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Introduction by the Organisers

The conference was organized by Randolph E. Bank, UCSD, La Jolla, Lars Grase-
dyck, RWTH Aachen, Wolfgang Hackbusch, MPI Leipzig, and Gabriel Wittum,
University of Frankfurt. This was the seventh one in a series of conferences on fast
solvers held at Oberwolfach since 1999. The idea of these workshops is to bring
together experts from the different thriving areas of solvers and offer a platform
for scientific exchange and progress.

The field of solvers for the algebraic systems arising from the discretization of
partial differential equations has developed to a major area of numerical mathe-
matics and scientific computing. Solvers are the essential part of simulation codes
for problems from science and technology, in many cases determining the complex-
ity of the whole simulation. By virtue of that, the choice of the solver can decide
on the realiability of a simulation and if it can be done at all. Thus, solvers are
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a substantial mathematical component of most simulation tools and a major con-
tribution of mathematics to quite a lot of applied disciplines. This has increased
the interest in mathematics of colleagues from the applied sciencies over the last
two decades substantially.

Major areas of solvers represented at the workshop are: Multigrid methods,
H-matrices, domain decomposition methods, and conjugate gradient methods and
their scalable parallelization on huge numbers of cores. Often these methods are
combined, e.g. conjugate gradient like methods are used as accelerator for multi-
grid. Besides that, several talks were given on other aspects of solving partial
differential equations, such as discretization schemes and the algebraic properties
of the resulting stiffness matrices, overall solution strategies, and application areas
where solving plays a crucial rôle.

The question of the right solver for critical application problems is still open,
but new approaches have been developed in recent years. New light is shed on the
solver question by the recent change of paradigm in computer architecture. The
modern multicore processors with additional strong GPU and MIC accelerators
pose a new and serious challenge for the development of fast solvers. A total of 25
presentations gave a nice overview over the current research, open problems and
new developments. Intense discussions provided the opportunity to go into details
of novel algorithms and approaches.

In multigrid methods, a lot of research is going in the direction of develop-
ing robust methods for special applications. This is a challenging topic requiring
mathematical expertise as well as understanding of the model and the application
process itself. Another major topic is Algebraic Multigrid. AMG methods are
already wide spread in several applied communities. However, a lot of open prob-
lems remains and the final algorithm is not yet in sight. Several talks also were
related to performance issues of multigrid on certain computer architectures such
as super scalar or parallel computers. Multigrid research is thriving more than
ever.

Another bunch of talks were about domain decomposition methods. These
methods are of particular interest for multiphysics problems and parallelization
issues. Several new developments have been reported and discussed, giving inter-
esting future perspectives. Often techiques from domain decomposition analysis
can be used to analyze other methods e.g. multigrid. A novel technique use-
ful together with domain decomposition and multigrid, but can also stand on its
own, are hierarchical matrices (H-matrices). Here, several talks have shown the
impressive level of development these methods already have obtained.

Tensor representation and solving the corresponding equations was discussed in
several talks at the conference. This novel class of numerical reduction methods
got a lot of attention. It comes from solving high dimensional problems, but
can be used to reduce also low dimenisonal ones. Further talks have discussed
solver techniques for application problems as well as other problem areas like
optimization.
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In total, the workshop was very successful in bringing together international-
level experts from different areas and disciplines. Meanwhile, the Oberwolfach
workshop on ”Schnelle Löser für partielle Differentialgleichungen” is established
as major event in the solver community and a mainstay for novel developments.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Adaptivity and Preconditioning for High-Dimensional Elliptic Partial

Differential Equations

Markus Bachmayr

(joint work with Wolfgang Dahmen)

We consider high-dimensional operator equations Au = f with elliptic A : H →
H′, where H′ is a separable Hilbert space. In [2], we have analysed an adaptive
method for the construction of low-rank tensor approximations of u based on the
hierarchical tensor format [4, 5]. Our analysis required the availability of suitable
low-rank representations (or approximations) of A. In this regard, some additional
obstructions arise when H is not endowed with a cross norm, for instance in the
case of Sobolev spaces. In this talk, we focus in particular on the treatment of
second-order problems. Specifically, we consider the model case

A = −
d∑

i,j=1

aij∂i∂j + a0id

with H = H1
0 (Ω), Ω = (0, 1)d; the coefficients a0, aij are assumed to be constant,

although this is not essential.
The adaptive scheme is based on a Riesz basis representation of the problem.

To obtain a Riesz basis in the present case, we may start from a tensor product
orthonormal wavelet basis {Ψν}ν∈Nd of L2(Ω), where Ψν = ψν1⊗· · ·⊗ψνd . A Riesz
basis of H1

0 (Ω) (assuming sufficient regularity and a suitable boundary adaptation
of the ψνi) can then be obtained by rescaling: let

ων := ‖Ψν‖H1 ∼
( d∑

i=1

22j(νi)
) 1

2

,

where j(νi) denotes the wavelet level of νi, then {ω−1
ν Ψν}Nd is a Riesz basis of

H1
0 (Ω) with, as noted in [3], d-independent condition number. Defining the infinite

matrices S := diag(ων), T := (〈AΨν ,Ψµ〉)µ,ν , the basis representation of the
original problem reads S−1TS−1u = f with fν = ω−1

ν 〈f,Ψν〉 and uν = ων〈u,Ψν〉.
Our aim is, for any given ε > 0, to find uε such that ‖u−uε‖H1(Ω) ≤ ε. In the basis
representation, the latter translates to ‖u − uε‖ℓ2(Nd) ≤ CΨ ε. On the one hand,

we need to find a suitable finite set of basis indices Λε = Λ
(1)
ε × · · · × Λ

(d)
ε ⊂ N

d

for uε, on the other hand we use a nonlinear representation in hierarchical tensor
format for the high-dimensional coefficient vector (uε,ν)ν∈Λε

, where we also need
to identify appropriate tensor ranks. We construct uε by an iterative scheme with
all operations performed in the hierarchical format, which requires compatible
representations of the involved operators T and S−1.

Whereas T – for suitably structured (aij) – has a representation of low hierar-
chical rank, e.g. of maximum hierarchical rank two in the case A = −∆, we are
facing the problem that on the full index set N

d, the rank of S−1 is unbounded.
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With S−1 playing the role of a preconditioner, this can essentially be seen as a
consequence of the spectral properties of the Laplacian.

As in [2] (and the precursor in [1]), our adaptive scheme is based on a perturbed
Richardson iteration, which now also requires a suitable low-rank approximation
of S−1. Since a direct approximation of S−1 leads to unnecessarily high ranks,
we replace it by an equivalent diagonal scaling operator S̃−1, which for a fixed
δ ∈ (0, 1) satisfies (1 − δ)‖S−1v‖ ≤ ‖S̃−1v‖ ≤ (1 + δ)‖S−1v‖ for any finitely

supported v, and which has more efficient rank-n approximations S̃−1
n . With a

tensor recompression operation Pε and a tensor coarsening operation Cε as in [2],
the method can be written briefly as

um+1 = Cε1,mPε2,m

(
uj − ω(S̃−1

nm
T̃ε3,m S̃−1

nm
um − f̃ε4,m)

)

where ω > 0 is a scaling factor, f̃ε is an approximation of f , and T̃ε is an approxima-
tion of the infinite matrix T by wavelet compression of its lower-dimensional tensor
components. Here we need to choose the parameters nm and ε1,m, . . . , ε4,m to both
ensure convergence to the exact solution and retain control over the complexity
of the iteration. We construct S̃−1 by a suitable exponential sum approximation
with relative error bound, based on sinc quadrature, of t 7→ t−

1

2 on [1,∞), which
yields approximations

S̃−1
n =

n∑

k=1

S
(1)
k ⊗ · · · ⊗ S

(d)
k

with lower-dimensional diagonal operators S
(i)
k and S̃−1 = limn→∞ S̃−1

n . As a
result, we arrive at a condition on the required approximation ranks of the form

nj ≥ n0(δ) + c
(
|ln ε4,m|+ max

i=1,...,d
{ν : um,ν 6=0}

j(νi)
)

with constants n0, c depending in particular on δ and T. In other words, the
maximum active wavelet level in the current iterate um enters linearly in the
required approximation rank nm.

In order to obtain a complexity analysis of the scheme similarly to [2], we thus
need to control the maximum wavelet levels that can arise in the course of the
iteration. In our present setting, this can be achieved if f ∈ H−1+t(Ω) for some
t > 0; with this additional regularity condition, we subsequently obtain operation
complexity estimates along the lines of [2] also in the present setting of problems
posed on Sobolev spaces. Under model assumptions that are satisfied, e.g., for
certain high-dimensional Poisson problems, the resulting bound on the number of
operations required for constructing uε with ‖uε − A−1f‖H1 ≤ ε is of the form

Cd|ln ε|Kdε−
1

s . Here s is the approximation order for the one-dimensional tensor
components, Kd has an affine linear dependence on ln d, and Cd grows superalge-
braically, but subexponentially in d. Numerical experiments with our method for
the problem −∆u = 1 on Ω = (0, 1)d with homogeneous Dirichlet boundary con-
ditions demonstrate that the number of operations required to guarantee a certain
error tolerance in H1(Ω) in fact shows a low-degree polynomial scaling in d.
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Multigrid methods for saddle point problems

Susanne C. Brenner

(joint work with Hengguang Li, Duk-Soon Oh, Li-Yeng Sung)

We present a general framework for the design and analysis of multgrid methods
for saddle point problems of the form

a(u, v) + b(v, p) = F (v) ∀ v ∈ V

b(u, q)− c(p, q) = G(q) ∀ v ∈ Q

that are associated with mixed finite element discretizations of elliptic boundary
value problems [1]. These multigrid methods are uniformly convergent in the
energy norm on general polyhedral domains Ω.

For the Stokes and Lamé systems discretized by the Taylor-Hood mixed finite
element methods, these multgrid methods converge uniformly in the energy norm

‖u‖H1(Ω) + ‖p‖L2(Ω)

For the Darcy system discretized by the Raviart-Thomas-Nédélec mixed finite
element methods of order at least 1, these multigrid methods converge uniformly
in the energy norm

‖u‖L2(Ω) + ‖p‖H1(Ω;Th)

where ‖ · ‖H1(Ω,Th) is a standard DG norm for discontinuous piecewise polynomial
functions.

The key ingredients for these multigrid methods are smoothers that involve
block diagonal preconditioners. The preconditioner is chosen so that the scale of
mesh-dependent norms associated with the smoothers has the following properties.

(1) The smoother enjoys standard smoothing properties with respect to the
scale of mesh-dependent norms.

(2) The scale of mesh-dependent norms is equivalent to a scale of Sobolev norms
that include the energy norm for the saddle point problem and the fractional order
Sobolev norm associated with the regularity of the elliptic boundary value problem.

The second property ensures that approximation properties with respect to the
mesh-dependent norms can be established without full elliptic regularity, which



1322 Oberwolfach Report 24/2014

together with the first property yields the uniform convergence of W -cycle al-
gorithms in the energy norm for general polyhedral domains if the number of
smoothing steps is sufficiently large. Numerical results indicate that the V -cycle
algorithm is also uniform convergent.

