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Introduction by the Organisers

The format of the meeting consisted of 18 one hour talks and four half hour after-
dinner talks. The after-dinner talks were given by PhD students and recent PhDs.

Six of the talks were related to geometric flows. Gerhard Huisken investigated
the mean curvature flow with surgery in 3 dimensional manifolds. If one starts
with a mean convex initial surface then there are only finitely many singularities
and, in the case of long time existence, the solution converges to a stable minimal
hypersurface of the ambient manifold. Carlo Sinestrari established various results
on ancient solutions of the mean curvature flow, e.g. he gave several character-
izations of the shrinking sphere solutions. Anton Petrunin suggested that each
compact polyhedral space with nonnegative curvature might be the initial singu-
lar metric of a smooth orbifold Ricci flow with nonnegative curvature operator. He
provided a proof in the 3-dimensional case. Tobias Marxen talked on the asymp-
totics (t → ∞) of the Ricci flow on a noncompact (n + 1)-dimensional manifold
endowed with an isometric T n-action. Peter Topping investigated the gradient
flow of the Dirichlet energy of mappings from a surface S of genus ≥ 2 into a
fixed Riemannian manifold M , letting both the map and the (hyperbolic) metric
of the domain vary. For a nonpositively-curved target, he could establish long
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time existence of the flow. Valentino Tosatti talked about the Kähler Ricci-flow
and proved a decade-old conjecture on the set of singularities, namely it forms an
analytic variety.

Kähler geometry was also the subject of two other talks. Hans-Joachim Hein
gave a characterization of Stenzel’s metric, a Ricci flat Kähler metric on the tangent
bundle of the sphere. Ben Weinkove generalized Yau’s solution of the Calabi
conjecture to certain Hermitian metrics on closed manifolds.

Karl-Theodor Sturm gave a survey on synthetic definitions of lower Ricci curva-
ture bounds on metric measure spaces, in terms of properties of the optimal mass
transport and solutions of the heat equation. André Neves showed how min-max
techniques can be used to settle Yau’s question about infinitely many minimal
hypersurfaces in 3-manifolds, in the case of positive Ricci curvature, along with
higher-dimensional generalizations. Claude LeBrun established optimal estimates
for the L2-norm of the positive part of the Weyl curvature, for various classes of 4-
manifolds. Esther Cabezas-Rivas showed that a Riemannian manifold with a lower
sectional curvature bound and an upper diameter bound is finitely covered by a
nilmanifold, provided that the L1-norm of the curvature operator is sufficiently
small.

There were three talks related to (singular) Riemannian foliations and isometric
group actions. Marco Radeschi explained how Clifford representations can be used
to find many nonhomogenous singular Riemannian foliations of a round sphere.
Alexander Lytchak proved rigidity statements for Riemannian foliations, ensuring
that no exceptional fibers can occur, e.g. if the ambient space is a topological
sphere and the leaf dimension is 7. Wolfgang Spindeler showed that fixed point
homogeneous nonnegatively-curved manifolds admit a double disc bundle decom-
position.

RicardoMendes explained why most known examples of homogeneous manifolds
with positive sectional curvature also satisfy a certain stronger curvature condition,
namely one can find metrics on these manifolds whose curvature operator can be
modified by a four form in such a way that the modified curvature operator is
nonnegative.

The geometry of hyperbolic space and higher rank symmetric spaces entered
into three talks. Bernhard Leeb introduced the concept of a Morse action on a non-
compact symmetric space, and used it to give a higher-rank substitute for convex
cocompactness. Ursula Hamenstädt gave a simplified proof of the statement that
any fundamental group of a hyperbolic 3-manifold contains a nontrivial surface
subgroup, along with higher dimensional generalizations. Michelle Bucher gave
integrality results for characteristic numbers of certain representations of lattices
in hyperbolic isometry groups.

The remaining talks were given by Lange, Hensel and Gaifullin. Christian Lange
answered the question of when the underlying topological space of an orbifold is
in fact a manifold. Sebastian Hensel considered piecewise isometric self-maps of
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an interval to itself and showed that the uniquely ergodic maps form a path con-
nected subset. Alexander Gaifullin presented various methods to construct flexible
polyhedra and showed that the enclosed volume stays constant under deformation.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Anton Petrunin in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Mean curvature flow of embedded meanconvex surfaces in 3-manifolds

Gerhard Huisken

(joint work with Simon Brendle)

We study solutions F :M2 × [0, T ) → (N3, g) of mean curvatrue flow

d

dt
F =

−→
H = −H · ν (MCF)

for closed, embedded initial surfaces M2
0 of positive mean curvature H > 0. We

prove that there is a solution of (MCF) with finitely many surgeries emanating
from M2

0 that either gets extinct in finite time and decomposes M2
0 into finitely

many copies of S2 and S1 × S1 or becomes smooth for t > T0 and converges for
t → ∞ to a stable minimal surface of genus no larger than that of M2

0 . Here the
Riemannian 3-manifold (N3, g) is assumed smooth and closed.

The proof follows the strategy for MCF with surgery developed by Huisken-
Sinestrari for 2-convex surfaces Mn ⊂ Rn+1, n ≥ 3. It uses convexity estimates
of Huisken-Sinestrari, a sharpening of Andrew’s non-collapsing estimate by Bren-
dle an interior gradient estimate for the curvature due to Haslhofer-Kleiner, the
regularity theory for level-set solutions due to B. White and a new monotonicity
formula due to Brendle to set up a surgery algorithm that uses curve-shortening
flow in the cross-section of necks.
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Clifford Algebras and new singular Riemannian foliations in spheres

Marco Radeschi

A singular Riemannian foliation on a Riemannian manifoldM is, roughly speaking,
a partition ofM into connected complete submanifold, not necessarily of the same
dimension, that locally stay at a constant distance from each other. Singular
Riemannian foliations on round spheres provide local models of general singular
Riemannian foliations around a point.
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An example of singular Riemannian foliation on round spheres is given by the
decomposition into the orbits of an isometric group action, and such a foliation is
called homogeneous.

Classifying non-homogeneous singular Riemannian foliations in spheres seems
a very complex problem. A trivial way to obtain new foliations from old ones is
called spherical join. Given singular Riemannian foliations (Sni ,Fi), i = 1, 2, the
spherical join gives a new foliation (Sn1+n2+1,F1 ⋆F2). Any foliation that cannot
be written as a spherical join is called indecomposable, and every foliation can be
written in an essentially unique way as a spherical join of indecomposable ones.
Because of this, our main interest lies in finding non-homogeneous, indecomposable
singular Riemannian foliations.

The only known indecomposable non-homogeneous singular Riemannian folia-
tions are either a family of codimension 1 (the so called FKM examples) or the
foliation in S15 given by the fibers of the Hopf fibration S15 → S8. Recently A.
Lytchak and B. Wilking proved, using a previous result of Wilking [5] and Grove-
Gromoll [1], that this is the only non-homogeneous regular foliation, i.e., with
leaves of the same dimension [3].

The aim of this talk is to discuss the main results of [4] where we show how
to use Clifford systems to produce a new, large class of indecomposable, non-
homogeneous singular Riemannian foliations of arbitrary codimension, which in
particular includes all the previously known examples. Recall that a Clifford sys-
tem can be thought of as a family C = (P0, . . . Pm) of symmetric matrices in
(R2l, 〈 , 〉) such that P 2

i = Id for all i = 0, . . .m and PiPj = −PjPi for i 6= j. We
define the map

πC : S2l−1 −→ R
m+1

x 7−→
(
〈P0x, x〉, . . . 〈Pmx, x〉

)
.

Theorem 1. Let C = (P0, . . . Pm) be a Clifford system on R
2l. Then the image of

πC is contained in the unit disk DC around the origin in Rm+1, and the following
hold:

(1) The preimages of πC define a singular Riemannian foliation (S2l−1,FC)
whose leaf space is either the m-sphere SC = ∂DC (if l = m) or the disk
DC (if l > m+ 1). In either case the induced metric on the quotient is a
round metric of constant sectional curvature 4.

(2) The foliation (S2l−1,FC) is homogeneous if and only if m = 1, 2 or m = 4
and P0 · P1 · P2 · P3 · P4 = ±Id, in which cases it is spanned by the orbits
of the diagonal action of SO(k) on Rk × Rk (m = 1), SU(k) on Ck × Ck

(m = 2) or Sp(k) on Hk ×Hk (m=4).

When the leaf space is a sphere one recovers the Hopf fibrations πC : S2m−1 →
Sm, m = 2, 4, 8. When the leaf space is DC with the round metric (also hemisphere
metric) the πC -preimages in S2l−1 of the concentric spheres in DC give rise to the
FKM family associated to the Clifford system C.



Geometrie 1577

A singular Riemannian foliation F0 on them-sphere SC = ∂DC ⊆ R
m+1 extends

by homotheties to a singular Riemannian foliation Fh
0 on DC (with the hemisphere

metric) and the πC -preimages of the leaves of Fh
0 define a new foliation F0 ◦ FC .

This is a special case of a more general construction of Lytchak [2, Sect. 2.5].

Theorem 2. Let C be a Clifford system on R2l and let (S2l−1,FC) be the associ-
ated Clifford foliation.

(1) If F0 is any singular Riemannian foliation on SC , then the foliation
(S2l−1,F0 ◦ FC) is a singular Riemannian foliation as well.

(2) Let C8,1 and C9,1 denote, respectively, the unique Clifford systems (P0, . . .
P8) on R16 and (P0, . . . P9) on R32. If C 6= C8,1, C9,1 then (S2l−1,F0◦FC)
is homogeneous if and only if both F0 and FC are homogeneous. If C =
C9,1 and (S31,F0 ◦ FC) is homogeneous, then F0 is homogeneous.

We call the foliations FC described above Clifford foliations, and the foliations
F0 ◦ FC composed foliations.

Unlike the FKM examples, inequivalent Clifford system give rise to different
Clifford foliations. Moreover, Clifford foliations can be geometrically character-
ized as the only singular Riemannian foliations on spheres whose quotient is a
sphere or a hemisphere of curvature 4. More precisely, let G the class of singular
Riemannian foliations on a round sphere, whose quotient is a sphere or a hemi-
sphere of curvature 4 and let A be the class of Clifford systems. Then the following
holds.

Theorem 3. The assignment C 7→ FC determines a bijection

A/{geometric equivalence} ≃−→ G/{congruence}

This is somewhat surprising, since it establishes an equivalence between purely
algebraic and purely geometric objects.
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Morse actions of discrete groups on symmetric spaces

Bernhard Leeb

(joint work with Misha Kapovich and Joan Porti)

Let X = G/K be a symmetric space of noncompact type, i.e. G is a noncompact
semisimple Lie group and K a maximal compact subgroup. We consider discrete
subgroups Γ ⊂ G; the isometric actions Γ y X are then properly discontinuous.
We are particularly interested in the case of infinite covolume and actions with
”rank one behavior” on higher rank symmetric spaces.

Let X = X ∪ ∂∞X denote the visual (ball) compactification of X ; points in
the visual boundary ∂∞X , the so-called ideal points at infinity, correspond to
equivalence classes of asymptotic rays in X . The isometric action Gy X extends
to a continuous action G y X. The G-orbits in ∂∞X are parametrized by the
spherical model Weyl chamber ∆ ∼= ∂∞X/G. The regular part ∂reg∞ X ⊂ ∂∞X of
the visual boundary consists of the ideal points which project to the interior of
∆. It is the union of the open (spherical Weyl) chambers at infinity; these are the
top-dimensional simplices with respect to the spherical (Tits) building structure
on ∂∞X . There is a natural projection ∂reg∞ X → ∂FX ∼= G/B to the space of
chambers ∂FX , the so-called Fürstenberg boundary, which is identified with the
generalized full flag manifold G/B.

Given a discrete subgroup Γ ⊂ G, the set Λ = Γx ∩ ∂∞X is called the limit
set of the action Γ y X . It does not depend on the orbit Γx. We restrict
ourselves to subgroups satisfying certain regularity conditions. For simplicity of
exposition, we assume here only the strongest such condition; in [KLP1, KLP2]
we work with weaker conditions. We call the discrete subgroup Γ ⊂ G uniformly
regular if its limit set consists of regular ideal points, Λ ⊂ ∂reg∞ X . We call the
projection Λch ⊂ ∂FX of Λ the chamber limit set of Γ, cf. [B]. Furthermore, we
call Γ antipodal if any two limit chambers in Λch are opposite, and non-elementary
if |Λch| ≥ 3. For non-elementary uniformly regular discrete subgroups Γ ⊂ G we
will compare several geometric and dynamical conditions which we now formulate.

