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Abstract. The theory of Newton-Okounkov bodies, also called Okounkov
bodies, is a relatively new connection between algebraic geometry and convex
geometry. It generalizes the well-known and extremely rich correspondence
between geometry of toric varieties and combinatorics of convex integral poly-
topes. Following a successful MFO Mini-workshop on this topic in August
2011, the MFO Half-Workshop 1422b, “Okounkov bodies and applications”,
held in May 2014, explored the development of this area in recent years, with
particular attention to applications and relationships to other areas such as
number theory and tropical geometry.
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Introduction by the Organisers

Okounkov bodies were first introduced by Andrei Okounkov, in a construction
motivated by a question of Khovanskii concerning convex bodies govering the mul-
tiplicities of representations. Recently, Kaveh-Khovanskii and Lazarsfeld-Mustata
have generalized and systematically developed Okounkov’s construction, showing
the existence of convex bodies which capture much of the asymptotic information
about the geometry of (X,D) where X is an algebraic variety and D is a big
divisor. This theory of Newton-Okounkov bodies can be viewed as a vast general-
ization of the well-known theory of toric varieties. The study of Okounkov bodies
is a new research area with many open questions, and the purpose of the Half-
Workshop 1422b Okounkov bodies and applications, organised by Megumi Harada
(McMaster), Kiumars Kaveh (Pittsburgh), and Askold Khovanskii (Toronto), was
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to explore the many recent (and potential new) applications of this theory to other
research areas.

The Half-Workshop was well attended with over 20 participants, with broad
geographic representation from all continents. The group of participants was a
nice blend of researchers with various backgrounds such as tropical geometry, rep-
resentation theory, toric topology, symplectic topology, integrable systems, and
number theory. In addition to the senior participants, there were 2 participants
supported through the Oberwolfach Leibniz Graduate Students” program. The
workshop consisted of 18 research talks in total.

In the remaining part of this introduction we briefly describe some of the topics
discussed at the workshop.

One of the major themes of the workshop was to define functions to and from
Newton-Okounkov bodies. Functions from Newton-Okounkov bodies were dis-
cussed by Alex Kuronya, with a view towards applications in the study of big
divisors and positivity of linear series on algebraic varieties. Functions to Newton-
Okounkov bodies were discussed by David Witt-Nystrom in his talk on joint work
with Julius Ross, in which they define a kind of analogue of a ‘moment map’ to a
Newton-Okounkov body. (Witt-Nystrom also gave another talk on transforming
metrics of a line bundle which provided some background on his work on moment
maps.)

Several of the talks reported on recent progress in the theory of Newton-
Okounkov bodies. Victor Lozovanu reported on recent joint work with Kuronya
on positivity of linear series on surfaces, and Kiumars Kaveh presented joint work
with Khovanskii on the theory of local Newton-Okounkov bodies. One of the junior
participants Takuya Murata, invited through the Oberwolfach Leibniz Graduate
Students program, was given the opportunity to present his Ph.D. thesis results
(supervised by one of the organizers, Kiumars Kaveh) on the asymptotic behavior
of multiplicities of reductive group actions.

Another major purpose of the workshop was to explore possible connections
with other research areas. In this spirit, Huayi Chen gave a talk outlining possible
avenues of applications of Newton-Okounkov bodies to arithmetic. Similarly, Sam
Payne gave a talk on tropical methods for the study of linear series and Buchstaber
gave a presentation on (2n, k)-manifolds; in both talks, many themes overlapped
with those arising in the study of Newton-Okounkov bodies. Furthermore, Boris
Kazarnovskii talked about an extension of the theory of Newton-Okounkov bodies
to the non-algebraic setting of exponential sums, and about a very surprising
relation of this non-algebraic subject to modern algebraic geometry.

Symplectic geometry, symplectic topology, integrable systems, and toric degen-
erations also played a main role in the workshop. In this direction, both Chris
Manon and Johan Martens reported on their recent work on the Vinberg monoid,
while Yuichi Nohara gave a talk on toric degenerations of integrable systems on
the Grassmannian and an application to the computation of the potential func-
tions arising in symplectic topology. Continuing the theme of symplectic topology,
Kaoru Ono gave a talk on Lagrangian tori in S2 × S2.
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The relation between Newton-Okounkov bodies and Schubert calculus was also
a strong theme of the workshop. Valentina Kiritchenko spoke about a ‘geometric
mitosis’ operation on Newton-Okounkov polytopes (associated to flag varieties)
which give rise to collections of faces of the polytope representing a Schubert cy-
cle. Vladlen Timorin gave a talk on counting vertices of Gel’fand-Cetlin polytopes,
which are a special case of Newton-Okounkov bodies of flag varieties. June Huh
presented his results on positivity of Chern classes of Schubert cells and varieties,
concluding with open questions in this area which relate to Newton-Okounkov bod-
ies. Finally, in the last talk of the workshop, Dave Anderson spoke on computing
the effective cone of Bott-Samelson varieties, which arise naturally in the study
of Newton-Okounkov bodies due to their central role in representation theory and
the geometry of flag varieties.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.





Okounkov Bodies and Applications 1463

Workshop: Okounkov Bodies and Applications

Table of Contents

Alex Küronya
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Abstracts

Functions on Newton–Okounkov bodies

Alex Küronya

This is an account of joint work with many people, coauthors will be pointed out
in particular cases. Newton–Okounkov bodies serve to capture the behaviour of
we all global sections of all multiples of a given big Cartier divisor at the same
time. Building on earlier work of Okounkov and many others, in their current
form Newton–Okounkov bodies were first studied by Kaveh–Khovanskii [9] and
Lazarsfeld–Mustaţă [11]. For explicit examples see [11] and [10] for instance.

Let X be a smooth projective variety of dimension n over the complex number
field, Y• an admissible flag,D a big line bundle onX . The choice of the flag Y• gives
rise to a rank n valuation νY•

on the function field C(X) of X , which, evaluated
on the global sections of multiples of D, yields a convex body ∆Y•

(D) ⊆ Rn, the
Newton–Okounkov body of D.

Our purpose here is to go one step further, and study functions on Okounkov
bodies coming from some geometric situation. The general yoga comes from com-
plex analysis, and was first formalized by Boucksom and Chen [3]: the fundamental
principle is that multiplicative filtrations of the section ring R(X,D) give rise to
concave functions on all corresponding Newton–Okounkov bodies ∆Y•

(D).
For now, we mention to important sources of such filtrations: test configurations

(see [14] for further details), and divisorial valuations v of the function field X ;
we will study functions arising from the second class of filtrations. In fact, the
actual valuations we intend to study occur naturally in projective geometry, we will
consider orders of vanishing along smooth subvarieties Z of X . The (already quite
interesting) example to keep in mind is the case when X is a smooth projective
surface, and Z is simply a point x ∈ X . We often take x to be the point from a
given admissible flag Y•.

With some abuse of terminology, we can say that the function φv : ∆Y•
(D) →

R≥0 is the concave transform of the filtration R(X,D) associated to the valuation.
In the concrete case of v = ordZ , the filtration parametrized by a real number t is
given by

F tZH
0(X,OX(mD)) = {s ∈ H0(X,OX(mD)) | ordZs ≥ t} .

In the case when a point α ∈ ∆Y•
(D) arises as an actual normalized valuation

vector of a global section, we set

φZ(α) = lim
m→∞

1

m
sup{t ≥ 0 | ∃s ∈ FmtZ H0(X,OX(mD)) , νY•

(s) = α} ,

and then form the concave envelope [3, 4, 13].
In the toric case, it follows from work of Donaldson [6] and Wytt-Nyström

[14] that the functions arising from a setting where every object is torus-invariant
will be piecewise affine linear with rational coefficients with respect to a finite
decomposition of the underlying moment polytope.
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We have the following results on the formal behaviour of these functions.

Theorem A. [4] With notation as above, the following assertions hold.

(1) If dimX = 2, then the functions φZ are always continuous.
(2) There exist examples of X , L, Y•, Z in dimensions at least three, where

φZ is not continuous along the boundary of ∆Y•
(L).

(3) The function φZ is homogeneous of degree one.
(4) If L and L′ are numerically equivalent divisors, then φZ : ∆Y•

(L) → R

equals φZ : ∆Y•
(L′) → R.

The first statement draws on the fact that Newton–Okounkov bodies on surfaces
are finite polygons [10], which is a consequence of results of [2, 11]. Analogously,
if L has a finitely generated section ring, then one can pick a suitable flag Y• such
that all Okounkov functions on ∆Y•

(L) are continuous [1].
Although the Newton–Okounkov body ∆Y•

(L) varies wildly with Y• its Eu-
clidean volume remains constant under change of flags. Analogously it is impor-
tant to find quantities for the functions φZ that are invariant with respect to the
choice of the flag Y•. In this direction one can say the following.

Theorem B. [3, 5] With notation as above, the numbers

I(L;Z)
def
=

1

volX(L)

∫

∆Y•
(L)

φZ

and

max
α∈∆Y•

(L)
φZ(α)

are independent of Y•.

The first one of the above observations was made by Boucksom and Chen. It
should be pointed out that except in the toric case, the functions φZ appear to be
difficult to determine. In the light of this, the next claim is slightly surprising.

Theorem C. [5] Let π : Y → X be the blow-up of X along the smooth subvariety
Z with exceptional divisor E. Then

I(L;Z)
def
=

1

volX(L)

∫

∆Y•
(L)

φZ =

∫ ∞

0

t · volY |E(π
∗L− tE)dt .

Beside its significance in projective geometry, the invariant I(L;Z) plays a role
in diophantine approximation, as shown in the work of McKinnon–Roth [12]
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[4] Alex Küronya, Catriona Maclean, Tomasz Szemberg: Functions on Okounkov bodies
coming from geometric valuations (with an appendix by Sébastien Boucksom), preprint,
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Okounkov bodies and moment maps

David Witt Nystrom

(joint work with Julius Ross)

We like to think of the Okounkov body as generalizing the moment polytope
associated to a polarized toric manifold. Given a torus invariant positive hermitian
metric on the toric line bundle we get a moment map, which maps the toric
manifold onto the moment polytope. The question is if there exists in general a
natural ”moment map” from a polarized manifold (X,L) to the Okounkov body
Delta(L) given a positive hermitian metric on L (of course this will also have to
depend on the admissible flag used to define the Okounkov body).

One approach to this problem was taken by Harada-Kaveh in [2]. Namely when
the semigroup Gamma(L) is finitely generated, Anderson showed in [1] that one
has a natural degeneration of the polarized manifold (X,L) to the polarized toric
variety with associated moment polytope Delta(L). After equipping the deforma-
tion space with an appropriate Kahler structure Harada-Kaveh use the gradient-
Hamiltonian flow of Ruan (see [5]) to transport the moment map from the central
fiber to X.

In the talk I described a different approach to the problem due to Julius Ross
and myself.

The idea is to first consider the first coordinate of the moment map, and then
proceed inductively. The first coordinate of the moment map should only depend
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on the metric and the codimension one part of the flag Y1 =: Y (which we assume
to be smooth). We consider the natural deformation of X to the normal bundle
of Y one gets by blowing up Y ×{0} inside X ×D (D denotes the unit disc). The
deformation space has a canonical weak Kahler structure (i.e. a closed positive
(1, 1)-current Ω) which is invariant under the natural circle action (in particular the
restriction to the normal bundle is S1-invariant). One gets this weak Kahler struc-
ture as the unique solution to the homogeneous complex Monge-Ampere equation

Ωn+1 = 0

where the boundary data is given by the Kahler curvature form of the hermitian
metric of L (see [3] for details).

Since the weak Kahler structure is degenerate one cannot use Ruan’s gradient-
Hamiltonian flow, but when the structure is regular (i.e. smooth and the degener-
acy is transversal to the fibers) then one can flow along the degenerate directions
and it is well-known that this flow is symplectic. In [3] we prove that the canon-
ical weak Kahler structure in fact is regular near the proper transform of Y × D.
This then allows us to transport the symplectic circle action from the normal bun-
dle to a tubular neighbourhood of Y . The Hamiltonian of this action is the first
coordinate of our moment map.

Using the flow we then identify the associated symplectic quotients with Y
equipped with certain Kahler structures (varying with the value of the Hamilton-
ian). On the other hand, the fiber of the Okounkov body over x1 = λ is naturally
identified with a subset of the Okounkov body of L − λY restricted to Y, which
allows us to proceed inductively. Since the regularity only is local we only get a
full moment map near the central point of the flag. To extend the map further one
would need to extend the symplectic flow to the parts of the deformation space
where the weak Kahler structure is not regular.

In the case when X is a curve we do have a full moment map, and the evolution
of the sublevel sets of the Hamiltonian turns out to have a fluid flow interpretation
as a Hele-Shaw flow (see [3, 4]).
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(2n, k)-manifolds and applications

Victor M. Buchstaber

(joint work with Svjetlana Terzić)

1. Introduction.

We consider the class of smooth, closed manifolds M2n with an action of a
compact torus T k which admit an almost moment map whose image is a conve
polytope P k in Rk.

The new in our approach is that for the purpose of description of the combi-
natorics of the torus action we introduce so-called admissible polytopes which are
convex polytopes spanned by some subsets of vertices of the polytope P k.

”Our bodies” are CW -complex whose open cells are one parts of admissible
polytopes. In terms of the height function for one-dimensional skeleton of this
complex we obtain combinatorial description of the Betti numbers of M2n as well
as the equivariant cohomology of a manifold M2n.

The examples of (2n, k)-manifolds are projective toric manifolds, quasitoric
manifolds and compact homogeneous spaces G/H of positive Euler characteris-
tic. 1

2. Theory of (2n, k)-manifolds.

We assume the following to be given:

• a smooth, closed simply connected manifold M2n;
• a smooth, effective action θ of the torus T k on M2n, where 2 ≤ k ≤ n,
such that the stabilizer of any point is connected;

• an open θ-equivariant map µ :M2n → Rk whose image is a k-dimensional
convex polytope, where Rk is considered with trivial T k action.