For the Stokes and Lamé systems, the preconditioner for the smoothing steps
involves an optimal preconditioner for the discrete Laplace operator associated
with continuous Lagrange finite element spaces. For the Darcy system it involves
an optimal preconditoner for the discrete Laplace operator associated with discon-
tinuous finite element spaces.

The general framework is applicable to problems with nonsymmetric a(·, ·) (for
example, the Oseen problem) and problems with nonsymmetric c(·, ·) (for example,
the diffusion-convection/advection-reaction problems).

Other examples include mixed finite element methods for the biharmonic prob-
lem using Lagrange elements [2] and mixed finite element methods for linear elas-
ticity in the stress-displacement formulation where the symmetry of the stress is
only weakly enforced [3].

Details of this work can be found in [4, 5].
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H2-matrix preconditioners

Steffen Börm

(joint work with Knut Reimer)

Hierarchical matrices [13, 15, 11, 14] can be used to construct preconditioners
for FEM and BEM problems: generalized regularity results [2, 5, 10] imply that
the solution operators of strongly elliptic PDEs can locally be approximated by
low-rank operators. Storing these operators in factorized form gives rise to the
representation as a hierarchical matrix.

Of particular interest are approximations of triangular factorizations like the
LR or Cholesky decomposition, since these lead to reduced storage requirements
and setup times compared to the approximation of the entire inverse. Experiments
show that this approach leads to efficient and very robust preconditioners [17, 1,
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12], and this observation has recently be confirmed by theoretical investigations
[10, 9].

H2-matrices [16, 7, 6] are a variant of hierarchical matrices that employ an
additional compression to reduce storage requirements and compute times even
further. It has been proven [4] that standard approximation results for hierarchical
matrices can easily be extended to H2-matrices, so we are faced with the question
of whether we can construct H2-matrix approximations by algorithms that are
similar to those used for hierarchical matrices.

This talk, based on [8], shows that we can approximate products, inverses and
factorizations of H2-matrices using only two fundamental operations:

• the simultaneous multiplication of an H2-matrix with k vectors and
• the (approximate) update of an H2-matrix by a factorized rank-k-matrix.

This approach leads to algorithms that a structurally similar to their counter-
parts for standard hierarchical matrices, but are significantly more efficient: the
fundamental operations can be performed in linear complexity and give rise to
algorithms of total complexity O(nk2 log n) for approximating the inverse or the
triangular factorization of an H2-matrix.

Numerical experiments illustrate that this approach leads to preconditioners
for FEM and BEM problems that require O(n) units of storage, and O(n log n)
operations to set up.

Besides the construction of preconditioners, approximate H2-matrix factoriza-
tions can also be employed to compute eigenvalues of elliptic partial differential
operators by “slicing the spectrum” [18]. Numerical experiments [3] show that one
step of the resulting method takes only O(n log n) operations.

The last part of the talk is devoted to a possible future application of the
method: if the cluster tree is chosen correctly, we should be able to compute ap-
proximate factorizations of the stiffness matrices of saddle-point problems arising
from the mixed finite element discretization of Darcy’s equation.
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Affine conjugate adaptive Newton methods for nonlinear mechanics

Peter Deuflhard

(joint work with Martin Weiser)

The talk presented an adaptive Newton method in function space for nonlinear
mechanics. The algorithm is run in three levels:

(I) outer iteration: global Newton method in function space with adaptive
damping, where the arising cubic upper bound is computationally esti-
mated, thus leading to a predictor and a corrector strategy;

(II) adaptive multilevel discretization of function minimization, both convex
and polyconvex, where the discretization errors on each level are controlled
by a-posteriori estimates; the energy error norm is estimated in terms of
the (convex) functional for linear mechanics;

(III) inner iteration: preconditioned conjugate gradient method (PCG), applied
to the indefinite case of nonlinear mechanics by either truncated or regu-
larized PCG.

All three levels are intertwined, e.g., the mesh generation takes the nonlinearity
into account. This algorithm has been successfully applied in challenging problems
of cranio-maxillo facial surgery planning and should work in the general context
of nonlinear mechanics.

http://arxiv.org/abs/1402.5056
http://www.asc.tuwien.ac.at/preprint/2013/asc37x2013.pdf
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The Laplace Transform versus Parareal

Craig C. Douglas

(joint work with Li Deng, Hyoseop Lee, Imbunm Kim, and Dongwoo Sheen)

Both the Laplace Transform and the Parareal family of algorithms promise to
provide completely parallel in time and space computational results. Given a
random problem it is unclear which algorithm will run faster. In this talk, we
provide the following:

• Define the algorithms in question, including more specific details than
usual.

• Define interesting parallel environments, some of which do not exist yet.
• Demonstrate several computational environments in which one of the al-
gorithms can be expected to be faster than the other algorithm, including
when compact 4th and 6th order finite difference schemes are used.

Details can be found in [1] and [2].

References

[1] C. C. Douglas, L. Deng, H. Lee, and D. Sheen, A comparison of the Parareal and the Laplace
transform algorithms, in Proceedings of DCABES 2012, Guilin, China, 2012, Q. Guo and
C. C. Douglas (eds.), IEEE Computer Society CPS, Los Alamitos, CA, 2012, pp. 1–4.

[2] C. C. Douglas, H. Lee, I. Kim, and D. Sheen, Higher-order schemes for the Laplace trans-
formation method for parabolic problems, Computation and Visualization in Science, 14
(2011), pp. 14–37.



1326 Oberwolfach Report 24/2014

Parallel Multigrid in Space and Time

Robert D. Falgout

(joint work with S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, J. B. Schroder)

Multigrid methods are important techniques for efficiently solving huge linear sys-
tems and they have already been shown to scale effectively on millions of cores.
Future exascale architectures will require solvers to exhibit extreme levels of con-
currency (1B cores), minimize data movement, exploit machine heterogeneity, and
demonstrate resilience to faults. Multigrid approaches are ideal for addressing
these challenges. In this talk, we discuss two areas of multigrid research. The first
is a new non-Galerkin approach for constructing coarse-grid operators in algebraic
multigrid (AMG) [1]. The method uses a stencil-collapsing technique to reduce
the number of nonzeros in the Galerkin matrix without destroying convergence.
This greatly improves parallel performance by reducing communication on coarser
grids. The second research topic is a parallel time integration approach based on
multigrid reduction (MGR) techniques [2]. The advantage of the approach is that
it is easily integrated into existing codes because it simply calls the users existing
time-stepping routine. Parallel results show the potential for significant speedup
over standard time stepping for parabolic equations.
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Models and Numerical Strategies for Inelastic Processes in Industrial

and Biological Problems

Alfio Grillo

(joint work with Raphael Prohl, Gabriel Wittum)

The theory of inelastic processes constitutes an intensively investigated research
field of theoretical and computational Mechanics. It addresses the characterisation
of the mechanical behaviour of continuum bodies that, besides changing shape,
may also undergo inelastic reorganisations of their internal structure in response
to stimuli of various nature and acting at different length and time scales.

The study of the structural evolution of continuum bodies covers different
classes of phenomena, these ranging from the onset of plastic deformations in the
building materials used in industrial applications to the growth and remodelling
of biological tissues. The physics lying behind these phenomena is very different,
since it depends on the material properties of the considered body and on the type
of interactions that the body itself experiences with its environment. Nevertheless,
the mathematical models and the computational strategies, which are elaborated
to formulate and solve inelastic problems, have many features in common.
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The scope of this contribution is to review and extend some already existing
models of inelastic phenomena, and to propose a computational procedure capable
of solving accurately problems arising both in the industrial context and in the
biomechanical one. The proposed algorithm, which should serve as a basis for an
efficient structural mechanical solver, has been tested by solving some benchmarks
available in literature and largely adopted in finite-strain elastoplasticity. For this
reason, and for the sake of conciseness, the methodologies discussed in the following
shall be dealing only with the non-linear elastoplastic modelling of metals.

The theoretical and computational tools adopted to approach inelastic processes
are often inspired by the Theory of Finite Elastoplasticity (cf., e.g., [1]), where the
deformation gradient F , which accounts for the overall change of shape of the
studied body (cf. [2] for details), is decomposed multiplicatively into an elastic
and a plastic part, i.e., F = FeFp. This decomposition has its roots in the micro-
mechanical description of plasticity. For example, in the case of single-crystal
plasticity, Fe accounts for the deformation of the crystal lattice, whereas Fp is
said to move “the material through the lattice via dislocation motion” [3]. In
Biomechanics, the tensor Fp describes the inelastic deformations associated with
the material inhomogeneities that accompany the remodelling of a tissue [4], that
is its structural reorganisation in response to applied loads (the latter one tends
to optimise the stress distribution inside the tissue).

The plastic part of the overall deformation, Fp, can be viewed as an independent
tensor variable. Therefore, in a purely mechanical framework, the independent
kinematic descriptors of a body undergoing an elastoplastic process are F and Fp,
while the elastic part of the overall deformation is given by Fe = FFp

−1. This
interpretation of Fp follows fundamental concepts presented in [5, 6], where Fp

acquires the meaning of the Lagrange parameter associated with the body’s plastic
degrees of freedom.

Many elastoplastic models introduce, along with Fp, the hardening parameter.
In general, this is a second-order tensor that describes the evolution of the elastic
range of a given material.

Looking at the literature, the most relevant differences among the available
models of Elastoplasticity concern the determination of the flow rule, which is the
evolution law for Fp, and the description of the hardening. For example, many
models of metal plasticity are based on associative flow rules (i.e., the direction
of the plastic strain rate is perpendicular to the yield surface [7]), while, in other
circumstances, as is the case for some problems in soil mechanics, plastic flow
needs to be modelled by non-associative flow rules. Moreover, depending on the
problem that has to be solved, the hardening can be isotropic, kinematic, or a
combination of both.

A quite commonly adopted procedure to solve plasticity models is the Return
Mapping Algorithm (RMA). The RMA is classically formulated as a closest point
projection method. In [3], it is presented for the case of associative and rate-
independent plastic flow rules, and under the assumption of isotropic elastoplastic
material behaviour. This latter hypothesis allows to formulate the elastoplastic
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problem in terms of the symmetric and positive-definite tensor Bp = (Fp
T.Fp)

−1,
which leads to important computational simplifications.

Some modifications of the RMA have been proposed (cf., e.g., [8]) to include
rate-dependent elastoplastic behaviour and non-associative flow rules. Moreover,
other algorithms, developed more recently, are elaborations of general procedures
known as Active Set, Interior Point, and Sequential Quadratic Programming
(SQP) methods [9, 10], and rely on the possibility of reformulating the elasto-
plastic problem as a constrained optimisation problem. For instance, the SQP
method developed by Wieners [9] iterates along a sequence of linearised quadratic
sub-problems, which consist of the linearised flow rule and the linearised Karush-
Kuhn-Tucker (KKT) conditions. The linearisation is performed with respect to
the stresses, the plastic multiplier and the displacements, so that only a linearised
material response is inserted into the equilibrium equations in every SQP step.

