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Introduction by the Organisers

The workshop “Algebraic Structures in Low-Dimensional Topology” organized by
Louis Kauffman, Vassily Manturov, Kent Orr and Robert Schneidermann was
well attended, with over 25 participants from an international commmunity of re-
searchers. Talks were given on a wide variety of topics, including both three and
four dimensional geometric topology, knot theory and virtual knot theory. The
subject areas of this conference included specifically algebraic and combinatorial
approaches to invariants sucn as parity in the theory of graph links, free knots
and virtual knot theory, uses of surfaces and curves on surfaces to understand
virtual knot cobordism and to understand relationships between classical and vir-
tual knots, orderability in groups and fundamental groups, new approaches to the
Alexander polynomial, braids and representations of braid groups, relationships of
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representation theory with the skein theory of knot polynomials, structure of quan-
dles, structure of skein modules, and extensions of ideas in quandle cohomology to
distributive cohomology. Along with these combinatorial and algebraic ideas there
was much discussion of geometric/topological techniques such as branched cover-
ings, structures on manifolds, cobordisms, surgery and dymnamics of surgery, and
even relationships between Fourier series and representations of braids. There are
many challenging problems in low dimensional topology, and a remarkable number
of fertile ideas and methods. This conference was an excellent meeting place for
the participants to work and share their ideas.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Some very good formulas for the Alexander polynomial

Dror Bar-Natan

I will describe some very good formulas for a (matrix plus scalar)-valued extension
of the Alexander polynnomial to tangles, then say that everything extends to
virtual tangles, then roughly to simply knotted balloons and hoops in 4D, then
the target space extends to (free Lie algebras plus cyclic words), and the result
is a universal finite type of the knotted objects in its domain. Taking a cue
from the BF topological quantum field theory, everything should extend (with
some modifications) to arbitrary codimension-2 knots in arbitrary dimension and
in particular, to arbitrary 2-knots in 4D. But what is really going on is still a
mystery.

My talk’s handout, video, and further links are at
http://www.math.toronto.edu/~drorbn/Talks/Oberwolfach-1405/.

Braids and the concordance group

Michael Brandenbursky

(joint work with Jarek Kedra)

The goal of this talk was to establish a non-trivial relation between a braid group
Bn and the smooth concordance group Conc(S3) of knots in S3. Moreover, a
discovery of this relation enabled us to answer the following 3 questions, which are
apparently unrelated.

(1) This question is attributed to Livingston and Calegari [4]. Is there a
connection between the stable commutator length scl in groups and the
stable four ball genus in Conc(S3)?

(2) This question was asked by Burago-Ivanov-Polterovich in their influen-
tial paper on diffeomorphism groups [3]. Roughly speaking they asked
whether the existence of quasi-morphisms is equivalent to the existence of
stably unbounded norms. More precisely, they asked the following: Does
there exists a perfect group whose scl is zero, but which admits a stably
unbounded conjugation-invariant norm?

(3) The following questions were asked by Paolo Lisca. Are there infinitely

many non slice knots in the family {( ̂σ1σ
−1
2 )k}∞k=1? If yes, then what is

the cardinality of this set? Here σi is the i− th Artin generator of B3 and
α̂ denotes the closure of a braid α.

Let n ∈ N. In [1] we defined a map Ψn : Bn → Conc(S3) which takes a braid
α ∈ Bn and associates to it a concordance class of the knot α̂σα, where σα is a
suitably chosen braid in Bn.

Our main theorem is the following:
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Theorem 1 ([1]). The map Ψn : Bn → Conc(S3) is a quasihomomorphism with
respect to the four ball genus norm and with defect DΨn

≤ 3n + 1. Its image
contains all concordance classes represented by knots which are closures of braids
on n strings. In addition, if n ∈ N∪{∞} this map is Lipschitz with respect to the
biinvariant word norm on the braid group and the four ball genus norm g4 on the
concordance group. More precisely,

g4(Ψn(α)) ≤
1

2
‖α‖

for all braids α ∈ Bn.

Let [Bn,Bn] denote the commutator subgroup of Bn. Theorem 1 yields 3
corollaries which answer positively the two first questions.

Corollary 2. Let α ∈ [Bn,Bn]. Then if the stable commutator length of α is
trivial then the stable four ball genus of Ψn(α) is bounded above by the defect
DΨn

:
scl(α) = 0 =⇒ sg4(Ψn(α)) ≤ DΨn

.

Corollary 3. Let α ∈ [Bn,Bn]. If scl(α) = 0 then the concordance classes
Ψn(α

k), for k ∈ Z, have uniformly bounded four ball genus.

Corollary 4. The commutator subgroup [B∞,B∞] of the infinite braid group
satisfies the conditions of the second question and hence gives a solution to the
question of Burago-Ivanov-Polterovich.

In a recent work in progress [2] the first author proved the following theorem,
which in particular answers positively the first question of Paolo Lisca.

Theorem 5. Let k 6= 0mod3 and αk = (σ1σ
−1
2 )k. Then the knot α̂k is alge-

braically slice if and only if k is odd.

As a corollary the first author obtained the following corollary in number theory.
We would like to make a remark that Corollary 6 may be proved using elementary
methods. Nevertheless, we think that it is interesting to give a purely topological
proof of such statement.

Corollary 6. Let Lk be the k-th Lucas number. Then for each k ∈ N

(1) L12k±4 = 5mod3 or 7mod 3
(2) L12k±2 = 3mod3
(3) L12k±2 − 2 is a square number.
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Towards a general construction for the unitary representation rings of
Artin braid groups

John Bryden

1. Introduction

The braid groups lie at the nexus of algebra and topology, Understanding the
structure of their representation rings could play an important role in many prob-
lems situated at this intersection. The construction of new quantum invariants is
one such problem.

In 2000 G. Carlsson invented the notion of deformation K-theory (cf. [1]) to
study complex representations of groups. Deformation K-theory, Kdef, can be
defined as the algebraic K-theory of the representation category, R(G), of the
group G. That is,

K∗
def(G) := K∗(R(G)) = π∗+1(BQR(G)) .

where R(G) is the category having one and only one object.

Obj(R(G)) = ∐n≥0 Hom(G,U(n))

and the morphisms are the elements

Mor(R(G)) = ∐n≥0 U(n)× Hom(G,U(n))

Tyler Lawson (cf. [2]) proved that there is an E∞-ring spectrum, R[G], associated
to the representation category R(G) satisfying the condition:

Theorem 1.1.

Kdef(G) ∼= πi(R[G]) ∼= Hi(Irr(G))

where Irr(G) is the topological monoid of isomorphism classes of irreducible rep-
resentations.

Remark 1.2. There is an associated differential graded complex C∗(Irr(G)) that
can be used in conjunction with Theorem 1.1 to extract the irreducible represen-
tation of G (cf. [2]).

Dan Ramras then proved that the deformation K-theory of the free product of
groups is excisive (cf. [3]).

Theorem 1.3. For finitely generated discrete groups G and H the following dia-
gram of spectra

Kdef(G ∗H) −→ Kdef(H)

↓ ↓
Kdef(G) −→ Kdef({1})

is homotopy cartesian.
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The expression Kdef(G) in this theorem refers to the representation ring spec-
trum R[G] defined in [2]. This notation is ambiguous. However, this diagram of
spectra induces the same diagram at the level of groups.

There is a long exact Mayer-Vietrois type sequence associated to the homotopy
cartesian square of Theorem 1.3. This exact sequence is constructed by splicing
together the long exact sequences obtained from the fibre sequences of the vertical
morphisms in the homotopy cartesian square,

. . . −→ Kdef(G ∗H) −→ Kdef(G)⊕Kdef(H) −→ Kdef({1}) −→ . . . .

Ramras (cf. [3]) further proved that for surface groups π1(Σ),

Theorem 1.4. Let KC(Σ) denote the complex topological K-theory of the surface
Σ. Then,

Kdef(π1(Σ)) ∼= KC(Σ) .

Remark 1.5. Theorem 1.1 is not generally true for arbitrary groups. However,
in this particular situation Theorem 1.1 can be applied to find the irreducible
representations of π1(Σ) .

Remark 1.6. Theorem 1.4 exhibits the feature of deformationK-theory that Carls-
son was purposefully trying to build into deformation K-theory. That is, Kdef

∼=
KC. This is known only for surface groups and finitely generated abelian groups.

Example 1.7. If G is a finite group with n irreducible representations, then
Kdef(G) ∼ ∨nku where ku is the complex connective K-theory spectrum (cf.
[2]).

When G = Z/m, it follows that

Ki
def(G) ∼=

{
0 . . . if i = odd,
Z . . . if i = even.

}

Example 1.8. Suppose G = PSL2(Z) ∼= Z/2∗Z/3. Find Kdef(PSL2). It follows
from Example 1.7 that in odd dimensions the sequence

. . . −→ K2i+1

def
(Z/2 ∗ Z/3) −→ K2i+1

def
(Z/2)⊕K2i+1

def
(Z/3) −→ K2i+1

def
({1}) −→ . . .

reduces to the sequence

. . . −→ K2i+1

def
(Z/2 ∗ Z/3) −→ 0⊕ 0 −→ 0 −→ . . .

Since the connecting morphisms turn out to be 0, it is clear that

K2i+1

def
(Z/2 ∗ Z/3) ∼= 0 .

Hence, in every even dimension there are short exact sequences:

0 −→ K2i
def(Z/2 ∗ Z/3) −→ K2i

def(Z/2)⊕K2i
def(Z/3) −→ K2i

def({1}) −→ 0 .

Example 1.7 shows that these sequences reduce to the following short exact se-
quences,

0 −→ K2i
def(Z/2 ∗ Z/3) −→ Z2 ⊕ Z3 −→ Z −→ 0

Thus, K2i
def(PSL2) ∼= K2i

def(Z/2 ∗ Z/3) = Z4.
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2. Braid Groups

Let Cn(R
2n) denote the configuration space of n points in the plane. The

symmetric group Sn acts on configuration space in the natural way. Define the
braid group, Bn, on n points to be

Bn = π1(Cn(R
2n)/Sn)

and the pure braid group, PBn, as:

PBn = π1(Cn(R
2n)) .

There is a well defined group homomorphism η : Bn −→ Sn, defined as follows: to
each braid in Bn associate the permutation it induces on its strands in Sn. Notice
that if σi is a standard generator of Bn, η(σi) = (i, i + 1) for i = 1 . . . , n − 1.
The kernel of η is precisely the subgroup of Bn formed by the braids inducing
the trivial permutation, that is, the pure braid group PBn. Thus there is a short
exact sequence

1 −→ PBn −→ Bn −→ Sn −→ 1

Very little is known about the representation theory of the Artin braid groups or
the pure braid groups. However, it may be possible to use the theoretical ideas
described above to describe the representation rings of both the pure braid groups
and Artin braid groups. Recently in this direction I proved that,

Theorem 2.1 (Bryden, J). The pure braid groups, PBn, satisfy excision for
deformation K-theory.

Corollary 2.2 (Bryden, J). The Mayer - Vietoris type long exact sequence can
be used to determine a formula for Kdef(PBn) in terms of free groups.

Remark 2.3. The construction of the formula for Kdef uses the proof of Theorem
2.1, and so is omitted in this abstract.

Problem 2.4. Since the pure braid groups are residually nilpotent, it may be
possible to extend Theorem 1.1 to this case.

Problem 2.5. A general construction for the unitary representation rings of the
Artin braid groups can now be formulated by effecting the procedure described
above. However,

(1) I do not yet know if Theorem 1.1 can be extended to this case,
(2) I have not yet proved that the deformation K-theory and complex topolog-

ical K-theory are isomorphic in this case.

Remark 2.6. The multiplicative structure of the representation ring is determined
by the structure of the derived category of modules over the E∞ ring spectrum
R[G].
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A possible topos-theoretic interpretation of Khovanov homology

J. Bryden, L. Kauffman

We note that the Khovanov homology of the link K, denoted Kho∗(K) , is isomor-
phic to the cohomology of the nerve N of the cube category, Cube(K), associated
with K, with coefficients in a category C of Frobenius algebras.:

Kho∗(K) ∼= H∗(NCube(K);A),

for A ∈ Obj(C). This in turn is isomorphic with the cohomology of the classifying
category of Cube(K) with the same coefficient pre-sheaf. That is,

Kho∗(K) ∼= H∗(BCube(K);A)

The object BCube(K) is an object whose étale homotopy theory can be studied.

Conjecture 1. The Khovanov homology, Kho∗(K), of the link , K, can be rep-
resented by an appropriate étale homotopy type that is an invariant of the link
K.