The polytope which is obtained as an image of µ we denote by P k. The map µ
we call an almost moment map for the given T k-action on M2n. We say that the
triple (M2n, θ, µ) is (2n, k)-manifold if it satisfies the following axioms.

Axiom 1. There is a smooth atlas M = {(Mi, ϕi)}i∈I with the homeomorphisms
ϕi : Mi → R2n ≈ Cn for the fixed identification ≈, such that any chart Mi is
T k-invariant, contains exactly one fixed point xi with ϕi(xi) = (0, . . . , 0), and the
closure of Mi is M

2n.

Denote bym the number of fixed points for T k-action onM2n. The charts given
by Axiom 1 we enumerate as (M1, ϕ1), . . . , (Mm, ϕm). The sets Yi = M2n −Mi

are closed and T k-invariant. Since Mi is everywhere dense in M2n we have that
Yi = ∂Mi. Define the sets Wσ, where σ = {i1, . . . , il} ⊆ {1, . . . ,m} by :

Wσ =Mi1 ∩ · · ·Mil ∩ Yil+1
∩ · · ·Yim ,

where {il+1, . . . , im} = {1, . . . ,m} − {i1, . . . , il}.
1V. M. Buchstaber is grateful to the Russian Scientific Foundation for the support, Grant

14-11-00414
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Definition 1. The non-empty set Wσ is called admissible and the corresponding
set σ is called admissible too..

Axiom 2. The characteristic function χ is constant on Wσ for any admissible set
Wσ and if Wσ′ ⊂Wσ then χ(Wσ) ⊂ χ(Wσ′ ).

We call Wσ a stratum if Axiom 2 is satisfied.

Axiom 3. The map µ gives the bijection between the set of fixed points and the
set of vertices of the polytope P k.

Let S(P k) be the family of convex polytopes which are spanned by the vertices
of the polytope P k and {Wσ} the family of all admissible sets. Define the map
s : {Wσ} → S(P k) by

s(Wσ) = Pσ, where σ = {i1, . . . , il} and Pσ = convhull(vi1 , . . . , vil),

and vi1 , . . . , vil are the vertices of the polytope P k determined by

vij = µ(xij ) for xij ∈Mij − the fixed point.

Definition 2. A polytope Pσ ∈ S(P k) is said to be admissible if it corresponds
to an admissible set.

Denote by µ̂ :M2n/T k → P k the map induced by the almost moment map µ.

Axiom 4. The almost moment map µ gives the mapping from Wσ to
◦

Pσ and

induces fiber bundle µ̂ :Wσ/T
k →

◦

Pσ.

Choose xσ ∈
◦

Pσ and let Fσ = µ̂−1(xσ).

Definition 3. The set Fσ we call the set of parameters of the stratum Wσ. It is

the fiber of the bundle µ̂ :Wσ/T
k →

◦

Pσ.

Corollary 1. The fiber bundle µ̂ :Wσ/T
k →

◦

Pσ is isomorphic to the trivial bundle.

Hence Wσ/T
k is homeomorphic to

◦

Pσ ×Fσ.
For a given trivialization ξσ :Wσ/T

k → Fσ and any point cσ ∈ Fσ
the leaf Wσ [ξσ, cσ] ⊆Wσ is defined as

Wσ[ξσ, cσ] = (π−1 ◦ ξ−1
σ )(cσ),

where π :Wσ →Wσ/T
k is the projection.

Axiom 5. For any admissible σ there exists the trivialization ξσ : Wσ/T
k → Fσ

such that for any cσ ∈ Fσ the boundary ∂Wσ[ξσ, cσ] of the leaf Wσ[ξσ, cσ] of the
stratum Wσ is the union of the leafs Wσ̄[ξ̄σ, cσ̄] for exactly one cσ̄ ∈ Fσ̄, where Pσ̄
runs through the admissible faces for Pσ.

Define the operator d on the set of admissible polytopes S by dPσ is disjoint
union of all proper faces of Pσ.
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We obtain CW complex CW (M2n, P k) : the vertices of this complex are the

vertices of P k and open cells are
◦

Pσ for Pσ ∈ S. We glue them by induction using
the operator d.

The orbit space M2n/T k can be described in terms of CW (M2n, P k), Fσ and
ξσ,σ′ :

Theorem 1.

M2n/T k = ∪Pσ × Fσ/ ≈,
where (x, fx) ≈ (y, fy) if and only if x = y ∈ Pσ′ ⊂ Pσ and fy = ξσ,σ′ (fx).

Corollary 2. The complex Grassmann manifold G4,2 is (8, 3)-manifold. There is
the structure of (10, 3)-manifold on CP 5 such that the Plücker embedding G4,2 →
CP 5 is the map beween (2n, k)-manifold over the hypersimplex ∆4,2.

Corollary 3. G4,2/T
3 ∼= ∂∆4,2 ∗ CP 1, CP 5/T 3 ∼= ∂∆4,2 ∗ CP 2

Axiom 6. For any chart (Mi, ϕi) it is given the characteristic homomorphism

αi : T
k → Tn such that its weight vectors are pairwise linearly independent and

the homeomorphism ϕi is αi - equivariant:

ϕi(txi) = αi(t)ϕi(xi), t ∈ Tk, xi ∈Mi.

Definition 4. A linear map h : Rk → R, h(x) =< x, ν > is said to be the height
function for T k-manifold M2n if: h(vi) 6= h(vj) for any two vertices vi and vj of
P k and the composition h◦µ : M2n → R is a Morse function whose critical points
coincides with the fixed points for T k-action on M2n.

Axiom 7. For a (2n, k)-manifold there is a height function h : Rk → R .

Definition 5. Graph Γ(M2n, P k) of (2n, k)-manifold M2n is a graph given by the
vertices and 1-dimensional admissible polytopes of P k.

It is 1-skeleton of the complex CW (M2n, P k). It any vertex of the graph
Γ(M2n, P k) there are exactly n edges.

It follows from axioms that to any edge of the graph of (2n, k)-manifolds it can
be assigned the subgroup of T k of codimension one and in this way an integer k-
vector. Using the height function we can define the ordering on the set of vertices of
the graph Γ(M2n, P k). In this way it is defined the index of a vertex of Γ(M2n, P k)
which is the number of edges of Γ(M2n, P k) incoming into vertex v. We denote
by hq the number of vertices of Γ(M2n, P k) having index q.

Theorem 2. The number hq is equal to 2q-th Betti number for M2n that is hq =
b2q(M

2n), q = 0, . . . , n.
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Tropical methods for linear series

Sam Payne

(joint work with Dave Jensen)

Let X be a smooth projective curve of genus g over a valued field K, and let X

be a semistable model over the valuation ring R ⊂ K. If the special fiber X is
of compact type, meaning that its Jacobian is compact or, equivalently, its dual
graph is a tree, then the method of limit linear series developed by Eisenbud and
Harris in the 1980s gives a powerful method for studying linear series on X , as
follows.

Let L be a line bundle of degree d and rank r on X .

Suppose X is of compact type, with components {Xj}. Then, for each i, there
is a unique way of extending L to a line bundle Li on X such that

degLi|Xj
=

{
d if i = j,
0 otherwise.

Then all of the interesting information about degenerations of sections of Li is con-
centrated on Xi. In particular, those sections of Li|Xi

that are limits of sections

of L form a linear series of degree d and rank r on Xi. This gives us a collection
of grds, one on each component of X, which satisfy a natural compatibility condi-
tion that can be phrased in terms of vanishing sequences at the nodes where the
components intersect. The combinatorics of these compatibility conditions can be
combined elegantly and powerfully with the geometry of grds on the lower genus

components of X to give proofs of the Brill-Noether and Gieseker-Petri Theorems
[EH83, EH86] along with many other fundamental facts about the geometry of
curves and their moduli.

Now, suppose X is not of compact type. Then L may or may not extend to a
line bundle Li on X such that

degLi|Xj
=

{
d if i = j,
0 otherwise.

If we assume for convenience that K is discretely valued, X has a rational point
which we use to identify Picd(X) with Jac(X), and X is regular, then the obstruc-
tion to finding such an extension can be measured by the component group of the
Néron model of the Jacobian of X , which is the Jacobian of the dual graph of
X. Tropical geometry systematically studies, refines, and exploits this obstruction
theory to understand the degeneration of the complete linear series of L. One fun-
damental tool in this approach is Baker’s Specialization Lemma [Bak08], which
gives an explicit obstruction for a component of the Néron model of the Jacobian
of X to intersect the closure of a line bundle of degree d and rank r. When every
component is obstructed in this way, we can conclude, based solely on the dual
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graph of X, that X has no grds. This observation is at the heart of the tropical
proof of the Brill-Noether Theorem [CDPR12], although an important refinement
is required to control the dimension of the space of grds when it is nonempty.

The main topic of this talk is joint work with Dave Jensen [JP14] refining
this tropical approach to studying linear series on X , when X is not of compact
type. In particular, we developed tools for studying degenerations of multiplication
maps and found tropical obstructions to the existence of a nonzero kernel in a
multiplication map

Γ(X,L)⊗ Γ(X,M) → Γ(X,L⊗M).

We have used these methods to give a new proof of the Gieseker-Petri Theorem
via explicit computations on graphs, showing that if the dual graph of X is a
particular chain of loops with bridges, with generic edge lengths, then the adjoing
multiplication map

Γ(X,L)⊗ Γ(X,K ⊗ L−1) → Γ(X,K)

is injective for all L. Refinements of this method may be used to control dimensions
of kernels of multiplication maps when they are nonempty, and we hope to develop
these techniques further in future work.
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The applications of Okounkov bodies to arithmetic problems

Huayi Chen

Since the seminal works of Okounkov [10], Kaveh and Khovanskii [6], Lazarsfeld
and Muastaţǎ [7], the theory of Okounkov bodies has been shown to be an effi-
cient tool to describe geometric invariants in birational algebraic geometry. The
typical example is the volume function on the group of Cartier divisors on an inte-
gral projective variety. Recently, the arithmetic analogue of Okounkov bodies has
been discovered in the framework of Arakelov geometry, and has led to interesting
applications. In some situations, the application of Okounkov bodies in the arith-
metic problem is crucial because the arithmetic analogue of classical methods is
still missing or is very sophisticated.

From the point of view of Arakelov geometry, the arithmetic varieties should be
considered as the analogue of algebraic varieties fibered over a smooth projective
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curve (the function field setting). In the number theory case, it is SpecZ that
plays the role of the base curve. By definition, an arithmetic projective variety
refers to a projective and flat morphism π : X → SpecZ from an integral scheme
X to SpecZ. A major obstruction to study such objects is that the base scheme is
not “compact”. For example, the principal divisor on SpecZ need not have degree
zero. It is a natural idea to compactify SpecZ by the usual absolute value of Q
(called the infinite place). Then the situation becomes analogous to the function
field case since the closed points of a regular projective curve correspond to the
valuations of the function field of the curve whose restriction on the base field
is trivial. The compactness of the augmented object is justified by the following
product formula

∀ a ∈ Q \ {0}, |a| ·
∏

p

|a|p = 1,

where p runs over the set of all prime numbers, and |.|p is the p-adic absolute
value on Q. However, it turns out that no scheme structure can be defined for this
augmented object and one cannot find the direct analogue of projective varieties
in the arithmetic setting.

The genuine idea of Arakelov is to introduce analytic object to “compactify”
an arithmetic variety. Let π : X → SpecZ be an arithmetic projective variety.
One can imagine that we attach to the arithmetic projective variety the complex
analytic space associated to the C-scheme XC as the “fiber over the infinite place”.
The algebraic objects in the algebraic geometry setting correspond to the similar
algebraic objects on the arithmetic variety X equipped with additional structures
(often metrics) on the induced object on the analytic space. For example, the
notion of line bundles in the geometric setting corresponds to the notion of her-
mitian line bundles in the arithmetic framework as follows. Let π : X → SpecZ
be an arithmetic projective variety, a hermitian line bundle is defined as any couple
L = (L , ‖.‖), where L is a line bundle on the scheme X , and ‖.‖ is a continuous
metric on the pull-back of L on the analytic space associated to LC, invariant
under the action of the complex conjugation.

Given a hermitian line bundle L on an arithmetic projective variety π : X →
SpecZ, one can construct a lattice in a normed vector space as follows. We denote
by π∗(L ) the Z-module H0(X ,L ), whose rank identifies with the dimension of
the vector space H0(XQ,LQ) over Q. The vector space π∗(L ) ⊗Z R, which can
be considered as a vector subspace of H0(XC,LC), is naturally equipped with sup
norm

∀ s ∈ π∗(L )⊗Z R, ‖s‖sup := sup
x∈X(C)

‖s‖(x).

We shall use the expression π∗(L ) to denote the lattice (π∗(L ), ‖.‖sup). We say

that a section s ∈ π∗(L ) is small if ‖s‖sup ≤ 1. We denote by Ĥ0(L ) the set

of all small sections of L . The set Ĥ0(L ) is necessarily finite. This notion is
analogous to the space of global sections of a line bundle in the algebraic geometry
setting. Motivated by this observation, Moriwaki [8, 9] has introduced the notion
of arithmetic volume function for hermitian line bundles (or more generally, for
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arithmetic R-Cartier divisors) as follows

v̂ol(L ) := lim sup
n→+∞

ln#Ĥ0(L ⊗n)

ndim(X )/ dim(X )!
.

This function has soon been proved to be quite useful in the arithmetic geometry.
Moreover, it shares many good properties as its avatar in algebraic geometry, as
shown by the works of Moriwaki mentioned above, and also by the work [11] of
Yuan.

