat indepen-
dent programmes of work on the algebraic structure of infinite dimensional Hopf
algebras satisfying some finiteness conditions were well represented. These pro-
grammes are all experiencing vigourous activity in the present century. One (initi-
ated by K. A. Brown) is aimed at developing general structure theory for noether-
ian Hopf algebras; a second (initiated by N. Andruskiewitsch and H.-J. Schneider)
is concerned with the classification of pointed Hopf algebras; while the third (initi-
ated by K. A. Brown, K. R. Goodearl, D.-M. Lu, Q.-S. Wu and J. J. Zhang) looks
to describe Hopf algebras of small growth and/or small coradical. The workshop
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brought together leading figures from all these programmes. Progress in the dif-
ferent directions was reviewed, connections and areas of overlap were identified,
and joint plans for future research were developed.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

On infinite dimensional Hopf algebras

Nicolás Andruskiewitsch

Here is an approach to the classification of Hopf algebras in suitable classes [2, 4].
Let H be a Hopf algebra with bijective antipode S. The Hopf coradical of H
is the subalgebra H[0] generated by H0 and the standard filtration is defined by

H[n] = ∧n+1H[0], n ∈ N. Then H =
⋃

n≥0 H[n], H[0] is a Hopf subalgebra of H

and grH = ⊕n≥0H[n]/H[n−1] is a graded Hopf algebra. If π : grH → H[0] is the
homogeneous projection, then R := (grH)coπ = ⊕n≥0R

n is a connected graded

Hopf algebra in
H[0]

H[0]
YD and grH ∼= R#H[0]. A class C of Hopf algebras (defined

by a property that is applicable to braided Hopf algebras) is suitable when

H ∈ C (i)⇐⇒ grH ∈ C (ii)⇐⇒ R,H[0] ∈ C.(1)

For instance, the class of finite-dimensional Hopf algebras is suitable. Let C be an
interesting class of Hopf algebras. We propose to consider the following questions:

(a). Let C be a cosemisimple coalgebra and S : C → C a bijective anti-coalgebra
map. Classify all Hopf algebras L ∈ C generated by C, such that S|C = S.

(b). Given L as in (a), classify all connected graded Hopf algebras R ∈ L
LYD such

that R ∈ C, or alternatively R#L ∈ C.
(c). For L and R as in (a), (b), classify all Hopf algebrasH such that grH ∼= R#L.

When C is suitable, complete answers to questions (a), (b), (c) amount to the classi-
fication of Hopf algebras in C. But for various interesting classes, some implications
in (1) are open problems; e.g., if C is the class of noetherian Hopf algebras, then
the implication ⇐ in (i) is a standard fact, while ⇒ is open. Even when C is not
suitable, the questions would help to advance in the classification and to furnish
families of examples. If V = R1 (the infinitesimal braiding of H), then the Nichols
algebra B(V ) is a subquotient of R. As an example, we mention the classification
of pointed Hopf algebras with finitely generated abelian group G(H) and generic
infinitesimal braiding that are domains and have finite Gelfand-Kirillov dimension
[1, 5]; and among them, those that are reductive [3].
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Distinguished pre-Nichols algebras

Iván Angiono

Let (qij) ∈ kθ×θ be a matrix such that the corresponding Nichols algebra B(V )
of diagonal type is finite-dimensional. Let χ : Zθ × Zθ → k× be the bicharacter
such that χ(αi, αj) = qij . Among all the pre-Nichols algebras (i.e., braided graded
Hopf algebras R = ⊕n≥0Rn generated as an algebra by R1 = V ) there exists

one, denoted by B̃(V ) and called the distinguished pre-Nichols algebra of χ, which
admits all the Lusztig isomorphisms as B(V ). For example if (qij) is a braiding
corresponding to a finite-dimensional quantized enveloping (super)algebra Uq(g)

at a root of unity q, then B̃(V ) is precisely U+
q (g) while B(V ) is the positive part

of small quantum group uq(g), obtained as a quotient of Uq(g).

The distinguished pre-Nichols algebra B̃(V ) has a PBW basis with the same
generators Eα of degree α ∈ ∆χ

+ as for B(V ), but some of them in a set O(V ) have

infinite height. Moreover ENα
α = 0 if and only if α /∈ O(V ), Nα = ordχ(α, α). We

prove that B̃(V ) is a Noetherian braided Hopf algebra such that GKdim B̃(V ) =
|O(V )| since it admits a filtration (coming from the PBW basis) such that the
associated graded Hopf algebra is a quotient of a quantum affine space.

We also prove that the subalgebra Z+(V ) generated by ENα
α , α ∈ O(V ), is

a braided Hopf subalgebra whose elements q-commute with the whole B̃(V ): in

particular, it is a quantum affine space in generators ENα
α . Finally B̃(V ) is a free

finite Z+(V )-module.
Under some mild conditions of (qij) the algebra Z+(V ) is commutative and

then there exists a surjective map from the (isomorphism classes of ) irreducible

modules of B̃(V ) to SpecZ+(V ), which will help to study the representation theory

of B̃(V ). Moreover the graded dual of B̃(V ) is the corresponding Lusztig’s divided
power algebra containing the Nichols algebra B(V )∗ = B(V ∗).

By bosonization of B̃(V ) with suitable abelian group algebras and taking Drin-
feld doubles of these we obtain new examples of Noetherian pointed Hopf al-
gebras of finite Gelfand-Kirillov dimension. Moreover each of them contains a
q-commutative Hopf subalgebra such that the quotient is a Hopf algebra obtained
by the same process over the Nichols algebra.

These results generalize those for quantum groups at roots of unity in [2, 3].
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Hopf algebras under finiteness conditions

Ken Brown

This talk was a survey of recent progress in the study of infinite dimensional
Hopf algebras, usually over an algebraically closed field k of characteristic 0, with
H satisfying one or both of two finiteness conditions, namely the finiteness of
Gelfand-Kirillov dimension, or the noetherian condition, that is the ascending
chain condition on one-sided ideals. It was in some sense a continuation and an
updating of two earlier survey articles, [3] and [6]. The third survey article in this
informal sequence, [4], gives a much fuller account of the ground covered in the
talk, as well as other aspects which we did not have time to cover.