The first condition is coarse geometric and a strengthening of quasiisometric
embeddedness (undistorsion). We define the Weyl hull of a regular segment xy
in X as the intersection of the euclidean Weyl chamber with tip x through y and
the euclidean Weyl chamber with tip y through x; it is a subset of the unique
maximal flat containing the segment. We call Weyl hulls of regular segments Weyl
diamonds. We say that a quasigeodesic (segment) in X is Morse if all subsegments
are uniformly close to Weyl diamonds. (In rank one, this is automatically satisfied
as a consequence of the Morse Lemma for Gromov hyperbolic spaces which asserts
that quasigeodesic segments are uniformly close to geodesic segments.) We call
the subgroup Γ Morse if it is word hyperbolic and, for any x ∈ X , the orbit map
Γ → Γx ⊂ X sends uniform quasigeodesics in Γ to uniform Morse quasigeodesics
in X .

The next three conditions generalize well established conditions for Kleinian
groups to arbitrary rank.
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A limit chamber σ ∈ Λch is called conical if an(y) orbit Γx has unbounded
intersection with a sufficiently large tubular neighborhood of a(ny) euclidean Weyl
chamber asymptotic to σ. The chamber limit set is called conical if all limit
chambers are conical. This condition has been considered in [A]. We call the
subgroup Γ RCA if it is antipodal and has conical chamber limit set.

Following Sullivan [S], we call the subgroup Γ expanding at the chamber limit
set if for every limit chamber σ ∈ Λch there exists a neighborhood U of σ in ∂FX
and an element γ ∈ Γ which is uniformly strictly expanding on U (with respect to
some Riemannian background metric on ∂FX).

We call an antipodal subgroup asymptotically embedded if it is intrinsically word
hyperbolic and the action Γ y Λch is a copy of the natural action Γ y ∂∞Γ on
the Gromov boundary.

Finally, we consider the Anosov condition introduced in [La] and generalized in
[GW]. We formulate here our alternative definition of the Anosov condition which
avoids using the geodesic flow of the group Γ; as proven in [KLP2] it is equivalent
to the definition by Labourie, Guichard and Wienhard. We call the subgroup Γ
boundary embedded if, intrinsically, it is non-virtually-cyclic word hyperbolic, and if
there exists a Γ-equivariant embedding β : ∂∞Γ → ∂FX which maps different ideal
points to opposite chambers. We call Γ (non-uniformly) Anosov if, furthermore, for
any normalized coarse geodesic ray q : N → Γ asymptotic to ζ ∈ ∂∞Γ the elements
q(n)−1 ∈ Γ act on the tangent space Tβ(ζ)(∂FX) with unbounded expansion rate
as n→ +∞.

Theorem ([KLP2]). These five conditions are equivalent.

Note that for Kleinian groups and, more generally, in rank one these conditions
are equivalent to convex cocompactness. However, in rank ≥ 2, convex cocom-
pactness is (much) stronger and too restrictive, as had been shown in [KlL]. The
conditions discussed here can thus serve as a replacement for convex cocompact-
ness in higher rank.
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Strongly positive curvature and Thorpe’s trick

Ricardo Mendes

(joint work with Renato Bettiol)

We begin a systematic study of a curvature condition (strongly positive curva-
ture) which lies strictly between positive curvature operator and positive sectional
curvature. Originating from the work of Thorpe [3, 4], this condition was used
in [2] to compute pinching of some homogeneous positively curved manifolds, and
in [1] to produce a new manifold of positive curvature. Our main goals are to
investigate which operations preserving positive sectional curvature also preserve
strongly positive curvature; and which known examples of manifolds admitting
a metric with positive sectional curvature also admit one with strongly positive
curvature.

To define strongly positive curvature, let (M, g) be a Riemannian manifold with
curvature operator R. Thus at each p ∈ M , R(p) : Λ2TpM → Λ2TpM is a self-
adjoint linear map. A 4-form ω ∈ Λ4TpM defines another self-adjoint linear map
Sω : Λ2TpM → Λ2TpM by the formula

〈Sω(X ∧ Y ), Z ∧W 〉 = 〈X ∧ Y ∧ Z ∧W,ω〉

The operator R(p) + ω is sometimes called the “modified curvature operator”,
and has the same sectional curvatures as R(p). The manifold (M, g) is said to
have strongly positive curvature if, at every p ∈M , there is a 4-form ω such that
R(p)+ω is positive-definite. In dimension 4 this condition is equivalent to positive
sectional curvature by [4], while in dimensions greater than 4 it is strictly stronger,
see [6].

Now we turn to operations preserving positive curvature. Let π : M → M
be a Riemannian submersion. It is well-known that if M has positive sectional
curvature, then so does M . We prove that strongly positive curvature is also
preserved by Riemannian submersions, using a convenient rewriting of the O’Neill
formula for the curvature tensor ofM in terms of the curvature tensor ofM and the
O’Neill tensor. Using this formula we also prove that strongly positive curvature is
preserved under Cheeger deformations. In both cases we obtain explicit formulas
for a modifying 4-form ω.

Next we consider examples, starting with compact rank one symmetric spaces.
Spheres with the round metric have positive definite curvature operator, and there-
fore all complex and quaternionic projective spaces have strongly positive curva-
ture, by the submersion result above. On the other hand, we prove that the
(unique up to scaling) homogeneous metric on the Cayley plane does not have
strongly positive curvature.

Finally we consider the remaining homogeneous manifolds with positive curva-
ture. We show that they all admit a metric with strongly positive curvature, with
the possible exception of the 24-dimensional octonionic flag manifold. For most of
these our proof relies on a strenghtening of Wallach’s theorem [5]: given compact
Lie groups H < K < G, we list sufficient conditions for the total space G/H of
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the homogeneous fibration K/H → G/H → G/K to admit a homogeneous metric
with strongly positive curvature.
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Finite-time singularities of the Kähler-Ricci flow

Valentino Tosatti

(joint work with Tristan C. Collins)

Let (X,ω0) be a compact Kähler manifold with dimCX = n. Let ω(t), t ∈ [0, T ),
be a smooth family of Kähler metric onX with ω(0) = ω0, solving the Kähler-Ricci
flow

∂

∂t
ω(t) = −Ric(ω(t)),

where Ric(ω(t)) denotes the Ricci form of ω(t). Since this is just the Ricci flow
starting at a Kähler metric, classical work of Hamilton shows that the flow always
has a unique smooth solution, defined on a (forward) maximal time interval [0, T )
with 0 < T ≤ ∞. Let us assume from now on that T <∞, in which case the flow
develops a finite-time singularity at time T . Thanks to [9] we know that

T = sup{t > 0 | [ω0]− 2πtc1(X) ∈ CX},
where CX denotes the Kähler cone of X . Following [4] we define the singularity
formation locus as

Σ = X\{x ∈ X | ∃U ∋ x open, ∃C > 0, s.t. |Rm(t)|g(t) ≤ C on U × [0, T )}.
In [10] it is shown that we may replace the condition |Rm(t)|g(t) ≤ C by R(t) ≤ C,
where R(t) is the scalar curvature of ω(t). In fact, we even have that Σ equals the
complement of

{x ∈ X | ∃U ∋ x open, ∃ωT Kähler metric on U s.t. ω(t)
C∞(U)→ ωT as t→ T−}.

The following conjecture was posed by Feldman-Ilmanen-Knopf in 2003:

Conjecture 1. The singularity formation set Σ is an analytic subvariety of X.
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Let [α] = [ω0]−2πTc1(X) ∈ ∂CX be the limiting class along the flow. If V ⊂ X
is positive-dimensional irreducible analytic subvariety, k > 0, then we have

ˆ

V

αdimV ≥ 0.

Define the null locus of the class [α] to be

Null(α) =
⋃

´

V
αdim V =0

V.

Note that
´

V
αdimV = 0 happens if and only if the volume of V with respect to

ω(t) approaches zero as t approaches T . The following theorem gives a positive
solution to Conjecture 1:

Theorem 2. For any finite-time singularity of the Kähler-Ricci flow on a compact
Kähler manifold we have

Σ = Null(α),

which is a nonempty analytic subvariety of X.

In particular, if
´

X αn = 0 (which happens precisely when the volume of the
whole manifold goes to zero), then Σ = X , and otherwise Σ is a proper analytic
subvariety of X . The key tool in the proof of this result is the following analytic
characterization of the null locus. Following [1] define the non-Kähler locus of the
class [α] to be

EnK(α) =
⋂

Z∈[α] Kähler current

Sing(Z),

where a Kähler current Z in the class [α] is a closed (1, 1) current Z = α+
√
−1∂∂ϕ,

where ϕ is a quasi-plurisubharmonic function, which satisfies Z ≥ εω0 weakly as
currents, for some ε > 0. Here Sing(Z) denotes the set of points x ∈ X such that
ϕ is not smooth near x. EnK(α) is an analytic subvariety of X . The following
is the main result of [2], and generalizes and reproves algebro-geometric results in
[6, 3].

Theorem 3. Let X be a compact Kähler manifold and [α] ∈ ∂CX, then

Null(α) = EnK(α).

This is used to construct a good barrier function ϕ as above which is then
employed to get uniform estimates for ω(t) outside Null(α). In [2] we also prove
a result similar to the one in Theorem 2 but for sequences of Ricci-flat Kähler
metrics on a compact Calabi-Yau manifold.

We end this report with a list of open problems on finite-time singularities of
the Kähler-Ricci flow, which are mostly well-known. The setup is the same as in
Theorem 2.

(1) Show that the diameter of X with respect to ω(t) remains bounded as t
approaches T .

(2) Prove or disprove that |Rm(t)|g(t) ≤ C
T−t , for some constant C.
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(3) Show that (X,ω(t)) converges in Gromov-Hausdorff as t approaches T to
the metric completion of the smooth limit of the metrics ω(t) onX\Null(α).

(4) Show that every irreducible component of Null(α) is uniruled, i.e. covered
by rational curves.

(5) Show that there exists a holomorphic map π : X → Y to a compact Kähler
space Y , possibly singular, which is an isomorphism away from Null(α),
and such that [α] is the pullback of a Kähler class on Y .

(6) If (5) holds, show that the flow can be restarted on a variety birational
Y , and the whole process is continuous in the Gromov-Hausdorff topology
(cf. [8])

(7) Prove or disprove that the Kähler potential ϕ(t) along the flow has a
uniform L∞ bound independent of t.

(8) Prove that the diameter of X with respect to ω(t) goes to zero as t ap-
proaches T if and only if [ω0] = λc1(X) for some λ > 0 (cf. [7]).

(9) Prove or disprove that

Σ = X\{x ∈ X | ∃C > 0 s.t. R(x, t) ≤ C for all 0 ≤ t < T }.
(10) Prove that blowup limits of rescalings of the flow as time approaches T

are complete Kähler-Ricci solitons (shrinking and gradient if (2) holds).
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Incompressible surfaces in locally symmetric spaces

Ursula Hamenstädt

A conjecture of Gromov states that every one-ended hyperbolic group contains a
surface group, i.e. the fundamental group of a closed oriented surface of genus
g ≥ 2.

In recent seminal work, J. Kahn and V. Markovic proved that the fundamen-
tal group of every closed hyperbolic 3-manifold contains a surface subgroup, so
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Gromov’s conjecture holds true for fundamental groups of hyperbolic 3-manifolds.
This result is a crucial ingredient in the recent solution of the virtual fibred con-
jecture by Ian Agol.

In this lecture we report on the following extension of the result of Kahn and
Markovic [2]

Theorem 1. LetM be a closed rank one locally symmetric manifold. Then π1(M)
contains surface subgroups.

The case thatM is an even dimensional hyperbolic manifold (i.e. the dimension
of M is even and its universal covering is the hyperbolic space) is joint work with
Jeremy Kahn [3]

The proof is based on the strategy developed by Kahn and Markovic, but it
only uses differential geometric tools and standard tools from dynamical systems.
The case of even dimensional hyperbolic manifolds relies on a more refined and
substantially modified construction.
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[3] [HK14] U. Hamenstädt, J. Kahn, in preparation

Flexible polyhedra and their volumes

Alexander A. Gaifullin

A flexible polyhedron in the three-dimensional space can be thought about as a
closed polyhedral surface with faces made of some rigid material and hinges at
edges. Such polyhedral surface is allowed to flex so that all its faces remain con-
stant during the flexion and its dihedral angles vary continuously. If a polyhedral
surface admits a flex that is not induced by the ambient rotation of R3, then it
is called flexible; otherwise, it is called rigid . Similarly, one can define flexible
polyhedra in spaces of arbitrary dimensions.