The principal steps of the RMA can be summarised as follows: Firstly, the flow
rule and the KKT-conditions are solved independently for every integration point,
resulting in a non-linear stress response. Therein, the plastic multiplier, which
is necessary to fulfil the KKT-conditions, is computed by a “predictor-corrector”
method. Secondly, this response is inserted into the equilibrium equation, which
leads to a non-linear variational problem for the displacements. A relevant feature
of the RMA is that the weak form of the equilibrium equation is solved together
with the flow rule, which is local and, thus, solved only at the integration points.

The RMA, as presented in [3], relies on the concept of trial stress, which is
obtained by ideally “freezing” the plastic deformation tensor determined at the
time step tn, and setting it equal to the trial plastic deformation tensor at time
tn+1, i.e., Fp

trial(tn+1) ≡ Fp(tn). The method introduces a simplification of the
flow rule, which facilitates the projection of the trial stress onto the yield surface
and, above all, allows to express the unknown Bp(tn+1) entirely in terms of trial
quantities. Furthermore, the method is developed for a particularly simple strain
energy density function, which is defined as the sum of a term depending solely
on Je := det(Fe) (i.e., the volumetric part of Fe) and a term depending solely on
Fe := Je

−1/3
Fe (i.e., the distortional part of Fe).

In this contribution, a computational procedure for elastoplastic problems at
finite strains is proposed, which aims to further modify and extend the RMA to
much more general flow rules and strain energy density functions. Geometric and
kinematic non-linearities as well as non-linear material behaviour are accounted
for. The procedure is based on the KKT-system that characterises the elastoplastic
material response. This set of equations consists of the equilibrium equation, the
flow rule, the (isotropic) hardening law, the KKT-conditions, and the constitutive
laws. For ease of exposition, however, hardening is not considered here, and the
KKT-multiplier is written in such a form that it can be computed a posteriori,
once F and Bp are known. In order to briefly sketch how the algorithm works, no
external forces are considered, so that the weak form of the equilibrium equation
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and the flow rule are written as follows:

W(χ,Bp) = 0, W(χ,Bp) =

∫

Ω

P̂ (χ,Bp) : Grad(w),(1)

G(χ,Bp) = 0,(2)

where χ is the deformation (whose “gradient” is F ), W(χ,Bp) is the virtual

internal power, w is the virtual velocity, P̂ (χ,Bp) is the first Piola-Kirchhoff
stress tensor, and G(χ,Bp) is a compact way of writing the flow rule. Equations
(1) and (2) are understood here as already written in time-discrete form.

Given an initial pair (χ0,Bp0), the proposed procedure linearises both W and
G with respect to Bp in a neighbourhood of Bp0 along some plastic increment
Φp. This leads to approximated expressions of W(χ,Bp) and G(χ,Bp), denoted
by ∆W(χ,Bp0,Φp) and ∆G(χ,Bp0,Φp), respectively, which are linear in Φp.
Setting ∆G(χ,Bp0,Φp) equal to zero allows to express Φp as a function of χ

and Bp0, i.e., Φp = Φ̂p(χ,Bp0). Substituting this result into ∆W , one obtains

the transformed functional ∆̂W(χ,Bp0), which is highly non-linear in χ. Next,

∆̂W(χ,Bp0) is set equal to zero, and the deformation satisfying this equation is
determined with the aid of standard iterative methods (e.g., Newton procedure)
by linearising in a neighbourhood of χ0. Then, the whole procedure is repeated
until (1) and (2) are satisfied within a prescribed tolerance.

In order to check whether the proposed method, termed Generalised Plastic-
ity Algorithm (GPA), delivers results comparable to those obtained by using the
RMA method, two benchmarks have been simulated. The first one is a shear-
compression test of a unit cube [11] (see fig. 1); the second one is the necking of
a cylindrical bar [3] (see fig. 2).

Figure 1. Shear com-
pression test of a unit
cube at t = 300 s.

Figure 2. Necking of
the circular bar in a
tensile test. Boundary
displacement: 7.0mm.
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Compared to the classical RMA, the proposed computational strategy presents
an additional linearisation iteration with respect to the plastic deformations. This
implies that the computational effort required by the GPA is bigger than that
needed by the classical RMA. Nevertheless, likewise to the RMA, the GPA can
be combined with very efficient and robust multigrid methods, and could thus be
suited for large problems. The numerical methods used for simulations have been
implemented in UG4, a novel version of the software framework UG (“Unstruc-
tured Grids”) [12]. This toolbox provides fast, massive-parallel solvers for coupled
partial differential equations like, e.g., geometric and algebraic multigrid methods.
Its new tools for parallel communication (PCL) allow for an efficient scaling of the
code on large numbers of processors [13].

References
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GPU accelerated non-linear solvers in biomedical applications

Gundolf Haase

(joint work with Caroline Costa, Manfred Liebmann, Aurel Neic, Gernot Plank)

The presentation is embedded in the context of coupled cardiac electro-mechani-
cal simulations with special focus on the acceleration of non-linear mechanics on
accelerator devices [3]. The various solver parts in CARP as elliptic PDE, parabolic
PDE, ODEs, or linear elasticity are accelerated on GPUs by using CUDA and it
turns out that one GPU substitues 20 CPU cores on a Tier-0 cluster.

The coupling of the bidomain equations with elasticity is fully realized in the
CARP code as well as in the Parallel Toolbox (PT). The interfaces for combin-
ing CARP and PT have been redesigned regarding flexibility and efficiency which
allows solver strategies adapted to non-linear problems. The finite element sub-
routines for non-linear elasticity are based on the work of C. Augustin [4, 1] and
the finite element matrix generation has been partially accelerated by OpenMP
and GPU parallelization [2].

Our AMG preconditioner has been extended to elasticity problems with special
focus on the non-linear problems. Sophisticated update strategies of the AMG
components have been implemented [2] which take into account that the mesh
topology will not change during the calculations. This allows to separate matrix
graph generation algorithms in finite element generation and AMG operator setup,
which are hard to parallelize, from intrinsic parallel parts as recalculation of stiff-
ness matrix entries, intergrid transfer operator entries, coarse operator entries in
the non-linear case. The matrix graphs and operator graphs will be generated
only once on the CPU while all other parallel recalculations of matrices, coarse
operators and interpolation operators can be performed on the accelerator devices.

We did extensive investigations of the AMG solver components for solving the
coupled systems resulting from non-linear elasticity. It turned out that the ap-
proach for linear elasticity by Griebel/Oeltz/Schweitzer cannot be used without
modifications for the linearized elasticity system, especially when the minimal run
time is the main criterion. For solving the linear elasticity equations, we achieved
the fastest run time, on CPU as well as on GPU, with an unsmoothed block ag-
gregation combined with a block smoother, i.e., the degrees of freedom per node
have to be handled together in the smoother but matrix dependent interpolation
and restriction is not necessary [1].

The matrix calculation in CARP consumes up to 50% of the compute time.
Therefore, further acceleration for electro-mechanics on the GPU can only be
achieved if also the matrix calculation in the non-linear iteration is performed
completely on the GPU avoiding data transfer between CPU memory and GPU
memory. This requires larger changes in CARP and still ongoing work. By defining
an element matrix interface between CARP and PT we managed already a very fast
stiffness matrix assembling process on the GPU. We did further investigations with
finite element matrix calculations for tetrahedral finite elements by using CUDA
on the GPU. Vectorizing the code accelerated the element matrix calculations on
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one CPU core already by a factor of 5 and the GPU contributed with a further
acceleration of 80 [2].

We performed experiments with more general parallelization approaches as Ope-
nACC and OpenMP 4.0 on GPUs and on Intels’s Xeon Phi. It turns out that this
pragma driven parallelization for many-core environments is getting quite tricky
whenever one moves beyond the textbook examples. Nevertheless, there is a high
potential for using various accelerator cards with the same code. Currently, the
matrix calculation and assembling for tetrahedral elements and the potential prob-
lem is used as a test bed for determining the best data structures and algorithms
on CPUs, GPUs as well as on the Xeon Phi. The first results are promising taking
into account that only one code has to be maintained for all accelerator devices.
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Visual Programming and Simulation Workflows

Michael Hoffer

(joint work with Gabriel Wittum)

Historically the application development process consists of three individual steps:
editing, compiling and running the application. In most cases the abstract syntax
tree and other information generated by the compiler is ignored after compiling
and optimizing the application.

However, this information is highly valuable for automatically creating an in-
teractive and visual representation of the application worklfow [1].

Even more important than interactivity is the possibility to create language
profiles. This allows for applying mathematical precision to the development pro-
cess by reducing the language to the minimal subset that is necessary to formulate
the desired functionality.

Working with reduced and problem specific language profiles enables the com-
piler to gain domain knowledge which can be used to automatically eliminate
several classes of errors.



Schnelle Löser für Partielle Differentialgleichungen 1333

We strongly recommend to model the simulation tools and programming lan-
guages to handle the increasing complexity of the simulation tools, algorithms and
problems users try to solve.
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Recent advances in grid-based tensor numerical methods in electronic

and molecular structure simulations

Boris N. Khoromskij

(joint work with Venera Khoromskaia, Sergey Dolgov)

Grid-based tensor methods provide the efficient tools for numerical approximation
of d-dimensional PDEs (discretized on large n⊗d-grids) with linear complexity
scaling in the dimension, O(dn). Traditional methods of separable approximation
combine the canonical, Tucker, as well as the matrix product state type (MPS)
formats and, in particular, TT/HT representations, [1]. The quantized-TT (QTT)
approximation [3] is proven to provide the logarithmic data-compression on a wide
class of functions and operators. In combinations with the canonical/Tucker/TT
formats, it makes possible to efficiently solve multi-dimensional steady-state and
dynamical problems by their reformulation in quantized tensor spaces, now with
the logarithmic complexity scaling in the size full data on the grid, O(d log n).

In the proposed talk, we are going to discuss how the grid-based tensor ap-
proximation applies to hard problems arising in electronic structure calculations,
such as calculation of many-electron integrals, solution of the nonlinear eigenvalue
problem for the Hartree-Fock equation, as well as to the equations which model
huge lattice-structured compounds, arising in numerical modeling of metals, crys-
tals and polymers [2, 4, 5, 6]. We will also discuss the efficient simultaneous
times-space tensor approximation to chemical master equations arising in stochas-
tic modeling of multi-particle reaction processes [7].

Numerical tests indicate the efficiency of newly developed tensor numerical
methods on realistic examples in electronic and molecular structure simulation.

http://personal-homepages.mis.mpg.de/bokh
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Numerical Solution of Multicomponent Phase Field Systems

Ralf Kornhuber

(joint work with Carsten Gräser, Uli Sack)

Vector-valued phase field models play a prominent role in many practical applica-
tions such as, e.g., dynamic recrystallization in solids (non-conserved order param-
eter) or phase separation of multicomponent alloys (conserved order parameter).
We consider phase field models associated with the Ginzburg-Landau free energy

(1) E(u) =
∫

Ω

ε

2

N∑

i=1

|∇ui|2 +
1

ε
Ψθ(u) dx, ε > 0,

of a vector-valued order parameter u = (u1, . . . , uN) ∈ R
N defined on a Lipschitz

domain Ω ⊂ R
d, d = 1, 2, 3. Assuming that the components ui describe certain

concentrations, u is pointwise contained in the closed, convex Gibbs simplex G,

(2) u(x, t) ∈ G = {v ∈ R
N | 0 ≤ vi, v · 1 = 1} ⊂ R

N , 1 = (1, . . . , 1)T .