The topics addressed were as follows. First, the noetherian property and the
finiteness of the Gelfand-Kirillov dimension were reviewed: the description of all
Hopf algebras of certain types which satisfy one or other of these finiteness con-
ditions was considered. Relations of these conditions with each other, and with
finite generation of the algebra, were considered, as well as some discussion on
the prime and primitive spectra of Hopf algebras satisfying finiteness conditions.
In particular we discussed recent work of Bell, Leung, Walton and Sierra, [2],
[9]. A recurring theme here is that, for affine Hopf k-algebras, finiteness of the
Gelfand-Kirillov dimension may be a more stringent condition than the noetherian
property.

We then specialised to the classes of pointed and connected Hopf algebras. For
such a Hopf algebra H , the coalgebra filtration {Hn} [7, Chapter 5] is both a coal-
gebra and an algebra filtration, so that the associated graded algebra grH is also
a Hopf algebra, and is (respectively) pointed or connected, providing an obvious
tool for the study of H . In the pointed case, that is when H0 is the group algebra
of group-like elements of H , when H is furthermore generated as an algebra in
degree one (with respect to the coradical filtration), the resulting class of Hopf al-
gebras has been the focus of the research programme initiated by Andruskiewitsch
and Schneider at the end of the last millenium, (see e.g. [1]). Aspects of this pro-
gramme were discussed in detail in other talks in the miniworkshop. We therefore
focussed in the latter part of this talk on the case of connected Hopf algebras of
finite GK-dimension - that is, where H0 = k. In this case, by a result which in part
goes back to Sweedler [8, Theorem 11.2.5a], made more precise by Zhuang [11],
grH is a commutative polynomial k-algebra in GKdimH variables. We reviewed
developments from this result, from the papers [11], [10], [5].

The talk listed a number of open questions; these, together with many others,
can be found in [4].
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Hopf algebras of low GK-dimension

K. R. Goodearl

The talk surveyed classification efforts directed at Hopf algebras of Gelfand-Kirillov
dimension four or less. Taking account of principles from quantum groups and non-
commutative algebraic geometry, and recalling that coordinate rings of connected
algebraic groups are domains, one is prompted to focus on affine or noetherian
Hopf algebras which are domains or prime rings. (Under these assumptions, the
only Hopf algebra of GK-dimension 0 is the base field.) All the reported classifi-
cation results require an algebraically closed base field of characteristic zero.

Brown and Zhang [1] investigated the class H1 of prime affine Hopf algebras of
GK-dimension 1 with finite global dimension. They presented a class of infinite-
dimensional Taft algebras and a class generalizing the Hopf algebras introduced
by Liu [3], and proved that any Hopf algebra in H1 with prime PI-degree is one
of the following four types: an enveloping algebra U(g) with dim g = 1; a group
algebra kΓ with Γ infinite cyclic or infinite dihedral; an infinite dimensional Taft
algebra; or a generalized Liu algebra. No new Hopf algebras in the class H1 have
been discovered, and it is conjectured that the mentioned classes cover H1.

Goodearl and Zhang [2] investigated the class H2 of affine or noetherian Hopf
algebras of GK-dimension 2 which are domains. Several canonical examples are
known; they proved that any Hopf algebra H in H2 with Ext1H(k, k) 6= 0 is either
in one of the canonical example classes or in one of three new constructed families.
Wang, Zhang, and Zhuang [4] then found a family of Hopf algebras H in H2

satisfying Ext1H(k, k) = 0. It is conjectured that this family, together with the
previous ones, covers H2. Wang, Zhang, and Zhuang verified this conjecture for
the subclass of H2 in which the Hopf algebras are generated by grouplikes and
skew primitives, and do not contain sub-Hopf-algebras from either of two specific
one-parameter families [4].
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In GK-dimensions 3 and 4, the connected Hopf algebras have been completely
classified (again assuming an algebraically closed base field of characteristic zero).
This was done by Zhuang [6] for GK-dimension 3 and byWang, Zhang, and Zhuang
[5] for GK-dimension 4.
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Nichols algebras

Istvan Heckenberger

Most of the deep results in this survey use in some way the Weyl groupoid of a
Nichols algebra of a semi-simple Yetter-Drinfeld module.

Let V be a vector space over a field k and let c ∈ Autk(V ⊗ V ) which satisfies
the braid equation. Then (V, c) is called a braided vector space. The Nichols
algebra of (V, c) is (by one of the many definitions) the braided N0-graded Hopf
algebra T (V )/I(V ), where I(V ) is the unique maximal coideal of T (V ) contained
in ⊕n≥2T

n(V ). If I is any Hopf ideal of T (V ), then T (V )/I is a pre-Nichols
algebra. This definition implies that whenever (V, c) is graded by a group Γ, then
B(V ) is a Γ-graded braided Hopf algebra. In particular, assume that V = ⊕θ

i=1Vi

is the direct sum of subspaces such that c(Vi ⊗ Vj) ⊆ Vj ⊗ Vi for all i, j. Then
B(V ) is Zθ-graded via deg Vi = αi for all i, where (αi)1≤i≤θ is the standard basis
of Zθ. This grading is a crucial clue to understand B(V ).

Our leading questions for the moment are the following.

(1) What is the general structure of B(V )?
(2) When is B(V ) finite dimensional/noetherian/of finite GK-dimension?

Let (V, c) be a braided vector space of diagonal type and let θ = dimV .
Kharchenko proved that any pre-Nichols algebra generated by V has a restricted
PBW basis, where the PBW generators are labeled by Lyndon words. (No Weyl
groupoid here!) Viewing the Zθ-degrees of the PBW generators of B(V ) as the
positive half of a generalized root system leads one to a very fruitful combinatorics
of Nichols algebras. Moreover, B(V ) is noetherian if and only if this set is finite.

