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Abstract. Progress in algebraic geometry usually comes through the intro-
duction of new tools and ideas to tackle the classical problems of the field.
Examples include new invariants that capture some aspect of geometry in
a novel way, such as Voisin’s “existence of decomposition of the diagonal”,
and the extension of the class of geometric objects considered to allow con-
structions not previously possible, such as stacks, tropical geometry, and log
structures. Many famous old problems and outstanding conjectures have
been resolved in this way over the last 50 years. While the new theories are
sometimes studied for their own sake, they are in the end best understood in
the context of the classical questions they illuminate. The goal of the work-
shop was to study new developments in algebraic geometry, in the context of
their application to the classical problems.
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Introduction by the Organisers

The workshop Classical Algebraic Geometry, organised by Olivier Debarre (Paris),
David Eisenbud (Berkeley), Gavril Farkas (Berlin) and Ravi Vakil (Stanford) was
held July 5–9, 2014 and was attended by 53 participants from around the world.
The participants ranged from senior leaders in the field to young post-doctoral
fellows and several advanced PhD students. The program consisted of 17 one hour
talks. Most lectures were followed by lively discussions among participants, at
times continuing well into the night. The schedule was designed in such a way
to allow ample time for discussions. On Tuesday evening, we had eight short
presentations from young researchers, who got a chance in this way to introduce
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themselves and their work. For a flavor of the range of subjects covered, a few of
the talks are highlighted below.

Ein-Lazarsfeld’s proof of the Gonality Conjecture. One of the most exciting
announcements of the workshop was made by Lazarsfeld. The background is this:
In 1984 Mark Green initiated a deep study of the geometry of curves through the
higher syzygies of their canonical ideals, vastly sharpening and extending the work
of Noether, Petri, and many others. The conjectures he made have inspired a great
deal of work. Certain cases were settled by Hirschowitz and Ramanan, and finally
all the generic cases were settled by Voisin, but the full conjecture remains open.

Just after Green’s initial work, Lazarsfeld and he considered the invariants
that might be accessible through ”high degree’” embeddings, and made another
bold conjecture, amounting to the statement that the gonality of each curve can
re read off the resolution of any sufficiently positive line bundle. Although the
field as a whole generated a great deal of activity, essentially no progress on the
Gonality conjecture for arbitrary curves was made. . . until this year, when Ein
and Lazarsfeld announced an amazingly simple proof, using some of the ideas of
Voisin. At the time of the Classical Algebraic Geometry meeting there was still
no preprint, but Lazarsfeld and Ein were both at the meeting, and Lazarsfeld
presented the proof, nearly in its entirety.

The result is close to the work and interests of many participants, and is sure to
spark further progress in the field. This is part of the inspiration for our proposal
of Syzygies as one of the (tentative) focus areas for the next Classical Algebraic
Geometry workshop.

Dynamics and algebraic surfaces. Serge Cantat gave a beautiful and very
instructive talk on some of his recent results on the dynamics of an automorphism
f of a smooth complex projective surface X . Since most of the participants were
not specialists in this area of complex geometry, he started off by explaining the
basics: f acts linearly on the second complex cohomology group of X and must
respect the cone of ample classes. The Hodge Index Theorem implies that if there
is an eigenvalue with complex modulus > 1, this eigenvalue is unique and is a real
number, denoted by λ(f). The number of isolated periodic points of f of period
dividing N then grows like λ(f)N , and these periodic points equidistribute to an
f -invariant probability measure µf .

Cantat’s result (in collaboration with Dupont) is that if µf is absolutely con-
tinuous with respect to the Lebesgue measure, f ”comes from” an automorphism
of an abelian surface.

Although the setting and the objects were well-known to the audience, the point
of view and the techniques are quite different and Cantat’s talk was a welcome
occasion to look at usual (for algebraic geometers) material from a new perspective.

Tautological rings of Jacobians. Qizheng Yin reported on the results of his
exciting PhD Thesis in which he showed that, using only relatively elementary
properties of the universal Jacobian variety (existence of a Fourier-Mukai trans-
form and that of a sl2-action), one can derive all the relations in the tautological



Classical Algebraic Geometry 1697

ring of the moduli space of curves. In particular, he was able confirm a famous
conjecture of Faber’s that the tautological ring satisfied Poincare duality for low
genus and offer evidence that it fails for high genus. Yin’s way of producing re-
lations is surprisingly simple and it remains a challenge to understand why his
relations are essentially the same as the so-called Faber-Zagier relations recently
established by Pandharipande and Pixton (another set of cohomology relations
in moduli, which appears in a totally different shape and which is conjectured to
span all the relations in the tautological ring of Mg).