Cheeger-Gromov universal bounds of von Neumann L
2 rho-invariants

Jae Choon Cha

This is an extended abstract of my talk, which is based on part of the paper [2].
More related results, further discussions, and proofs can be found in [2].

In [4], Cheeger and Gromov defined and studied the von Neumann L2 ρ-
invariant ρ(2)(M,φ) ∈ R of a closed Riemannian (4k − 1)-dimensional mani-
fold M , which is associated to the regular cover determined by a homomorphism
φ : π1(M) → G. In their study of the topological invariance of ρ(2)(M,φ), Cheeger
and Gromov proved the following boundedness theorem, using deep analytic meth-
ods: for any closed smooth (4k− 1)-manifold M , there is a constant CM such that
|ρ(2)(M,φ)| ≤ CM for any homomorphism φ : π1(M) → G into any group G.

A natural question arises from the work of Cheeger and Gromov: can we un-
derstand the universal bound Cm topologically? This is a question intriguing not
only on its own but also for applications. Especially, since work of Cochran and
Teichner [5], the Cheeger-Gromov universal bound CM has been playing an im-
portant role in the study of low dimensional topology: concordance of knots and
links in the 3-space, homology cobordism of 3-manifolds, and Whitney towers and
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gropes in 4-manifolds. While a topological understanding of the Cheeger-Gromov
universal bound would improve many related results, almost nothing was known
about the topological aspects of the universal bound, except its existence.

In this talk, we present a topological approach to the Cheeger-Gromov universal
bound, with new applications to 3-manifold topology. Our first result is a topo-
logical proof of the existence of the universal bound, which applies to topological
manifolds as well:

Theorem 1. For any closed topological (4k − 1)-manifold M , there is a constant
CM such that |ρ(2)(M,φ)| ≤ CM for any homomorphism φ : π1(M) → G into any
group G.

The proof employs the idea appeared in the work of Chang and Weinberger [3],
and a functorial embedding of groups into acyclic groups due to Baumslag, Dyer,
and Heller [1].

For 3-manifolds, we develop new methods to obtain explicit estimates of the
universal bound, which relate it to the fundamental 3-manifold presentations: tri-
angulations, Heegaard splittings, and surgery descriptions. In this talk a trian-
gulation designates a simplicial complex structure. A 3-manifold is assumed to
be closed. The simplicial complexity of a 3-manifold is defined to be the minimal
number of 3-simplices in a triangulation.

Theorem 2. If M is a 3-manifold with simplicial complexity n, then for any
homomorphism φ of π1(M) into an arbitrary group G,

|ρ(2)(M,φ)| ≤ 363090 · n.

Recall that a mapping class h in the mapping class group Mod(Σg) on a genus
g surface Σg gives a Heegaard splitting of a 3-manifold. Lickorish showed that the
±1 Dehn twists along standard 3g − 1 curves on Σg generate Mod(Σg) [8]. For a
given 3-manifold M , define the Heegaard-Lickorish complexity to be the minimal
word length of a mapping class in Mod(Σg), with respect to the Lickorish twists,
which gives a Heegaard splitting of M . Here g is arbitrary.

Theorem 3. If a 3-manifold M has Heegaard-Lickorish complexity ℓ, then for
any homomorphism φ of π1(M) into an arbitrary group G,

|ρ(2)(M,φ)| ≤ 251258280 · ℓ.

Any 3-manifold is obtained by surgery on a (integral) framed link in S3. For a
framed link L with surgery coefficients ni ∈ Z, let f(L) =

∑
|ni|. We denote the

crossing number of a link L by c(L), that is, the minimal number of crossings in
a planar diagram of L.

Theorem 4. If a 3-manifold M is obtained by surgery on a framed link L in S3,
then for any homomorphism φ of π1(M) into an arbitrary group G,

|ρ(2)(M,φ)| ≤ 69713280 · c(L) + 34856640 · f(L).



1414 Oberwolfach Report 26/2014

The above results establish relationships of the Cheeger-Gromov universal bound
with combinatorial, geometric group theoretic, and knot theoretic aspects of 3-
manifolds.

In addition, although the coefficients in Theorems 2, 3, and 4 are large, we have
the following result:

Theorem 5. The linear universal bounds in Theorems B, C, and D are asymp-
totically optimal.

For a precise formulation of Theorem E, see [2]. We remark that finding an
optimal or improved (smaller) coefficients in Theorems 2, 3, and 4 seems to be
another intriguing problem.

Based on our results, we make a new application of the Cheeger-Gromov ρ-
invariants, to the complexity theory of 3-manifolds. For 3-manifolds, a relaxed
notion of a triangulation called a pseudo-simplicial triangulation is often con-
sidered. Briefly, a pseudo-simplicial triangulation is a union of tetrahedra with
identifications of faces that gives the 3-manifold as a quotient space (see, for ex-
ample, [6, Section 2]). The (pseudo-simplicial) complexity c(M) of a 3-manifold M
is defined to be the minimal number of tetrahedra in a pseudo-simplicial triangu-
lation. We remark that Matveev developed basic theory of (an equivalent notion
of) complexity in terms of spines [9].

Understanding the complexity of a 3-manifold is difficult. Finding an upper
bound is easier, since any (pseudo-simplicial) triangulation gives an upper bound,
but finding a lower bound has been recognized as a hard problem. There are some
interesting results that give lower bounds, for instance due to Jaco, Matveev,
Pervova, Petrionio, Rubinstein, Tillman, and Vesnin. However, for instance, even
for the case of lens spaces, the complexity is not completely understood.

We obtain new lower bounds of the complexity of 3-manifolds, using the Cheeger-
Gromov ρ-invariants:

Corollary 6. Suppose M is a 3-manifold. Then for any homomorphism φ of
π1(M),

c(M) ≥
1

209139840
· |ρ(2)(M,φ)|.

In spite of the large denominator, it turns out that the lower bound in Corol-
lary 6 can be arbitrary larger than information that can be obtained by the previ-
ously known results. As explicit examples, consider the lens spaces L(n, 1) [9, 6].
It was conjectured that c(L(n, 1)) = n− 3 for n > 3. It is known that c(L(n, 1)) ≤
n− 3, due to Jaco and Rubinstein [6]. For even n, Jaco, Rubinstein, and Tillman
proved that the conjecture holds [7]. The case of odd n remains open; in fact, the
previous known lower bounds (do not apply or) are at most square root growth
in n, while the conjectured complexity is linear. Using Corollary 6 and some
explicit computation of the Cheeger-Gromov ρ-invariant, we prove the following:

Theorem 7. For any knot in S3, the complexity of its n-surgery manifold is
precisely linear in n, i.e., Θ(n). As a special case, for the lens space L(n, 1), we
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have
n− 3

69713280
≤ c(L(n, 1)) ≤ n− 3.

This proves that the conjecture for c(L(n, 1)) is true asymptotically.
For the proofs of our main results, we develop two new ingredients, which

seem interesting on their own. First, we introduce a construction of efficient 4-
dimensional bordisms of 3-manifolds over a group, which may be viewed as a
quantitative geometric incarnation of the Atiyah-Hirzebruch bordism spectral se-
quence; the “size” of the resulting bordism depends linearly on the simplicial
complexity of a given 3-manifold and certain algebraic information. Second, we
introduce the notion of controlled chain homotopy, which is a chain level algebraic
analogue of controlled homotopy. We give uniformly controlled chain homotopy
versions of known homological results, with explicit estimates of the diameter, in-
cluding a controlled acyclic model theorem, controlled Eilenberg-Zilber theorem
for products, and controlled approximations of Baumslag-Dyer-Heller’s functorial
embedding of groups into acyclic groups. Further details can be found in [2].
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Knots in virtually fibered 3-manifolds and commensurability

Micah W. Chrisman

This talk discusses the results of the recent paper [8]. The objective is to study
knots in compact orientable 3-manifolds using the methods of virtual knot theory.

Let M be a compact oriented 3-manifold and K an oriented knot in M . Sup-
pose that M admits a covering space Π : Σ × (0, 1) → M , where Σ is a compact
oriented surface and Π is orientation preserving. Suppose that k is an oriented



1416 Oberwolfach Report 26/2014

knot in Σ × (0, 1) such that Π(k) = K with orientation preserved. Then k may
be considered as a knot in Σ× [0, 1] via inclusion. The knot k in Σ× I stabilizes
to a virtual knot υ. This setup is called a virtual cover (kΣ×(0,1),Π,KM ) with
associated virtual knot υ. If k is contained in a fundamental region of Π, then the
virtual cover is called a fundamental virtual cover.

In many situations, the associated virtual knot will be an ambient isotopy invari-
ant of the knot K in M . For example, let M be the complement of a fibered link J
in S3. Let K1 be a knot in M that is “close” to a fiber Σ of the given fiber bundle
M → S1. The pullback provides the needed covering space Π : Σ × (0, 1) → M .
By “close”, we mean that there is a knot k1 in Σ× (0, 1) such that Π(k1) = K and
k1 is contained in a fundamental region of Π. Let υ1 be the associated virtual knot.
Suppose that K2 is another knot in M that is “close” to Σ and thereby providing
an associated virtual knot υ2. It follows from the theory of virtual covers that
if K1 and K2 are ambient isotopic knots in M , then υ1 and υ2 are equivalent as
virtual knots [9].

Several examples are provided. Knots in the complement of a trefoil, the com-
plement of 62, the complement of the Hopf link, and the complement of the
Borromean rings are considered in detail. Virtual covers are used to detect in-
equivalent knots in manifolds, demonstrate non-invertibility of a knot, and prove
that a three component link is non-separable in S3.

Virtual covers may also be used to study knots in manifolds M that are not
fibered over S1. In particular, they can be used to study knots in virtually fibered
3-manifolds. A compact orientable 3-manifold is said to be virtually fibered if it
admits a finite index covering that is fibered over S1. Thurston’s virtual fibering
conjecture [32] implies, if true, that all hyperbolic link complements are virtually
fibered. Agol [1] has recently proved that if M is closed and hyperbolic, then M
is virtually fibered.

The main theoretical tool needed for the extension to virtually fibered manifolds
is commensurability. This approach is inspired the the work of Leininger [24] and
Walsh [33]. We will say that knot A in the manifold M and the knot B in the
manifold N are elementary commensurable if there is a knot C in a manifold P
and finite index regular coverings ΠM : P → M and ΠN : P → N such that
ΠM (C) = A, ΠN (C) = B, and C is contained in a fundamental region of ΠM and
a fundamental region of ΠN . In this case we write AM .

= BN . If there is a finite
sequence of elementary commensurabilities taking AM to BN , we say that AM

and BN are commensurable. This is written as AM ; BN .

The main theorem of [8] can be stated briefly as follows. If the knot AM has
a fundamental virtual cover with associated virtual knot υA, the knot BN has a
fundamental virtual cover with associated virtual knot υB, and AM ; BN , then
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υA ⇌ υB as virtual knots. A sketch of the proof is given during the talk.

The first example of a non-fibered virtually fibered manifold is due to Gabai [16].
It is a non-fibered hyperbolic link complement admitting a 2-fold regular covering
by a fibered link complement. A detailed construction of the manifold is provided
during the talk. Let M denote Gabai’s example manifold.

The main theorem of [8] is applied to knots in Gabai’s manifold M . Virtual
covers are used to distinguish between inequivalent knots in M and prove the
non-invertibility of a knot in M .
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A Revision of Levine’s Stategy: towards a Wang-type sequence for
classical knot concordance

Tim D. Cochran

(joint work with Christopher W. Davis)

In 1969 Jerome Levine successfully classified higher-odd-dimensional knot concor-
dance in terms of simple invariants, namely linking numbers, of special links on
an arbitrary Seifert surface. For knots in S3, it was known that the situation is
more complicated but this philosophy has nonetheless dominated the search for
a characterization of slice knots. In this work we discuss unexpected failures of
Levine’s program and indicate refinements necessary to recover this strategy.