Let now V be the direct sum of θ simple objects in a category H
HYD, where

H is a Hopf algebra with invertible antipode. Then in interesting cases (e. g. if



1120 Oberwolfach Report 20/2014

dim B(V ) < ∞) one can show that B(V ) ≃ ⊗j∈JB(V j) as Z
θ-graded objects in

H
HYD, where each V j is a subobject of B(V ). Then B(V ) is called decomposable.
If moreover J is a finite set, then B(V ) has only finitely many graded right coideal
subalgebras, and all proper maximal chains of right coideal subalgebras have the
same length. Moreover, if B(V ) is noetherian then B(V ) is decomposable, J is
finite, and all B(V j) are noetherian.

Assume that V is a finite-dimensional semi-simple Yetter-Drinfeld module over
a group algebra. In the last years, the classification of those V with finite-
dimensional/noetherian Nichols algebra was intensively advanced by various au-
thors, and additional information on B(V ) (e.g. defining relations) was obtained.
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Actions of finite dimensional Hopf algebras on AS regular algebras

Ellen Kirkman

This talk is a survey of a project to extend classic invariant theory (the study of
the subring of invariants k[x1, · · · , xd]

G under the action of a finite group G) to
a noncommutative setting. Let k be an algebraically closed field of characteristic
zero. We replace k[x1, · · · , xd] by an Artin-Schelter regular algebra A of dimen-
sion d (global and GK-dimensions) that is generated in degree 1; hence, when
commutative, A is a commutative polynomial ring. Let G be a group of graded
automorphisms of A or, more generally, a semisimple Hopf algebra H , so that A
is an H-module algebra and the H action on A is inner faithful and preserves the
grading of A. Noncommutative algebras are more rigid than k[x1, · · · , xd] in that
they generally have fewer graded automorphisms (for example, the only graded
automorphisms of kqi,j [x1, · · · , xd] are diagonal automorphisms (torus actions),
unless qi,j = ±1), so considering Hopf algebra actions on A can sometimes pro-
duce new actions (e.g. the 8 dimensional Hopf algebra of Kac-Paljutkin K8 acts
on ki[u, v] for i =

√
−1), and for some algebras A, we obtain fixed subalgebras

AH 6= AG, for G a finite group (see [8]). However, there are other situations (see
[5] and [3]) that force H = kG. In this talk I discuss what is known about the
cases where AH is AS Gorenstein, and where AH is AS regular.

Extending results of F. Klein (1884) and Watanabe (1974) on k[x1, · · · , xd]
G

for any finite subgroup G of SLd(C), we consider when AH is AS Gorenstein.
Jørgensen and Zhang extended the notion of the determinant of a group action
on k[x1, · · · , xd] to the homological determinant of a group action on A, and this
notion was extended further to a Hopf action of trivial homological determinant in
[8]. Extending Klein’s results to this context, all finite dimensional Hopf actions
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with trivial homological determinant on AS regular algebras of dimension 2 are
classified in [4] using results of [2].

The Shephard-Todd-Chevalley Theorem (1954) states that k[x1, · · · , xd]
G is

a polynomial ring (i.e. a commutative AS regular algebra) if and only if G is
a reflection group (a group generated by elements with invariant subspaces of
codimension 1), and the groups with these properties were completely classified.
Extending this result to our noncommutative setting, a group element g is called a
reflection of an AS regular algebra A of dimension d if its trace function TrA(g, t),
when written as a rational function, has a pole of order d − 1 at t = 1. There
are new reflections (that we call mystic reflections) and new groups, such as the
dicyclic groups, that become reflection groups for k−1[x1, · · · , xn] (see [7] and
[9]). The case of kqi,j [x1, · · · , xd] has been studied in detail [9], and it has been

shown recently [1] that if A = kqi,j [x1, · · · , xn]
G is an AS regular algebra then

the group algebra kG is isomorphic as an algebra to kG′, where G′ is a reflection
group. A project to classify all semisimple noncocommutative Hopf actions on
small dimensional AS regular algebras is underway. There are actions of K8 on
k−1[u, v] and on k±i[u, v] that produce AS regular fixed rings; for Hopf algebras
of dimension 12 there are even non-PI algebras A of dimension 3 with AS regular
fixed rings. The problem of completely characterizing semisimple Hopf algebras H
that act on AS regular algebras A with AS regular fixed rings AH (Hopf algebras
we might call reflection Hopf algebras for A) is largely open.
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Coideal subalgebras of Uq(g)

Stefan Kolb

Let H be a Hopf algebra with invertible antipode. Let C ⊆ H be a right coideal
subalgebra (RCSA) of H . Building on work by M. Takeuchi, A. Masuoka, and
H.-J. Schneider one says that C is a quantum homogeneous space for H if H
is faithfully flat as a right C-module, see [4]. Quantum homogeneous spaces for
pointed Hopf algebras have a particularly straightforward description.

Proposition. ([6, Proposition 1.4]) Let H be a pointed Hopf algebra and C ⊆ H
a RCSA. The following are equivalent.

(1) G(C) = {c ∈ C |∆(c) = c⊗ c} is a group.
(2) H is a faithfully flat right C-module.
(3) H is a free right C-module.

The quantum enveloping algebra Uq(g) of a simple complex Lie algebra g is an
important example of an infinite dimensional pointed Hopf algebra. Large classes
of quantum homogeneous spaces for Uq(g) are known. These include in particular
the quantum symmetric pair coideal subalgebras introduced by G. Letzter [5] which
have recently attracted renewed interest in representation theory. However, the
general classification of quantum homogeneous spaces for Uq(g) remains open.