Decomposition of the diagonal and rationality questions. Rationality ques-
tions (of how close a variety is to usual affine space) have been central to math-
ematics since before the time of Diophantus. There are blunt tools, usually co-
homological (and more recent than Diophantus!), which certify that a variety is
not rational. An ongoing central challenge is to understand the differences (or
lack thereof) between these notions of ”almost rationality”. As an example, it
has been known from the early 1970s, by many means, that unirational varieties
need not be rational in dimension at least 3. Artin and Mumford’s arguments also
show that unirational varieties might not even be stably birational. Voisin opened
the conference with one of her typically dramatic talks, introducing a useful new
invariant under stable birationality: the existence of a Chow-theoretic or cohomo-
logical decomposition of the diagonal in the product. As an example of the power
of this invariant, she showed that the desingularization of a very general quartic
double solid with at most 7 nodes is not stably rational.

The young participants Roland Abuaf, Giulio Codogni, Anand Deopurkar, Michael
Kemeny, Mario Kummer, Margherita Lelli-Chiesa, Daniel Litt and Tim Netzer
gave short presentations on a wide variety of topics.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Igor Dolgachev in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Decomposition of the diagonal and rationality questions

Claire Voisin

A smooth complex projective variety X is said to be rational if it is birational to
projective space and stably rational if X × Pr is rational for some r. The Lüroth
problem, asking whether a unirational variety, that is, a variety rationally domi-
nated by projective space, is rational, has been solved negatively in dimension 3
by Artin and Mumford [1], Clemens and Griffiths [3] and Iskovskikh-Manin [6].
The criteria used in [3] and [6] do not apply to the study of stable unirationality,
while Artin and Mumford exhibit a strong stable birational invariant (the tor-
sion in H3(X,Z)) which is nonzero on some unirational threefolds, obtained by
desingularizing certain quartic 10-nodal double solids.

Further stable birational invariants (higher degree unramified cohomology
groups with torsion coefficients) have been constructed in [4] but they vanish
for unirational threefolds (see [7]). Thus only the Artin-Mumford invariant has
been used up to now to detect non stably rational (but unirational or rationally
connected) threefolds.

We introduced in [10] a new stably birationally invariant property, which is the
existence of a Chow theoretic or cohomological decomposition of the diagonal:

∆X = X × x+ Z in CHn(X ×X), n = dimX

where Z is supported on D ×X , D being a proper closed algebraic subset of X ,
resp.

[∆X ] = [X × x] + [Z] in H2n(X ×X,Z), n = dimX,

Z being as above. These decompositions exist with Q-coefficients once X has
trivial CH0 group (see [2]).

We prove in [9] the following result:

Theorem 0.1. The desingularization X of a very general quartic double solid
with k ≤ 7 nodes does not admit a cohomological decomposition of the diagonal.
Hence it is not stably rational.

The varieties in this theorem have no torsion in H3(X,Z) by [5].
In the case where k = 7, we can describe more explicitly the obstruction to

stable rationality given by the above theorem:

Theorem 0.2. If X is as above, with exactly 7 nodes, X does not admit a universal
codimension 2 cycle.

Here the universal codimension 2 cycle should be a codimension 2 cycle Z on
J(X)×X where J(X) is the intermediate Jacobian of X . This cycle should satisfy
the property that

ΦZ : J(X) → J(X),

t 7→ ΦX(Zt),
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is the identity, where ΦX is the Abel-Jacobi map of X . Note that it is known by
Bloch-Srinivas [2] and [8] that for a variety with trivial CH0 group, the Abel-Jacobi
map

ΦX : CH2(X)hom → J(X)

is an isomorphism.
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Mirror symmetry for affine CY manifolds with maximal boundary

Sean Keel

We begin with a simple motivating example:
Let Y = A be a two dimension affine space. Then C-algebra of regular functions

O(Y ) is isomorphic to the polynomial ring C[x, y], and as such the set of monomials

BY := {xayb|a, b ≥ 0}

give a vector space basis. This is in no sense canonical – it depends heavily on the
choice of coordinates, thus e.g. {(x+6)a(y+12)b} would give a basis equally good.
But now choose two (non-parallel) lines D ⊂ B, and let U := Y \ D. U ⊂ Y is
isomorphic to (C\{0})2 ⊂ C2

x,y and thus O(U) ⊃ O(Y ) is isomorphic to the ring of

Laurent polynomials C[x, y, x−1, y−1] ⊃ C[x, y], and as such the set of monomials

BU := {xayb|(a, b) ∈ Z2}

is a bases. But surprisingly, unlike BY this is canonical, at least up to scaling, by
the following easy result:

Lemma 1. The set of invertible elements in the ring O(U) are

O(U)∗ = {λxayb|λ ∈ C∗, xayb ∈ BU}.
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And now we note that we can canonically recover BY from BU . Observe:

BY = BU ∩ O(Y ) ⊂ O(U),

and thus while O(Y ) has no canonical basis, once we make the choice of D ⊂ Y , we
obtain a canonical (at least up to scaling) basis. Gross, Hacking and I conjecture
that this example has a vast generalisation. For simplicity of exposition, here we
will ignore the scaling issue.