More specifically, a knot K is called algebraically slice if for any genus g Seifert
surface Σ for K there is a half-rank summand of H1(Σ) on which the Seifert form
vanishes. A basis for this summand can be realized by a g-component link, J ,
embedded on Σ. Levine showed that any slice knot is an algebraically slice knot,
and in higher dimensions, that any algebraically slice knot is a slice knot. More
precisely, given a smooth slice disk ∆ for a knot K and any genus g Seifert surface
for K, there exist g-component link, J , embedded on the Seifert surface that is
associated to ∆. We call such a link a derivative of K. By definition such a
link J has pairwise linking numbers zero. It was conjectured that J itself must
be a slice link, or at least be algebraically slice. Indeed in higher dimensions
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Levine proved that for any algebraically slice simple knot K any derivative is a
slice link, from which it follows easily that K is a slice knot. For knots in S3, in
1973 Casson and Gordon found additional obstructions to K being a slice knot.
But, significantly, the Casson-Gordon invariants also can be expressed in terms of
more elememtary invariants of the derivative link. Whereas Levine showed that
the simplest invariants of a derivative link ( linking numbers) obstruct K from
being a slice knot, Casson-Gordon, Gilmer and Cooper showed that certain sums
of signatures of the derivative link obstruct K from being a slice knot. In recent
years many more obstructions have been found and in almost every case case
they have been shown to be expressible in terms of lower order invariants of the
derivative link. Thus hope has remained that Levine’s philosophy/strategy was
sound, namely that if K is a slice knot then, for any Seifert surface, there exists a
derivative that is itself a slice link.

In the simplest situation, when a (classical) slice (or merely algebraically slice)
knot bounds a genus one Seifert surface, Σ, it can be shown that (modulo orien-
tation) there are precisely two derivatives for K, each of which is itself a knot. In
this specific case, 1982 Kauffman conjectured that the converse is true (in support
of Levine’s philosophy):
Conjecture [Kauffman’s Strong Conjecture] If K is a slice knot and Σ is a genus
one Seifert surface for K then one of the two derivatives, J , is a slice knot.

It was specifically expected that the signatures of J would vanish. The authors
recently showed this is false in some cases, contradicting Kauffman’s conjecture [1].
Thus Levine’s philosophy needs to be modified if it is to be used.

In this work we answer the question: given a smooth slice disk ∆ for a knot
K and a derivative link, J , associated to ∆, what CAN be said (geometrically)
about J? The answer is not that J itself is slice but that, loosely speaking, J
is equal to (t∗ − id)(L) for some link L. We also adress a filtered version of this
question, with respect to the Cochran-Orr-Teichner n-solvable filtration of the
knot concordance group. One application of our work is that the signature part of
the conjecture DOES hold in certain cases. We also provide very strong answers
to these questions for genus one knots.

Our main theorem is:
Main Theorem IfK is a slice knot via a slice disk ∆ to which J is associated then
there exists some link L in a rational homology 3-sphere such that J#L#− t∗(L)
is null-bordant with respect to the group G, where G is the commutator subgroup
of π1(B

4 −∆)/ < d1, ..., dg > and di are the components of J .
Although it will be difficult for the reader to appreciate the implications of this

theorem (and we will not here explain all the terminology), note that instead of
the expected answer that J is trivial in the knot concordance group, the theorem
is saying that the concordance class of J is of the form (1 − t∗)(L) for some link
L. We also have a filtered version of the main theorem.

As one concrete application of our main theorem, we come close to resolving
the situation completely for the signature conjecture for genus one knots:
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Corollary Suppose that K admits a genus one Seifert surface, Σ, admitting a
derivative J (consequently ∆K(t)

.
= (mt − (m + 1)((m + 1)t − m). Suppose

m /∈ {0,−1}. Then:

1. If K is slice knot (or even a 2-solvable knot in the sense of Cochran-Orr-
Teichner), (and J is associated to a slice disk), then the Levine-Tristram
signature function of the (c, 1)-cable of J is of the form

T(m,1) # − T(m+1,1)

for some positive integer c and some knot T in a rational homology 3-
sphere;

2. conversely, if the algebraic concordance type of J satisfies

[J(c,1)] = [T(m,1)]− [T(m+1,1)]

for some c and some knot T in a homology 3-sphere, then K is a 1.5-
solvable knot.

We also give very strong results about the injectivity of certain winding number
zero satellite operators R : C → C.
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Ribbon tangles in the Kauffman bracket skein module

Michael Eisermann

The Fox–Milnor theorem of 1966 says that the Alexander polynomial of each slice
knot K ⊂ R3 factors as ∆(K) = P (t)P (t−1) for some P ∈ Z[t]. In particular the
determinant det(K) = ∆(K)t7→−1 is a square, whence det(K) ≡ 1 mod 8.

The Jones polynomial often provides more information but is difficult to in-
terpret geometrically. In this talk I have presented what little is known about
the Jones polynomial of ribbon links [1]: For every n–component ribbon link
L = L1 ∪ · · · ∪Ln in R3, the Jones polynomial V (L) is divisible by the polynomial
V (©n) of the n–component trivial link. This integrality property allows us to
define a generalized determinant det V (L) := [V (L)/V (©n)]t7→−1 and to prove
det(L) ≡ det(L1) · · · det(Ln) mod 32, whence det(L) ≡ 1 mod 8. This property
naturally extends to ribbon tangles in the Kauffman bracket skein module (work
in progress joint with Emmanuel Wagner, Dijon) and generalizes to the Homflypt
polynomial (at least partially; again this is still work in progress).

These algebraic obstructions are rather weak but suggest that there are more
geometric information to be extracted from generalizations of the Jones polynomial
such as the Homflypt polynomial or Khovanov homology.
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Invariants of homotopic classes of curves and graphs on 2-surfaces
(Towards a bridge between knots and groups)

Denis Alexandrovich Fedoseev

(joint work with Vassily Olegovich Manturov)

Finitely presented groups often appear as invariants of some objects in low-dimen-
sion topology: knots as well as their generalizations and modifications — virtual
knots, knots in 3-manifolds, etc. Flat knot is a simplification of the notion of
virtual knot. Flat knot is an equivalence class of homotopic classes of curves up
to stabilization. This object being an important source of virtual knots invariants
can be considered from both algebraic and geometric points of view. Homotopic
class of a curve on a surface can be given as a conjugation class of the funda-
mental group of the surface. Such objects have been long ago classified both
algebraically and geometrically [1, 2]. Moreover, they admit the structure of Lie
bialgebra (Goldman-Turaev, [3, 4]) of geometric nature. Topological study of such
object is closely related to knot theory methods: isotopy classes of curves are
equivalence classes of diagrams by Reidemeister moves, so it is possible to apply
knot-theoretical methods to the objects, considered algebraically. A natural ques-
tion arises: what other groups can be studied by the means of classical and virtual
knot theories and which “geometric structures” arise on such groups.

The central idea is to consider different generalizations of the following con-
struction originally done for a curve on a surface:

Theorem 1 (I.M. Nikonov). Let γ be a curve on a orientable closed 2-manifold
Sg allowing a source-sink structure such that the complement to γ is a union of
cells. Than

Gγ
∼= π1(Sg)/〈γ〉,

where 〈γ〉 denotes the normal closure of the homotopic class of the curve γ.

Here the group Gγ is defined via its presentation: the set of vertices is taken
as the generator set and relations are obtained from polygons on the surface —
every polygon formed by the curve’s arcs gives a relation in the form a1 . . . an = 1,
where ai are the vertices in a cyclic order induced by a compatible source-sink
structure on the curve.

The explored generalisations are the following theorems about invariant groups
for curves without a source-sink structure, for a set of curves on a surface and for
Θ−graphs.

First two theorems deal with the case of curves without a source-sink structure.
In that case two approaches are valid. For the first one we construct a two-fold
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covering Γ̃ of the original curve, which allows a source-sink structure and present
the invariant group G for the covering curve as before; the explicit description of
the covering can be found in [6]. That approach leads us to the

Theorem 2. Let there be a curve γ on a closed 2-surface M without a source-sink
structure. Then the representation of the group GΓ̃ is a homotopic invariant of
the curve γ.

Alternatively we can stick to the given curve, but improve the relations in the
group G: give every generator a power plus or minus 1 depending on whether the
vertex is compatible with a source-sink structure or not. To be more precise, we
attribute every vertex an arbitrary source-sink structure and fix the direction we
will walk along the polygons: clockwise or counterclockwise. Then for every vertex
ai in a polygon we write either ai or a

−1
i in the corresponding relation depending

on the compatibility of the chosen direction and the structure in the vertex. The
resulting group is called G± and the following theorem holds:

Theorem 3. Let γ be a curve on a closed 2-surface M without a source-sink
structure and the complement to the curve is a union of cells. Then

G±
γ
∼= π1(M)/〈γ〉,

where〈γ〉 means the normal closure of homotopic class of γ.

The following theorem generalises the ideas above t the case of several curves
on a surface:

Theorem 4. Let γ = γ1∪· · ·∪γk be a diagram of k curves which allows a source-
sink structure and breaks the surface into a union of cells ∆i. Then there is an
isomorphism

Gγ
∼= (π1(Sg)/〈γ1〉 . . . 〈γk〉) ∗ Z ∗ · · · ∗ Z

where 〈γi〉 means a normal closure of homotopic class of the curve γi and the
number of factors Z equals k − 1.

If the surface has boundary, we simply ignore all the polygons with holes inside.
Consequently we get

Theorem 5. Let γ be a closed curve of an oriented 2-surface M with or without
boundary. Let γ allow a source-sink structure. Then

Gγ
∼= π1(M)/〈γ〉,

where 〈γ〉 means normal closure of homotopic class of the curve and the group Gγ

is described before.

Finally, if we consider a θ−graph and construct a group for it similar to the
above-mentionedG± ignoring the 3-valent vertices in the process, we get an invari-
ant group once again. This case is especially important, since it allows to establish
a connection between geometric transformations and the most important Tietze
transformation in a particular case of groups with two relations.
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The structures considered above can be directly used in knot theory to construct
knot invariants. Recall that a knot in 3-sphere is an embedding of a circle into S3.
Knot diagram is such a projection of a knot onto a plane, that all the intersection
points (called crossings) are double and transversal and in every crossing there
is an additional structure designating which arc is upper and which — lower.
Two knot diagrams are called equivalent if they can be connected via a series of
transformations of the following list: trivial isotopy and three Reidemeister moves
Ω1,Ω2,Ω3. An equivalency class of diagrams is also called a knot.

A flat knot is an equivalency class of closed curves on a 2-surface M with all the
intersection points being double and transversal with respect to flat Reidemeister
moves. Unlike classical knots, upper and lower arcs are not distinguished in flat
knot crossings.

A link (flat link) is a disjoint sum of several knots (flat knots) with double
transversal intersection points.

The theorems proved in this work let us, on the one hand, use group methods
to study knots and, on the other hand, use well-known in knot theory structures
and theorems to study groups.

Among the structures which can be translated into group theory language there
is, for example, a bracket, introduced by one of the authors in the work [7]. This
object allows some minimality theorems to be proved. In particular, the bracket
properties (see [7]) and the above-proved theorems lead to the following statement:

Theorem 6. Let a diagram if some class of conjugacy of a curve on a surface be
odd and irreducible. Than every other diagram of this class contains this diagram
as a subdiagram.

Here irreducibility means the absence of lunes and odd means the cycle, ob-
tained from equivalency classes of opposite semiedges on the diagram, is odd.
Since every class of a curve on a surface has a corresponding group this theorem
at the same time is a statement about group structure.
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How to Draw a Knot

Roger Fenn

Despite the title this was a talk about immersions of a circle in the plane. Other
information such as over/under crossings etc can be added later. Other versions
are given in [1]. It was shown how an immersed circle in an oriented surface can
be coded by a permutation of the 2n numbers {1, 2, ..., 2n} and a function from
these numbers to a 2-element set {I, II}. From this information a permutation
of the 4n numbers {1, 2, ..., 4n} can be constructed and information from this
tells us whether the immersion exists and what the genus of the surface is. The
converse problem of actually drawing the immersion is provided by showing that
any triangulation of a disk can be realised as a straight line embedding with convex
boundary.[2].[3]. The metric information can be provided by a circle packing.[4]
but as was pointed out in the talk: the interior tends to shrink exponentially. This
aspect therefore needs further work.
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Singularization of knots and closed braids and new volume conjectures

Thomas Fiedler

We construct a combinatorial counter part of a not yet existing “embedded Kontse-
vich-like integral for 1-parameter families of long knots”. It is based on a method
of constructing non symmetric solutions of a global tetrahedron equation. These
solutions give rise to the first combinatorial 1-cocycle, called R1, with values in
the Z-module of refined singular long knots and which represents a non trivial
cohomology class in the topological moduli space of long knots. The evaluation of
the 1-cocycle R1 on Hatcher’s loop hat(K) for a long knot K and its expansion
by using the Kauffman-Vogel HOMFLYPT skein relations for singular knots leads
to the first quantum knot polynomial PR1(hat(K)) which is not multiplicative for
the connected sum of knots.