Despite the similitude of definitions, the study of the arithmetic volume function
is by no means identical to that of the classical volume function and often much

more difficult. In fact the small section set Ĥ0(L ) is not stable by the addition
in general. The classical method in the study of graded linear series do not work
in the arithmetic setting. Although tools from the complex analytic geometry can
be used to remedy the defeat due to the lack of the algebraic structure, the imple-
mentation of these tools is often very sophisticated and demand extra hypotheses
(smoothness, positivity, etc.) on the metric of the hermitian line bundle.

Under this circumstance, the theory of Okounkov bodies has been applied to the
study of the arithmetic volume function and has let to interesting results such as
the arithmetic version of Fujita’s approximation theorem. There are essentially two
approaches on the arithmetic analogue of Okounknov bodies in the literature : the

one developed in [12] constructs a convex body attached to the sets (Ĥ0(L ⊗n))n∈N

in a way similar to the classical approach of Okounkov bodies and requires a fine
study on this family of sets; the one developed in [2, 3, 1] uses R-filtrations to
interpret the arithmetic volume function as the integral of certain level function
on the geometric Okounkov body of the generic fiber L and relies on the theory
of Okounkov bodies of graded linear series.

In the following, we will give a brief introduction to the R-filtration approach
mentioned above. Consider a lattice E = (E, ‖.‖) in a normed finite dimensional
real vector space. Here E denotes a free Z-module of finite rank and ‖.‖ is a
norm on the real vector space ER = E ⊗ R. We can then introduce a decreasing
R-filtration F on EQ as follows :

∀ t ∈ R, F t(EQ) = VectQ({s ∈ E : ‖s‖ ≤ e−t}).
The jump points of the filtration are nothing but the logarithmic version of the
successive minima of the lattice. The Minkowski’s second theorem leads to the
following estimation

ln#Ĥ0(E) =

∫ +∞

0

rk(F t(EQ)) dt+O(r ln(r)),

where Ĥ0(E) = {s ∈ E : ‖s‖ ≤ 1}, r = rkZ(E), and the implicit constant is
absolute.

We now consider an arithmetic projective variety π : X → SpecZ and a her-
mitian line bundle L on X . We denote by X = XQ the generic fiber of π and
by L the restriction of L on X . We assume that L is big. It turns out that
the lattice structure of π∗(L

⊗n) induces as above an R-filtration F on the vector
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space Vn = H0(X,L⊗n). The fundamental idea of the R-filtration approach is
that the direct sum

V t
•
=
⊕

n≥0

Fnt(Vn)

is actually a graded linear series of L. The theory of Okounkov bodies then allows
to attach to this graded linear series a convex body ∆(V t

•
) in Rd (with d = dim(X))

such that

vol(∆(V t
•
)) = lim

n→+∞

rk(Vn)

nd
.

A direct computation shows that
∫ +∞

0

rk(F t(Vn)) dt = n

∫ +∞

0

rk(V tn) =

(∫ +∞

0

vol(∆(V t
•
)) dt

)
nd+1 + o(nd+1).

Therefore Minkowski’s second theorem stated as above leads to

lim
n→+∞

ln#Ĥ0(L ⊗n)

nd+1
=

∫ +∞

0

vol(∆(V t
•
)) dt.

In particular, if one denotes by ∆̂(L ) the convex body

{(x, t) : t ≥ 0, x ∈ ∆(V t
•
)} ⊂ Rd+1,

then one can interpret the arithmetic volume v̂ol(L ) as (d + 1)!vol(∆̂(L )). One
can also introduce a level function ϕ

L
on the Okounkov body ∆(L) of the total

graded linear series of L with

ϕ
L
(x) = sup{t ∈ R : x ∈ ∆(V t

•
)}.

Then vol(∆̂(L )) identifies with the the integral of the function max(ϕ
L
, 0) on the

Okounkov body ∆(L) with respect to the Lebesgue measure.
The R-filtration approach is very flexible. It allows to separate difficulties arising

from different structure of the problems and reduce the problems of divers natures
to the study of graded linear series in the classical algebraic geometry setting.
We refer the readers to [4, 5] for further applications of this approach in different
settings.
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Toric degenerations of integrable systems on Grassmannians and
potential functions

Yuichi Nohara

(joint work with Kazushi Ueda)

Let Gr(2, n) be the Grassmannian of 2-planes in Cn. The symplectic reduction

Mr = Gr(2, n)//rT

of Gr(2, n) under the action of the maximal torus T ⊂ U(n) is isomorphic to the
polygon space, which parametrizes n-gons in the Euclidean 3-space with fixed side
lengths. For each triangulation Γ of a planer n-gon, Kapovich-Millson [4] and
Klyachko [5] constructed a completely integrable system on Mr, which we call the
bending system.

Theorem 3. For any triangulation Γ of an n-gon, there exists a completely inte-
grable system

ΦΓ : Gr(2, n) → R2(n−2)

which induces the bending system on Mr through the symplectic reduction.

Toric degenerations of Gr(2, n) are parametrized by triangulations of a planer
n-gon (Speyer-Sturmfels [7]). For a triangulation Γ, let XΓ denote the central fiber
of the corresponding toric degeneration.

Theorem 4. For each triangulation Γ, the moment polytope of the toric variety
XΓ coincides with the image ∆Γ = ΦΓ(Gr(2, n)) of the integrable system ΦΓ.
Moreover, ΦΓ admits a deformation into the toric moment map on XΓ, which
induces a toric degeneration of the bending system on the polygon space Mr.

As an application to Floer theory and mirror symmetry, we compute the po-
tential function in the sense of Fukaya, Oh, Ohta, and Ono [2]. For a Lagrangian

submanifold L in a symplectic manifold X , the potential function PO = POL

is defined by “counting” pseudo-holomorphic disks v : D2 → X with Lagrangian
boundary condition v(∂D2) ⊂ L. In the case where L is a Lagrangian torus orbit
in a compact toric manifold X , the potential function gives the superpotential of
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the Landau-Ginzburg mirror of X (Cho-Oh [1], Fukaya-Oh-Ohta-Ono [3]). For
Lagrangian torus fibers of ΦΓ, we obtain the following.

Theorem 5. The potential function of Lagrangian torus fibers of ΦΓ is a Laurent
polynomial given by

POΓ =
∑

triangles

(
y(b)y(c)

y(a)
+
y(a)y(c)

y(b)
+
y(a)y(b)

y(c)

)
,

where y(a) is a Laurent monomial associated with an edge a of a triangle, and the
sum is taken over all triangles in the triangulation Γ.

Theorem 6. For any pair (Γ,Γ′) of triangulations, the potential functions POΓ

and POΓ′ are related by a subtraction-free rational change of variables whose “trop-
icalization” is a piecewise-linear automorphism

TΓ,Γ′ : R2(n−2) → R2(n−2)

of the affine space such that TΓ,Γ′(∆Γ′ ) = ∆Γ. The map TΓ,Γ′ is defined over Z if
∆Γ is an integral polytope.
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Positivity of line bundles and Newton–Okounkov bodies

Victor Lozovanu

(joint work with Alex Küronya)

This is an account of a joint unpublished work with Alex Küronya. Newton–
Okounkov bodies, which are bounded convex sets, capture the behaviour of all
global sections of all multiples of a given big Cartier divisor at the same time.
Based on earlier work of Okounkov, Newton–Okounkov bodies were first intro-
duced in their whole generality in the work of Kaveh–Khovanskii [3] and Lazarsfeld–
Mustaţă [5]. Many general properties and explicit examples were studied in [5]
and [4]. Here we will explore the connections between Newton-Okounkov bodies
and positivity of line bundles on projective algebraic surfaces.
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For the rest of the talk let X be a smooth projective surface and let (C, x) be
an admissible flag on X , i.e. C ⊆ X an irreducible curve and x ∈ C is a smooth
point. If D is a big line bundle, then for an effective divisor D′ ∈ |D|, we define
the following valuation map

ν(C,x)(D
′) = (ordC(D

′),
(
(D′ − ordC(D

′)C).C
)
x
) ∈ Z2,

where the second coordinate is the local intersection number at x of the effective
divisors D′−ordC(D

′)C and C, having no common support (see [2, Exercise I.5.4]

for more detalied definitions). We say that D′ ∼Q
lin D, and say that D′ is rationally

linear equivalent to D, if and only if there exists m > 0 such that mD′ ∈ |mD|.
Then the Newton–Okounkov body of D is defined to be

∆(C,x)(D) := ν(C,x)
(
{D′ | D′ ∼Q

lin D effective Q− divisor}
)
⊆ R2.

On surfaces we also have Zariski decomposition for big divisors. This says that
one can write uniquely D = P (D) + N(D), where P (D) is nef, N(D) is effec-
tive, (P (D).N(D)) = 0 and the associated intersection matrix of the irreducible
components of N(D) is negative definite. Denote by ν = ordC(N(D)) and by
µ = max{t > 0|D − tC is effective }. If Dt := D − tC = Pt + Nt is the Zariski
decomposition for any t ∈ [ν, µ], then

∆(C,x)(D) = {(t, y) | 0 ≤ t ≤ µ, α(t) ≤ y ≤ β(t)},
where α(t) = ordx((Nt)|C) and β(t) = α(t) + (Pt.C). This presentation was
used in [4] to show that in reality all Newton–Okounkov bodies on surfaces are
polygons given by almost only rational data. Furthemore, ∆(C,x)(D) is a numerical
invariant. So, based on this, it becomes interesting to know if the shape of the
Newton–Okounkov polygons forces certain positivity properties on the divisor D.

In the case of surfaces there are two algebraic sets of a big divisor whose com-
plements encode the positive parts of the divisor. These are

Neg(D) =
⋃

C⊆Supp(N(D))

C and Null(D) =
⋃

P (D).C=0

C

For exapmple, if Neg(D) = ∅, then D is a big and nef divisor, and if Null(D) = ∅,
then D is ample.

Before stating the main result, for any λ > 0 denote the simplex of length λ
by ∆λ = {(t, y) ∈ R2

+|t+ y ≤ λ}. Under these circumstances the first goal of the
project was to prove the following theorem:
Theorem A. Let D be a big divisor on a smooth projective surface X . Then
(i) x /∈ Neg(D) if and only if there exists an admissible flag (C, x) such that the
Newton–Okounkov polygon ∆(C,x)(D) contains the origin (0, 0) ∈ R2.
(ii) x /∈ Null(D) if and only if there exists an admissible flag (C, x) and a positive
real number λ > 0 such that ∆λ ⊆ ∆(C,x)(D).

As a consequence, one obtains criteria for nefness and ampleness for big divisors
in terms of Newton–Okounkov polygons, in the vein of the classical Seshadri crite-
rion. Another consequence of this theorem describes which points on the boundary
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of the Newton–Okounkov polygons are given by valuations of Q-divisors rationally
equivalent to D. For any λ, λ′ > 0, denote by

∆λ,λ′ = {(t, y) ∈ R2
+ | λ′t+ λy ≤ λλ′} ,

the triangle with vertices of coordinates (0, 0), (λ, 0) and (0, λ′).
Corollary B. Let D be a big Q-divisor on X , such that ∆λ,λ′ ⊆ ∆(C,x)(D) for
some λ, λ′ > 0. Then all the rational points on the horizontal segment [0, λ)×{0}
and the vertical one {0}×[0, λ′) are given by valuations of rational effective divisors
rationally linear equivalent to D.

The statement for the vertical segment {0}× [0, λ′), can be obtained as a conse-
quence of [1, Theorem 2.13], whose proof is very complicated and technical. Instead
the above corollary can be obtained easily using the theory of Newton-Okounkov
polygons and the theorem above.

Another consequence of the above theorem is a criteria computing the Seshadri
constants from the Newton–Okounkov polygons. Let π : X ′ → X be the blow-up
of X at the point x and E be the exceptional divisor. The Seshadri constant
ǫ(D, x) = max{ǫ > 0|π∗(D)− ǫE is ample }. For any λ > 0, denote by

∆−1
λ = {(t, y) ∈ R2

+ | 0 ≤ t ≤ λ, 0 ≤ y ≤ t}
the triangle with vertices of coordinates (0, 0), (0, λ) and (λ, λ) Then we have
Corollary C. Let D be a big divisor on X . Then

ǫ(D;x) = sup{λ > 0 | ∆−1
λ ⊆ ∆(E,y)(π

∗(D))},
for any y ∈ E.

There are two remaining goals of this project. First, we would like to generalize
Theorem A to higher dimensions in the language of augmented and restricted base
loci associated to a big divisor. These loci are numerical invariants and as in the
surface case for Neg(D) and Null(D) their complement encodes the posivity of the
divisor. The second goal is to apply the theory of Newton-Okounkov bodies in
studying many questions related to Seshadri constants.

References

[1] Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, Mihnea Popa, Re-
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Norm. Supér. (4) 42 (2009), no. 5, 783–835.



Okounkov Bodies and Applications 1481

The Vinberg Monoid and Some of its Applications

Johan Martens

(joint work with Michael Thaddeus)

1. The Vinberg monoid

Let G be a connected reductive group, defined over an algebraically closed
field k, which we will assume to be C for convenience. The Vinberg monoid
SG is a canonical flat equivariant degeneration of G that picks up extra torus
symmetry. Its total space is a reductive monoid, whose group of units S×

G is given
by (G× TG)/ZG, where TG is a maximal torus of G, and ZG its centre. It can be
constructed (in characteristic 0) using the (algebraic) Peter-Weyl theorem for S×

G :

C[S×
G ] =

⊕

λ∈X+,µ∈X,λ−µ=
∑
miαi

C[G× TG]λ,µ,

with all mi ∈ Z, αi the simple positive roots of G, X the weights of G and X+ the
dominant weights, and k[G × TG]λ,µ the isotypical component corresponding to

(λ, µ). The Vinberg monoid SG is now defined to be Spec of the subring of k[S×
G ]

given by only keeping those isotypical components with all mi non-negative.
In [Vin95a] Vinberg introduced SG for semi-simple G in characteristic zero

(Vinberg refers to SG as the enveloping semi-group of G). This construction was
generalized by Rittatore [Rit01] to semi-simple groups over arbitrary algebraically
closed fields, and Brion and Alexeev [AB04] described the construction for arbi-
trary reductive groups in zero characteristic as above.