In 1813 Cauchy proved his famous theorem claiming that any convex polytope
is rigid. For non-convex polyhedra, the situation is much more interesting. In
1897 Bricard [1] constructed and classified flexible self-intersected octahedra in R3.
Since then, for 80 years it had been unknown if there exist non-self-intersected
flexible polyhedra. The first example of such polyhedron was constructed by
Connelly [2]. The problem on existence of flexible polyhedra in spaces of higher
dimensions turned out to be more complicated. Only few examples of flexible four-
dimensional cross-polytopes have been constructed by Walz and Stachel, and no
examples in dimensions 5 and higher have been known. First examples of flexible
self-intersected polyhedra, namely, cross-polytopes in spaces of all dimensions have
been obtained by the author [6]. These examples exist in all spaces of constant
curvature, i. e., in Euclidean spaces, in spheres, and in Lobachevsky spaces. The
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tool for constructing these examples is the interpreting of the biquadratic relations
between tangents of the halves of the dihedral angles of cross-polytopes as addi-
tion laws for Jacobi’s elliptic functions. Using this approach, we have classified
all flexible cross-polytopes in all spaces of constant curvature. For each flexible
cross-polytope, we have obtained an explicit parametrization of the flexion via
either elliptic or rational functions. Nevertheless, still there are no examples of
non-self-intersected flexible polyhedra in dimensions 4 and higher.

Possibly, the most interesting problem concerning flexible polyhedra is the so-
called Bellows conjecture posed by Connelly in 1978. This conjecture claims that
the volume of any flexible polyhedron in the three-dimensional Euclidean space is
preserved during the flexion. This conjecture was proved by Sabitov [9], [10]. He
proved that the volume of any simplicial polyhedron in R3 satisfies a polynomial
relation of the form

V 2N + a1(ℓ)V
2N−2 + a2(ℓ)V

2N−4 + · · ·+ aN (ℓ) = 0, (1)

where aj(ℓ) are polynomials in the squares of edge lengths of the polyhedron de-
pending on its combinatorial type. This result implies immediately the Bellows
conjecture, since a root of a monic polynomial with fixed coefficients cannot vary
continuously. In higher dimensions, the following generalization of Sabitov’s the-
orem has been obtained by the author.

Theorem 1. ([4], [5]) The volume of any polyhedron in Rn, n ≥ 4, with triangular
two-dimensional faces satisfies a relation of the form (1), where the number N and
the polynomials aj(ℓ) depend on the combinatorial type of the polyhedron. Hence
the volume of any flexible polyhedron in Rn, n ≥ 4, is constant during the flexion.

Sabitov’s proof of the Bellows conjecture in three dimensions uses a special
technique of excluding the lengths of diagonals by means of resultants. An alter-
native proof using theory of places of fields was obtained by Connelly, Sabitov,
and Walz [3]. Our proof of Theorem 1 is obtained by combining this approach
using theory of places with some technique of combinatorial topology, namely, the
theory of simplicial collapses.

There are two main directions for the generalization of results on existence of
relations of the form (1). First, we can replace the edge lengths with, say, the
areas of two-dimensional faces, and ask if there exists a relation of the form

V 2M + b1(A)V
2M−2 + b2(A)V

2M−4 + · · ·+ bM (A) = 0, (2)

where bj(A) are polynomials in the squares of the areas of two-dimensional faces
of the polyhedron. This question is highly non-trivial even in the simplest case of
a simplex. In [7], we have proved that, for an n-dimensional simplex, a relation of
the form (2) exists if and only if n is even and n ≥ 6.

Second, we may ask if it is possible to replace the volume V in (1) with some
other characteristic of the polyhedron. In this particular statement, nothing is
known. Nevertheless, a related result has been obtained by S. A. Gaifullin and
the author [8]. Instead of a polyhedron, we consider a doubly-periodic polyhedral
surface S ⊂ R3 homeomorphic to R2. We mean that there exist two non-colinear
vectors a and b such that S is invariant under the parallel translations along a
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and b. The surface S is allowed to flex so that it remains doubly-periodic and the
period lattice varies continuously. Then the three Gram coefficients of the period
vectors a and b are important characteristics of the doubly-periodic polyhedral
surface. An analogue of Theorem 1 in this setting is as follows.

Theorem 2. ([8]) For any doubly-periodic simplicial polyhedral surface S ⊂ R
3

homeomorphic to the plane, the three Gram coefficients of its period vectors a
and b satisfy two independent polynomial relations with coefficients being poly-
nomials in the squares of edge lengths of the polyhedral surface depending on its
combinatorial type. Hence only one-parametric deformations of the Gram matrix
of the period vectors may occur during the flexion.
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Ancient convex solutions of the mean curvature flow

Carlo Sinestrari

(joint work with Gerhard Huisken)

Let Mt be a family of smooth hypersurfaces of Rn+1 evolving by mean curvature
flow. The family is called an ancient solution if it is defined on a time interval of
the form (−∞, 0). In our analysis we further assume that Mt is closed and convex
for all t.

Ancient solutions are a special class among the solutions of mean curvature
flow, which is in general ill-posed backward in time because of its parabolic na-
ture. They are of interest for several reasons. They arise as tangent flows near
singularities of the flow and therefore model the asymptotic singular profile of a
general solution. They have also been of interest in theoretical physics where they
appear as steady state solutions of boundary renormalisation-group-flow in the
boundary sigma model [3, 10].

Examples of ancient solutions include all homothetically shrinking solutions, in
particular the shrinking round sphere and the shrinking cylinders. An important
example of a non-homothetic ancient solution is the Angenent oval [1], an ancient
convex solution of curve shortening in the plane which arises by gluing together
near t→ −∞ two opposite translating (non-compact) solutions of curve shortening
flow in the plane given by

y1(t) = − log cosx+ t, y2(t) = log cosx− t.

The translating solution above is known as the grim reaper curve in the mathemat-
ical community while it is known as the hairpin solution in the physics community,
[3]. The Angenent oval is known as the paperclip solution in the physics literature
[10]. Compact convex ancient solutions in the plane have been completely classi-
fied by Daskalopoulos-Hamilton-Sesum [5] to be either shrinking round circles or
an Angenent oval. A solution analogous to the Angenent oval was constructed in
higher dimensions by White [11]. Haslhofer and Hershkovits give a more detailed
construction [6] and formal asymptotics of this solution was studied by Angenent
in [2].

In our study, we aim at finding properties which characterize the shrinking
sphere among all closed convex ancient solutions of the flow. We denote by λ1 ≤
· · · ≤ λn the principal curvatures of the hyperusrface, by H = λ1 + · · · + λn
the mean curvature and by |A|2 = λ21 + · · · + λ2n the square norm of the second
fundamental form. All the result we give in the following are contained in [9].

Theorem 1. Let Mt be a closed convex ancient solution of mean curvature flow.
Then the following properties are equivalent:

(i) Mt is a family of shrinking spheres.
(ii) The curvatures of Mt satisfies the uniform pinching condition λi ≥ εH

for some ε > 0.
(iii) The diameter of Mt satisfies diam(Mt) ≤ C1(1 +

√
−t) for some C1 > 0.

(iv) The outer and inner radii of Mt satisfy ρ+(t) ≤ C2ρ−(t) for some C2 > 0.
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(v) Mt satisfies maxH(·, t) ≤ C3 minH(·, t) for some C3 > 0.
(vi) Mt satisfies the reverse isoperimetric inequality |Mt|n+1 ≤ C4|Ωt|n for

some C4 > 0, where Ωt is the region enclosed by Mt.
(vii) Mt is of type I, that is, lim supt→−∞

√
−tmaxH(·, t) <∞.

We remark that Haslhofer and Hershkovitz [6] have proved, by a different ap-
proach, a related result (equivalence of (i), (ii), (iii) and (vii)) under the additional
assumption that the solutions are α-noncollapsed in the sense of Andrews.

Concerning the optimality of the diameter growth in assumption (iii), we recall
that the formal analysis of [2] supports the existence of ancient solutions whose

diameter grows with rate
√
|t| ln |t|. Thus suggests that the growth rate in our

assumption is not far from being optimal.
The proof of Theorem 1 employs various tools which have been introduced

during the last decades in the analysis of finite time singularities of the flow. For
instance, to prove the equivalence between (i) and (ii) we consider, for a small
σ > 0, the function, introduced in [7],

fσ =
|A|2 −H2/n

H2−σ
.

Such a function is nonnegative and vanishes exactly at the umbilical points. In [7]
it was proved that the Lp norm of fσ is decreasing in time for suitable values of p
large and σ small. By refining the analysis in [7], we obtain the estimate

(
ˆ

Mt

fp
σ dt

) 2
σp

≤ c3

|T0|1−
n
σp − |t|1− n

σp

,

for suitable p, σ such that σp > n, valid for any solution (not necessarily ancient)
of the flow defined on a time interval (T0, 0). By letting T0 → −∞, we obtain that
fσ ≡ 0, which implies that the Mt’s are spheres. Such a result has some analogies
with the analysis in [4], where it is shown that ancient solutions to the Ricci flow
satisfying suitable pinching conditions are necessarily a shrinking sphere (up to
quotients).

We now consider the case of ancient convex solutions which are in addition
uniformly k-convex, that is, they satisfy λ1 + · · ·+ λk ≥ αH > 0 for some α > 0.
Using some techniques introduced in [8], we can prove

Theorem 2. Let Mt, be a convex closed ancient solution of the mean curvature
flow, with n ≥ 3, which is uniformly k-convex for some k = 2, . . . , n− 1. Then we
have H2 > (n− k + 1)|A|2 on Mt for all t.

As a corollary, using the algebraic properties of the quotient |A|2/H2, we can
prove a peculiar property enjoyed by this function.

Theorem 3. Let Mt be a closed convex ancient solution of the mean curvature
flow. Then there is an integer h = 1, . . . , n such that

sup
t∈(−∞,0)

max
Mt

|A|2
H2

=
1

h
.
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Nonnegatively curved fixed point homogeneous manifolds

Wolfgang Spindeler

A Riemannian manifoldM is called fixed point homogeneous if it admits an isomet-
ric action by a Lie group G with nonempty fixed point set, such that the induced
action of G on a normal sphere to some fixed point component is transitive. Equiv-
alently, a component of the fixed point set of maximal dimension has codimension
1 in the orbit space. This definition was given in [1], where a classification of
closed fixed point homogeneous manifolds of positive curvature was obtained.

A crucial structure result towards this classification is that a closed fixed point
homogeneous manifold M of positive curvature decomposes as the union of the
normal disc bundles over a maximal fixed point component F and the unique
orbit G(p) of maximal distance to F . The ideas used in the proof of this structure
result apply also to the case of nonnegative curvature leading to weaker conclusions
than in the case of positive curvature. This approach has led to classifications of
nonnegatively curved fixed point homogeneous manifolds in dimensions ≤ 4 ([2])
and in dimension 5 in the simply connected case ([3]).

In this talk I present a general structure result for closed nonnegatively curved
fixed point homogeneous manifolds: given a maximal fixed point component F ,
there exists a smooth invariant submanifold N of M with empty boundary such
that M is diffeomorphic to the unit normal bundles D(F ) and D(N) of F and N ,
respectively, glued together along their boundaries;

M ∼= D(F ) ∪∂ D(N).
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As a corollary of this result it is shown that a simply connected torus manifold
of nonnegative curvature is rationally elliptic (recall that a torus manifold is a
closed orientable manifold of dimension 2n with an effective isometric action by
the n-dimensional torus with nonempty fixed point set).
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Uniquely ergodic interval exchanges are path-connected

Sebastian Hensel

(joint work with Jon Chaika)

Interval exchange transformations (IETs) are piecewise isometric self-maps of an
interval to itself, which rearrange subintervals by translations according to a per-
mutation π. These maps form interesting and rich examples of dynamical systems,
but also appear in geometric contexts. Maybe most importantly, first return maps
of orientable foliations to transversals on Riemann surfaces are IETs. See [Z06],
[Y10] or [V06] for good surveys.

In this work, we consider the set ∆π of all IETs with a given (non-degenerate)
permutation π defined on a unit interval. This set is naturally homeomorphic to
the n-dimensional standard simplex in R

n+1 (by considering the lengths of the
subintervals).

We are interested in the subset of ∆π of all those IETs which are uniquely
ergodic (i.e. admit only one invariant measure). It is known (Masur [M82], Veech
[V82]) that on the one hand this set has full measure in ∆π. Yet, on the other hand,
its complement has Hausdorff dimension at least n− 1 (Masur-Smillie [MS91]).