Let U≥ denote the positive Borel part of Uq(g), and let U0 denote the coradical.
V. Kharchenko and collaborators classified all RCSAs of Uq(g) which contain U0

for g of type An, Bn, and G2. They observed that the Hopf subalgebra U≥ of Uq(g)
contains |W | such RCSAs. Here |W | denotes the order of the Weyl group W of
g. The situation was clarified by I. Heckenberger and H.-J. Schneider in the much
wider context of bozonisations of Nichols algebras [3]. This is the starting point
for the classification of larger classes of RCSAs of Uq(g) in terms of Weyl group
combinatorics in [1], [2] as summarized by the following table. Progress towards
the bottom right corner of the table is desirable.

C RCSA C ⊆ U≥ C ⊆ Uq(g)
U0 ⊆ C [3]: U+[w]U0 for w ∈ W [2]
G(C) group [1] ?
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On the representation theory of right coideal subalgebras of quantized
enveloping algebras

Stéphane Launois

(joint work with Jason P. Bell and Karel L. Casteels)

Let g be a complex simple Lie algebra of rank n, and let π := {α1, . . . , αn}
be the set of simple roots associated to a triangular decomposition g = n− ⊕
h ⊕ n+. The Weyl group W of g is endowed with the Bruhat order. To any
w ∈ W corresponds a nilpotent Lie algebra nw := n+∩Adw(n

−), where Ad stands
for the adjoint action. A quantum analogue of the enveloping algebra of this
nilpotent Lie algebra was defined in [2] by using the braid group action of W on
the quantized enveloping algebra Uq(g) induced by Lusztig automorphisms. The
resulting (quantum) algebra is denoted by Uq[w]. These algebras are strongly
related to homogeneous right coideal subalgebras of the positive Borel part of
Uq(g) as explained in [3].

The aim of this talk was to study the representation theory of these algebras
Uq[w]. As usual for infinite-dimensional algebras, it is a very difficult problem, and
so we follow Dixmier’s approach and study the annihilators of simple modules, the
so-called primitive ideals, of these algebras. These primitive ideals are somehow
well understood (up to localization), as it follows from the Stratification Theorem
of Goodearl and Letzter, and works of Mériaux-Cauchon and Yakimov, that the
set of primitive ideals Prim(Uq[w]) of Uq[w] admits a stratification of the form:

Prim(Uq[w]) =
⊔

v≤w

Primv(Uq[w]),(1)

with Primv(Uq[w]) ≃ (C∗)d(v). The aim of this talk was to present the main result
of [1] which gives a formula for the dimension d(v) of Primv(Uq[w]).

Theorem. For all v ≤ w, we have d(v) = ker(v + w).

This result was obtained independently, and by completely different methods,
by Yakimov [4].
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The totally nonnegative grassmannian (and totally nonnegative
matrices)

Tom Lenagan

This talk outlined the work of Postnikov on the totally nonnegative grassmannian,
[3], and then surveyed work of Goodearl, Launois and Lenagan, [1, 2] on cell
recognition in totally nonnegative matrices.
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Folding of Nichols algebras and quantum groups

Simon D. Lentner

The Nichols algebra B(M) of a Yetter-Drinfel’d module M over a group Γ is a
quotient of the tensor algebra T (M). It has a natural structure of a Hopf algebra
in a braided category satisfying a certain universal property. Finite-dimensional
Nichols algebras arise naturally in the classification of finite-dimensional pointed
Hopf algebras [1]. For example, they form the quantum Borel part in the small
quantum groups uq(g). Heckenberger classified all finite-dimensional Nichols alge-
bras for Γ abelian [3] and there has been much development concerning the case Γ
nonabelian by Andruskiewitsch, Heckenberger, Schneider, Vendramin and others.

In a previous Oberwolfach talk [4] I have presented a new method to construct
Nichols algebras over nonabelian central extensions G → Γ as direct sum of cer-
tain Bigalois objects of a known Nichols algebra over Γ with outer automorphisms.

In the present talk I explain this construction from a Lie-theoretic view, give
several families of examples [5] and discuss other recent developments.

Diagram folding is a phenomenon known from semisimple Lie algebras: Let g be
a Lie algebra and σ a suitable Dynkin diagram automorphism. Then the σ-orbits
of roots form the root system of the sub-Lie algebra gσ. For example (E6)

σ
= F4.

As it turns out, this is precisely the impact of the previously discussed con-
struction on the root system of the Nichols algebra in the sense of [2]: The Dynkin
diagram of the newly constructed Nichols algebra over the nonabelian group G is
a folding of the Dynkin diagram of the known diagonal Nichols algebra. Also, the
center of G depends on the diagram and is related to certain symplectic forms in
Fn
2 , which I classified in [6] and which unify my previous case-by-case arguments.
For example, folding of uq(g)

+ for g = E6 and q = i leads to a new Nichols
algebra of dimension 236 of type gσ = F4 over conjugacy classes of length 1, 1, 2, 2.
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Recent results of Heckenberger and Vendramin in the classification of finite-
dimensional Nichols algebras of rank > 1 over nonabelian groups suggest that the
complex Nichols algebras in [5] are in fact the only examples in large rank.

References

[1] N. Andruskiewitsch, H.-J. Schneider, On the classification of finite-dimensional pointed
Hopf algebras, Annals of Mathematics 171/1 (2010), 375–417.

[2] N. Andruskiewitsch, I. Heckenberger, H.-J. Schneider, The Nichols algebra of a semisimple
Yetter-Drinfeld module, American Journal of Mathematics 132/6 (2010), 1493–1547

[3] I. Heckenberger, Classification of arithmetic root systems, Advances in Mathematics
220/1 (2009), 59–124

[4] S. Lentner, Nichols algebras over nonabelian groups (Talk), Oberwolfach Report 43
(2010), 2546.