Each double point in R1(hat(K)) comes with a sign. We replace each positive
double point by a negative crossing and each negative double point by a positive
crossing. Let us call this the canonical resolution of R1(hat(K)). The result is an
integer combination of ordinary long knots and each invariant derived from this
combination of knots is an invariant of our original knot K. Moreover, we could
iterate our construction and apply R1(hat) to each of the new knots. The result
is the canonical wave of K in the space of all knots ∐KMK which starts from the
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given knot K. For example, R1(hat(5
+
2 )) consists of a single singular knot with a

negative double point. If we replace the double point by a negative crossing then
we get back of course our original knot 5+2 . But if we replace it by a positive
crossing then we obtain the knot 7+3 . Replacing the positive double points by
negative crossings for R1(hat(5

+
2 )) leads to a linear combination of the knots 01,

3+1 and 820 (with writhe w = +2 for a minimal diagram). The wave is contracting
(i.e. ends with the element 0) for all torus knots and for the knot 41 but it seems
very likely that it is expanding (i.e. contains knots with arbitrary high crossing
number) already starting from the knot 5+2 .

It is well known that the couple of Vassiliev invariants (v2(K), v3(K)) is a com-
plete invariant for torus knots (and it distinguishes also 41 from all torus knots).
A very optimistic conjecture would be that (v2, v3) evaluated on the canonical wave
of K (i.e. each iteration gives an unordered linear combination of couples (v2, v3))
is already a complete knot invariant.

It seems that the new invariant is closely related to the geometry of knots. For
example, R1(hat(K)) is identical 0 for all torus knots but it is not 0 in general.
Let us specify the quantum 1-cocycle invariant PR1(hat(K)) by z = v1/2 − v−1/2

as for the specialization of the HOMFLYPT polynomial to the Jones polynomial.
We forget about the signs of the double points. The embedded 1T-relation should
not change the invariant. This leads to the substitution A = v/(v1/2 + v−1/2) and
B = v−1/(v1/2 + v−1/2) in Kauffman-Vogel’s skein relations (compare Remark 2
in [1]).

Let us denote the resulting invariant for the connected sum of m ∈ N copies of K
by PK,m(v). It was shown in [1] that in general PR1(hat(♯mK)) is not determined
by PR1(hat(K)) together with m.

Conjecture 1 (alternative volume conjecture for knots). Let K be a knot. Then

lim
m→∞

log|1 + PK,m(e2πi/m)|/m = V ol(S3 \K)/2π,

where V ol(S3 \K) is the simplicial volume.

A variation of our combinatorial method produces universally defined combina-
torial 1-cocycles for all closed n-braids which are knots. Let β ∈ Bn be a pseudo-
Anosov braid which closes to a knot. Hatcher’s loop corresponds to the rotation of

the closed braid β̂ around the core of the solid torus V. We consider the quantum

invariant PR1(hat(β̂)) in the HOMFLYPT skein module of the solid torus, which

is obtained from R1(hat(β̂)) by applying the Kauffman-Vogel skein relations (here
we do not need to normalize because Reidemeister I moves do not appear in an
isotopy of closed braids and moreover we set for simplicity A = A+ = A− and
B = B+ = B−). Setting v = 1 and substituting z = t1/2 − t−1/2 we obtain an el-

ement ∆R1(hat(β̂)) in the Alexander skein module of the solid torus. Using skein

relations we express ∆R1(hat(β̂)) in the standard basis of the Alexander skein
module, namely the isotopy classes in V of all closed positive permutation braids.
Each closed permutation braid σ̂ is now replaced by its 2-variable Alexander poly-
nomial ∆σ̂∪L(u, t) = det(uId − Br

σ(t)). Here L = (0 × R) ∪∞ ⊂ S3 is the braid



1426 Oberwolfach Report 26/2014

axes and Br
σ(t) is the reduced Burau matrix for σ. (The variable u corresponds

to the meridian of L and the variable t corresponds to the meridian of σ̂.) The

result of the substitution ∆R1(hat(β̂))(A,B, t, u), with A−B = t1/2 − t−1/2, is a
Laurent polynomial in t1/2 and a polynomial in u of degree n − 1. We specialize
the invariant by t = −1 and by the magic relation A + B = 1. The result is a

polynomial in u of degree n− 1 which we denote shortly by ∆R1(hat(β̂))(u). Let

uβ denote the zero of ∆R1(hat(β̂))(u) with the greatest absolute value.
The entropy h(β) of a pseudo-Anosov braid is known to be equal to log(λβ),

where λβ > 1 is the stretching factor of one of the two transverse invariant mea-
sured foliations associated to β.

Conjecture 2 (entropy conjecture for pseudo-Anosov braids). Let β be a pseudo-
Anosov n-braid which closes to a knot. Then

lim
m→∞

log|uβmn+1|/(mn+ 1) = h(β).

Moreover, if the associated invariant measured foliation is transverse orientable
then already log |uβ | = h(β).

The conjecture is true for the 3-braid β = σ1σ
−1
2 and for the 4-braid β =

σ1σ2σ
−1
3 we obtain already for m = 0 that |uβ|/λβ = 1.00143....

It would be extremely interesting to have computer programs in order to cal-

culate PR1(hat(K)) and PR1(hat(β̂)) for more examples.
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Left-orderability and cyclic branched covers

Cameron Gordon

(joint work with Tye Lidman)

The left-orderability of the fundamental group of a 3-manifold M is related to
the existence of taut foliations on M and also to the Heegaard Floer homology of
M . In fact, for a prime rational homology 3-sphere M , it is conceivable that the
following are equivalent:

(1) π1(M) is left-orderable
(2) M has a co-orientable taut foliation
(3) M is not an L-space.
It is known that (2) implies (3) [4], and that all three conditions are equivalent

when M is a Seifert fibered space. The equivalence of (1) and (3) was explicitly
conjectured in [1]. In the absence of a proof of the equivalence of (1), (2) and (3)
in general, we say that a 3-manifold M is excellent if M has a co-orientable taut
foliation and π1(M) is left-orderable, and is a total L-space if it is an L-space
and π1(M) is not left-orderable.
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The talk focused on the case where M is of the form Σn(K), the n-fold cyclic
branched covering of a knot K in the 3-sphere, n > 1.

For example, if K is a 2-bridge knot then Σ2(K) is a lens space, and hence a
total L-space. More generally, if K is alternating then Σ2(K) is an L-space [5]
and π1(Σ2(K)) is not left-orderable [1], so again Σ2(K) is a total L-space. We
described various known results on Σn(K) for K a 2-bridge knot and n > 2. In
some cases, Σn(K) is a total L-space for all n, while in others it is known that
π1(Σn(K)) is left-orderable for all sufficiently large n [2] but not left-orderable for
some small values of n. There are also examples where we are able to show that
Σn(K) is excellent. To completely describe what happens for all 2-bridge knots is
an interesting open problem.

Other classes of knots that we studied are torus knots, cable knots, Whitehead
doubles, and pretzel knots.

For a torus knot K, Σn(K) is a Seifert fibered space, and there we used the
results of Eisenbud, Hirsch, Jankins, Naimi and Neumann characterizing the ex-
istence of horizontal foliations on Seifert fibered spaces to show that Σn(K) is
excellent if π1(Σn(K)) is infinite (and a total L-space otherwise).

For the (p, q)-cable Cp,q(K) of a knot K, we showed that Σn(Cp,q(K)) is excel-
lent unless n = q = 2. When n = q = 2 there are examples where the manifold is
excellent and also examples where it is a total L-space.

An important ingredient of the proof of the result for cables is a recent theorem
of Li and Roberts [3] stating that for any non-trivial knot K there is an interval
(−a, b), a, b > 0, such that for any slope α ∈ (−a, b), there is a co-orientable taut
foliation on the exterior of K which meets the boundary in the foliation by circles
of slope α. Moreover, they conjecture that this interval always contains (−1, 1).

The untwisted Whitehead double of a knot K, Wh(K), has trivial Alexander
polynomial, and so it follows that Σn(Wh(K)) is an integral homology sphere for
all n. Now it seems to be rare for an integral homology sphere to be an L-space:
the only known examples are S3 and connected sums of the Poincaré homology
sphere. It is to be expected, therefore, that Σn(Wh(K)) should be excellent. We
showed that this is true for n = 2. It follows that π1(Σn(Wh(K))) is left-orderable
for all even n, and we showed further that this is also true for odd n provided the
Li-Roberts Conjecture holds for K.

Teragaito recently showed [6] that the 3-fold cyclic branched cover of the (p, q, r)-
pretzel knot, where p, q, r are odd and > 1, is an L-space. We showed that its
fundamental group is not left-orderable, so it is a total L-space.
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The Geometry of the Knot Concordance Space

Shelly Harvey

(joint work with Tim D. Cochran)

Most of the 50-year history of the study of the set of (smooth) knot concordance
classes, C, has focused on its structure as an abelian group. Here we take a different
approach, namely we study C as a metric space admitting many natural geometric
operators, especially satellite operators.

We consider two different norms and their induced metrics on C, which are de-
fined as follows. ForK ∈ C, ‖K‖s, the slice genus, is the minimum g such that K is
the boundary of a smoothly embedded compact oriented surface of genus g in B4.
The homology norm, ‖K‖H , is defined as the minimum of 1

2 (β2(V )+|σ(V )|) where
V ranges over all smooth, oriented, compact, simply-connected 4-manifolds with
∂V = S3 in which K is slice, that is, in which K bounds a smoothly embedded
disk that represents 0 in H2(V, ∂V ). The slice and homology metrics are defined as
ds(K, J) = ‖K−J‖s and dH(K, J) = ‖K−J‖H. We note that the homology norm
(respectively metric) is only a pseudo norm (respectively pseudo metric). More-
over, dH will be an honest metric if the smooth 4-dimensional Poincare conjecture
is true.

We first consider the geometry of the spaces. We establish the existence of
quasi-n-flats for every n, which implies that C (with either metric) admits no quasi-
isometric embedding into a finite product of (Gromov) hyperbolic spaces. We then
show that the geometries (even the coarse geometries) of (C, ds) and (C, dH) are
very different. Specifically, we show that the identity map i : (C, ds) → (C, dH) is
not a quasi-isometry.

We then fix a metric space (C, d∗) where ∗ = s or H and consider various
natural satellite operators acting on this space. We show that every satellite
operator P : (C, d∗) → (C, d∗) is within a bounded distance of a “simple” satellite
operator, the (n, 1)-cable, Cn,1, where n is the (algebraic) winding number of
P . This implies, for example, that winding number ±1 operators induce quasi-
isometries and winding number zero operators are quasi-contractions (with either
metric). Moreover, when P is a strong winding number ±1 operator, we can
prove a much stronger result. We show that if P is a strong winding number
±1 operator then P : (C, dH) → (C, dH) preserves the pseudo-norm dH and is
quasi-surjective; so that if the smooth 4-dimensional Poincaré conjecture is true
then P is an isometric embedding of (C, dH) that is quasi-surjective! These results
contribute to the suggestion that C is a fractal space.
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Graph-links: polynomial and quantum invariants

Denis P. Ilyutko

(joint work with Vassily Olegovich Manturov)

It is well known that classical knots can be represented by Gauss diagrams (chord
diagrams with some framings), and the whole information about the knot and its
invariants can be read out of any Gauss diagram encoding it. Whenever a chord
diagram is not a Gauss diagram of any classical knot, one gets a virtual knot,
where generic immersion points of intersections of edges of the knot are encircled.

It turns out that some information about the knot can be obtained from a more
combinatorial data: the intersection graph of a Gauss diagram. The intersection
graph is a graph without loops and multiple edges, whose vertices are in one-to-one
correspondence with chords of the Gauss diagram. Two vertices of the intersection
graph are adjacent whenever the corresponding chords of the Gauss diagram are
linked, see Fig. 1. Each vertex of the intersection graph is endowed with the local
writhe number of the corresponding crossing.

However, sometimes a chord diagram can be obtained from the intersection
graph in a non-unique way, and some graphs (shown in Fig. 2) cannot be repre-
sented by chord diagrams at all.

Likewise virtual knots appear out of non-realizable chord diagram and thus gen-
eralize classical knots (which have realizable chord diagrams), graphs-links come
out of intersection graphs: We may consider graphs which are realized by chord
diagrams, and, in turn, by virtual links, and pass to arbitrary simple graphs which
correspond to some mysterious objects generalizing links and virtual links.