Definition 1. We say a smooth variety U is log Calabi-Yau if it has log Kodaira
dimension zero, with log forms generated by an (algebraic) volume form. I.e. there
is an element ω ∈ H0(U, ωU ) such that

• ω is a volume form, i.e. nowhere vanishing on U
• For any open immersion U ⊂ Y , and any Weil divisor E ⊂ Y \ U , ω⊗m

has at worst an mth order pole along E (note this holds iff it hold for
m = 1, we state it in this odd way because of the next property)

• For all m ≥ 1, ω⊗m ∈ H0(U, ω⊗m) is the unique element, up to scaling,
satisfying property (2).

ω satisfies (2) so long as this holds for some normal crossing compactification
U ⊂ Y .

If U is log CY, and ω has a pole along the full boundary D := Y \ U for an
open immersion U ⊂ Y (with Y normal), we call U ⊂ Y a partial minimal model.
Here are some examples:

Non-Example (up to scaling) the only volume form on U = A1
z is dz. This

has a double pole at ∞ in U = A1 ⊂ P1 = Y , and thus A1 is not log CY.
On the other hand
Basic-Example Let U = Gn

m with coordinates z1, . . . , zn. Then U is log CY
with volume form ω := dz1

z1
∧ dz2

z2
· · · ∧ dzn

zn
. A partial minimal model is the same

thing as a toric compactification.
Example By a (generalized) cluster structure on a log CY U we mean an open

cover U = ∪s∈STL,s by copies of the same algebraic torus TL, where for a free
Abelian group L = Zn we write TL := L ⊗Z Gm for the algebraic torus with
cocharacter lattice N . The cluster varieties of Fomin-Zelevinski, Fock-Goncharov
are a special case.

The key definition is the following:

Definition 2. Let (U, ω) be log CY.

U t(Z) := {(E,m)|E ⊂ Y,m > 0}} ∪ {0}.

Here E ⊂ Y is a boundary divisor on some partial minimal model (thus ω has a
pole on E), m is any positive integer, and we identity two divisor in two (possibly)
different partial compactifications, if they define the same discrete valuation of the
field of rational functions on U (one can thus alternatively describe U t(Z) as the
set of divisorial discrete valuations on its field of rational functions where ω has a
pole). There is also a real version U t(Z) ⊂ U t(R).
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The following easy lemma gives the meaning in a special case:

Lemma 2. T t
N (Z) ⊂ T t

N (R) is canonically identified with N ⊂ NR := N ⊗Z R.

Proof. This follows from elementary toric geometry. E.g. if we write v = m · p
with p ∈ N primitive, and let ∆ be the fan with a single ray R · v. Then the toric
variety TV(∆) has a single boundary divisor Ep, and ω has a pole on Ep. We
associate (E,m) to v. �

Now observe that if V ⊂ U is an open subset, and both are log CY, then by
uniqueness, ωU |V = ωV . It then follows immediately from the definition that there
is a canonical identification U t(Z) = V t(Z). Thus e.g. in the cluster case, each
choice of torus open set TL,s ⊂ U gives an identification of U t(Z) ⊂ U t(R) with
T t
N(Z) = N ⊂ NR = T t

N(R). But warning U t(Z) is not a lattice – the addition
law depends on the choice of torus open set.

The real dimension of U t(R) is at most the complex dimension of U . We say U
has maximal boundary if U t(R) has real dimension equal to the complex dimension
of U . We note this holds e.g. whenever U contains a torus open subset. We view
this as saying U is as non-compact as possible.