We show

Theorem 1 (Chaika-Hensel [CH14]). Let k ≥ 4 and let π be any non-degenerate
permutation on k letters. Then the set of uniquely ergodic unit length IETs with
permutation π is path-connected.
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Metric measure spaces with synthetic Ricci bounds – state of the art
and recent results

Karl-Theodor Sturm

1. Curvature-dimension conditions for mms

A longstanding open problem in analysis and geometry on singular spaces was
to find an appropriate notion of generalized lower Ricci curvature bounds for met-
ric measure spaces (X, d,m). Lott&Villani [10] and Sturm [14] proposed such a
concept based on the theory of optimal transportation. The so-called curvature-
dimension condition CD(K,N) in the most easiest case N = ∞ states that the rel-
ative entropy Ent(.|m) regarded as a functional on the L2-Wasserstein space P2(X)
is weakly K-convex (formally, Hess Ent(.|m) ≥ K.) That is, ∀µ0, µ1 ∈ P2(X) : ∃
geodesic (µt)t s.t. ∀t ∈ [0, 1]:

Ent(µt|m) ≤ (1 − t)Ent(µ0|m) + tEnt(µ1|m)− K

2
t(1− t)W 2

2 (µ0, µ1).

Here Ent(ν|m) =
´

X
ρ log ρ dm with ρ = dµ

dm if ν is absolutely continuous w.r.t. m
and Ent(ν|m) = +∞ if ν otherwise. The definition of CD(K,N) in the case of
finite N – as originally introduced in [15] and adopted in [11] – is more involved.
Its lack of a local-to-global property led to the definition of the reduced curvature-
dimension condition CD∗(K,N) [4]. A powerful new characterization of the latter
has been found recently.
Proposition [5]. A non-branching metric measure space (X, d,m) satisfies the
condition CD∗(K,N) iff S = Ent(.|m) is weakly (K,N)-convex on P2(X, d), for-
mally

HessS − 1

N
(∇S ⊗∇S) ≥ K.

2. Heat flow on mms

The heat equation on (X, d,m) plays an crucial role in the study of refined
properties of metric measures spaces (X, d,m). It can be defined

• either as gradient flow on L2(X,m) for the energy

E(u) = 1

2

ˆ

X

|∇u|2 dm = lim inf
v→u inL2

1

2

ˆ

X

(lipxv)
2 dm(x)

with |∇u| = minimal weak upper gradient
• or as gradient flow on P2(X) for the relative entropy Ent(.|m).
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Theorem [1]. For arbitrary metric measure spaces (X, d,m) satisfying CD(K,∞)
both approaches coincide.

Note that this also applies to Finsler spaces in which case the heat flow will be
non-linear [12].

We say that a mms satisfies the Riemannian curvature-dimension condtion
RCD∗(K,N) if it satisfies the condtion CD∗(K,N) and if its heat flow is lin-
ear. This condition again is stable under convergence [2, 5]. Moreover, it implies
that the space is essentially non-branching [13].

3. Analysis on RCD∗(K,N)-spaces

Theorem [5]. For any metric measure space with linear heat flow the condition
CD∗(K,N) is equivalent to the Bakry-Emery condition BE(K,N) (or ”Bochner
inequality”)

1

2
∆|∇u|2 − 〈∇u,∇∆u〉 ≥ K · |∇u|2 + 1

N
· |∆u|2.

This extends upon previous recent results by Ohta-Sturm for Finsler spaces,
Gigli-Kuwada-Ohta, Zhang-Zhu for Alexandrov spaces and Ambrosio-Gigli-Savaré
[3] for CD(K,∞)-spaces. The Bochner inequality is the key ingredient for a refined
heat kernel analysis on mms.

Corollary [6]. On RCD∗(K,N)-spaces, the Li-Yau gradient estimate, the differ-
ential Harnack inequality and the Gaussian heat kernel estimates hold true in the
same form as on Riemannian manifolds. In particular, for each f ≥ 0

∆(logPtf) ≥ −N
2t
.

4. Transformations of RCD∗(K,N)-spaces

Given a (’smooth’) mms (X, d,m) and (’smooth’) functions V,W on X , let us
consider the mms (X, d′,m′) with m′ = eVm and

d′(x, y) = inf

{
ˆ 1

0

|γ̇t| · eW (γt) dt : γ : [0, 1] → X rectifiable, γ0 = x, γ1 = y

}
.

Theorem [16]. If (X, d,m) satisfies RCD∗(K,N) then for each N ′ > N there
exists K ′ s.t. (X, d′,m′) satisfies RCD∗(K ′, N ′).

The above transformation can also be expressed in terms of the associated
Dirichlet forms: the form

´

|∇u|2 dm on L2
(
X,m

)
will be transformed into

´

|∇u|2eV−2W dm on L2
(
X, eVm

)
. Three cases are of particular interest

• W = 0 (‘drift transformation’): This is well studied, both in the context
of Bakry-Emery conditions and in the context of Lott-Sturm-Villani con-
ditions. The bound for the transformed space depends on HessV and ∇V .
Also N = ∞ is admissible.

• V = 2W (‘time change’): New transformation property. The bound for the
transformed space depends on ∆W and ∇W . Finitenss of N is necessary.

• V = NW (‘conformal transformation’): This is the only case where N ′

can be chosen to coincide with N . Finitenss of N is necessary.
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5. Geometry of RCD∗(K,N)-spaces

Let us briefly mention some very recent breakthroughs which provide a deeper
understanding of the geoemtry of mms satisfying a synthetic lower Ricci bound.

Theorem (‘Splitting Theorem’) [7]. If (X, d,m) satisfies RCD∗(0, N) and con-
tains a line then

X = R×X ′

for some RCD∗(0, N − 1)-space (X ′, d′,m′).

Theorem (‘Maximal Diameter Theorem’) [8]. If (X, d,m) satisfies RCD∗(N −
1, N) and has diameter π then X is the spherical suspension of some RCD∗(N −
2, N − 1)-space (X ′, d′,m′).

Proposition [8]. For any κ ≥ 0 and N ≥ 1 the following are equivalent

• (X, d,m) satisfies RCD∗(N − 1, N) and has diameter ≤ π
• The (κ,N)-cone over (X, d,m) satisfies RCD∗(κN,N + 1).

For κ = 0 this applies to Euclidean cones, for κ = 1 to spherical suspensions.

Theorem [9]. If (X, d,m) satisfies RCD∗(K,N) then ∃ integer n ≤ N s.t. for
m-a.e. x ∈ X the tangent cone at x is unique and isometric to Rn.
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and Riemannian Ricci curvature bounds, ArXiv:1209.5786, to appear in Ann. Probab.

[4] Bacher, K. and Sturm, K.T., Localization and tensorization properties of the curvature-
dimension condition for metric measure spaces, JFA 259, 28–56 (2010)

[5] Erbar, M., Kuwada, K. and Sturm, K.T., On the Equivalence of the Entropic Curvature-
Dimension Condition and Bochner’s Inequality on Metric Measure Spaces, ArXiv:1303.4382

[6] Garofalo, N. and Mondino, A., Li–Yau and Harnack type inequalities in RCD∗(K,N)
metric measure spaces, ArXiv:1306.0494

[7] Gigli, N., The splitting theorem in non-smooth context, ArXiv:1302.5555
[8] Ketterer, C., Cones over metric measure spaces and the maximal diameter theorem,

ArXiv:1311.1307
[9] Mondino, A. and Naber, A. Structure Theory of Metric-Measure Spaces with Lower Ricci

Curvature Bounds I, ArXiv:1405.2222
[10] Lott, J. and Villani, C., Ricci curvature for metric-measure spaces via optimal transport,

Ann. Math., 169, 903–991 ( 2009)
[11] Lott, J. and Villani, C., Weak curvature conditions and functional inqualitites, JFA 245,

311-333 (2007)

[12] Ohta, S. and and Sturm, K.T., Heat flow on Finsler manifolds, Comm. Pure Appl. Math.
62, 1386-1433 (2009)

[13] Rajala, T. and and Sturm, K.T., Non-branching geodesics and optimal maps in strong
CD(K,∞)-spaces, Calc. Var. PDEs, 50, 831-846 (2014)

[14] Sturm, K.T., On the geometry of metric measure spaces. I, Acta Math., 196, 65-131 (2006)
[15] Sturm, K.T., On the geometry of metric measure spaces.II, Acta Math., 196, 133-177 (2006)
[16] Sturm, K.T., Ricci Tensor for Diffusion Operators and Curvature-Dimension Inequalities

under Conformal Transformations and Time Changes ArXiv:1401.0687



1594 Oberwolfach Report 29/2014

Volume and characteristic numbers of representations of hyperbolic
manifolds

Michelle Bucher

(joint work with Marc Burger, Alessandra Iozzi)

Let Γ be a lattice in Isom(Hn) and ρ : Γ → Isom(Hn) be any representation. The
definition of the volume Vol(ρ) of the representation ρ is classical in the cocompact
case and has been extended to the non-cocompact case by various authors [Dun99,
Fra04, BIW10, KK12a, BBI13]. The equivalence of these definitions has been
recently established in [KK13].

With the definition introduced in [BBI13], which parallels the definition for
surface groups given in [BIW10], it is easy to deduce that

(1) |Vol(ρ)| ≤ vol(Γ \Hn) .

One of the fundamental results concerning the volume of a representation is the
volume rigidity theorem, according to which equality in (1) holds if and only if:

(1) n = 2 and ρ is the holonomy representation of a (possibly infinite volume)
complete hyperbolization of the smooth surface underlying M , [Gol80,
BI07, KM08], or

(2) n ≥ 3 and ρ is conjugate to idΓ, [Dun99, FK06, BCG07, BBI13].

If Γ is cocompact, one knows at least since [Rez96] that Vol is constant on the
connected components of hom(Γ, Isom(Hn)) and hence takes only finitely many
values. In odd dimension the nature of these values is in general mysterious, while
in even dimension n = 2m, the Chern–Gauss–Bonnet theorem implies that Vol(ρ)
is, up to a universal constant, an integer.

If Γ is non-cocompact, the situation parallels the one above, at least in high
dimension. In fact, using an approach via Schläfli’s formula as in [BCG07], Kim
and Kim proved that if Γ \Hn is a finite volume hyperbolic manifold of dimension
≥ 4, the volume is constant on the connected components of hom(Γ, Isom(Hn))
[KK13]. Like in the compact case, in odd dimension the nature of these values is
mysterious.

Our main result is the integrality of Vol(ρ) in dimension n = 2m ≥ 4; this
generalizes the Harder–Gauss–Bonnet theorem according to which

2(−1)m

vol(S2m)
vol(Γ \Hn) = χ(Γ \Hn) .

Theorem 1. Let n = 2m ≥ 4 be an even integer. Let Γ < Isom+(H2m) be a
non-cocompact lattice and let ρ : Γ → Isom+(H2m) be any representation.

(1) If Γ is torsion free and the manifold M = Γ \ H2m has only toric cusps,
then

2

vol(S2m)
· Vol(ρ) ∈ Z .
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(2) If Γ is torsion free then

2

vol(S2m)
· Vol(ρ) ∈ 1

B2m−1
· Z ,

where B2m−1 is the Bieberbach number in dimension 2m− 1.
(3) There exists an integer B′ = B′(Γ) ≥ 1 such that

2

vol(S2m)
· Vol(ρ) ∈ 1

B′
· Z .

It follows from (1) and Theorem 1 that, in fact, 2
vol(S2m) · Vol(ρ) takes only a

finite number of values.
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The Monge-Ampère equation for (n − 1)-plurisubharmonic functions

Ben Weinkove

(joint work with Valentino Tosatti)

Let M be a compact complex manifold of complex dimension n. A Hermitian
metric g onM is given in local complex coordinates z1, . . . , zn as a positive definite
Hermitian metric (gij). Associated to g is a real (1, 1) form ω =

√
−1gijdz

i ∧ dzj .
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Note that ω and g contain the same information and we will refer to both as a
metric. We say that g is Kähler if dω = 0.

The following fundamental result in Kähler geometry is due to Yau.

Theorem 1 (Yau [15]). Let (M,ω) be a compact Kähler manifold. Let F be a
smooth real-valued function M with

´

M eFωn =
´

M ωn. Then there exists a unique

Kähler metric ω̃ of the form ω̃ = ω +
√
−1∂∂̄u > 0, for u a smooth real-valued

function, solving

(1) ω̃n = eFωn.

We call (1) the complex Monge-Ampère equation. An immediate consequence
of Yau’s theorem is the Calabi conjecture:

Corollary 1 (Yau [15]). Let (M,ω) be a compact Kähler manifold. Given any
representative ψ ∈ c1(M) there exists a unique Kähler metric ω̃ of the form ω̃ =
ω +

√
−1∂∂̄u > 0, for u a smooth real-valued function, solving

Ric(ω̃) = ψ.