Let A be the affine GIT quotient SG//G × G. Vinberg shows that A is an
affine space, which is the affine toric variety for the torus TG/ZG determined by
the positive Weyl chamber for the adjoint group G/ZG. associated to G. The
morphism π : SG → A is flat and has integral fibres, the generic fibre being G
itself.

For semi-simple G, Vinberg shows that SG satisfies a universal property in
the category of reductive monoids, essentially saying that any reductive monoid
(satisfying some minor conditions) whose semi-simple part is isomorphic to G is
obtained from SG by base change by a morphism of an affine toric variety to A.

When thinking of SG → A as a degeneration of G, of particular interest is the
most degenerate fibre π−1(0). Vinberg [Vin95b] calls this the asymptotic semigroup
of G. It can be understood by modifying the ring structure on C[G]: for any G×G
isotypical f ∈ C[G]λ and g ∈ k[G]µ , Vinberg defines f ∗ g as the λ+ µ isotypical
component of fg. Alternatively, one can obtain a filtration on C[G] by choosing an
additive morphism h from X(G) to Z such that h is strictly positive on all positive
roots, and putting C[G](n) = ⊕h(λ)≤nCλ. The asymptotic semigroup of G is Spec
of the associated graded algebra. The morphism h also determines a morphism
C → AΠ, and Spec of the Rees algebra is then the base change of Sg → AΠ by
this morphism.
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2. Applications

We will outline here some uses of the Vinberg monoid. The first concerns a
non-abelian generalisation of the Cox or Delzant constructions of toric varieties or
symplectic toric manifolds, in algebraic or symplectic geometry respectively.

Recall that if we have a toric variety for a complex torus TC given by a fan
Σ, possibly coming from a polyhedral set P , these constructions realise the toric
variety (or symplectic toric manifold) as a global quotient. The standard approach
to this construction assumes that the rays in the fan generate the Lie algebra of
the (compact) torus; we shall denote this condition by †.

If † holds, the associated toric variety XΣ can be constructed as a geometric
quotient of an open subset (CN )o, defined by the combinatorics of the fan Σ, (where
N is the number of rays in Σ), by the kernel of the homomorphism (C∗)N → TC.
If Σ is simplicial, this is a geometric quotient, and if Σ comes from P this can be
understood as a GIT quotient, with the open set being the semistable locus.

Note that the condition † is always satisfied if Σ is complete, or if P is a polytope,
but not for many other cases. One can however make a small generalisation that
makes the condition † redundant: one can simply take the quotient of (CN )o×TC
by all of (C∗)N (see [MT11] or [CLS11, Thm. 5.1.17]).

Besides relaxing the condition †, this variant also has the advantage that it
allows for a non-abelian generalization of the construction, with the aid of the
Vinberg monoid. Indeed, the so-called toroidal compactifications of G, equivariant
for the action of G×G are classified by fans supported in a Weyl chamber of G.
Each such fan (again with N rays) gives rise to a morphism CN → AΠ. In joint
work with Michael Thaddeus we have showed that the toroidal compactification
can be constructed as follows:

Proposition 7 (Cox-Vinberg construction). With G and Σ as above, the cor-
responding toroidal compactification of G is given as the categorical quotient of
(CN )o ×A S

o
G by (C∗)N .

Here SoG is a certain open subvariety of SG defined by Vinberg, with the property
that the geometric quotient SoG/TG is the wonderful compactification of the adjoint
group G/ZG. In [MT11] it was shown that both the latter quotient, and, if Σ
comes from a polyhedral set P , the quotient in the property above both can be
understood as GIT quotients. Note that if G = TC is abelian, SG is just TC and
A is just a point, hence the construction just reduces to the variation of the Cox
construction. If G is already adjoint, and Σ is just its positive Weyl chamber, the
quotient is likewise just the one considered by Vinberg.

In symplectic geometry, one can interpret the construction for toric symplectic
manifolds as saying that every toric manifold (subject to condition †) is a sym-
plectic reduction of CN . The variant that relaxes † can then be understood as
saying that every toric manifold is a symplectic cut (à la Lerman) of T ∗T .

It is a well-known fact that the symplectic cut of a Hamiltonian T -manifold M
with respect to a polytope P can be obtained as the symplectic reduction by T of
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the Cartesian product of M and the toric manifold determined by P – one could
say that the symplectic toric manifolds are the universal symplectic cuts.

This of course begs the question if this symplectic cutting story also has a non-
abelian analogue. In joint work with Thaddeus [MT12], we showed that this was
indeed the case. The non-abelian version of symplectic cutting was introduced
by Woodward and Meinrenken, but one of the first applications (the cut of a co-
adjoint orbit) was also observed not to have any compatible equivariant Kaehler
structures, which seemed to leave little hope that the non-abelian cut had an
algebro-geometric counterpart, as the abelian cut. However, we observed that this
was still the case, under the condition that the polytope with respect to which one
cuts has all of its outward normal vectors lie in the positive Weyl chamber.

One can understand this in algebraic geometry as follows: letM be any (semi)-
projective linearised G-variety. Take the GIT-quotient M × SG by G, which is a
(canonical) degeneration of M over A – we will refer to it as M ∗ SG, following
[AB04]. For any fan in the (positive) Weyl chamber of G as above, take the GIT
quotient of

M ∗ SG ×A CN

by (C∗)N . This is the algebro-geometric version of the non-abelian symplectic cut.

3. Link with toric degenerations

The family M ∗ SG we considered above also occurred in the work of Alexeev
and Brion [AB04], and it is tempting to try to link it to other known degenerations.

It was suggested by Alan Knutson that indeed the toric degeneration of the flag
varieties F (at least in type A) linked to the Gelfand-Zetlin integrable system can
indeed be obtained this way, where one iterates this procedure for the descending
chain of groups G ⊃ G1 ⊃ . . . , i.e. one considers

((F ∗ SG) ∗ SG1
) ∗ ...

Each step in this iteration procedure picks up extra torus symmetry, until finally
the special fibre is indeed toric. Each suitable valuation now corresponds to a
morphism from C to the base of the degeneration, and the corresponding base
change of this ought to be exactly the toric degeneration over C. This suggestion
was also touched upon in the talk by Chris Manon in this workshop.

References

[AB04] Valery Alexeev and Michel Brion. Stable reductive varieties. I. Affine varieties. Invent.
Math., 157(2):227–274, 2004.

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of
Graduate Studies in Mathematics. American Mathematical Society, Providence, RI,
2011.

[MT11] Johan Martens and Michael Thaddeus. Compactifications of reductive groups as moduli
stacks of bundles, pre-print, 2011, arXiv:1105.4830.

[MT12] Johan Martens and Michael Thaddeus. On non-Abelian symplectic cutting. Transform.
Groups, 17(4):1059–1084, 2012.

[Rit01] Alvaro Rittatore. Very flat reductive monoids. Publ. Mat. Urug., 9:93–121 (2002), 2001.



1484 Oberwolfach Report 27/2014

[Vin95a] E. B. Vinberg. On reductive algebraic semigroups. In Lie groups and Lie algebras: E.
B. Dynkin’s Seminar, volume 169 of Amer. Math. Soc. Transl. Ser. 2, pages 145–182.
Amer. Math. Soc., Providence, RI, 1995.

[Vin95b] Ernest B. Vinberg. The asymptotic semigroup of a semisimple Lie group. In Semigroups
in algebra, geometry and analysis (Oberwolfach, 1993), volume 20 of de Gruyter Exp.
Math., pages 293–310. de Gruyter, Berlin, 1995.

Geometric mitosis and Newton–Okounkov polytopes

Valentina Kiritchenko

In [K], a convex-geometric algorithm was introduced for building new analogs
of Gelfand–Zetlin polytopes for arbitrary reductive groups. Conjecturally, these
polytopes coincide with the Newton–Okounkov polytopes of flag varieties for a
geometric valuation. I outline an algorithm (geometric mitosis) for finding collec-
tion of faces in these polytopes that represent a given Schubert cycle. For GLn
and Gelfand–Zetlin polytopes, this algorithm reduces to a geometric version of
Knutson–Miller mitosis introduced in [KST].

First, recall the mitosis on parallelepipeds from [KST, Section 6]. Let Π(µ, ν) ⊂
Rn be a parallelepiped given by inequalities µi ≤ xi ≤ νi for i = 1,. . . , n. For
every face Γ ⊂ Π(µ, ν), we now define a collection of faces M(Γ) called the mi-
tosis of Γ. Let k be the minimal number such that Γ ⊆ {xi = µi} for all
i > k (in particular, Γ 6⊆ {xk = µk}) and νi 6= µi for at least one i > k. If
no such k exists then M(Γ) = ∅. Under the isomorphism Rn ≃ Rk × Rn−k;
(x1, . . . , xn) 7→ (x1, . . . , xk)×(xk+1, . . . , xn) the face Γ gets mapped to Γ′×v where
v = (µk+1, . . . , µn) is a point and Γ′ ⊂ Rk is a parallelepiped in Rk. Let Ei ⊂ Rn−k

for i = k + 1,. . . , n be the segment with vertices (µk+1, . . . , µi−1, µi, νi+1 . . . , νn)
and (µk+1, . . . , µi−1, νi, . . . , νn) (that is, the union

⋃n
i=k+1 Ei is a broken line that

connects points (µk+1, . . . , µn) and (νk+1, . . . , νn)). Then M(Γ) consists of all
faces Γ′ × Ei for k + 1 ≤ i ≤ n such that Ei is not a single point (in particu-
lar, dim∆ = dimΓ + 1 for any ∆ ∈ M(Γ)). Definition of M(Γ) is motivated by
the identity [KST, Proposition 6.8] for a Demazure-type operator applied to an
exponential sum over Γ.

This geometric version of mitosis reduces easily to the combinatorial mitosis
of [KnM] as follows. Every face of Π(µ, ν) can be represented by a 2 × n table
(aij)i=1,2, 1≤j≤n whose cells are either filled with + or empty. Namely, the face
satisfies the equality xi = µi or xi = νi if and only if a1i = + or a2i = +,
respectively (in particular, if µi = νi then the i-th column has two +). On the
level of tables, operation M coincides the mitosis of [KnM] after reflecting our
tables in a vertical line.

Example 1: If Π(µ, ν) ⊂ R4, where µ = (1, 1, 1, 1) and ν = (2, 2, 1, 2) (that is,
µ3 = ν3), then the vertex Γ = {x1 = ν1, x2 = µ2, x4 = µ4} is represented by the
table

+ + +
+ +
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The set M(Γ) consists of two edges represented by the tables

+ +
+ +

&
+

+ + +

We now briefly recall a construction from [K, Section 3.3]. Let G be a connected
reductive group of semisimple rank r. Let α1,. . . , αr denote simple roots of G,
and s1,. . . , sr the corresponding simple reflections. Fix a reduced decomposition
w0 = si1si2 · · · sid where w0 is the longest element of the Weyl group of G. Let di
be the number of sij in this decomposition such that ij = i. Consider the space

Rd = Rd1 ⊕ . . .⊕ Rdr

and choose coordinates x = (x11, . . . , x
1
d1
; . . . ;xr1, . . . , x

r
dr
) with respect to this de-

composition. Put σi(x) =
∑di
j=1 x

i
j . Define the projection p of Rd to the real span

Rr of the weight lattice of G by the formula p(x) = σ1(x)α1 + . . .+ σr(x)αr . Let
λ be a dominant weight of G. There is an elementary convex-geometric algorithm
for constructing a polytope Pλ(i1, . . . , id) ⊂ Rd that yields the Weyl character
χ(Vλ) of the irreducible G-module Vλ, that is,

χ(Vλ) =
∑

x∈Pλ∩ Zd

ep(x)

(see Theorem [K, Theorem 3.6] for more details). The polytope Pλ can be used to
extend the results of [KST] from GLn to G since its polytope ring is isomorphic to
the cohomology ring of the complete flag variety G/B (with rational coefficients).

In particular, if G = SLn and w0 = (s1)(s2s1)(s3s2s1) . . . (sn−1 . . . s1), then we
get the classical Gelfand–Zetlin polytope [K, Theorem 3.4]. However, if G = Sp4
the resulting polytopes seem to be different from string polytopes of Berenstein–
Littelmann–Zelevinsky.

Example 2: Take G = Sp(4) (that is, d = 4 and r = 2) and w0 = s2s1s2s1
(here α1 denotes the shorter root and α2 denotes the longer one). Let λ = λ1ω1+
λ2ω2 be a strictly dominant weight of Sp4. Choose a point aλ = (a, b, c, d) such
that p(aλ) = w0λ = −λ. Label coordinates in R4 by x := x11 − a, y := x12 − b,
z := x21 − c and t := x22 − d. The polytope Pλ(2, 1, 2, 1) is given by inequalities

0 ≤ x ≤ λ1, z ≤ x+ λ2, y ≤ 2z,

y ≤ z + λ2, 0 ≤ t ≤ λ2, t ≤ y

2
(see [K, Example 3.4]). It has 11 vertices, hence, it is not combinatorially equiva-
lent to string polytopes for Sp4 defined in [L].