By the above, U t(Z) generalizes the notion of the cocharacter lattice of an
algebraic torus to an arbitrary log CY variety. Gross, Hacking and I conjecture
that there is also a generalisation of the characters:

Conjecture 1 (GHK 2011). Let U be an affine log CY with maximal boundary.
Let A be the vector space with basis U t(Z). Write ϑp ∈ A for p ∈ U t(Z). Thus
A = ⊕p∈Ut(Z)C · ϑp.
A has a natural finitely generated commutative and associative C-algebra struc-

ture, such that the structure constants, α(p, q, r) ∈ C defined by

ϑp · ϑq =
∑

r∈Ut(Z)

α(p, q, r)ϑr

are integers, given by counts of tropical discs in U tR – certain purely combinatorial
objects we define (which morally correspond to holomorphic maps of a punctured
disc into U with boundary on a Lagrangian fibre of the (conjectural) SYZ fibration).
U∨ := Spec(A) is an affine log CY with maximal boundary, the homological

mirror symmetry dual to U . Note by construction O(U∨) has a canonical basis
parameterized by U t(Z).

This construction is involutive, i.e. (U∨)∨ = U . In particular O(U) has a
canonical basis, BU := (U∨)t(Z).

For any partial minimal model U ⊂ Y , BY := BU ∩O(Y ) ⊂ O(U) is a basis of
regular functions on Y .

Gross, Hacking and I prove the theorem for U of dimension two, and together
with Kontsevich, for cluster varieties of all dimensions. But we do not prove that
U∨ is the homological mirror dual, rather we identify it with a known variety: In
dimension two, with U itself, and for cluster varieties, U = ∪s∈STL,s with the
Fock-Goncharov mirror U∨ := ∪s∈STL∗,s.
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Here are some applications:
Example Let Y = G/[B,B] be the basic affine space for a semi-simple group

G (with Borel subgroup B ⊂ G). There is a natural open subset U ⊂ Y , the so-
called open double Bruhat cell. Berenstein-Fomin-Zelevinski, building on work of
Lusztig, haveshown U is a cluster variety, and U ⊂ Y is a partial minimal model.
Thus by our results, O(Y ) has a canonical basis. G acts on Y , and thus on O(Y ).
As G-representation, O(Y ) is the direct sum of all irreducible representations of
G, each occuring exactly once. Our results now give a canonical basis for every
irreducible representation of G. The result is particularly striking, because our
construction uses essentially no representation theory – just the fact that U has
its special volume form, with a pole along the boundary U ⊂ Y .

Example Let Y ′ be a smooth projective variety, and D′ ⊂ | − KY ′ | an anti-
canonical normal crossing divisor, with a zero stratum (a point where D′ looks
locally analytically like the union of the coordinate hyperplanes planes in affine
space). Assume D′ supports an ample divisor (e.g. D′ ample, i.e. Y ′ Fano).
Let U ′ := Y ′ \ D′. Let Y → Y ′ be the universal torus, a canonical TPic(Y ′)∗

principal bundle, with global functions O(Y ) = Cox(Y ′) := ⊕L∈Pic(Y ′H0(Y, L).
We note Cox(Y ′) is the most important Mori theoretic invariant of Y ′ – it controls
all the Mori theory of Y ′. Let U ⊂ Y be the inverse image of U ′ ⊂ Y ′. By
construction U is an affine log CY with maximal boundary, and U ⊂ Y is a partial
minimal model. Thus our conjecture says that O(Y ), and thus H0(Y, L) for every
L ∈ Pic(Y ) comes with a canonical basis, with multiplication rule (given by tensor
product) determined by counts of tropical discs. Thus once we make the single
choice D′ ⊂ KY ′ , all the birational contractions of the Mori theory of Y ′ take
place with canonical coordinates.

On motivic stable pairs invariants of K3 surfaces

Rahul Pandharipande

(joint work with S. Katz and A. Klemm)

The Yau–Zaslow conjecture (1995) links the GW counts of rational curves on K3
surfaces to the generating series of Euler characteristics of the Hilbert schemes
of points of K3 surfaces. Inclusion of the higher genus counts leads to the KKV
conjecture (1999) linked to the the generating series of Chi-y genera of the Hilbert
schemes of points of K3 surfaces. In my talk, I proposed a further extension to
the motivic invariants of K3 surfaces (sometimes called refined DT invariants)
which are then linked to the generating series of Hodge polynomials of the Hilbert
schemes of points of K3 surfaces (joint work with A. Klemm and S. Katz).

The outcome is a prediction of the motivic invariants (defined via superpoten-
tials and the motivic Milnor fiber following Joyce and collaborators) of all sta-
ble pairs moduli spaces on K3 fibrations which satisfy suitable Noether-Lefschetz
transversality conditions. The refine GV multiple cover formula plays an essential
role.
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Finally, I hinted at (but did not state) an associated prediction for the motivic
invariants of the STU model in fiber classes. These are perhaps the first interesting
compact geometries which admit exact solutions for the refined invariants. The
precise formulations can be found in [1].