[5] S. Lentner, New large-rank Nichols algebras over nonabelian groups with commutator
subgroup Z2, Preprint (2013), arXiv:1306.5684

[6] S. Lentner, Root systems in finite symplectic vector spaces, Preprint (2013),
arXiv:1307.7151

Maximal Pointed Hopf Subalgebras

D.-M. Lu

(joint work with Z.-P. Fan, X.-L. Yu)

For each Hopf algebra H (over an algebraically closed field), we introduce its
maximal pointed Hopf subalgebra H ′, which is based on a generalized direct sum
decomposition of coalgebras and BDK’s filtration [1]. As an application, we real-
ized a transfer of a Nichols algebra over a cosemisimple Hopf algebra to one over
a group algebra.
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Cleftness for universal quantum groups

Akira Masuoka

(joint work with Yuji Tsuno)

We work over an arbitrary field k. Given a Hopf algebra H , a right H-comodule
algebra A 6= 0 is said to be an H-Galois extension over the subalgebra B = AcoH

of H-coinvariants, if the left A-linearization A ⊗B A → A ⊗ H of the structure
map A → A⊗H on A is a bijection. Those extensions include a tractable special
class, called cleft comodule algebras. We say that A is cleft, if there exists a
convolution-invertible H-colinear map H → A. Such an A is characterized as an
H-Galois extension with the normal basis property, i.e. A ≃ B ⊗ H as left B-
module and right H-comodules ([3]). This is also characterized as an H-crossed
product, B#σH , which is constructed by a weak H-action on B and a two-cocycle
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σ : H ⊗ H → B (the wrong credit at my talk should be corrected to [1]). Note
that if A is a Hopf algebra given a quotient Hopf algebra π : A → H , then A is
regarded as a right H-comodule algebra with respect to (idA ⊗ π) ◦∆A. In this
situation, A is known to be cleft if it is pointed or finite-dimensional.

Closed embeddings of quantum groups correspond to, or are even the same as,
Hopf algebra quotients. The closed embeddings of universal quantum groups here
mean the Hopf algebra quotients H(n) → Hd(F ) of Takeuchi’s free Hopf algebra
H(n) that were constructed by Bichon (for d = 1) and by Chirvăsitu [2] (for
d > 1). Let n > 1, d ≥ 1 be integers, and let F ∈ GLn(k). We let H(n) denote the
free Hopf algebra on the dual coalgebra C = Mn(k)

∗ of the n× n matrix algebra
Mn(k). This is universal among the Hopf algebras given a coalgebra map from
C. The inner-automorphism X 7→ tF−1X tF on Mn(k) given by the transpose
tF of F is dualized to a coalgebra automorphism on C, which uniquely extends
to a Hopf-algebra automorphism, say ( )F , on H(n). By definition, Hd(F ) is the
quotient Hopf algebra of H(n) divided by the relation S2d(a) = aF , a ∈ H(n).

Theorem Assume d > 1. Then H(n) is cleft as a right (as well as left) Hd(F )-
comodule algebra.

As for the case when d = 1, we only have partial results so far. The excellent pa-
per [2] by Chirvăsitu gives especially the complete description of the Grothendieck
ring K(Hd(F )) of the tensor category of finite-dimensional Hd(F )-comodules, as-
suming that k is algebraically closed. Our theorem refines some of his proofs and
explains some phenomena of his results in d > 1.
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On the values of Frobenius-Schur indicators for Hopf algebras

Susan Montgomery

Let H be a semisimple Hopf algebra over C, and let V be an irreducible represen-
tation of H with character χ. Let Λ be the integral of H with ǫ(Λ) = 1. The nth
Frobenius-Schur (FS) indicator of V is defined by

νn(V ) := χ(Λ[n]),

where for any x ∈ H , x[n] =
∑

x1x2 · · ·xn is the nth Hopf power of x. This agrees
with the classical FS-indicator for finite groups.

A more conceptual definition of the indicator has been given in [2]. Consider
the nth tensor power V ⊗n of V . H acts diagonally on V , and in fact commutes
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with the action of the cyclic permutation α = (1, 2, . . . , n) applied to V ⊗n. Then
νn(V ) = trace(α|(V ⊗n)H ).

Indicators have become an important tool in studying Hopf algebras; for exam-
ple they are used in [2] to prove a version of Cauchy’s theorem: if a prime p divides
the dimension of H , then it also divides the exponent of H . Indicators are also
gauge invariants, that is, invariants of the tensor category C of representations of
H [4],[5]. It is an open question as to whether the set of all indicator values for
all representations of H determines C up to tensor equivalence.

Thus it is important to know what indicator values can occur. For groups,
all values of νn ∈ Z, but this can fail for Hopf algebras [2], although they must
always be nth cyclotomic integers. One important Hopf algebra is D(G), the
Drinfel’d double of a finite groupG, and it was hoped that in this case, all indicator
values were integers. In current joint work with Iovanov and Mason [1], we find
a necessary and sufficient condition for all indicators of D(G) to be integers, as
well as some sufficient conditions. We then prove that many groups do have this
property: alternating and symmetric groups, PSL2(q), the Mathieu groups M11

andM12, and all regular nilpotent groups (this includes all p-groups of order ≤ pp).
We do not know if it is true for all simple groups.

However we show that there exists an irregular nilpotent group of order 56 with
non-integer indicators.
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The orbit relation for an action of a Hopf algebra

Serge Skryabin

Let H be a Hopf algebra over a field, and let A be an H-module algebra. With
each prime ideal P of A we associate a collection of ideals (PC)C∈F indexed by
the directed set F of finite dimensional subcoalgebras of H . When H is the group
algebra of a group G, those ideals are precisely finite intersections of G-conjugates
of P , and the prime ideals of A minimal over ideals in the family associated with
P recover the G-orbit of P .

This observation suggests the following definition for an arbitraryH . Let us say
that a subset O ⊂ SpecA is an H-orbit if for each P ∈ O and each P ′ ∈ SpecA
one has P ′ ∈ O if and only if P ′ is a prime minimal over PC for some C ∈ F . It
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is not clear, however, that the H-orbit containing P exists. For example, if P ′ is
a prime minimal over some PC , one has to know that P has a similar relationship
with respect to P ′.