Traldi and Zulli [10] constructed a self-contained theory of “non-realizable
knots” (the theory of looped interlacement graphs) possessing lots of interesting
knot theoretic properties by using Gauss diagrams. These objects are equivalence
classes of (decorated) graphs modulo “Reidemeister moves”.

The author and V.O. Manturov suggested another way of looking at knots and
links and generalizing them (the theory of graph-links): whence a Gauss diagram
corresponds to a transverse passage along a knot, one may consider a rotating cir-
cuit which never goes straight and always turns right or left at a classical crossing.
One can also encode the type of smoothing (Kauffman’s A-smoothing or Kauff-
man’s B-smoothing) corresponding to the crossing where the circuit turns right
or left and never goes straight, see Fig. 3. We note that chords of diagrams are
naturally split into two sets: those corresponding to crossings where two oppo-
site directions correspond to emanating edges with respect to the circuit and the
other two correspond to incoming edges, and those where we have two consecutive
(opposite) edges one of which is incoming and the other one is emanating.

After the two theories were constructed, some questions arose. The first ques-
tion is whether or not every graph is Reidemeister equivalent (each theory has
own Reidemeister moves) to an intersection graph of a virtual knot diagram. The
second question is related to the existence of an equivalence between two theories.
Other questions concern invariants and classifications of graph-links.
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Figure 1. A Gauss diagram and its labeled intersection graph

Figure 2. Non-realizable Bouchet graphs
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Figure 3. Rotating circuit shown by a thick line; chord diagram

The first question was resolved for graph-knots by using parity theory intro-
duced by Manturov in [7] and for graph-links by the author in [5]. The equiv-
alence of the two theories (the theory of looped interlacement graphs and the
theory of graph-knots) was proved in [1]. Also, some invariants were constructed,
see [2, 3, 4, 5, 9, 10].

It turns out that if we forget about the writhe number information for a link
and only have the structure of opposite edges, we shall get non-trivial objects
(modulo Reidemeister moves). Analogously we can construct the theory of free
graph-links: At each vertex we have only one label.

In [8] V.O. Manturov constructed an invariant for free links, which is analogous
to Kuperberg’s quantum invariant [6]. By using this invariant V.O. Manturov gave
a classification of free links without triangles. Applying that construction to the
theory of free graph-links we can construct an invariant of free graph-links which
will help us classify free graph-links without “triangles”.
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Towards a Rasmussen Invariant for Virtual Knot Cobordisms

Aaron Kaestner

(joint work with Heather A. Dye, Louis H. Kauffman)

In this talk we gave an alternate formulation for the Manturov definition [8] of
Khovanov Homology [4] [5] for virtual knots and links with arbitrary coefficients.
This approached used cut loci on the knot diagram to induce a conjugation op-
erator in the Frobenius algebra. We then discussed the implications of the maps
induced in the aforementioned theory to the universal Frobenius algebra [6] and
noted that for virtual knots the universal Frobenius algebra corresponds to the
generalization of Lee’s Algebra introduced by Bar-Natan [1]. Next we discussed
how one can apply the Karoubi envelope approach of Bar-Natan and Morrison
[2] on abstract link diagrams [3] with cross cuts to construct the canonical gen-
erators of the Khovanov-Lee Homology [7]. Using these generators we derived a
generalization of the Rasmussen invariant [9] for virtual knot cobordisms.
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Virtual Knot Theory and Virtual Knot Cobordism

Louis H. Kauffman

This talk reviews the definition of virtual knots, bracket polynomial, arrow poly-
nomial and affine index polynomial [1, 2, 3, 4]. Then the talk defines virtual
knot cobordism [5] as a combination of virtual isotopy, births of unknotted circles,
deaths of unknotted circles and saddle transformations. See [6] for a theory of
cobordism for free knots. Each cobordism from K to K ′ describes an abstract
orientable surface S whose boundary is the union of K and K ′. We call the genus
g of the cobordism the genus of this surface S. We give a non-trivial example of a
virtual slice knot (the virtual stevedore’s knot) and show that it is non-classical
by using the invariants reviewed at the beginning of the talk. We define two
virtual knots to be concordant if there is a genus zero cobordism between them.
A knot is slice if it is concordant to the unknot. This is equivalent to saying
that it is slice if it is concordant to the empty knot (since an unknot bounds a
disk). We say that a virtual knot is ribbon if it is concordant to the unknot via
only deaths and saddles. The virtual stevedore is an example of a virtual ribbon
knot. In general, any virtual knot is cobordant to the empty knot and so there
is a least genus cobordism for that virtual knot. We define g4(K) to be the least
such genus, and we call this the four-ball genus of K. We continue by raising the
problem of band-pass equivalence for virtual knots (generalizing classical band
passing for classical knots). Classical knots fall into two pass classes according
to their Arf invariants. At this writing there is no known classification for the
pass classes of virtual knots. Finally, we generalize the middle-level diagrams for
classcial surfaces in four-space to virtual middle-level diagrams and we generalize
the Yoshikawa moves [7] for such diagrams to the virtual case. At this writing it
is not known if the isotopy relations generated by these new Yoshikawa moves are
the same as generalized Roseman moves [8] for surface immersion diagrams for
virtual embeddings into four-space. Slides corresponding to this talk are available
at < http : //dl.dropbox.com/u/11067256/V irtualKnotCobordism.pdf > .
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On the structure of Takasaki quandles

Seongjeong Kim

(joint work with Y.Bae)

A Takasaki quandle (T (G), ∗) is a quandle defined on an abelian group G with the
binary operation ∗ defined by a ∗ b = 2b− a. Since a Takasaki quandle is derived
from an abelian group, its algebraic structure depends on the underlying abelian
group.

Lemma 1. A Takasaki quandle (T (G), ∗) is connected if and only if 2G = G.
Lemma 2. Let (T (G), ∗) be the Takasaki quandle of an abelian group (G,+).

If X is a subgroup of G, then X is a subquandle of (T (G), ∗).
From the above lemma, we can expect that subgroups of G affect the quotient

quandle of a Takasaki quandle. We can see the following statements;
Lemma 3. Let (T (G), ∗) be the Takasaki quandle of an abelian group (G,+)

and Y a subquandle of T (G). If there is a quandle automorphism f of T (G) and
a subgroup X of G such that Y = f(X), then, for a, b ∈ G, either

(Y ∗ a) ∩ (Y ∗ b) = ∅ or Y ∗ a = Y ∗ b.

Moreover, if (T (G), ∗) is a connected quandle, then the converse is also true.
Theorem 1. Let (T (G), ∗) be the Takasaki quandle of an abelian group (G,+)

and X a subgroup of G. Let f : T (G) → T (G) be a quandle automorphism and
Y = f(X). Define a binary operation ∗′ on {Y ∗ a}a∈G by

(Y ∗ a) ∗′ (Y ∗ b) = Y ∗ (a ∗ b)

Then ({Y ∗ a}a∈G, ∗
′) is a quandle. In fact, ({Y ∗ a}a∈G, ∗

′) is isomorphic to
T (2(G/X)) as a quandle. Denote {Y ∗ a}a∈G by T (G)/Y .

Moreover, if T (G) is connected, then (T (G)/Y, ∗′) is isomorphic to T (G/X).
That is, for a connected Takasaki quandle T (G), quotient quandle of T (G) and
quotient group of G are closely related.
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On algebraic, PL and Fourier degrees of knots and braids

Stephan Klaus

By a theorem of Alexander, an embedded torus T ⊂ R3 bounds a solid torus
S1×D2 on the one side or the other. Thus, isotopy classes of embeddings of a torus
T 2 in R3 correspond bijectively to isotopy classes of knots. The correspondence
from knots to torus embeddings is given by the boundary of a tubular neighborhood
around a knot.

Torus embeddings can also be constructed as affine real algebraic varieties, i.e.
as the set of zeros of a real polynomial p(x, y, z). For example, the standard
embedding of a torus, which corresponds to the unknot, is defined by rotation of
a circle around the z-axis, where the circle in the (x, z)-plane has radius b and
center (a, 0, 0). It is well-known that this embedding is given by the polynomial
(x2 + y2 + z2 + a2 − b2)2 − 4a2(x2 + y2) of degree 4.

We give below a simple proof that every knot type can be represented by an
affine real algebraic torus embedding, i.e. by a suitable polynomial p(x, y, z).
Hence we can define the algebraic degree a-deg(K) of a knot K as the minimal
degree of a polynomial which represents K.

In [4] we have constructed the following polynomial of degree 14 which repre-
sents the trefoil knot 31 = T2,3:

p2,3(x, y, z) := (−8(x2 + y2)2(x2 + y2 + 1 + z2 + a2 − b2)

+4a2(2(x2 + y2)2 − (x3 − 3xy2)(x2 + y2 + 1)) + 8a2(3x2y − y3)z

+4a2(x3 − 3xy2)z2)2 − (x2 + y2)(2(x2 + y2)(x2 + y2 + 1 + z2 + a2 − b2)2

+8(x2 + y2)2 + 4a2(2(x3 − 3xy2)− (x2 + y2)(x2 + y2 + 1))

−8a2(3x2y − y3)z − 4(x2 + y2)a2z2)2 − 0.0001

This yields a-deg(T2,3) ≤ 14. The method of construction works by a suitable
parametrization of two separate circles in the (x, z)-plane which rotate around
their center of mass and at the same time rotate around the z-axes. Here the first
rotation velocity has to be 3/2 times faster than the second one. Algebraic variable
elimination of the rotation parameters yields the above polynomial. Details can
be found in [4].

In [5] we have generalized this method to all torus knots Tp,q with p and q
coprime by the construction of polynomials Pp,q of degree 4p + 2q. Hence this
yields an upper bound for a-deg(Tp,q).

Now we recall the minimal stick number which we also call the minimal
PL-degree of a knot K. PL-deg(K) is defind as a the minimal number of line
segments necessary to represent the knot as a PL-knot.

Theorem: [6] Any knot K can be represented by an affine real algebraic torus
and it holds a-deg(K) ≤ 2PL-deg(K).

The proof is quite simple: Replace each line segment Li in a PL-representation of
K by a small ellipsoid Ei around Li such that the ellipsoids of consecutive line
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segments are touching. Each Ei is given by a quadratic polynomial pi(x, y, z)
such that pi takes negative values inside Ei. Hence the product polynomial
p(x, y, z) :=

∏
i pi(x, y, z) gives the union of ellipsoids which is an affine algebraic

variety V with singularities at the touching points of the ellipsoids. By construc-
tion, p is negative in the inner part of the elipsoids, i.e. inside of V , and positive
outside of V . Hence the polynomial q(x, y, z) := p(x, y, z)−a gives for small a > 0
a resolution of the singularities of V such that the new affine algebraic variety is
a torus embedding. If the PL-representation has s line segments (sticks), then the
degree of the polynomial q is 2s, which proves the statement on a-deg and PL-deg.

The following facts on PL-deg are known:

• A knot with PL-deg(K) < 6 is the unknot O which has PL-deg(O) = 3.
• It holds PL-deg(31) = 6 (trefoil knot) and PL-deg(41) = 7 (figure eight
knot).

• For the torus knots it holds PL-deg(Tp,q) ≤ 2p if 2 ≤ p < q ≤ 2p by a
result of Jin [2].

It follows that a-deg(31) ≤ 12, hence the algebraic representation of degree 14
given above is not optimal. The upper bound for torus knots in [5] is also not
optimal in case of 2 ≤ p < q ≤ 2p by the result of Jin.

Now we recall the definition of the Fourier degree of a knot which was given by
Trautwein [8] and Kauffman [3]. As the embedding S1 → R3 is a vector-valued
periodic function, it has a Fourier representation. Up to isotopy, it can be given
as a finite Fourier sum f . We call the highest frequency the degree of f . Then the
Fourier degree F-deg(K) is defined as the minimal degree which is necessary to
represent K up to isotopy by a finite Fourier sum.

The following facts on F-deg are known [8], [3]:

• A knot with F-deg(K) < 3 is the unknot O which has PL-deg(O) = 1.
• It holds F-deg(31) = F-deg(41) = 3.
• There is a lower bound which is given by the super bridge number sb(K)
and it holds b(K) < sb(K) ≤F-deg(K) [8].

• For torus knots it holds F-deg(Tp,q) ≤ p+ q by the standard parametriza-
tion.

In [6] we have proved the following relation between algebraic and Fourier de-
gree:

Theorem: [6] It holds a-deg(K) ≤ 12F-deg(K) for any knot.