Remark:Let X = Sp4/B be the complete flag variety for Sp4, and Lλ the line
bundle on X corresponding to the weight λ. Recently, I checked that after a uni-
modular change of coordinates Pλ(2, 1, 2, 1) coincides with the Newton–Okounkov
polytope ∆v(X,Lλ) for the lowest term valuation v corresponding to the flag of
translated Schubert varieties: w0Xid ⊂ s1s2s1Xs2 ⊂ s1s2Xs1s2 ⊂ s1Xs2s1s2 ⊂ X
(cf. [Ka, Remark 2.3]).
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By construction, the intersection of the polytope Pλ := Pλ(i1, . . . , id) with
(c + Rdi) is either a parallelepiped Π(µ(c), ν(c)) or is empty for any c ∈ Rd.
This property of Pλ gives r mitosis operationsM1,. . . , Mr corresponding to paral-
lelepipeds Pλ∩(c+Rd1),. . . , Pλ∩(c+Rdr), respectively. Mitosis on parallelepipeds
allows us to produce collections of faces of Pλ that represent a given Schubert cycle
in G/B (in the sense of [KST, Theorem 5.1]), that is, the exponential sum over
the union of these faces yields the Demazure characters. The algorithm is as fol-

lows. For an element w ∈ W of the Weyl group, denote by [Xw] = [BwB/B] the
Schubert cycle corresponding to w. Let sj1 . . . sjℓ be a reduced decomposition of

w0ww
−1
0 such that (j1, . . . , jℓ) is a subword of (i1, . . . , id). Then [Xw] is represented

by the union of faces produced from a vertex of Pλ by applying successively the op-
erations Mjℓ ,. . . , Mj1 . For G = SLn and w0 = (s1)(s2s1)(s3s2s1) . . . (sn−1 . . . s1),
this algorithm can be described combinatorially using mitosis of Knutson–Miller
on pipe-dreams (see [KST]).

For other reductive groups, one can also describe the mitosis algorithm combi-
natorially using suitable analogs of pipe-dreams.

Example 3: We continue Example 2. The vertex aλ is the intersection of 4
facets: 0 = x, y = 2z, 0 = t, t = y

2 . Let us encode faces that contain aλ by tables
using the following rules:

+ ⇐⇒ 0 = x
+ ⇐⇒ 0 = t
+ ⇐⇒ t = y

2

+ ⇐⇒ y = 2z

Here are three examples:

aλ = +
+
+
+

; {0 = y = t} =

+
+ ; {y = 2z} =

+
.

Every face Γ defines two (possibly degenerate) rectangles Π1(Γ) = Γ∩{z = z0, t =
t0} and Π2(Γ) = Γ ∩ {x = x0, y = y0} (we choose x0, y0, z0 and t0 so that
the dimensions of Π1(Γ) and Π2(Γ) are maximal possible). For instance, the
face Γ = {0 = y = t} defines two segments. Note that Πi(Γ) is a face of the
rectangle Πi(Pλ), and hence, there is a well-defined operation Mi of mitosis on
parallelograms for i = 1, 2. It is not hard to check that in terms of tables, M1 and
M2 do the following:

aλ = +
+
+
+

M1−→
+
+
+

M2−→
+
+

M1−→
+

M2−→ = Pλ

aλ
M2−→ +

+
+

M1−→
+

+
& +

+
M2−→ + &

+
& +

M1−→ Pλ
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Non-displaceable Lagrangian tori in S2
× S2

Kaoru Ono

(joint work with K. Fukaya, Y.-G. Oh and H. Ohta)

I presented a continuum of Hamiltonianly non-displaceable Lagrangian tori in the
product of two copies of (S2, ω) based on my joint work [5] with K. Fukaya, Y.-G.
Oh and H. Ohta. Namely, we showed the following:

Theorem There exists a continuum of Lagrangian tori T (u), u ∈ (0, 1/2], in
(S2, ω)× (S2 × ω) with the following properties.
(1) If u 6= u′, T (u) is not Hamiltonianly isotopic to T (u′).
(2) T (u) is Hamiltonianly non-displaceable. In fact, a certain Floer cohomology
of T (u) is isomorphic to the ordinary cohomology of T 2 with coefficients in Novikov
ring.
(3) If u 6= u′, T (u) ∩ T (u′) = ∅.
(4) T (1/2) is a monotone Lagrangian torus.
(5) T (1/2) is not Hamiltonianly isotopic to S1

eq × S1
eq, i.e., the product of the

equator in (S2, ω).

For any closed embedded (relatively) spin Lagrangian sub manifold L in a closed
symplectic manifold (X,ω), we can construct a filtered A∞-algebra (H∗(L; Λ0),
{mk}). We introduced the universal Novikov ring Λ0 in [1], where we denote it
by Λ0,nov. (Forget the formal variable related to the Z-grading, the Novikov ring
consists of formal Laurent-type series with not just integer but real exponents.)
If m1 ◦m1 = 0, we have a cochain complex (H∗(L; Λ0),m1), whose cohomology is
the Floer cohomology of the pair (L,L). However, it is not the case, in general.
We can rectify it, if there exists a solution or a solution in weak sense of the
Maurer-Cartan equation for b ∈ H∗(L; Λ+) ⊕ H1(L;C)1 of total degree 1 (usual
cohomological degree plus the degree on the Novikov ring Λ0)

∞∑

k=0

mk(b
⊗k) = 0.

1Λ+ is an ideal in Λ0 consisting of formal sums with positive exponents. The case that
b ∈ H∗(L; Λ+) is due to FOOO and the case that b ∈ H1(L;C) is due to C.-H. Cho.
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An element b is called a solution in weak sense, the left hand side of the above
equation is proportional to the unit (Poincaré dual of the fundamental class of
L)2. We denote by MCweak(L) the gauge equivalence classes of solutions in weak

sense to the Maurer-Cartan equation. We define the potential function POL :
MCweak(L) → Λ+ by

∞∑

k=0

mk(b
⊗k) = POL(b)PD[L].

We can also deform the whole construction using an ambient cohomology class
b ∈ H∗(X ; Λ+) in X (bulk deformation). Then we obtain mb

k, MCb,weak(L) and

POLb .
In a series of papers [2], [3], [4], we studied Lagrangian Floer theory of La-

grangian torus fibers, i.e., Lagrangian tori appearing as inverse images of interior
points in the moment polytope under the moment map. Lagrangian Floer the-
ory in such a case is understood in terms of critical point theory of the potential
function.

For the proof of Theorem 1, we use the well-known deformation family of Hirze-
bruch surfaces. We have a holomorphic map π : X → C such that the fiber over

the origin 0 is isomorphic to F sing
2 and other fibers are F0, i.e., CP

1 ×CP 1 such

that it admits a simultaneous resolution π̃ : X̃ → C (the central fiber is replaced

by the Hirzebruch surface F2 of degree 2). Here F sing
2 is F2 with the (−2)-curve

contracted.
Let us take ǫ > 0 and a segment [0, ǫ] ∈ C. The Lagrangian tori T (u) is the

image of a certain family of Lagrangian tori L(u) in F sing
2 under the transportation

along characteristics of π−1([0, ǫ]). (We may assume the moment polytope of F sing
2

is

P (0) = {(u1, u2) ∈ R2|u1 ≥ 0, u2 ≥ 0, u1 + 2u2 ≤ 2}.
Then the Lagrangian torus L(u) is the fiber over (u, 1 − u), 0 < u ≤ 1/2.) For

given u > 0, we can regard it as a Lagrangian torus in F2 (not in F
sing
2 ) with an ap-

propriate Käbler structure. Namely, the toric Kähler surface F2(α) corresponding
to the trapezoid

P (α) = {(u1, u2) ∈ R2|0 ≤ u1 ≤ 1− α, 0 ≤ u2, u1 + 2u2 ≤ 2}
for a sufficiently small α > 0.

Since F2 is not Fano, but semi-Fano, the potential function may have contri-
butions more than those corresponding to the facets of the moment polytope.
Fortunately, we can compute the potential function of L(u) in F2(α) (there are
other methods due to Auroux and Chan-Leung-Lau). We can justify that the po-
tential function of T (u) ⊂ (S2, ω)× (S2ω) is obtained from the potential function
of L(u) ⊂ F2(α) by taking the limit α → 0. We can also compute the potential
function after bulk deformations by the class corresponding to the vanishing cycle,
which is a Lagrangian two-sphere and corresponds to the (−2)-curve in the central

2Here, for simplicity, we forget Z-grading
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fiber of π̃. This is the key ingredient of the proof of our Theorem (1) and (2). (The
statements (3) and (4) are clear from the construction.)

Finally, I would like to mention that these Lagrangian tori T (u) are super-
heavy with respect to a certain Calabi quasimorphisms (in the sense of Entov and
Polterovich) [6] section 23. The statement (5) follows from this fact. (S1

eq × S1
eq is

superheavy with respect to the Calabi quasimorphisms corresponding to all units
of four field factors of QH(S2 × S2), while T (1/2) is superheavy with respect to
only two of those. The vanishing cycle is superheavy with respect to the rest.) We
also have a similar example of continuum of Lagrangian tori in the cubic surface
[6] section 24.
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Symplectic geometry of the Vinberg monoid and branching problems

Chris Manon

In work of Harada-Kaveh, [HK] and Nishinou-Nohura-Ueda [NNU], the theory of
Okounkov bodies has found an interesting application in symplectic geometry and
Hamiltonian dynamics. These authors roughly show that to a flat toric degener-
ation M ⇒ M∆ of a smooth, projective variety M ⊂ Pm one can associate the
following information.

(1) A dense, open integrable systemMo ⊂M with momentum image µ(Mo) ⊂
∆, a dense open subset of the moment polytope ∆ of the toric varietyM∆.

(2) A continuous, surjective map Φ :M →M∆ which is a symplectomorphism
on Mo and provides a continuous extension µ̄ :M → ∆ of the momentum
map of Mo to M .

The map Φ in this construction, from now on referred to as the contraction
map, is built from Ruan’s gradient flow technology [R] on hypersurfaces of Kähler
manifolds. When the total space of the degeneration π : E → C is endowed
with a Kähler structure, Ruan’s theory ensures the existence of a map Φ from the
hypersurfaceM = π−1(1) to the special fiberM∆ = π−1(0). This construction can
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also be applied in cases where the degeneration M ⇒M∆ is not toric. Indeed one
could consider any degeneration where the special fiber comes with extra torus
symmetries, and thereby induce a Hamiltonian (not necessarily integrable) torus
action on a dense open subspace of M with analogous properties. With this in
mind, given a complex variety X with a Kähler structure, and a flat degeneration
X ⇒ Y to a variety Y with an action of a complex torus T , we refer to constructing
a surjective, continuous map Φ : X → Y with these properties as the problem of
finding a contraction map.

A drawback of the gradient-flow method for constructing Φ :M →M∆ is that
this map is not explicitly computable. Also, in its current form, the construction
applies only to smooth varieties ( or torus GIT quotients of smooth varieties). We
investigate examples of degenerations outside of these restrictions, which nonethe-
less possess a contraction map that can be computed.

0.1. Symplectic horospherical contraction. We fix a connected, reductive
complex group G, with Weyl chamber ∆ and maximal torus T . For any G−variety
X (say affine or projective), Popov [P] and Grosshans [Gr] have defined a flat,
G−stable degeneration X ⇒ Xc called the horospherical contraction. The coor-
dinate ring C[Xc] of this variety has the same isotypical decomposition as C[X ].

(1) C[X ] =
⊕

λ∈∆

Wλ ⊗ V (λ)

We let PX be the monoid of dominant weights which appear in this decomposition,
and ∆X be the real cone spanned by the weights in PX . The contraction X

c comes
with an additional action by T , which turns this isotypical decomposition into a
grading of C[Xc] by PX .

We let ∆∨ be the dual Weyl chamber (itself a Weyl chamber of the Langland’s
dual group) to ∆. Part of the theory of horospherical contraction associates a
G−invariant discrete valuation vh on C[X ] for every integral coweight h ∈ ∆∨.
The contraction Xc can be constructed by taking the associated graded ring of
C[X ] with respect to vh when h is in the interior of ∆∨.

We let K ⊂ G be a maximal compact subgroup, with maximal torus T ⊂ T . A
finite dimensional representation V of G can be given its standard K−invariant
Kähler form wV . This likewise induces the a K−invariant Kähler structure on
P(V ) by symplectic reduction. A G−subvariety X ⊂ V (resp. X ⊂ P(V )) can
then be given its singular stratification, and each piece of this stratification can
be given the structure of a smooth (possibly non-compact) Kähler manifold. We
call this the Kähler structure on X inherited from V (resp. P(V ).) The space X
likewise inherits a momentum mapping µX : X → k∗ from the ambient space.

Using this set up, our first result translates horospherical contraction into sym-
plectic geometry, and provides a contraction map associated to the horospherical
contraction degenerations. We make the technical assumption that G is a product
of a simply connected semisimple group with a torus.
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Proposition 8. For X ⊂ V (resp. P(V ) a variety with horospherical contraction
Xc, there is a Kähler structure on Xc which makes it a Hamiltonian T−space with
momentum image µT(X

c) = ∆X . Furthermore, there is a surjective, continuous
map ΦX : X → Xc which is a symplectomorphism from a dense, open, smooth
subspace Xo ⊂ X onto a T−stable subspace of Xc.

Note that it follows that Xo inherits the momentum map from Xc, which then
has a continuous extension to X.

The contraction Xc is constructed in the symplectic category by making use
of the symplectic implosion operation of Guillemin, Jeffrey, and Sjamaar, [GJS].
This operation is the Hamiltonian analogue of passing from a G−representation
to its space of highest weights, its input is a Hamiltonian K−space X , and its
output is a Hamiltonian T−space EX. As a Hamiltonian K ×T-space, Xc can be
constructed as a symplectic reduction at level 0 ∈ k∗ × t∗.