The multi–well potential Ψθ(u) = Φθ(u) + χH1
(u) + 1

2 Ku · u can be decomposed

into a convex part Φθ + χH1
and a remaining quadratic part 1

2 Ku · u. The
convex part consists of the characteristic functional χH1

enforcing the algebraic
constraints u ∈ H1 = {v ∈ R

N | v · 1 = 1} and of the logarithmic function

(3) Φθ(u) =

N∑

i=1

θui ln(ui) for θ > 0, Φθ(u) =

N∑

i=1

χ[0,∞)(ui) for θ = 0,

where χ[0,∞) denotes the characteristic functional of [0,∞) and θ ≥ 0 stands
for absolute temperature. The remaining quadratic part is characterized by a
symmetric, negative semi-definite interaction matrix K. In our computations, we
chose K = θcN(1 − δij)

N
i,j=1 (Kronecker–δ) with normalized critical temperature

θc = 1, i.e., we assume equal interaction of all components and that no self-
interaction occurs.

We present fast solvers for discretized Allen-Cahn and Cahn–Hilliard systems
that provide global convergence, show robust multigrid convergence speed in nu-
merical computations (with respect to mesh size, temperature θ ≥ 0, and the
number of phases N), and do not involve any kind of regularization.
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Figure 1. Approximate algebraic error over the number of
TNNMG iterations for temperature θ = 0 with different initial
iterates, mesh size h9 = 2−8 (left) and mesh size h10 = 2−9 (right).

1. Vector-valued Allen–Cahn system

The L2-gradient flow of the Ginzburg–Landau free energy E gives rise to the
vector-valued Allen–Cahn system

u(t) ∈ G : ε(ut, v − u) + ε(∇u,∇(v − u))

+ 1
ε (φθ(v) − φθ(u)) +

1
ε (Ku, v − u) ≥ 0 ∀v ∈ G

with Gibbs constraints G = {v ∈ H1(Ω)N | v(x) ∈ G a.e. in Ω} and the proper
convex, lower semi-continuous functional φθ(v) =

∫
ΩΦθ(v). We emphasize that

this formulation makes sense for all θ ≥ 0. For existence and uniqueness results
we refer, e.g., to [3]. After implicit Euler discretization with uniform step size
τ > 0 satisfying the stability constraint τ < −ε2/λmin(K) and piecewise linear
finite elements SN

j ⊂ H1(Ω)N with respect to a simplicial partition Tj with set of

vertices Nj and mesh size hj = O(2−j), a minimization problem of the form

(4) uj ∈ Gj : J (uj) ≤ J (v) ∀v ∈ Gj

has to be solved in each time step. Here, we impose discrete Gibbs constraints
Gj = {v ∈ SN

j | v(p) ∈ G ∀p ∈ Nj}, J (v) = τ
2a(v, v) +

τ
ε2φ

T
θ (v) − (uold, v) is

a strictly convex energy functional, involving the bounded, coercive bilinear form
a(u, v) = ((I + τ

ε2K)u, v) + τ(∇u,∇v), a lumped approximation φTθ of φθ, and

the solution uold from the previous time step. For the fast and robust algebraic
solution of (4) we suggest a novel multigrid method which can be regarded as
a variant of polygonal Monotone Multigrid [7] without coarse grid constraints
and analyzed as a polygonal version of Truncated Non-smooth Newton Multigrid
(TNNMG) [4]. Figure 1 shows the iteration histories for a V (1, 1) cycle applied
to the problem in the first time step with N = 4 components, θ = 0 (deep quench
limit), ε2 = 1.6 · 10−3, τ = 3

4N ε
2, and mesh size hj = 2−j+1 as obtained by

j = 9, 10 uniform refinements of the initial partition T0 of the computational
domain Ω = (−1, 1)2 consisting of two congruent triangles. Comparing j = 9
(left) with j = 10 (right) refinement steps, we observe a mesh-dependent transient
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Figure 2. Approximate algebraic error over the num-
ber of NSNMG iterations for the temperatures θ =
0.0 (◦), 0.001 (�), 0.1 (♦), 0.5 (▽) with initial iterates zero (dot-
ted lines) and nested iteration (solid lines) for the first spatial
problem.

phase for “bad” initial iterates (constant 1/N or previous time step). However,
textbook multigrid convergence is achieved by nested iteration.

2. Multicomponent Cahn–Hilliard systems

For positive temperature θ > 0, the multicomponent Cahn-Hilliard system as-
sociated with the energy E defined in (1) amounts to find u,w ∈ H1(Ω)N satisfying

(ut, v) + (L∇w,∇v) = 0, ε2(∇u,∇v) + (PΨ′
θ(u), v)− (w, v) = 0 ∀v ∈ H1(Ω)N

with a positive semi-definite matrix L with kernel spanned by 1, the projection
P = I − 1

N (1, . . . ,1) ∈ R
N×N , homogeneous Neumann boundary conditions and

suitable initial data. As a starting point for robust numerical solution, we derive
a variational inequality formulation that is meaningful for all θ ≥ 0 by replacing
the chemical potential w by its projection Pw. After semi-implicit discretization
in time [1, 2], finite element discretization in space and weak formulation of the
algebraic constraints u · 1 = 1 (see [6]), we arrive at the discrete problem to find
u ∈ SN , w ∈ SN such that

ε2(∇u,∇(v − u)) + φTθ (v)− φTθ (u)− (w, v − u) ≥ −(Kuold, v − u) ∀v ∈ SN ,

−(u, v)− τ(L∇w,∇v) = −(uold, v) ∀v ∈ SN .

This formulation allows a direct application of Nonsmooth Schur–NewtonMulti-
grid (NSNMG) methods which were first introduced for saddle point problems
with obstacles [5], and later extended to more general free energies including the
logarithmic potential [4]. Figure 2 (taken from [6]) shows the iteration history
for the first time step, N = 4 components, ε2 = 5 · 10−3, τ = 10−3, and mesh
size h8 = 2−7 as obtained by j = 8 uniform refinements. While a mesh- and
temperature-dependent transient phase is clearly visible for “bad” initial iterate
zero, robust textbook multigrid convergence is achieved by nested iteration.
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Parallel In-Time Methods for Large Scale Problems

Rolf Krause

(joint work with D. Ruprecht, R. Speck, M. Bolten)

Computational science, like other disciplines using high-performance computing,
faces enormous challenges from the exponential increase in the number of cores
in state-of-the-art HPC systems. Utilizing such machines efficiently not only re-
quires sophisticated implementation techniques but also the use of mathematical
algorithms inherently suited for parallelization: Even a perfectly optimized imple-
mentation of an algorithm with strong serial dependencies will not be able to fully
exploit the million-way concurrency at hand. As a consequence, the computer
architectures available nowadays require the development of discretization and
solution algorithms which are capable of exploiting efficiently massive parallelism.

Traditionally, parallelization for the solution of time dependent partial differ-
ential equations is usually done “in space” In fact, for the numerical solution of
time-dependent partial differential equations, many approaches and studies exist
that investigate strategies for parallelization in space. In the temporal direction
however, most available methods (e.g. Runge-Kutta, multi-step methods, etc.)
employ a form of time-stepping, where step after step is computed in a strictly
sequential fashion. In some sense, these classical time-marching schemes consti-
tute a bottleneck: If spatial and temporal resolution of a discretization both are
increased, the computational cost per time step can be kept constant by employ-
ing more processors for the spatial direction (assuming good weak scaling, that
is). The increased cost of having to perform more time steps however cannot be
mitigated. By offering parallelism in the temporal direction in addition to spatial
parallelization, time-parallel methods can increase concurrency in numerical codes
and help to address this issue and to better utilize massively parallel systems.

It therefore seems natural to develop solution algorithms, which are also paral-
lel in time. At a first glance, this seems to be counterintuitive, as parallelization
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in time seems to be in strong contrast with the evolutionary character of an ini-
tial value problem. However, as it turned out, using well balanced iterative or
predictor-corrector strategies, also parallelization in time is possible - although
currently still at the price of reduced parallel efficiency.

In this talk, different iterative methods for the solution of time dependent PDEs,
which provide concurrency along the temporal axis, are presented, discussed, and
evaluated. We will start from the by now well established Parareal, see [1] for
a survey or [2], Parareal relies on replacing step-by-step integration in time with
an iterative, multi-level procedure: solutions on different levels of accuracy are
computed and combined, where the main computational cost on the fine levels
is parallelized over multiple time-slices. Usually, the efficiency depends critically
on the number of iterations required: If convergence is too slow, time-parallel
methods can actually become slower than serial time-stepping.

We therefor discuss the more complex “parallel full appoximation scheme in
space and time” (PFASST), see [3]. PFASST is build on using Spectral Deferred
Correction (SDC) methods on multiple levels in time. SDC methods are build on
the reformulation of the initial value problem on each of the considered time slices
in terms of a Picard integral equation. The advantage of this formulation is that
it allows for approximating the sought trajectory in an iterative manner (SDC-
sweeps). By interpreting this procedure as a preconditioned iterative solution
method, we can investigate its convergence properties for Dahlquist’s test equation.
We then extend this convergence analysis to the case of multiple levels in time
(MLSDC), where the SDC iteration is accelerated by additional SDC-sweeps on
coarse time levels. As this analysis shows, the coarse SDC sweeps do not accelerate
the convergence significantly, but at least allow for the creation of a fast propagator
for the initial value on a much coarser mesh in time [5].

We then proceed to PFASST, which exploits the idea of multilevel SDC in order
to create a time-parallel method which is of much higher efficiency as Parareal.
The main advantage of PFASST is that it distributes the work for approximating
the trajectory on the finest level in time over several levels, which allows to increase
the parallelism.

We discuss several factors that govern the performance of the methods and
show examples of good and bad convergence.

We discuss the properties of the resulting space/time parallel method and
present recent performance results on large-scale parallel machines shown that
demonstrate how parallelization in time can achieve good efficiency if a suitably op-
timized coarse level representation is used. One example illustrates how PFASST
can successfully improve strong scaling in a run using all 448K cores of the IBM
BlueGene/Q installation JUQUEEN, see [6] and also [4].
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Applications for Filtering Algebraic Multigrid

Arne Nägel

(joint work with Gabriel Wittum)

With density driven flow and poroelasticity we consider two problem classes of
coupled PDEs arising in geosciences. Both problems are differential algebraic
equations. We comment on similarities and differences, and outline how the equa-
tions can be solved using decoupling and fully-coupled methods, and fine-tuned
filtering algebraic multigrid solvers.

The first part of the talk focuses on decoupling strategies, in particular for the
nonlinear density driven flow problems. To that end different non-linear solvers
have been investigated: In a test case, an iterative coupling (single step nonlin-
ear Gauss-Seidel) outperforms a partial Newton method (single step non-linear
Jacobi). In the latter case corrections are computed independently, thus, this
scheme shows to be inappropriate for this highly nonlinear problem class, and
suffers from severe time-step restrictions. This effect is less pronounced for the
iterative coupling, and mitigates after the first simulation phase when the velocity
profile has stabilized. The fully coupled Newton method, however, proofs being
superior to both iterative approaches, but also requires a monolithic linear solver.