References
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Ulrich bundles on K3 surfaces

Marian Aprodu

(joint work with Gavril Farkas, Angela Ortega)

I report on a joint work with Gavril Farkas and Angela Ortega [2]. The goal is to
prove the existence of rank-two Ulrich bundles on polarisedK3 surfaces that satisfy
a Brill-Noether type condition. This condition is realised on the complement of a
Noether-Lefschetz locus in the moduli space of polarised K3 surfaces.

The notion of Ulrich bundle originates in classical algebraic geometry, being re-
lated to the problem of finding, whenever possible, linear determinantal or linear
pfaffian descriptions of hypersurfaces in a complex projective space [3]. However,
there are several other reasons to study Ulrich bundles. More recently, Ulrich bun-
dles have been linked by D. Eisenbud and F.-O. Schreyer to cones of cohomology
tables, and to linear pfaffian presentations of Cayley-Chow-van der Waerden forms
[6].

D. Eisenbud, G. Fløystad and F.-O. Schreyer [5] refined the classical Beilison
spectral sequence and proved that any coherent sheaf F on a complex projective
space PN can be presented as the cohomology of a monad

0 → B−N → . . .→ B−1 → B0 → B1 → . . .→ BN → 0,

with Bk = ⊕N
i=0H

i(F(k − i)) ⊗ Ωi−k(i − k), meaning that the sequence above is
exact everywhere except at 0 where the cohomology equals F . In other words, the
sheaf F can be completely recovered from the cohomology of its twists and from the
matrices that appear in the sequence. If we collect the dimensions hi(F(k−i)) and
write them in a table on the kth column and labelling the rows by i, we obtain what
is called the cohomology table of F . When F varies, the cohomology tables define a
cone in

∏∞
−∞ QN+1, denoted by C(PN ,OPN (1)) and called the cone of cohomology

tables of the projective space. If X is an n-dimensional smooth subvariety of
PN , the sheaves supported on X define a subcone of C(PN ,OPN (1)), denoted by
C(X,OX(1)), and called the cone of cohomology tables of X . It is clear that this
cone depends on the embedding. If π : X → Pn denotes a central projection,

then the pushforward map defines an injection C(X,OX(1))
π∗−→ C(Pn,OPn(1)).

Eisenbud and Schreyer prove that this map is bijective if and only if there exists

http://www.math.ethz.ch/~rahul/KKP2.pdf
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a vector bundle E on X whose pushforward is a trivial bundle (of high rank) and
this gives the definition:

Definition 1 (Eisenbud-Schreyer [6]). Notation as above. A vector bundle E on
X is called Ulrich if π∗(E) is trivial.

Apparently, this definition depends on the projection. In fact, it does not, being
a cohomological property. Specifically, D. Eisenbud and F.-O. Schreyer [6] prove
that the following conditions are equivalent a vector bundle E on X is Ulrich if
and only if one of the following equivalent conditions is satisfied:

(i) Hi(E(−i)) = 0 for all i > 0 and Hi(E(−i− 1)) = 0 for all i < N .
(ii) The minimal resolution of the module Γ∗(E) = ⊕qH

0(E(q)) over the
polynomial ring S = C[X0, . . . , XN ] is of the form

0 → FN−n → . . .→ F1 → F0 → Γ∗(E) → 0,

where Fi is generated in degree i for any i.

Having defined a cone associated to a projective variety, a natural question
is whether this interacts in any way with the geometry. D. Eisenbud and F.-O.
Schreyer conjecture that this should not be the case, more precisely:

Conjecture 2 (Eisenbud-Schreyer [6]). On every n-dimensional smooth projective
variety X there is an Ulrich vector bundle, in particular C(X,OX(1)) coincides
with the cone of cohomology tables of the n-dimensional projective space.

In the statement of the conjecture, the rank is not important, however, for
geometric applications, notably in relation with Cayley-Chow-van der Waerden
form, the most interesting cases appear when the rank is one or two.

The relation with the Cayley-Chow-van der Waerden form is the following [6].
For a smooth n-dimensional projective variety X ⊂ PN , consider G := G(N −
n,H0(OX(1))∗) the Grassmannian of codimension-(N − n− 1) planes in PN , and
U ⊂ H0(OX(1)) ⊗ OG the universal rank-(n + 1) subbundle on G. The locus
Z(X) := {L ∈ G| L ∩ X 6= ∅} is a divisor in G and hence it is given by a single
equation in the Plücker coordinates ofX , called the Cayley-Chow-van der Waerden
form of X .