Here we recall that Ric(ω) = −
√
−1∂∂ log det g is the Ricci curvature of ω and

the first Chern class c1(M) is defined to be c1(M) = [Ric(ω)] ∈ H1,1(M ;R). To see
that the corollary follows from the theorem, define F by Ric(ω) = ψ +

√
−1∂∂̄F

with
´

M eFωn =
´

M ωn and let ω̃ solve (1).
Are there analogues of these results for non-Kähler metrics? In particular, we

are interested in metrics satisfying one of the two natural conditions:

(1) A Hermitian metric ω is Gauduchon if ∂∂̄(ωn−1) = 0. Such metrics always
exist on compact complex manifolds [5].

(2) A Hermitian metric ω is balanced if d(ωn−1) = 0 [10]. Such metrics are of
recent interest in mathematical physics (see e.g. [9]).

There is an obvious difficulty in generalizing Yau’s theorem to these metrics.
Namely, if n ≥ 3 then ω Gauduchon (balanced) does not imply in general that
ω +

√
−1∂∂̄u is Gauduchon (balanced).

First some definitions. We recall that a smooth function u on Cn is plurisubhar-
monic if

√
−1∂∂̄u ≥ 0 as a (1, 1) form. We say that u is (n− 1)-plurisubharmonic,

in the sense of Harvey-Lawson [7], if
√
−1∂∂̄u∧ωn−2

E ≥ 0 as an (n−1, n−1)-form,

where ωE =
√
−1

∑
i dz

i ∧ dzi. Equivalently, u is subharmonic when restricted to
every complex (n− 1)-plane.

On a compact Hermitian manifold (M,ω) we give the following definition. Let
ω0 be another Hermitian metric. Define u to be (n − 1)-plurisubharmonic with
respect to ω and ω0 if ωn−1

0 +
√
−1∂∂̄u∧ωn−2 ≥ 0. Note that an (n−1, n−1) form

Ψ defines a Hermitian matrix (Ψij) (look at the coefficients of (
√
−1)n−1dz1 ∧

dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn) and we say that Ψ ≥ 0 if this matrix is
nonnegative definite.

There is an obvious Monge-Ampère equation associated to this notion, and our
main result is that this equation always admits unique solutions.
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Theorem 2 ([13, 14]). Given any smooth function F there exists a unique pair
(u, b) with u a smooth function and b ∈ R such that

det(ωn−1
0 +

√
−1∂∂̄u ∧ ωn−2) = eF+b det(ωn−1)

ωn−1
0 +

√
−1∂∂̄u ∧ ωn−2 > 0, sup

M
u = 0.

(2)

The equation (2) was first introduced by Fu-Wang-Wu [2], who solved it in the
case when ω is Kähler with non-negative orthogonal bisectional curvature [3].

We now describe how equation (2) is related to Gauduchon and balanced met-
rics. Observe that the map ω 7→ ωn−1 is a bijection from positive definite (1, 1)
forms to positive definite (n−1, n−1) forms. We write its inverse as Ψ 7→ Ψ1/(n−1).

Next, assume that ω is Kähler. Then

ω0 Gauduchon =⇒ ωu := (ωn−1
0 +

√
−1∂∂̄u ∧ ωn−2)1/(n−1) is Gauduchon,

if u is strictly (n− 1)-plurisubharmonic. Moreover, the same is true if we replace
“Gauduchon” with “balanced”. Observe that equation (2) can be rewritten as

ωn
u = e

F+b
n−1 ωn.

As a consequence of Theorem 2, we have:

Corollary 2 ([13]). Let (M,ω) be a compact Kähler manifold and let ω0 be a
Gauduchon (balanced) metric. Then given a smooth function F there exists a
Gauduchon (balanced) metric ωu and b ∈ R such that

ωn
u = eF+bωn.

Moreover, ωu is the unique such metric of the form

ωu = (ωn−1
0 +

√
−1∂∂̄u ∧ ωn−2)1/(n−1).

Hence, on a compact Kähler manifold, we can solve the volume form equation
for Gauduchon (balanced) metrics, up to a scaling factor. The result of Corollary
2 was conjectured by Fu-Xiao [4] and Popovici [11]. Note that for Gauduchon
metrics, the assumption of ω being Kähler can be weakened to ∂∂̄(ωn−2) = 0 [14],
a condition known as Astheno-Kähler [8].

Finally, it would be desirable to weaken the assumption that ω is Kähler. In-
deed, the Gauduchon case was conjectured much earlier in the following form:

Conjecture 1 (Gauduchon [6]). Let M be a compact complex manifold. Given
ψ ∈ cBC

1 (M) there exists a Gauduchon metric ω̃ with

Ric(ω̃) = ψ.

Here, Ric(ω) := −
√
−1∂∂̄ log det g, which in general differs from the Riemann-

ian Ricci curvature of g if g is non-Kähler. The first Bott Chern class cBC
1 (M) is

the class of Ric(ω) in the space H1,1
BC(M ;R) := {d-closed real (1, 1) forms}/Im∂∂̄.

Conjecture 1 is a natural generalization of the Calabi conjecture. It holds if
n = 2 [1] or if M admits an Astheno-Kähler metric [14]. Conjecture 1 would
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follow from the solution of the Monge-Ampère equation obtained by taking the
determinant of

Φu := ωn−1 +
√
−1∂∂̄u ∧ ωn−2 +Re(

√
−1∂u ∧ ∂̄ωn−2)

(see [12, 14]). Indeed, the point is that Φu is ∂∂̄-closed if ω is Gauduchon, and this
is exactly what is needed to obtain Gauduchon metrics with prescribed volume
form. Conjecture 1 would then follow in the same way that Corollary 1 follows
from Theorem 1.
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Uniqueness of Stenzel’s metric

Hans-Joachim Hein

(joint work with Ronan Conlon)

1. T ∗Sn and Stenzel’s metric

Stenzel’s metric [9] is a complete Ricci-flat Kähler metric of cohomogeneity 1 on
T ∗Sn. To make sense of this statement, we must give T ∗Sn a complex structure,
and one very natural way to do so is to observe that Sn = SO(n+ 1)/SO(n) and
T ∗Sn = SO(n+ 1,C)/SO(n,C). What makes this complex structure particularly
interesting is that it appears “in the wild” as an affine hyperquadric,

T ∗Sn biholo
= {z20 + ...+ z2n = 1} ⊂ C

n+1.

The SO(n+1,C)-action is obvious in this picture, and the zero section Sn ⊂ T ∗Sn

corresponds to the locus of real points of the quadric (all zi real).
For an arbitrary but fixed t ∈ C, consider the scaled quadric

Mt = {z20 + ...+ z2n = t} ⊂ C
n+1.

This is smooth for all t 6= 0, and limt→0Mt = M0. The latter space is invariant
under multiplication by complex scalars, hence can be viewed as a complex cone,
and has an isolated (“ordinary double point”) singularity at the origin.

For n ≥ 2, Mt (t 6= 0) has only one end. Stenzel’s metric is then the unique (up
to a scale) SO(n+1)-invariant Ricci-flat Kähler metric ωt on Mt. We can give an
explicit formula when n = 2 (this is the well-known Eguchi-Hanson metric):

ωt = i∂∂̄
√
|z|2 + t.

Observe that this converges to ω0 = i∂∂̄|z| if we either fix z and let t→ 0, or else
if we fix t and let |z| → ∞. Moreover, ω0 defines a Ricci-flat Kähler cone metric on
M0; in fact, the cone (M0, ω0) is isometric to C2/{±1} = C(RP 3). When n ≥ 3,
there no longer exists a simple explicit formula, but we can still say that

ωt = i∂∂̄ut(|z|2) = i∂∂̄|z|2n−1

n +O(|z|−2),

and ω0 = i∂∂̄|z|2n−1

n is a Ricci-flat (but no longer flat) Kähler cone metric on M0.
More precisely, g0 = dr2 + r2gL, where gL is a homogeneous Einstein metric with
Ric(gL) = (2n− 2)gL on the link L of the cone (the unit cotangent bundle of Sn),
and the radius function r of the cone metric g0 satisfies r = |z|(n−1)/n.

2. Main result

Theorem (Conlon-H [4]). If n ≥ 4, then, up to scaling, (M1, ω1) is the unique
complete Ricci-flat Kähler manifold asymptotic to (M0, ω0) at infinity.

Remarks. (1) (M,ω) is “asymptotic to (M0, ω0)” if there exists a diffeomorphism
Φ : M0 \K0 →M \K (K0,K compact) such that |∇j

g0(Φ
∗g − g0)|g0 = O(r−λ−j)

for some λ > 0 and all j ∈ N0.
(2) By Kronheimer’s classification of ALE spaces [7], the theorem also holds for

n = 2. In fact, our method yields an alternative proof of Kronheimer’s theorem.
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(3) If n = 3, then we show that there exists precisely one other example besides
Stenzel: Candelas-de la Ossa’s “small resolution of the conifold” [1].

(4) At least for n = 2, it is a folklore conjecture that the word “Kähler” in the
statement of the theorem is unnecessary. This seems to be wide open.

3. Step 1 of the proof: M is biholomorphic to M1

We compactify M as a complex manifold by using the asymptotic cone model,
then show that the compactification X is projective algebraic, and finally reduce
the problem to known classification results for algebraic varieties.

Theorem (Li [8]). Let D be a compact complex manifold, L→ D a holomorphic
line bundle, and h a Hermitian fiber metric on L of positive curvature. Put ω0 =
i∂∂̄h−δ on the total space of L \ 0 for some δ > 0; this is a Kähler cone metric
with radius function r given by r2 = h−δ. Let J be a complex structure on L \ 0
such that |∇j

g0(J − J0)|g0 = O(r−λ−j), where J0 is the given complex structure of
L. Then, up to diffeomorphism, J extends smoothly from L \ 0 to L.

Remarks. (1) The level sets of h on L\0 are the geodesic spheres in (M0, ω0). The
fact that these spheres are metrically convex corresponds to the positivity of the
curvature of h, which is fundamental to everything that follows.

(2) Li’s theorem is analogous to a compactification theorem for asymptotically
cylindrical complex manifolds due to Haskins-H-Nordström [6]. Both results are
proved by a Newlander-Nirenberg type construction at infinity.

We apply this result with D = {Z2
0 + ...+ Z2

n = 0} ⊂ CPn (here Z0, ..., Zn are
homogeneous coordinates on CPn), L = OCPn(1)|D, h the Fubini-Study metric,
and δ = n−1

n . The upshot is that M is biholomorphic to X \D, where
(i) X is a compact complex manifold,
(ii) D ⊂ X is a smooth divisor,
(iii) the holomorphic normal bundle ND/X is positive,
(iv) −KX = n[D].

Theorem (Conlon-H [3, 4]). Assume (i), (ii), (iii). Then the following hold.
(1) There exists a degree 1 holomorphic map p : X → Y onto a normal projective

variety Y such that p is an isomorphism onto its image near D, the singularities
of Y are isolated, and the Cartier divisor p∗[D] is ample on Y .

(2) If −KX = q[D] for some q ∈ N, then h0,i(X) = 0 for all i > 0, and all of
the singularities of Y are canonical.

(3) If q > 1 and if M = X \D is Kähler, then X is projective and every Kähler
form on M is cohomologous to the restriction to M of a Kähler form on X.

Remark. (1) is an application of some powerful old results of Grauert [5].

In our example, we proceed by classifying Y . For this, we apply a construction
from our earlier article [2] that turned out to be well-known in algebraic geometry
(“deformation to the normal cone”). Choose a defining section s of the line bundle
p∗[D] on Y and define Yt (t ∈ C∗) to be the image of s

t in the total space of p∗[D].
Then {Yt \p(D)}t∈C∗ extends to a flat algebraic family of affine algebraic varieties
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parametrized by t ∈ C whose central fiber (t = 0) is precisely the cone M0. Now
the deformation theory of affine algebraic varieties, together with the fact that the
versal deformation of our particular cone has a one-dimensional base (if not, there
would exist more Ricci-flat examples!), allows us to conclude that either

(a) Yt \ p(D) =Mt for all t, or
(b) Yt \ p(D) =M0 for all t.
In (b), M is a quasiprojective crepant resolution of the cone M0. Since n ≥ 3,

the singularity of M0 is terminal, so the exceptional set E = p−1(0) of the blow-
down map p :M →M0 satisfies codimCE ≥ 2. If n ≥ 4, then b2(D) = 1, and one
can use an exact sequence written down in [2] to derive a contradiction.

4. Step 2 of the proof: ω is equal to ω1

I didn’t have time to talk about this step. It uses a Calabi-Yau type uniqueness
theorem from [2] and the fact that H2(M1) = 0 because n ≥ 3. The proof of this
uniqueness theorem relies on a new Liouville theorem: if M is an asymptotically
conical Kähler manifold with Ric ≥ 0, and if u is a harmonic function on M with
u = o(r2) as r → ∞, then u is pluriharmonic. In our example, the only harmonic
functions with growth rate o(r2) are the restrictions of linear functions from Cn+1

to M1, which have growth rate n
n−1 ∈ (1, 2) and are clearly pluriharmonic.