In the second part of the talk, we deal with poroelasticity problems. Owing
to the linear character, these systems can be decoupled efficiently by iterative
coupling. The mechanics sub-system is time-independent, wthus the problem per-
fectly suited for algebraic multigrid solvers. A preliminary scalability study (up
to 256 cores) shows good scalability.
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Finite element error estimation for a Schrödinger operator with

inverse-square potential

Jeffrey S. Ovall

(joint work with H. Li)

We develop an a posteriori error estimate of hierarchical type for source and eigen-
value problems for operators of the form −∆+ c2/r2 in Ω ⊂ R2, where c ≥ 0, and
r = |x| is the distance to the origin, which is assumed to be in Ω. The solutions of
such problems generically have an rc-type singularity at the origin, in addition to
the usual geometric singularities at boundary corners. This work is a combination
of the results from the papers [1, 2]. For a source problem with solution u, the
discrete solution un is computed on a conforming mesh Tn in the space of affine
elements which boundary and at the origin, and an approximate error function
εn ≈ u − un is computed by projecting the error onto the space of quadratic ele-
ments which vanish on the boundary and at every vertex in the mesh. It is shown
that

‖εn‖0
‖u− Πnu‖0

→ 1 ,
‖εn‖1

‖u− un‖1
→ 1 ,

|||εn|||

|||u − un|||
→ 1 ,

∑
T∈Tn

|εn|2,1,T

|u|2,1
→ 1

on a sequence of geometrically graded meshes Tn. In words, the approximate error
function εn provides: asymptotically exact estimation of (nodal) interpolation er-
ror in L2, asymptotically exact estimation of discretization error in H1 and energy
norm, and convergent approximation of the Hessian of u in W 2,1. Although these
results are proven on specially graded meshes, numerical experiments indicate that
they apply on meshes which are adaptively refined using local indicators |||εn|||T to
mark triangles. The results for source problems are readily adapted for eigenvalue
problems, with analogous results asymptotic exactness results for eigenvalues and
eigenfunctions.
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On a highly scalable infrastructure for massively parallel multigrid

solvers

Sebastian Reiter

(joint work with Andreas Vogel, Gabriel Wittum)

Application of parallel geometric multigrid solvers on adaptively refined grids re-
quires a careful design of the involved load-balancing and load-migration routines
as well as fast communication between copies of distributed objects. In error-
estimation based refinement strategies, multiple rebalancing steps may be required
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to provide a uniform element distribution between all processors in all steps. In
order to perform such operations efficiently on supercomputers with millions of
cores, one has to extend existing load balancing and communication schemes.

We outline the parallel infrastructure for distributed multigrid hierarchies in
the simulation framework UG4 and present experimental scaling studies for our
geometric multigrid solver on adaptive and non-adaptive grid hierarchies on up to
262144 processes. We focus on an efficient hierarchical organization of the involved
processes, on efficient horizontal and vertical communication schemes as well as
on the parallel refinement and load-balancing strategies used.

Solving PDEs on evolving surfaces: An Eulerian space-time FEM

Arnold Reusken

(joint work with Maxim Olshanskii, Jörg Grande, Xianmin Xu)

1. Introduction

Partial differential equations posed on evolving surfaces appear in a number
of applications. Recently, several numerical approaches for handling such type of
problems have been introduced. We refer to [1] for a recent overview of numerical
methods. In this report we outline an Eulerian finite element method studied in
[2, 4, 3]. The key idea of this method is to use restrictions of (usual) space-time
volumetric finite element functions to the space-time manifold. This trace finite
element technique was introduced for stationary surfaces in [5].

In this report we address the key ideas of this space-time trace-FEM and some
main results of the error analysis, in particular a result on second order accuracy of
the method in space and time. For details we refer to [2, 3]. Results of numerical
experiments show that the method is extremely robust and that even for the case
with a topological singularity (droplet collision) accurate results can be obtained
on a fixed Eulerian (space-time) grid with a large time step.

As a model problem we use the following one. Consider a surface Γ(t) passively
advected by a given smooth velocity field w = w(x, t), i.e. the normal velocity of
Γ(t) is given by w · n, with n the unit normal on Γ(t). We assume that for all
t ∈ [0, T ], Γ(t) is a hypersurface that is closed (∂Γ = ∅), connected, oriented, and
contained in a fixed domain Ω ⊂ R

d, d = 2, 3. In the remainder we consider d = 3,
but all results have analogs for the case d = 2. The convection-diffusion equation
on the surface that we consider is given by:

(1) u̇+ (divΓw)u− νd∆Γu = f on Γ(t), t ∈ (0, T ],

with a prescribed source term f = f(x, t) and homogeneous initial condition
u(x, 0) = u0(x) = 0 for x ∈ Γ0 := Γ(0). Here u̇ = ∂u

∂t + w · ∇u denotes the

advective material derivative, divΓ := tr
(
(I − nnT )∇

)
is the surface divergence

and ∆Γ is the Laplace-Beltrami operator, νd > 0 is the constant diffusion coef-
ficient. If we take f = 0 and an initial condition u0 6= 0, this surface PDE is
obtained from mass conservation of the scalar quantity u with a diffusive flux
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on Γ(t). A standard transformation to a homogeneous initial condition, which is
convenient for a theoretical analysis, leads to (1).

2. Well-posed space-time weak formulation

Several weak formulations of (1) are known in the literature. The most appro-
priate for our purposes is a integral space-time formulation proposed in [2]. In this
section we outline this formulation. Consider the space-time manifold

S =
⋃

t∈(0,T )

Γ(t)× {t}, S ⊂ R
4.

On L2(S) we use the scalar product (v, w)0 =
∫ T

0

∫
Γ(t) vw ds dt. Let ∇Γ denote

the tangential gradient for Γ(t) and introduce the space

(2) H = { v ∈ L2(S) | ‖∇Γv‖L2(S) <∞}, (u, v)H := (u, v)0 + (∇Γu,∇Γv)0.

We consider the material derivative u̇ of u ∈ H as a distribution on S:

〈u̇, φ〉 = −
∫ T

0

∫

Γ(t)

uφ̇+ uφdivΓw ds dt for all φ ∈ C1
0 (S).

In [2] it is shown that C1
0 (S) is dense in H . If u̇ can be extended to a bounded

linear functional on H , we write u̇ ∈ H ′. Define the space

W = { u ∈ H | u̇ ∈ H ′ }, with ‖u‖2W := ‖u‖2H + ‖u̇‖2H′ .

In [2] properties of H and W are derived. Both spaces are Hilbert spaces and
smooth functions are dense in H and W . Define

◦

W := { v ∈W | v(·, 0) = 0 on Γ0 }.

The space
◦

W is well-defined, since functions from W have well-defined traces in
L2(Γ(t)) for any t ∈ [0, T ]. We introduce the symmetric bilinear form

a(u, v) = νd(∇Γu,∇Γv)0 + (divΓw u, v)0, u, v ∈ H,

which is continuous on H×H . The weak space-time formulation of (1) reads: For

given f ∈ L2(S) find u ∈
◦

W such that

(3) 〈u̇, v〉+ a(u, v) = (f, v)0 for all v ∈ H.

In [2] the inf-sup property

(4) inf
06=u∈

◦

W

sup
06=v∈H

〈u̇, v〉+ a(u, v)

‖u‖W‖v‖H
≥ cs > 0

is proved. Using this in combination with the continuity result one can show that
the weak formulation (3) is well-posed.

We introduce a similar “time-discontinuous” weak formulation that is better
suited for the finite element method that we consider. We take a partitioning of
the time interval: 0 = t0 < t1 < . . . < tN = T , with a (for simplicity0 uniform time
step ∆t = T/N . A time interval is denoted by In := (tn−1, tn]. The symbol Sn
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denotes the space-time interface corresponding to In, i.e., Sn := ∪t∈InΓ(t) × {t},
and S := ∪1≤n≤NSn. We introduce the following subspaces of H :

Hn := { v ∈ H | v = 0 on S \ Sn },
and define the spaces

Wn = { v ∈ Hn | v̇ ∈ H ′
n }, ‖v‖2Wn

= ‖v‖2H + ‖v̇‖2H′
n
,(5)

W b := ⊕N
n=1Wn, with norm ‖v‖2W b =

N∑

n=1

‖v‖2Wn
.(6)

For u ∈ Wn, the one-sided limits un+ = u+(·, tn) (i.e., t ↓ tn) and un− = u−(·, tn)
(i.e., t ↑ tn) are well-defined in L2(Γ(tn)). At t0 and tN only u0+ and uN− are

defined. For v ∈ W b, a jump operator is defined by [v]n = vn+ − vn− ∈ L2(Γ(tn)),
n = 1, . . . , N − 1. For n = 0, we define [v]0 = v0+. On the cross sections Γ(tn),
0 ≤ n ≤ N , of S the L2 scalar product is denoted by (ψ, φ)tn :=

∫
Γ(tn)

ψφds. In

addition to a(·, ·), we define on the broken space W b the bilinear forms

d(u, v) =

N∑

n=1

dn(u, v), dn(u, v) = ([u]n−1, vn−1
+ )tn−1

, 〈u̇, v〉b =
N∑

n=1

〈u̇n, vn〉 .

One can show that the unique solution to (3) is also the unique solution of the
following variational problem in the broken space: Find u ∈W b such that

(7) 〈u̇, v〉b + a(u, v) + d(u, v) = (f, v)0 for all v ∈W b.

For this time discontinuous weak formulation an inf-sup stability result (that is
weaker than the one in (4)) can be derived. From an algorithmic point of view
the formulation (7) has the advantage that due to the use of the broken space
W b = ⊕N

n=1Wn it can be solved in a time stepping manner.

3. Space-time finite element method

We introduce a finite element method which is a Galerkin method with Wh ⊂
W b applied to the variational formulation (7). To define this Wh, consider the
partitioning of the space-time volume domain Q = Ω × (0, T ] ⊂ R

3+1 into time
slabs Qn := Ω × In. Corresponding to each time interval In := (tn−1, tn] we
assume a given shape regular tetrahedral triangulation Tn of the spatial domain
Ω. The corresponding spatial mesh size parameter is denoted by h. Then Qh =⋃
n=1,...,N

Tn × In is a subdivision of Q into space-time prismatic nonintersecting

elements. We shall call Qh a space-time triangulation of Q. Note that this tri-
angulation is not necessarily fitted to the surface S. We allow Tn to vary with
n.

For any n ∈ {1, . . . , N}, let Vn be the finite element space of continuous piece-
wise linear functions on Tn. We define the volume space-time finite element space:

(8) Vh := { v : Q→ R | v(x, t) = φ0(x)+ tφ1(x) on every Qn, with φ0, φ1 ∈ Vn }.
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Thus, Vh is a space of piecewise P1 functions with respect to Qh, continuous in
space and discontinuous in time. Now we define our surface finite element space
as the space of traces of functions from Vh on S:
(9) Wh := {w : S → R | w = v|S , v ∈ Vh }.
The finite element method reads: Find uh ∈ Wh such that

(10) 〈u̇h, vh〉b + a(uh, vh) + d(uh, vh) = (f, vh)0 for all vh ∈Wh.