Denote by Specf A the set of those prime ideals P of A for which there exists
no infinite strictly ascending chain P0 ⊂ P1 ⊂ · · · in SpecA starting at P0 = P . In
other words, P ∈ SpecA is in Specf A if and only if the factor ring A/P satisfies
ACC on prime ideals.

Theorem. If A is an H-module algebra module-finite over its center, then the set
Specf A is a disjoint union of H-orbits. Thus there is an equivalence relation ∼H

on Specf A such that for P, P ′ ∈ Specf A one has P ∼H P ′ if and only if P ′ is a
prime minimal over PC for some C ∈ F .

Under the hypotheses stated, for each P ∈ Specf A and each C ∈ F the factor
algebra A/PC is shown to have an artinian classical quotient ring Q(A/PC). The
rings Q(A/PC) with a fixed P and with C running over F form an inverse system.
An essential step in the proof of the above theorem consists in checking that the
linearly compact H-module algebra LP (A) = lim

←−−
Q(A/PC) is topologically H-

simple, i.e., it has no nontrivial H-stable closed ideals. This extends an earlier
result on H-simplicity of H-prime artinian algebras which appeared in [1].

When A is also assumed to be noetherian and H-semiprime, it is shown as
an application that A itself has an artinian (actually quasi-Frobenius) classical
quotient ring Q(A). This result does not require any restrictions on H , while
the same question remains open in general for H-module algebras which are not
module-finite over centers (see [1]). Complete proofs of all results discussed in my
talk are presented in [2].

References

[1] S. Skryabin, F. Van Oystaeyen, The Goldie Theorem for H-semiprime algebras, J. Algebra
305 (2006), 292-320.

[2] S. Skryabin, Hopf algebra orbits on the prime spectrum of a module algebra, Algebras Rep-
resent. Theory 13 (2010), 1-31.

Hopf actions on commutative domains

Chelsea Walton

(joint work with Pavel Etingof)

Let k be an algebraically closed field of characteristic zero. The purpose of this
work is understand quantum symmetry in the sense of studying quantum ana-
logues of group actions on k-algebras. We restrict our attention to the actions of
finite quantum groups, i.e. of finite dimensional Hopf algebras H . Two important
subclasses of such H are those that are semisimple (i.e., semisimple as an algebra;
such Hopf algebras are always finite dimensional) and those that are pointed (i.e.,
all simple H-comodules are 1-dimensional). Moreover, we are also motivated from
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the viewpoint of classic invariant theory and algebraic geometry, where the exam-
ination of Hopf actions on commutative domains over k is naturally of interest.

The classification of semisimple Hopf actions on commutative domains over k
is completely understood. Namely, Etingof and I produced the following result.

Theorem. [2, Theorem 1.3] If a semisimple Hopf algebra H over k acts inner
faithfully on a commutative domain over k, then H is a finite group algebra.

For the proof, we use methods from the study of fusion categories to show that
there are only finitely many right coideal subalgebras for a semisimple Hopf alge-
bra. However, it was brought to the attention of the speaker that the aforemen-
tioned result was proved by H. Schneider during a series at lectures at National
University of Córdoba in 1996. In any case, the theorem above fails if any of the
hypotheses are omitted: see [2, Remark 4.3], [1], and the material below for the
omission of ‘commutative’, ‘domain’, and ‘semisimple’, respectively.

On the other hand, the non-semisimple case is much more complicated. In [3]
and [4], Etingof and I study actions of finite dimensional (not necessarily semisim-
ple) Hopf algebras H on commutative domains, particularly when H is pointed of
finite Cartan type. The work in [3] begins by reducing to the case where H acts
inner faithfully on a field (so that the action does not factor through a smaller quo-
tient Hopf algebra). Such a Hopf algebra is referred to as Galois-theoretical. We
present examples of these Hopf algebras, which include the Taft algebras, uq(sl2),
and some Drinfeld twists of other small quantum groups. We also give many ex-
amples of finite dimensional Hopf algebras which are not Galois-theoretical. Clas-
sification results on finite dimensional pointed Galois-theoretical Hopf algebras of
finite Cartan type will be provided in [4].
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Modular derivations and twisted Poincaré dualities

Quanshui Wu

(joint work with Juan Luo, Shengqiang Wang)

Poisson structures naturally appear in classical/quantum mechanics, in the defor-
mation theory of commutative algebras and in mathematical physics. They play an
important role in Poisson geometry, in algebraic geometry and non-commutative
geometry. Poisson cohomologies are important invariants of Poisson structures.
They are closely related to Lie algebra cohomology, but Poisson cohomology is
finer in general. The set of Casimir elements of the Poisson structure is the 0-th
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cohomology; Poisson derivations modulo Hamiltonian derivations is the 1-st co-
homology. Poisson cohomology appears as one considers deformations of Poisson
algebras.

Poisson homology has close relations with the Hochschild homology of its de-
formation algebra. In some cases, Poisson homology is computable. On the other
hand, one can compute the Poisson (co)homology via the Hochschild (co)homology
of the deformation algebra [1]. By using the semiclassical limit of the dualizing
bimodule between the Hochschild homology and Hochschild cohomology of the
corresponding quantum affine space, Launois-Richard [1] obtained a new Poisson
module which provides a twisted Poincaré duality between Poisson homology and
cohomology for the polynomial algebra with quadratic Poisson structure. Follow-
ing this idea, Zhu [3] constructed a new Poisson module structure, which comes
from the dualizing bimodule resulting in the Poincaré duality between Hochschild
homology and cohomology of the universal enveloping algebra, and obtained a
twisted Poincaré duality for linear Poisson algebras. Motivated by their work, A
version of the twisted Poincaré duality is proved between the Poisson homology
and cohomology of a polynomial Poisson algebra R (or more generally, a smooth
Poisson algebra R with trivial canonical bundle) with values in an arbitrary Pois-
son module. The duality is induced from an explicit isomorphism between the
Poisson cochain complex of R with values in M and the Poisson chain complex of
R with values in the twisted Poisson module Mt. The Poisson module structure
Mt is twisted by the modular derivation of R, which is a Poisson derivation. In the
case of the Poisson structure is unimodular, the twisted Poincaré duality reduces
to the Poincaré duality in usual sense. A general duality theorem is proved by
Huebschmann [2] in the setting of Lie-Rinehart algebra.
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Homological techniques pertaining to Hopf algebras