(2) Xc ∼= K × T\0[EX × ET ∗(K)]

Here ET ∗(K) is the imploded cotangent bundle of K (with respect to the right
action by K).

In order to compute ΦX : X → Xc on a point p ∈ X , one finds an element k ∈ K
such that µX(k ◦ p) ∈ ∆, the image ΦX(p) ∈ Xc is then the T-equivalence class of
([k◦p], [k−1, µX(k◦p)]) ∈ EX×ET ∗(K). Particulars of the geometry of symplectic
implosion then imply that this map is well-defined, surjective, continuous, and
smooth on a subspace Xo ⊂ X.

The result is a computable contraction map for a degeneration of a possibly
singular G−variety X . The construction also makes the subspace Xo explicit, it
is the inverse image of the principal face of X, this is the highest face in ∆ hit
by µX , under inclusion.

0.2. Branching degeneration, branching contraction. We apply both horo-
spherical contraction and its symplectic analogue to branching problems in the
representation theory of reductive groups. For a map φ : H → G of connected,
reductive groups, a resolution of the branching problem defined by φ is a rule for
deciding how many copies of an irreducible representation V (η) appears in an ir-
reducible representation V (λ) of G as decomposed under the map φ. This problem
can be uploaded into the geometry of an affine variety X(φ) (see e.g. [M]). This
variety has a TH × TG action, and its coordinate ring has the following isotypical
decomposition.

(3) C[X(φ)] =
⊕

η∈∆H ,λ∈∆G

HomH(V (η), V (λ))

Finding the dimension of the spaces HomH(V (η), V (λ)) can be aided in part
by finding a splitting of φ in the category of connected, reductive groups.

H
π−−−−→ F

ψ−−−−→ G
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Each space HomH(V (η), V (λ)) then further decomposes along π, ψ.

(4) HomH(V (η), V (λ)) =
⊕

µ∈∆F

HomH(V (η), V (µ))⊗HomF (V (µ), V (λ))

Notice that the components of this decomposition are isotypical spaces in the
coordinate ring of the variety X(π) × X(ψ). This observation is given geometric
meaning by the following application of horospherical contraction.

Proposition 9. For every integral weight h ∈ ∆∨
F , there is a discrete valuation vh

on C[X(φ)]. If h is chosen in the interior of ∆F , the associated graded algebra of
vh is the coordinate ring of the variety [X(π)×X(ψ)]/TF , where TF acts diagonally
through the TF × TF action on X(π)×X(ψ).

The degeneration [X(π) × X(ψ)]/TF then comes with a residual TF action.
Taking TH×TG GIT quotients at weights−η,−λ then produces a flat degeneration
of the ”projective branching variety” H\[O(η) × O(λ)], where O(λ) is the flag
variety of G associated to the highest weight λ. If φ = ψ ◦ π is induced from maps
of compact subgroups,

L
π−−−−→ J

ψ−−−−→ K
the symplectic analogue of horospherical contraction can then be applied to prove
the following.

Proposition 10. For φ = ψ ◦ π as above, there is a surjective, continuous map
Φπ,ψ : X(φ) → [X(π) × X(ψ)]/TF , which is a symplectomorphism on a dense,
open subspace Xo(φ) ⊂ X(φ).

The momentum image of the TL × TJ × TK action on [X(π) ×X(ψ)]/TF is a
cone P (π, ψ) ⊂ ∆L ×∆J ×∆K obtained as the real span of the triples of weights
η, µ, λ such that V (η) ⊂ V (µ) ⊂ V (λ). When applied to H\[O(η) × O(λ)], this
produces the following.

(1) A Hamiltonian J-action on a dense open subspace of H\[O(η)×O(λ)].

(2) A continuous map µJ ◦Φη,λ : H\[O(η)×O(λ)] → ∆F .

Similar to the contraction mappings ΦX : X → Xc above, these elements are
explicitly computable.

0.3. An example: The Gel’fand-Tsetlin system. Our results on branching
problems can then be modified and inductively applied to the chain of upper
diagonal inclusions of unitary groups.

(5) 1 ⊂ U(1) ⊂ U(2) ⊂ . . . ⊂ U(n)

The consequences for a GLn(C) flag variety O(λ) are as follows.
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(1) A cone ∆∨
1 × . . .×∆∨

n of valuations on the coordinate rings of O(λ).

(2) A toric degeneration (over C) O(λ) ⇒ X(GTn(λ)) to the singular toric
variety associated to the Gel’fand-Tsetlin polytope GTn(λ).

(3) The dense, open Gel’fand-Tsetlin integrable system Oo(λ) ⊂ O(λ).

(4) A continuous extension of the momentum map of the Gel’fand-Tsetlin sys-
tem to O(λ).

This follows much work on the algebraic geometry of the Gel’fand-Tsetlin system,
[HK], [NNU].

0.4. Further questions.

(1) Determine if the gradient-flow construction corresponding to some valua-
tion vh coincides with the contraction mapping ΦX in known cases. (Joint
with Rebecca Goldin and Brent Gorbutt)

(2) Study the relationship between the Hamiltonian systems in X(φ) corre-
sponding to different factorizations of φ. For example, is there always a
collection of factorizations such that any two points in H\[O(η) × O(λ)]
can be connected by the associated torus flows?
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Transforming metrics of a line bundle to the Okounkov body

David Witt Nystrom

The main motivation for studying Okounkov bodies has been their connection to
the volume of line bundles (or divisors). Recall that the volume of a line bundle
L is defined as

vol(L) := lim sup
k→∞

n!

kn
dim(H0(kL)),

and that L is said to be big if the volume is positive.
Let now h be a continuous hermitian metric on a big line bundle L, we then

call the pair (L, h) a metrized big line bundle. The notion of a metric volume of
a metrized big line bundle was introduced by Berman-Boucksom in [1]. Given a
metric h one has a natural norm on the the spaces of holomorphic sectionsH0(kL),
namely the supremum norm

||s||hk,∞ := sup{|s(x)|hk : x ∈ X}.
Let B∞(hk) ⊆ H0(kL) be the unit ball with respect to this norm.
H0(kL) is a vector space, thus given a basis we can calculate the volume of

B∞(hk) with respect to the associated Lebesgue measure. This will depend on the
choice of basis, but given a reference metric href one can compute the quotient

vol(B∞(hk))

vol(B∞(hkref ))

and this quantity will be invariant under the change of basis. The metric volume
of a metrized big line bundle (L, h), denoted by vol(L, h), is defined as the limit

(1) vol(L, h) := lim
k→∞

n!

2kn+1
log

(
vol(B∞(hk))

vol(B∞(hkref ))

)
.

The metric volume obviously depends on the choice of href as a reference metric
but it is easy to see that the difference of metric volumes vol(L, h)− vol(L, h′) is
independent of the choice of reference.

The definition of the metric volume is clearly reminiscent of the definition of
the volume of a line bundles. In fact, one easily checks that

vol(L, h)− vol(L, eh) = vol(L).

In [1] Berman-Boucksom prove that the limit (1) exists. They do this by proving
that it actually converges to a certain integral over the space X involving mixed
Monge-Ampere measures related to the metrics.

In the talk I explained a different way to prove that the limit exists using
Okounkov bodies, which also can be used to prove differentiability properties of
the metric volume as the line bundle varies. Given a metrized big line bundle
(L, h) I showed how to construct an associated convex function c[h] on the interior
of the Okounkov body of L which I call the Chebyshev transform of h. The
construction can be seen to generalize both the Chebyshev constants in classical
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potential theory and the Legendre transform of convex functions (and thus the
symplectic potential from toric geometry).

First for any point (α, k) ∈ Gamma(L) we let Aα,k denote the affine space of
sections in H0(kL) locally of the form

zα + higher order terms.

We define the discrete Chebyshev transform F [h] on Gamma(L) as

F [h](α, k) := inf{ln ||s||2hk,∞ : s ∈ Aα,k}.
A key observation now is that F [h] is subadditive. This allows us to use a mul-
tidimensional version of Fekete’s lemma to see that for any sequence (αi, ki) in
Gamma(L) such that ki → ∞ and αi/ki → p ∈ Delta(L)◦, the limit

lim
k→∞

1

ki
F [h](αi, ki)

exists and only depends on p.. We may therefore define the Chebyshev transform
c[h] of h by defining c[h](p) be that limit.

This construction is inspired by the work of Zaharjuta, who in [4] used subaddi-
tive functions on Nn when studying directional Chebyshev constants, and also by
the article [2] where Bloom-Levenberg extend Zaharjutas results to a more general
metrized setting, but still in Cn.

The connection to metric volumes is the following theorem.

Theorem 11. Let h and h′ be two continuous metrics on L. Then it holds that

(2) vol(L, h)− vol(L, h′) = n!

∫

∆(L)◦
(c[h′]− c[h])dλ,

where dλ denotes the Lebesgue measure on ∆(L).

The proof of Theorem 11 relies on the fact that one also can use L2-norms in-
stead of supremum norms to compute the Chebyshev transform. Then the right-
hand side in equation (2) can be interpreted as a limit of certain Donaldson bifunc-
tionals closely related and asymptotically equal to the ones used in the definition
of the metric volume. This then gives a new proof of the fact that the limit (1)
exists.

As an application, using the differentiability result of Berman-Boucksom and
some pluripotential theory and combining it with the new Okounkov body ma-
chinery one can prove that the metric volume is differentiable.

Theorem 12. The metric volume function is C1 on the open cone of big R-divisors
equipped with two continuous metrics.

Full details are found in [3].
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Local Newton-Okounkov bodies

Kiumars Kaveh

(joint work with Askold Khovanskii)

We apply techniques from the theory of semigroups of integral points and Newton-
Okounkov bodies (for the global case) to local algebraic geometry and commutative
algebra to obtain new results as well as new proofs for some previously known
results about multiplicities of ideals in local rings. For details see [KKh14].

Let R = OX,p be the local ring of a point p on an n-dimensional irreducible
algebraic variety X over an algebraically closed field k. Let m denote the maximal
ideal of R and let a be an m-primary ideal, i.e. a is an ideal containing a power
of the maximal ideal m. Geometrically speaking, a is m-primary if its zero set
(around p) is the single point p itself. Let f1, . . . , fn be n generic elements in a.
The multiplicity e(a) of the ideal a is the intersection multiplicity, at the origin,
of the hypersurfaces Hi = {x | f(x) = 0}, i = 1, . . . , n (it can be shown that this
number is independent of the choice of the fi). According to Hilbert-Samuel’s
theorem, the multiplicity e(a) is equal to:

(1) n! lim
k→∞

dimk(R/a
k)

kn
,

where dimk denotes the dimension as vector space over k. This result is analogous
to Hilbert’s theorem on the Hilbert function and degree of a projective variety.
More generally, let R be an n-dimensional Noetherian local domain over k (where
k is isomorphic to the residue field R/m and m is the maximal ideal). Let a be
an m-primary ideal of R. The Hilbert-Samuel function of the m-primary ideal a is
defined by:

Ha(k) = dimk(R/a
k).

For large values of k, Ha(k) coincides with a polynomial of degree n called the
Hilbert-Samuel polynomial of a. The Samuel multiplicity, e(a) of a is defined by
the limit (1) i.e. the leading coefficient of Ha(k) multiplied by n!.

It is well-known that the Samuel multiplicity satisfies a Brunn-Minkowski in-
equality [Te77, RS78]. That is, for any two m-primary ideals a, b ∈ R we have:

(2) e(a)1/n + e(b)1/n ≥ e(ab)1/n.

We generalize the notion of multiplicity to m-primary graded sequences of sub-
spaces. That is, a sequence a1, a2, . . . of k-subspaces in R such that for all k,m
we have akam ⊂ ak+m, and a1 contains a power of the maximal ideal m. We
recall that if a, b are two k-subspaces of R, ab denotes the k-span of all the xy
where x ∈ a and y ∈ b. In particular, a graded sequence a• where each ak is an
m-primary ideal, is an m-primary graded sequence of subspaces.
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For an m-primary graded sequence of subspaces we define multiplicity e(a•) to
be:

(3) e(a•) = n! lim
k→∞

dimk(R/ak)

kn
.

Note that it is not a priori clear that the limit exists.
We use convex geometric arguments to prove the existence of the limit in (3)

and a generalization of (2) to m-primary graded sequences of subspaces, for a large
class of local domains R.

We briefly discuss the convex geometry part of the story. Let C be a closed
strongly convex cone with apex at the origin (i.e. C is a convex cone and does not
contain any line). We call a closed convex set Γ ⊂ C, a cobounded C-convex region
if Γ is closed and convex and C \ Γ is bounded. The set of cobounded C-convex
regions is closed under addition (Minkowski sum of convex sets) and multiplication
with a positive real number. For a cobounded C-convex region Γ we call the volume
of the bounded region C \ Γ the covolume of Γ and denote it by covol(Γ). Also
we refer to C \ Γ as a C-coconvex body. In [KhT-a, KhT-b], similar to convex
bodies and their volumes (and mixed volumes), the authors develop a theory of
convex regions and their covolumes (and mixed covolumes). Moreover they prove
an analogue of the Alexandrov-Fenchel inequality for mixed covolumes. The usual
Alexandrov-Fenchel inequality is an important inequality about mixed volumes
of convex bodies in Rn and generalizes the classical isoperimetric inequality and
the Brunn-Minkowski inequality. In a similar way, the result in [KhT-a] implies
a Brunn-Minkowski inequality for covolumes, that is, for any two cobounded C-
convex regions Γ1, Γ2 where C is an n-dimensional cone, we have:

(4) covol(Γ1)
1/n + covol(Γ2)

1/n ≥ covol(Γ1 + Γ2)
1/n.