Due to uh ∈ H1(Qn) for all n = 1, . . . , N , the first term in (10) can be written as

〈u̇h, vh〉b =
N∑

n=1

∫ tn

tn−1

∫

Γ(t)

(
∂uh
∂t

+w · ∇uh)vhds dt.

The method can be implemented with a time marching strategy. Of course, for
the implementation of the method one needs a quadrature rule to approximate the
integrals over Sn. Implementation aspects of the method are discussed in [4].

4. Discretization error analysis

In this section we briefly address the discretization error analysis of the method
(10), which is presented in [3]. We first explain a discrete mass conservation prop-
erty of the scheme (10). We consider the case that (1) is derived from mass conser-
vation of a scalar quantity with a diffusive flux on Γ(t). The original problem then
has a nonzero initial condition u0 and a source term f ≡ 0. The solution u of the
original problem has the mass conservation property ū(t) :=

∫
Γ(t) u ds =

∫
Γ(0) u0 ds

for all t ∈ [0, T ]. After a suitable transformation one obtains the equation (1) with
a zero initial condition u0 and a right hand-side f which satisfies

∫
Γ(t) f ds = 0

for all t ∈ [0, T ]. The solution u of (1) then has the “shifted” mass conservation
property ū(t) = 0 for all t ∈ [0, T ]. The discrete problem (10) has the following
weaker mass conservation property, with ūh(t) :=

∫
Γ(t) uh ds:

(11) ūh,−(tn) = 0 and

∫ tn

tn−1

ūh(t) dt = 0, n = 1, 2, . . .N.

For a stationary surface, ūh(t) is a piecewise affine function and thus (11) implies
ūh(t) ≡ 0, i.e,. we have exact mass conservation on the discrete level. If the surface
evolves, the finite element method is not necessarily mass conserving: (11) holds,
but ūh(t) 6= 0 may occur for tn−1 ≤ t < tn. In the discretization error analysis we
use a consistent stabilizing term involving the quantity ūh(t):

(12) aσ(u, v) := a(u, v) + σ

∫ T

0

ū(t)v̄(t) dt, σ ≥ 0.

Instead of (10) we consider the stabilized version: Find uh ∈Wh such that

(13) 〈u̇h, vh〉b + aσ(uh, vh) + d(uh, vh) = (f, vh)0 for all vh ∈ Wh.
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Taking σ > 0 we expect both a stabilizing effect and an improved discrete mass
conservation property. Ellipticity of the bilinear form and error bounds are derived
in the mesh-dependent norm:

|||u|||h :=

(
‖uN−‖2T +

N∑

n=1

‖[u]n−1‖2tn−1
+ ‖u‖2H

) 1

2

.

In the error analysis we need the following condition: there exists a c0 > 0 such
that

(14) divΓw(x, t) + νdcF (t) ≥ c0 for all x ∈ Γ(t), t ∈ [0, T ].

Here cF (t) > 0 results from the Poincare inequality

(15)

∫

Γ(t)

|∇Γu|2 ds ≥ cF (t)

∫

Γ(t)

(u − 1

|Γ(t)| ū)
2 ds ∀ t ∈ [0, T ], ∀ u ∈ H.

A main result derived in [3] is given in the following theorem. We assume that
the time step ∆t and the spatial mesh size parameter h have comparable size:
∆t ∼ h.
Theorem 1. Assume (14) and take σ ≥ νd

2 max
t∈[0,T ]

cF (t)
|Γ(t)| , where cF (t) is defined in

(15). Then the ellipticity estimate

〈u̇, u〉b + aσ(u, u) + d(u, u) ≥ cs|||u|||2h for all u ∈W b

holds, with cs = 1
2 min{1, νd, c0} and c0 from (14). Let u ∈

◦

W be the solution of

(3) and assume u ∈ H2(S). For the solution uh ∈ Wh of the discrete problem (13)
the following error bound holds:

|||u − uh|||h ≤ ch‖u‖H2(S).

A further main result derived in [3] is related to second order convergence. Denote
by ‖ · ‖−1 the norm dual to the H1

0 (S) norm with respect to the L2-duality. Under
the conditions given in Theorem 1 and some further mild assumptions the error
bound

‖u− uh‖−1 ≤ ch2‖u‖H2(S)

holds.
For results of numerical experiments with this space-time method we refer to

[2, 4].
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A posteriori error estimator for nonlinear interface conditions

discretized by Finite Volumes – Applications in Neuronscience

Gillian Queisser

(joint work with Markus Breit)

In this talk we introduce a broad range of neuroscientific questions that are ad-
dressed using numerical methods. Based on spatially resolved complex neuronal
morphologies, models and numerical methods are introduced in order to investigate
structure-function interplay at the cellular level. This leads to a general model,
consisting of coupled systems of non-linear reaction-diffusion type equations, with
highly non-linear interface conditions. The analysis of these equations show that
adaptive methods, based on Finite Volumes, can greatly reduce computational
cost. Here we introduce a novel a posteriori error estimator for the coupled pde-
system under consideration and give an outline of the proof. We summarize by
applying the a posteriori error estimator for adaptive grid refinement to different
biologically motivated case studies.

On the Foundation of Efficient Preconditioners for PDE Constrained

Shape Optimization Problems

Volker Schulz

(joint work with Martin Siebenborn, Kathrin Welker)

Shape optimization is a very active field of research with numerous applications of
economic importance. Several examples from aerodynamics, acoustics and ther-
moelastics are used to illustrate this and to motivate the following more theo-
retical considerations. Although parametric geometry description (like CAD) are
widely used in industry, they lead to high numerical costs for non-trivial geometry
resolutions and pose severe limitations to the set of reachable shapes. The al-
ternative avoiding these problems is the nonparametric approach which leaves all
mesh nodes describing the geometry under investigation free for optimization and
is based on the shape calculus as surveyed, e.g., in the monographies [1, 2]. The
current numerical state of the art in shape optimization based on the shape calcu-
lus is characterized by first order methods of steepest descent type and a general
lack of second order methods. However, ideas from second order methods aiming
a Newton-like strategies give rise to excellent preconditioners as demonstrated in
[3, 4].
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In this talk, a general framework based on the differential geometric investiga-
tions in [5] is presented, which considers the set of admissible shapes as a Riemann-
ian manifold and constructs Taylor series expansion and Newton methods similar
to the ideas in [6] for finite dimensional matrix manifold. This novel approach,
published in [7], introduces a Riemannian shape Hessian as a Hessian formula-
tion for second shape derivatives which, in contrast to the second shape derivative
(which is so far historically but misleadingly named shape Hessian) possesses the
properties which are expected from a Hessian: symmetry and provision of a Tay-
lor series expansion. This approach is carried on in [8] to PDE constrained shape
optimization and develops a novel sequential quadratic programming framework
for shape optimization based on the shape calculus, where the linear-quadratic
subproblems to be solved in each nonlinear iteration have the structure of usual
optimal control problems and are thus accessible to the wealth of efficient methods
developed for this problem class like, e.g., multigrid optimization methods [9, 10].
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A robust Petrov-Galerkin discretisation of convection-diffusion

equations

Rob Stevenson

(joint work with Dirk Broersen)

It is well-known that standard Galerkin discretisations of convection-diffusion
equations fail to deliver good approximations for a vanishing diffusion term. There-
fore, we consider Petrov-Galerkin discretisations.

Unless the layers are resolved by the mesh, the H1-errors of finite element
approximations will be dominated by the errors in the layers. This holds also
true for L2-errors when conforming finite elements are applied due to the strong
enforcement of Dirichlet boundary conditions. Therefore, we prefer to measure
the errors in the L2-norm, and to allow for discontinuous approximations. To this
end, we consider an ultra-weak variational formulation of the convection-diffusion
equation in mixed form. It is shown to define a boundedly invertible mapping
U → V ′, with U and V being Hilbert spaces, where U is (essentially) a multiple
copy of the L2-space.

Building on the earlier works [2, 4, 3], we equip V with the operator-dependent
optimal test norm. Then given a finite dimensional trial space Uh ⊂ U , the Petrov-
Galerkin discretisation with the optimal test space delivers the best approximation
from Uh to the solution w.r.t. the norm on U .

To arrive at an implementable method, this truly optimal test space has to be
replaced by its projection onto a finite dimensional test search space V h. With
common variational formulations, the truly optimal test functions exhibit layers,
and for vanishing diffusion, the test search space has to be chosen increasingly
large to get satisfactory results.

We construct a non-standard variational formulation such that for a zero dif-
fusion term, the discrete system is a well-posed Petrov-Galerkin discretisation of
the limiting transport problem. This can be seen as a necessary condition for the
equations, which define the optimal test functions, not to be singularly perturbed.

Numerical experiments, reported in [1], show that with a fixed test search space
V h, only dependent on Uh and with dimV h ≤ C dimUh, the obtained approxi-
mations are very close to the best approximations to the solution from the trial
space, uniformly in the size of the diffusion term.
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Multigrid for far and near field maps of the Helmholtz equation

Wim Vanroose

Almost all knowledge about microscopically small physical systems such as molecules
is obtained through scattering experiments that are described mathematically by
a high-dimensional Helmholtz equation. In contrast to engineering problem, where
there are material jumps, these systems are characterized by a smoothly varying
wave number.

In this talk we show that the far and near field scattering amplitude of a
Helmholtz equation with smoothly varying wave numbers can be efficiently be
calculated. Indeed, these amplitudes are integral expressions over the solution of
the Helmholtz equation solved on a finite numerical box with absorbing boundary
conditions covering the object of interest.

A typical calculation then consists out of two steps: First, solve the high-
dimensional Helmholtz equation, which is a computationally very expensive and
requires supercomputer infrastructure for the most challenging problems. Sec-
ondly, integrate over the solution to obtain the far field or near field amplitude.
The latter is cheap can be done as post processing step on a laptop.

By deforming the contour of integration into complex plane in step 2, the
Helmholtz problem, step 1, becomes much easier. Indeed, we show that the de-
formation of the contour makes the Helmholtz into a Complex shifted Laplacian
problem, which is known to be solvable in a scalable way.

We validate the method for some benchmark problems and show the O(n)
scalability on 3D Helmholtz and Schrödinger equations.

Computing Edge Weights for Community Detection Through

Bipartite Matching

Panayot S. Vassilevski

(joint work with Van Emden Henson, David Hysom, Geoffrey Sanders, Andy
Yoo)

For a given graph G with a vertex set V = {i} and edge set E = {e} where each
e = (i, j) is a undirected pair of vertices, we define a nonlinear functional

J(w) =
∑

i∈V


 1

wi − wmin
+

1

wmax − wi
+

∑

e=(i,j)∈E

1

|wi − wj |


 .

