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Introduction by the Organisers

The workshop Modular Forms, organized by Jan Hendrik Bruinier (Darmstadt),

Atsushi Ichino (Kyoto), Tamotsu Ikeda (Kyoto) and Özlem Imamoglu (Zürich)
consisted of 19 one-hour long lectures and covered various recent developments in
the theory of modular and automorphic forms and related fields.

A particular focus was on the connection of modular forms to periods, since
there have been important developments in that direction in recent years. In
this context, the topics that the workshop addressed include the global Gross-
Prasad conjecture and its analogs, which predict a relationship between periods
of automorphic forms and central values of L-functions, the theory of liftings and
their applications to period relations, as well as explicit aspects of these formulas
and relations with a view towards the arithmetic properties of periods.

There are two fundamental ways in which automorphic forms are related to
periods. First, according to the conjectures of Deligne, Beilinson and Scholl, spe-
cial values of motivic automorphic L-functions at integral arguments should be
given by periods and encode important arithmetic information, such as ranks of
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Chow groups and Selmer groups. Second, the Fourier coefficients of automorphic
forms are often given by periods. For instance, by the work of Waldspurger, the
coefficients of half integral weight eigenforms are given by period integrals of their
Shimura lifts. The majority of the lectures (in particular talks by Wee-Teck Gan,
Erez Lapid, Kazuki Morimoto, Anantharam Raghuram, Abhishek Saha and Shun-
suke Yamana) discussed (or were motivated by) relations of periods and special
values of automorphic L-functions. Periods related to classes in cohomology and
Chow groups of Shimura varieties and their connections to automorphic forms
were addressed in the talks by Kathrin Bringmann, Yingkun Li, Yifeng Liu, and
Tonghai Yang.

Other talks discussed the role of automorphic forms in geometry, for instance
in context of the Kudla program (Stephan Ehlen, Valery Gritsenko, Jürg Kramer,
Stephen Kudla and Martin Raum). Aspects of the analytic theory of automorphic
forms played an important role in the talks by Valentin Blomer, Gautam Chinta,
Tomoyoshi Ibukiyama and Ren He Su.

In total, 53 researchers participated in the workshop. Out of these, 37 came from
12 countries different from Germany. Beyond the talks, the participants enjoyed
ample time for discussions and collaborative research activities. The traditional
hike onWednesday afternoon led us to the Ochsenwirtshof in Schapbach. A further
highlight was a piano recital on Thursday evening by Valentin Blomer.

The organizers and participants of the workshop thank the Mathematisches
Forschungsinstitut Oberfwolfach for hosting the workshop and providing such an
ideal working environment.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Stephen S. Kudla in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Product formulas for Borcherds forms

Stephen Kudla

In a now classic pair of Inventiones papers in 1995 and 1998, Borcherds constructed
meromorphic modular forms on the arithmetic quotient of a bounded domain D
associated to a rational quadratic space V , ( , ) of signature (n, 2). These forms
have various remarkable properties, for example, their divisor is explicitly given.
But perhaps most striking is that, in a suitable neighborhood of each 0-dimensional
boundary component, they are given by a product formula reminiscent of that for
the Dedekind η function. In this talk, I will describe analogous product formulas
for Borcherds forms, now valid in a suitable neighborhood of each 1-dimensional
boundary component, assuming that V admits 2-dimensional isotropic subspaces.

Let

D = {w ∈ V (C) | (w,w) = 0, (w, w̄) < 0 }/C× ⊂ P(V (C))

be the ‘quadric’ model of the symmetric space associated to V . Fix an even integral
lattice M ⊂M∨ in V , let

Γ ⊂ ΓM = {γ ∈ SO(V ) | γM =M, γ|M∨/M = 1}
be a subgroup of finite index, and let XΓ = Γ\D be the corresponding arithmetic
quotient. Let SM = C[M∨/M ] be the group algebra of the discriminant group
of M , which we view as a subspace of S(V (Af )), the space of locally constant
functions of compact support on the finite adèle points of V . The group SL2(Z),
for n even, or a central extension of it, for n odd, acts on the space SM via
the Weil representation ρM . Recall that in [2], Borcherds takes as input a weakly
holomorphic modular form F : H→ SM of weight 1− n

2 and type ρM . In particular
F has a Fourier expansion

F (τ) =
∑

m

c(m) qm, c(m) ∈ SM

with only a finite number of nonvanishing coefficients c(m) for m < 0. Assuming
that for m ≤ 0, c(m) ∈ Z[M∨/M ], Borcherds associates to F a meromorphic mod-
ular form Ψ(F ) on D of weight c(0)(0)/2 with respect to a finite index subgroup
of ΓM .

Now suppose that

V = U + V0 + U ′

is a Witt decomposition of V , where U is an isotropic 2-plane, U ′ is an isotropic
complement and V0 = (U + U ′)⊥. The complex curve

C(U) = {w ∈ U(C) | span{w, w̄} = U(C)}/C× ≃ P(U(C))− P(U(R))

lies in the closure of D in P(V (C)) and defines a 1-dimensional rational boundary
component in the Bailey-Borel compactification XBB

Γ of XΓ.
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Choose a Z-basis e1, e2 for the lattice M ∩U and let e′1 and e′2 be a dual basis
for U ′. The Witt decomposition then determines an isomorphism

D
∼−→ {(τ1, w0, τ

′
2) ∈ C× V0(C)× C | 4v1v′2 −Q(w0 − w̄0) > 0},

where v1 = ℑ(τ1), v′2 = ℑ(τ ′2), Q(x) = 1
2 (x, x), and the inverse map is obtained by

taking
w(τ1, w0, τ

′
2) = −τ ′2e1 + (τ1τ

′
2 −Q(w0))e2 + w0 + τ1e

′
1 + e′2.

Note that, as v′2 → ∞ for τ1 and w0 in bounded sets, the isotropic line Cw in D
goes to the isotropic line C(−e1 + τ1e2) in C(U).

Theorem. In a region of the form

{w(τ1, w0, τ
′
2) | v′2 > Av1 + (Q(ℑ(w0)) +B)v−11 },

for suitable positive constants A and B, the Borcherds form Ψ(F )(w) is given as
the product of the following factors:
(a) ∏

x∈M∨

(x,e2)=0
(x,e1)>0
mod M∩Qe2

(
1− e(−(x,w))

)c(−Q(x))(x)
,

(b)

∏

x∈M∨∩U⊥
mod M∩U
Q(x) 6=0

(
ϑ(−(x,w), τ1)

η(τ1)
e((x,w) − 1

2
(xU , w))

(x,e′1)

)c(−Q(x))(x)/2

,

(c)
∏

x∈M∨∩U/M∩U
x 6=0

(
ϑ(−(x,w), τ1)

η(τ1)
e(
1

2
(x,w))(x,e

′
1)

)c(0)(x)/2
,

(d)

κ η(τ1)
c(0)(0) qI02 ,

where ϑ(z, τ) is the Jacobi theta function and

I0 = −
∑

m

∑

x∈M∨∩U⊥
mod M∩U

c(−m)(x)σ1(m−Q(x)).

Here q2 = e(τ ′2) and σ1(n) is the sum of the positive divisors of n if n > 0,
σ1(0) = −1/24, and σ1(n) = 0 if n < 0. Finally, κ is a scalar of absolute value 1.

The quantity q2 only appears in factors (a) and (d), and the infinite product in
(a) converges absolutely in the given region and goes to 1 as v′2 goes to infinity, i.e.,
as q2 goes to zero. In fact, in a smooth toroidal desingularization of a neighborhood
of the boundary component of XBB

Γ defined by C(U), the compactifying divisor
B(U) is a Kuga-Sato variety cut out locally by the equation q2 = 0. Thus, Ψ(F )
extends to this desingularization and I0 is its order of vanishing along B(U). The
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value of q−I02 Ψ(F ) on B(U) is the product of (b), (c), and (d) without the q2 factor.
It is a theta function on the Kuga-Sato variety of a type considered by Looijenga
[8] and gives the first Fourier-Jacobi coefficient of Ψ(F ). Other Fourier-Jacobi
coefficients can be computed by expanding (a).

Examples of product formulas of this type occur in Borcherds [1], and in many
papers of Gritsenko [4], Gritenko-Nikulin [5],[6],[7], and others [3]. Our result
shows that they arise for all Borcherds forms and a uniform proof is given.

The proof is analogous to that of [1] and is based on a computation of the
Fourier expansion of the regularized theta lift of F along the unipotent radical of
the parabolic subgroup GU of G stabilizing U . The classical modular forms ϑ(z, τ)
and η(τ) arise via the first and second Kronecker limit formulas, [10], which are
encountered along the way.

The product formula of the Theorem is essentially simpler than that of Borcherds;
for example, no choice of Weyl chamber or determination of Weyl vector is in-
volved. This is due, on the one hand, to the fact that the singularities of Ψ(F )
near the boundary component C(U) are accounted for by the finite product of
theta functions in (b) and hence do not otherwise disturb convergence. On the
other hand, the geometry of the desingularization is quite simple in a neighborhood
of B(U), whereas the desingularization of a 0-dimensional boundary component
involves a choice of rational polyhedral cones, etc., [9].
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Distribution of mass of holomorphic cusp forms

Valentin Blomer

(joint work with Rizwanur Khan and Matthew Young)

Let f ∈ Sk be an L2-normalized cusp form of even weight k for the modular group
Γ = SL2(Z). A basic question is to understand the size of F (z) = yk/2f(z) and the
distribution of its mass on Γ\H as k becomes large. This can be made quantitative
in various ways, e.g. by bounding the Lp-norm of F for 2 < p ≤ ∞. A first guess
might be that the mass of F should be nicely distributed on Γ\H such that F has
no essential peaks, but one sees quickly some limitations to equidistribution:

As the dimension dimSk ∼ vol(Γ\H)k/(4π) is large, it is reasonable to restrict
to Hecke eigenforms which enjoy a multiplicity one property. Next, the exceptional
behaviour of Whittaker functions produces bumps of F high in the cusp. Writing
the Fourier expansion of the Hecke eigenform F as

∑

n

λ(n)

n1/2
e(nx)Wk(4πny), Wk(y) = yk/2e−y/2Γ(k)−1/2

(so that with the convention λ(1) = 1 the function is roughly L2-normalized), we
see that

‖F‖∞ ≥
∣∣∣
∫ 1

0

F (z)e(−x)dx
∣∣∣ = |Wk(4πy)| ≍ k1/4, y = k/(4π).

This argument works in great generality (for instance, one can similarly show for

certain Siegel cusp forms in Sk(Sp2n(Z)) that ‖ det(·)k/2f‖∞ ≫ k(n
2+n)/8).

On the other hand, the Fourier expansion implies ‖F‖∞ ≪ k1/4+ε, so that by
interpolation

(1) ‖F‖p ≪ k1/4−1/(2p)+ε.

This can be viewed as the trivial bound.
In this talk the main focus is on the 4-norm which features an interesting in-

terplay with L-functions. Let Bk denote a Hecke eigenbasis of Sk. By a triple
product period formula ([8, 4]) we have

‖F‖44 =
∑

g∈B2k

|〈F 2, G〉|2 =
π3

2(2k − 1)L(1, sym2f)2

∑

g∈B2k

L(1/2, g)L(1/2, sym2f × g)

L(1, sym2g)
.

It is important to note that all L-values here are non-negative [5, 6], and the
L-values at 1 can be bounded conveniently from above and below by ko(1) [2]. The
first result is the following mean value estimate for the degree 6 L-function [1]:

Theorem 1. For a Hecke eigenform f ∈ Sk we have
∑

g∈B2k

L(1/2, g)L(1/2, sym2f × g)≪ k1+ε.

Using bounds for L(1/2, g) [7], we obtain the following improvement of (1) in
the case p = 4.
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Corollary 1. For a Hecke eigenform f ∈ Sk we have ‖F‖44 ≪ k1/3+ε.

This should be seen as a Weyl-type bound for the 4-norm, comparable in
strength to Weyl’s subconvexity estimate for the Riemann zeta-function. One
can also obtain bounds for the following geodesic restriction problem:

Corollary 2. For a Hecke eigenform f ∈ Sk we have
∫∞
0 |F (iy)|2

dy
y ≪ k1/4+ε.

This is the first nontrivial geodesic restriction result for holomorphic forms of
large weight; the trivial bound here (obtainable in a variety of ways) is k1/2+ε.

Finally let g ∈ S2k with k odd, and let Fg ∈ Sk+1(Sp4(Z)) be the (L2-
normalized) associated Saito-Kurokawa lift. In the following we consider its re-
striction Fg|∆ to the diagonal (Γ\H) × (Γ\H). If all spaces are equipped with
probability measures, then a formula of Ichino [3] implies

‖Fg|∆‖22 =
π2

15L(3/2, g)L(1, sym2g)
· 12
k

∑

f∈Bk+1

L
(
1/2, sym2f × g

)
.

The method of proof of Theorem 1 gives

Corollary 3. We have

12

2k − 1

∑

g∈B2k

‖Fg|∆‖22 = 2 +O(kη)

for some η > 0.
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The Shimura-Waldspurger correspondence for Mp
2n

Wee-Teck Gan

In this talk, we revisit the Shimura-Waldspurger (SW) correspondence which gives
a precise description of the automorphic discrete spectrum of the metaplectic dou-
ble cover Mp2 of SL2 = Sp2, and formulate a conjectural extension to general
Mp2n. Since the treatment is adelic, one first has a local analog.
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1. Local SW correspondence

Let F be a nonarchimedean local field. LetW be the 2n-dimensional symplectic
F -vector space, and let V + and V − be the two 2n+1-dimensional quadratic spaces
with trivial discriminant, with V + split. The following was shown in [3].

Fix a nontrivial additive character ψ of F . The theta correspondence with
respect to ψ gives a bijection

Irrǫ(MpW ))←→ Irr(SO(V +)) ⊔ Irr(SO(V −)),

where we consider genuine representations of Mp(W ) on the LHS.
When F is archimedean, the analogous theorem was obtained by Adams-

Barbasch [1]. Further, the above result was obtained in [3] under the hypoth-
esis that the residual characteristic of F is p 6= 2, as the Howe duality conjecture
was used. During the duration of the Oberwolfach workshop, Takeda and I have
been able to show the Howe duality conjecture for (almost) equal rank dual pairs
(see [4]) so that the p 6= 2 hypothesis is no longer necessary.