The proof works by an algebraic construction of the tubular neighborhood around
a knot K which is given as a finite Fourier series:

K(t) = p(c, s), c := cos(2πt), s := sin(2πt)

and p(c, s) denotes three polynomials for the vector components of k(t). Now the
tube of radius r around K is given by the algebraic equations

|(x, y, z)− p(c, s)|2 = r2 and 〈(x, y, z),−∂1p(c, s)s+ ∂2p(c, s)c〉 = 0
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As a next step of the proof we eliminate the variables c and s using c2 + s2 = 1.
The algebraic elimination of s can be carried out explicitely and for the remaining
variable c we use the Sylvester determinant for the resolvent. Degree counting
then gives the factor 12 which is probably not an optimal bound. Additionally,
the theorem gives a second proof that each knot can be realized by an algebraic
torus embedding. Details can be found in [6].

Open question: It would be very interesting to have also inequalities in the
other direction between these degrees. In particular, it seems to be an open
problem to compute the minimum/maximum of the three quotients which can
be formed by a-deg(K), PL-deg(K) and F-deg(K). Moreover, do the limits of
these quotients exist, e.g. if the crossing number of K tends to infinity?

Now we consider the Fourier degree also for braids. Here we interchange freely
between periodic functions (f(t+1) = f(t)) and functions g(z) defined on the unit
circle z ∈ S1 ⊂ C by z = exp(2πit) and g(z) = f(t). This gives the well-known
translation between finite Fourier sums f(t) and Laurent polynomials g(z).

An n-braid β has a link closure β̂ which is a knot if and only if the associated
permutation σβ of β is an n-cycle. We call such a braid a cyclic braid. Each
strand of β can be considered as a mapping from [0, 1] to C. If the braid is cyclic,
we can concatenate its n strands in their consecutive order given by σβ and then
we obtain a periodic function (after increasing velocity by the factor n)

βu : S1 → C.

We call βu the unfolding of the cyclic braid β. In this way we obtain a home-
omorphism between the space CBn of cyclic n-braids and the following space of
periodic functions

UBn := {g : S1 → C | ∆n
g (z) 6= 0}

∆n
g (z) :=

⌊n/2⌋∏

i=1

(g(ǫiz)− g(z))

where ǫ := exp(2πi/n) is the primitive n-th root of unity. The nonvanishing
condition for the product is equivalent to the condition that different strands do
not intersect. By multiplication of z with a suitable z′ ∈ S1, the non-intersection
condition between the j-th and k-th strands can be shifted to the non-intersection
condition of the (j − k)-th strand and the zeroth strand. This is the reason that
the definition of the n-th discriminant ∆n

g (z) of g only contains ⌊n/2⌋ factors
(largest integer smaller than n/2).

Note that the set of path components π0(UBn) is a set of free (non-based)
homotopy classes and thus is in bijection to the subset of conjugacy classes in the
braid group Brn which are formed by cyclic braids.

Now we are able to define the Fourier degree F-deg(β) of a cyclic n-braid β
as the minimal degree which is necessary to find a representative g(z) in UBn by
a finite Fourier sum (Laurent polynomial).
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Theorem: [6] For a cyclic n-braid β and its knot closure β̂ it holds F-deg(β̂) ≤
F-deg(β) + n.

This follows at once from the fact that the knot closure of β can be given in
terms of its unfolded function g(z) as

β̂(t) =

(
cos(2πnt)(1 +

1

2r
Re(g(z))), sin(2πnt)(1 +

1

2r
Re(g(z))),

1

2r
Im(g(z))

)

where z = exp(2πit) and r := max{|g(z)| | z ∈ S1} is the maximal elongation of
g(z).

Note that the bridge number of β̂ is equal or smaller than the number n of
strands which together with the result of Trautwein suggests that F-deg(β) repre-
sents the reduced part of the Fourier degree of a knot.

The unfoldings g(z) allow algebraic manipulations which we summarize in a
dictionary:

unfolded function g(z) knot closure β̂
a+ g(z) toroidal translation
ag(z) toroidal rotation/dilatation
ḡ(z mirror knot
g(z̄) inverse knot (time reversal)

g(uz), u ∈ S1 rotation around z-axis
zng(z) Dehn twist

Unfortunately, concatenation of braids and Markov stabilization seem to have no
simple algebraic counterpart for g(z).

Note that each non-zero Laurent-polynomial G(z) can be uniquely written as
G(z) = zmp(z) with m ∈ Z and p(z) a polynomial satisfying p(0) 6= 0. Then the
condition G(z) 6= 0 on S1 means that all zeros of p(z) lie in the complement of
the untit circle. This applies in particular to the discriminant. The discriminant
set

V := {g(z) | ∆n
g (z) has a zero on S1}

has an interesting algebraic filtration V1 ⊂ V2 ⊂ . . . by Laurent/Fourier degree of
g. This suggests that it should be possible to apply Vassiliv’s method to construct
a spectral sequence where the initial term is related to the Laurent/Fourier degree.
It would be interesting to obtain in this way a better algebraic and topological
understanding of the space of polynomials whose n-th discriminant does not vanish
on S1.

As a generalization, there is also a modification of unfolded cyclic braids which
leads to an algebraic model for knots in a full torus or in a thickened torus.
The condition that a braid β is in the complement of a fixed constant strand z = a
can be implemented algebraically by the condition (g(z) − a)∆n

g (z) 6= 0 on S1.
More generally, braids avoiding m fixed constant strands in ai can be described
by the condition

(g(z)− a1)(g(z)− a2) · · · (g(z)− am)∆n
g (z) 6= 0
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on S1. For example, we can choose the am to be the m-th roots of unity and this
gives (g(z)m − 1)∆n

g (z) 6= 0. This gives a space of unfolded functions which is
related to the relative braid group Brm,n, see Lambropoulou [7]. By the closure
operation we obtain an algebraic model for knots in the complement of the trivial
m-link. In the case m = 1, this complement is homeomorphic to the (open) full
torus S1 ×D2. As the Hopf link can be represented by the Hopf 2-braid with the
strands 0 and z, we furthermore obtain an algebraic description of cyclic n-braids
avoiding the Hopf braid:

g(z)(g(z)− zn)∆n
g (z) 6= 0

on S1. Here we have to replace z by zn as each of the n strands has to be disjoint
from the Hopf strand z. This condition is equivalent to g(z) 6= zn on S1. In this
case, the closure operation leads to knots in the complement of the Hopf link which
is homeomorphic to the (open) thickened torus S1 × S1 ×D1.
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Topological Surgery and Dynamics

Sofia Lambropoulou

(joint work with Stathis Antoniou, Nikola Samardzija, Ioannis Diamantis)

0.1. An n-dimensional topological surgery on an n-manifold M is, roughly, the
topological procedure whereby an appropriate n-manifold with boundary is re-
moved from M and is replaced by another n-manifold with the same boundary,
using a ‘gluing’ homeomorphism, thus creating a new n-manifold χ(M) (not nec-
essarily different from the starting one).

0.2. Surgery in Nature and its dynamics. (with Stathis Antoniou and Nikola
Samardzija [1])

Apart from just being a formal topological procedure, topological surgery ap-
pears in nature in numerous and diverse processes of various scales for ensuring
new results. Such processes are initiated by attracting or repelling forces between
two points, or ‘poles’, which seem to be joined by some ‘invisible thread’.

In order to model topologically such phenomena, in [1] we introduce dynamics
in 1-, 2- and 3-dimensional topological surgery, by means of attracting or repelling
forces between two selected points in the manifold. We also introduce the notions
of solid 1- and 2-dimensional topological surgery, and of truncated 1-, 2- and 3-
dimensional topological surgery, which are more appropriate for modelling natural
processes. As representative examples we will give the definitions of attracting
solid 2-dimensional surgery and attracting truncated 3-dimensional surgery:

Definition 1. Start with the 3-ball of radius 1 with polar layering:

D3 = ∪0<r≤1S
2
r ∪ {C},

where r the radius of a 2-sphere and C the limit point of the spheres, that is, the
center of the ball. Attracting solid 2-dimensional surgery on D3 is the topological
procedure where: on all spheres S2

r colinear pairs of antipodal points are specified,
on which the same colinear attracting forces act, see Figure 1. Then attracting
2-dimensional surgeries are performed on the whole continuum of the concentric
spheres using the same homeomorphism h. Attracting 2-dimensional surgery on
the limit point C is defined to be the limit circle of the nested tori resulting
from the continuum of 2-dimensional surgeries. The process is the same as first
removing the center C from D3, performing the 2-dimensional surgeries and then
taking the closure of the resulting space. Namely we obtain:

χ(D3) := ∪0<r≤1χ(S
2
r ) ∪ χ(C),

which is a solid torus.

Definition 2. Consider two points in 3-space, surrounded by spherical neighbour-
hoods, say B1 and B2 and assume that on these points strong attracting forces
act. View Figure 2. As a result, a ‘joining thread’, say L, is created between the
two points and ‘drilling’ along L is initiated. The joining arc L is seen as part of
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Figure 1. Attracting solid 2-dimensional surgery.
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Figure 2. Attracting truncated 3-dimensional surgery.

a simple closed curve l passing by the point at infinity. This is the surgery curve.
Further, the two 3-balls B1 and B2 together with the space in between make up
a solid cylinder, the ‘cork’. Let V1 be a solid torus, which filled by the cork gives
rise to a 3-ball D3, such that the centers of the two balls B1 and B2 lie on its
boundary. The process of 3-dimensional surgery restricted in D3 shall be called
attracting truncated 3-dimensional surgery.

To address some examples of natural phenomena exhibiting surgery: 1-dimen-
sional surgery happens in DNA recombination and in the magnetic reconnection.
Attracting 2-dimensional surgery is exhibited in the formation of whirls, in the
Falaco solitons and in the gene transfer in bacteria. Repelling 2-dimensional sur-
gery is exhibited in bubble blowing and in the cell mitosis. Finally, 3-dimensional
surgery can be observed in the formation of tornadoes and in an electromagnetic
field excited by a current loop.

On the theoretical level, these new notions allow one to visualize 3-dimensional
surgery and to connect surgeries in different dimensions [1]. Our work is inspired
by our connection of 3-dimensional topological surgery with a dynamical system
(work in progress). Then, on one hand we will have a mathematical model for
3-dimensional surgery. On the other hand, through our connection many natural
phenomena can be modelled through our dynamical system. For details see [1]
and references therein.

0.3. The examples of 3-dimensional surgery above seem to exhibit p/q-rational
surgery along the unknot, which, starting from S3, results in the lens space L(p, q)
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Figure 3. 3-dimensional surgery along l.

Figure 4. A Q-band move.

(see Figure 3). Topologically speaking, a specified (p, q)-torus knot on a tubular
neighbourhood of the surgery curve l before, now bounds a disc in L(p, q). So, if
a piece of arc approaches the surgery curve l, it will have to follow in parallel the
(p, q)-torus knot.

0.4. Braid Equivalence for Rational Surgery. (with Ioannis Diamantis [2])
Studying the knot theory of a c.c.o. 3-manifold gives information about the

3-manifold. Further, there are c.c.o. 3-manifolds which have simpler description
when obtained from S3 by rational surgery instead of integral surgery. Even more
so, there are whole (infinite) families of 3-manifolds described by rational surgery
along the same link. Representative examples are the lens spaces L(p, q), the
homology spheres obtained by rational surgery 1/n along the trefoil knot, the
Seifert manifolds, and manifolds obtained by surgery along torus knots.

In [2] we provide mixed braid equivalence, geometric as well as algebraic, for
isotopic oriented links in a c.c.o. 3-manifold M obtained by rational surgery along
a framed link in S3. Our results are based on earlier results by Lambropoulou
and Rourke for 3-manifolds with integral surgery description. More precisely, we
first prove a sharpened version of the Reidemeister theorem for links in M , see
Figure 4. We then give geometric formulations of the braid equivalence via mixed
braids in S3 using the L-moves and the Q-braid band moves, see Figure 5.
We finally give algebraic formulations in terms of the mixed braid groups Bm,n us-
ing cabling, and the techniques of parting and combing for mixed braids developed
in earlier work of Lambropoulou and Rourke, see Figure 6.
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Figure 5. A Q-braid band move locally.

Figure 6. Parting and combing a geometric mixed braid.

Our result for L(p, q) is then applied for computing the Homflypt skein module
of L(p, q) via the braid approach, after an appropriate change of basis of the
Homflypt skein module of the solid torus (work in progress).

