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Abstract. The Gaussian distribution is the “universal” distribution arising
in a huge variety of contexts that describes the compound effect of the random
fluctuations of many independent (or weakly dependent) sources of random-
ness that are combined in a (close to) additive way. While this has been very
well understood for a long time, the last few years have seen an explosion of
results around the “KPZ universality class”, which contains many systems
where strongly interacting individual components are combined in a highly
non-linear way. In this class, which is still rather poorly understood from
a mathematical perspective, fluctuations typically exhibit scaling exponent
1/3 instead of the exponent 1/2 familiar from the central limit theorem and
limiting distributions are of Tracy-Widom type rather than Gaussian.

This workshop brought together outstanding researchers from a variety of
mathematical backgrounds whose areas of research are linked to the under-
standing of the KPZ equation and universality class. While there are strong
links between their motivations, the techniques used by these researchers span
a large swath of mathematics, ranging from purely algebraic techniques to
renormalisation theory, stochastic analysis, random matrix theory, classical
probability theory, orthogonal polynomials, the theory of rough paths, etc.

Mathematics Subject Classification (2010): 60xx, 35xx, 82xx.

Introduction by the Organisers

The workshop focused on the latest progresses in the study of the Khardar-Parisi-
Zhang (KPZ) equation and its universality classes. In recent years, new important
models were shown to belong to this KPZ class thanks in particular to integrable



1516 Oberwolfach Report 28/2014

systems and orthogonal polynomials, approaches to universality florished, in par-
ticular in random matrix theory, and the rigorous construction of the solution to
KPZ equation was achieved thanks to Malliavin calculus and rough paths analysis.

Most of the conference was devoted to the study of exact models. In the first
talk, H. Widom revisited his breakthrough paper with C. Tracy and discussed the
analysis of the asymmetric simple exclusion process and how to transform a priori
untractable formulas by wise uses of complex analysis and changes of contours of
integration. A. Borodin surveyed the range of known exact models in the KPZ class
which could be solved, and emphasized the role of Fourier analysis and orthogonal
polynomials, in particular those introduced by Mac Donald.

Later in the week, I. Corwin showed in great detail how one of these models,
the q-TASEP, could be analyzed either by using MacDonald processes or a new
duality approach, both leading to the exact computation of natural observables. V.
Gorin talked about new applications of these techniques to the six-vertex model.
P. Ferrari showed on the last day how the study of these exact models, and in
particular the so-called q-Whittaker process, allowed to get an exact formula for
the one point correlation function of the solution to the KPZ equation. In the
same vein, A. Hammond described a new approach to KPZ equation as the lowest
indexed curve of an N -ensemble of curves, with a property to penalize, but not
completely forbid ding crossing: this ensemble is integrable and offers a powerful
tool for the analysis of KPZ equation. P. Le Doussal explain the physics approach
to these questions by replicas and Bethe ansatz. It was discussed by D. Remenik
that putting some of the results discussed by Le Doussal on a firm mathematical
ground can be a real challenge, for instance for the model of random growth off
a flat surface where justifying some formal critical point analysis is yet to be
done. S. Chiita and K. Johansson discussed the two-periodic weighting of the
Aztec diamond: its asymptotics were described by Kenyon and Okounkov and the
authors undertake the analysis of the fluctuations and the two points correlations
functions of this model in the different phases, by exhibiting new exact formulas.
Event though pairwise correlations at the solid-liquid and liquid-gas region can be
analyzed, the liquid-gas phase remains a challenge due to non-local phenomenon.
Other models could be analyzed and shown to be related to the KPZ equation.
This is the case of weakly interacting particle systems presented by P. Gonçalves,
or directed polymers as shown by T. Seppäläinen. Other universal behaviors also
appear for the latter model, as discussed by K. Khanin.

During the first morning, random matrices and universality were introduced
by P. Bourgade, who showed how recent techniques based on Dyson Brownian
motion and homogenization could be used to prove fixed energy universality of
the correlation function. A. Knowles discussed the phase diagram for the meso-
scopic phase diagram of d-dimensional random band matrices, the appearance of
the Altshuler-Shklovskii and its universality. B. Virág described the Dirac opera-
tor, a random first order differential operator, and showed that the local statistics
of its spectrum in the bulk converges to the same limit as those of β-ensemble.
For β = 2, the eigenvalues are conjectured to behave similarly to the imaginary
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parts of the zeroes of the Riemann ζ-function. B. Valkó presented matrix ana-
logue to Dufresne identities. O. Zaboronski showed that Pfaffian point processes,
which usually appear in random matrix models, make a surprise appearance when
studying annihilating Brownian motions in one dimension.

On topics related to the well-posedness and interpretation of the KPZ equation
itself, P. Friz gave an introduction to rough path analysis and stressed their impor-
tance to define and study the KPZ equation. M. Gubinelli described the slightly
different approach based on paracontrolled analysis. D. Khoshnevisan discussed
stochastic differential equation with a constant or linear diffusivity, presenting in-
termittency and multi-fractality, and Y. Bakhtin exposed a recent result on the
uniqueness of stationary solutions to the forced Burgers equation on the whole
real line which is conjectured to belong to the KPZ universality class.

A special occasion, very nice and enjoyable, was also the Oberwolfach prize
ceremony that took place on Thursday late afternoon, and was followed by a
nice dinner (and special thanks go to the Oberwolfach staff that made us all feel
being in a luxury restaurant on that evening). The winner of the prize, Hugo
Duminil-Copin who was also a participant to this workshop, gave a talk on the
nature of the phase transition of the three-dimensional Ising model (joint work
with Aizenmann and Sidoravicius), which is a topic close to the heart of many
participants of this workshop (hence also the choice of the week of this workshop
to have this ceremony).

The role of the organizers was to keep the number of talks to a fairly low number
(22 all together) in order to leave as much time as possible for informal sessions and
discussions between participants, and to look at the weather forecast to advance
the traditional mid-week hike (this time to Brandenkopf) to Tuesday afternoon
instead of the indeed very rainy Wednesday.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Si-
mons Foundation for supporting Ana Patŕıcia Carvalho Gonçalves, Konstantin M.
Khanin, and Davar Khoshnevisan in the “Simons Visiting Professors” program at
the MFO.
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Abstracts

An ASEP Operator

Harold Widom

(joint work with Craig A. Tracy)

For the asymmetric simple exclusion process (ASEP) on the integers with step
initial condition (particles initially at the positive integers Z+), there is a formula
for the distribution function for xm(t), the position of the mth particle from the
left at time t, which involves a Fredholm determinant [2]. It is

P (xm(t) ≤ x) =
1

2πi

∫
det(I − λK)

∏m−1
k=0 (1− λ τk)

dλ

λ
.

Here τ = p/q, where p is the jump probability to the right and q = 1− p the jump
probability to the left, and K is the operator acting on functions on CR (the circle
with center zero and large radius R) with kernel

K(ξ, ξ′) = q
ξx e (p/ξ+qξ−1) t

p+ qξξ′ − ξ
.

We assume τ < 1 and the contour of integration encloses all poles of the integrand.
For asymptotics as m, x, t → ∞, the operator K is not good. First, replacing

t by t/(q − p) and changing variables, we replace K(ξ, ξ′) by

K2(η, η
′) =

ϕ(η′)

η′ − τη
,

acting on a little circle around η = 1, where

ϕ(η) =

(
1− τη

1− η

)x

e[
1

1−η
− 1

1−τη ] t.

This is still not good, since nothing essentially changed. But then, using
two lemmas on stability of Fredholm determinants, we can replace K2(η, η

′) by
K1(η, η

′)−K2(η, η
′) acting on Cr with 1 < r < 1/τ , where

K1(η, η
′) =

ϕ(τη)

η′ − τη
.

From the nice fact

det(I − λK1) =

∞∏

k=0

(1− λτk)

we then obtain

P(xm(t/(q − p)) ≤ x) =
1

2πi

∫ ∞∏

k=m

(1− λ τk) det(I + λK2 (I + R))
dλ

λ
,
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where R = λK1 (I − λK1)
−1. The right side may be replaced by

∫ ∞∏

k=0

(1− µ τk) det(I + µ τ−m K2 (I +R))
dµ

µ
,

where we set λ = µ τ−m with |µ| now fixed. Luckily the kernel of the resolvent
oprator R is computable. Using it and the stability lemmas we find that we may
replace τ−m K2 (I +R) in the integrand by the operator J with kernel

J(η, η′) =
1

2πi

∫
ϕ∞(ζ)

ϕ∞(η′)

ζm

η′m+1

f(µ, ζ/η′)

ζ − η
dζ

acting on Cr with τ < r < 1, where for the integration 1 < |ζ| < r/τ . Here

ϕ∞(η) =
∞∏

n=0

ϕ(τnη) = (1− η)−x e
η

1−η
t

and

f(µ, z) =

∞∑

k=−∞

τk

1− µ τk
zk (1 < |z| < 1/τ).

Now all the parametersm, x, and t are in the function ϕ∞(ζ) ζm, which appears
in both parts of a quotient. This allows a steepest descent analysis that establishes
F2 fluctuations [3]. The result for TASEP had already been known [1].

The same path yields fluctuations for step-Bernoulli initial condition, where
sites in Z+ are initially occupied with probability ρ [4]. The only difference is that
the function ϕ∞ gets an extra factor, which involves ρ. Depending on the relation
between ρ and τ , the fluctuations are either Gaussian, F 2

1 , or F2.
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Homogenization and universality for Wigner matrices

Paul Bourgade

(joint work with L. Erdős, H.-T. Yau, J. Yin)

E. Wigner envisioned that energy levels of large quantum systems remarkably
exhibit universality patterns. He introduced the Wigner matrix ensemble (nor-
malized centered entries, independent up to symmetry), and postulated that the
statistics of the eigenvalues depend only on the symmetry class of the model and
are independent of the details of the ensemble. A few years after, Gaudin, Mehta
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and Dyson computed explicitly the eigenvalue correlation functions for the case
of Gaussian entries. Later on, Mehta formalized a version of the (Wigner-Dyson-
Mehta) universality conjecture [6] by stating that the appropriately rescaled cor-
relation functions for any Wigner ensemble coincide with those for the Gaussian
cases as N , the size of the matrix, tends to infinity. This holds for both real
symmetric and complex Hermitian ensembles.

One possible topology for the correlation functions is the pointwise convergence.
But the convergence in this topology cannot hold for Wigner ensembles with dis-
crete (e.g. Bernoulli) matrix elements. Thus a reasonably strong topology suitable
for the universality of the whole class of Wigner matrices is the vague convergence
of the local correlation functions, rescaled around a fixed energy E. Instead of fix-
ing the energy E, we can also take weak convergence in E or equivalently, taking
some average in the energy. More precisely, the following are two possible uni-

versal statements, in which random matrices have subgaussian entries and ρ
(N)
k

classically means their eigenvalues correlation functions.

Fixed energy universality. For any k ≥ 1, F : Rk → R continuous and compactly
supported and κ > 0, uniformly in E ∈ (−2 + κ, 2− κ) we have

lim
N→∞

1

̺(E)k

∫

dvF(v)ρ
(N)
k

(

E+
v

N̺(E)

)

=

∫

dvF(v)ρ
(GOE/GUE)
k

(v) .

Averaged energy universality. For any k ≥ 1, F : Rk → R continuous and
compactly supported, arbitrarily small ε, κ > 0 and s = N−1+ε, uniformly in
E ∈ (−2 + κ, 2− κ) we have

lim
N→∞

1

̺(E)k

∫ E+s

E

dx

s

∫

dvF(v)ρ
(N)
k

(

x+
v

N̺(E)

)

dv =

∫

dvF(v)ρ
(GOE/GUE)
k

(v) .

The Wigner-Dyson-Mehta conjecture has been open until the recent work [1]
where a general scheme to approach it was outlined and carried out for complex
Hermitian matrices. The first step is to establish a local version of the semicircle
law and use it as an input to control the correlation function asymptotics in the
Brezin-Hikami formula (which is related to Harish-Chandra/Itzykson-Zuber for-
mula). This provides universality for the so-called Gaussian divisible models with
a very small Gaussian component, or “noise”. Previously, this universality was
established by Johansson [5] when the noise is of order one. The last step is an
approximation of a general Wigner ensemble by Gaussian divisible ones and this
leads to the fixed energy universality for Hermitian Wigner matrices whose matrix
elements have smooth distributions. The various restrictions on the laws of matrix
elements were then greatly relaxed [7, 2]. In particular, using the local semicircle
law [3] as a main input, Tao-Vu [7] proved a comparison theorem which provides
an approximation result for Wigner matrices satisfying a “four moment matching
condition”.

For real symmetric matrices, no algebraic formula in the spirit of Brezin-Hikami
is known. A completely new method based on relaxation of the Dyson Brownian
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Motion (DBM) to local equilibrium was developed in a series of papers including
[4]. This approach is very robust but yields only the averaged energy universality.