We are looking to minimize J for w = (wi) where each wi varies in a given interval
(wmin, wmax), for example (0, 1). To compute a minimum of J , we use a nonlinear
Gauss–Seidel iteration by minimizing for every given vertex i with respect to wi

the local functional

Jloc(wi) =
1

wi − wmin
+

1

wmax − wi
+

∑

e=(i,j)∈E

1

|wi − wj |
,

assuming that the neighboring values wj , for e = (i, j) are given.
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Once a minimum is computed (within certain accuracy), we assign to each edge

e = (i, j) the weight λ̂e =
1

|wi−wj|
. A large weight indicates that the vertices i and

j are strongly connected. The notion of strength of connectivity quantified by our
edge weights is important to design algorithms for community detection (cf. [5]).
We go one step further by introducing a rigorous definition of “community”.

Based on the computed edge weights, we devise a recursive multilevel algorithm
(combining ideas from [1], [3], [4], and [2]) that matches vertices for which a
“surface-to-volume” ratio is large. The latter is defined for any pair of aggregates
(initially aggregates are single vertices) A and A′, as follows

ηA,A′ =
λ̂A, A′√
dAdA′

,

where dA =
∑

e=(i,j): i,j∈A

λ̂e and λ̂A, A′ =
∑

e=(i,j): i∈A, j∈A′

λ̂e. For any partition

π = {A} of nonoverlapping sets of vertices (referred to as aggregates), we define
an “energy” functional

Eπ =
∑

A,A′

ηA,A′ |dA − dA′ |.

Finally, we define “community” as a partition π with minimal energy among some
other possible partitions.

The above defined edge weights and respective recursive multilevel matching
algorithm is successfully tested on some real-life networks with known “ground
truth” communities available from the Stanford Large Network Dataset Collection
(SNAP) as described in [6].
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A Parallel Geometric Multigrid Solver for Density Driven Flow

Andreas Vogel

(joint work with Sebastian Reiter, Gabriel Wittum)

Multigrid methods for the solution of large sparse matrices arising from grid-based
discretizations of partial differential equations are well known for their optimal
complexity, i.e., the computation effort only increases linearly with the problem
size. This makes them a promising algorithm when focusing on the weak scaling
properties of such a matrix solver. However, while reducing the problem size
within a multigrid algorithm on coarser grid levels is its strength, this gives rise
to a potential performance bottleneck when parallelization is taken into account.
Indeed, on coarser grid levels the inner to boundary ratio of the grid parts assigned
to a process become unpleasant and a parallel smoother on those coarse levels will
suffer from the fact that mostly communication at the boundary takes place and
only little computation on the inner part is performed. In order to overcome
this bottleneck we present an algorithm that avoids this situation by gathering
coarser levels to fewer processors leaving the remaining processors idle. To this end
we introduce vertical interface connections that allow this gathering process and
adapt the transfer operators of the multigrid algorithm to respect these interfaces.
Arriving at a single process on the coarsest level a serial base solver, e.g., LU
factorization, can be used. We show that this approach leads to nice weak scaling
behavior for an exemplary application: Discretizing a pde system for density driven
flow using a vertex-centered finite volume scheme and implicit Euler time stepping
we analyze the efficiency of the geometric multigrid solver in the first Newton
linearization of the first time step. It turns out that up to 130,000 processors the
weak scaling efficiency is still above 80%.

Adaptive inexact Newton methods with a posteriori stopping criteria

for nonlinear diffusion PDEs

Martin Vohraĺık

(joint work with Alexandre Ern)

We consider nonlinear algebraic systems resulting from numerical discretizations
of nonlinear partial differential equations. To solve these systems, some iterative
nonlinear solver, and, on each step of this solver, some iterative linear solver
are used. We derive adaptive stopping criteria for both iterative solvers. Our
criteria are based on an a posteriori error estimate which distinguishes the different
error components, namely the discretization error, the linearization error, and the
algebraic error. We stop the iterations whenever the corresponding error does no
longer affect the overall error significantly. Our estimates also yield a guaranteed
upper bound on the overall error at each step of the nonlinear and linear solvers.
We prove the (local) efficiency and robustness of the estimates with respect to the
size of the nonlinearity owing, in particular, to the error measure involving the dual
norm of the residual. Our developments hinge on equilibrated flux reconstructions
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that we detail in the linear case. We present a general abstract framework yielding
a guaranteed upper bound and local efficiency with polynomial degree robustness
and show how to apply this framework to various discretization schemes like finite
elements, nonconforming finite elements, discontinuous Galerkin, or mixed finite
elements. Numerical experiments illustrate the tight overall error control and
important computational savings achieved in our approach. Details can be found
in [1, 2, 3].
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[2] A. Ern and M. Vohraĺık, Adaptive inexact Newton methods with a posteriori stopping criteria
for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35 (2013), A1761–A1791.
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Fast Multilevel Methods for the Helmholtz Equation

Kees Vuik

Many wave phenomena are well described by the wave equation. When the con-
sidered wave has a fixed frequency the wave equation is mostly re-written in the
frequency domain which results in the Helmholtz equation. It is also possible to
approximate the time domain solution with a summation of solutions for several
frequencies. Applications are the propagation of sound, sonar, seismics, and many
more. We take as an example the search for oil and gas using seismics. It is well
known that an increase of the frequency leads to a higher resolution, so more de-
tails of the underground become visible.

The Helmholtz equation in its most simple form is a combination of the symmetric
positive Poisson operator and a negative constant, the so-called wavenumber, mul-
tiplied with the identity operator. In order to find the solution in a complicated
domain a discretization has to be done. There are two characteristic properties of
the discretized system:

• the product of the wavenumber and the step size should be smaller than
a given constant

• if the wavenumber increases the operator has more and more negative
eigenvalues.

If damping is involved the operator also has a part with an imaginary value. The
resulting matrix is however not Hermitian.

In the years around 2000 no good iterative solvers are known. The standard ap-
proaches: Krylov and multi-grid break down if the wavenumber increases.
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Around 2005 a new preconditioner based on the shifted Laplace preconditioner was
proposed, which leads to a class of fast and robust Helmholtz solvers. It appears
that the amount of work increases linearly with the wavenumber. At this moment,
this is the method of choice to solve the Helmholtz equation. Various papers have
appeared to analyze the good convergence behavior.

Recently a multi level Krylov solver has been proposed that seems to be scalable,
which means that the number of iterations is also independent of the wavenumber
(see Figure 1). An analysis of this method is given and recent results for industrial
problems are presented.

Finally implementation of the method on modern High Performance Computing
platforms will be discussed.
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BDDC deluxe domain decomposition algorithms

Olof B. Widlund

(joint work with Clark R. Dohrmann)

The BDDC algorithms, first developed by Clark Dohrmann, have proven to be very
successful domain decomposition algorithms for a variety of elliptic problems. For
any particular application, the success of such an algorithm depends on the choice
of a set of primal constraints and on the choice of an averaging operator, which is
used to restore the continuity of certain intermediate vectors in each iteration.

In the deluxe version, a new averaging procedure is used; it was first devel-
oped in joint work with Dohrmann on H(curl) problems in order to deal with the
two material parameters of such problems. The algorithm will be described and
theory will be outlined. Several successful applications will be discussed includ-
ing problems posed in H(div), Reissner-Mindlin plates, and elliptic problems and
isogeometric analysis.
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Efficient solution methods for space-time discontinuous

Petrov-Galerkin discretizations for the wave equation

Christian Wieners

We consider discretizations of linear wave equations (acoustic, elastic or electro-
magnetic waves) using higher order discontinuous Galerkin elements with upwind
flux in space. In the first step, we compare the performance of explicit and implicit
Runge-Kutta methods with polynomial and rational Krylov methods for uniform
meshes and fixed time steps [1]. Then, this is extended to a space-time adaptive
variational Petrov-Galerkin space-time discretization with continuous Galerkin el-
ements in time. Finally, we show that the DPG method can be also transferred to
this problem class by applying the setting presented in [3].

The wave equation. We consider linear hyperbolic systemsM∂tu(t)+Au(t) = 0
for t ∈ [0, T ] defined on the domain V ⊂ L2(Ω)

J of the operator A; here, Ω ⊂ R
D

is a bounded Lipschitz domain. Our main example is the Maxwell system, where
M(H,E) = (µH, εE) and A(H,E) = (curlE,− curlH). With suitable boundary
conditions in V , the operator −M−1A generates a semigroup in V . The operator
A is approximated by Ah in a dG space Vh using full upwind flux.

Time integrators. The solution uh(t) = exp(−tM−1
h Ah)uh(0) can be approxi-

mated by explicit Runge-Kutta methods, provided the time step is small enough.
Implicit Gauss collocation methods are unconditionally stable, but the solution of
linear systems are required.

Alternatively, the discrete matrix exponential can be approximated by Krylov
methods: for an M -orthogonal basis Qm = (q1, . . . ,qm) of the Krylov subspace
we obtain exp(−△tM−1

h Ah) ≈ Qm exp(−△tQ⊤
mAhQm)Q⊤

m; this can be evaluated
efficiently for m≪ dimVh.

Numerical experiments for the 2D Maxwell system show that—due to the CFL
limitation—explicit methods are not competitive, if suitable solution methods for
implicit time integrators are available [1, Sect. 6].

Adaptive Petrov-Galerkin space-time discretizations. In order to include
adaptivity in space and time simultaneously, we consider a variational Petrov-
Galerkin space-time discretization with continuous Galerkin elements in time for
the linear operator L = M∂t + A with domain U ⊂ H = L2(Ω × (0, T )). The
inf-sup condition can be verified in this setting, so that standard theory applies.
Adaptivity is controlled by a goal-oriented dual weighed error estimator: for the
solution u ∈ U of Lu = f and a given linear error functional J (·), the error
e = u− uh satisfies

J (e) = (Le,u∗ − u∗
h)Ω×(0,T ) = (f − Luh,u

∗ − u∗
h)Ω×(0,T ) ,

where u∗ is the dual solution determined by

(Lv,u∗)Ω×(0,T ) = J (v) , ∀v .
The unknown exact dual solution u∗ is approximated from the computed solution
u∗
h via a polynomial recovery of higher order in space and time.
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Numerical examples, again for the 2D Maxwell case, demonstrate the efficiency
of the error estimation, the adaptive strategy, and the parallel solution process.
These results are a joint work with Stefan Findeisen and Willy Dörfler. All com-
putations are realized within the parallel finite element software system M++ [2].

A discontinuous Petrov-Galerkin space-time discretization. This method
is based on a decomposition

⋃
τ∈T τ̄ into space-time cells τ = Kτ × (tmin

τ , tmax
τ ).

Let Uτ = U |τ be the restriction to τ , and let ûτ = γτuτ be the trace

ûτ (x, t) =





−uτ (x, tmin) x ∈ K ,

uτ (x, tmax) x ∈ K ,

γKuτ (x, t) x ∈ ∂K and t ∈ (tmin, tmax) .

Let γadτ be the adjoint trace mapping and Uad the adjoint space with u(T ) = 0.
Integration by parts yields Lad = −L and

(Lu,v)τ = (u, Ladv)τ + 〈γτu, γadτ v〉 , u ∈ Uτ , v ∈ Uad
τ .

Define Uad
T =

∏
Uad
τ , γT = (γτ ), the trace space Û = γT (U) ⊂∏Uτ/N (γτ ), and

b : Û ×H × Uad
T −→ R , b(û,u,v) =

∑
τ
(u, Ladv)τ + 〈ûτ , γ

ad
τ v〉 .