If E is a vector bundle on X , then there is a Bellinson-type complex on G

U•(E) : · · · → U−1 → U0 → U1 → · · ·

where Uk = ⊕iH
i(E(k−i))⊗∧i−kU , in other words, it is obtained from the Beilin-

son monad by replacing the twisted sheaves of differentials by the exterior powers
of U . D. Eisenbud and F.-O. Schreyer [6] prove that the complex U•(E) is gener-
ically exact and fails to be exact precisely along Z(X), a remarkable connection
between this complex and the Cayley-Chow-van der Waerden form.

Note that if E is Ulrich, then the complex U•(E) reduces to

0 → U−1 → U0 → 0,

and U−1 = Hn(E(−n − 1)) ⊗ OG(−1) and U0 = H0(E) ⊗ OG. Eisenbud and
Schreyer prove [6] that the existence of a rank-one or a rank-two Ulrich bundle
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E on X implies that the Cayley-Chow-van der Waerden form of X is linear de-
terminantal, respectively linear pfaffian, description obtained from the complex
U•(E).

The case when X is a hypersurface had been previously considered by A.
Beauville [3]. He observed that X is linear determinantal if and only if X carries
an Ulrich line bundle, and it is linear pfaffian if and only if it carries an Ulrich
bundle of rank two, a precursor of Eisenbud-Schreyer’s result on the Cayley-Chow-
van der Waerden forms. Several existence/nonexistence results can also be found
in [3].

In the curve case, Ulrich line bundles always exist, and hence the next interesting
case is for surfaces. Applying the definition, we find the following restrictions for
an Ulrich bundle on a surface X χ(E(−1)) = χ(E(−2)) = 0 and, from Riemann-
Roch, we obtain:

H ·

(
c1(E)−

rk(E)

2
(KX +H)

)
= 0,

where H denotes the hyperplane section. The second Chern class can be deter-
mined also from Riemann-Roch, using the condition χ(E(−1)) = 0.

For very generalK3 surfaces, Ulrich line bundles cannot exist, hence it is natural
to look at the next best case, rank two. Given a K3 surface S, embedded in a
projective space PN via a complet linear system, we wish to prove the existence
of a rank-two Ulrich bundle E, and, in view of the restriction on the first Chern
class mentioned above, it is natural to impose the condition det(E) = OS(3). This
bundle must have c2(E) = 5N − 1. Our main result is the following:

Theorem 1 ([2]). Let S ⊂ PN be a linearly normal K3 surface such that the
Clifford index of cubic sections is computed by OS(1). The S carries a (2N + 8)-
dimensional familty of stable rank-two Ulrich bundles with determinant OS(3).

For quartic surfaces in P3 our condition is automatically satisfied. This case
has been previously considered by E. Coskun, R. S. Kulkarni and Y. Mustopa [4].

The proof idea is the following. The hypothesis, together with the results of
[1] ensure that base-point-free complete g15N−1’s exist on general cubic sections. If

(C,A) with C ∈ |OS(3)| and A ∈ W 1
5N−1(C) is a general pair (in a component that

dominates the linear system), we can consider the associated rank-two Lazarsfeld-
Mukai bundle E = EC,A defined by the sequence

0 → E∗ → H0(C,A) ⊗OS → A→ 0.

It has the same invariants as a rank-two Ulrich bundle, moreover, any Ulrich
bundle with determinant OS(3) must be of this type [6]. The Ulrich condition
reduces to verify the vanishing H0(E(−1)) = 0, which is achieved in the following
way. In the parameter space of Lazarsfeld-Mukai bundles, we consider the locus
{E| h0(E(−1)) 6= 0} and evaluate its dimension. We find that this dimension is
precisely one less than the dimension of the space of Lazarsfeld-Mukai bundles,
and hence we conclude that a general Lazarsfeld-Mukai bundle is Ulrich.
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Equidistribution of periodic points for automorphisms of complex

projective surfaces

Serge Cantat

(joint work with Christophe Dupont)

Let X be a complex projective surface and Aut(X) be the group of holomorphic dif-
feomorphisms of X . By Gromov-Yomdin theorem, the topological entropy htop(f)
of every f ∈ Aut(X) is equal to the logarithm of the spectral radius λf of the linear
endomorphism

f∗ : H2(X ;Z) → H2(X ;Z),

where H2(X ;Z) is the second cohomology group of X . Thus, f has positive
entropy if and only if there is an eigenvalue λ ∈ C of f∗ with |λ| > 1. In fact such
an eigenvalue is unique if it exists, and is equal to the spectral radius λf .