Our talk explained the proof of the last remaining case of the Wigner-Dyson-
Mehta conjecture, i.e. universality of local correlation functions at any fixed energy
E in the bulk spectrum for Wigner matrices of any symmetry classes.

Theorem 1. For symmetric or Hermitian matrices from the Wigner ensemble,
fixed energy universality holds in the bulk of the spectrum.

In particular the following three results hold for real matrices, including the
Bernoulli case: (1) existence of the density of states on microscopic scales for
Wigner matrices, (2) the extension of the Jimbo-Miwa-Mori-Sato formula of the
gap probability to Wigner matrices, (3) the precise distribution of the condition
number or the smallest (in absolute value) eigenvalue of Wigner matrices.

The proof relies on a homogenization theory for the discrete parabolic equation
with time dependent random coefficients Bij(t) = (xi(t)− xj(t))

−2, where x(t) is
a typical DBM trajectory. By a rigidity property of the DBM trajectories, the ran-
dom coefficients are close to deterministic ones, Bij(t) ≈ (γi − γj)

−2 if |i− j| ≫ 1
(the typical locations γi are the quantiles of the semicircle distribution). The con-
tinuous version of the corresponding heat kernel is explicitly known. By coupling
two DBM for two different initial conditions x(0) and y(0) (one for Wigner, one
for a reference Gaussian ensemble), we show that after a sufficiently long time, the
difference between xi(t) and yi(t) is given by the deterministic heat kernel acting
on the difference of the initial data. Due to the scaling properties of the explicit
heat kernel, this latter involves only mesoscopic linear statistics of the initial con-
ditions which are more accessible than microscopic ones. Homogenization thus
enables us to transfer mesoscopic statistics to microscopic ones.
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KPZ and integrability

Alexei Borodin

The goal of the talk is to survey the emerging field of integrable probability, whose
goal is to identify and analyze exactly solvable probabilistic models. The models
and results are often easy to describe, yet difficult to find, and they carry essential
information about broad universality classes of stochastic processes.

Basics of rough paths

Peter K. Friz

Differential equations are omnipresent in modern pure and applied mathemat-
ics; many “pure” disciplines in fact originate in attempts to analyse differential
equations from various application areas. Classical ordinary differential equations
(ODEs) are of the form Ẏt = f(Yt, t); an important sub-class is given by controlled
ODEs of the form

(1) Ẏt = f0(Yt) + f(Yt)Ẋt ,

where X models the input (taking values in Rd, say), and Y is the output (in Re,
say) of some system modelled by nonlinear functions f0 and f , and by the initial
state Y0. The need for a non-smooth theory arises naturally when the system is
subject to white noise, which can be understood as the scaling limit as h → 0 of
the discrete evolution equation

(2) Yi+1 = Yi + hf0(Yi) +
√
hf(Yi)ξi+1 ,

where the (ξi) are i.i.d. standard Gaussian random variables. Based on martingale
theory, Itô’s stochastic differential equations (SDEs) have provided a rigorous and
extremely useful mathematical framework for all this. And yet, stability is lost in
the passage to continuous time: Taking Ẋ = ξ to be white noise in time (which
amounts to say that X is a Brownian motion, say B), the solution map S : B 7→ Y
to (1), known as Itô map, is a measurable map which in general lacks continuity,
whatever norm one uses to equip the space of realisations of B. In a sense, solving
SDEs is an analytically ill-posed task! On the other hand, there are well-known
probabilistic well-posedness results for SDEs of the form

(3) dYt = f0(Yt)dt+ f(Yt) ◦ dBt ,

which imply for instance statements of the following form: Let ξǫ = δǫ∗ξ denote the
regularisation of white noise in time with a compactly supported smooth mollifier
δǫ and let Y ǫ be the solutions to 1 driven by Ẋ = ξǫ. Then Y ǫ converges in
probability (uniformly on compact sets). The limiting process does not depend on
the choice of mollifier δǫ, and in fact is the Stratonovich solution to (3).

There are many variations on such “Wong–Zakai” results, another popular
choice being ξǫ = Ḃ(ǫ) where B(ǫ) is a piecewise linear approximation (of mesh size
∼ ǫ) to Brownian motion. However, as consequence of the aforementioned lack of
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continuity of the Itô-map, there are also reasonable approximations to white noise
for which the above convergence fails. Perhaps rather surprisingly, it turns out
that (analytical) well-posedness is restored via certain iterated integrals which are
in fact the only data that is missing to turn S into a continuous map.

Rough path analysis introduced by Terry Lyons in the seminal article [3] and by
now exposed in several monographs [4, 5, 1, 2], provides the following remarkable
insight: Itô’s solution map can be factorised into a measurable “universal” map Ψ
and a “nice” solution map Ŝ as

(4) B(ω)
Ψ7→(B,B)(ω)

Ŝ7→Y (ω).

The map Ψ is universal in the sense that it depends neither on the initial condition,
nor on the vector fields driving the stochastic differential equation, but merely
consists of enhancing Brownian motion with iterated integrals of the form

(5) B
i,j(s, t) =

∫ t

s

(
Bi(r) −Bi(s)

)
dBj(r) .

At this stage, the choice of stochastic integration (e.g. Itô or Stratonovich) does
matter and probabilistic techniques are required for the construction of Ψ. Indeed,
the map Ψ is only measurable and usually requires the use of some sort of stochastic
integration theory.

The solution map Ŝ on the other hand, the solution map to a rough differential
equation (RDE), also known as Itô–Lyons map is purely deterministic and only
makes use of analytical constructions. More precisely, it allows input signals to be
arbitrary rough paths which are objects (thought of as enhanced paths) of the form
(X,X), defined via certain algebraic properties (which mimic the interplay between
a path and its iterated integrals) and certain analytical, Hölder-type regularity
conditions. These conditions can be seen to hold true a.s. for (B,B); a typical
realisation is thus called Brownian rough path.

The Itô–Lyons map turns out to be “nice” in the sense that it is a continuous
map of both its initial condition and the driving noise (X,X), provided that the
dependency on the latter is measured in a suitable “rough path” metric. In other
words, rough path analysis allows for a pathwise solution theory for (multidimen-
sional) SDEs i.e. for a fixed realisation of the Brownian rough path. The solution

map Ŝ is however a much richer object than the original Itô map, since its con-
struction is completely independent of the choice of stochastic integral and even of
the knowledge that the driving path is Brownian. For example, if we denote by ΨI

(resp. ΨS) the maps B 7→ (B,B) obtained by Itô (resp. Stratonovich) integration,
then we have the almost sure identities

(6) SI = Ŝ ◦ΨI , SS = Ŝ ◦ΨS ,

where SI (resp. SS) denotes the solution to (3) interpreted in the Itô (resp.
Stratonovich) sense. As a consequence, the afore-mentioned Wong–Zakai type re-
sults are really a deterministic consequence of the probabilistic question whether
or not ΨS(Bǫ) → ΨS(B) in probability and rough path topology, with Ḃǫ = ξǫ.
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So how is this Itô–Lyons map Ŝ built? In essence, one has to make sense of the
expression

(7)

∫ t

0

f(Ys) dXs ,

where Y is itself the as yet unknown solution. Here is where the usual pathwise
approach breaks down. Actually, if we measure regularity in terms of Hölder
exponents, then the integral makes sense as a limit of Riemann sums for X and
Y that are arbitrary α-Hölder continuous functions if and only if α > 1

2 . The
keyword here is arbitrary: in our case the function Y is anything but arbitrary!
Actually, one would expect the small-scale fluctuations of Y to look exactly like
the small-scale fluctuations of X in the sense that one would expect that

Ys,t = f(Ys)Xs,t +Rs,t

where, for any path F with values in a linear space, we set Fs,t = Ft − Fs, and
where Rs,t is some remainder that one would expect to be “of higher order”.

Suppose now that X is a “rough path”, which is to say that it has been “en-
hanced” with a two-parameter function X which should be interpreted as giving
the values for

(8) X
i,j(s, t) =

∫ t

s

X i
s,r dX

j
r .

Note here that this identity should be read in the reverse order from what one
may be used to: it is the right hand side that is defined by the left hand side and
not the other way around! The idea here is that if X is too rough, then we do not
a priori know how to define the integral of X against itself, so we simply postulate
its values. Of course, X cannot just be anything, but should satisfy a number of
natural algebraic identities and analytical bounds.

Anyway, assuming that we are provided with the data (X,X), then we know
how to give meaning to the integral of components of X against other components
ofX : this is precisely what X encodes. Intuitively, this suggests that if we similarly
encode the fact that Y “looks like X at small scales”, then one should be able to
extend the definition of “rough integrals” to a large enough class of integrands to
include solutions to differential equations, even when α < 1

2 . Rough path theory
allows us to make this intuition precise.
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Exact formulas for random growth off a flat interface

Daniel Remenik

(joint work with Janosch Ortmann, Jeremy Quastel)

We consider the one-dimensional asymmetric simple exclusion process (ASEP),
which is a continuous time Markov process on with state space {0, 1}Z, the 1’s
being thought of as particles and the 0’s as holes. Each particle has an independent
exponential clock which rings at rate one. When it rings, the particle chooses to
attempt to jump one site to the right with probability p, or one site to the left
with probability q = 1−p. However, the jump is only executed if the target site is
empty; otherwise the jump is suppressed and the particle must wait for the alarm
to ring again. We will assume that q > p.

We denote by ηx(t) = 1 or 0 the presence or absence of a particle at x ∈ Z at
time t. Alternatively, we can write η̂(x) = 2η(x) − 1, which takes values {−1, 1}
instead of {0, 1}. Two quantities of interest for this process are

Nx(t) =

x∑

y=−∞
ηy(t)

(that is, the number of particles at or to the left of x, which can take the vaule ∞
if the system has no left-most particle), and the ASEP height function, defined by

h(t, x) =







2Nflux
0 (t) +

∑

0<y≤x η̂(t, y), x > 0,

2Nflux
0 (t), x = 0,

2Nflux
0 (t)−

∑

x<y≤0 η̂(t, y), x < 0,

where Nflux
0 (t) is defined as the net number of particles which crossed from site 1

to 0 up to time t, meaning that particle jumps 1 → 0 are counted as +1 and jumps
0 → 1 are counted as −1. The problem is to compute the asymptotic fluctuations
of these quantities as t → ∞ for certain special initial conditions.

For the totally asymmetric (TASEP) case, where q = 1 − p = 0 the fluctu-
ations are completely understood. The first result [5] was for TASEP with step
initial condition η0(x) = 1x>0, and showed that the asymptotic fluctuations for
the height function are described by the Tracy-Widom GUE distribution. For
the flat or periodic initial condition η0(x) = 1x∈2Z it was later shown in [3] (al-
though it essentially goes back to [1]) that the asymptotic fluctuations are given
by the Tracy-Widom GOE distribution. For the half-flat case η0(x) = 1x∈2Z, x>0

the fluctuations were derived in [4] and are given by a one-parameter family of
distributions which interpolate between the Tracy-Widom GUE and GOE distri-
butions. (There are also TASEP results involving the stationary initial condition
where particles are placed according to a Bernoulli product measure).

For the partially asymmetric case 0 < q < 1 things are much more complicated
due to the lack of the determinantal structure present in ASEP. After a series
of papers Tracy and Widom [8] were able to show that, as expected, the ASEP
fluctuations in the case step initial condition are still given by the Tracy-Widom
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GUE distribution. In a later paper the were able to treat the so-called step-
Bernoulli initial condition, but nothing is known so far in the flat cases.

In this talk I reported on work in progress where we obtain moment formulas for
the ASEP height function in the half-flat and flat cases. The formulas are obtained
by solving certain systems of differential equations satisfied by the exponential
moments of Nx(t), derived in [2], which arise from duality properties of ASEP. In
the half-flat case the formula reads as follows. Let τ = p/q ∈ (0, 1). Then

E
half−flat

[

τmNx(t)
]

= mτ !

m∑

k=0

1
k!

∑

n1,...,nk≥1
n1+···+nk=m

∫

Ck

d~w

(2πi)k
det
[

−1
waτna−wb

]k

a,b=1

×
∏

a

f(wa;na)g(wa;na)
∏

a<b

α(wa, wb;na, nb),

where

f(w;n) = (1− τ)naet[
1

1+wa
− 1

1+τnawa
]( 1+τnawa

1+wa

)x−1
,

g(w;n) =
(−w;τ)

∞

(−τnw;τ)
∞

(τ2nw2;τ)
∞

(τnw2;τ)
∞

, α(w1, w2;n1, n2) =
(w1w2;τ)

∞
(τn1+n2w1w2;τ)

∞

(τn1w1w2;τ)
∞

(τn2w1w2;τ)
∞

and the integration contour C contains −1 and 0 with ±τ−1 on the outside.
Here the τ -Pochhammer symbol is (a; τ)∞ =

∏∞
ℓ=0(1 − τ ℓa) and the τ -factorial

m!τ = (1 − τ)m (τ ; τ)∞ / (τm; τ)∞. This moment formula can then be summed
to obtain a certain moment generating function for Nx(t), and one can verify
through formal critical point analysis on this formula that the limiting fluctua-
tions for half-flat ASEP coincide with those of TASEP. There are, nevertheless,
some serious technical problems in making the limit argument rigorous, and this
consitutes works in progress.