2. Global SW correspondence

Now assume that we are working over a number field k. It is natural to at-
tempt to use the global theta correspondence to obtain a precise description of
the automorphic discrete spectrum of Mp(WA). For readers familiar with Wald-
spurger’s work [5, 6] in the case when dimW = 2, it will be apparent that there
is an obstruction to this approach: the global theta lift Θ(π) of a cuspidal rep-
resentation π of Mp(WA) or SO(VA) may be 0 and it is nonzero precisely when
L(1/2, π) 6= 0. This obstruction already occurs when dimW = 2, and was not easy
to overcome. Waldspurger had initially alluded to results of Flicker proved by the
trace formula. Nowadays, one could appeal to a result of Friedberg-Hoffstein, stat-
ing that if ǫ(1/2, π) = 1, then there exists a quadratic Hecke character χ such that
L(1/2, π× χ) 6= 0. When dimW > 2, however, the analogous analytic result does
not seem to be forthcoming and may be very hard. We are going to suggest a new
approach in the higher rank case, but before that, we would like to describe the
analog of Arthur’s conjecture for Mp2n.

3. Arthur’s conjecture for Mp2n

For a fixed additive automorphic character ψ, one expects that

L2
disc =

⊕

Ψ

L2
Ψ,ψ where Ψ =

⊕

i

Ψi =
⊕

i

Πi ⊗ Sri

is a global discrete A-parameter for Mp2n; it is also an A-parameter for SO2n+1.
Here, Sri is the ri-dimensional representation of SL2(C) and Πi is a cuspidal
representation of GLni such that

{
L(s,Πi,∧2) has a pole at s = 1, if ri is odd;

L(s,Πi, Sym
2) has a pole at s = 1, if ri is even.

Moreover, we have
∑

i niri = 2n and the summands Ψi are mutually distinct.
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For a given Ψ, one inherits the following additional data:

• for each v, one inherits a local A-parameter

Ψv =
⊕

i

Ψi,v =
⊕

i

Πi,v ⊗ Sri .

By the LLC for GLN , we may regard each Πi,v as an ni-dimensional
representation of the Weil-Deligne group WDkv .
• one has a “global component group” AΨ =

⊕
i Z/2Z ·ai, which is a Z/2Z-

vector space equipped with a distinguished basis indexed by the Ψi’s.
Similarly, for each v, we have the local component group AΨv which is
defined as the component group of the centralizer of the image of Ψv,
thought of as a representation of WDkv × SL2(C). There is a natural
diagonal map ∆ : AΨ −→

∏
v AΨv .

• For each v, one has a local A-packet associated to Ψv and ψv:

ΠΨv ,ψv = {σηv : ηv ∈ Irr(AΨv )},
consisting of unitary representations (possibly zero, possibly reducible) of
Mp2n(kv) indexed by the set of irreducible characters of AΨv . On taking
tensor products of these local A-packets, we obtain a global A-packet

AΨ,ψ = {ση : η = ⊗vηv ∈ Irr(
∏

v

AΨv )}

consisting of abstract unitary representations ση = ⊗vσηv of Mp2n(A)
indexed by the irreducible characters η = ⊗vηv of

∏
v AΨv .

• Arthur has attached to Ψ a quadratic character (possibly trivial) ǫΨ of AΨ,
This character plays an important role in the multiplicity formula for the
automorphic discrete spectrum of SO2n+1. For Mp2n, we need to define a
modification of ǫΨ. Set

ηΨ(ai) =

{
ǫ(1/2,Πi), if L(s,Πi,∧2) has a pole at s = 1;

1, if L(s,Πi, Sym
2) has a pole at s = 1.

The modified quadratic character of AΨ in the metaplectic case is ǫ̃Ψ =
ǫΨ · ηΨ.

We can now state the conjecture.

Arthur Conjecture for Mp2n: For each such Ψ,

L2
Ψ,ψ
∼=

⊕

η∈Irr(
∏

v AΨv ):∆
∗(η)=ǫ̃Ψ

ση

4. A new approach

In an ongoing work, we are developing a new approach for the Arthur conjecture
described above. Namely, by results of Arthur [2], one now has a classification
of the automorphic discrete spectrum of SO2r+1 for all r. Instead of trying to
construct the automorphic discrete spectrum of Mp2n by theta lifting from SO2n+1,
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one could attempt to use theta liftings from SO2r+1 for r ≥ n. Let us illustrate
this in the case when dimW = 2.

Let π be a cuspidal representation of PGL2(A) = SO(V +
A ). Then π gives

rise to a near equivalence class in the automorphic discrete spectrum of Mp2. If
L(1/2, π) 6= 0, this near equivalence class can be exhausted by the global theta lifts
of π and its Jacquet-Langlands transfer to inner forms of PGL2. When L(1/2, π) =
0, we consider the A-parameter ψ = π ⊗ S1 ⊕ 1 ⊗ S2 for SO5. This is a so-called
Saito-Kurokawa A-parameter. By Arthur, ψ indexes a near equivalence class in the
automorphic discrete spectrum of SO5. Piatetski-Shapiro gave a construction of
the Saito-Kurokawa representations by theta lifting fromMp2, usingWaldspurger’s
results as initial data. However, one can turn the table around.

Namely, taking the Saito-Kurokawa near equivalence classes as given by Arthur,
one can consider their theta lift back to Mp2. By the Rallis inner product formula,
such a theta lift is nonzero if the partial L-function

LS(s,Φψ) = LS(s, π) · ζ(s+ 1

2
) · ζ(s− 1

2
)

has a pole at s = 3/2, or equivalently if LS(3/2, π) 6= 0. Now this is certainly much
easier to ensure than the nonvanishing at s = 1/2! In this way, one can construct
the desired near equivalence class for Mp2 associated to π and by studying the
local theta correspondence in detail, one can recover Waldspurger’s results from
30 years ago.

References

[1] J. Adams and D. Barbasch, Genuine representations of the metaplectic group, Compositio
Math 113 (1998), no. 1, 23-66.

[2] J. Arthur, The endoscopic classification of representations: orthogonal and symplectic
groups, Colloquium Publications 61, American Mathematical Society, 2013.

[3] W. T. Gan and G. Savin, Representations of metaplectic groups I: epsilon dichotomy and
local Langlands correspondence, Compos. Math. 148 (2012), 1655–1694.

[4] W. T. Gan and S. Takeda, The Howe duality conjecture in classical theta correspondence,
preprint, arXiv:1405.2626.

[5] J.-L. Waldspurger, Correspondance de Shimura, J. Math. Pures et Appl. 59 (1980), 1-133.
[6] J.-L. Waldspurger, Correspondances de Shimura et quaternions, Forum Math. 3 (1991), no.

3, 219–307.

Special values of L-functions and congruences for automorphic forms

Anantharam Raghuram

(joint work with Baskar Balasubramanyam)

Hida proved the following beautiful theorem in [4]: suppose f is a primitive weight
k, level N , holomorphic cusp form on the upper half-plane then the value at
s = 1 of the degree 3 adjoint L-function L(1,Ad0, f) is essentially the Petersson
norm (f, f) of f up to an algebraic number; let’s denote this algebraic number

as Lalg(1,Ad0, f). Furthermore, if p is a large enough rational prime that divides
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Lalg(1,Ad0, f), then p is a congruence prime for f , i.e., there is another primitive
weight k, level N, cusp form g such f ≡ g (mod p), i.e., an(f) ≡ an(g) (mod p)
for all n ≥ 1.

Such a result has since been generalized to various GL(2)-contexts:

(1) Eknath Ghate [3] proved a version of this theorem for Hilbert modular
forms of parallel weight.

(2) Mladen Dimitrov [2] generalized it further for Hilbert modular forms of
any algebraic weight.

(3) Eric Urban [6] had separately generalized Hida’s theorem to the context of
GL2 over an imaginary quadratic field; in this situation he observes that
L(1,Ad0, f) is a non-critical value.

(4) Namikawa [5] has very recently generalized this result to GL2 over any
number field.

In [1] we generalize Hida’s theorem above to the context of cohomological cuspi-
dal automorphic representation of GLn over any number field. This also generalizes
all the above mentioned works. For first main result is:

Theorem 1. Let π be a cohomological cuspidal automorphic representation of
GLn over a number field F. Let ε be a permissible signature for π. Define:

Lalg(1,Ad0, π, ε) :=
L(1,Ad0, π)

ΩF · Ωram(π) · p∞(π) · pε(π) · qε̃(π̃) .

(Here ΩF is a nonzero constant that depends only on F ; Ωram(π) is a nonzero
constant that depends only on the ramified local representations of π; p∞(π) is a
nonzero constant that depends only on the representation at infinity; pε(π) (resp.,
qε̃(π̃)) is a period defined by comparing a rational structure on Whittaker model
and a rational structure on a cohomological model in bottom (resp., top) degree
cuspidal cohomology.) For all σ ∈ Aut(C) we have

σ(Lalg(1,Ad0, π, ε)) = Lalg(1,Ad0, σπ, σε).

In particular, Lalg(1,Ad0, π, ε) ∈ Q(π) which is a number field.

Our second main result is technical, but roughly speaking it says that:

Theorem 2. If p is a prime such that p|Lalg(1,Ad0, π, ε), and suppose p is outside
a finite set of exceptions, then p is a congruence prime for π.

The meaning of this theorem is that there is another cohomological automorphic
representation π′, which contributes to inner cohomology, such that

π ≡ π′ (mod p).

If the highest weight on GLn, with respect to which we take cohomology, happens
to be a regular weight, then we are assured that π′ is also cuspidal. Note that the
congruence of two automorphic representations is defined in terms of their Satake
parameters: suppose α1, . . . , αn (resp, α′1, . . . , α

′
n) are the Satake parameters of
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π and π′ at some unramified prime l, then to say that π and π′ are congruent
modulo p, we require:

∑

i1<i2···<ij

αi1 · · ·αij ≡
∑

i1<i2···<ij

α′i1 · · ·α′ij (mod p)

for all unramified l, and for all 1 ≤ j ≤ n.
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Construction of liftings to vector valued Siegel modular forms

Tomoyoshi Ibukiyama

Partly motivated by conjectures on Shimura type correspondence between Siegel
modular forms of integral weight and half-integral weight, we construct two kinds
of liftings from pairs of elliptic modular forms, one is to vector valued Siegel mod-
ular forms of integral weight of odd degree, and the other to vector valued Siegel
modular forms of half-integral weight of even degree, as well as the description of
L functions. We explain the motivation part first and then report on the liftings.
We denote by Hn the Siegel upper half space of degree n, by Γn the Siegel modular
group Spn(Z) ⊂ M2n(Z) of degree n. We define the automorphy factor of weight
1/2 for the group

Γ
(n)
0 (4) =

{
g =

(
A B
C D

)
∈ Γn;C ≡ 0 mod 4

}

by θ(γZ)/γ(Z) for γ ∈ Γ
(n)
0 (4) and Z ∈ Hn, where θ(Z) =

∑
p∈Zn e

2πi tpZp. We

define a character ψ of Γ
(n)
0 (4) by ψ(γ) =

(
−4

det(D)

)
where (−4/∗) is the Kro-

necker character modulo 4. Let (Symj , Vj) be the j-th symmetric tensor rep-

resentation of GLn(C) and χ a character of Γ
(n)
0 (4). For k ∈ Z>0, a holomor-

phic function F : Hn → Vj is a vector valued Siegel modular form of weight

detk Sym(j) if it satisfies F (γZ) = det(CZ + D)kSymj(CZ + D)F (Z) for any

γ ∈ Γn, and of weight detk−1/2 Sym(j) of Γ
(n)
0 (4) with character χ if F (γZ) =

χ(γ)(θ(γZ)/θ(Z))2k−1Symj(CZ+D)F (Z) for any γ ∈ Γ
(n)
0 (4), and is a Siegel cusp

form if it vanishes on the boundary. We denote by Sk,j(Γn) and Sk−1/2,j(Γ
(n)
0 (4), χ)
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the spaces of such cusp forms, omitting χ when χ is trivial. To extract the level

one part of Sk−1/2,j(Γ
(n)
0 (4), ψl), the plus subspace S+

k−1/2,j(Γ
(n)
0 (4), ψl) is defined.

For F =
∑
T a(T )exp(2πiTr(TZ)) ∈ Sk−1/2,j(Γ

(n)
0 (4), ψl) (l = 0 or 1), F belongs

to the plus subspace if a(T ) = 0 unless T − (−1)k+l−1(µiµj)1≤i,j≤n is 4 times a
half integral matrix for some integers µi with 1 ≤ i ≤ n. By virtue of Tsushima’s
conjectural dimension formulas (which we have proved in half of the cases by some
structure theorem of vector valued Jacobi forms [11]), we have

Theorem 1. For integers k, j with k ≥ 3 and j even, assuming some standard
vanishing theorem of cohomology, we have

dimS+
k−1/2,j(Γ

(2)
0 (4), ψ) = dimSj+3,2k−6(Γ2).

dimS+
k−1/2,j(Γ

(2)
0 (4)) = dimS+

k−1/2,j(Γ
(2)
0 (4), ψ) + dimS2k−4(Γ1)× S2k+2j−2(Γ1).

Based on these dimensional relations and a lot of numerical evidences, we pro-
pose the following conjectures. Here we note that (1) below has been already given
in [8] and (2) for j = 0 in [6], but (2) for j > 0 and (3) are new.

Conjecture ([6], [8], [9]). (1) We have a Hecke equivariant isomorphism

S+
k−1/2,j(Γ

(2)
0 (4), ψ) ∼= Sj+3,2k−6(Γ2).

(2) There is an injective lifting L : S2k−4(Γ1)×S2k+2j−2(Γ1)→ S+
k−1/2,j(Γ

(2)
0 (4)).

(3) Denoting by S+,0
k−1/2,j(Γ

(2)
0 (4)) the orthogonal complement of the image of the

above conjectural L in S+
k−1/2,j(Γ

(2)
0 (4)), we have a Hecke equivariant isomorphism

S+,0
k−1/2,j(Γ

(2)
0 (4)) ∼= Sj+3,2k−6(Γ2).

These conjectures have a good application to Harder’s conjecture on congru-
ences, in particular the last one (See [8], [9]).