Let R be an n-dimensional Noetherian local domain. Given a valuation v with
values in Zn and certain good properties (which we call a good valuation) we
associate a convex cone C ⊂ Rn that is the closure of the convex hull of v(R\{0}).
Also to an m-primary sequence of subspaces a• we associate a cobounded C-convex
region Γ(a•) by:

(5) Γ(a•) = conv(
⋃

k>0

{v(f)/k | f ∈ ak}).

If R is an analytically irreducible local domain it has a good valuation (this relies
on a deep theorem of Izumi). See [KKh14] for details of definitions.

Theorem 1. The limit in (3) exists and:

(6) e(a•) = n! covol(Γ(a•)).

Theorem 2. Let R be an analytically unramified Noetherian local domain of di-
mension n over a field k and let a•, b• be m-primary graded sequences of subspaces
then:

e(a•)
1/n + e(b•)

1/n ≥ e(a•b•)
1/n.
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The existence of limit (3) has been shown in [Cu-a] and [Fu] with similar methods.
Also the Brunn-Minkowski inequality in Theorem 2 also been proved indepen-
dently in [Cu-b] using similar methods.

The construction of Γ(a•) is an analogue of the construction of the Newton-
Okounkov body of a linear system on an algebraic variety (see [Ok03], [Ok96],
[KKh12], [LM09]). In fact, the approach and results in the present paper are anal-
ogous to the approach and results in [KKh12] regarding the asymptotic behavior
of Hilbert functions of a general class of graded algebras. On the other hand, the
construction of Γ(a) generalizes the notion of the Newton diagram of a power series
(see [Ku76] and [AVG85, Section 12.7]). To a monomial ideal in a polynomial ring
(or a power series ring), i.e. an ideal generated by monomials, one can associate
its (unbounded) Newton polyhedron. It is the convex hull of the exponents of the
monomials appearing in the ideal.

The Brunn-Minkowski inequality proved in this paper is closely related to
the more general Alexandrov-Fenchel inequality for mixed multiplicities. Take m-
primary ideals a1, . . . , an in a local ring R = OX,p of a point p on an n-dimensional
algebraic variety X . The mixed multiplicity e(a1, . . . , an) is equal to the inter-
section multiplicity, at the origin, of the hypersurfaces Hi = {x | fi(x) = 0},
i = 1, . . . , n, where each fi is a generic function from ai. Alternatively one defines
the mixed multiplicity as the polarization of the Hilbert-Samuel multiplicity e(a).
The Alexandrov-Fenchel inequality is the following inequality among the mixed
multiplicities of the ai:

(7) e(a1, a1, a3, . . . , an)e(a2, a2, a3, . . . , an) ≥ e(a1, a2, a3, . . . , an)
2

When n = dimR = 2 it is easy to see that the Brunn-Minkowski inequality
(2) and the Alexandrov-Fenchel inequality (7) are equivalent. By a reduction of
dimension theorem for mixed multiplicities one can get a proof of the Alexandrov-
Fenchel inequality (7) from the Brunn-Minkowski inequality (2) for dim(R) = 2
(see [Te77], [RS78] and [KKh-a]).
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Counting vertices in Gelfand–Zetlin polytopes

Vladlen Timorin

(joint work with Pavel Gusev and Valentina Kiritchenko)

This talk is based on results of [1].
Fix a positive integer k, and consider all partitions of the form 1i1 . . . kik (1

with multiplicity i1, . . . , k with multiplicity ik) and the Gelfand–Zetlin polytopes
GZ(1i1 . . . kik) corresponding to these partitions. Let Ek stand for the exponen-
tial generating function for the number V (1i1 . . . kik) of vertices in the polytope
GZ(1i1 . . . kik), i.e., the formal power series

Ek =
∑

i1,...,ik≥0

V (1i1 . . . kik)
zi11
i1!

. . .
zikk
ik!

.

We have obtained the following partial differential equation on Ek:
(

∂k

∂z1 . . . ∂zk
−
(

∂

∂z1
+

∂

∂z2

)
. . .

(
∂

∂zk−1
+

∂

∂zk

))
Ek = 0.

It follows that, for example, E1(z1) = ez1, E2(z1, z2) = ez1+z2I0
(
2
√
z1z2

)
, where

I0 is the modified Bessel function of the first kind with parameter 0:

I0(t) =

∞∑

n=0

t2n

n!2
.

It is also interesting to consider the ordinary generating function for the numbers
V (1i1 . . . kik):

Gk(y1, . . . , yk) =
∑

i1,...,ik≥0

V (1i1 . . . kik)yi11 . . . yikk .

We have obtained difference equations on this function. For every power series f
of the variables y1, . . . , yk, we define the action of the divided difference operator
∆i on f as

∆i(f) =
f − f |yi=0

yi
.
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The function Gk satisfies the following equation:

(∆1 . . .∆k − (∆1 +∆2) . . . (∆k−1 +∆k))Gk = 0.

For k = 1, 2 and 3, this function can be computed explicitly. It is not hard to
see that

G1(y1) =
1

1− y1
, G2(y1, y2) =

1

1− y1 − y2
.

The function G3(x, y, z) is equal to

2xz − y(1− x− z)− y
√
1− 2(x+ z) + (x− z)2

2(1− x− z)((x+ y)(y + z)− y)
.

This formula for G3 is deduced from the difference equation. Note, however, that
because of the second power of ∆y appearing in this difference equation, we have
to use the fact that G3 is a power series rather than a function with possible
singularities at (0, 0, 0).

The numbers Vk,ℓ,m = V (1k2ℓ3m) can be represented as the coefficients of
certain polynomials. Namely, the number Vk,ℓ,m coincides with the coefficient
with xkzm in the polynomial

1− xz

1 + xz

(
(1 + x)k+ℓ+m(1 + z)k+ℓ+m − (x+ z)k+ℓ+m

)
.

This implies the following explicit formula for the numbers Vk,ℓ,m (k, ℓ,m > 0):

Vk,ℓ,m =

(
s

k

)(
s

m

)
+ 2

k∑

i=1

(−1)i
(

s

k − i

)(
s

m− i

)
.

Note that the sum
∑k
i=1(−1)i

(
s
k−i

)(
s

m−i

)
can be expressed as the value of the gen-

eralized hypergeometric function 3F2, namely, it is equal to
(
s

k−1

)(
s

m−1

)
3F2(1, 1−

k, 1−m; 2 + ℓ+m, 2 + k + ℓ;−1).

Open problems.

(1) Prove or disprove: the generating function G4 is algebraic. Note that G1

and G2 are rational, and G3 is algebraic.
(2) Deduce differential or difference equations on the generating functions for

the f -vectors and for the modified h-vectors of Gelfand–Zetlin polytopes.
(3) Express the generating function Ek in terms of multidimensional residues.
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Positivity of Chern classes of Schubert cells and varieties

June Huh

There is a good theory of Chern classes for singular or noncomplete complex
algebraic varieties. If X◦ is a locally closed subset of a complete variety X , then
the Chern-Schwartz-MacPherson class of X◦ is an element in the Chow group

cSM (X◦) ∈ A∗(X),

which agrees with the total homology Chern class of the tangent bundle of X
if X is smooth and X = X◦. The Chern-Schwartz-MacPherson class satisfies
good functorial properties which, together with the normalization for smooth and
complete varieties, uniquely determines it.

If α is a partition, then there is a corresponding Schubert variety S(α) in the
Grassmannian of d-planes in E, parametrizing d-planes which satisfy incidence
conditions with a flag of subspaces determined by α. The Schubert variety is a
disjoint union of Schubert cells

S(α) =
∐

β≤α

S(β)◦.

Since each Schubert cell S(β)◦ is isomorphic to an affine space, the Chow group of

S(α) is freely generated by the classes of the closures
[
S(β)

]
. Therefore we may

write

cSM
(
S(α)◦

)
=
∑

β≤α

γα,β
[
S(β)

]
∈ A∗

(
S(α)

)

for uniquely determined coefficients γα,β ∈ Z.

Various explicit formulas for these coefficients are obtained by Aluffi and Mihal-
cea in [AM09]. Based on substantial computer calculations, they conjectured that
all γα,β are nonnegative [AM09, Conjecture 1]. Since the cone of k-dimensional ef-

fective cycles in S(α) is generated by the classes of k-dimensional S(β) with β ≤ α,
the conjecture is equivalent to the statement that the k-dimensional component
cSM

(
S(α)◦

)
k
is effective for all k.

The main result of [Huh13] verifies this conjecture.

Theorem. There is a nonempty reduced and irreducible k-dimensional subvariety
Z(α) of S(α) such that

cSM
(
S(α)◦

)
k
=
[
Z(α)

]
∈ Ak

(
S(α)

)
.

The proof is based on an explicit description the Chern class of a vector bundle
at the level of cycles. This vector bundle lives on a carefully chosen equivariant
desingularization of S(α), and it is not globally generated in general.

Finding a positive combinatorial formula for γα,β remains as a very interesting

problem.

Question (A). Is there a combinatorial proof of the nonnegativity?
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It is known that γα,β is the number of certain nonintersecting lattice paths

joining pairs of points in the plane when d = 2 [AM09]. The reader will find useful
discussions and numerical tables of γα,β in [AM09, Mih07, Jon07, Jon10, Str11,

Web12].
Conjecture of Aluffi and Mihalcea was stated and proved for Schubert cells

in Grassmannians. One may ask whether the same is true for Schubert cells in
generalized flag varieties.

Question (B). Are these numbers nonnegative for Schubert cells in other flag
varieties?

In other words, one asks whether the Chern class of a B-orbit in the varietyG/P
is effective, where B is a Borel subgroup of a connected reductive group G and P
is a parabolic subgroup of G containing B. I conjecture that, with little evidence,
the answer is ‘yes’. The first step in testing this conjecture would be to generalize
the explicit Chern class formulas in [AM09] to Schubert cells in generalized flag
varieties.
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Algebraic geometry related to the BKK formula for exponential sums

Boris Kazarnovskii

1. Let Λ ⊂ Cn
∗ be a finite set, where Cn

∗ is dual to Cn. The function f on Cn

f(z) =
∑

λ∈Λ,cλ∈C

cλ e
〈z,λ〉

is called exponential sum (ES) with the support Λ. The convex hull ∆(f) of the
support Λ is called the Newton polyhedron of f .

Let SΛ be a space of systems of ESs with a fixed set of supports Λ = (Λ1, · · · ,Λn).
The zero set of a system F ∈ SΛ is infinite. The BKK formula (theorem 13) com-
putes its density. Let N(R) be a number of isolated zeroes of a system in the ball
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B(R) of radius R centered at 0 and let σn be a volume of n-dimensional ball of

radius 1. The limit limR→∞
N(R)
σnRn is called the density of a zero set.

The subset D ⊂ SΛ is called a discriminant set if
1. theorem 13 holds for D
2. the measure of D is zero
3. SΛ \D is connected

Theorem 13 (BKK type formula). For a system F ∈ SΛ \D

(1) lim
R→∞

N(R)

σnRn
=

1

(2π)n
n!P (∆1, · · · ,∆n),

where P (∆1, · · · ,∆n) is a mixed pseudo-volume of Newton polyhedra of the system

The mixed pseudo-volume ([1, 13]) is an analog of a mixed volume depending
not only on convexity but on complex structure as well. The support Λ ⊂ ReCn∗

is called quasialgebraic. ES with a quasialgebraic support is also called quasialge-
braic. For convex bodies contained in ReCn∗ their mixed pseudo-volume coincides
with a mixed volume. For quasualgebraic ESs with supports Λi ⊂ Zn ⊂ ReCn∗

formula (1) is equivalent to the BKK formula for polynomials.

Example 1 (1-dimensional binomial f(z) = eλz − c). The zero set of f is the

arithmetic progression { log(c)λ + 2πi
λ Z} and the density equals to |λ|

π .

The existence of a discriminant set is proved only for the following two cases
1. for a general enough set of supports Λ (B. Kazarnovskii, [1])
2. for a quasialgebraic set of supports Λ (A. Khovanskii, [2])

There exists the conjectured algebraic version of BKK theorem for ESs. I
proved it for quasialgebraic system of two variables. It is related to some well-
known statements of algebraic geometry, such as conjectures of Mordell-Lang and
Schanuel. This relation is the main subject of the talk.
2. The algebraic discriminant set. Let fi =

∑
λ∈Λi

cλ e
〈z,λ〉. Consider the

system F = (f1, f2) of quasialgebraic ESs of 2 variables with the set of supports
Λ = (Λ1,Λ2) and the Newton polygons ∆1,∆2. Let ∆ = ∆1+∆2 be a Minkowski
sum. For a side δ of ∆ denote by δ1, δ2 the faces-summands of δ (i.e., δ = δ1 + δ2
where δi is a face of ∆i).

Definition 1 (truncation of a system). Let δ be a side of a polygon ∆. Let
f δi denote the ES f δi =

∑
λ∈δi

cλ e
〈z,λ〉. The system F δ = (f δ1 , g

δ
2) is called the

δ-truncation of the system F .

Definition 2 (algebraic discriminant set). We say that F ∈ Dalg if there exists a
side δ of ∆ such that the ESs f δ1 and f δ2 have a nontrivial common divisor in the
ring of ESs.

It’s easy to see that Dalg is an algebraic variety in the space SΛ.

Theorem 14 (algebraic version of exponential BKK). The algebraic variety Dalg

is a discriminant set.
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The algebraic nondegeneracy of a system does not provide the absence of a non-
singleton points of the zero set. The next statement gives some a priori description
of non-discrete part of a zero set [8].

Theorem 15. Any non-discrete component of the zero set of F ∈ SΛ \Dalg is an
affine complex line orthogonal to some side of the polygon ∆.

Remark 1. We can prove (but do not formulate it) that the set of these lines is
”small”. The stronger statement (corollary 4) follows from conjecture 17.