5. Loose end: n = 3

For n = 3, we were left with the possibility that there exists a blow-down map
p : M → M0 whose exceptional set E = p−1(0) is a complex curve; in fact, since
b2(D) = 2, our argument shows that E is irreducible, so that M must be the total
space of a vector bundle V → E. There is only one possibility for this: E = CP 1

and V = OCP 1(−1)⊕2. Another classical and appealing way to writeM is to make
a linear change of coordinates such thatM0 = {xy−uv = 0} ⊂ C4 and then define

M = {( x u
v y )(

λ1

λ2
) = 0} ⊂ C4 × CP 1. This is a fundamental example in algebraic

geometry and carries a Ricci-flat Kähler metric [1] with rate λ = 2. By contrast,
in Stenzel, the singularity of the cone gets replaced with a Lagrangian S3 rather
than a holomorphic S2, and the rate of the metric is λ = 2 n

n−1 = 3.
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Riemannian orbifolds as quotients

Alexander Lytchak

Riemannian orbifolds are locally isometric to finite quotients of Riemannian man-
ifolds by finite groups of isometries. Globally, not any Riemannian orbifold can
be represented in such a way. However, any Riemannian orbifold can be globally
described as a quotient of some Riemannian manifold by some compact group
of isometries. In my talk I describe the following results relating such a global
presentation of an orbifold and its the geometric and topological properties.

• Any Riemannian foliation on a homotopy sphere is either 1- or 3-dimensional
or it is given by a Riemannian submersion with base and fiber being the 8-
dimensional respectively the 7-dimensional homotopy spheres (joint with
B. Wilking).

• Any orbifold with a contractible classifying space is a manifold.
• Any compact positively curved Riemannian orbifold which has dimension
≥ 3 and strata of codimension 1 is a good orbifold, which is orbi-covered
by a sphere. (Joint with C. Gorodski).

• For an isometric group action of G on a Riemannian manifoldM , the quo-
tientM/G is a Riemannian orbifold if and only if an infinitesimal condition
on all slice representations is fulfilled (joint with G. Thorbergsson).

• There is a classification of all quotients Sn/G which are Riemannian orb-
ifolds. Beyond weighted projective spaces all such quotients in dimensions
≥ 3 either have constant curvature 1 or 4. The last case can only occur in
dimensions ≤ 5. (Joint with C. Gorodski).

Existence of minimal hypersurfaces

André Neves

A question lying at the core of Differential Geometry, asked Poincaré in 1905, is
whether every closed Riemann surface always admits a closed geodesic.

If the surface is not simply connected then we can minimize length in a nontrivial
homotopy class and produce a closed geodesic. Therefore the question becomes
considerably more interesting on a two-sphere, and the first breakthrough was in
1917, due to Birkhoff, who found a closed geodesic for any metric on a two-sphere.

Later, in a remarkable work, Lusternik and Schnirelmann showed that every
metric on a 2-sphere admits three simple (embedded) closed geodesics. This result
is optimal because there are ellipsoids which admit no more than three simple
closed geodesics.

This suggests the question of whether we can find an infinite number of geo-
metrically distinct closed geodesics in any closed surface. It is not hard to find
infinitely many closed geodesics when the genus of the surface is positive.
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The case of the sphere was finally settled in 1992 by Franks and Bangert. Their
works combined imply that every metric on a two-sphere admits an infinite number
of closed geodesics. Later, Hingston estimated the number of closed geodesics of
length at most L when L is very large.

Likewise, one can ask whether every closed Riemannian manifold admits a
closed minimal hypersurface. When the ambient manifold has topology one can
find minimal hypersurfaces by minimization and so, like in the surface case, the
question is more challenging when every hypersurface is homologically trivial. Us-
ing min-max methods, and building on earlier work of Almgren, Pitts in 1981
proved that every compact Riemannian (n + 1)-manifold with n ≤ 5 contains
a smooth, closed, embedded minimal hypersurface. One year later, Schoen and
Simon extended this result to any dimension, proving the existence of a closed,
embedded minimal hypersurface with a singular set of Hausdorff codimension at
least 7.

When M is diffeomorphic to a 3-sphere, Simon–Smith showed the existence of
a minimal embedded sphere using min-max methods.

Motivated by these results, Yau made the following conjecture:

Every compact 3-manifold (M, g) admits an infinite number of smooth, closed,
immersed minimal surfaces.

When M is a compact hyperbolic 3-manifold, Khan and Markovic found an
infinite number of incompressible surfaces in M of arbitrarily high genus. One can
then minimize energy in their homotopy class and obtain an infinite number of
smooth, closed, immersed minimal surfaces.

Jointly with Fernando Marques we showed

Theorem 1. Let (Mn+1, g) be a compact Riemannian manifold with 2 ≤ n ≤ 6
and a metric of positive Ricci curvature. Then M contains an infinite number of
distinct, smooth, embedded, minimal hypersurfaces.

I explained the proof of this result.

Smoothing and Faceting

Anton Petrunin

(joint work with Nina Lebedeva)

We discuss bilateral approximations between Riemannian and polyhedral1 spaces.
We mean here approximations in Gromov–Hausdorff sense by the spaces with the
same dimension.

The facetings, i.e., approximations of Riemannian manifolds by polyhedral
spaces were considered in [1]. It was proved that if a compact Riemannian man-
ifold M admits an faceting by polyhedral spaces with non negative curvature in
the sense of Alexandrov then M satisfies peculiar curvature condition which we

1Polyhedral spaces are defined as metric spaces which admit finite triangulation such that
each simplex is isometric to a simplex in a Euclidean space.



1604 Oberwolfach Report 29/2014

name nonnegative cosectional curvature. In the same paper, a partial converse was
proved; it states that if cosectional curvature of a compact Riemannian manifold
M is strictly positive then it admits faceting by polyhedral spaces with nonnegative
curvature.

Here is a geometric way to see this curvature condition: a curvature tensor at a
point has nonnegative cosectional curvature if it can apper as the curvature tensor
of a convex hypersurface in a convex hypersurface in ... in a Euclidean space.
The cosectional curvature at a point is strictly positive if the convex hypersurfaces
above have positive definite second fundamental form.

The above results motivates the following conjecture.

Conjecture. Any polyhedral space admits smoothing by Riemannian orbifolds2

with nonnegative cosectional curvature.

We prove that conjecture is true in 3-dimensional case. In fact we show that
given 3-dimensional polyhedral space with nonnegative sectional curvature there
is a continuous one parameter family of Riemannian orbifolds M t for t ∈ (0, T )
such that M t → P as t → 0 in the sense of Gromov–Hausdorff and moreover M t

forms a solution of Ricci flow.
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When is the underlying space of an orbifold a manifold?

Christian Lange

The question posed by Davis “When is the underlying space of a smooth orbifold
a topological manifold”[3] amounts to the classification of finite groups acting lin-
early on a Euclidean vector space such that the quotient space is homeomorphic
to the original vector space. Two classes of examples for which this property holds
are orientation preserving subgroups of real reflection groups and unitary reflec-
tion groups considered as real groups. These groups have the common property
to be generated by transformations with codimension two fixed point subspace,
so-called pseudoreflections. In general, a finite linear group generated by pseudore-
flections is called a pseudoreflection group. These terminologies were introduced
by Mikhâılova who worked on the classification of pseudoreflection groups in the
1970s and 1980s. For irreducible pseudoreflection groups she obtained the follow-
ing classification [2].

Theorem 1. The irreducible pseudoreflection groups are given as follows.

(1) Orientation preserving subgroups of irreducible real reflection groups.
(2) Irreducible unitary reflection groups that are not the complexification of a

real reflection group considered as real groups.

2More formally by the underlying metric spaces of Riemannian orbifolds....
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(3) Two infinite families of pseudoreflection groups that are extensions of uni-
tary reflection groups by another pseudoreflection.

(4) Many exceptional pseudoreflection groups in dimensions up to 8.

The fact that reducible pseudoreflection groups in general do not split as prod-
ucts of irreducible components gives rise to many more nontrivial examples [2].
Based on her classification result Mikhâılova proved that the quotient of a real
vector space by a pseudoreflection group is homeomorphic to the original vector
space [4]. Another example for which this property holds stems from Cannon’s
Double Suspension Theorem: The binary icosahedral group admits a faithful real-
ization P < SO(4) and it follows from Cannon’s theorem that R5/P = R4/P ×R

is homeomorphic to R5 whereas R4/P is not even a topological manifold. Since the
quotient space S3/P is Poincaré’s homology sphere, we refer to P as a Poincaré
group. In turned out that these are essentially the only examples in the following
sense [1].

Theorem 2. For a finite subgroup G < O(n) the quotient space Rn/G is a topo-
logical manifold if and only if G has the form

G = Gps × P1 × . . .× Pk

for a pseudoreflection group Gps and Poincaré groups Pi < SO(4), i = 1, . . . , k,
such that the factors act in pairwise orthogonal spaces and such that n > 4 if
k = 1. In this case R

n/G is homeomorphic to R
n.

It follows from the property of pseudoreflection groups, the double suspension
theorem and the generalized Poincaré conjecture that Rn/G is homeomorphic to
Rn for all groups described in the theorem.

The proof that there are no other examples is divided into three steps. In the
first step we observe that if Rn/G is homeomorphic to Rn then, in particular, the
quotient space Rn/Γ is a homology manifold. Using this observation we deduce
that strata of Rn/G that are not contained in the closure of any higher dimensional
singular stratum either have codimension two or codimension four and that the
corresponding local groups are either cyclic groups or Poincaré groups. These local
groups appear as subgroups of G fixing certain maximal subspaces of Rn. Defining
G′ to be the normal subgroup of G generated by all of them yields a “sufficiently
large” normal subgroup of G generated by pseudoreflections and Poincaré groups.
A key ingredient in this step is a theorem by Zassenhaus characterizing the binary
icosahedral group ([5], Theorem 6.2.1).

In the second step one can use an elementary fact about spherical triangles and
the specific geometric structure of the 600-cell, i.e. the orbit of one point under
the action of P on S3, to show that the pseudoreflection group and all Poincaré
groups generating G′ act in pairwise orthogonal spaces.

Finally, in the last step one can show by induction that G/G′ acts freely on
Sn−1/G′. It follows from this that G/G′ is a perfect group with periodic homol-
ogy whose homology groups vanish in dimensions i = 1, . . . , n − 1. Such groups
are classified and the classification allows us to identify G/G′ as a trivial group.
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Consequently, G coincides with G′ and has thus a form as described in our theo-
rem.

At the end of the talk we discussed the analogous question for which groups G
the quotient space Rn/G is a manifold in other categories.
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Collapsing of a class of noncompact warped product manifolds under
Ricci flow

Tobias Marxen

We study the evolution of a warped product manifold R×N , which is complete with
bounded curvature, under Ricci flow, where (N, gN) is a flat, complete, connected
Riemannian manifold of dimension n ≥ 2.

Let’s start with the warped product manifold and some of its curvature prop-
erties: Let k be a Riemannian metric on R, gN as above and g : R → R a
positive function. Then h := k + g2gN is a warped product metric on R × N ,
and since k = f2dx2 for a unique positive function f : R → R, we also write
h = f2dx2 + g2gN . This means the following: Fix x ∈ R, q ∈ N . We have a
canonical isomorphism

T(x,q)(R×N) ∼= TxR⊕ TqN.

Let a, b ∈ TxR, v, w ∈ TqN . Then

h(x, q)(a+ v, b + w) = k(x)(a, b) + g2(x)gN (q)(v, w)

= (f2dx2)(x)(a, b) + g2(x)gN (q)(v, w).

Moreover, assume that (R×N, f2dx2 + g2gN ) is complete and has bounded cur-
vature.

On (R × N, f2dx2 + g2gN) we have special sectional curvatures: The ones of
planes tangent to a fiber {x} × N (x ∈ R), and those of planes orthogonal to it
(this is originally from [3, section 11], see [5] or [6]):

Proposition 1. Fix x ∈ R, q ∈ N and let a ∈ TxR ⊂ T(x,q)(R × N) and v, w ∈
TqN ⊂ T(x,q)(R × N), such that {a, v, w} are linearly independent. Let H :=
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span{a, v}, V := span{v, w}. Then

secH = −gss
g

(x) =: KH(x),

secV = −g
2
s

g2
(x) =: KV (x),

where g2s := (gs)
2 and, if u : R → R is a function, us :=

u′

f , and ′ denotes standard

differentiation.