Now, we construct two kinds of general liftings, including the above L. First we
explain the differential operator which is crucial for the construction for general

j. We denote by W (F ) the restriction of functions F (Z) of Z =

(
τ z
tz ω

)
∈ Hm

to (τ, ω) ∈ Hm−1 × H1 (i.e. to z = 0). For g1 =

(
A1 B1

C1 D1

)
∈ Spm−1(R) and

g2 =

(
a b
c d

)
∈ SL2(R) = Sp1(R), we write ι(g1, g2) =

(
A B
C D

)
∈ Spm(R) for

the natural diagonal embedding ι. For any integer j ≥ 0 and any κ ∈ (1/2)Z,
there exists a holomorphic linear Vj -valued differential operator Dκ,j of constant
coefficients (unique up to constants) which satisfies the following condition ([7]).

Condition. Notations being as above, for any holomorphic functions F : Hm →
C, any g1 ∈ Spm−1(R), and any g2 ∈ SL2(R), we have

W
[
Dκ,j

(
det(CZ +D)−κF (ι(g1, g2)Z)

)]

= det(C1τ +D1)
−κSymj(C1τ +D1)

−1(cω + d)−κ−jW (Dκ,jF )(g1τ, g2ω).
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Here the branch of the κ-th power is fixed consistently if κ 6∈ Z.

(1) The case when the target is of integral weight. Assume that k is
even. Let f ∈ S2k−2n(Γ1) be a Hecke eigenform. T. Ikeda constructed a lifting
from f to I(f) ∈ Sk(Γ2n). For any Hecke eigenform g ∈ Sk+j(Γ1), we define

Ff,g(τ) =
∫

Γ1\H1

W (Dk,jI(f))(τ, ω)g(ω)dω for the Petersson measure dω.

Theorem 2. We have Ff,g ∈ Sk,j(Γ2n−1). If Ff,g 6= 0, then this is a Hecke
eigenform and its L functions are explicitly given (though details are omitted here).
In partirular when n = 2 (i.e. a lift to degree 3), the spinor L function is given by

L(s,Ff,g, Sp) = L(s− k + 2, g)l(s− k + 3, g)L(s, f ⊗ g).
When j = 0, this is nothing but the Ikeda-Miyawaki lift by Ikeda, the results

for the spinor L being supplied by Heim (n = 3) and Hayashida (general n). We
also note that the case n = 2 is a realization of a part of the conjectures given in
[1].

(2) The case when the target is of half-integral weight. Again we assume
that k is even, f ∈ S2k−2n(Γ1) a Hecke eigenform, and take the Ikeda lift I(f) ∈
Sk(Γ2n). Let Φ1 be the first Fourier Jacobi coefficient of I(f) w.r.t. the last

component ofH2n. Then Φ1 corresponds with an elementH ∈ S+
k−1/2(Γ

(2n−1)
0 (4)).

We define Dκ,j and W to the partition 2n− 1 = (2n− 2) + 1 and κ = k− 1/2 (so

τ ∈ H2n−2, ω ∈ H1). For any Hecke eigenform h ∈ S+
k+j−1/2(Γ

(1)
0 (4)), we define

Hf,h(τ) =
∫

Γ
(1)
0 (4)\H1

W (Dk−1/2,jH)(τ, ω)h(ω)dω.

We denote by g the Hecke eigenform in S2k+2j−2(Γ1) corresponding to h by the
usual Shimura correspondence.

Theorem 3. We have Hf,h ∈ S+
k−1/2,j(Γ

(2n−2)
0 (4)). If Hf,h 6= 0, this is a Hecke

eigenform and its L function in the sense of Zhuravlev is given explicitly in general
(though omitted here). In particular when n = 2, we have

L(s,Hf,h) = L(s, g)L(s− j − 1, f).

When j = 0, the proofs of Theorem 2 for the spinor L function and Theorem 3
were given by S. Hayashida, using his characterization of Fourier-Jacobi coefficients
of I(f) and H , which is a natural generalization of the Maass relation for Saito-
Kurokawa liftings (See [2], [3], [4]. [5].) The case j > 0 can be similarly proved by
using the properties of Dκ,j .
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Meromorphic cycle integrals

Kathrin Bringmann

(joint work with Ben Kane)

This talk generalizes classical sums of quadratic forms, which are cusp forms and
which played a key role in connection with the Shimura/Shintani lift, to the mero-
morphic setting. This is work in progress.

Let me first recall the classical situation for cusp forms. Let QD denote the
set of integral/binary quadratic forms with discriminant D. For D > 0, we then
define for k > 1 the following quadratic form Poincaré series (τ ∈ H)

fk,D (τ) :=
Dk− 1

2

(
2k−2
k−1

)
π

∑

Q∈QD

Q(τ, 1)−k.

This function was introduced by Zagier in connection with the Doi-Naganuma
lift (between modular forms and Hilbert modular forms) and is a cusp forms of
weight 2k for SL2(Z). It arises from a Hilbert modular form by restricting to the
diagonal. Kohnen and Zagier showed that the fk,D are the Fourier coefficients of
holomorphic kernel functions for the Shimura resp. Shintani lifts between half-
integral and integral weight cusp forms. More precisely, for τ, z ∈ H, define

Ω (τ, z) :=
∑

0<D≡0,1 (mod 4)

fk,D (τ) e2πiDz.

Then Ω is a modular form of weight 2k in the variable τ and weight k + 1
2 in the

variable z. Furthermore, integrating Ω against a cusp form f of weight 2k (resp.
k + 1

2 ) with respect to the first (resp. second) variable yields the Shintani (resp.
Shimura) lift.

The functions fk,D also give important examples of modular forms with rational
periods. These were studied by Kohnen and Zagier and have appeared more
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recently in work of Duke, Imamoglu, and Toth where they were related to the
error to modularity of certain holomorphic functions which are defined via cycle
integrals.

The quadratic form Poincaré series can also be decomposed into restricted sums
where one only sums over equivalence classes of quadratic forms. To be more
precise, for A an equivalence class of quadratic forms with discriminant D define

fk,D,A (τ) :=
Dk− 1

2

(
2k−2
k−1

)
π

∑

Q∈A

Q(τ, 1)−k.

Kramer showed that the functions fk,D,A generate S2k as D runs through all
discriminants and A over all classes of forms with discriminant D.

The fk,D,A are of big importance as integrating against them yields cycle inte-
grals. To be more precise, for f ∈ S2k, define

rQ(f) :=

∫

ΓQ\CQ

f(z)Q(z, 1)k−1dz,

where ΓQ is the subgroup of SL2(Z) fixing Q. Moreover CQ is given by

a|τ |2 + bRe(τ) + c = 0.

Then 〈
f, fk,D,[Q]

〉 .
= rQ(f).

The functions fk,D also occur as images of a certain theta lift. To describe this,
we write τ = u+ iv ∈ H, z = x+ iy ∈ H, and denote, for Q = [a, b, c] ∈ QD,

Qτ :=
1

v

(
a|τ |2 + bu+ c

)
.

Shintani’s theta function projected into Kohnen’s plus space is defined as

Θ(τ, z) := v−2ky
1
2

∑

D∈Z

∑

Q∈QD

Q(τ, 1)ke−4πQ
2
τye2πiDz.

The function Θ (−τ, z) transforms like a modular form of weight k + 1
2 in z

and weight 2k in τ . Integrating the Dth weight k + 1
2 (cuspidal) Poincaré series

in Kohnen’s plus space, Pk+1/2,D, against Θ yields fk,D. To be more precise, we
define the theta lift

Φ(H)(τ) := 〈H,Θ(τ, ·)〉
for functions H that are modular of weight k + 1/2 and satisfy an appropriate
growth condition so that the integral converges absolutely. Then we have

Φ
(
Pk+ 1

2 ,D

)
.
= fk,D.

Let me now come to the functions of interest for this talk, meromorphic qua-
dratic form Poincaré series. Define for −D < 0 a discriminant

fk,−D(τ) := D
k
2

∑

Q∈Q−D

Q(τ, 1)−k.
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This function now has poles at the roots of Q. Towards ∞ it grows like a cusp
form. Following Petersson, we call such functions meromorphic cusp forms. It
would be interesting to see whether this function comes from restricting Bianci
modular forms. Also it would be interesting to investigate whether one can build
some kind of generating function out of the fk,−D.

Theorem 1 (B. - Kane). We have

Φ
(
Pk+ 1

2 ,−D

)
= fk,−D

where Pk+ 1
2 ,−D

is the −Dth Poincaré series in Kohnen’s plus space which basically

has principal part q−D.

Note that the Petersson scalar product has to be regularized.
Let me now come to the question of integrating against the fk,−Ds. Again I

define the associated form restricted to quadratic form classes. For D > 0, write

fk,−D,A(τ) := D
k
2

∑

Q∈A

Q(τ, 1)−k,

where A is a class of quadratic forms with discriminant −D. This function is again
a meromorphic cusp form.

The question is what happens if you integral meromorphic cusp forms against
fk,−D,[Q]. Since the naive inner product diverges, we must regularize these inte-
grals and denote the associated inner products by 〈·, ·〉mer.

Theorem 2. If f is a weight 2k meromorphic cusp form and k > 3, then

〈
f, fk,−D,[Q]

〉
mer

.
=

∑

z∈H
z 6=zQ

Resτ=z
(
f(τ)Q(τ, 1)k−1

) ∫ arctanh
(√

D
Qz

)

0

sinh2k−2(θ)dθ.

In particular fk,−D,[Q] is orthogonal to cusp forms.

In the special case that the poles of f are all simple, Resτ=z
(
f(τ)Q(τ, 1)k−1

)

has a particularly nice shape, leading to the following corollary.

Corollary 3. If the poles of f modulo SL2(Z) are at z1, . . . , zr and they are all
simple, then

〈
f, fk,−D,[A]

〉
mer

.
=

r∑

ℓ=1

Resτ=zℓ f(τ)
∑

Q∈A

Q (zℓ, 1)
k−1

∫ arctanh
( √

D
Qzℓ

)

0

sinh2k−2(θ)dθ.

These cycle integrals yield to new automorphic functions. Define

G(z) :=
∑

Q∈A

Q(z, 1)k−1
∫ arctanh

( √
D

Qzℓ

)

0

sinh2k−2(θ)dθ.
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Theorem 4 (B. - Kane). The function G is a meromorphic harmonic Maass form
of weight 2− 2k. To be more precise

(
1

2πi

∂

∂z

)2k−1

(G) .= ξ2−2k(G) .= fk,−D,A,

where ξk := 2iyk ∂
∂z .

It still remains to investigate modularity properties in the case of higher order
poles.

Central critical L-values and Selmer groups for triple product motives

Yifeng Liu

In this talk, we provide new examples of the Bloch–Kato conjecture in the rank-0
case.

Let K be a number field. Consider a Chow motive (with rational coefficients)
M over K equipped with a polarization M ×M∨ → Q(1) and of pure weight −1.
Associated to M , there is an L-function L(s,M) defined for s with ℜs sufficiently
large. For each prime p, we have the p-adic realization Mp, which is a finite-
dimensional p-adic Galois representation of K. Denote by H1

f (K,Mp) the Bloch–

Kato Selmer group [1], which is a Qp-subspace of H1(K,Mp).

Conjecture 1 (Bloch–Kato). Let the notation be as above. We have

(1) the L-function L(s,M) has a meromorphic continuation to the entire com-
plex plane and satisfies the functional equation

L(s,M) = ǫ(M)c(M)−sL(−s,M)

for some root number ǫ(M) ∈ {±1} and conductor c(M) ∈ Z>0;
(2) for all primes p,

ords=0L(s,M) = dimQpH
1
f (K,Mp).

Now let F be a real quadratic field with the Galois involution θ. Consider a
rational elliptic curve E of conductor N and another elliptic curve A over F . The
F -motive h1(A) ⊗ h1(Aθ) has a natural descent to a Q-motive As h1(A), called
the Asai motive. Put ME,A = h1(E) ⊗ As h1(A)(2). Then ME,A is canonically
polarized of symplectic type, and has pure weight −1.
Theorem 1. Let the notation be as above.

(1) Part (1) of the previous conjecture holds for ME,A.
(2) Suppose that N is prime to both the conductor of A and the discriminant of

F ; neither E nor A has geometric complex multiplication; and if a prime
v | N is inert in F , then v‖N . If L(0,ME,A) is non-vanishing, then

dimQpH
1
f (Q, (ME,A)p) = 0

for all but finitely many p.



Modular Forms 1241

In the above theorem, part (1) is a consequence of the theory of triple product
L-functions and the recent result of [3]; and part (2) is one the main theorems of
[4]. Combining with the main theorem of [2], we have the following corollary to
the previous theorem.

Corollary 2. Let E1 and E2 be two rational elliptic curves of conductors N1 and
N2, respectively. Suppose that neither E1 nor E2 has geometric complex multipli-
cation; N1 and N2 are coprime; and E1 has multiplicative reduction at least one
finite place. Consider the motive M = h1(E1) ⊗ Sym2h1(E2)(2). If L(0,M) is
non-vanishing, then for all but finitely many primes p,

dimQp H
1
f (Q,Mp) = 0.
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Borcherds Products Everywhere Theorem

Valery Gritsenko

(joint work with Cris Poor and David Yuen)

This is a report on my joint results (see [10]) with Cris Poor and David Yuen about
Borcherds Products on groups that are simultaneously orthogonal and symplec-
tic, the paramodular groups Γt of degree two and the elementary divisors (1, t).
This work began as an attempt to make Siegel paramodular cusp forms that are
simultaneously Borcherds Products and additive Jacobi lifts (or Gritsenko lifts for
Γt constructed in [3]–[4]). On the face of it, this phenomenon may seem the least
interesting type of a Borcherds product but it is the only known way to control
the weight of constructed series of Borcherds product. Additionally, for compu-
tational purposes, a paramodular form that is both a Borcherds product and a
Gritsenko lift is very useful; such a form has simple Fourier coefficients because it
is a lift (this fact is important in the theory of Lorentzian Kac–Moody Lie alge-
bras) and a known divisor because it is a Borcherds product. In the case of weight
3, a Borcherds product gives the canonical divisor class of the moduli space of
(1, t)-polarized abelian surfaces. Therefore the construction of infinite families of
such Siegel paramodular forms is interesting for applications to algebraic geome-
try. We give nine infinite families of modular forms, including a family of weight
3, which are simultaneously Borcherds Products and Gritsenko lifts. This is the
first appearance of such infinite families in the literature.