3. Ritt theorem. The theorems 14, 15 are related to some algebra of ESs dis-
covered by Ritt [3].

Theorem 16 (Ritt theorem). Let f, g be ESs of one variable. Assume that f/g
is an entire function. Then f/g is an ES.

The theorem 16 has a straightforwardmultidimensional generalization [4]. There
are many publications dedicated to the 1-dimensional case (for example [5, 6, 7]).

Conjecture 17. Let f, g be ESs of one variable without non trivial common divisor
in the ring of ES. Then the set of zeroes of the system f = g = 0 is finite.

It looks like the conjecture 17 was known a long time ago but was never pub-
lished. The converse statement to the conjecture 17 is obvious (follows from 1-
dimensional BKK). Let us state three multidimensional corollaries of the conjec-
ture 17.

Corollary 4. The set of non-discrete components from theorem 15 is finite.

Let f, g be quasialgebraic ESs without common divisors and let the Z be a set
of their imaginary common zeroes. The finiteness of Z follows from conjecture 17
(and is also not proved yet). It is equivalent to the following statement.

Corollary 5. Let f, g be trigonometric polynomials on a real n-dimensional torus
T n and let X be a set of their common zeroes. Suppose that codim RX = 2. Then
for any dense geodesic line ξ on T n the set ξ ∩X is finite.

Corollary 6. Let the X be a set of zeroes of the trigonometric polynomial g and
G be a dense cyclic subgroup of the real n-dimensional torus T n. Then the set
G ∩X is finite.

The corollary 6 follows from the so-called ”Mordell–Lang conjecture” (which in
fact is a theorem, in contrast to its title).
4. Mordell-Lang conjecture. Recall the formulation of the Mordell-Lang con-
jecture for a complex torus (for example [12]). An abelian group G is said to be a
group of finite rank if exists a finitely generated subgroup H of G, such that G/H
is a torsion group. Let A be an algebraic subvariety of (C∗)n. Let A′ denote the
union of all shifted subtori contained in A. Mordell-Lang conjecture: let G be a
subgroup of (C∗)n of a finite rank. Then the set (A \A′) ∩G is finite.

Present one more conjecture generalizing both the conjecture 4 and the Mordell–
Lang conjecture.
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Definition 3. Let A ⊂ (C∗)n be an irreducible algebraic variety and x ∈ A. Let
T be a proper subtorus of (C∗)n of nonzero dimension and Xx,T be an irreducible
component of A∩(xT), contained the point x. The point x is said to be anomalous
if ∃T: dimXx,T > max(0, dimT+dimA− n).

Theorem 18 (Bombieri, Masser, Zannier, [11]). The set of anomalous points of
A is an algebraic subvariety.

Let A ⊂ (C∗)n be an algebraic variety of codimension > k and let A′ be a
subvariety of anomalous points of A.

Conjecture 19. Let L be a k-dimensional subspace of Cn and let exp(L) ⊂ G,
where G is a subgroup of (C∗)n, such that the quotient G/ exp(L) is a group of
finite rank. Then the set (A \A′) ∩G is finite.

For k = 0 this statement coincides with the Mordell-Lang conjecture. For k = 1
this statement gives the strengthening of conjecture 17.

References

[1] B. Kazarnovskii, On zeroes of exponential sums, DAN USSR, 1981, 257:4, p.804–808
[2] A. G. Khovanskii, Fewnomials, American Mathematical Soc., 1991
[3] Ritt G.F., On the zeros of exponential polynomials, Trans. Amer. Math. Soc., 31, 1929,

680-686
[4] V. Avanissian and R. Gay, Sur une transformation des fonctionelles analytiques et ses

applications, Bull. Soc. Math. France, 103:3, 341–384 (1975)
[5] Peter D. Lax, The quotient of exponential polynomials, Duke Math. J. 15:4 (1948), 967–970
[6] V. P. Potapov, On divisors of almost periodic polynomial, Collection of Papers of Institute

of Mathematics of Ukrainian Academy of Sciences, 12, (1949), 36–81
[7] A. Shields, On quotients of exponential polynomials, Pure Appl. Math., 1963, 16:1, p.27–31
[8] B. Ja. Kazarnovskii, Exponential Analytic Sets, Funk. Anal. i Priložen., 1997, 31:2, 15-26
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On asymptotic behavior of multiplicities of reductive group actions

Takuya Murata

Let G be a connected reductive algebraic group over an algebraically closed field
k of characteristic zero, V a finite-dimensional G-module and X = Proj(A) ⊂
P(V ) = PN be a closed invariant subvariety.

Choose a maximal torus and a Borel subgroup T ⊂ B in G and let U be
the unipotent radical of B. Let Λ+ be the intersection of the character group
Hom(T,Gm) with the positive closed Weyl chamber (in say RdimT ).
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For each λ ∈ Λ+, let V λ be the corresponding irreducible module and let (using
the Frobenius reciprocity)

mAl
(λ) = dimHomG(V

λ, Al) = dimAUl,λ,

that is, the number of times V λ appears in the l-th degree piece of A.
Our work concerns the asymptotic behavior of mAl

(λ). More precisely, we have
two results: one when G is a torus and the other when G is reductive in general.
The first one generalizes [Br91] (except G finite) and the second recovers his.

Theorem 20. Let R ⊂ ⊕∞
l=0H

0(X,OPN (l)|X) be a graded subalgebra (need not
be finitely generated). Assume, for large l, a generic orbit in SpecRl is closed and
a generic stabilizer in SpecRl is trivial. (”generic” can be made more precise.) If
ml(λ) 6= 0 for large l, then, for any λ ∈ Λ+,

lim
l→∞

mRl
(λ)/ld = deg(X//G)/d!

where d = dimX//G = dimProj(RG).

For any λ ∈ Λ+, we put X//λG = (G/Pλ×X)//G. As (V λ)∗ = H0(G/Pλ, Lλ),
Lλ line bundle with linearlization corresponding to λ,[AB04] we have (cf. Ch. II,
Exercise 5.11. in [Hart77])

X//λG = Proj(⊕∞
l=0(V

lλ∗ ⊗Al)
G) = Proj(AUl,lλ).

Moreover, if k = C and if λ is a regular value of the moment map for the complex
projective space into which X is embedded, then by the Kempf-Ness theorem
X//λG can be identified with the symplectic reduction of X at λ.

We write △Z(L) for the Okounkov body of a line bundle L on a projective
variety Z. Its volume is the self-intersection number of L. For simplicity, we also
write voln(Z) = voln(△Z(OZ(1))). If k = C, voln(Z) is the symplectic volume of
the regular locus of Z (which is a symplectic manifold with the symplectic form
restricted from the ambient projective space).

We also let X [s] = Proj(⊕∞
l=0Als) (and use the similar notation for any other

projective schemes over k.) Let q = dimG/Pλ. We need to consider the following
continuity condition: as s→ ∞

(∗) sq vold+q(X [s]//λG) ∼ (dimV λ) vold(X//G).

This is not a severe condition. For example, if k = C, it is equivalent to:

vold+q(X//λ/sG)

volq(Oλ/s)
→ vold(X//G),

which is, if G is a torus, the Duistermaat-Heckman theorem.
With this additional assumption, Theorem 20 continues to hold (which is pre-

cisely the one in [Br91].)
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Theorem 21. Assume (*) and assume, for large l, a generic orbit in SpecAl is
closed and a generic stabilizer in SpecAl is trivial. If ml(λ) 6= 0 for large l, then,
for any λ ∈ Λ+,

lim
l→∞

mAl
(λ)/ld = dim(V λ) deg(X//G)/d!.

We also note that the theorem says equivalently (under the continuity): mAl
(λ) ∼

vold+q(X
[s]//λG). In this form, it is a sort of the special case of asymptotic

Riemann-Roch. (In fact, it may be mentioned that the theorem is also a con-
sequence of Meinrenken’s Riemann-Roch for multiplicity.)

1. Proofs

The proof of the torus case is based on a nice simple convex-geometry obser-
vation: given a convex compact set △ ⊂ Λ × Zd, let ml(λ) denote the number of
integral points lying above λ and in l△; i.e., ml(λ) is the cardinality of the fiber
Sl,λ = l△∩ (λ+ Zd) of the coordinate projection of S = l△∩ ZN over (l, λ). If 0
is in the interior of △, then, clearly, ml(λ) ∼ voll(l△∩ (λ+Rd)) ∼ voll(l△∩Rd).
The boundary case (i.e., 0 is on the boundary) is much tricker.

For the reductive case, the main issue is of dimension. (We also do not know of
a nice convex-geometry picture, a counterpart to the torus case.) In his original
work, Okounkov considered the map (induced by a linear map) p : △X → P where
P is the moment polytope of X and △X is the Okounkov body of X . p plays a
role of a moment map if our group G is a torus: P lives in the Euclidean space of
dimension equal to the dimension of a maximal torus and dim△X = dimX. On
the other hand, the moment map with respect to a maximal compact subgroup
has target in the Euclidean space of dimension equal to the dimension of G. (The
main role of the continuity hypothesis in the theorem is to correct this dimension
discrepancy.)

Given the above, we introduce the semigroup homormphism

β : Λ+′ → Λ+

where Λ+′
= v′(k[G]U − 0) some valuation v′ (we can use the construction at

[Ka1X] but for the computational purpose, a less explicit valuation would do.)
Let φ be the projection

S
def
= {(l, λ, v(f))|0 6= f ∈ AUl,λ} → Λ+.

(v is a valuation related to v′.)
The reductive case then follows (non-trivially) from the next proposition:
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Proposition 22. φ factors through β:

Λ+′

β

��

S

φ′
99ssssssss

φ %%▲
▲▲

▲▲
▲▲

▲

Λ+
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Divisors on Bott-Samelson varieties

Dave Anderson

The cone of (pseudo)effective divisors on a nonsingular projective variety X plays
a key role in the study of the birational geometry of X . In general, however,
this invariant is quite difficult to compute explicitly. An exception is a situation
that occurs frequently in applications to representation theory: if X is equipped
with the action of a connected solvable group B which has a dense orbit U , then
the irreducible components of X \ U generate the effective cone Eff(X). (More
generally, Eff(X) is generated by B-invariant divisors, although there may be
infinitely many of them. One applies Sumihiro’s theorem [6, 4] to linearize any
given line bundle, and then the Lie-Kolchin theorem to find a semi-invariant section
whenever there is a nonzero section.)

In this talk, I explain how to compute the effective cone of a Bott-Samelson
variety X = X(α1, . . . , αd) associated to a reductive (or Kac-Moody) group and
an arbitrary sequence of simple roots αi. When the sequence is reduced, meaning
that the corresponding map to the flag variety is birational onto its image, there
is a dense B-orbit and X falls into the “easy” situation described above; in fact,
the generators are quite simple to describe. However, in general there will not be
a dense orbit and the problem is nontrivial.

Before stating the theorem, it is worth pointing out that the nef cone of X has a
simple description for any sequence of simple roots: one construction of X realizes
it as an iterated tower of P1-bundles, and Lauritzen and Thomsen show that the d
universal line bundles O(1) for these bundles generate both the Picard group and
the nef cone [5]. On the other hand, an argument similar to the one given in [1]
produces a divisor ∆ such that (X,∆) is log Fano, so that one knows Eff(X) is
finitely generated [3].

To describe the theorem, let G be a reductive (or Kac-Moody) group, with Borel
subgroup B and maximal torus T , and let W be the corresponding Weyl group.
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Given any simple root α, let Pα ⊃ B be the corresponding minimal parabolic.
Given a sequence of simple roots α = (α1, . . . , αd), the Bott-Samelson variety is

X(α) = Pα1
×B Pα2

×B · · · ×B Pαd
/B,

and we can write points of X = X(α) as [p1, . . . , pd] with pi ∈ Pαi
. For 1 ≤ i ≤ d

there are standard divisors Xi defined by requiring pi = e; these are also Bott-
Samelson varieties, since one evidently has Xi

∼= X(α1, . . . , α̂i, . . . , αd). It is not
hard to see that the Xi give another set of generators for the Picard group of X ,
and their union forms a normal crossings divisor in X .

For each i there are maps φi : X → G/B, defined by sending [p1, . . . , pd] to

p1 · · · piB. Define wi ∈ W to be such that φi(X) = X(wi) = BwiB/B ⊆ G/B.
(Since φi is B-equivariant and proper, one knows its image is equal to some Schu-
bert variety.) These elements can also be described as the Demazure product
wi = sα1

⋆ · · ·⋆ sαi
. In particular, each wi is equal to the greater (in Bruhat order)

of wi−1 or wi−1sαi
.

Finally, there are also maps πi : X → X(α1, . . . , αi−1), defined by sending
[p1, . . . , pd] to [p1, . . . , pi−1].

Theorem. The effective cone Eff(X) is generated by X1, . . . , Xd, together with a
divisor Di for each i such that wi = wi−1. This divisor is the unique irreducible
component of φ−1

i X(wisαi
) which πi maps surjectively onto X(α1, . . . , αi−1).

The proof deduces the statement for Bott-Samelson varieties from a more general
recipe describing Eff(Y ) in terms of Eff(Z) in case Y → Z is a certain type of P1

bundle.
In addition to what being somewhat interesting in their own right, Bott-Samelson

varieties for non-reduced words appear naturally in several situations. They arise
in resolving singularities of Richardson varieties (e.g., [2] for the type A case),
and even restricting to G = SL3, they are parameter spaces for certain point-line
configurations in the projective plane.

Finally, even when one starts with a reduced word α, most of the standard
divisors Xi ⊆ X(α) are Bott-Samelson varieties for non-reduced words, so to take
full advantage of the recursive structure of X(α) one is forced to consider such
words. I envision an inductive approach to computing the global Okounkov cone
of a Bott-Samelson variety which uses the above Theorem as a crucial ingredient.
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