For example, we have for acoustic waves with L(q, p) = (∂tq+∇p, ρ∂tp+∇ · q)
(∂tq+∇p, q̃)τ + (ρ∂tp+∇ · q, q̃)τ = −(q, ∂tq̃+∇p̃)τ − (p, ρ∂tp̃+∇ · q̃)τ

+
(
q(tmax), q̃(tmax)

)
K
−
(
q(tmin), q̃(tmin)

)
K
+ (∇q · n, p̃)∂K×(tmin,tmax)

+
(
p(tmax), p̃(tmax)

)
K
−
(
p(tmin), p(tmin)

)
K
+ (p,∇q̃ · n)∂K×(tmin,tmax) .

Let Ûh ⊂ Ûh be a discrete trace space, let Hh =
∏
Hτ,h ⊂ H be a discrete ansatz

space, and let Uad
T ,h =

∏
Uad
τ,h ⊂ Uad

T be a discrete broken test space such that

sup
vτ,h∈Uad

τ,h

b(ûh,uτ,h,vτ,h)

‖vτ,h‖Uad
τ

≥ β0 sup
vτ∈Uad

τ

b(ûh,uτ,h,vτ )

‖vτ‖Uad
τ

for all (ûh,uτ,h) ∈ Ûh ×Hτ,h and all τ ∈ T . We define the optimal test space

Uopt
T ,h =

{
vh ∈ Uad

T ,h : (ûh,uh) ∈ Ûh ×Hh exists such that

(vh,wh)Uad

T
= b(ûh,uh,wh) for all wh ∈ Uad

T ,h

}
.

Then, for f ∈ L2(Q)J , a unique solution (ûh,uh) ∈ Ûh ×Hh exists solving

b(ûh,uh,vh) = (f ,vh)Q , vh ∈ Uopt
T ,h ,

and for the discretization error holds (cf. [3, Th. 6])

‖(û,u)− (ûh,uh)‖Û×H ≤ C inf
(ŵh,wh)∈Ûh×Hh

‖(û,u)− (ŵh,wh)‖Û×H .
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Dual and Hybrid Hierarchical Grids for Fast Geophysical Flow Solvers

Barbara Wohlmuth

(joint work with B. Gmeiner, H. Stengel, U. Rüde, C. Waluga)

Efficient and fast iterative solution methods for Stokes-type systems are a crucial
ingredient for coupled geophysical solvers, e.g., in mantle-convection- or ice-sheet
modeling. Recent publications emphasize the importance of the interplay between
the physical model and suitable discretization concepts, involving matching iter-
ative solvers and parallelization strategies. In an effort to tackle next-generation
challenges and computer architectures, we propose a strategy for geophysical flow
solvers which is based on a careful combination of both existing and specifically de-
signed numerical techniques. To simplify the exposition, we neglect compressibility
effects and nonlinearities in the material parameters, and consider the following
dimensionless model in a polyhedral domain Ω ⊂ R

d, d = 2, 3. The problem is
defined by the conservation of momentum/mass and energy via

div (µ(∇u+∇u⊤)− pI) = RaT r̂, divu = 0,(1)

∂tT + u · ∇T = Pe−1∆T,(2)

respectively, where u denotes the velocity, p the pressure, T the temperature,
0 < µ ∈ L∞(Ω) the viscosity, and r̂ the unit vector in the direction of grav-
ity. The Rayleigh number Ra and the Peclet number Pe determine the presence,
vigourousity, and strength of convection in the system and are typically assumed
to take extreme values, which may require appropriate stabilization of all three
equations in discretized form. The model is complemented by suitable initial and
boundary conditions. That being said, the knowledge of these conditions is in
practice severely limited. One motivation of having extreme-scale iterative solvers
is the inversion of models of the above type alongside with the quantification of
parameter and model uncertainties, requiring a large number of solves.

Semi-discretization in time: The state-of-the-art in geophysical flow com-
putations are explicit time-stepping methods such as Runge–Kutta type schemes.
This, on one hand, decouples the problem into the explicit evolution of the temper-
ature and an instantaneous constraint governed by the Stokes problem resulting in
an implicit problem. On the other hand, the time-stepping is CFL-limited, which
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drives the number of auxiliary problems (1) to be solved in high-resolution com-
putations. Therefore, it is not only important that we reach extreme scalability,
but also deliver a small time-to-solution for practical applications.

Treatment of the Stokes part (1): Despite the vast literature dealing with
the discretization and solution of the Stokes problem, the majority of the pub-
lished work considers only the two-dimensional in practical realizations. Moreover,
generic constants appearing in the analysis of discretization schemes and solvers
are often left unspecified, thereby only giving information about their asymptotic
optimality but not of the actual performance. The lack of fair comparisons between
different three-dimensional velocity-pressure pairings with respect to quality of the
approximation vs. number of degrees of freedom and sparsity of the resulting sys-
tem makes it difficult to rule out potential candidates and decide upon a promising
choice. While continuous pressure schemes do not straightforwardly yield desirable
physical properties like strong or at least local mass-conservation, most low order
discontinuous pressure schemes on tetrahedral meshes have serious stability issues
(e.g., P2 − P0, or Crouzeix-Raviart for non-isoviscous flow). For higher orders, we
may require bubble-enrichments or barycentrically refined meshes, both of which
do not lend themselves to iterative solvers based on hierarchic decompositions.

Due to the circumstances mentioned above, we base our solver prototype on
equal-order linear interpolations for the velocity and the pressure which allow
the efficient implementation of matrix-free multigrid. Let us remark that in a
hierarchical setting, linear finite elements for the Stokes problem have the addi-
tional advantage that the pressure converges with O(h3/2) due to a super-closeness
property, which adds to the ratio of accuracy per degrees of freedom desired in
extreme-scale high-performance computations.

Since these discretizations are neither locally mass-conservative nor stable, we
propose a combination of stabilization and local postprocessing to circumvent these
problems. For stability reasons, we place the pressure degrees of freedom on a
coarser level which yields a stable discretization and allows the later extension to
quadratic Taylor–Hood elements. For the sake of local mass-conservation, we use
a novel method to compute face-wise constant mass-flux-corrections on dual cells
[2]. By solving small local systems, we can moreover lift the velocity to strongly
divergence-free approximations on the primal mesh.

The linear systems resulting from this discretization of the Stokes problem (1)
are solved in a nested iterative fashion, using a preconditioned CG on the pres-
sure Schur complement for the outer iterations, and geometric multigrid for the
(approximate) inversion of the viscous operator. While this pressure-correction
scheme may not deliver optimal convergence rates, we can achieve good times
to solution using this approach, especially in unsteady computations. The thor-
ough comparison with specialized saddle-point smoothers (e.g., Vanka or DGS)
and the development of robust multigrid techniques for the varying viscosity case
are subjects of ongoing research.

Treatment of the energy part (2): Given a postprocessed velocity field,
we can achieve local energy conservation by using suitable discretizations for the
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Figure 1. Strong scaling of the Stokes-solver on JUQUEEN.

Figure 2. Temperature iso-surfaces inside a spherical shell.

energy part of the problem. Since nodal data-structures are already used for
the Stokes-part, a natural choice here is the use of vertex-centered finite-volume
schemes on dual meshes. The coupling between postprocessed equal-order dis-
cretizations and finite volumes was demonstrated in 2D computations in [2]. The
conservative coupling in 3D follows by the same techniques, and a practical re-
alization is work in progress. For the time being, we use a streamline-upwinding
Petrov–Galerkin approach which is not locally conservative and requires parame-
ter tuning. The reason for this is that such a finite element based scheme can be
easily realized using the same data-structures as the vertex-centered finite volumes
and is therefore suitable for first performance studies.

Computational results: Our highly optimized implementation in the hi-
erarchical hybrid grid framework (HHG) demonstrated the feasibility of solving
Stokes-systems with O(1012) unknowns in the range of minutes [1]. The solver
showed excellent scalability on state-of-the-art peta-scale architectures; cf. e.g.
Fig. 1. Moreover, we demonstrated the performance of the solver for Boussinesq-
type flow in a spherical shell geometry involving O(1010) unknowns and 10, 000
time-steps; cf. Fig. 2.
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SWITZERLAND

Prof. Dr. Volker Schulz

Fachbereich IV - Mathematik, Numerik,
Optimierung & part.
Differentialgleichungen
Universität Trier
54286 Trier
GERMANY

Prof. Dr. Ridgway Scott

Department of Mathematics
The University of Chicago
257F Ryerson Hall
Chicago, IL 60637
UNITED STATES

Prof. Dr. Rob Stevenson

Korteweg-de Vries Instituut
Universiteit van Amsterdam
Postbus 94248
1090 GE Amsterdam
NETHERLANDS

Prof. Dr. Stefan Vandewalle

Department of Computer Science
KU Leuven
Celestijnenlaan 200A
3001 Leuven
BELGIUM

Prof. Dr. Wim Vanroose

Department Wiskunde-Informatica
University of Antwerpen
Middelheimlaan 1
2020 Antwerpen
BELGIUM

Prof. Dr. Panayot S. Vassilevski

Center for Applied Scientific Computing
Lawrence Livermore National
Laboratory
P.O.Box 808, L-560
Livermore CA 94550
UNITED STATES

Andreas Vogel

G-CSC
Wolfgang-Goethe-Universität
Frankfurt/M.
Im Kettenhofweg 139
60325 Frankfurt am Main
GERMANY

Dr. Martin Vohralik

INRIA Rocquencourt
Domaine de Voluceau
B. P. 105
78153 Le Chesnay Cedex
FRANCE

Prof. Dr. Kees Vuik

Delft Institute of Applied Mathematics
Delft University of Technology
Mekelweg 4
2628 Delft CD
NETHERLANDS

Prof. Dr. Olof B. Widlund

Courant Institute of Math. Sciences
New York University
251, Mercer Street
New York, NY 10012-1110
UNITED STATES



1364 Oberwolfach Report 24/2014

Prof. Dr. Christian Wieners

Karlsruher Institut f. Technologie (KIT)
Inst. f. Angew. & Numerische
Mathematik
76131 Karlsruhe
GERMANY

Prof. Dr. Gabriel Wittum

G-CSC
Wolfgang-Goethe-Universität
Frankfurt/M.
Im Kettenhofweg 139
60325 Frankfurt am Main
GERMANY

Prof. Dr. Barbara Wohlmuth

Zentrum Mathematik
TU München
Boltzmannstr. 3
85748 Garching b. München
GERMANY

Prof. Dr. Harry Yserentant

Institut für Mathematik
Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin
GERMANY

Prof. Dr. Christoph Zenger

Institut für Informatik
TU München
Boltzmannstr. 3
85748 Garching
GERMANY


	References
	References
	References
	References
	References
	References
	References
	References
	References
	References
	1. Vector-valued Allen–Cahn system
	2. Multicomponent Cahn–Hilliard systems
	References
	References
	References
	1. Introduction
	2. Well-posed space-time weak formulation
	3. Space-time finite element method 
	4. Discretization error analysis
	References
	References
	References
	References
	References
	References
	The wave equation
	Time integrators
	Adaptive Petrov-Galerkin space-time discretizations
	A discontinuous Petrov-Galerkin space-time discretization

	References
	References