All these Borcherds products are made by starting from certain special Jacobi
forms that are theta blocks without theta denominator. Main Theorem gives a
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rather unexpected and surprising way to construct holomorphic Borcherds prod-
ucts starting from theta blocks of positive weight. As it is rather easy to search
for theta blocks, we call this the Borcherds Products Everywhere Theorem. The
proof uses the theory of Borcherds products for paramodular forms as given by
Gritsenko and Nikulin [7]–[9], the recent theory of theta blocks due to Gritsenko,
Skoruppa and Zagier [11], and a theory of generalized valuations on rings of formal
series presented in section 4 of [10].

Let η be the Dedekind Eta function and ϑ be the odd Jacobi theta function
and write ϑℓ(τ, z) = ϑ(τ, ℓz). The most general theta block [11] can be written

ηf(0)
∏
ℓ∈N (ϑℓ/η)

f(ℓ)
for a sequence f : N∪{0} → Z of finite support. Here we con-

sider only theta blocks without theta denominator, meaning that f is nonnegative
on N.

Main Theorem. Let v, k, t ∈ N. Let φ be a weak Jacobi form of weight k and
index t that is a theta block without theta denominator and that has vanishing
order v in q = e2πiτ . If v is odd assume that φ is a holomorphic (at infinity)
Jacobi form Then ψ = (−1)vφ|V2/φ, where V2 is the Hecke operator Jk,t → Jk,2t,
is a weakly holomorphic Jacobi form of weight 0 and index t and the Borcherds
lift of ψ is a holomorphic paramodular form of level t and some weight k′ ∈ N.
Moreover the Borcherds product is antisymmetric when v is an odd power of two
and otherwise symmetric. If v = 1 then k = k′ and the first two Fourier Jacobi
coefficients of the Borcherds lift of ψ and the Gritsenko lift of φ agree.

In order to complete the line of thought that began this research and to com-
pletely characterize the paramodular forms that are both Gritsenko lifts of theta
blocks without theta denominator and Borcherds Products, it would suffice to
prove the following conjecture.

Conjecture. Let φ ∈ Jk,t be a theta block without theta denominator and with

vanishing order one in q = e(τ). Then Grit(φ) = Borch(ψ) for ψ = −φ|V2

φ .

We know in the above conjecture that Borch(ψ) and Grit(φ) are both symmetric
forms in Mk(Γt) and that they have identical first and second Fourier Jacobi
coefficients. The following theorem proves Conjecture for weights k satisfying
4 ≤ k ≤ 11. The proof based on the results of [5] proceeds by demonstrating an
exhaustive list of examples.

Theorem (Theta-products of order one). Let ℓ ∈ N be in the range 1 ≤ ℓ ≤ 8,
and let d1, . . . , dℓ ∈ N with (d1+ · · ·+ dℓ) ∈ 2N. Then Conjecture above is true for
the Jacobi form

η3(8−ℓ)ϑd1 · . . . · ϑdℓ ∈ Jk,t, where k = 12− ℓ and t = (d21 + · · ·+ d2ℓ)/2.

Additionally, this product is a Jacobi cusp form if ℓ < 8 or if ℓ = 8 and (d1·...·d8)
d8

is even where d = (d1, . . . , d8) is the greatest common divisor of the di.

We can also construct a ninth infinite series of such modular forms of weight 3.
Let us take the simplest non-trivial theta blocks, i.e., with a single η factor in the
denominator. These are the so-called theta-quarks (see [11] and [2, Corollary
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3.9]); for a, b ∈ N, set

θa,b =
θaθbθa+b

η
∈ J1,a2+ab+b2(χ3), χ3 = ǫ8η, χ3

3 = 1.

The theta-quark θa,b is a Jacobi cusp form if a 6≡ b mod 3. The following theorem
is a direct corollary of [5, Theorem 4.2] about the strongly reflective modular form
of weight 3 with respect to O+(2U ⊕ 3A2(−1)).
Theorem (On theta-quarks.) For a1, b1, a2, b2, a3, b3 ∈ N, we have

Grit(θa1,b1θa2,b2θa3,b3) = Borch(ψ) ∈M3(Γt)

where t =
∑3

i=1(a
2
i + aibi + b2i ) and ψ = − (θa1,b1θa2,b2θa3,b3)|V2

θa1,b1θa2,b2θa3,b3
.

This example is very interesting because a paramodular cusp form of weight
3 with respect to Γt induces a canonical differential form on the moduli space of
(1, t)-polarized abelian surfaces, see [4]. Therefore the divisor of the modular form
in this example gives the class of the canonical divisor of the corresponding Siegel
modular 3-fold.

In a subsequent publication, we hope to show that the identity proven as the last
example of section 2, Grit(φ2,37) = Borch(ψ2,37), is also a member of an infinite
family of identities for Siegel paramodular forms of weight 2.
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Multiple Dirichlet series and prehomogeneous vector spaces

Gautam Chinta

I would like to describe some examples of Multiple Dirichlet series i.e. Dirichlet
series in several complex variables, and different ways they arise in

• the theory of automorphic forms
• zeta functions of prehomogeneous vector space

In recent years a general theory of Whittaker functions of metaplectic Eisenstein
series (i.e. Whittaker functions of Eisenstein series on metaplectic covers of re-
ductive groups) has started to be developed. There is some overlap in the kinds
of series that arise in this manner with those which arise in the theory of Shintani
zeta functions, but neither subsumes the other. I hope to indicate how the two
theories can inform one another to further progress in both fields.

The first example below is originally due to Siegel [8], who used the theory of
Eisenstein series of half-integer weight. An alternate approach to this same series,
via the theory of prehomogeneous vector spaces, was given by Shintani [7]. This
is described in Section 2. This connection between Eisenstein series and Shintani
zeta functions of quadratic forms is more fully explored in the work of Ibukiyama
and Saito [4]. In Section 3 I describe the work of my student J. Wen [9] who studies
a three variable Shintani zeta function associated to the space of integer cubes.
This turns out also to be related to Eisenstein series, this time on the metaplectic
double cover of GL(4). In the final section, I report on my ongoing joint work
with T. Taniguchi on zeta functions of cubic orders.

1. Siegel and half-integer weight Eisenstein series

The first example of the kind of multiple Dirichlet series I would like to describe
arises in the work of Siegel. See also the paper of Goldfeld and Hoffstein [3] for an
elaboration and applications of Siegel’s work. Start with the 1/2-integral weight

Eisenstein series Ẽ(z, s) on Γ = Γ0(4). Maass [5] computed its Fourier expansion
and showed that the coefficients could be expresssed in terms quadratic Dirichlet
L-functions. Siegel takes the Mellin transform of the Eisenstein series to produce
a double Dirichlet series Z(s, w), which is roughly of the form

(1)
∑

d

L(s, χd)

dw
.

This series has

• two commuting functional equations — one coming from the functional
equation of the Eisenstein series and one from the Mellin transform
• a meromorphic continuation to C2.

In fact, it turns out that Z(s, w) actually satisfies a group of 12 functional equa-
tions! There are various ways to realize these extra “hidden” functional equations.
On the one hand, we can see them by simply interchanging the order of summation
and using quadratic reciprocity. On the other hand, this double Dirichlet series
which we constructed as a Mellin transform of a half-integral weight Eisenstein
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series on the double cover of SL(2) happens to coincide with a Whittaker function
of a minimal parabolic Eisenstein series on the metaplectic double cover of GL(3).

2. Shintani zeta function of binary quadratic forms

Next I would like to describe another manifestation of this same series, this
time via the theory of zeta functions of prehomogeneous vector spaces initiated by
Sato and Shintani.

Let B2(Z) be the subgroup of upper triangular matrices in SL2(Z). This sub-
group acts on the space of integral binary quadratic forms. Conceptually, it will
be more illuminating to consider the equivalent action of B2(Z) on the space of
integral binary cubic forms ax2y + by2 + cy3 with a root at infinity. We have two
invariants for this action: b2 − 4ac and b.

The associated Shintani zeta function is

(2) ZShintani(s1, s2) =
∑

a>0

1

|a|s1
∑′

b∈Z
0≤b≤2a−1

1

|b2 − 4ac|s2

where the prime on the summation indicates that we omit terms for which b2 −
4ac = 0. Playing around with this a little, we see that this series is essentially the
same as the series (1) of Siegel introduced in the previous section.

3. Work of Jun Wen

Another example of a Shintani zeta function in several variables has recently
been studied by my student Jun Wen. Let VZ be the space Z2 ⊗ Z2 ⊗ Z2 and
G = SL2(Z)×SL2(Z)×SL2(Z). Bhargava [1] carefully studies the G orbits on VZ
and derives numerous arithmetic applications. Wen considers instead the action of
the parabolic subgroup P = B2(Z)×B2(Z)×SL2(Z) on VZ. This action has three
relative invariants. Wen shows that the the associated Shintani zeta function is
equal to a Whittaker function of a metaplectic Eisenstein series on a double cover
of GL4. This series is roughly of the form

∑′

rank(O)=2

ζO(s1)ζO(s3)

|disc(O)|s2

where the sum is over all quadratic rings of nonzero discriminant.

4. Zeta functions of cubic rings

In this section I describe ongoing joint work with T. Taniguchi.
In the previous sections we’ve seen two examples involving sums of zeta func-

tions of quadratic rings. One might wonder whether we can construct a natural
series involving zeta functions of cubic (or higher rank) rings. Indeed, Shintani
[6] studied a zeta function associated to the space of binary cubic forms. This
example looks like it could be a special value of a multivariate series involving zeta
functions of cubic rings.
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How might we begin to construct such a series? In our first example, we saw
that in order to parametrize zeta functions of quadratic rings we needed to look
not at the space of binary quadratic forms, but at the space of binary cubic forms
with a degeneracy condition, namely a rational root.

Inspired by this, we look at quartic rings. Bhargava [2], following Wright-Yukie
[10], considers the action of G = SL2(Z) × SL3(Z) on pairs of integral ternary
quadratic forms VZ = Z2 ⊗ sym2Z3. He shows (essentially) that orbits correspond
to quartic rings.

In joint work with T. Taniguchi, we choose an appropriate parabolic subgroup
P of G and show that the Shintani zeta function corresponding to the action of P
on a suitable sublattice of VZ involves a sum of zeta functions of cubic orders.

This result is probably not surprising to the experts — in any event it is not
too hard to prove once everything is set up correctly. What is surprising is that
this series affords an interchange of summation which lets us rewrite it in terms of
(sums of) the Shintani zeta function of binary cubic forms. This is a remarkable
fact! The existence of this meaningful interchange of summation plays a key role
in the analytic continuation of the series, which is rather elaborate and requires
techniques not previously used in this context.

References

[1] M. Bhargava, Higher composition laws. I. A new view on Gauss composition, and quadratic
generalizations, Ann. of Math. (2) 159 (2004), no. 1, 217–250.

[2] , Higher composition laws. III. The parametrization of quartic rings, Ann. of Math.
(2) 159 (2004), no. 3, 1329–1360.

[3] D. Goldfeld and J. Hoffstein, Eisenstein series of 1

2
-integral weight and the mean value of

real Dirichlet L-series, Invent. Math. 80 (1985), no. 2, 185–208.
[4] T. Ibukiyama and H. Saito, On zeta functions associated to symmetric matrices. I. An

explicit form of zeta functions, Amer. J. Math. 117 (1995), no. 5, 10971155.
[5] H. Maass, Konstruktion ganzer Modulformen halbzahliger Dimension, Abh. Math. Semin.

Univ. Hamburg 12 (1937), 133–162.
[6] T. Shintani, On Dirichlet series whose coefficients are class numbers of integral binary cubic

forms, J. Math. Soc. Japan 24 (1972), 132–188.
[7] T. Shintani, On zeta-functions associated with the vector space of quadratic forms, J. Fac.

Sci. Univ. Tokyo Sect. I A Math. 22 (1975), 25–65.
[8] C. L. Siegel, Die Funktionalgleichungen einiger Dirichletscher Reihen, Math. Z. 63 (1956),

363–373.
[9] J. Wen, Bhargava Integer Cubes and Weyl Group Multiple Dirichlet Series, Preprint,

arXiv:1311.2132.
[10] D. J. Wright and A. Yukie, Prehomogeneous vector spaces and field extensions, Invent.

Math. 110 (1992), no. 2, 283–314.



Modular Forms 1247

Symmetric Formal Fourier Jacobi Series and Kudla’s Conjecture

Martin Raum

(joint work with Jan Hendrik Bruinier)

We can attach a Fourier Jacobi expansion to every (classical) Siegel modular for
of genus ≥ 2:

f(τ) =
∑

0≤m∈Z

φm(τ1) exp(2πimτ2), where τ =
( τ1 z

tz τ2

)

lies in the Siegel upper half space of genus g, denoted by Hg. We have decomposed
τ into τ1 ∈ Hg−1, τ2 ∈ H1, and z ∈ Cg−1. Expansions of this kind are ubiquitous
in the study of Siegel modular forms, as they allow to reduce considerations to
Jacobi forms φm of genus g − 1. To name some examples, confer work on the
Saito-Kurokawa Conjecture [1, 9, 10, 11, 14], on the spinor L-series [7, 3], and on
computations of Siegel modular forms [13, 12].

We formalize the notion of Fourier Jacobi expansions: A series of Jacobi forms
whose Fourier coefficients satisfy a natural symmetry condition is called a formal

Fourier Jacobi expansion. We obtain a map M
(g)
k −→ FM

(g)
k from the space of

Siegel modular forms to the space of formal Fourier Jacobi expansions. Our main
theorem states that this map is an isomorphism.

Our main application is a proof of Kudla’s conjecture. On orthogonal Shimura
varieties X there is a natural family Z(t) of cycles, index by positive definite,

symmetric matrices t ∈ MatTQ with rational entries (for matters of presentation,
we restrict to the easiest case). Kudla and Millson [4, 5, 6] studied the attached
generating series

fX(τ) =
∑

t

Z(t) exp
(
2πi trace(tτ)

)

and proved that it is a Siegel modular form with coefficients in cohomology. In-
spired by these finding, it was later conjectured that the generating series with
coefficients in the Chow group was also a modular form [8]. Zhang [15] proved in
his thesis that fX is a formal Fourier Jacobi expansion. From our result, we hence
infer modularity of fX .