James Zhang

This talk is to review some homological techniques that are used in the study of
infinite dimensional noetherian Hopf algebras. Part of the talk is based on methods
introduced by Brown, Goodearl, Lu, Wu and Zhang and results in [1, 2, 3, 4, 5].
The following is a list specific topics.

(1) Homological properties of finite dimensional Hopf algebras.
(2) Artin-Schelter Gorenstein properties of noetherian PI Hopf algebras.
(3) Homological integral and applications in infinite dimensional case.
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(4) Rigid dualizing complexes and Calabi-Yau properties of noetherian Artin-
Schelter regular Hopf algebras.

(5) Nakayama automorphism and homological identities involving Hopf alge-
bras.

Similar techniques are also used in noncommutative invariant theory, noncom-
mutative algebraic geometry and mathematical physics. The aim of the talk is to
search for hidden homological invariants and to find common features for objects
from different subjects. Several open questions are presented. One immediate
question for us is how to apply these homological methods in the study of possibly
infinite dimensional braided Hopf algebras (e.g., Nichols algebras).
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Open Questions

All participants

Please see the articles above for notation and terminology.

Question 1 (N. Andruskiewitsch). Let H be a Hopf algebra with bijective an-
tipode. As in my talk, let H[0] be the Hopf coradical generated as algebra by

the coradical H0. Define the standard filtration of H by H[n] = ∧n+1H[0]. Then
grH ∼= R#H[0] where R is a Yetter-Drinfel’d Hopf algebra over H[0].

Consider the statements:

a) H is noetherian (respectively has finite GK-dimension).
b) grH ∼= R#H[0] is noetherian (respectively has finite GK-dimension).
c) R and H[0] are noetherian (respectively have finite GK-dimension).

Are these statements equivalent? Some of the implications are well-known and
others follow easily, while some of them are difficult. Several of these and other
questions were discussed by the participants in a joint problem session:

By freeness b) ⇒ c) seems to hold easily in both cases. For noetherian, b) ⇒ a)
is a standard results [20] Thm. 1.6.3, while a) ⇒ b) has an easy counterexample in
finite characteristic and c) ⇒ b) seems open. For GK-dimension, a) ⇒ b) follows
from the dimension inequality [20] Lm. 8.3.20; provided grH is affine the converse
b) ⇒ a) holds due to dimension equality [20] Prop. 8.6.5. In general, c) ⇒ b) has a
group algebra counterexample (non-nilpotent-by-finite-polycyclic), but may hold
in the present case if the filtration is nice enough.
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Question 2 (K.A. Brown and K.R. Goodearl). Suppose H is a noetherian Hopf
algebra over an algebraically closed field. Are the quotients H/P , for minimal
prime ideals P of H , Morita equivalent to each other? (This is clearly true in
the finite dimensional case.) If not, what properties do these quotients share? In
particular,

a) If one of the quotients H/P is PI, are all of them PI (in which case H
itself is PI)?

b) Do the quotients H/P all have the same GK-dimension? Positive answers
are known in two cases: (1) H is an affine PI algebra [21, Theorem 5.6].
(In fact, the affine hypothesis can be replaced by the assumption that
H remains noetherian under any extension of the base field.) (2) H has
an exhaustive nonnegative filtration such that grH is connected graded
noetherian with enough normal elements [19, Theorem 0.4].

Question 3 (K.A. Brown and K.R. Goodearl). Are all noetherian Hopf algebras
strongly noetherian? Here “strongly noetherian” is meant in the sense of Artin
and Zhang [9]: an algebra A over a field k is strongly noetherian provided A⊗k B
is noetherian for all commutative noetherian k-algebras B.

Question 4 (K.A. Brown and K.R. Goodearl). Many open questions concerning
noetherian Hopf algebras are given in the surveys [10, 11, 13, 12].

Question 5 (S. Lentner). The Lusztig quantum groups of divided powers are
infinite dimensional Hopf algebras that contain a finite-dimensional pointed Hopf
algebra (the small quantum groups) and a Frobenius-homomorphism to a universal
enveloping of a Lie algebra. Especially they are not generated in degree 1.

a) Give other examples of Hopf algebra extensions of an enveloping algebra
U(g′) by a finite-dimensional pointed Hopf algebra H , especially when the
coradical is a nonabelian group algebra, say D4, S3.

b) Classify these extensions for a fixed finite-dimensional pointed Hopf-algebra
H : Say, for H = Uq(g)

+, for H = Uq(g), or for a bosonized Nichols algebra
over a nonabelian group. How are the root systems of g, g′ related?

c) Classify these extensions for a fixed GK-dimension, which pins down U(g′).

We expect examples with diagram folding g′ = gσ already in the diagonal case, e.g.
(partially dual to) the example in Goodearl’s talk for g = A1 × . . . A1, g

′ = A1.
Angiono’s talk provide (again dually) a surprising and rather different type of
examples where H is diagonal and non-Cartan and g′ are the Cartan roots.