For the flat case we use a limiting procedure which involves looking at the half-
flat moment formula for τNx(t) and taking x → ∞ (thus probing into the flat
region). Since for the half-flat case it holds that h(t, x) = 2Nx(t)− x, this yields a
moment formula for the exponential moments of the flat ASEP height function. In
this case we are able to sum the moments in a certain way which yields a Fredholm
Pfaffian. The answer we obtain is described as follows. Define the symmetric τ-

exponential function expτ (x) =
∑∞

k=0 τ
k(k−1)

4
xk

k!τ !
. Then, for ζ ∈ C, |ζ| < τ1/4,

E
flat
[

expτ

(

−ζτ
1
2h(t,0)

)]

= Pf(J −K)L2[0,∞) .

The Fredholm Pfaffian is defined as

Pf(J −K)L2[0,∞) =

∞∑

n=0

(−1)n

n!

∫

[0,∞)n
Pf
[

K(xi, xj)
]n

i,j=1
d~x, J =

(
0 I
−I 0

)
.

Here K is a certain 2× 2 explicit kernel which involves expressions similar to the
ones appearing in the half-flat case. As in that case, one can perform a formal
critical point analysis on this formula to show that, under the right scaling, the
Fredholm Pfaffian converges to a limiting Fredholm Pfaffian which can be shown to
yield exactly the Tracy-Widom GOE distribution, as expected. Nevertheless, and
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again similarly to the half-flat case, the limit computation presents some serious
technical obstacles, and also constitutes work in progress.

During the talk I also briefly described some related formulas for the delta Bose
gas which can be obtained by the same method, and also appear in the physics
literature [6, 7].
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Exact results for the Kardar-Parisi-Zhang equation from the replica

Bethe Ansatz and from the sine Gordon field theory

Pierre Le Doussal

The one dimensional KPZ stochastic growth equation for the height field h(x, t)
describes many experimental systems of interfaces in planar geometries which grow
in time t following a local mechanism: slow combustion, turbulent liquid crystals,
bacterial growth, chemical reaction fronts. The KPZ universality class is char-
acterized by self-affine growth at large time h(x, t) = vt + δh(x, t) with scaling
exponents δh ∼ x1/2 ∼ t1/3 for fluctuations which have been known for a long
time in the physics community. The recent focus is on the probability distribu-
tion function (PDF) for δh(x, t) for given initial conditions for the interface at
time t = 0 (flat, droplet, stationary..) Since around 2000 a significant number of
discrete models of growth (PNG, TASEP,..) have been shown to share the same
universal properties, termed the KPZ class, where δh(x, t) at large time converges
to a rescaled Tracy Widom (TW) distribution, the distribution of largest eigen-
value of large Gaussian random matrices (GOE,GUE..) depending on the initial
condition. It remained to be shown that the continuum KPZ equation belongs to
the KPZ class!

In this talk I have shown how to calculate the PDF of h(x, t) at all times (de-
scribing the crossover from the Edward Wilkinson to the KPZ class) using meth-
ods of physics, from disordered systems (replica) and integrable systems (Bethe
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Ansatz). We solve the droplet and flat initial conditions, as well as the crossover
between them (the latter only at large time) and also KPZ in a half-space. This
work was done in collaboration with P. Calabrese, and also in part with A. Rosso
and T. Gueudre and led to 7 publications. Note parallel works by V. Dotsenko also
using the replica Bethe ansatz. The results are non-rigorous however they have
been confirmed for the droplet initial condition by more rigorous approaches (Amir
et al., Sasamoto and Spohn) based on the limit of WASEP. For the flat initial con-
dition there is at present no rigorous result, but there is a work in preparation by
Ortmann, Quastel and Remenik.

The method starts by using the Cole-Hopf mapping from the KPZ equation to
the problem of a directed path (DP) in a quenched random potential. Denoting
Z the partition sum of the directed path, the correspondence is schematically
h = lnZ. The aim now is to calculate the moments E(Zn) (expectation over the
random potential) and from them “guess” the Laplace transform of the PDF of
Z, g(u) = E(e−uZ) using its formal series expansion g(u) =

∑

n
1
n!E(Zn)(−u)n.

It is a guess because the moments grow to fast with n to uniquely determine the
PDF. The second step uses the mapping from the DP problem to the quantum
mechanics of bosons with attractive δ interactions, the so-called Lieb Liniger (LL)
model. More precisely any expectation of the product of n partition sums Z obeys
the Schrodinger equation with the Hamiltonian Hn of the LL model. This model
is integrable by the Bethe Ansatz hence all eigenfunctions and eigenvalues of Hn

are known. This allows us to derive, for various initial conditions, a formula for
the E(Zn). This formula is quite complicated and involves summation overs the
so-called “string states” which fortunately have a simple structure in the limit of
a large system size, related to the partitions of the integer n. After a few technical
steps we arrive at an expression for g(u) as a Fredholm determinant (for droplet
initial conditions) for all times, involving a kernel containing Airy functions. At
large time this kernel converges to the Airy kernel, and the PDF of h(x, t) hence
converges to the GUE TW PDF, hereby showing that the KPZ equation belongs
to the KPZ class. In the case of the flat initial condition the calculation is much
more involved but leads to a Fredholm Pfaffian, with convergence to the GOE
TW distribution at large time. A variation of the calculation with half flat initial
conditions leads to the crossover PDF from GOE to GUE at large time. Finally,
for the half-space problem (DP in presence of a repulsive wall) one finds that g(u)
is also a Pfaffian with convergence to the GSE TW distribution.

The talk terminates by a summary of another recent result, with Kormos and
Calabrese, which shows that the Sine Gordon field theory (which is an integrable
field theory) in the non relativistic limit (NRL) allows to recover the moments
E(Zn) associated to the KPZ equation. This is achieved by showing that the form
factors for the breathers (since solitons decouple in that limit) reduce to matrix
elements of string states. The explicit NR limit can be taken on the 2 point
correlation function of the exponential field eikφ of the sine Gordon theory using
the Lehman decomposition in elementary excitations, leading to g(u) of KPZ. This
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connection raises the hope of obtaining new results for KPZ using the Sine Gordon
theory.

Matrix Dufresne identities

Benedek Valkó

(joint work with Brian Rider)

In 1990 Dufresne [3] showed that if µ > 0 and bt is a standard Brownian motion
then the integral

∫∞
0

e2(bt−µt)dt has the same distribution as (2γµ)
−1 where γµ is

a gamma variable with parameter µ. In the subsequent decade Matsumoto and
Yor discovered a number of remarkable identities related to the integral of the
geometric Brownian motion (see e.g. the survey papers [4] and [5]). Many of these
identities involve the finite time integral

A
(µ)
t =

∫ t

0

e2(bt+µt)dt

(defined for all µ ∈ R). Among others, they proved the following process level
identity for µ > 0:

(

1

A
(−µ)
t

− 1

A
(−µ)
∞

, t ≥ 0

)

d
=

(

1

A
(µ)
t

, t ≥ 0

)

(1)

and also showed that the process on the left is independent of the random variable

A
(−µ)
∞ =

∫∞
0

e2(bt−µt)dt.
We study the matrix versions of the Dufresne (and related) identities. Motivated

by certain scaling limits related to the hard edge β-ensembles [8] we consider the
following matrix valued process in place of the exponential Brownian motion:

dM
(µ)
t = M

(µ)
t (dB + (1/2 + µ)Idt), M

(µ)
0 = I,(2)

where B is an n× n matrix with i.i.d. standard Brownian motion entries. This is
essentially a multiplicative Brownian motion on GLn. We study the integrals

Q
(µ)
t =

∫ t

0

MsM
T
s dt, Q(µ)

∞ =

∫ ∞

0

MsM
T
s dt.

We show that for µ > 0 the distribution of Q
(−µ)
∞ has inverse Wishart distribution

with parameters n, n + 2µ. Moreover, we prove a process level distributional
identity which has the same form as (1).

An interesting Burke-type identity was proved by O’Connell and Yor in [7].

They showed that with αt = log
∫ t

−∞ e2(bs−bt+µ(s−t))ds the process bt + αt −
α0 is also a standard Brownian motion. They used this result to construct and
study a semi discrete directed polymer where the random environment is given
by a sequence of independent Brownian motions. This system turned out to be a
member of the KPZ universality class. The fluctuation exponents were identified
in [9]; in [6] a connection to a system of interacting diffusions was shown (the
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so-called quantum Toda lattice), and in [1] and [2] the Tracy-Widom distribution
has been derived as a scaling limit.

We describe a matrix version of Burke-type identity of O’Connell and Yor,
which could be the first step towards introducing a directed polymer model built
from the matrix Brownian motions (2).
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[9] T. Seppäläinen and B. Valkó. Bounds for scaling exponents for a 1+1 dimensional directed

polymer in a Brownian environment. ALEA Lat. Am. J. Probab. Math. Stat., 7:451–476,
2010.

Stochastic quantum integrable systems

Ivan Corwin

The purpose of this talk is to analyze the exactly solvable particle system known as
q-TASEP [4, 6]. Let us fix some notation used throughout. For N ≥ 1 we denote
the state of q-TASEP with N particles as ~x(t) =

(
+∞ ≡ x0(t) > x1(t) > x2(t) >

· · · > xN (t)
)
∈ ZN , where we have fixed a virtual particle at infinity by setting

x0(t) ≡ +∞. The gap between particle i and i− 1 is denoted gapi(t) := xi−1(t)−
xi(t) − 1. The N -particle q-TASEP with particle rate parameters a1, . . . , aN > 0
is an interacting particle system ~x(t) in which for each 1 ≤ i ≤ N , xi(t) moves
to xi(t) + 1 at exponential rate ai(1 − qgapi(t)) (which vanishes when gapi(t) =
0), where q is a parameter in (0, 1). Here we assume that these exponentially
distributed jumping events are all independent, and we note that since they occur
in continuous time, no two jumps occur simultaneously, almost surely. Also note
that the evolution of xi(·) only depends on those particles with lower indices than
i. Step initial condition is defined as setting xi(0) = −i for 1 ≤ i ≤ N .

The continuous time Poisson q-TASEP and the recognition of its exact solvabil-
ity comes from the work of [4] on Macdonald processes. It was soon after studied
in its own right in [6] via the type of many body system approach methods which
we explain in this talk. The evolution of gapi(t) = xi−1(t)−xi(t)−1 for 1 ≤ i ≤ N
is given by a totally asymmetric zero range process with site dependent jump rate
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gi(k) = ai(1− qk) and infinite sink and source at the boundary. A variant of this
zero range process can be seen as corresponding to a particular representation of
the q-Boson Hamiltonian considered in [10]. In [10], integrability (in the form of
L and R matrices satisfying Yang-Baxter relations) for this q-Boson Hamiltonian
was shown.A stationary (infinite lattice) variant of the above gap zero range pro-
cess was also discussed immediately after Theorem 2.9 of [1] and an O(t2/3) upper
and lower bound on the variance of the stationary current is established therein.

When q → 0, continuous time Poisson q-TASEP becomes the well-studied model
of continuous time TASEP (and likewise the discrete time versions of q-TASEP
we introduce become known discrete time version of TASEP). The configuration
of particles in TASEP for a fixed time t can be described as a determinantal point
process in which all correlation functions are given by minors of a single correlation
kernel. In other terminology, TASEP is free-fermion, or related to Schur processes,
or non-interacting line ensembles. Given that structure there exists a clean path
to Fredholm determinant formulas for marginal distributions, which in turn allow
readily for asymptotic analysis.

The present case, where q ∈ (0, 1), does not appear to enjoy a full-blown deter-
minantal structure, hence new ideas are necessary to study and extract asymptotic
distributional information about the processes considered. In [4, 6] it was ex-
plained how, instead of the determinantal structure of correlation functions, these
non-determinantal systems are exactly solvable due to the existence of concise and
exact formulas for expectations of large classes of observables of the particle sys-
tems (in fact, in many cases large enough classes to uniquely characterize the fixed
time distribution of the particle systems).