(Classical) Siegel modular forms of genus g > 1 are holomorphic functions on

Hg =
{
τ ∈ MatTg (C) : ℑ(τ) positive definite

}
,

where MatTg denotes the set of symmetric matrices of size g. In the simplest
case, we have k ∈ 2Z and, by definition, a Siegel modular form of weight k is a
holomorphic function f : Hg → C that satisfies

f
(
(aτ + b)(cτ + d)−1

)
= det(cτ + d)kf(τ)
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for all
(
a b
c d

)
∈ Spg(Z). We denote the space of genus g, weight k Siegel modular

forms by M
(g)
k . The Fourier Jacobi expansion of f ∈ M

(g)
k is of the form

f(τ) =
∑

0≤m∈Z

φm(τ1, z) exp(2πimτ2)

as above. To formalize this, we define genus g − 1 Siegel Jacobi forms of weight k
and index m ∈ Z as holomorphic functions φ : Hg−1 × Cg−1 such that
φ(τ1, z) exp(2πimτ2) transforms like a Siegel modular form under

StabSpg(Z)

(
span

(
e1, . . . , eg−1, eg+1 . . . , e2g−1

))
,

where e1, . . . , e2g is a standard basis of Z2g. In the case g = 2 (i.e., g − 1 = 1),
we impose an additional growth condition. The space of Siegel Jacobi forms is

denoted by J
(g−1)
k,m .

Definition: A formal series
∑

0≤m∈Z

φm(τ1, z) exp(2πimτ2) ∈
∏

0≤m∈Z

J
(g−1)
k,m

is called symmetric, if its (formal) Fourier coefficients c(t), t ∈ MatTg (Q) satisfy

c(tutu) = c(t) for all u ∈ GLg(Z). We write FM
(g)
k for the space of such expansions.

For geometric reasons, we call them formal Fourier Jacobi expansions.

Theorem (Bruinier, R.): For g > 1, we have FM
(g)
k = M

(g)
k .

Our work [2] will cover vector valued Siegel modular forms for the metaplectic
cover of Spg(Z), half-integral weights, and Fourier Jacobi expansions with Jacobi
forms of arbitrary positive genus. This is, in fact, necessary to prove Kudla’s
conjecture: Zhang has established that the generating series fX mentioned above
is a vector valued formal Fourier Jacobi expansion with Jacobi forms of genus 1.

Our theorem is reminiscent of rigidity theorems in formal geometry. It seems
feasible but technically difficult to reprove our theorem by means of formal meth-
ods. This is ongoing work.
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Symmetric square L-functions of GL(n)

Shunsuke Yamana

(joint work with Eyal Kaplan)

The symmetric square L-function of an irreducible cuspidal automorphic repre-
sentation π of GLn(A) is defined by the Euler product

L(s, π, sym2) =
∏

v

L(s, πv, sym
2),

where A is the adele ring of a number field F . For almost all places v of F Hecke
theory associates to the local component πv of π a conjugacy class in GLn(C),
represented by a diagonal matrix diag[αv,1, . . . , αv,n], and the local symmetric
square L-factor is defined by

L(s, πv, sym
2) =

∏

1≤i≤j≤n

(1 − αv,iαv,jq−sv )−1,

where qv is the cardinality of the residue field of the completion Fv of F at v.
Assume that n ≥ 2. It is interesting to ask when L(s, π, sym2 ⊗ χ) has a pole.

If n is even, then its pole at s = 1 is characterized in terms of functorial transfers
from general spin groups, while if n is odd, then its pole at s = 1 is characterized
in terms of functorial transfers from symplectic groups. Following Bump-Ginzburg
and Takeda, we develop a theory of symmetric square L-functions for GL(n) and
give another characterization of its pole at s = 1 in terms of nonvanishing of
certain period integrals of trilinear type.

The construction of the symmetric square L-function involves certain small
genuine automorphic representations of the double cover Ḡn,A of GLn(A), known as
exceptional representations, constructed by Kazhdan and Patterson [2] for general
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k-fold covers of GLn(A). Let θψ denote the exceptional representation of Ḡn,A
associated to a nontrivial character ψ of F\A. Let | · | denote the standard idele
norm of A×. Put

GLn(A)
1 = {g ∈ GLn(A) | | det g| = 1}.

Theorem. Let π be an irreducible cuspidal automorphic representation of GLn(A)
with central character ωπ. The function L(s, π, sym2) has a pole at s = 1 if and
only if ω2

π = 1 and there are ϕ ∈ π and Θ,Θ′ ∈ θψ such that
∫

GLn(F )\GLn(A)1
ϕ(g)Θ(g)Θ′(g) dg 6= 0.
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Whittaker coefficients of cuspidal representations of the metaplectic
group

Erez M. Lapid

(joint work with Zhengyu Mao)

Given a quasi-split reductive group G over a number field F (with ring of adeles
A) with maximal unipotent subgroup N and a non-degenerate character ψN of
N(A), trivial on N(F ), consider the Whittaker–Fourier coefficient

W(ϕ) =WψN (ϕ) :=

∫

N(F )\N(A)

ϕ(n)ψN (n)−1 dn

of an automorphic form ϕ on G(F )\G(A). The problem that we study is the
relation between this coefficient and the Petersson inner product

(ϕ, ϕ∨) =

∫

G(F )\G(A)

ϕ(g)ϕ∨(g) dg

for a cuspidal representation π of G(A). (For simplicity of notation we assume
that the center of G is anisotropic. We normalize the invariant measures so that
vol(N(F )\N(A)) = vol(G(F )\G(A)) = 1.) For the general linear group, such a
relation is given by the theory of Rankin–Selberg integrals, developed in higher
rank by Jacquet, Piatetski-Shapiro and Shalika (cf. [11]). It involves the residue
at s = 1 of L(s, π ⊗ π∨).

Let us try to make this more precise and at the same time formulate a question
for other groups. (See [16] for more details.) By local multiplicity one, there exists



Modular Forms 1251

a constant cψNπ , depending on π, such that

(1) WψN (ϕ)Wψ−1
N (ϕ∨) = (cψNπ )−1

∆S
G(1)

LS(1, π,Ad)

∫ st

N(FS)

(π(n)ϕ, ϕ∨)ψN (n)−1 dn.

Here ∆S
G(s) is a certain explicit abelian (partial) L-function (depending only

on G, not on π), S is a sufficiently large finite set of places including all the
archimedean and the ramified places, the measure on N(FS) is normalized so that

vol(N(OS)\N(FS)) = 1 where OS is the ring of S-integers and
∫ st

is a certain
regularized integral which in the p-adic case is simply the stable limit of the inte-
grals over compact open subgroups of N(Fv). (The integral converges absolutely
if πv is square-integrable but not otherwise.) Implicit here is the holomorphy and
non-vanishing of the adjoint L-function LS(s, π,Ad) at s = 1. The proportionality
constant cψNπ , which exists by local uniqueness of Whittaker model, is indepen-
dent of S by the Casselman–Shalika formula. (This is why the factor ∆S

G(s) is
introduced.)

The Rankin–Selberg theory for GLn alluded to above shows that cψNπ = 1 for
any irreducible cuspidal representation π of GLn. For other quasi-split groups c

ψN
π

depends on the automorphic realization of π (unless of course there is multiplicity
one, which is at least expected for classical groups. Note that O(2n) is a classical
group, but not SO(2n).)

It turns out that a sensible expression for cψNπ is feasible if we admit Arthur’s
conjectures (for the discrete spectrum) in a strong form, namely a canonical de-
composition

L2
disc(G(F )\G(A)) = ⊕̂

φ
Hφ

according to elliptic Arthur’s parameters. The latter are equivalence classes of
(certain) homomorphisms from the direct product of the (hypothetical) Langlands
group with SL2(C) into the dual group of G, whose image has a finite centralizer
modulo the center. (In passing we mention the recent work of V. Lafforgue who
made dramatic progress towards establishing the above decomposition in the func-
tion field case [14]. One of the difficulties that he successfully confronts is how
to uniquely characterize the spaces Hφ. It is unclear how to resolves this in the
number field case.)

Except for GLn, the spaces Hφ are not irreducible (or even multiplicity free) in
general. To a large extent the reducibility of Hφ is measured by a certain finite
group Sφ (and its local counterparts) attached to φ [1] – a phenomenon which
goes back to Labesse–Langlands ([15], cf. [13]). For instance, if G is split then
the group Sφ is the quotient of the centralizer of the image of φ in the complex

dual Ĝ of G by the center of Ĝ. (For GLn, Sφ is always trivial.) The relevant
Arthur’s parameters in our context are those of Ramanujan type, namely those
which are trivial on SL2. (Otherwise WψN vanishes on Hφ [20].) For these φ,
Hφ is contained in the cuspidal spectrum and we can (conjecturally) single out a
distinguished irreducible ψN -generic subspace πψN (φ) of Hφ.
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Conjecture 1. For any elliptic Arthur’s parameter φ of Ramanujan type we have

cψN
πψN (φ)

= |Sφ|.

The conjecture is modeled after recent conjectures and results of Ichino–Ikeda
[8] which sharpen the Gross–Prasad conjecture, which in turn go back to classical
results of Waldspurger [23, 22]. (See [5] for a recent extension of these conjectures
by Gan–Gross–Prasad.) More recently, Sakellaridis–Venkatesh formulated conjec-
tures in the much broader scope of periods over spherical subgroups (at least in the
split case) [21]. Conjecture 1 can be viewed as a strengthening of the conjectures
of [21] in the case at hand.

For quasi-split classical groups one may formulate Conjecture 1 more concretely
thanks to the work of Cogdell–Kim–Piatetski-Shapiro–Shahidi, Ginzburg–Rallis–
Soudry and others [4, 6]. More precisely, if G is a quasi-split classical group
and ψN is as before, there is a one-to-one correspondence {π1, . . . , πk} 7→ σ =
σψN ({π1, . . . , πk}) between the sets of (distinct) cuspidal representations of general
linear groups GLni of certain self-duality type depending on G and with n1+ · · ·+
nk = m where m is determined by G, and ψN -generic cuspidal representation of
G(A). (For convenience we exclude even orthogonal groups which require extra
care.) The bijection is given explicitly by the descent method of Ginzburg–Rallis–
Soudry and the functorial transfer of σ to GLm is the isobaric sum π1 ⊞ · · ·⊞ πk.
In particular, one can describe L(1, σ,Ad) in terms of known L-functions of GLn.

Conjecture 1 translates into the following:

Conjecture 2. Let σ = σψN ({π1, . . . , πk}). Then cψNσ = 2k−1.

The descent method applies equally well to the metaplectic groups S̃pn – the
two-fold cover of the symplectic groups Spn – and we can also formulate an anal-
ogous (but modified) conjecture as follows.

Conjecture 3. Assume that σ is the ψN -descent of {π1, . . . , πk} to S̃pn. Let π
be the isobaric sum π1 ⊞ · · ·⊞ πk. Then

WψN (ϕ)Wψ−1
N (ϕ∨) = 2−k∆S

Spn
(1)

LS(12 , π)

LS(1, π, sym2)

∫ st

N(FS)

(σ(n)ϕ, ϕ∨)ψN (n)−1 dn.

(The analogue of the Casselman–Shalika formula in this context is due to Bump–

Friedberg–Hoffstein [2].) We note that in the case of S̃pn, the image of the ψN -
descent consists of the cuspidal ψN -generic spectrum whose ψ-theta lift to SO(2n−
1) vanishes where ψ is determined by ψN . (See [6, §11] for more details.) In the
case n = 1, this excludes the so-called exceptional representations.

The case of the metaplectic two-fold cover of SL2 (i.e., n = 1) goes back to
the classical result of Waldspurger on the Shimura correspondence [22] which was
followed up by many authors. A different approach, pursued by Jacquet [10]
and completed by Baruch–Mao (for n = 1) [3], is via the relative trace formula.
Recently, Wei Zhang [24, 25] proved the Gan–Gross–Prasad conjecture for unitary
groups under certain local restrictions using the relative trace formula of Jacquet–
Rallis [12].
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In the series of papers [17, 18, 19] we prove Conjecture 3 under the assumption
that F is totally real and the archimedean component σ∞ is square-integrable.
Our main tool is the descent method of Ginzburg–Rallis–Soudry and its local
counterpart. (We do not use the relative trace formula.) As a bonus we derive in
[9] applications to the formal degree conjecture of Hiraga–Ichino–Ikeda [7].
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Real-dihedral harmonic Maass forms and CM-values of Hilbert
modular functions

Yingkun Li

In the theory of modular forms, those of weight k = 1 are important because
of their connection to Galois representations. By the Theorem of Deligne-Serre
[7], one can functorially attach to each weight one newform f a continuous, odd,
irreducible representation

ρf : Gal(Q/Q) −→ GL2(C).

Let ρ̃f : Gal(Q/Q) −→ GL2(C) be the associated projective representation. If the
image of ρ̃f is isomorphic to a dihedral group, then ρf is induced from a character

of Gal(F/F ) for some quadratic field F in M . We say that f or ρf is real-dihedral
if F is a real quadratic field.

A harmonic Maass form of weight k ∈ Z is a real-analytic function F : H −→ C

such that it is modular and annihilated by the hyperbolic Laplacian ∆k of weight
k

∆k := y2
(
∂2

∂x2 + ∂2

∂y2

)
− iky

(
∂
∂x + i ∂∂y

)
= ξ2−k ◦ ξk,

ξk := 2iyk∂z ,
(1)

where we write z = x+ iy. Furthermore, it is only allowed to have polar-type sin-
gularities in the cusps. They were introduced in [2] to study theta-liftings. Every
harmonic Maass form F can be written canonically as the sum of a holomorphic
part f̃ and a non-holomorphic part f∗. The holomorphic part f̃ is also known as
a mock-modular form, which has been extensively studied by many people [1, 3, 8]
after Zwegers’ groundbreaking thesis [18] (see [17] for a good exposition) and has
connections to many different areas of mathematics (see [13] for a comprehensive
overview). When k = 1, we call F real-dihedral if ξ1(F) is a real-dihedral newform.

We are interested in studying a family of real-dihedral harmonic Maass forms
and relate their Fourier coefficients to CM-values of Hilbert modular functions.
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Suppose D ≡ 1 (mod 4), p ≡ 5 (mod 8) are primes satisfying conditions

F = Q(
√
D) has class number one,

pOF = pp′,

ordp(u
(p−1)/4
F − 1) > 0,

where uF > 1 is the fundamental unit of F . Let χD(·) =
(
·
D

)
be the quadratic

character of conductor D and φp the character of conductor p and order 4. The
space of cusp forms S1(Dp, χDφp) is one-dimensional and spanned by a newform

(2) fϕ(z) :=
∑

a⊂OF

ϕ(a)qNm(a) =
∑

n≥1

cϕ(n)q
n,

where q = e2πiz and ϕ is a ray class group character of F . When D = 5, p = 29,
the form fϕ was studied by Stark in the context of producing explicit generators
of class fields of real-quadratic fields from special values of L-functions [15, 16].