Now the full Riemann curvature tensor can be controlled by KH and KV (see
[5] or [6]):

Proposition 2. There exist positive integers a = a(n), b = b(n) (n = dimN),
such that

|Rm|2(x, q) = a ·K2
V (x) + b ·K2

H(x), x ∈ R, q ∈ N.

Now the question is: What happens with such a warped product manifold under
Ricci flow, i.e. if M = R×N , if h0 = f2

0dx
2+ g20gN with positive functions f0, g0 :

R → R is a warped product metric on R×N as above, and if h(t), t ∈ [0, Tmax) is
the solution of Ricci flow, that is

d

dt
h(t)(p) = −2Rich(t)(p)

for all p ∈ M, t ∈ [0, Tmax), on a maximal time interval with h(0) = h0, what is
the behaviour of h(t)?

But before that, let’s mention a few related results (there are many more, see for
example the introduction to my Ph.D. thesis [5] (German version) or [6] (English
version)): In [3, section 11], R. Hamilton considered Ricci flow on closed three-
manifolds with symmetries, leading to Ricci flow on warped product manifolds
S1 × T 2 (T 2 is a flat torus). He proved that the warped product structure is
preserved under the flow, longtime existence (i.e. Tmax = ∞), that the solution
is of type III, i.e. the curvature estimate |Rm|(x, q, t) ≤ C/t holds for some
C ≥ 0 and all x ∈ S1, q ∈ T 2, t ∈ [1,∞), and that the solution converges to a
flat metric (as t → ∞). In [8], M. Simon analysed Ricci flow on warped product
manifolds R × N , where (N, gN ) is an Einstein manifold with positive Einstein
constant, and also proved preservation of the warped product structure (using
PDE methods), and showed for the first time, that neckpinch singularities (which
are special finite time singularities) can occur under Ricci flow. Moreover, S.
Angenent and D. Knopf considered in [1] and [2] Ricci flow on Sn+1 (the (n+ 1)-
dimensional sphere) with symmetries, corresponding to warped product metrics
on R× Sn, and established, that neckpinch singularities can also occur on closed
manifolds under Ricci flow, and they furthermore derived precise asymptotics for
such Ricci flow neckpinches. Finally in [4] J. Lott and N. Sesum also analysed
Ricci flow on closed three-manifolds with symmetries: They considered warped
product manifolds X × S1, where X is a closed surface, and manifolds with a
free local isometric T 2 action, and proved for example in several cases longtime
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existence, that the solution is of type III, and convergence of the solution to a flat
metric.

So what happens now in our case? The following results are from my Ph.D.
thesis ([5] or [6]) except for the last one, which is in [7]. First, the warped product
structure is preserved under the flow, i.e. there exist positive functions f, g :
R× [0, Tmax) → R such that h(t) = f2(·, t)dx2 + g2(·, t)gN , t ∈ [0, Tmax). Second,
we have longtime existence of the solution (Tmax = ∞); especially, no neckpinch
or other finite time singularities occur. Third, we have the following curvature
estimates:

Proposition 3.

sup
x∈R

|KV |(x, t) ≤
1

2nt+ 1
supx∈R

|KV |(x,0)

for all t ∈ [0,∞).

Proposition 4. There exist C = C(n, supx∈R |KV |(x, 0), supx∈R |KH |(x, 0)) > 0
and a = a(n, supx∈R |KV |(x, 0)) > 0, such that

|KH |(x, t) ≤ C

t+ a

for all x ∈ R, t ∈ [0,∞).

By Proposition 2 this implies

Proposition 5. There exist C = C(n, supx∈R |KV |(x, 0), supx∈R |KH |(x, 0)) > 0
and a = a(n, supx∈R |KV |(x, 0)) > 0, such that

|Rm|(x, q, t) ≤ C

t+ a

for all x ∈ R, q ∈ N, t ∈ [0,∞).

Especially, the solution is of type III, i.e. |Rm|(x, q, t) ≤ C/t for some C ≥ 0 and
all x ∈ R, q ∈ N, t ∈ [1,∞). Longtime existence and the curvature estimates are
obtained by applying an extended noncompact maximum principle to appropriate
geometric quantities.

Finally, we get the following longtime behaviour of the solution, if h0 addition-
ally has finite volume:

Proposition 6. If h0 = f2
0dx

2 + g20gN is complete, has bounded curvature and
finite volume, then g(·, t) → 0 (as t→ ∞) uniformly.

In the proof we use the curvature estimate from Proposition 3 together with
the fact that under these assumptions the volume of (R×N, h(t)) is nonincreasing
in t (this was shown in [3, section 11] for the case S1 × T 2).

From this it follows that the solution is collapsing, i.e. the injectivity radius
converges to 0 uniformly (as t→ ∞), while the curvatures (as follows from Propo-
sition 5) stay bounded.
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Teichmüller harmonic map flow into nonpositively curved targets

Peter Topping

(joint work with Melanie Rupflin)

Given a smooth closed orientable surface M := Mγ of genus γ ≥ 2 and a smooth
compact Riemannian manifold N = (N,G) of any dimension, we consider the
gradient flow of the harmonic map energy

E(u) = E(u, g) :=
1

2

ˆ

M

|du|2gdµg,

where u :M → N is a map and g is a metric on M . Allowing only u to vary, this
gives the harmonic map flow of Eells-Sampson [1], which finds so-called harmonic
maps. In contrast, we allow both u and g to flow, with g constrained to be hyper-
bolic (i.e. of constant Gauss curvature −1). Once the right geometric viewpoint
is taken, this leads to the so-called Teichmüller harmonic map flow, introduced in
[3], which for a given fixed parameter η > 0 is defined by

(1)
∂u

∂t
= τg(u);

∂g

∂t
=
η2

4
Re(Pg(Φ(u, g))),

where τg(u) represents the tension field of u (i.e. tr∇du), Pg represents the L2-
orthogonal projection from the space of quadratic differentials on (M, g) onto the
space of holomorphic quadratic differentials, and Φ(u, g) = 4(u∗G)(2,0) represents
the Hopf differential. See [3] for further information. Note that the first equation
here, governing the evolution of u, is simply the harmonic map flow. The direction
that the metric g would move in order to reduce the energy as quickly as possible
would be (a multiple of) Re(Φ(u, g)). On the other hand, this direction will not
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in general preserve the hyperbolicity of the metric. Indeed, the tangent space to
the space M−1 of hyperbolic metrics is given by

TM−1 = {LXg} ⊕Re(H)

for vector fields X , where H is the space of holomorphic quadratic differentials.
In particular, we see by inspection of (1) that g remains hyperbolic.

Critical points of E with respect to variations of both u and g turn out to be
weakly conformal harmonic maps, which are then either constant maps or branched
minimal immersions, as described in work of Gulliver, Osserman and Royden [2].
We might therefore reasonably hope that the flow (1) will find such objects. In
the talk, we saw several senses in which this is the case. The simplest situation is
that we start the flow with an incompressible map u0, in which case the flow will
exist for all time (in a well-understood weak sense) and converge modulo pull-back
by diffeomorphisms to a branched minimal immersion (see [3]). For more general
initial maps u0, the domain can degenerate as the injectivity radius of (M, g)
converges to zero. If this happens at infinite time, then a theorem joint with
M. Zhu as well as Rupflin [4] says that the flow decomposes u0 into a collection
of branched minimal immersions as t → ∞. However, the theory above leaves
open the possibility that the domain degenerates in finite time, stopping the flow.
The main result of the talk was that this cannot happen with an extra geometric
hypothesis on the target. In fact, we prove in [5] the following result.

Theorem 1. Suppose M , (N,G) and M−1 are as above, with (N,G) having
nonpositive sectional curvature. Given any initial data (u0, g0) ∈ C∞(M,N) ×
M−1, there exists a smooth solution (u(t), g(t)) to (1), for t ∈ [0,∞).

Note that some sort of singularity must happen in the flow in general because
a general map u0 need not be homotopic to any harmonic map. Even with the
nonpositive curvature hypothesis of the theorem, the domain can be seen to have to
degenerate at some point because there may not be a branched minimal immersion
(or constant map) homotopic to u0. The theorem above says that the singularities
must get pushed back to infinite time, by which time the whole flow has settled
down, and we find that any map into a nonpositively curved target is decomposed
into branched minimal immersions.
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A generalization of Gromov’s almost flat manifold theorem

Esther Cabezas-Rivas

(joint work with Burkhard Wilking)

A problem of great concern for differential geometers has classically been the un-
derstanding of relations between geometry and topology; in particular, we wonder
if, given a certain curvature condition, it implies any topological information about
the underlying manifold. In this framework, a prototypical result is:

Theorem 1 (Bieberbach 1912). Let (M, g) be a compact flat Riemannian man-

ifold. Then there exists a finite covering M̂ of M such that M̂ is isometric to a
flat torus.

The next natural step would be to study a small perturbation of the condition
Kg ≡ 0 (here Kg denotes the sectional curvature of the metric g). However, if we
multiply any Riemannian metric g by a constant c→ ∞, we get Kcg = 1

cKg → 0;
therefore, the mere existence of a metric with almost vanishing curvature yields no
topological restriction. Consequently, we need a modified curvature assumption,
whose concrete realization we find in the following celebrated theorem:

Theorem 2 (Gromov 1978 [2]). For all n ∈ N there exists a universal constant
ε(n) > 0 such that if a Riemannian n-dimensional manifold (M, g) satisfies

(1) diamg(M)2|Kg| ≤ ε(n),

then M admits a finite covering M̂ , so that M̂ is diffeomorphic to a nilmanifold
(that is, M̂ ∼= N/Γ, where Γ is a a discrete subgroup acting cocompactly on a
nilpotent Lie group N).

As our manifolds are compact, we can rescale the metric so that diamg(M) = 1;
then the relevant curvature condition becomes |Kg| ≤ ε(n). Our generalization
consists precisely in relaxing the latter assumption, which we regard as an L∞-
bound for the curvature. More precisely, we prove

Theorem 3. For all n ∈ N and all D <∞ there exists ε = ε(n,D) > 0 so that if
(M, g) is a Riemannian n-dimensional manifold with

(2) diamg(M) ≤ D, Kg ≥ −1 and

 

M

‖Rm‖g dµg ≤ ε,

then M is finitely covered by a nilmanifold.

Here Rm denotes the Riemannian curvature tensor, dµg is the Riemannian volume
element and −

´

B
fdµ represents the averaged integral 1

vol(B)

´

B
fdµg. Notice that

the conclusion of this theorem fails if we replace the condition on the sectional
curvature by Rcg ≥ −(n−1). Indeed, a counterexample is provided byK3 surfaces,
since they admit sequences of Ricci-flat metrics converging to a flat orbifold (such
examples were obtained by different methods in [6] and [4]).

About our curvature hypotheses, we highlight that Theorem 3 evidences that, in
the presence of a lower bound for the sectional curvature, to impose an L1-pinching
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condition is surprisingly rigid; indeed, typically such rigidity statements require
Lp bounds for p > n/2. To illustrate this, let us mention that X. Dai, P. Petersen
and G. Wei [1] used the Ricci flow to show that manifolds with Lp>n/2-bounds
on the curvature after a short time become an L∞-curvature control; and one can
then apply Gromov’s theorem. In our case, the assumptions on the curvature are
so weak that the Ricci flow is helpless. Accordingly, we cannot reduce the proof
to an eventual application of the classical result; this means that we also provide
an alternative proof of Gromov’s original theorem.

Hereafter we briefly sketch the main ideas, techniques and difficulties in the
proof of Theorem 3. Arguing by contradiction, we take a sequence of n-manifolds
(Mi, gi) with

diamgi(Mi) ≤ D, Kgi ≥ −1 and

 

Mi

‖Rm‖gi → 0,

but which are not finitely covered by nilmanifolds. The proof involves a detailed
study of the local structure of the Gromov-Hausdorff limit X of such a sequence.
Indeed, Gromov’s precompactness theorem guarantees the existence of this limit
X and tells us that it has the structure of an Alexandrov space with curvature
bounded below (in a comparison sense) by −1.