A natural question about q-TASEP is to compute the distribution of xn(t)
(which is the location of particle n at time t). There are (presently) two approaches
to compute this distribution. The first is through the theory of Macdonald pro-
cesses [4], and the second is through the many body system (or duality) approach
[6]. These methods lead to the computation of nested contour integral formulas
for expectations of certain observables of the process. In particular, for step initial
condition this shows that (see also [7]) for n1 ≥ n2 ≥ · · · ≥ nk > 0,

E

[
k∏

i=1

qxni
(t)+ni

]

=
(−1)kqk(k−1)/2

(2πι)k

∫

· · ·
∫

×
∏

1≤A<B≤k

zA − zB
zA − qzB

k∏

j=1

( nj∏

i=1

ai
ai − zj

)

e(q−1)tzj
dzj
zj

,

(1)

where the contour of integration for zA contains a1, . . . , aN as well as {qzB}B>A,
but not zero.

Since the observables qxn(t)+n are all in (0, 1), their moment problem is well-
posed. This means that the above formulas uniquely characterize the joint distri-
bution of q-TASEP at time t (provided it is started from step initial condition at
time zero). It remains a challenge to extract manageable (from the perspective of
large t and n asymptotics) formulas for joint distributions, though it is understood
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how to derive a Fredholm determinant formula which characterizes the one-point
distribution of xn(t).

Theorem 1. Fix q ∈ (0, 1) and particle rate parameters ai ≡ 1. Then for all
ζ ∈ C \ R+

(2) E
ℓ

[

1
(
ζqxn(t)+n ; q

)

∞

]

= det(I +K)

where det(I + K) is the Fredholm determinant of K : L2(C1) → L2(C1) for C1

a positively oriented circle containing 1, not containing 0 and small enough so as
not to contain its image when multiplied by q. The operator K is defined in terms
of its integral kernel

K(w,w′) =
1

2πι

∫ ι∞+1/2

−ι∞+1/2

π

sin(−πs)
(−ζ)s

hℓ(qsw)

hℓ(w)

1

qsw − w′ ds

with h(w) = (w; q)n∞etw.

From this Fredholm determinant [8, 2] were able to prove t1/3 and GUE Tracy-
Widom scaling limit asymptotics for q-TASEP.

In this talk we follow the following (second) approach to finding moment for-
mulas for q-TASEP is based on the following three observations:

(1) The expectations of observables
∏k

i=1 q
xni

(t)+ni for n1 ≥ · · · ≥ nk evolve
according to closed systems of coupled ODEs which we call the true evo-
lution equation.

(2) The true evolution equation is almost constant coefficient or separable, ex-
cept for effects which arise when some of the ni are close together. Rather
than trying to solve the true evolution equation directly, one can look
for solutions to the free evolution equation (i.e., the constant coefficient
and separable system neglecting the boundary effects) on the larger space
~n ∈ Zk

≥0 which have the right initial data when restricted to n1 ≥ · · · ≥ nk

and which satisfy certain boundary conditions when some of the ni are
all equal. The restriction of such a solution to n1 ≥ · · · ≥ nk will coin-
cide with the solution to the true evolution equation. Generally, for every
possible combination of clusters of ~n (i.e., strings of equal coordinates)
there will be additional boundary conditions which must be satisfied. For
q-TASEP, it suffices to consider only k− 1 two-body boundary conditions
corresponding to when ni = ni+1. That the two-body boundary conditions
imply all many body boundary conditions is the hallmark of integrability
in the language of (quantum) many body systems. This type of reduction
goes back to the 1931 work of on diagonalizing the Heisenberg spin chain
[3]. Our reduction, under the scaling limit to the continuum stochastic
heat equation mentioned above, coincides with that for the quantum delta
Bose gas (also known as the Lieb-Liniger model [9]).

(3) A general class of solutions to the free evolution equation exists since it
is separable and constant coefficient. It is not immediately clear how to
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combine solutions from this class so as to additionally satisfy the k−1 two-
body boundary conditions and the initial data. However, for the initial
data corresponding to step initial condition, it is also possible to (easily)
check that nested contour integral formulas (such as in (1)) solve the free
evolution equation and satisfy the k − 1 two-body boundary conditions.
These formulas are special cases of the Bethe ansatz for diagonalizing this
system [5]. From this it is possible to produce solutions corresponding to
general initial conditions.
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Random matrices and Dirac operators

Bálint Virág

(joint work with Benedek Valkó)

We describe a random first order differential operator (a Dirac operator) acting on
[0, 1] → C2 functions that has an almost surely discrete spectrum with the same
distribution as the Sineβ process. This process is the bulk scaling limit of the
Gaussian β-ensemble derived in [5]. For β = 2 it is conjectured to behave similarly
as the imaginary parts of the set of critical zeros of the Riemann ζ-function [3].

The operator is self-adjoint on the appropriate domain which is defined via
differentiability, L2 and boundary conditions. It is built from the following matrix-
valued random process:

Xt =
1

√

1− |b(τ(t))|2

(
1 b(τ(t))

b(τ(t)) 1

)

, τ(t) = − 4

β
log(1− t).
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Here b(t), t ∈ [0,∞) is the hyperbolic Brownian motion on the Poincaré disk, given
by the SDE

db = 1
2 (1− |b|2)dZ, b(0) = 0,

where Z = B1 + iB2 is a complex Brownian motion. The operator itself is then
given by

SINEβ =

(
−i 0
0 i

)

X2
t ∂t.

A similar representation is described for the hard edge scaling limit of certain β-
ensembles (derived in [4]), here one needs to use a real Brownian motion with drift
embedded into the hyperbolic plane in place of b(t).

We show how the finite circular β-ensembles can be obtained as the eigenvalues
of similar random Dirac operators using the representation of [1] via Verblunsky
coefficients. The role of the hyperbolic Brownian motion is now played by a random
walk in the hyperbolic lane with rotational invariant jump steps. These random
walks converge in distribution to the time changed hyperbolic Brownian motion
appearing in Xt. We outline how this convergence implies that the SINEβ operator
can be obtained as the norm resolvent limit of Dirac operators connected to the
finite circular β-ensembles. From this it also follows that the limit process of these
ensembles (derived in [2]) is the same as the Sineβ process.
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KPZ Line Ensemble: a marriage of integrability and probability

Alan Hammond

(joint work with Ivan Corwin)

The KPZ equation, introduced by Kardar, Parisi and Zhang, is a stochastic PDE
that models randomly evolving interfaces that are subject to constraining forces
such as surface tension. It is anticipated to be a universal object, in the sense
that many microscopic models will share the KPZ equation as an accurate asymp-
totic description of their late time behavior. This view is supported by extensive
numerical evidence, recent experimental evidence involving liquid crystal instabil-
ities, and a limited but growing body of mathematically rigorous work.
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In recent work [1], we present a new technique for the analysis of the KPZ
equation. The solution to the equation is represented as the lowest indexed curve
in an N-indexed ensemble of curves, which we call a KPZ line ensemble. Curves
within the ensemble enjoy a natural invariance under resampling, the H-Brownian
Gibbs property, which property has the effect of energetically penalizing, but not
absolutely forbidding, the crossing of adjacently indexed curves. This property
is inherited from the O’Connell Yor semi-discrete continuum random polymer
ensemble after a limiting procedure is applied.

The H-Brownian Gibbs property is an integrable one, in the sense that the
precursor O’Connell-Yor ensemble is known to enjoy it by virtue of this ensemble’s
algebraic structure. However, it also offers a powerful probabilistic tool for the
analysis of the KPZ equation. Since the solution of this equation is embedded in
a KPZ line ensemble, we may analyse it using the H-Brownian Gibbs property,
and in this way derive significant new estimates regarding the regularity and local
structure of the KPZ solution. As I will aim to explain, these new estimates are
valid uniformly in the time parameter for the KPZ equation, even after a natural
rescaling of the equation is undertaken which accesses the fluctuation behavior of
the KPZ evolution.
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Paracontrolled analysis of the KPZ equation

Massimiliano Gubinelli

(joint work with N. Perkowski)

The Kardar–Parisi–Zhang (kpz) equation [4]

(1) L h(t, x) = (∂xh(t, x))
2 + ξ(t, x)

is a mesoscopic model which captures the universal features of one dimensional
interface growth. In this equation h(t, x) describes the height of the interface,
L = ∂t−∂2

x is the heat operator and ξ is a space–time white noise. Until the work
of Hairer [3] this equation had a heuristic content and the correct physical solution
was identified as h(t, x) = logZ(t, x) where Z is the solution of the stochastic linear
heat equation (she)

(2) LZ(t, x) = Z(t, x)ξ(t, x).

Hairer used rough path techniques [5] in order to give a meaning to eq. (1). In the
following we rephrase his analysis in the language of paracontrolled distributions
introduced in [2]. The KPZ equation is equivalent to a stochastic Burgers equation
(sbe) for the unknown u(t, x) = ∂xh(t, x):

(3) L u(t, x) = ∂x(u(t, x))
2 + ∂xξ(t, x).
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We place ourselves on the torus T = R/(2πZ) and consider a local well–posedness
theory for the Cauchy problem related to eq. (3) given an initial condition
u(0, ·) = u0(·). Solutions to this problem are expected to be distributions with
space regularity −1/2−. To understand the physical nature of this singular be-
havior let us introduce a microscopic version of the SBE in the form

L v(t, x) = ε1/2∂x(v(t, x))
2 + ∂xη(t, x)

where ε is a small parameter, η is a smooth centered Gaussian field with correla-
tions of order 1 and where the space variable now lives in the large torus Tε = T/ε.
Performing the change of variables uε(t, x) = ε−1/2v(t/ε2, x/ε) we see that uε sat-
isfy the sbe with noise given by ηε(t, x) = ε−3/2η(t/ε2, x/ε) and in the limit ε → 0
we expect to obtain the sbe driven by a space–time white noise ξ. Fluctuations
of order 1 on spatial scales of order 1 for v become fluctuations of order ε−1/2 on
scales of order ε for uε which in the limit as ε → 0 generate a distribution of order
∼ −1/2. In this regime the non–linear term u2 is not well defined and there is no
well defined meaning for the limiting equation (3).

Following the approach of Hairer we can expand the solution to the sbe around
the solution X of the linearized equation: LX = ∂xξ. This perturbative ex-
pansion generates recursively a set of distributions which depend polynomially on
the noise ξ and which we denote collectively by X = (X,Q,X ,X , . . .). These
distributions are defined as solutions to a triangular system of non–linear equations

LX = ∂xξ,LQ = ∂xX,LX = ∂x(XX),LX = ∂x(XX ), · · ·
Denoting C α = C([0, T ];Bα

∞,∞(T)) we postulate that X ∈ C−1/2−, Q ∈ C 1/2− ,

X ∈ C 0−, X ∈ C 1/2−. These objects identify a subspace of (paracontrolled)
distributions denoted Dsbe which have the form

u = X +X + 2X + u′ ≺≺ Q+ u♯

for suitable u♯ ∈ C 1− and u′ ∈ C 1/2−. Here ≺≺ denote a modified paraproduct
(in the sense of Bony, Meyer et al. [1]). It allow to describe the microscopic
fluctuations of the distributions in Dsbe in terms of the explicit object X which is
amenable to direct analysis. Distributions in Dsbe can be multiplied, in particular,
if u ∈ Dsbe then

u2 = XX + 2XX +X X
︸ ︷︷ ︸

A

+X(2X + u′ ≺≺ Q)
︸ ︷︷ ︸

B

+X (2X + u′ ≺≺ Q) + (2X + u′ ≺≺ Q+ u♯)2
︸ ︷︷ ︸

C

and the square which a–priori is not well-defined since u ∈ C−1/2− can be decom-
posed in a series of terms. We start noting that

A = XX + 2XX +X X = L (X + 2X +X )

so these terms are under control provided X contains X ,X ,X . The various
product in C are well defined since the sum of the regularities of the factors is
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positive. The only remaining problematic term is B since here the sum of the
regularities is (barely) negative. In order to put also this term under control we
apply a commutator lemma proved in [2] which allows to write

B = X(2X + u′ ≺≺ Q) = (2X + u′ ≺≺ Q) ≺≺ X + u′(X ◦Q) + 2X ◦Q+ C
0−.

where the operation denoted by ◦ is the remainder term in the paraproduct de-
composition of the standard product ab = a ≺ b+ b ≻ a+ a ◦ b. This computation
shows that we can control also the term B if X contains also X ◦ Q and X ◦ Q
and that in this case the square is a well defined operation in Dsbe and thus that
it is meaningful to talk about solutions to the sbe in Dsbe. A little bit more of
analysis shows also that the sbe can be solved locally in time in Dsbe. While
sensible, this procedure has to be slightly modified since when ξ is a white noise
various terms in X contains divergent contributions and need to be renormalized .
Renormalization, in the context of the sbe, amount to the observation that we are
allowed to subtract any constant to u2 since it will disappear in the final equation.
If we consider again the limit of uε as introduced above, the difficulties with u2

can be traced back to the fact that it is not u2
ε which has a limit but only its

deviations from the spatial mean. Indeed the mean of u2
ε has size 1/ε and cannot

converge to any sensible limit. What is possible to prove is that there exists a
constant cε such that u2

ε − cε will have a well defined limit in C −1− as ε → 0
and define a renormalized square u⋄2. At the level of the paracontrolled structure
this renormalization amounts to perform subtractions to various terms and then
consider the limit of the new set of renormalized objects Xε defined starting from
ηε to obtain a limiting X which contains all the informations necessary to describe
the effects of the microscopic fluctuations at the macroscopic scale. Proceeding
similarly it is possible to introduce paracontrolled structures for the kpz and for
the she equations in such a way that if h ∈ Dkpz then ∂xh ∈ Dsbe and if Z ∈ Dshe

and Z > 0 then logZ ∈ Dkpz and then show rigorously the set of relations between
the corresponding equations.
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Intermittency and Multifractality

Davar Khoshnevisan

(joint work with Kunwoo Kin, Yimin Xiao)

Consider the stochastic partial differential equation,

∂

∂t
u(x , t) =

∂2

∂x2
u(x , t) + σ(u(x , t))ξ(x , t),

for x ∈ R and t > 0, in two different extremal cases where: (1) σ(x) ≡ 1 for all
x ∈ R; and (2) σ(x) = x for all x ∈ R, where ξ denotes space-time white noise.