Since S1(Dp, χDφp) is one-dimensional, there exists a harmonic Maass form

Fϕ(z) such that ξ1(Fϕ) = fϕ and its holomorphic part f̃ϕ has the following Fourier
expansion at infinity

f̃ϕ(z) = c+ϕ (−1)q−1 + c+ϕ (0) +
∑

n≥2
χD(n) 6=−1

c+ϕ (n)q
n.

Furthermore, with a mild condition on the growths of Fϕ at other cusps of Γ0(Dp),
the form Fϕ is unique and the coefficients c+ϕ (−1), c+ϕ (0) can be written explicitly
as algebraic multiples of log uF .

Let F2 = Q(
√
p), OF2 its ring of integers and XF2 the open Hilbert modular

surface whose complex points are SL2(OF2)\H2. It is a connected component of
the moduli space parametrizing isomorphisms of abelian surfaces with real mul-
tiplication. Let M8 denote the field fixed by ker ρ̃ϕ. It contains two pairs of CM

extensions K4/F2 and K̃4/F̃2, which are reflex fields of each other under the ap-

propriate CM types Σ = {1, σ} and Σ̃ = σ3Σ = {1, σ−1}. Here, σ is an element of
order 4 in the dihedral group Gal(M8/Q) ∼= D8 of order 8.

Let Cl0(K4) be the kernel of the norm map Nm : Cl(K4) −→ Cl(F2) on class
groups. Each class in Cl0(K4) gives rise to an isomorphism class of abelian surfaces
on XF2 with complex multiplication by (K4,Σ), which is a “big” CM point in the
sense of [4]. For A ∈ Cl0(K4), let ZA,Σ ∈ XF2(C) denote the corresponding CM
point. Since the 2-rank of Cl(K4) is 1, it has a unique quadratic character ψ2.
Then we could define the twisted CM 0-cycle CM(K4, ψ2) by

CM(K4,Σ, ψ2) :=
∑

A∈Cl0(K4)

ψ2(A)ZA,Σ,(3)

CM(K4, ψ2) :=

3∑

j=0

CM(K4, σ
jΣ, ψ2).(4)
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It is algebraic and defined over the real quadratic field F . For m ∈ N, let Tm be
the mth Hirzebruch-Zagier divisor on XF2 . Given any normalized integral Hilbert
modular function Ψ(z1, z2) on XF2 in the sense of Theorem 1.1 in [5] with divisor

∑

m≥1
gcd(pD,m)=1

c(−m)Tm,

where c(−m) ∈ Z, we will show that the value of Ψ at CM(K4, ψ2) are related to
the coefficients c+ϕ (n) by

(5) log |Ψ(CM(K4, ψ2))| = −
cϕ(p)h

+

F̃2

hF̃2

∑

m≥1

c(−m)bϕ(m),

where hF̃2
and h+

F̃2
are the class number and narrow class number of F̃2 = Q(

√
Dp)

respectively, and

bϕ(m) :=
∑

d|m

aϕ

(
m2

d2

)
φp(d),(6)

aϕ(n) :=
∑

k∈Z

c+ϕ

(
Dn− pk2

4

)
δD(k),(7)

δD(k) :=

{
1 D 6| k,
2 D | k.(8)
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Structure and arithmeticity for nearly holomorphic Siegel cusp forms
of degree 2

Abhishek Saha

(joint work with Ameya Pitale, Ralf Schmidt)

This joint project with Ameya Pitale and Ralf Schmidt is a detailed study of the
representations generated by nearly holomorphic Siegel cusp forms of degree 2.
In particular, we prove a close link between such forms and holomorphic vector
valued Siegel cusp forms, and this allows us to deduce many arithmetic results.

Introduction. Let H2 denote the Siegel upper half space of degree 2, consisting
of two-by-two complex matrices that are symmetric and whose imaginary part
is positive definite. Let p be a non-negative integer. We let Np(H2) denote the
space of all polynomials of degree ≤ p in the entries of Y −1 (writing Z ∈ H2 as
Z = X + iY ) with holomorphic functions on H2 as coefficients. The space

N(H2) =
⋃

p≥0

Np(H2)

is the space of nearly holomorphic functions on H2. Evidently, N(H2) is a ring,
and

Np(H2)N
q(H2) ⊂ Np+q(H2).

Given any congruence subgroup Γ of Sp4(Z) and any integer k, we let Np
k (Γ)

denote the space of functions F : H2 → C such that

(1) F ∈ Np(H2)
(2) F |kγ = F for all γ ∈ Γ.

The space Np
k (Γ) is the space of nearly holomorphic modular forms of degree

2, weight k for Γ. We let Rpk(Γ) ⊂ N
p
k (Γ) denote the subspace of cusp forms.

Nearly holomorphic modular forms come up naturally as special values of Eisen-
stein series, and so are important in proving algebraicity of special L-values via
the method of integral representations. However, despite a lot of work, especially
by Shimura, they have not really been properly understood in the framework of
adelic automorphic representations.
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Results. In our project, we completely explicate the (g,K)-modules generated by
nearly holomorphic modular forms of degree 2. We explain how these forms arise as
vectors in representations that also contains vectors corresponding to holomorphic
vector valued Siegel cusp forms. This allow us to deduce a structure theorem for
the space of nearly holomorphic Siegel modular forms of degree 2 with respect to
an arbitrary congruence subgroup.

More precisely, let Vm ≃ symm(C2) be the space of all homogeneous polynomials
of total degree m in the two indeterminates X and Y with complex coefficients
and let ρ̂l,m be the representation of GL2(C) on the vector space Vm. LetMl,m(Γ)
denote the space of holomorphic functions F : H2 → Vm such that

(1) F is holomorphic everywhere, including the cusps.
(2) F (γZ) = ρ̂l,m((CZ +D))F (Z).

The space Ml,m(Γ) is the space of holomorhic vector modular forms of degree 2,
weight-type (l,m) for Γ. We let Sl,m(Γ) ⊂ Ml,m(Γ) denote the subspace of cusp
forms.

Theorem 1. For any pair of integers l,m with m ≥ 0 and m even, and any non-

negative integer v, there exists a linear map ∆v
l,m from Sl,m(Γ) to R

m/2+2v
l+m+2v(Γ).

This map has the following properties:

• It preserves rationality of Fourier coefficients, is Hecke-equivariant and
has an explicit formula in terms of differential operators.
• The ratio of Peterson inner products 〈∆v

l,mF,∆
v
l,mF 〉/〈F, F 〉 does not de-

pend on F .

Furthermore, the images of spaces of vector-valued cusp forms under the above
map gives a direct sum decomposition of the space of nearly holomorphic cusp
forms. In other words, have

Rpk(Γ) =
⊕

l≥2,m≥0
l≡k mod 2, m≡0 mod 2
k−p≤l+m/2≤l+m≤k

∆
(k−l−m)/2
l,m (Sl,m(Γ)) .

The proof of the above theorem relies on an extensive study of the (g,K)-
modules generated by nearly holomorphic modular forms as well as various calcu-
lations involving moving between the vectors in various K-types.

An important application of the structure theorem above is to arithmeticity of
Petersson norms for nearly holomorphic cusp forms.

Theorem 2. Let F,G be elements of Rpk(Γ) with F a Hecke eigenform. Then, for
any σ ∈ Aut(C),

σ

( 〈F,G〉
〈F, F 〉

)
=
〈σ(F ), σ(G)〉
〈σ(F ), σ(F )〉 .

The above result is a significant generalization of results of Shimura and Garrett.
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Applications. We have various applications in mind for the above results. Per-
haps the most notable one involves algebraicity of special values of L-functions.
A well-known problem in the arithmetic theory of automorphic forms is Deligne’s
conjecture on algebraicity of critical values of L-functions. The simplest example
of this conjecture is the classical fact that for all positive integers n, one has

ζ(2n)

π2n
:=

∑∞
k=1 k

−2n

π2n
∈ Q.

Deligne conjectured that this is a special case of a general fact, i.e., similar results
ought to hold for certain special values (the so-called critical values) of any L-
function that is “motivic” (roughly speaking, this means it is related to algebraic
geometry via cohomology). This conjecture is one of the deep unsolved problems
in mathematics. Partial progress has been made using various methods, such as
the method of integral representations, methods involving cuspidal and Eisenstein
cohomology, and Iwasawa theory.

As early as 1981, M. Harris proved a special case of Deligne’s conjecture for the
standard L-function of a Siegel modular form of full level. This result has since
been extended by Shimura, Mizumoto and various others. Despite this, important
cases remain open, even for degree 2 forms. For example, the case of vector valued
forms of degree 2 has been solved only in the case of full level (due to Kozima).
This project will extend Kozima’s result to vector valued Siegel modular forms for
arbitrary congruence subgroups of Sp4(Z). This is still work in progress.

On special values of L-functions for quaternion unitary groups of
degree 2 and GL(2)

Kazuki Morimoto

1. Deligne’s conjecture on special values of L-functions.

LetM be a motive over Q with coefficients in an algebraic number field E. Put
R = E⊗QC. We have E ⊂ R canonically. Then the motiveM has the L-function
L(M, s) taking values in R. Deligne defined the motivic periods c±(M) ∈ R×/E×
and conjectured that if n ∈ Z is a critical point ofM,

L(M, n)

(2πi)d±nc±(M)
∈ E

where ± is the same sign as (−1)n and d± is the dimension of the ±-eigen space
of the Betti realization ofM (see Deligne [2, Conjecture 2.8]). We are interested
in the special case of this conjecture when M = M ⊗ N , where M (resp. N) is
the motive corresponding to a Siegel cuspform of degree 2 (resp. elliptic cusp-
form). In [12], Yoshida computed the Deligne’s periods c±(M ⊗N), and he gave
an explication of them by modular forms under the assumption that the above
Deligne’s conjecture holds for M . Using this computation, he gives a conjecture
on an algberaicity of special values of degree 8 L-functions for GSp(4) and GL(2)
(cf. [12, Theorem 13]).
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2. L-functions for quaternion unitary groups of degree 2 and GL(2).

Let D be a quaternion algebra over Q such that D ⊗Q R ≃ Mat2×2(R), which
is possibly split. Define

GD =

{
g ∈ GL2(D) | tḡ

(
0 1
1 0

)
g = λ(g) ·

(
0 1
1 0

)}

where g 7→ ḡ is the canonical involution of D. Then GD is an inner form of GSp(4),
and we have

GD(R) ≃ GSp(4,R)

by the assumption on D. In particular, we have

GD ≃ GSp(4) when D ≃Mat2×2(Q).

Let (Π, VΠ) be an irreducible cuspidal automorphic representation of GD(AQ)
such that Π∞ is the holomorphic discrete series representation with Harish-Chandra
parameter (k1 + 2k2 − 1, k1 − 2). Remark that when D ≃ Mat2×2(Q), we can at-
tach this automorphic representation to Siegel cuspforms of degree 2 and of weight
ρ(k1,k2) := detk1 ⊗Sym2k2 (cf. Saha [11]). We realize VΠ in the space of V(k1,k2)-
valued automorphic forms where V(k1,k2) is the representation space of ρ(k1,k2).
Since (ρ(k1,k2), V(k1,k2)) is defined over Q, it has a Q-rational structure V(k1,k2)(Q).
Then we fix a ρ(k1,k2)-invariant hermitian form 〈−,−〉(k1,k2) on V(k1,k2) such that
it takes values in Q on V(k1,k2)(Q).

Let (π, Vπ) be an irreducible cuspidal automorphic representation of GL(2,AQ)
such that π∞ is the holomorphic discrete series representation of of weight l. For
simplicity, we assume that the central characters of Π and π are trivial.

In [5, Main Thereom], we showed an algebraicity of special values of degree 8
L-functions L(s,Π × π) at various critical points when l = k1 and k2 = 0, which
conforms with Yoshida’s conjecture. When D ≃ Mat2×2(Q), the algebraicity for
this L-function was studied by various people; Furusawa [3], Böcherer–Heim[1],
Pitale–Schmidt [7], Saha [9] [10] and Pitale–Saha–Schmidt [8]. In [6], we generalize
[5, Main Thereom] to mixed weight cases including vector valued cases extending
the method in [5].

Theorem 1 ([6]). Let Π and π be as above. Assume that

2k2 + 6 < l < 2k1 + 2k2 − 6.

Put

c(k1, k2, l) = max {l − 2k2, 2k1 + 2k2 − l} .
Let m be an integer such that

2 < m ≤ c(k1, k2, l)

2
− 1.

Then we have
L (m,Π× π)

π4m〈Φ,Φ〉〈Ψ,Ψ〉 ∈ Q
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where Φ ∈ VΠ and Ψ ∈ Vπ are arithmetic automorphic forms over Q in the sense
of Harris [4]. Here, we define inner products by

〈Φ,Φ〉 =
∫

GD(Q)A×
Q
\GD(AQ)

〈Φ(h),Φ(h)〉(k1,k2) dh

and

〈Ψ,Ψ〉 =
∫

GL(2,Q)A×
Q
\GL(2,AQ)

Ψ(g)Ψ(g)dg

with the Tamagawa measures dh and dg.

From this algebraicity, we can show the following period relation.

Corollary 1. Let (Π, VΠ) be as above. Assume that Πv is tempered for almost all
finite places v and that k1 ≥ 8. Further, suppose that there exists an irreducible
cuspidal automorphic representation (Π′, VΠ′) of GSp(4,AQ) such that

Π∞ ≃ Π′∞ and Πv ≃ Π′v at almost all finite places v where GD(Qv) ≃ GSp(4,Qv).

Then for arithmetic automorphic forms Φ ∈ VΠ and Φ′ ∈ V ′Π, we have

〈Φ,Φ〉
〈Φ′,Φ′〉 ∈ Q.

Remark 1. In [6], we prove a similar algberaicity result over any totally real
field without an assumption on central characters. Further, we prove the Galois
equivariance of special values.