When the entropy is positive, there is a natural f -invariant probability measure
µf on X (see [1, 2]). This measure can be characterized by several dynamical
properties:

• µf is the unique f -invariant probability measure with maximal entropy,
• if µn denotes the average on the set of isolated fixed points of fn, then µn

converges towards µf as n goes to +∞.

Thus µf encodes the most interesting features of the dynamics of f ; µf is called
the measure of maximal entropy of f .

By ergodicity, µf is either singular or absolutely continuous with respect
to Lebesgue measure. It is singular if there exists a Borel subset A of X satisfying
µf (A) = 1 and vol(A) = 0 (the volume is taken with respect to any smooth volume
form on X); it is absolutely continuous if µf (B) = 0 for every Borel subset B ⊂ X
such that vol(B) = 0 .

Let A be a complex abelian surface and let volA denote the Haar measure on
A, normalized by volA(A) = 1. Every f ∈ Aut(A) preserves volA, and the measure
µf is equal to volA when λf > 1. The simplest example is obtained as follows.
Start with an elliptic curve E = C/Λ0 and consider the product A = E ×E. The
group GL2(Z) acts on C2 linearly, preserving the lattice Λ = Λ0 × Λ0 ; thus, it
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acts also on the quotient A = C2/Λ. This gives rise to a morphism M 7→ fM
from GL2(Z) to Aut(A). The spectral radius of (fM )∗ on H2(A;Z) is equal to the
square of the spectral radius of M . In particular, λf > 1 as soon as the trace of
M satisfies |tr(M)| > 2.

The center of GL2(Z) is generated by the involution η = −Id; it acts on A
by η(x, y) = (−x,−y). The quotient A/η is a singular surface X0; denote by X
this minimal regular model of the quotient space A/η. Since GL2(Z) commutes
to η, one gets an injective morphism M 7→ gM from PGL2(Z) to Aut(X). The
topological entropy of gM (on X) is equal to the topological entropy of fM (on
A). The holomorphic 2-form ΩA = dx ∧ dy is η-invariant and determines a non-
vanishing holomorphic 2-form ΩX on X . The volume form ΩX ∧ ΩX is invariant
under each automorphism gM , and the associated probability measure coincides
with the measure of maximal entropy µgM when htop(gM ) > 0. Hence, again,
one gets examples of automorphisms for which the measure of maximal entropy is
absolutely continuous.

Definition. Let X be a complex projective surface and let f ∈ Aut(X). The pair

(X, f) is a Kummer example if there exist

• a birational morphism π : X → X0 onto an orbifold X0,

• a finite orbifold cover ǫ : Y → X0 by a complex torus Y ,

• an automorphism f0 of X0 and an automorphism f̂ of Y such that

f0 ◦ π = π ◦ f and f0 ◦ ǫ = ǫ ◦ f̂ .

Main Theorem. Let X be a smooth complex projective surface and f be an au-
tomorphism of X with positive entropy. Let µf be the measure of maximal entropy
of f . If µf is absolutely continuous with respect to Lebesgue measure, then (X, f)
is a Kummer example.

This answers a question raised by the author in his thesis and solves Conjecture
3.31 of Curtis T. McMullen in [3]. A similar result holds for holomorphic endomor-
phisms g of the projective space Pk

C of topological degree > 1. In this case, there is
also an invariant probability measure µg that describes the repartition of periodic
points, and if µg is absolutely continuous with respect to Lebesgue measure, then
g is a Lattès examples: it lifts to an endomorphism of an abelian variety via an
equivariant ramified cover. This is due to Zdunik for k = 1 and to Berteloot, Loeb
and the second author for k ≥ 2.

This theorem provides explicit examples of automorphisms of complex projec-
tive surfaces for which µf is singular. All previously known examples were con-
structed on rational surfaces, and we get examples on K3, Enriques, and rational
surfaces. A good example to keep in mind is the family of (smooth) surfaces of
degree (2, 2, 2) in P1

C×P1
C×P1

C. Such a surface X comes with three double covers
X → P1

C × P1
C, hence with three holomorphic involutions σ1, σ2, and σ3. The

composition f = σ1 ◦ σ2 ◦ σ3 is an automorphism of X of positive entropy. The
measure µf is singular for a generic choice of X but coincides with volX for specific
choices.
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The proof relies on a renormalization argument along stable and unstable man-
ifolds of f , a new argument involving Montel families of entire curves (the proof
of which follows from Hodge index theorem and a result of Dinh and Sibony), an
argument of Ghys concerning lamination by holomorphic curves, and the classifi-
cation by Favre and the first author of foliated surfaces with an infinite group of
birational symmetries.
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Syzygies of algebraic curves of large degree

Robert Lazarsfeld

(joint work with Lawrence Ein)

My talk presented joint work with Lawrence Ein [4] showing that a small variant
of the methods used by Voisin in her study [8], [9] of canonical curves leads to a
surprisingly quick proof of the gonality conjecture of [7], asserting that one can
read off the gonality of an algebraic curve C from its syzygies in the embedding
defined by any one line bundle of sufficiently large degree. More generally, we
established a necessary and sufficient condition for the asymptotic vanishing of
the weight one syzygies of the module associated to an arbitrary line bundle on
C. The following paragraphs are adapted from the Introduction to [4].