For the sake of simplicity, we start our stochastic PDE with initial profile
u(x , 0) := 0 in Case (1) and u(x , 0) := 1 in Case (2). Consider, for every c > 0,
the random sets

L(c) := {x ≥ 100 : u(x , t) ≥ gc(x , t)} ,
for each t > 0, where g is the “gauge,”

gc(x , t) :=

{

ct1/4[log(x)]1/2 in Case (1),

exp
{
ct1/3[log(x)]2/3

}
in Case (2).

Each random set L(c) describes the position of “tall peaks” of the solution to the
stochastic measured “in scale c.”

We show exact a.s.-formulas for the large-scale Hausdorff dimension of L(c),
where large-scale Hausdorff dimension is understood in the sense of M. T. Barlow
and S. J. Taylor (1992).

The two-periodic Aztec diamond

Sunil Chhita and Kurt Johansson

An Aztec diamond of order n consists of all squares of a square lattice whose
centers (x, y) satisfy |x| + |y| ≤ n for n ∈ N. This shape can be tiled with domi-
noes which are the union of two adjacent squares, such that each square of the
Aztec diamond is covered exactly once by a domino. There are other interest-
ing examples which involve replacing the graph with a different one, such as the
square-octagon lattice (giving the so-called diabolo tilings) and the hexagonal mesh
(giving lozenge tilings). For each tiling, there is a surface representation where the
third co-ordinate, called the height function is in one-to-one correspondence with
the tiling, an observation due to Thurston. For random tilings, with probability
tending to one, the height function of a randomly tiled large bounded region tends
to a deterministic limit shape. This shape is not smooth over the entire region,
there exists three types of regions: ‘solid’ where the measure exhibits determin-
istic correlations between dominoes; ‘liquid’ where the measure has correlations
between dominoes which show polynomial decay and ‘gas’ where the measure has
correlations between dominoes which have exponential decay. These are technical
terms as opposed to physical states of matter [3].
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We introduce a two-periodic weighting of the Aztec diamond. This model has
specific edge weights chosen so that tilings of large Aztec diamonds feature all
three macroscopic regions. Indeed, the limit shape was computed by Kenyon and
Okounkov [2]. Standard techniques to compute the correlations associated with
the model break down but recently in [1], the authors give a rather complicated
and involved expression for correlations of the dominoes in this model. We present
a dramatic simplification of this formula which is suitably nice for asymptotic com-
putations. Using these simplified formulas we are able to find the limiting measure
in each phase, agreeing with the characterization given in [3]. We are also able
to find the pairwise correlations of the dominoes at the solid-liquid and liquid-gas
boundary. Finally, we present a possible combinatorial description between the
liquid and gas boundaries which are motivated from the long trajectories separat-
ing the liquid and gas phases observed from simulations. Since our methods only
analyzes local features, we are unable to analyze these paths due to their non-local
nature.
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Zero-temperature directed polymers in a product-type random

environment

Konstantin Khanin

(joint work with Yuri Bakhtin, Jeremy Voltz)

Statistical properties of directed polymers were a subject of intensive studies in
the past decade. Consider discrete time random walks on the lattice Z

d. We shall
assume that time t belongs to Z1. If the position of the random walk at time
t = i is given by S(i) ∈ Zd, then next moment of time it either jumps at one
of the nearest neighbours, or stays at the the same site: ‖S(i+ 1)− S(i)‖ ≤ 1.
Condition above corresponds to the so-called “lazy” random walks. The random
environment is given by a random potential. We shall assume that every point
(x, i) of the space-time Zd+1 is equipped with a random variable V ω(x, i), where
by ω we denote the whole configuration of the random field {V (x, i), (x.i) ∈ Zd+1}.
For a random walk path S(i), 0 ≤ i ≤ n of length n define its action

Aω
n(S) =

n∑

i=0

V ω(S(i), i).

Notice that An is a random variable which depends on a realization ω of the ran-
dom field {V (x, i), (x.i) ∈ Zd+1}. Now we can define a zero-temperature directed
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polymer as an action-minimizing path starting from a fixed point. If the proba-
bility distribution of the field {V (x, i), (x.i) ∈ Zd+1} is continuous then for a fixed
starting point a path S minimizing the action Aω

n(S) is unique with probability 1.
In what follows such action-minimizing paths are called optimal paths and denoted
S̄. Note that we consider quenched setting where the configuration ω is assumed
to be fixed. The most interesting situation which was recently intensively studied
corresponds to d = 1. The case of independent identically distributed (iid) ran-
dom variables {V ω(x, i), (x, i) ∈ Z1+1} belongs to so-called KPZ (Kardar-Parizi
-Zhang) universality class. In this case there are very precise conjectures about
asymptotic properties of the polymer measure and optimal paths. In some cases
these conjectures has been proved rigorously.

In this talk we shall present results related to statistical properties of optimal
paths for other statistical models for the field {V ω(x, i), (x, i) ∈ Z1+1} correspond-
ing to product-type environments. Namely, we consider a random field {F (x), x ∈
Z1} of iid random variables, and another field {b(i), i ∈ Z1} which is also assumed
to be iid. We also assume that the fields {F (x), x ∈ Z1} and {b(i), i ∈ Z1} are sta-
tistically independent. Now, let us define V (x, i) = F (x)b(i), (x, i) ∈ Z

2. Roughly
speaking such potentials correspond to the spatially disordered setting. In ad-
dition a polymer is embedded in an external potential fluctuating in time. We
shall assume that the probability distribution for V has compact support, and it
is given by the density p(V ) which vanishes outside of the closed interval [−C,C]
and positive everywhere inside [−C,C]. In addition we assume that random vari-
ables b have zero expectation: E(b) = 0. The asymptotic behaviour for this model
is different from the KPZ model, but it is also universal. We show that critical
exponents of the optimal action and of the polymer endpoint are both equal to
2/3. And after normalization on n2/3 both the probability distributions for the
centered optimal action Aω

n(S̄n) + Cn and the polymer end-point S̄n(n) converge
to universal limit laws which can be described explicitly. One can also show that
the shape function corresponding to the optimal action of the point-to-point op-
timal paths has a corner at the origin. This explains why both critical exponents
in this model coincide. While one can show that the shape function is non-linear,
we conjecture that it has a linear piece near the origin. All the results are based
on a joint paper with Yuri Bakhtin and Jeremy Voltz.

We also present numerical results for another model which is a generalization
of the previous one. Instead of one field {F (x), x ∈ Z1} we consider two statis-
tically independent copies of it, {F1(x), x ∈ Z1} and {F2(x), x ∈ Z1}. We also
consider two independent copies {b1(i), i ∈ Z1} and {b2(i), i ∈ Z1} of the process
{b(i), i ∈ Z1}. We then define V (x, i) = F1(x)b1(i) + F2(x)b2(i), (x, i) ∈ Z2. This
model is substantially different from the previous one. At present there are no
mathematically rigorous results for it. The numerical study by Simo Zhang who
is an undergraduate student at the Loughborough University indicates that both
critical exponents which we discussed above are universal and take values close to
5/6.
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Derivation of the KPZ equation from particle systems

Patŕıcia Gonçalves

(joint work with Milton Jara and Sunder Sethuraman)

In this work we consider a collection of interacting particle systems whose equi-
librium fluctuations are governed by the stochastic Burgers/KPZ equation. The
conditions we impose at the level of the particle systems are quite general and are
shared by many models as exclusion processes, zero-range processes, kinetically
constrained lattice gases, among others. The models we consider have weakly
asymmetric rates and cross from the Edwards Wilkinson universality class, which
is to say that the fluctuations are ruled by Ornstein-Uhlenbeck processes, to the
KPZ universality class, more precisely, the fluctuations are governed by the sto-
chastic Burgers equation. The crossover occurs for a strength of the asymmetry
equal to 1/

√
n.

The KPZ equation was first proposed in [4] to model the growth of random
interfaces, therefore, taking ht as the height of the interface, the equation reads as
∂th = D∆h + a(∇h)2 + σWt, where D, a, σ are constants related to the ther-
modynamical properties of the interface and Wt is a space-time white noise.
If Yt = ∂xht, then Yt is solution of the stochastic Burgers equation given by
∂tYt = D∆Yy + a∇(Yt)

2 + σ∇Wt. By using the renormalization group approach
the dynamical scaling exponent was established by the physicists as being z = 3/2
and corresponds to saying that a non-trivial behavior occurs under the re-scaling
hn(t, x) = n−1/2h(tn3/2, x/n). This corresponds, in our case, to say that in our
models, when taking a diffusive time scale, the crossover occurs for a strength of
the asymmetry equal to 1/

√
n.

1. The microscopic dynamics

We consider weakly asymmetric nearest-neighbor particle systems whose dy-
namics conserves the total density. These systems are Markov processes that we
denote by {ηnt : t ≥ 0} whose state space can either be E = N

Z
0 or E = {0, 1}Z.

Here N0 = {0, 1, 2, . . .}. For t ≥ 0, the random variables ηt(x) count the number
of particles at the site x at time t. Below we describe all the conditions we have
to impose on our processes in order to achieve our goals.

1.1. Infinitesimal generator. Fix a ∈ R and γ > 0. We consider Markov pro-
cesses with infinitesimal generator given on local functions f by

Lnf(η) = n2
∑

x∈Z

{

jRx,x+1(η)
(1

2
+

a

2nγ

)

+jLx+1,x(η)
(1

2
− a

2nγ

)}(

f(ηx,x+1)−f(η)
)

where ηx,y is the configuration obtained from η by taking a particle from x to y.

1.2. Current as a gradient. The dynamics is given by a microscopic current
which can be written as a gradient of a local function. Systems sharing this
property are known in the literature as gradient systems. To be more precise, if
jx,x+1 denotes the difference between the jump rate from x to x+1 (here denoted
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by jRx,x+1) and the jump rate from x+1 to x (here denoted by jLx,x+1), then there
exists a non-negative local function cnx = τxc

n on E such that

jRx,x+1(η) − jLx+1,x(η) = cnx(η)− cnx+1(η).

1.3. Invariant measure and Dirichlet form. The invariant measure µ is trans-
lation invariant, can be parameterized by the density ρ and is a product measure.
From now on, we fix a a density ρ and we denote the invariant measure by µρ.

Moreover, we assume jRx,x+1(η
x+1,x)

dµx+1,x
ρ

dµρ
(η) = jLx+1,x(η), so that the Dirichlet

form is written as Dµρ
(f) = 1

2

∑

x∈Z
Eµρ

[
jRx,x+1(η)

(
f(ηx,x+1)− f(η)

)2]
.

1.4. Initial density field. Let S(R) be the standard Schwarz space of rapidly

decreasing functions. Fix f ∈ S(R) and let Yn
t (f) =

1√
n

∑

x∈Z
f
(

x
n

)

(ηtn2 (x)− ρ).

We assume, starting from µρ, that Yn
0 converges weakly, as n → ∞, to a spatial

Gaussian process Y0 with a certain covariance.

1.5. Spectral gap. Our models are particle conservative, therefore, their state
space can be decomposed by the hyperplanes with configurations with a fixed
number of particles. Let ℓ be an integer and Λℓ the box of size 2ℓ + 1 centered
around 0. For k ≥ 0, let Hk,ℓ be the hyperplane of configurations on Λℓ with k
particles. Let µk,ℓ denote the invariant measure for the process restricted to Hk,ℓ

and let λk,ℓ be the spectral gap and W (k, ℓ) its reciprocal. Then, the Poincaré-
inequality reads as

Var(f, νk,ℓ) ≤ W (k, ℓ)Dn(f, νk,ℓ),

where Var(f, νk,ℓ,ξ) is the variance of f with respect to µk,ℓ. We assume that there
exits a constant C such that Eµρ

[W (
∑

x∈Λℓ
η(x), ℓ)2] ≤ Cℓ4.