Remark 2. Saha [11] proved a period relation for Yoshida lifts using [5, Main
Theorem]. In a similar argument as in [11], we can generalize his result to a
vector valued case using Theorem 1.
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CM values of automorphic Green functions and L-functions

Tonghai Yang

1. Introduction

In 1980s, Gross and Zagier discovered a deep and direct relation between the
height of a CM point in J0(N) and the central derivative of some Rankin-Selberg
L-function [9] and its little cousin—a beautiful factorization formula for singular
moduli [8]. In this talk, we will explain a new approach to these results and possible
generalization to high dimensional Shimura varieties of orthogonal type (n, 2) and
unitary type (n, 1), although our main focus in this talk is on the orthogonal type.
The main ideas are regularized theta liftings started by Borcherds [2], Siegel-Weil
formula, and a nice relation between incoherent Eisenstein series and coherent
Eisenstein series.

2. Shimura Varieties, special divisors, and automorphic green

functions

Let (V,Q) be a rational quadratic space over Q of signature (n, 2). Let H =
GSpin(V ) and let D be the Hermitian domain of oriented negative 2-planes in VR.
To a compact open subgroup K of H(Af ), one associates a Shimura variety XK

over Q with
XK(C) = H(Q)\D×H(Af )/K.

For an element x ∈ V with Q(x) > 0 and an element h ∈ H(Af ), one defines a
natural divisor Z(x, h) of XK over Q as follows. Let

Dx = {z ∈ D : z ⊥ x}, Hx = {h ∈ H : h(x) = x, and h(x⊥) ⊂ x⊥}.
Then

Z(x, h)(C) = (Hx(Q)\Dx×H(Af )/(H(Af )∩hKh−1)→ XK(C), [z, h1] 7→ [z, h1h].

For every Schwartz function φ(∈ S(Vf )K), andm ∈ Q>0, one has Kudla’s weighted
special divisor ([10])

Z(m,φ) =
∑

h∈Hx0\H(Af )/K

Z(x⊥0 , h)φ(h
−1x0) ∈ Z1(XK)

if there is some x0 ∈ V with Q(x0) = m. Otherwise, we take Z(m,φ) = 0. The
weighted special divisors behave well under pullback, and does not depends on the
choice of K.
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Now let L be an even integral lattice of V . Let SL = C[L′/L] ⊂ S(Vf ). We
assume for simplicity that K preserves L and acts trivially on L′/L. There is a
Weil representation ωL of SL2(Z) on SL, induced from its action on S(Vf ). Let
H1−n

2
(ωL) be the space of harmonic Maass forms f : H→ SL of weight 1− n

2 and
Weil representation ωL ([4], [5], or [7]), one has Fourier expansion

f(τ) = f+(τ) + f−(τ) =
∑

m≫∞

c+f (m)qm +
∑

m<0

c−f (m)Γ(
n

2
, 4π|m|v)qm.

Here c±f (m) ∈ SL and Γ(s, x) is the partial Gamma function. The following

theorem is due to Borcherds [2], Bruinier and Funke [3], and Schofer [11]:

Theorem 1. Let

Φ(z, h, f) =

∫ reg

SL2(Z)\H

f(τ)θL(τ, z, h)dµ(τ)

be the regularized theta lifting. Here θL is a usual Siegel theta function, viewed as
a (S∨L , ω

∨
L)-valued modular form of weight n

2 − 1. Assume c+f (m) is integral for
m < 0. Then

(1) Φ(z, h, f) is a Green function for Z(f) =
∑

m>0 Z(m, c
+
f (−m)). More-

over, it is harmonic if c+f (0)(0) = 0.

(2) Φ(z, h, f) is well-defined everywhere on XK .
(3) When f is weakly holomoprhic, there is a memomorphic automorphic form

Ψ(f) with Div(Ψ) = Z(f) and

− log |Ψ(f)|2Pet = Φ(f).

Moreover, when V is isotropic, Ψ(f) has Borcherds product expansion near
a cusp.

3. Small CM values and Rankin-Selberg L-function

Let U ⊂ V be a rational negative 2-plane. Then UR gives two points (with
two orientations) z±U in D. Let k = Q(

√
− detU) be an imaginary quadratic field.

Then GSpin(U) = k×, and we have a special small CM 0-cycle

Z(U) = {z±U } × k×\k×f /UK → XK , UK = k×f ∩K,
in XK , defined over Q. The subspace U also gives orthogonal decomposition

V = V + ⊕ U, L ⊃ P ⊕N , P = L ∩ V +,N = L ∩ U.
Associated to P is a holomorphic modular form θP valued in S∨P of weight n

2

and representation ω∨P . Associated to N are a typical coherent Eisenstein series
EN (τ, s,−1) and an incohrent Eisenstein series EM(τ, s, 1), both valued in S∨N
but with weight −1 and 1 respectively. They are related by

−2∂̄ (E′N (τ, 0; 1) dτ) = EN (τ, 0;−1) dµ(τ).
Let EL(τ) be the ‘holomorphic’ part of E′(τ, 0, 1). Then Bruinier and I proved in
2009 [7] the following theorem, which is a simple generalization of Schofer’s work
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on weakly holomorphic forms [11]. In Schofer’s case ξ(f) = 0, so no L-function
shows up.

Theorem 2. Let f ∈ H1−n2
(ωL), and let U ⊂ V be as above. Then

Φ(Z(U), f) = degZ(U)
[
CT(f+θPEN )− L(ξ(f), θP , 0)

]
.

Here
L(ξ(f), θP , s) = 〈θP(τ)EN (τ, s, 1), ξ(f)〉Pet

is the Rankin-Selberg L-function of ξ(f) and θP , which is automatically zero at
s = 0.

When n = 1, we used it to give a totally different proof of a variant of the
Gross-Zagier formula in the same article. When n = 2, Bruinier and I are working
on to give a new proof of the Gross-Zagier formula. This formula also indicates
some simple conjectural relation between Faltings height of a CM cycle and the
central derivative of the Rankin-Selberg L-function. The conjectural formula was
verified in special cases for n ≤ 2 in [7] and for general n in a upcoming joint work
of Andreatta, Goren, Howard, and Mafapusi [1]. Its analogue in unitary case was
proved by Bruinier, Howard, and myself [4].

4. Big CM values and L-series

In this section we assume that n = 2d is even. Let F be a totally really number
field of degree d + 1 with real embeddings σi, i = 0, 1, · · · , d. Let W = (W,QF )
be a quadratic space over F of signature (0, 2) at σ0 and (2, 0) at other infinite
primes. Let ResF/QW be the Q-vector space W with Q-quadratic form Q(x) =
trF/QQF (x). It is of signature (2d, 2) = (n, 2). We assume ResF/QW ∼= V . Then

Wσ0 = W ⊗F,σ0 R is a negative 2-plane of VR, and gives two big CM points z±0 ∈
XK . Clearly ResF/Q SO(W ) ⊂ SO(V ). Let T be the preimage of ResF/Q SO(W )
in H = GSpin(V ). Then T is a maximal torus of H (thus the name big CM
points). The associated CM cycle

Z(W,σ0) = {z±0 } × T (Q)\T (Af)/KT , KT = T (Af ) ∩K
is defined over F . Let Z(W ) is the formal sum of its Galois conjugates (see [5] for
more detailed description), which is a big CM cycle defined over Q. Associated to
L is an incohrent Hilbert Eisenstein series EL(~τ , s) valued in S∨L of F of weight
(1, · · · , 1), which is automatically zero at s = 0. Let E(τ) be the ‘holomorphic’
part of E′L(τ, 0) (with τ ∈ H diagonally embedded into Hd+1). Define

L(ξ(f),W, s) =

∫

SL2(Z)\H

EL(τ, s)ξ(f)v
n+2dµ(τ).

In [5], Bruinier, Kudla, and I proved the following theorem, which is a generaliza-
tion of [6] and [8].

Theorem 3. Let the notation be as above. Then

Φ(Z(W ), f) = degZ(W )
[
CT(f+E)− L′(ξ(f),W, 0)

]

In the case n = 2, it is application to the Colmez conjecture [12].
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Eisenstein series in Kohnen plus space for Hilbert modular forms

Ren He Su

Let r ≥ 2. In 1975, Cohen [1] introduced the so-called Cohen Eisenstein series Hr
which is a modular form of weight r + 1/2 defined by

Hr(z) = ζ(1 − 2r)

+
∑

N≥0
(−1)rN≡0,1(mod4)

(
L(1−r, χD(−1)rN

)
∑

d|f(−1)rN

µ(d)χD(−1)rNd(d)d
r−1σ2r−1(f/d)

)
qN

where for any integer n, Dn is the discriminant of Q(
√
n)Q and fn is the positive

integer such that n = f2
nDn. Inspired by this, Kohnen [4] in 1980 introduced the

plus spaces as

M+
r+1/2(Γ0(4)) =



f(z) =

∑

(−1)rN≡0,1(mod4)

a(N)qN ∈Mr+1/2(Γ0(4))



 ,

S+
r+1/2(Γ0(4)) =M+

r+1/2(Γ0(4)) ∩ Sr+1/2(Γ0(4)).

So we easily get that Hr ∈M+
r+1/2(Γ0(4)).

Recently, Hiraga and Ikeda [3] generalized the concept of Kohnen plus space to
the case for general Hilbert modular forms of parallel weight. Let F be a totally
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real number field of degree n over Q with its ring of integers oF and different dF
over Q. We define the congruence subgroup Γ ⊂ SL2(F ) by

Γ =

{(
a b
c d

)
∈ SL2(F )

∣∣∣∣ a, d ∈ oF , b ∈ d−1F , c ∈ 4dF

}
.

For any ξ ∈ F, we denote ξ ≡ � (mod4) if there is an integer x ∈ oF such that
ξ − x2 ∈ 4oF . Now let κ be an integer. The generalized Kohnen plus spaces are
defined as

M+
κ+1/2(Γ) =



f(z) =

∑

(−1)κξ≡�(mod4)

a(ξ)qξ ∈Mκ+1/2(Γ)



 ,

S+
κ+1/2(Γ) =M+

κ+1/2(Γ) ∩ Sκ+1/2(Γ).

Here for any z ∈ hn and ξ ∈ F, qξ = exp(2π
√
−1Tr(zξ)). So the definition coincides

with the plus space given by Kohnen for the case F = Q. Some analogues of the
results of Kohnen are also showed by Hiraga and Ikeda. Now what we want to
do is to get a generalization of the Cohen Eisenstein series in the generalized plus
spaces. Indeed, we have the following theorem.

Theorem. Let κ be a positive integer which is not 1 if F 6= Q and χ′ be a character
of the ideal class group of F. Then we have G(z) = Gκ+1/2(z, χ

′) ∈ M+
κ+1/2(Γ)

which is defined by

G(z) = LF (1−2κ, χ′2)+
∑

(−1)κξ≡�mod4
ξ≻0

χ′(D(−1)κξ)LF (1−κ, χ(−1)κξχ′)Cκ((−1)κξ)qξ.

where

Cκ(ξ) =
∑

a|Fξ

µ(a)χξ(a)χ
′(a)NF/Q(a)

κ−1σ2κ−1,χ′2 (Fξa
−1).

Here Dξ is the relative discriminant of F (
√
ξ)/F, F2

ξDξ = (ξ), a runs over all
integral ideals dividing Fξ, µ is the Möbius function for ideals and σk,χ is the sum
of divisors function twisted by χ, that is,

σk,χ(A) =
∑

b|A

NF/Q(b)
kχ(b)

for any integral ideal A of F. Moreover, G is a Hecke eigenform.

Thus if h is the class number of F, then we got h such Eisenstein series. Also,
we have that the Eisenstein series span the whole Kohnen plus space with the cusp
forms. We write this in a theorem.

Theorem. The Kohnen plus space M+
κ+1/2(Γ) is a vector space over C spanned

by cusp forms and the h Eisenstein series we got in the last theorem, that is,

M+
κ+1/2(Γ) = S+

κ+1/2(Γ)⊕
h⊕

j=1

C ·Gκ+1/2(z, χj)
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where χ1, ..., χh are the h distinct characters of the class group of F.

Together with the results of Ikeda and Hiraga [3], we get that M+
κ+1/2(Γ) is a

direct sum of spaces spanned by Hecke eigenforms.
It is known that Cohen [1] used his Eisenstein series to give a generalization of

Hurwitz’s class number relation. Also Eichler and Zagier [2] showed that Cohen
Eisenstein series have a deep relation with the Jacobi-Eisenstein series and Siegel
modular forms of degree 2. One may expects that the generalized Cohen Eisenstein
series can give some analogues of those results.
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Lattices with many Borcherds products

Stephan Ehlen

(joint work with Jan Hendrik Bruinier, Eberhard Freitag)

In our joint [4] work we prove that there are only finitely many isomorphism classes
of even lattices L of signature (2, n) for which the space of cusp forms of weight
1 + n/2 for the Weil representation of the discriminant group of L is trivial and
compute the list of these lattices. They have the property that every Heegner
divisor for the orthogonal group of L can be realized as the divisor of a Borcherds
product. We obtain similar classification results in greater generality for finite
quadratic modules.

Let L be an even lattice of signature (2, n) and write O(L) for its orthogonal
group. In his celebrated paper [1] R. Borcherds constructed a map from vector
valued weakly holomorphic elliptic modular forms of weight 1−n/2 to meromorphic
modular forms for O(L) whose zeros and poles are supported on Heegner divisors.
Since modular forms arising in this way have particular infinite product expansions,
they are often called Borcherds products. They play important roles in different
areas such as Algebraic and Arithmetic Geometry, Number Theory, Lie Theory,
Combinatorics, and Mathematical Physics.

By Serre duality, the obstructions for the existence of weakly holomorphic mod-
ular forms with prescribed principal part at the cusp at ∞ are given by vector
valued cusp forms of dual weight 1 + n/2 transforming with the Weil representa-
tion associated with the discriminant group of L [2]. In particular, if there are
no non-trivial cusp forms of this type, then there are no obstructions, and every
Heegner divisor is the divisor of a Borcherds product. A lattice with this property
is called simple.
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It was conjectured by E. Freitag that there exist only finitely many isomorphism
classes of such simple lattices. Under the assumptions that n ≥ 3 and that the
Witt rank of L is 2, it was proved by M. Bundschuh that there is an upper bound
on the determinant of a simple lattice [5]. Unfortunately, this bound is very large
and therefore not feasible to obtain any classification results. The argument of [5]
is based on volume estimates for Heegner divisors and the singular weight bound
for holomorphic modular forms for O(L).

We show that for any n ≥ 1 (without any additional assumption on the Witt
rank) there exist only finitely many isomorphism classes of even simple lattices of
signature (2, n). Second, we develop an efficient algorithm to determine all these
lattices.