Our algebraic equivalences set a homogeneous ground for the algebraic braid
equivalences for link isotopy in families of 3-manifolds. We provide concrete for-
muli of the braid equivalences in lens spaces, Seifert manifolds, homology spheres
obtained from the trefoil and manifolds obtained from torus knots. The algebraic
classification of links in a 3-manifold via mixed braids is a useful tool for studying
skein modules of 3-manifolds and of families of 3-manifolds. For details see [2] and
references therein.
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K= K’=

Smoothing

Figure 1. An odd irreducible diagram K is a subdiagram of a
diagram K ′ equivalent to it

New Parities and Cobordisms in Low-Dimensional Topology

Vassily Olegovich Manturov

The talk deals with the notion of parity. Knots and virtual knots are encoded
by diagrams modulo moves. Diagrams contain crossings which are connected by
arcs. It turns out that if there is a natural way to distinguish between even and
odd crossings that behave well under the moves, then there are easy ways to prove
minimality theorems in a strong sense, construct various functorial mappings,
enhance many new invariants etc.

What is a parity? There is a natural parity calledGaussian: If a knot diagram
K is encoded by a Gauß diagram G(K) then every crossing k corresponds to a
chord c(k); the crossing k and the chord c are called even if c(k) is linked with
evenly many chords and odd otherwise.

A Gauß diagram is even if all chords of it are even. It was noted by Gauß that
Gauß diagrams of plane curves (and hence, classical knots) are all even.

However, classical crossings of virtual knots can be both even and odd (note
that for virtual knot diagrams, chords on chord diagrams correspond to classical
crossings, only). Moreover, the existence of odd crossings yields non-triviality of
a diagram in a crucial sense.

Theorem 1. [10] If a (virtual) knot diagram K is odd and irreducible then
every diagram K ′ equivalent to K contains K as a smoothing.

Here oddness of K means that all crossings of K are odd, and irreducibility
means that there is no way to apply a (flattened version of the) second decreasing
Reidemeister move to K.

View Fig. 1.
Here we illustrate how Theorem 1 works in one turn: after performing a second

Reidemeister move to K, we get K ′, and we can see K “inside” it.
Certainly, this Theorem has lots of consequences which allow one to make many

important conclusions about any diagram of a virtual knot by looking at just one
diagram of it, thus reducing properties of knots to properties of their diagrams.

In particular, this allowed the author to prove first the folloiwng
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Theorem 2. [13] There exists a family of virtual knots Kn such that the
minimal virtual crossing number of Kn grows quadratically with respect to the
number of classical crossings of Kn.

Are there any other parities?
Theorem 1 uses simple axioms of the notion of parity. In fact, there is a general

notion of parity such that all theorems can be formulated for any parity. Certainly,
the notion of odd diagrams will depend on the type of parity one chooses.

Here we just mention two parites.
The component parity. For 2-component links, mixed crossings are odd and

pure crossings (belonging to one component) are even.
The homology parity. When considering knots K in a thickened surface

Sg × I, take a cohomology class h such that h(K) = 0 ∈ H1(Sg × I,Z2). Then for
every crossing c of K, we have two “halves” of the knot which can be thought of
as cycles in H1(Sg,Z2). Taking the parity for c to be the evaluation of h on any
of these halves, we get a well-defined parity. This evaluation does not depend on
the choice of the half.

Parities and Functorial mappings: Projections and Coverings
Key observation: If we remove all odd chords from a chord diagram of a knot

K then the remaining chords will form a knot f(K) which is an invariant of K; in
other words, the deletion of all odd chords is a well-defined functorial operation.

One can reiterate this operation for many parities. Doing this accurately until
the underlying genus becomes zero (and taking the stabilization into account), we
get the following

Theorem 3. [12] There is a well-defined mapping pr on Gauß diagram such
that for every K, pr(K) is obtained from K by deleting some chords, pr(K) is a
classical Gauß diagram, and if K1 is equivalent to K2 then pr(K2) is equivalent
to pr(K1).

There are in fact, many maps pr satisfying the condition above. Such a theorem
proves that many minimal characteristics of classical knots are attained on their
classical diagrams. For more detail, see [12, 1].

New Parities.
In Figure 2 we show a transformation (mutation or similar) of a link component

which changes a pattern P → P ′; this transofrmation does not change algebraic
invariants based on some bare count (polynomials, homological intersection, etc),
so most of the invariants do not change under operations which do not change
such numeric characteristics (say, mutations).

The new parities are based on the count of the intersection with some pattern
P .

Thus, if this pattern changes slightly as shown in Fig. 2, it may turn out that
parities of many crossings change seriously: in the right part of the Fig.2, there is
no pattern P , thus, all crossings are even, whence some crossings in the left part
are odd.

So, this leads to brand new parities for one component of a 2-component link
(this will appear in [15]).
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Figure 2. Parity coming from patterns

Parities and Cobordisms Another striking example is an invariant con-
structed from the Gaussian parity which provides an obstruction for free knots
to be null-cobordant in some sense.

Let G = 〈a, b, b′|a2 = b2 = b′2 = e, ab = b′a〉. Given a Gauss diagram D. We
say that an odd chord is of the first type and of the second type, otherwise. With
each even chord end we associate a, with each odd first type chord we associate
b and with each odd second type chord we associate b′. Fix a point X on D and
construct the word γX(D) by walking along D.

One can check that the conjugacy class of [γX(D)] in G is an invariant of the
free knots.

The Cayley graph of G looks as follows: its vertices correspond to integer points
on the plane Oxy with y = 0 or y = 1, vertical edges (connecting y = 0 to y = 1
with a fixed x) represent the element a, and horizontal edges (connecting two
neighbouring vertices) represent b or b′: an edge connecting (u, v) to (u + 1, v) is
marked by b whenever u + v is even and by b′ otherwise; the coordinate origin
is the unit of the group. So, every element of G is a point with integer x and
y ∈ {0, 1}y = 1. Those elements obtained from Gauss diagrams are represented
by some points with y = 0, so, just by one integer number. The conjugation in G
changes only the sign of this number, and the absolute value l(D) is an invariant of
free knots. Theorem gives a new series of counterexamples to Turaev’s conjecture.

Carter,Turaev, Or et al. studied the following problem: given a generically
immersed 2-curve γ in an oriented 2-surface Sg. Does there exist a 3-manifold
M,∂M = Sg and a proper map D → M having only stable singularities such
that ∂D = D ∩ Sg = g? There are many topological obstructions coming from
homology classes of Sg formed by loops of γ. We address a similar question with
no surface and no manifolds, just with framed four-graphs.
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Theorem 5.([11]) If for some framed 4-graph Γ we have l(Γ) 6= 0 then there
is no way to span Γ by an image of the 2-disc (having Morse and Reidemeister
singularities).

It turns out that the invariant l reduces to an integer number, which, in turn,
is nothing but some count of odd crossings with sophisticated signs.

It would be interesting to find invariants of cobordisms and sliceness obstruc-
tions for free knots valued in pictures.

Parity can be extended to 2-knots
• Are there any parities coming from patterns which can be extended to 2-knots

and lead to cobordism invariants?
Are there parities in classical knots?
There are no parities for diagrams of classical knots directly satisfying the parity

axioms, but there are ways to use virtual knots for classical knot theory, see papers
[2] and [9] and M.Chrisman’s abstract in the present abstract book.
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On Dijkgraaf-Witten invariants over Z2 of 3-manifolds

Sergei Matveev

(joint work with Vladimir Turaev)

Dijkgraaf and Witten [1] derived numerical topological invariants of closed man-
ifolds from cohomology classes of finite groups. The DW-invariants have been
extensively studied in the literature. A computation of the DW-invariant of a
manifold requires a summation of several terms whose number depends expo-
nentially on the first Betti number of the manifold. We show that if an integer
m ≥ 1 expands as a sum of two integral powers of 2, then the DW-invariant of m-
dimensional manifolds associated with the non-trivial element of Hm(Z2;Z2) = Z2

can be computed from the Arf invariants of certain quadratic maps. This result
applies, in particular, to m = 3.

Let M be a closed 3-manifold. We define the quadratic map QM : H1(M ;Z2) →
Z2 by the rule QM (x) = 〈x3, [M ]〉, where x ∈ H1(M ;Z2), x

3 ∈ H3(M ;Z2) and
[M ] is the fundamental class of M .

Theorem. Let M be a closed connected 3-manifold and A ⊂ H1(M ;Z2) be
the annihilator of the bilinear pairing ℓM corresponding to QM . If there is x ∈ A
such that x3 6= 0, then the DW-invariant Z(M) of M is equal to 0. If for all
x ∈ A we have x3 = 0, then Z(M) = 2k+m−1(−1)Arf(QM ), where m = dimZ2

(A)
and k = 1

2dimZ2
(H1(M ;Z2)/A).

The authors were partially supported by Laboratory of Quantum Topology of
Chelyabinsk State University (Russian Federation government grant 14.Z50.31.0020).
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Global switching and smoothing in the Homflypt skein of T 2.

Hugh R. Morton

(joint work with Peter Samuelson)

The Homflypt skein S(F ) of an oriented (thickened) surface F consists of lin-
ear combinations of framed oriented diagrams on F up to Reidemeister moves
RII , RIII modulo the linear ‘skein relations’

− = (s− s−1) (Switch and smooth)

= v−1 , = v (Framing change)

using the ring Λ = Z[v±1, s±1] with denominators sr − s−r, r > 0 as coefficient
ring. The framing of a diagram is understood to be the ‘blackboard framing’ from
the surface F .
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The skein S(F ) forms an algebra over Λ under the product induced by placing
the diagram(s) representing an element D on top of the diagram(s) representing
E to define DE.

In the case S(F ) = C where F is the annulus this algebra is commutative and
has been studied for some time. A recent account of some of its properties can
be found in [4]. It has an interpretation as the algebra of symmetric functions in
a large number of commuting variables x1, . . . , xN , and contains an element Pm

for each m corresponding to the power sum xm
1 + · · · + xm

N . One representation
of this element, due originally to Aiston [1], is a multiple of the sum of m closed
m-braids.

In the case when F = T 2 the skein H = S(T 2) is a non-commutative algebra,
which can be generated by elements Px, one for each x ∈ Z2, corresponding to
free homotopy classes of curves in T 2.

For a primitive x = (m,n) ∈ Z2 we represent Px by the embedded (m,n) curve
on T 2. It is an immediate consequence of the switch and smooth skein relation
that the commutator [P(1,0), P(0,1)] satisfies

[P(1,0), P(0,1)] = (s− s−1)P(1,1).

The same switching and smoothing relation shows that [Px, Py] = (s− s−1)Px+y

when the primitive curves x and y cross once in the positive direction.
The main result presented in the talk is the following.

Theorem (Global switch and smooth).
The commutator [Px, Py] in H satisfies

[Px, Py] = (sk − s−k)Px+y

where k = det(x y) is the signed crossing number of x with y.

Here the commutator can be regarded as a switch of curves x and y, with x+y
as the simultaneous smoothing at the k crossings. This is an exact interpretation
when x,y and x+ y are all primitive.

In the statement of the theorem we must also specify Pmx for any multiple of a
primitive x. This is defined by decorating the embedded curve x by the element
Pm from the skein C of the annulus.

The proof of the theorem relies on a result in [4] to establish that

[P(m,0), P(0,1)] = (sm − s−m)P(m,1).

Direct skein manipulation shows that

[P(0,−1), P(m,1)] = (sm − s−m)P(m,0),

using Aiston’s representation of Pm.
The full theorem follows from these two cases using induction on det(x y).
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Reasons for interest in the algebra H are its resemblance to a special case of the
Hall algebra of an elliptic curve [2], and as an extension of the work of Frohman
and Gelca [3] on the Kauffman bracket skein of T 2.
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Casson towers and slice links

Mark Powell

I gave results sharpening the minimal height of a Casson tower required to find a
flat embedded disc inside a neighbourhood. In joint work with Jae Choon Cha,
we showed that a Casson tower of height 4 contains an embedded flat disc. The
previously best known result was for height 5 towers. The proof uses the disc
embedding theorem of Freedman, and involves passing from Casson towers to
gropes, and an improved understanding of the combinatorics of grope and tower
height raising (see the book of Freedman and Quinn for an introduction). I also
gave results on height 3 and 2 towers, which require some assumptions on the
fundamental group, and I gave applications to showing that certain links are slice.