The noncollapsing case (dim(X) = n) is the easiest scenario, since the sta-
bility theorem of Perelman ensures that X is furthermore a topological manifold.
To address the proof of this case, we choose a point p∞ ∈ X and distinguish two
possibilities: p∞ is either a regular point (that is, its tangent cone is isometric
to Rn) or, otherwise, p∞ is called singular. Using careful blow-up arguments, we
manage to prove that the latter case cannot occur. On the other hand, to study
the noncollapsed regular case, we proceed as follows:

Step 1. Choose pi ∈ Mi converging to p∞ and construct on a neighbourhood
of pi an orthonormal frame of vector fields {X i

α}nα=1 which are almost parallel in
an L1-sense.
Here we exploit the well-known fact (cf. [7]) that one can use distance coordinates
to find (smooth) almost isometries fi, which we call almost linear coordinates, bet-
ween a neighbourhood of pi (of uniform size) and a ball in Euclidean space. Next,
we choose an orthonormal basis at a point xi and consider its parallel transport
along radial lines emanating from xi. Notice that we cannot transport our vectors
along Riemannian gi-geodesics, due to the absence of injectivity radius estimates.
Fortunately, we can use the coordinates fi to move the basis along truly Euclidean
lines (but defining the transport with respect to the Riemannian connection).
Finally, exploiting the L1-curvature condition and after a clever choice of xi, we
succeed in constructing a frame with the aforementioned properties.

Step 2. The flows generated by the vector fields {X i
α}nα=1 converge in a suitable

weakly measured sense to local isometries defined on Bρ(p∞), for some ρ > 0.
In this step we first prove convergence in a certain L1-sense adapting to our setting
arguments from [5, Lemma 3.7], but we have to face the additional technical
difficulty that the flows corresponding to the vector fields from step 1 are in general
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not measure-preserving. After that, the weak convergence follows by applying a
suitable generalization of Arzelà-Ascoli theorem.

Notice that the limiting isometries obtained here generate Killing fields {X∞
α }nα=1,

which are are furthermore the limits (in an appropriate sense) of the vector fields
constructed in step 1. As the latter are orthonormal, the limiting Killing fields are
linearly independent and hence we conclude

Step 3. Bρ(p∞) is a local homogeneous space.
From this, by standard procedures, the distance function on Bρ(p∞) is induced
by a smooth Riemannian metric g∞, which is moreover the uniform limit of our
original sequence gi, when we write these metrics locally with respect to almost
linear coordinates. Finally, one can easily prove that the fields {X∞

α }nα=1 are
actually parallel and, consequently,

Step 4. Bρ(p∞) is indeed flat.
In short, we have shown that around any point inX we can find a neighbourhood

which is smooth and moreover flat. This implies that for i large enough Mi is
finitely covered by a torus (= 1-step nilmanifold), which contradicts our choice of
the sequence.

The proof of Theorem 3 in the remaining collapsed case (dim(X) < n) is
much more involved. We argue by reverse induction on dim(X) and apply blow-
up techniques to obtain a less-collapsed limit. Notice that this strategy does not
allow to assume bounds on the diameter and hence we need to establish a localized
version of the problem. More precisely, in this case our aim is to show that the
manifolds of the sequence are Seifert fibered over a lower dimensional flat orbifold.
We have to deal with the extra complication that singular points really appear
and we have to analyze them; roughly speaking, we prove that one can avoid
singularities by passing to a suitable finite cover.

Furthermore, this stage of the proof includes a result of independent interest
giving some understanding of the local topology of collapsing when X has singular
points of codimension bigger than 2; such a result improves (in the homology level)
a theorem by Kapovitch in [3] (since the latter only works for isolated singularities).
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Weyl Curvature, Einstein Metrics, and 4-Dimensional Geometry

Claude LeBrun

The Weyl curvature tensor W of a smooth Riemanian n-manifold (M, g) is the
totally-trace-free projection of the Riemann curvature tensor R; thus, it is ex-
actly the piece of R that is not algebraically determined by the Ricci tensor r.
Its fundamental importance, however, stems from the fact that it is exactly the
conformally invariant piece of R. Indeed, when n ≥ 4, a Riemannian metric is
locally conformally flat iff its Weyl tensor W is identically zero.

If M is a smooth compact oriented n-manifold, n ≥ 4, the Weyl functional

W ([g]) =

ˆ

M

|Wg|n/2dµg

only depends on the conformal class [g] = {u2g | u : M
C∞

→ R+} of the metric, and
provides a natural measure of how far [g] deviates from conformal flatness. It is
thus natural and interesting to study the infimum of W among all metrics on a
given manifoldM , and to ask whether there is actually a minimizing metric which
achieves this infimum.

It is a remarkable feature of the n = 4 case that the Weyl functional plays an
important role in the theory of 4-dimensional Einstein manifolds. Indeed, Einstein
metrics are critical points of the Weyl functional in dimension 4, whereas this is
not true at all in higher dimensions. Moreover, in those few cases [3, 7, 8] where
one can actually prove that the moduli space of Einstein metrics on a given 4-
manifold is connected, one proceeds by showing that every Einstein metric on the
manifold in question is necessarily a minimizer of the Weyl functional.

Nonetheless, even in dimension 4, most minimizers of the Weyl functional are
not conformally Einstein. To see why, first note that the Hodge star operator on
an oriented Riemannian 4-manifold induces a conformally invariant decomposition

W =W+ +W−

of the Weyl tensor into its self-dual and anti-self dual parts. In these terms, the
4-dimensional Thom-Hirzebruch signature formula τ = p1/3 can be written as

τ(M) =
1

12π2

ˆ

M

(
|W+|2g − |W−|2g

)
dµg

for any metric g on M , and it therefore follows that

W ([g]) = −12π2τ(M) + 2

ˆ

M

|W+|2gdµg.

In particular, the study of the Weyl functional on a fixed 4-manifold is completely
equivalent to studying the L2-norm of the self-dual Weyl curvature. Moreover, any
metric with W+ = 0 is an absolute minimizer of W . Metrics of this latter type are
called anti-self-dual [1], and turn out to exist in great profusion. For example, a
result of Taubes [18] asserts that the connect sum M = X#kCP2 of an arbitrary
smooth compact oriented 4-manifold X with k reverse-oriented complex projective
planes admits anti-self-dual metrics for any sufficiently large integer k ≫ 0. By
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contrast, the Hitchin-Thorpe inequality [7, 19] shows that M = X#kCP2 never
admits Einstein metrics when k is very large. In short, anti-self-dual metrics and
Einstein metrics seem to inhabit topologically different realms.

But while there are many known obstructions to the existence of Einstein met-
rics on 4-manifolds, the only known obstructions to the existence of anti-self-dual
metrics are rather trivial: M can only admit anti-self-dual metrics if τ ≤ 0, and
the inequality must moreover be strict if M has finite fundamental group and is
not S4. It would thus be of great interest to find new obstructions to the existence
of anti-self-dual metrics. Certainly this would follow if one could show that certain
non-anti-self-dual Einstein metrics actually minimize the Weyl functional.

Fortunately, a result of Gursky [6] provides an intriguing piece of evidence in
this direction:

Theorem (Gursky). LetM be a smooth compact oriented 4-manifold with b+ 6= 0.
Then any conformal class [g] on M with Yamabe constant Y[g] > 0 satisfies

ˆ

M

|W+|2dµ ≥ 4π2

3
(2χ+ 3τ)(M),

with equality iff [g] contains a Kähler-Einstein metric g with λ > 0.

Of course, this by no means answers the question, because the requirement
that [g] have positive Yamabe constant — i.e. that there exist a metric g ∈ [g] of
positive scalar curvature — excludes “most” conformal classes on M . My purpose
here is to describe some results which provide further evidence for the conjecture
that λ > 0 Kähler-Einstein metrics are actually minimizers of the Weyl functional
in dimension 4. Moreover, these results extend to the somewhat broader class of
Hermitian Einstein metrics with positive Einstein constant.

If a compact complex surface (M,J) admits an Einstein metric g which is
Hermitian with respect to J and has Einstein constant λ > 0, then (M,J) has
[9] ample anti-canonical line bundle K−1, often abbreviated as c1 > 0. Complex
surfaces with c1 > 0 are called del Pezzo surfaces [5, 14]; they are precisely the
Fano manifolds of complex dimension 2. Every del Pezzo surface conversely admits
[4, 12, 15, 20] a λ > 0 Einstein metric which is Hermitian with the specified
complex structure, and this metric is unique [2, 11] up to complex automorphisms
and rescalings. Any del Pezzo surface is biholomorphic either to CP1 × CP1 or
to a blow-up CP2#kCP2 of the complex projective plane at k points in general
position, 0 ≤ k ≤ 8. In most cases, the relevant Einstein metric is actually Kähler-
Einstein. In fact, there are just two cases in which this fails to be true: CP2#CP2

and CP2#2CP2. In these exceptional cases, the Einstein metric is not Kähler, but
nonetheless belongs to the same conformal class as some Kähler metric.

Any del Pezzo surface (M,J) has b+(M) = 1. Thus, for any conformal class [g]
on the oriented smooth 4-manifoldM , there is, up to multiplication by a non-zero
real constant, only one non-trivial self-dual harmonic 2-form ω. We will say that
[g] is of symplectic type if this harmonic self-dual 2-form satisfies ω 6= 0 at every
point ofM . This condition is open in the C2,α topology on the space of conformal
classes.
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In this context, we are able to prove the following variant of Gursky’s Theorem:

Theorem 1. Let M be the underlying smooth oriented 4-manifold of a del Pezzo
surface. Then any conformal class [g] of symplectic type on M satisfies

ˆ

M

|W+|2dµ ≥ 4π2

3
(2χ+ 3τ)(M),

with equality iff [g] contains a Kähler-Einstein metric g.

The key point of interest is that most conformal classes of symplectic type have
negative Yamabe constant. This indicates that Gursky’s inequality is not some
sort of aberration that is limited to the realm of positive scalar curvature.

In fact, the proof of Theorem 1 actually proves a stronger inequality:

Theorem 2. Let M be the underlying 4-manifold of a del Pezzo surface. Then
any conformal class [g] of symplectic type on M satisfies

ˆ

M

|W+|2dµ ≥ 4π2

3

(c1 · [ω])2
[ω]2

,

with equality iff [g] contains a Kähler metric g of constant scalar curvature.

Here c1 ∈ H2(M,R) is the first Chern class of the symplectic manifold (M,ω),
and the dot product denotes the intersection pairing on H2(M,R). Note that
Theorem 1 then implies Theorem 2 via the reverse Cauchy-Schwarz inequality for
Minkowski space.

However, there are a couple of del Pezzo surfaces where equality is prohibited
in Theorem 1, because neither CP2#CP2 nor CP2#2CP2 carries a Kähler-Einstein
metric. But, as previously noted, these two del Pezzo surfaces do still carry λ > 0
Einstein metrics that are conformally Kähler, and hence Hermitian, with respect
to the complex structure. Now, both of these del Pezzo surfaces are toric: their
complex automorphism groups both contain a 2-torus T 2 = S1×S1. Moreover, the
associated Hermitian Einstein metrics are actually invariant under the relevant 2-
torus action. This makes it natural to consider their conformal classes as belonging
to the set of symplectic conformal classes which are T 2-invariant. In this narrower
context, one can then show that these special Einstein metrics still minimize the
Weyl functional:

Theorem 3. Let M be the underlying 4-manifold of a toric del Pezzo surface,
and let g be an Einstein metric on M which is Hermitian and invariant under
the fixed torus action. Then its conformal class [g] minimizes the Weyl functional
among symplectic conformal classes which are invariant under the torus action.
Moreover, up to diffeomorphism, [g] is the unique such minimizer.

The 4-manifolds M = CP2#kCP2 now seem to offer an ideal testing ground for
exploring the Weyl functional. When k ≥ 10, these manifolds have been shown
to admit anti-self-dual metrics [13, 17]. On the other hand, when k ≤ 8, we
have seen that these manifolds admit λ > 0 Einstein metrics which are reasonable
candidates for minimizers of the Weyl functional. In light of what we know so far,
the following conjecture seems interesting and plausible:
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Conjecture. For any k ≤ 9, the 4-manifold M = CP2#kCP2 does not admit any
anti-self-dual metrics. Moreover, for k = 0, . . . , 9,

inf
[g]

ˆ

M

|W+|2dµ ≥ 4π2

3
(2χ+ 3τ)(M) =

4π2

3
(9− k)

with equality when k 6= 1, 2. For k ≤ 8, minimizers do exist, and are exactly
the conformal classes of conformally Kähler, Einstein metrics. By contrast, no
minimizer exists when k = 9.

Of course, when k = 0, the relevant Einstein metric is the Fubini-Study metric,
and this is obviously a minimizer because it has W− = 0. The non-existence of
anti-self-dual metrics is also known when k = 1 because the signature vanishes,
and the relevant simply connected manifold is not diffeomorphic to S4; but even
here it has not been shown that the Page metric [16] minimizes W . When k = 9,
one can construct [10] collapsing sequences of metrics with

´

|W+|2dµ → 0, but
the non-existence of anti-self-dual metrics still appears to be open in this case.
Progress on this conjecture would thus be certain to add substantially to our
understanding of the Weyl functional, especially in connection with the theory of
4-dimensional Einstein metrics.
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Auf der Morgenstelle 10

72076 Tübingen
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