Remark 1. We notice that one can take more general conditions that the ones
presented above. For the interested reader we refer to [3].

2. Main results

Let S ′(R) be the dual of S(R), namely the set of tempered distributions in R, en-
dowed with the strong topology. Denote byD([0, T ],S ′(R)) (resp. C([0, T ],S ′(R)))
the space of right continuous functions with left limits (resp. continuous) from
[0, T ] to S ′(R). Fix a, γ > 0. For a local function f let ϕj(ρ) = Eµρ

[j(η)]. We
want to study the asymptotic behavior of the density fluctuation field which is
given on functions f ∈ S(R) by

Yn,γ
t (f) =

1√
n

∑

x∈Z

f
(x

n
− 1

n

{aϕ′
j(ρ)tn

2

2nγ

})

(ηtn2(x)− ρ).

Our goal consists showing that the sequence {Yn,γ
t }n∈N converges, as n → ∞, to

Yt which is a solution of the Ornstein-Uhlenbeck process or the stochastic Burgers
equation, depending on the range of the parameter γ. It is known that for γ = 1,
the sequence {Yn,γ

t }n∈N converges in the uniform topology of D([0, T ],S ′(R)) to
Yt, the unique solution of the Ornstein-Uhlenbeck equation
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(1) ∂tYt =
1

2
ϕ′
c(ρ)∆Yt +

√

1

2
ϕj(ρ)∇Ẇt,

where Ẇt is a space-time white noise with unit variance. Our interest is to
strengthening the asymmetry of the jump rates, by decreasing the value of γ,
to see its impact in the limiting density field. Nevertheless, for 1/2 < γ < 1, there
is no effect of the asymmetry in the limit fluctuation field. This is the content of
the next result.

Theorem 1. For 1/2 < γ < 1, the sequence {Yn,γ
t }n∈N converges, in the uniform

topology of D([0, T ],S ′(R)) to the process Yt which is the solution of (1), with
initial condition Y0 given in Section 1.4.

However, for γ = 1/2, the limit field Yt has a qualitative behavior completely
different from the case γ > 1/2. The precise results is the following.

Theorem 2. For γ = 1/2, the sequence {Yn,γ
t }n∈N is tight in the uniform topol-

ogy of D([0, T ],S ′(R)) and any limit point is an energy solution of the stochastic
Burgers equation

(2) ∂tYt =
ϕ′
c(ρ)

2
∆Yt +

a

2
ϕ′′
b (ρ)∇Y2

t +

√

1

2
ϕb(ρ)∇Ẇt,

with initial field Y0 given in Section (1.4). Above ϕb corresponds to the mean wrt
µρ of bx = jRx,x+1 + jLx+1,x.

We refer the reader to [3] for the notion of energy solutions of the stochastic
Burgers equation (2).

3. Examples

Here we present some examples for which we can get the results mentioned
above.

3.1. Exclusion processes. For these models the state space is E = {0, 1}Z. We
consider a local function r : Ω → R satisfying ε0 < r(η) < ε−1

0 for any η ∈ Ω and
for some ε0 > 0; if for any η and ξ with η(x) = ξ(x) for x 6= 0, 1, then r(η) = r(ξ)
and, finally, there exists ω : Ω → R such that r(η)

(
η(1)−η(0)

)
= τ1ω(η)−ω(η), for

any η ∈ Ω (gradient condition). In this case jRx,x+1(η) = r(τxη)η(x)(1 − η(x + 1))

and jLx+1,x(η) = r(τxη)η(x + 1)(1− η(x)). For more details we refer to [2].

3.2. Zero-range processes. For these models the state space is E = NZ
0 . The

jump rate of a particle at the site x only depends on the number of particles
at x and is given by a function g : N0 → R+ satisfying g(0) = 0, g(k) > 0
for k ≥ 1 and supk≥0 |g(k + 1) − g(k)| < ∞. Therefore, jRx,x+1(η) = g(η(x))

and jLx+1,x(η) = g(η(x + 1)), We also need to have zero-range models satisfying
the condition on the spectral gap given in Section 1.5. Examples of zero-range
processes satisfying that condition are given by g(x) = xγ for 0 < γ < 1; of g
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such that there exists x0 and ε0 > 0 with g(x+ x0)− g(x) ≥ ε0 for all x ≥ 0 and
g(x) = 1(x ≥ 1).

3.3. Kinetically constrained lattice gases. For these models the spate space
is E = {0, 1}Z and jRx,x+1(η) = cx(η)η(x)(1− η(x+1)) and jLx+1,x(η) = cx(η)η(x+

1)(1− η(x)), where cx(η) =
[

η(x − 1) + η(x + 2) + θ
2n

]

. It was proved in [3] that

these models satisfy the spectral gap condition given in Section 1.5.
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Random matrix asymptotics for the six-vertex model

Vadim Gorin

The six-vertex (or “square-ice”) model is one of the most well-studied examples
of exactly-solvable lattice models of statistical mechanics. The configurations of
the 6–vertex model are assignments of one of 6 types of H2O molecules shown in
Figure 1 to the vertices of N ×N square grid in such a way that the O atoms are
at the vertices of the grid. To each O atom there are two H atoms attached, so
that they are at angles 90◦ or 180◦ to each other, along the grid lines, and between
any two adjacent O atoms there is exactly one H , see Figure 2 for an example.

O OO H HH H OO H OH

H

H H

H H

a1 a2

H

b1 b2 c1 c2

Figure 1. Six types of molecules (“vertices”).
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O O O O OH H H HH H

O O O O OH H H HH H

O O O O OH H H HH H

O O O O OH H H HH H

O O O O OH H H HH H

H H H H H

H H H H H

H H H H H

H H H H H

Figure 2. A configuration of the six–vertex model with domain–
wall boundary conditions.

One typically associates six positive weights to six types of vertices, as shown in
Figure 1. We study Gibbs probability measures on configurations in finite or infinite
domains, i.e. such that the conditional distribution on the configurations in any
subdomain assigns to a configuration ω the probability proportional to the product
of weights of the vertices in this configuration. For instance, the weight of the con-
figuration shown in Figure 2 should be proportional to (a1)

5(a2)
5(b1)

4(b2)
4(c1)

6c2.
In particular, the choice a1 = a2 = b1 = b2 = c1 = c2 = 1 leads to the uniform

measures. This was the case originally considered by Lieb in 60s, who obtained
one of the first mathematical results about the model: Lieb computed the leading
asymptotics for the logarithm of the number of configurations of the model on
N ×N torus as N → ∞. The answer closely matched the experimental value for
the residual entropy of the real–world ice.

The developments of the last 15 years suggest that the asymptotic behavior of
the six–vertex model should be governed by the probability distributions of random
matrix origin. However, until recently the rigorous mathematical results in this
direction were restricted to the so-called free fermion case, which is distinguished
by the following relation between the weights:

(1) a1a2 + b1b2 − c1c2 = 0.

When (1) is satisfied, the model can be analyzed via determinantal point pro-
cesses; asymptotics of the kernels of these processes yields random–matrix type
distributions in the limit. Outside (1) such approach no longer works.

In my talk I discussed two new results, which go beyond the free fermions. The
first development deals with uniform measure on the configurations of the model
in N ×N square with specific domain–wall boundary conditions shown in Figure
2. We prove that for each fixed k as N → ∞ the distribution of the positions of
horizontal molecules on the kth horizontal line converges (after proper centering
and rescaling) to the eigenvalue distribution of the Gaussian Unitary Ensemble.
Recall that the Gaussian Unitary Ensemble is the distribution on k× k Hermitian
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matrices with probability density proportional to exp
(
−Trace(X2/2)

)
. This is

based on the results of [1], [2].
The second result is about the six–vertex model with specific boundary condi-

tions in the quadrant and with weights satisfying the so–called stochastic relation
c1c2 = (a2 − b1)(a1 − b2) with a2 > b1. We prove that the asymptotics of the
centered and rescaled height function (which can be defined as the number of
molecules of types a2, b2, and c2 to the left of a given point) is governed by the
Tracy–Widom distribution F2. One way to define F2 is as the limiting distribution
for the largest eigenvalue for k × k Gaussian Unitary Ensemble as k → ∞. This
result will appear in the article [3].
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Pfaffian point processes for interacting particle systems and random

matrices

Oleg Zaboronski

(joint work with Roger Tribe)

Annihilating Brownian motions in one dimension (ABM’s) is a classical inter-
acting particle system investigated over the years by both mathematics (Bram-
son, Lebowitz, Griffeath, Kesten,...) and theoretical physics communities (Smolu-
chowski, Glauber, Doi, Zeldovich, Ovchinnikov, Mikhailov, Peliti, Droz, Derrida,
Hakim, Pasteur, ben Avraham, Masser,...)

We study ABM’s under the maximal entrance law, which can be viewed as
λ → ∞ limit of Poisson(λ) initial distribution of particles.

Let ρ
(n)
t (x1, x2, . . . , xn) be the Lebesgue intensity for n-particle distribution at

time t.
We find [2] that fixed time law of ABM’s is a Pfaffian point process:

Theorem 1. Under the maximal entrance law, ABM’s at t > 0 is a Pfaffian point
process with the kernel Kt(x, y) = t−1/2K(xt−1/2, yt−1/2), where

K(x, y) =

(
−F ′′(y − x) −F ′(y − x)
F ′(y − x) sgn(y − x)F (|y − x|)

)

and F (x) = erfc(x).

A simple corollary of Theorem 1 is the scaling behaviour of the intensities [1]:

Corollary 2. Under the assumptions of Theorem 1,

ρ
(n)
t (x1, x2, . . . , xn) = cn|∆(x)|t−n/2−n(n−1)/4(1 +O(t−1/2)),

where cn > 0 is independent of t and x and ∆(x) is the Vandermonde determinant.
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Moreover, we find that ABM’s as a process can be characterised as an extended
Pfaffian point process [3]:

Theorem 3. Under the maximal entrance law, ABM’s at t > 0 is an extended
Pfaffian point process,

ρ
(n)
t1t2...tn(x1, x2, . . . , xn) = Pf(K((ti, xi), (tj , xj) : i < j)),

where for t > s and i, j ∈ {1, 2}
Kij((t, x); (s, y)) = Gt−sK

ij
s (y − x)− I{i=1,j=2}gt−s(y − x),

where Kt(x, y) is the single time kernel defined in Theorem 1.

The kernel which defines the law of ABM’s at a fixed time was originally derived
in [5],[6] as the N → ∞ bulk limit of the Pfaffian point process for real eigenvalues
in the real N ×N Ginibre ensemble. It is therefore natural to ask whether ABM’s
and the evolution of real eigenvalues for Brownian motions with values in real
N ×N matrices are identical as processes in the limit of large N . We refer to the
the matrix valued Brownian motion as Ginibre(N) process.

The answer to the above question turns out to be negative as can be seen from
the following. Let

St(x) = (−1)Nt(0,x),

where Nt(0, x) is the number of real eigenvalues of the Ginibre(N) process in the
interval (0, x). We refer to the random function St(x) as ’spin variable’. Note
that spin variables can be defined for any simple point process on a line including
ABM’s. We have [4]:

Theorem 4. Let EN be the expectation value with respect to Ginibre(N) process.
Then

lim
N→∞

EN (St+τ (x)St(0)) = 0

lim
N→∞

EN

(

St+ T
N
(x)St(0)

)

= erfc

(√

x2

t
+

T

2t

)

,

which is different from the behaviour of the corresponding product moment of spin
variables for ABM’s.
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Continuity of the phase transition of the three dimensional Ising model

Hugo Duminil-Copin

(joint work with Michael Aizenman, Vladas Sidoravicius)

The Ising model is one of the most classical example of a system undergoing a phase
transition. The transition it exhibits was found to be of rather broad relevance
and the model has provided the testing ground for a large variety of techniques.

We focus here on the ferromagnetic Ising model on Zd. Associated with the sites
are ±1 valued spin variables, whose configuration is denoted σ = (σx : x ∈ Zd).
For a general ferromagnetic pair interaction, the system’s Hamiltonian defined for
finite subsets Λ ⊂ Zd and + boundary conditions is given by the function

H+
Λ (σ) := −

∑

{x,y}⊂Λ:x 6=y

Jx,yσxσy −
∑

x∈Λ:y∈Zd\Λ
Jx,yσx ,

for any σ ∈ {−1, 1}Λ, where (Jx,y)x,y∈Zd is a family of nonnegative coupling con-
stants. If Jx,y = 1 if x and y are neighbors, and 0 otherwise, the model is said to
be nearest neighbor.