Progress in distributive homology: from q-polynomial of rooted trees
to Yang-Baxter homology

Jozef H. Przytycki

We start with a long historical introduction beginning with Heinrich Kühn (1690-
1769), C.L.G. Ehler (1685-1753), and Leonard Euler (1707-1783) and we argue that
topology (geometria situs) started in Gdańsk (Danzig) about 1734. We mention
the work of Celestyn Burstin (1888-1938) and Walter Mayer (1887–1948), (1929,
distributivity) and Samuel Eilenberg (1913-1998) (homological algebra). We com-
plete the historical summary by celebrating 30 years of the Jones polynomial (May
30, 1984, V.F.R.Jones wrote a letter to J.Birman announcing his construction of
a new link polynomial). Thus it is appropriate to describe today a new simple
invariant of rooted trees. Let T be a plane rooted tree then Q(T ) ∈ Z[q] is defined
by the initial condition Q(•) = 1 and the recursion relation

Q(T ) =
∑

v∈L(T )

qr(T,v)Q(T − v), where L(T ) is the set of leaves of T ,
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and r(T, v) is the number of edges of T to the right of the path connecting v with
the root v0. For example Q(

∨
) = (1 + q) = [2]q or more generally Q(Tn) = [n]q!,

where Tn is a star with n rays and [n]q = 1 + q + ...+ qn−1.

Theorem: Let T1 ∨ T2 be the wedge (or root) product (

T1 T2

) . Then:

Q(T1 ∨ T2) =

(
E(T1) + E(T2)

E(T1)

)

q

Q(T1)(Q(T2)

Proof: We proceed by induction on E(T ), with obvious initial case of E(T1) = 0
or E(T2) = 0. Let T be a rooted plane tree with E(T1)E(T2) > 0, then we have:

Q(T ) =
∑

v∈L(T )

q
r(T,v)

Q(T − v) =

∑

v∈L(T1)

q
r(T1,v)+E(T2)Q((T1−v)∨T2)+

∑

v∈L(T2)

q
r(T2,v)Q(T1∨(T2−v))

inductive assumption
=

∑

v∈L(T1)

q
r(T1,v)+E(T2)

(

E(T1) + E(T2)− 1

E(T1)− 1, E(T2)

)

q

Q(T1 − v)Q(T2)+

∑

v∈L(T2)

q
r(T2,v)

(

E(T1) + E(T2)− 1

E(T1), E(T2)− 1

)

q

Q(T1)Q(T2 − v) =

Q(T2)q
E(T2)

(

E(T1) + E(T2)− 1

E(T1)− 1, E(T2)

)

q

∑

v∈L(T1)

q
r(T1,v)Q(T1 − v)+

Q(T1)

(

E(T1) + E(T2)− 1

E(T1), E(T2)− 1

)

q

∑

v∈L(T2)

q
r(T2,v)Q(T2 − v) =

Q(T1)Q(T2)(q
E(T2)

(

E(T1) + E(T2)− 1

E(T1)− 1, E(T2)

)

q

+

(

E(T1) + E(T2)− 1

E(T1), E(T2)− 1

)

q

) =

Q(T1)Q(T2)

(

E(T1) + E(T2)

E(T1), E(T2)

)

q

as needed .

Corollary:

(i) If a plane rooted tree is a wedge of k trees (

...Tk
T2 1

T

) and

T = Tk ∨ ... ∨ T2 ∨ T1, then

Q(T ) =

(
Ek + Ek−1 + ...+ E1

Ek, Ek−1, ..., E1

)

q

Q(Tk)Q(Tk−1) · · ·Q(T1).

where Ei = |E(Ti)| is the number of edges in Ti.
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(ii) (State product formula)

Q(T ) =
∏

v∈V (T )

W (v),

where W (v) is a weight of a vertex (we can call it a Boltzmann weight)
defined by:

W (v) =

(
E(T v)

E(T v
kv
), ..., E(T v

1 )

)

q

,

where T v is a subtree of T with vertex v (part of T above v, in other
words growing from v) and T v can be decomposed into wedge of trees:
T v = T v

kv
∨ ... ∨ T v

2 ∨ T v
1 .

(iii) (change of a root). Let e be an edge of a tree T with endpoints v1 and
v2 and E1 be the number of edges on the v1 part of the edge, and E2 the
number of edges of T on the v2 side of e;

Thus T =

T1

e

T2

v v
21 and then Q(T, v1) =

[E1 + 1]q
[E2 + 1]q

Q(T, v2).

Proof. (i) Formula z (i) follows by using several times the formula

Q(T2 ∨ T1) =

(
E(T2) + E(T1)

E(T2), E(T1)

)

q

Q(T2)(Q(T1),

as we have:
(

ak + ak−1 + ... + a2 + a1

ak, ak−1, ..., a2, a1

)

q

=

(

ak−1 + ...+ a2 + a1

ak−1, ..., a2, a1

)

q

(

ak + ak−1 + ...+ a2 + a1

ak, ak−1 + ... + a2 + a1

)

q

= ...

=

(

a2 + a1

a2, a1

)

q

(

a3 + a2 + a1

a3, a2 + a1

)

q

(

a4 + a3 + a2 + a1

a4, a3 + a2 + a1

)

q

...

(

ak + ak−1 + ...+ a2 + a1

ak, ak−1 + ...+ a2 + a1

)

q

(ii) Formula (ii) follows by using (i) several times. �

One can propose many modifications and generalizations of the polynomial
Q(T ), for example, for a graph with a base point we can take the set (or the sum)
over all spanning trees of Q(T ) but we propose below the one having close relation
with knot theory.

Let T be a plane rooted tree and f : L(T ) → N a function from leaves of T to
positive integers. We call f a delay function as our intuition is that a leaf with
value k cannot be used before kth move. Formally Q(T, f) is defined by recursive
relation:

Q(T, f) =
∑

v∈L1(T )

qr(T,v)Q(T − v, fv),

where L1(T ) is a set of leaves for which f is equal to 1. fv(u) = max(1, f(u)− 1)
if u is also a leaf of T , and it is equal to 1 if it is a new leaf of T − v.
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Example. For a rooted tree with delay function the polynomial Q(T ) is not neces-
sary a product of cyclotomic polynomials, the simplest example is given by trees

21

1

2 1

1

with polynomials equal respectively q(1 + q + 2q2 + q3) and 1 + 2q +
q2 + q3. There is however one special situation when we can give a simple closed

formula: Consider the “delayed” tree T = T sk
k ∨ ...∨T s2

2 ∨T s1
1 (

T
s
k

k T
s
2

2 T
s1
1...

). That
is we assume that whole blocks have constant delay function (the block Ti have
leaves labelled si). We assume also, for convenience, that s1 = 1, s1 ≤ s2 ≤ E1+1,
s2 ≤ s3 ≤ E2+E1+1,..., sk−1 ≤ sk ≤ Ek−1+ ...+E2+E1+1 (here Ei = |E(Ti)|).
Then

Q(T ) =
(E2 +E1 − s2 + 1

E2, E1 − s2 + 1

)

q

(E3 + E2 +E1 − s3 + 1

E3, E2 + E1 − s3 + 1

)

q

...
( Ek + ...+E1 − sk + 1

Ek, Ek−1 + ...+ E1 − sk + 1

)

q

Q(T1)Q(T2)...Q(Tk).

We didn’t reach yet relations neither with knot theory nor with distributive
structures; these should be left for the next occasion, however we finish the talk
with one curious question and related observation. Consider a chain complex over
a commutative ring k

C : ... → Cn+1
∂n+1

→ Cn
∂n→ Cn−1

∂n−1

→ ... → C1
∂1→ C0

and assume that C comes from a presimplicial module ∂n =
∑n

i=0(−1)idi where
0 ≤ i ≤ n, didj = dj−1di for i < j. We ask whether it is useful (already used?)
to consider q-version: Cq

n = Cn ⊗k Z[q] and the q-map ∂q
n =

∑n
i=0 q

idi. Clearly
(Cq

n, ∂
q
n) is not generically a chain complex but we can make another use of it. For

example, we can identify x with ∂q(x), that is to consider (
⊕

n≥0 C
q
n)/(x−∂q(x)).

Here an example which I learned from JP. Loday is very handy:
Consider presimplicial set (Yn, di) where Yn is the set of topological rooted trees

with n ordered leaves (topological means that ). We define di(T ) = T−vi,
where vi is the ith leaf of T . We can also introduce degeneracy maps si : Yi → Yi+1

planting
∨

on the ith leaf. We check directly that:
(1) didj = dj−1di for i < j,
(2’) sisj = sj+1si for i < j,

(3) disj =

{
sj−1di if i < j
sjdi−1 if i > j + 1

( (4) disi = di+1si = Id

The condition sisi = si+1si does not hold (

i i+1

) so (Yn, di, si) is
not a simplicial set but only an almost simplicial set.

Now consider the quotient of the sum (
⊕

n≥0 Z[q]Yn)/(x − ∂q(x)). It is a free

Z[q] module generated by • (tree without edges).We compute inductively that for
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a tree with n leaves T = [n]q!•. It is not very sophisticated invariant so we can be
glad that polynomial Q(T ) is more interesting.

Distributivity leads to another “incomplete” simplicial set, this time condition
(4) does not hold, but this should be put aside for the next report which will
discuss also a generalization of distributive homology: – Yang-Baxter homology.
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Diophantine quadratics and 2–spheres in 4–manifolds

Rob Schneiderman

An obstruction theory for representing homotopy classes of surfaces in 4–manifolds
by immersions with pairwise disjoint images is developed, using a theory of non-
repeating Whitney towers. The accompanying higher-order intersection invariants
provide a geometric generalization of Milnor’s link-homotopy invariants, and can
give the complete obstruction to pulling apart 2–spheres in certain families of 4–
manifolds. It is also shown that in an arbitrary simply connected 4–manifold any
number of parallel copies of an immersed 2–sphere with vanishing self-intersection
number can be pulled apart, and that this is not always possible in the non-
simply connected setting. The order 1 intersection invariant is shown to be the
complete obstruction to pulling apart 2–spheres in any 4–manifold after taking
connected sums with finitely many copies of S2 × S2; and the order 2 intersection
indeterminacies for quadruples of immersed 2–spheres in a simply-connected 4–
manifold are shown to lead to interesting number theoretic questions about systems
of Diophantine quadratic equations coupled by the intersection form. This is joint
work with Peter Teichner [1].
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Knot and orbifold groups which are extreme

Andrei Vesnin

For f, g ∈ PSL(2,C) denote J (f, g) = |tr2(f)−4|+|tr[f, g]−2|. Let G < PSL(2,C)
be a 2-generated non-elementary group. The value

J (G) = inf
〈f,g〉=G

J (f, g),

is said to be a Jørgensen number of G. Jørgensen numbers originally arise in the
following discreteness condition [1]: if non-elementary group G is discrete then
J (G) ≥ 1. It was shown in [2] that the figure-eight knot complement is the unique
hyperbolic 3-manifold whose fundamental group has Jørgensen number equals to
one. Jørgensen numbers for some 2-bridge knot groups were calculated in [2].

Let us denote by K the figure-eight knot and by K(n) the hyperbolic 3-orbifold
with singular set K and singular angle 2π/n, n ≥ 4. The knot group has the
presentation

π1(S
3 \K) = 〈 f, g | [g, f ] g−1 = f [g, f ] 〉

and the orbifold group has the following presentation:

πorb(K(n)) = 〈 fn, gn | fn
n = gnn = 1, [gn, fn] g

−1
n = fn [gn, fn] 〉.

Both of them have faithful representations in PSL(2,C).
We will describe behavior of Jørgensen numbers of figure-eight knot orbifold

groups.

Theorem 1. [3] Let n ≥ 4. Then the following inequalities hold:

1 ≤ J (πorb(K(n))) ≤ 4 sin2(π/n) +

√
1 + 4 sin2(π/n).

Corollary 1. [3] The following convergence holds:

lim
n→∞

J (πorb(K(n))) = J (π1(S
3 \K)).

An analog of a Jørgensen number was introduced in [4] and [5]. For f, g ∈
PSL(2,C) such that tr[f, g] 6= 1 denote G(f, g) = |tr2(f) − 2|+ |tr[f, g] − 1|. Let
G < PSL(2,C) be a 2-generated group. The value

G(G) = inf
〈f,g〉=G

G(f, g),

is said to be a GMT number of G. Gehring and Martin [4] and independently
Tan [5] proved that if G is discrete then G(G) ≥ 1.

The following results demonstrate behavior of GMT numbers of figure-eight
knot orbifold groups.

Theorem 2. [3] The following equality holds: G(π1(S
3 \K)) = 3.
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Theorem 3. [3] Let n ≥ 4. Then the following inequalities hold:

1 ≤ G(πorb(K(n))) ≤ 3− 4 sin2(π/n).

Corollary 2. [3] The following equality holds: G(πorb(K(4))) = 1.
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