Along the way we obtain several results on modular forms associated with finite
quadratic modules which are of independent interest and which we now briefly
describe. A finite quadratic module is a pair consisting of a finite abelian group
A together with a Q/Z-valued non-degenerate quadratic form Q on A, see [7], [9].
Important examples of finite quadratic modules are obtained from lattices. If L
is an even lattice with dual lattice L′, then the quadratic form on L induces a
Q/Z-valued quadratic form on the discriminant group L′/L.

Recall that there is a Weil representation ρA of the the metaplectic extension
Mp2(Z) of SL2(Z) on the group ring C[A] of a finite quadratic module A. If k ∈ 1

2Z,
we write Sk,A for the space of cusp forms of weight k and representation ρA for the
group Mp2(Z). For simplicity we assume throughout that 2k ≡ − sig(A) (mod 4),
since our application to simple lattices will only concern this case. We say that
a finite quadratic module A is k-simple if Sk,A = {0}. With this terminology, an
even lattice L is simple if and only if L′/L is (1 + n/2)-simple.

The dimension of the space Sk,A can be computed by means of the Riemann-
Roch theorem. Therefore a straightforward approach to showing that there are
nontrivial cusp forms consists in finding lower bounds for the dimension of Sk,A.
Unfortunately, the dimension formula involves rather complicated invariants of ρA
at elliptic and parabolic elements, and it is a non-trivial task to obtain strong
lower bounds. We show that the following asymptotic holds.

Theorem. If ε > 0, then

dim(Sk,A)− dim(M2−k,A(−1)) = |A/{±1}| ·
(
k − 1

12
+Oε(N

ε−1/2
A )

)

for every finite quadratic module A and every weight k ≥ 3/2 with 2k ≡ − sig(A)
(mod 4). Here NA is the level of A, and A(−1) denotes the abelian group A
equipped with the quadratic forms −Q. The constant implied in the Landau symbol
is independent of A and k.

An a corollary we can give an affirmative answer to the conjecture by E. Freitag.

Corollary. Let r0 ∈ Z≥0. There exist only finitely many isomorphism classes
of finite quadratic modules A with minimal number of generators ≤ r0 such that
Sk,A = {0} for some weight k ≥ 3/2 with 2k ≡ − sig(A) (mod 4).
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In particular, since dimSk,A > 0 for k > 14, there are only finitely many
isomorphism classes of simple lattices. Note that there do exist infinitely many
isomorphism classes of 1/2-simple finite quadratic modules, which has been shown
by Skoruppa [8].

Moreover, we remark that bounding the minimal number of generators is es-
sential.

Example. If A = 3εn with n ∈ Z>0 odd and ε = (−1)n−1
2 , then sig(A) ≡ 2

(mod 4) and S3,A = {0}.

This follows for instance from the dimension formula in [6], Chapter 5.2.1, p. 93.
Unfortunately, the implied constant in the Landau symbol in the above theorem

is large. Therefore, it is a difficult task to compute the list of all k-simple finite
quadratic modules for a bounded number of generators. We develop an efficient
algorithm to address this problem. The idea is to first compute all anisotropic
finite quadratic modules that are k-simple for some k. To this end we derive an
explicit formula for dim(Sk,A) in terms of class numbers of imaginary quadratic
fields and dimension bounds that are strong enough to obtain a classification.

Next we employ the fact that an arbitrary finite quadratic module A has a
unique anisotropic quotient A0, and that there are intertwining operators for the
corresponding Weil representations. For the difference dimSk,A − dimSk,A0 very
efficient bounds can be obtained. This can be used to classify all k-simple finite
quadratic modules with a bounded number of generators.

Finally, all simple lattices of signature (2, n) can be found by a applying a
criterion of Nikulin [7] to determine which of these simple discriminant forms arise
as discriminant groups L′/L of even lattices L of signature (2, n).
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Universität Darmstadt (2010).

[7] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications
(Russian), Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 111–177. English translation:
Math USSR-Izv. 14 (1980), 103–167.

[8] N.-P. Skoruppa, Über den Zusammenhang zwischen Jacobiformen und Modulformen
halbganzen Gewichts, Bonner Mathematische Schriften 159 (1985).

[9] N.-P. Skoruppa, Jacobi forms of critical weight and Weil representations. In: Modu-
lar Forms on Schiermonnikoog (Eds.: B. Edixhoven et.al.), Cambridge Univerity Press
(2008), 239–266.



1270 Oberwolfach Report 22/2014

A geometrical approach to Jacobi forms, revisited

Jürg Kramer

(joint work with José Burgos Gil)

1. Introduction

Arakelov theory [3] was created to compute heights of rational points or, more
generally, of cycles on varieties defined over number fields using arithmetic inter-
sections. However, the original theory was limited to the use of vector bundles
equipped with smooth hermitian metrics. By the work [1], Arakelov theory was
extended to allow to incorporate vector bundles equipped with logarithmically sin-
gular hermitian metrics. This led to interesting applications for Shimura varieties
of non-compact type and their automorphic vector bundles equipped with the nat-
ural invariant hermitian metric, e.g., a general foundation for the height used by
Faltings in his proof of Mordell’s conjecture; for further examples, see [5]. The key
ingredient of our generalization was Mumford’s observation [6] that Chern-Weil
theory continues to apply in the case of logarithmically singular metrics.
Our next goal is to generalize arithmetic intersection theory to the case of mixed
Shimura varieties of non-compact type. It turned out that new problems arise,
namely that the natural invariant metrics of the natural vector bundles have sin-
gularities which are worse than logarithmically singular, at least in codimension 2.
Therefore, we have begun in [2] by studying the simplest non-trivial example, on
which we report here, namely the hermitian line bundle associated to the classical
theta function θ1,1 on the universal elliptic curve over a modular curve.
The set-up is as follows: Let Γ = Γ(N) (N ≥ 3) be the principal congruence sub-
group of level N acting by fractional linear transformations on the upper half-plane
H. We let Y (N) := Γ(N)\H and E0(N) := Γ(N)⋉Z2\H×C. The modular curve
X(N) is obtained from Y (N) by adding the cusps P1, . . . , PpN and the universal

elliptic curve E(N) is obtained by compactifying E0(N) by N -gons
⋃N−1
ν=0 Θj,ν

(Θj,ν ∼= P1
C with self-intersection −2) over the cusps Pj (j = 1, . . . , pN ).

We denote by Jk,m(Γ(N)) the C-vector space of Jacobi forms of weight k, index m
with respect to Γ(N). We recall from [4] that the factor of automorphy in the def-
inition of Jacobi forms gives rise to a 1-cocycle in H1(Γ(N)⋉Z2,C×), and hence,
to a line bundle L0

k,m on E0(N). Letting j : E0(N) −→ E(N) be the inclusion

map, it has been shown in [4] that there is a distinguished subsheaf Fk,m of j∗L
0
k,m

such that Jk,m(Γ(N)) ∼= H0(E(N),Fk,m), which enabled us to determine the di-
mension of Jk,m(Γ(N)) using the Riemann-Roch theorem on the surface E(N).
Finally, we note that for f ∈ Jk,m(Γ(N)), the natural invariant metric is given by

‖f(τ, z)‖2Pet := |f(τ, z)|2 e−4πmy
2/η ηk (τ = ξ + iη ∈ H, z = x+ iy ∈ C).

It induces a hermitian metric ‖ · ‖Pet on L0
k,m; we put L

0

k,m := (L0
k,m, ‖ · ‖Pet).
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2. Some definitions

Let X be a smooth, complex, projective variety of complex dimension d, D ⊂ X
a normal crossing divisor, and U := X \D with embedding j : U →֒ X . We call
an open coordinate neighborhood V of X with coordinates z1, . . . , zd adapted to
D, if D is locally given by the equation z1 · . . . · zk = 0 for some k ∈ {1, . . . , d}.
Definition. Let L be a line bundle on X and ‖ · ‖ a smooth hermitian metric on
L|U . We say that ‖ · ‖ has logarithmic growth (along D), if for all x ∈ X , there
is a coordinate neighborhood V of x adapted to D, a nowhere vanishing regular
section s of L on V , and an integer M > 0 such that

k∏

j=1

log

(
1

|zj |

)−M
≪ ‖s(z1, . . . , zd)‖ ≪

k∏

j=1

log

(
1

|zj|

)M
(|zj | < e−e).

Definition. We say that a smooth hermitian line bundle L
0
:= (L0, ‖ · ‖) on U

admits a Mumford-Lear extension to X , if the following exist: A positive integer
e, a line bundle L on X , an algebraic subset S ⊂ D ⊂ X with codimX(S) ≥ 2, a
smooth hermitian metric ‖ · ‖ on L|U with logarithmic growth along D \ S, and
an isometry α : (L0, ‖ · ‖)⊗e −→ (L|U , ‖ · ‖). The 5-tuple (e, L, S, ‖ · ‖, α) is called
a Mumford-Lear extension of L

0
.

We introduce the directed set (with the obvious morphisms)

Bir(X) :={Y smooth, complex, projective variety |πY : Y −→ X proper, bira-

tional morphim such that DY := π−1Y (D) normal crossing divisor}.

Definition. We say that L
0
admits all Mumford-Lear extensions over X , if π∗Y L

0

admits a Mumford-Lear extension from UY := Y \DY to Y for all Y ∈ Bir(X).
Remark. If Y ∈ Bir(X), s a rational section of L0 (which can be viewed as a
rational section of π∗Y L

0), and (e′, L′, S′, ‖ · ‖′, α′) is a Mumford-Lear extension of

π∗Y L
0
to Y , we have the Q-Cartier divisor divY (s) := e′−1div(α′(s⊗e

′
)).

Definition. Assume that L
0
admits all Mumford-Lear extensions over X , and let

s be a rational section of L0. The b-divisor associated to s is defined as

div(s) :=
(
divY (s)

)
Y ∈Bir(X)

.

Definition. A b-divisor C = (CY )Y ∈Bir(X) on a surface X is called integrable, if
the limit C · C of intersection numbers CY · CY over Y ∈ Bir(X) exists.

3. First results and concluding remarks

Let X := E(N), D := E(N) \ E0(N), let S denote the double points of D, and
write H for the image of the zero section from X(N) to E(N). We then introduce

C := 8H +

pN∑

j=1

N−1∑

ν=0

(
N − 4ν +

4ν2

N

)
Θj,ν and L4ℓ,4ℓ := OE(N)(ℓ C).

Proposition. The 5-tuple (1, L4ℓ,4ℓ, S, ‖ · ‖Pet, α) is a Mumford-Lear extension of

the smooth hermitian line bundle L
0

4ℓ,4ℓ to E(N) with α : L
0

4ℓ,4ℓ −→ L4ℓ,4ℓ|E0(N)
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induced by the assignment θ 8ℓ
1,1 7→ s, where s is chosen such that div(s) = ℓ C.

The proof consists in determining the divisor of θ 8ℓ
1,1 on the surface E(N) and in

showing that the Petersson metric ‖ · ‖Pet is of logarithmic growth on D \ S.
Theorem. The line bundle L

0

4ℓ,4ℓ admits all Mumford-Lear extensions over E(N).

The associated b-divisor div(θ 8ℓ
1,1) is integrable, and we have the formula

div
(
θ 8ℓ
1,1

)
· div

(
θ 8ℓ
1,1

)
=

16 pNN ℓ2

3
.(1)

Concluding remarks. (i) We note that formula (1) can be rewritten as

div
(
θ 8ℓ
1,1

)
· div

(
θ 8ℓ
1,1

)
= (4ℓ)(4ℓ) [PSL2(Z) : Γ(N)]

ζMT(2, 2, 2)

ζ(6)
,

where ζ(s) and ζMT(s, s, s) are the Riemann and the Mordell-Tornheim ζ-function,
respectively, and 4ℓ is the weight as well as the index of the Jacobi form in question.
(ii) By a suitable residue calculation, one can show that

div
(
θ 8ℓ
1,1

)
· div

(
θ 8ℓ
1,1

)
=

∫

E(N)

c1
(
L4ℓ,4ℓ

)∧2
.

(iii) Formula (1) has a nice toric interpretation as a limit of volumes of polytopes.
(iv) In compatibility with a Hilbert-Samuel formula for dimC J4ℓ,4ℓ(Γ(N)), one has

J4ℓ,4ℓ
(
Γ(N)

)
= lim

←−
Y ∈Bir(E(N))

H0
(
Y, π∗Y L4ℓ,4ℓ

)
,

which allows to interpret Jacobi forms as (a limit of) global sections of a line
bundle rather than as global sections of the subsheaf F4ℓ,4ℓ of j∗L

0
4ℓ,4ℓ.

(v) By working on the Riemann-Zariski space

X := lim
←−

Y ∈Bir(E(N))

Y,

we can apply our generalization of Arakelov theory [1], there. Resulting (limit)
calculations will be made explicit in our future research, e.g., by determining the

arithmetic degree of the arithmetic b-divisor d̂iv(θ 8ℓ
1,1) := (div(θ 8ℓ

1,1), ‖ · ‖Pet).
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[3] H. Gillet, C. Soulé, Arithmetic intersection theory, Publ. Math. IHES 72 (1990), 94–174.
[4] J. Kramer, A geometrical approach to the theory of Jacobi forms, Compositio Math. 79

(1991), 1–19.
[5] S. Kudla, Special cycles and derivatives of Eisenstein series, in Heegner points and Rankin

L-series, 243–270, Math. Sci. Res. Inst. Publ. 49, Cambridge Univ. Press, Cambridge, 2004.
[6] D. Mumford, Hirzebruch’s proportionality theorem in the non-compact case, Invent. Math.

42, (1977), 239–272.

Reporter: Stephan Ehlen



Modular Forms 1273

Participants

Claudia Alfes

Fachbereich Mathematik
TU Darmstadt
Schlossgartenstr.7
64289 Darmstadt
GERMANY

Hiraku Atobe

Department of Mathematics
Kyoto University
Kitashirakawa, Sakyo-ku
Kyoto 606-8502
JAPAN

Prof. Dr. Valentin Blomer

Mathematisches Institut
Georg-August-Universität Göttingen
Bunsenstr. 3-5
37073 Göttingen
GERMANY

Prof. Dr. Siegfried Böcherer
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50923 Köln
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ETH Zürich
Department Mathematik
HG J 65
Rämistr. 101
8092 Zürich
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