For β ∈ (0,∞), finite volume Gibbs states with + boundary conditions are given
by probability measures on the spaces of configurations in finite subsets Λ ⊂ Zd

under which the expected values of functions f : {−1, 1}Λ → R are

〈f〉+Λ,β,h =
∑

σ∈{−1,1}Λ

f(σ)
e−βH+

Λ (σ)

Z+(Λ, β, h)
,

where the sum is normalized by the partition function Z+(Λ, β, h) so that 〈1〉+Λ,β =
1. The finite-volume Gibbs states are known to converge to the corresponding
infinite-volume Gibbs measures 〈·〉+

Zd,β
.

Of particular interest is the model’s phase transition, which is reflected in the
non vanishing of the symmetry breaking order parameter (which is customarily
referred to as the spontaneous magnetization): for d ≥ 2, there exists βc = βc(d) ∈
(0,∞) such that 〈σ0〉+Zd,β

> 0 if β > βc and 〈σ0〉+Zd,β
= 0 if β < βc. The goal of

this talk is to present a study of the critical case β = βc.

Theorem 1 (Aizenman, Duminil-Copin, Sidoravicius [2]). For the nearest-neighbor
ferromagnetic Ising model on Z3, we have that 〈σ0〉+Z3,βc

= 0.

Theorem 1 is proven by extending the random current representation of [4], to
infinite graphs and establishing uniqueness of the infinite cluster for the resulting
system of (duplicated) random currents on Zd. The second ingredient in the proof
is the infrared bound, a fact which follows from Reflection Positivity (see e.g. [6]).

The past results on the continuity of the spontaneous magnetization at βc are
naturally split into two distinct classes: i. the special low dimensional case of d = 2,
and ii. high dimensions. The earliest results have been derived for the nearest
neighbor model in d = 2 dimensions, for which the spontaneous magnetization was
computed by Yang [7] (using the methods of Onsager), and proved to be equal
to 0 at βc. For high dimensions, the continuity of the spontaneous magnetization
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in the nearest neighbor model was established in [3] for d ≥ 4 through reflection
positivity bounds combined with differential inequalities.

Let us finish by mentioning that the continuity of the phase transition fails for
closely related models; for instance for the ferromagnetic nearest-neighbor Potts
models with Q large enough (see [5] and references therein). The Ising model itself
can also have a discontinuous phase transition, as shown by the special case of the
one-dimensional model with Jx,y = 1/|x− y|2 (see. e.g. [1]).

References

[1] M. Aizenman, J.T. Chayes, L. Chayes, and C.M. Newman, Discontinuity of the magnetiza-
tion in one-dimensional 1/|x−y|2 Ising and Potts models, J. Stat. Phys. 50 (1988), no. 1-2,
1–40.

[2] M. Aizenman, H. Duminil-Copin, and V. Sidoravicius, Random Currents and Continuity of
Ising Model’s Spontaneous Magnetization, arXiv:1311.1937 (2013), 24 pages.

[3] M. Aizenman and R. Fernández, On the critical behavior of the magnetization in high-
dimensional Ising models, J. Stat. Phys. 44 (1986), no. 3-4, 393–454.

[4] M. Aizenman, Geometric analysis of ϕ4 fields and Ising models., Comm. Math. Phys. 86
(1982), no. 1, 1–48.

[5] H. Duminil-Copin, Parafermionic observables and their applications to planar statistical
physics models, Ensaios Matematicos, vol. 25, Brazilian Mathematical Society, 2013.
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Mesoscopic Eigenvalue Statistics for Random Band Matrices

Antti Knowles

(joint work with L. Erdős)

Random band matrices were introduced in the physics literature in 80s to model
quantum transport in a disordered system, as an alternative to the Anderson
model. They are expected to exhibit the same behaviour as the Anderson model,
but are in many cases more amenable to analysis. These two properties make them
particularly attractive for establishing rigorous results. Moreover, they contain an
additional parameter, the band width, which may be used to interpolate between
the Anderson model and Wigner matrices.

Let T := ([−L/2, L/2) ∩ Z)d denote the discrete cube of side length L. A d-
dimensional random band matrix is a Hamitonian H = H∗ = (Hxy)x,y∈T whose
upper-triangular entries (Hxy : x ≤ y) are independent mean-zero random vari-
ables. Their magnitudes are given by their variances

(1) Sxy := E|Hxy|2 =
1

W d
f

(
x− y

W

)

,

where W ∈ [1, L] is the band width and f is the profile function, a fixed symmetric
probability density on Rd. If W = L then Sxy is essentially independent of x
and y, which implies that the profile of the variances of H is flat and hence H is
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essentially a Wigner matrices. At the opposite end, if W = O(1), only an order
Ld entries of H are nonzero, all of them concentrated around the diagonal; this
corresponds roughly to the (tridiagonal) Anderson model.

We are always interested in the limit W → ∞. In this case, it is not hard to
check that the macroscopic eigenvalue density of H converges to the semicircle law
supported in the interval [−2, 2]. Fix an energy E ∈ (−2, 2) in the bulk of the
spectrum, and let η ≡ ηW denote a possibly W -dependent scale. We are interested
in the eigenvalue statistics on the scale η around the energy E. The two most com-
monly studied scales are the macroscopic scale, η ≍ 1, and the microscopic scale,
η ≍ L−d. The macroscopic scale is the scale on which the global eigenvalue density,
the semicircle law, is visible. This law is model-dependent (for instance it does not
hold for the Anderson model), and has no physical relevance. The distribution of
individual eigenvalues and eigenvalue spacings take place on the microscopic scale.
For Wigner matrices, the microscopic statistics are known to be governed by sine
kernel statistics [7, 8]. On the other hand, for the one-dimensional Anderson
model, they are governed by Poisson statistics [10]. Generally, it is expected that
the microscopic eigenvalue statistics of a generic random Hamiltonian (including
the random band matrices) is governed by one of these two statistics.

A mesoscopic scale is any scale η between the macroscopic and microscopic
scales: L−d ≪ η ≪ 1. A convenient way to study the eigenvalue statistics around
the energy E at any scale η is via the distribution of the linear statistics

Y η
φ (E) :=

∑

i

φη(λi − E) , φη(e) := η−1φ(e/η) ,

where {λi} denote the eigenvalues of H . Here φ is some suitable test function.
Apart from the independent mathematical interest, an important physical moti-
vation to study the statistics of Y η

φ (E) is a result from the physics literature by

Thouless [12], asserting that the conductance of a sample of linear size L is deter-
mined by the energy levels in an energy band of a specific, mesoscopic, width η
around the Fermi energy.

The correlations of {Y η
φ (Ei)} may be expressed using the truncated correlation

functions p(k): for instance

〈Y η
φ (E1) ;Y

η
φ (E2)〉 =

∫

dxdy φη(x − E1)φ
η(y − E2) p

(2)(x; y) .

If the sine kernel held on all mesoscopic scales, we would get, with ω := |E2 −E1|,

(2)

∫

|e−ω|≤η

(
sin(e/∆)

e/∆

)2

de ∼ 1

ω2
(∆ ≪ η ≪ ω ≪ 1) .

The extrapolation from η ∼ ∆ to η ≫ ∆ looks easy. In fact, (2) has been proved
for GUE [3].

However, the extrapolation (2) is in general wrong. In particular, for random
band matrices a new type of statistics emerges on mesoscopic scales, which we call
the Altshuler-Shklovskii statistics after the seminal work [1] in which it was first
predicted. We emphasize that the Altshuler-Shklovskii statistics are only expected
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to occur on mesoscopic scales. In Figure 1, we give a summary of the expected
phase diagram of the mesoscopic eigenvalue statistics of a random band matrix for
d = 1 and d = 3.

Figure 1. The phase diagram for the mesoscopic eigenvalue sta-
tistics of d-dimensional random band matrices for d = 1 (left) and
d = 3 (right). Here W is the band width of the matrix and η the
scale of the energy window. In general, one expects to observe
one of three types of statistics: Poisson, random matrix (exhib-
ited e.g. by GUE), or Altshuler-Shklovskii. The transition from
random matrix statistics to Altshuler-Shklovskii statistics occurs
at the Thouless energy ηc ∼ W 2/L2. Here ∆ := L−d is the typical
eigenvalue spacing, and hence the microscopic scale. Conversely,
1 is the macroscopic scale, on which the limiting eigenvalue den-
sity of H is supported. The range ∆ ≪ η ≪ 1 is the mesoscopic
regime.

In fact, there is a sharp transition in the mesoscopic eigenvalue statistics of
random band matrices, which is related to the phenomenon of quantum diffusion
[6]. The critical scale is the so-called Thouless energy

η0 =
(
time for diffusion to reach the boundary of T

)−1
.

For random band matrices the diffusion coefficient is W 2 [6], so that η0 ∼ W 2/L2.
The physical heuristic is that for η ≫ η0 boundary effects on T are irrelevant,
while for η ≪ η0 the statistics are mean-field.

The Altshuler-Shklovskii formulas may be informally summarized as follows.

• In the diffusive regime, η0 ≪ η ≪ 1, we have

VarY η
φ (E) ∼ (η/η0)

d/2−2 (d = 1, 2, 3)

and

〈Y η
φ (E + ω/2) ;Y η

φ (E − ω/2)〉 ∼ ωd/2−2 (d = 1, 3) ,

for η ≪ ω ≪ 1. For d = 2, the right-hand side of the latter formula
vanishes in leading order.
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• In the mean-field regime, η ≪ η0, the same formulas hold with d = 0.

Our results [4, 5] on the meoscopic eigenvalue statistics of d-dimensional ran-
dom band matrices are valid for mesoscopic scales η ≫ W−d/3. They may be
summarized as follows.

(a) We prove the Altshuler-Shklovskii formulas for d = 1, 2, 3, 4, and show in
particular that they do not depend on the details of H , such as the law
of the entries of the shape of the profile function f . This is a universality
result of the mesoscopic eigenvalue statistics.

(b) For d ≥ 5 the universality breaks down, and the behaviour of the lin-
ear statistics depends on the shape of f in a complicated, albeit explicit,
fashion.

(c) We prove a central limit theorem: the mesoscopic densities {Y η
φ (E)}φ,E

converge to Gaussian process whose covariance is given by the Altshuler-
Shklovskii formulas.

(d) For d = 2 the correlations are governed by so-called weak localization
corrections. Our result differs substantially from the prediction [9] in the
physics literature.

(e) We investigate a critical band matrix model, defined by d = 1 and Sxy =
E|Hxy|2 ∼ |x − y|−2. This model is expected to describe the system at
the so-called metal-insulator transition, where the microscopic statistics
change from sine kernel to Poisson statistics. Our result agrees with the
prediction from [2] on the multifractality of the eigenvectors.

(f) We introduce a large family of random band matrices that interpolates
between the real (β = 1) and complex (β = 2) symmetry classes, and
track the crossover in the mesoscopic eigenvalue statistics.

The starting point of the proofs is a Chebyshev-Fourier expansion of the linear
statistics, similar to the ones used in [11, 6]. The main work is to control the
resulting sums, which are highly oscillatory. This requires somewhat involved
algebra, which is encoded by a graphical language. The oscillations are dealt with
by a resummation of certain families of subgraphs, which then have to be computed
with high precision before estimates may be applied. The leading term, which in
particular yields the Altshuler-Shklovskii formulas, arises from the so-called one-
loop diagrams.
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[4] L. Erdős and A. Knowles, The Altshuler-Shklovskii formulas for random band matrices I:
the unimodular case, to appear in Comm. Math. Phys. Preprint arXiv:1309.5106.

[5] , The Altshuler-Shklovskii formulas for random band matrices II: the general case,
to appear in Ann. H. Poincaré. Preprint arXiv:1309.5107.
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Variational formulas for directed polymer and percolation models

Timo Seppäläinen

Let ω = (ωx)x∈Z2 be an IID weight configuration on the planar integer lattice under
the probability distribution P. Make the moment assumption E |ωx|p < ∞ for some
p > 2. An admissible directed lattice path (xk)

n
k=0 satisfies xk − xk−1 ∈ {e1, e2}

where e1 = (1, 0) and e2 = (0, 1) are the basis vectors. The partition function of
the point-to-line directed polymer in 1+1 dimensions is

Z(N) =
∑

(xk)Nk=0

2−N exp
{

β

N−1∑

k=0

ωxk
+ βh · xN

}

,

where the sum is over all admissible directed lattice paths of length N starting at
x0 = 0, 0 < β < ∞ is an inverse temperature parameter and h ∈ R2 is an external
field.

The limiting free energy

gβpl(h) = lim
N→∞

N−1β−1 logZ(N)

exists P-almost surely for subadditivity reasons. The purpose of the talk is to

describe a variational formula for gβpl(h) and the connections of this formula to
other features of the model.