Question 6 (S. Lentner). My talk was about the construction of large-rank finite-
dimensional complex Nichols algebras from known diagonal Nichols algebras by
diagram folding [18].

a) Is there a closed construction of the known finite-dimensional Nichols al-
gebras (arbitrary rank, arbitrary characteristic) from diagonal Nichols al-
gebras?

b) For each case in a), construct pointed Hopf algebras (liftings) by folding
the known liftings of the diagonal Nichols algebras. Are these all liftings?
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c) Prominent examples of liftings in the diagonal case are the small quantum
groups uq(g), and their representation categories have ties to the represen-
tation theory of the Lie group G(g) over the finite field Fq. What is the
interpretation of the diagram folding construction under this correspon-
dence?

Question 7 (D.-M. Lu). For each Hopf algebra H (over an algebraically closed
field), we introduce its maximal pointed Hopf subalgebra H ′, which is based on a
generalized direct sum decomposition of coalgebras and BDK’s filtration. As an
application, we realized a transfer of a Nichols algebra over a cosemisimple Hopf
algebra to one over a group algebra.

a) Is there a Hopf-ideal I such that H = H ′ ⊕ I?
b) What algebraic and homological relations between H and H ′?

Question 8 (A. Masuoka). Alexandr Zubkov and I aim to classify all reductive
affine algebraic supergroups over an algebraically field k of characteristic 6= 2.
The category of affine supergroups G is anti-isomorphic to the category of super-
commutative Hopf superalgebras A; G is the group-valued functor defined on the
category of super-commutative superalgebras which is represented by the corre-
sponding A. Our aim is translated into Hopf-algebra language as follows:

Question: Classify all super-commutative Hopf superalgebras A over an alge-
braically field k of characteristic 6= 2 such that

a) A is finitely generated as an algebra,
b) A is generated by the coradical CoradA of the coalgebra A, and
c) the commutative Hopf algebra A contains neither non-trivial idempotent

nor non-zero nilpotent element, where A = A/(A1) denotes the (largest)
quotient Hopf algebra of A divided by (A1), the ideal generated the odd
component A1 of A.

Here are two remarks. (1) Those super-commutative Hopf superalgebra A which
are cosemisimple, i.e. A = CoradA, and which are not Hopf algebras, i.e. A1 6= 0,
are rather restricted even in characteristic zero. (2) The question may be regarded
as a variant of the first step of the classification program proposed by N. An-
druskiewitsch and J. Cuadra, which requests to classify all Hopf algebras A that
are generated by CoradA.

Question 9 (S. Montgomery). Let C be the category of modules of a semisimple
Hopf algebra H , so that C is generated by the irreducible modules for H , call them
V1, V2, . . . Vn. Let m be the exponent of H and let νj(Vi) be the value of the jth
Frobenius-Schur indicator on Vi. Consider the set

S = {νj(Vi) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
By work of Mason-Ng-Schauenburg, the set S consists of gauge invariants; that is,
the values are invariants of the category C. The question is the converse:
If Hopf algebraH and H ′ have the same set S of indicator values, are their module
categories C and C′ gauge equivalent?
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Note that νm(Vi) = dim(Vi), so if the sets are the same, then H ′ ∼= H as algebras.
The question is true trivially if H is the group algebra of an abelian group. This
question was raised by the proposer in 2006, though it still seems to be open for
group algebras. Richard Ng has suggested that if it is false as stated, one could
also require that the two categories have the same fusion rules.

Question 10 (S. Skryabin). LetH be any Hopf algebra over a field with a bijective
antipode. Does every H-semiprime right noetherian H-module algebra have an
artinian classical right quotient ring?

Question 11 (S. Skryabin). Can the existence of H-orbits of prime ideals be
proved for some classes of H-module algebras other than the algebras module-
finite over their centers, e.g., for PI algebras?

Question 12 (S. Skryabin). Suppose that an H-module algebra A is H-simple,
semiprime, noetherian and module-finite over its center. Does then A always have
a finite global dimension?

Question 13 (S. Skryabin). Suppose that A is H-simple, noetherian and module-
finite over its center, but not necessarily semiprime. Is it possible to conclude that
A is Gorenstein?

Question 14 (C. Walton). As an extension of the theorem in the abstract above,
Pavel Etingof and I posed the following question [14, Question 5.9] on Hopf actions
on PI algebras (algebras satisfying a polynomial identity).

Question: If a cosemisimple Hopf algebra H over k acts inner faithfully on a PI
domain of PI degree d, must then PIdeg(H∗) ≤ d2?

If the answer is affirmative, then we have that the bound d2 is sharp due to [14,
Example 5.10].

Question 15 (C. Walton). In [15, 16], the authors examine the Galois-theoretical
property of the most extensively studied finite dimensional, pointed Hopf algebras:
those of finite Cartan type. Given Heckenberger’s classification of finite dimen-
sional, pointed Hopf algebras over abelian groups [17], we also propose the fol-
lowing tasks: Study the Galois-theoretical property of finite dimensional, pointed
Hopf algebras H with G(H) abelian of standard type (which properly includes fi-
nite Cartan type) [7], super type [2], and unidentified type [8]. Moreover, it would
be interesting to achieve this task for the known finite dimensional, pointed Hopf
algebras H with G(H) non-abelian.

Question 16 (J.J. Zhang). Let A be a noetherian Artin-Schelter regular algebra.
Is A a braided Hopf algebra? It was verified by Heckenberger and others during the
workshop that every noetherian Artin-Schelter regular algebra of global dimension
two that is generated in degree 1 is a braided Hopf algebra. Question 1 was also
verified for some other examples of Artin-Schelter regular algebras of higher global
dimension. The same question can be asked for Artin-Schelter Gorenstein algebras,
but the answer could be “no” in this general setting.



Mini-Workshop: Infinite Dimensional Hopf Algebras 1135

Question 17 (J.J. Zhang). Given an Artin-Schelter regular algebra A, is there
a natural way of constructing finite dimensional Hopf algebras H that act on A
inner faithfully? This question is motivated by recent work of Chan, Kirkman,
Walton and Zhang on the classification of finite dimensional Hopf algebra actions
on Artin-Schelter regular algebras of dimension two.
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