In order to state the variational formula we need the following definition. Let
(Tx)x∈Z2 denote the group of translations on the space Ω of environments ω. A
measurable function F : Ω×Z2×Z2 → R is a stationary L1(P) cocycle if it satisfies
the following three conditions for all x, y, z ∈ Z

2 and for P-a.e. ω.
(i) Integrability: E|F (x, y)| < ∞.
(ii) Stationarity: F (ω, z + x, z + y) = F (Tzω, x, y).
(iii) Cocycle property: F (ω, x, y) + F (ω, y, z) = F (ω, x, z).
The cocycles is centered if E[F (x, y)] = 0 for all x, y ∈ Z2. The space of centered

cocycles is denoted by C0.
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In the point-to-line case, the variational formula is stated as follows [1]:

gβpl(h) = inf
F∈C0

P-ess sup
ω

β−1 log
∑

i∈{1,2}

1
2e

βω0+βh·ei+βF (ω,0,ei).

A minimizing cocyle F is expected to come from Busemann functions. This can
be presently proved for the exactly solvable log-gamma polymer introduced in [2].
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Ergodic theory of stochastic Burgers equation in noncompact setting

Yuri Bakhtin

The inviscid Burgers equation is

(1) ∂tu(t, x) + ∂x

(
u2(t, x)

2

)

= ∂xF (t, x).

In fluid dynamics terms, u(t, x) is the velocity of the particle located at point x ∈ R

at time t ∈ R, and f(t, x) = ∂xF (t, x) is the external forcing term describing the
acceleration of the particle at time t at point x.

We can represent the velocity profile as u(t, x) = ∂xU(t, x), where the potential
U(t, x) is a solution of the Hamilton–Jacobi–Bellman (HJB) equation

(2) ∂tU(t, x) +
(∂xU(t, x))2

2
= F (t, x),

we can write the solution of the Cauchy problem of the latter as

(3) U(t, x) = inf
γ:[t0,t]→R

{

U0(γ(t0)) +
1

2

∫ t

t0

γ̇2(s)ds+

∫ t

t0

F (s, γ(s))ds

}

,

where the infimum is taken over all absolutely continuous curves γ satisfying γ(t) =
x. Then the solution u of the Burgers equation can be found either by u(t, x) =
∂xU(t, x) or by using the slope of γ∗, the path on which the minimum in (3) is
attained: u(t, x) = γ̇∗(t).

We are interested in the ergodic theory of this equation when the forcing is
random. This problem was considered first in compact settings, and a complete
description of invariant distributions on a circle or, in the multi-dimensional version
of the problem, on a torus, was obtained in [8], [14], [9]. Also the existence and
uniqueness of an invariant distribution for the Burgers dynamics with random
boundary conditions were proved in [1].

In these cases, the existence and uniqueness of an invariant distribution on
the set of velocity profiles with a given average followed from the One Force —
One Solution Principle (1F1S) that asserts that for any v ∈ R and for almost
every realization of the forcing in the past, there is a unique velocity profile at
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the present that averages to v and is compatible with the history of the forcing.
For any v, the collection of those velocity profiles indexed by all times t ∈ R

forms a global solution that can be understood as a random one-point pullback
attractor. Moreover, the distribution of this global solution at any fixed time is
then a unique invariant distribution for the Markov semigroup generated by the
Burgers equation on velocity profiles averaging to v.

The Burgers equation preserves mean velocity and is invariant with respect to
Galilean shear space-time transformations, so without loss of generality one may
confine oneself to zero average velocity.

To establish 1F1S, one can use the variational principle and reduce the study of
the long term properties of the system to the behavior of minimizers over long time
intervals. One can prove, in fact, that minimizers over increasing time intervals in
the past converge to limiting trajectories, so called one-sided infinite minimizers.
These are paths with infinite history such that every finite restriction of such
a path minimizes Lagrangian action over paths with the same endpoints. The
entire space-time is foliated by these trajectories, and one can use their slopes to
construct a global solution and prove that any global solution has to agree with
this field of one-sided minimizers.

For this program to go through one needs an additional property of one-sided
minimizers called hyperbolicity. It means that those paths approach each other in
the past sufficiently fast. The reason to consider this property is that in order to
use (3) in the proof that the velocity profile obtained from slopes of the minimizers
is, in fact, a global solution, one has to keep track not only of the velocity, but
also of the velocity potential. To find the increment of the velocity potential, we
can consider two minimizers approaching each other in reverse time. Although
the action corresponding to each of them is infinite, one still can make sense of
the difference in action between these paths since there will be a diminishingly
small contribution from times in a distant past. This analysis leads to an analogy
between the global solution of the HJB equation (2) and Busemann functions in
last passage percolation theory.

For 1D periodic (or circle) setting hyperbolicity was first established in [8] and
recently a simpler proof exploiting the rigidity of 1D geometry was constructed
in [5].

The first attempts of extending this program to noncompact settings, i.e., evo-
lution of velocity profiles on the entire real line with no periodicity or other com-
pactness assumption were [10] and [2].

In this talk we consider two fully noncompact space-time stationary settings.
In the first case, the forcing is concentrated at configuration points of a space-time
stationary Poisson point process. In the second case, the forcing is of “kick” type,
i.e., at each integer time the velocity profile undergoes an instantaneous increment,
and between those the evolution follows the unforced Burgers equation. The ve-
locity increments are i.i.d. spatially stationary processes with finite dependence
range.



Stochastic Analysis: Around the KPZ Universality Class 1559

In both cases one can use the last passage percolation approach of [15], [11],
[12], [13], [16], [7], [6], although several technical difficulties have to be overcome.
The entire program consists of constructing fields of one-sided minimizers for ev-
ery value of the asymptotic slope, studying their properties, and using them to
construct global solutions of the Burgers equation and proving 1F1S.

In [4] where the Poissonian forcing was cosidered, the following strengthening
of the hyperbolicity property was instrumental in constructing a global solution,
proving its uniqueness and attraction property: with probability 1, any two of
these one-sided minimizers coalesce, i.e., they meet at one of the Poissonian points
and coincide from that point on. This strengthening of the hyperbolicity property
is certainly an artefact of the model where the forcing is concentrated in a discrete
set of space-time points.

In the second case, distinct minimizers do not coalesce and it is not known if
they are asymptotic to each other, i.e., if hyperbolicity holds true. This poses a
serious difficulty. However, in [3], we are able to replace hyperbolicity by a much
weaker property. We prove that any two one-sided minimizers approach each other
rather closely along a sequence (m′) of pairing times. It turns out that this weak
hyperbolicity is sufficient to prove existence and uniqueness of a global solution
of the Burgers equation in our model, and to study its domain of attraction. Of
course, some limit transitions m → −∞ are replaced by limits along the pairing
sequence of times m′. In particular, our definition of Busemann function is based
on partial limits.

The new argument we use to prove the weak hyperbolicity is quite soft and can
be applied to other last passage percolation type models and random Lagrangian
systems.
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pages 107–119. Birkhäuser Boston, Boston, MA, 1999.

[13] C. Douglas Howard and Charles M. Newman. Geodesics and spanning trees for Euclidean
first-passage percolation. Ann. Probab., 29(2):577–623, 2001.

[14] R. Iturriaga and K. Khanin. Burgers turbulence and random Lagrangian systems. Comm.
Math. Phys., 232(3):377–428, 2003.

[15] Harry Kesten. On the speed of convergence in first-passage percolation. Ann. Appl. Probab.,
3(2):296–338, 1993.
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Height fluctuations for the stationary KPZ equation

Patrik L. Ferrari

(joint work with Alexei Borodin, Ivan Corwin, and Bálint Vető)

In their seminal 1986 paper [13], Kardar, Parisi, and Zhang (KPZ) proposed the
stochastic evolution equation for a height function h(t, x) ∈ R (t ∈ R+ is time and
x ∈ R is space)

∂th(t, x) =
1
2∂

2
xh(t, x) +

1
2 (∂xh(t, x))

2
+ ξ(t, x).

The randomness ξ models the deposition mechanism and it is taken to be space-
time Gaussian white noise, so that formally E[ξ(t, x)ξ(t′, x′)] = δ(t− t′)δ(x − x′).
The Laplacian reflects the smoothing mechanism and the non-linearity reflects
the slope-dependent growth velocity of the interface. Using earlier physical work
of Forster, Nelson and Stephen [10] KPZ predicted that for large time t, the
height function h(t, x) has fluctuations around its mean of order t1/3 with spatial
correlation length of order t2/3. For additional background, see the reviews [8, 15,
9, 17].

The physically relevant solution to the KPZ equation [17] is defined indirectly
via the well-posed stochastic heat equation (SHE) with multiplicative noise [5, 2,
16],

∂tZ(t, x) = 1
2∂

2
xZ(t, x) + Z(t, x)ξ(t, x),

with initial condition Z(0, x) = Z0(x) = eh(0,x). The SHE is well-posed and we
defines h(t, x) = ln(Z(t, x)). This is called the Cole –Hopf solution of the KPZ
equation.

By a version of the Feynman –Kac formula, the solution of the SHE can be
written as

Z(t, x) = Et,x

[

Z0(b(0)) : exp :

(

−
∫ t

0

ξ(b(s), s)ds

)]

where the expectation Et,x is over a Brownian motion b(·) going backwards in time
from b(t) = x, and where : exp : is the Wick ordered exponential. This provides
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an interpretation for Z(t, x) as the partition function of the continuum directed
random polymer (CDRP) [2, 1].

Let B(x) be a two-sided Brownian motion with B(0) = 0 and zero drift. Sta-
tionary (zero drift) initial data h(0, x) = B(x) for the KPZ equation corresponds
with SHE initial data Z(0, x) = eB(x). This is called stationary because for any

later time t, h(t, ·) is marginally distributed as B̃(·) + h(t, 0) where B̃(·) is a two-
sided Brownian motion (though not independent of B or h(t, 0)).

In our work [7] we provide an exact formula for the one-point probability dis-
tribution of the stationary solution to the KPZ equation, and a limit theorem for
h(t, x), after proper centering and scaling by t1/3. This is made by analyzing a
semidiscrete directed polymer model, which in its turn is obtained as a limit of the
q-Whittaker process [6] with appropriate initial measure. A different expression
using replica trick approach was obtained previously in [12]. The equivalence of
the two formulas has not been shown so-far.

For simplicity, let us present the results in the case of zero-drift and position
x = 0 only.

Theorem 1. Let h(t, x) be the stationary (zero drift) solution to the KPZ equation
and let K0 denote the modified Bessel function. Then, for t > 0, σ = (2/t)1/3 and
S ∈ C with positive real part,

E

[

2σK0

(

2
√

S exp
[

t
24 + h(t, 0)

]
)]

= f (S, σ) ,

where the function f is given below.

To define f , define on R+ the function

Q(x) =
1

2πi

∫

− 1
4σ+iR

dw
σπS−σw

sin(π(−σw))
e−w3/3+wx Γ(σw)

Γ(−σw)
,

and the kernel

K(x, y) =
1

(2πi)2

∫

− 1
4σ+iR

dw

∫

1
4σ+iR

dz
σπSσ(z−w)

sin(σπ(z − w))

ez
3/3−zy

ew3/3−wx

Γ(−σz)

Γ(σz)

Γ(σw)

Γ(−σw)
.

Let γE = 0.577 . . . be the Euler constant, γ = σ(2γE + lnS) and define

f(S, σ) =− det(1−K)
[

γ +
〈
(1−K)−1(K1 +Q), 1

〉
+
〈
(1−K)−1(1 +Q), Q

〉]

.

where the determinants and scalar products are all meant in L2(R+).
There is an explicit inversion formula, although this is not needed to get the

large time limit.

Corollary 2. For any r ∈ R, we have

P

(

h(t, 0) ≤ − t

24
+ r(t/2)1/3

)

=
1

σ2

1

2πi

∫

−δ+iR

dξ

Γ(−ξ)Γ(−ξ + 1)

∫

R

dx exξ/σf
(

e−
x+r
σ , σ

)

for any δ > 0 and where σ = (2/t)1/3.
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Universality arises in the large time limit. Indeed, we recover the distribution
formula obtained before for the totally asymmetric simple exclusion process and
for the polynuclear growth model [14, 3, 4, 11].

Corollary 3. For any r ∈ R,

lim
t→∞

P

(

h(t, 0) ≤ − t

24
+ r

(
t

2

)1/3
)

= F0(r),

where F0 is given by

F0(r) =
∂

∂r

(

g(r) det (1− PrKAiPr)L2(R)

)

,

where Ps(x) = 1{x>s}, KAi(x, y) =
∫∞
0

dλAi(x + λ)Ai(y + λ) is the Airy kernel,
and g(r) is given below.

To define the function g we need some notations. For s ∈ R, define

R = s+

∫ ∞

s

dx

∫ ∞

0

dyAi(x + y), Ψ(y) = 1−
∫ ∞

0

dxAi(x+ y),

Φ(x) =

∫ ∞

0

dλ

∫ ∞

s

dyAi(x+ λ)Ai(y + λ)−
∫ ∞

0

dyAi(y + x).

Then the function g is defined by

g(s) = R−
〈
(1− PsKAiPs)

−1PsΦ, PsΨ
〉
.
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