Let C be a smooth complex projective curve of genus g ≥ 2, and let L be a
very ample line bundle of degree d on C defining an embedding

C ⊆ PH0(C,L) = Pr.

Let S = Sym H0(C,L) be the homogeneous coordinate ring of Pr, and denote by

R = R(L) = ⊕mH
0(C,mL)

the graded S-module associated to L. Consider the minimal graded free resolution
E• = E•(L) of R over S:

0 // Er−1
// . . . // E2

// E1
// E0

// R // 0,

where Ep = ⊕S(−ap,j). We denote by Kp,q(C;L) the vector space of minimal
generators of Ep in degree p+ q, so that

Ep =
⊕

q

Kp,q(C;L)⊗C S(−p− q).

We will be concerned here with investigating the grading of E•(L) – ie determining
which of the Kp,q are non-vanishing – when L has very large degree.
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For q 6= 1 the Kp,q are completely controlled, and the known results leave open
only the question of when Kp,1(C;L) 6= 0 for p ∈ [r − g, r − 1]. Our first main
theorem asserts that this is determined by the gonality gon(C) of C, ie the least
degree of a branched covering C → P1.

Theorem A. If deg(L) ≫ 0, then

Kp,1(C;L) 6= 0 ⇐⇒ 1 ≤ p ≤ r − gon(C).

Thus one can read off the gonality of a curve from the resolution of the ideal of C
in the embedding defined by any one line bundle of sufficiently large degree. The
cases p = r− 1, p = r− 2 were established by Green [5], and the general statement
was conjectured in [7], where it was observed that if 1 ≤ p ≤ r − gon(C), then
Kp,1(C;L) 6= 0. Using Voisin’s results [8], [9] on syzygies of general canonical
curves, Aprodu and Voisin [1], [3] proved the statement of the Theorem for a
general curve of each gonality.

Theorem A follows from a more general result concerning the weight one asymp-
totic syzygies associated to an arbitrary divisor B. Specifically, fix a line bundle
B on C, and with L as above consider the S = Sym H0(L) module

R = R(B;L) =
⊕

m

H0(C,B +mL).

One can again form the graded minimal free resolution E•(B;L) of R(B;L) over
S, giving rise to Koszul cohomology groups Kp,q(C,B;L). As in the case B =
OC discussed in the previous paragraphs, the Kp,0 and the Kp,2 are completely
controlled when degL≫ 0, and so the issue is to understand the weight one groups
Kp,1(C,B;L) when L has large degree. Recall that B is said to be p-very ample
if every effective divisor ξ of degree (p+ 1) on C imposes independent conditions
on the sections of B, i.e. if the natural map

H0(C,B) −→ H0(C,B ⊗Oξ)

is surjective for every ξ ∈ Cp+1 =def Sym
p+1 C. Our second main result is:

Theorem B. Fix B and p ≥ 0. Then

Kp,1(C,B;L) = 0 for all L with degL≫ 0

if and only if B is p-very ample.

Serre duality implies that the vector spaces

Kp,q(C,B;L) and Kr−1−p,2−q(C,KC −B;L)

are naturally dual, KC being the canonical divisor of C, and one then finds that
Theorem A is equivalent to the case B = KC of Theorem B. While this is arguably
the most interesting instance of the result, it will become clear that decoupling B
and L is helpful in guiding the argument.

When B fails to be p-very ample, it is natural to introduce the invariant

γp(B) = dim
{
ξ ∈ Cp+1

∣∣H0(B) −→ H0(B ⊗Oξ) not surjective
}
.
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Theorem C. Let Ld = dA + E, where A is an ample line bundle on C and E is
arbitrary. Fix B and p, and assume that B is not p-very ample. Then there is a
polynomial P (d) of degree γp(B) in d such that

dimKp,1(C,B;Ld) = P (d) for d≫ 0.

In some cases, we are also able to compute the leading coefficient of P (d). We
note that Yang [10] has recently proven (by somewhat related arguments) that the
dimensions of the vector spaces Kp,0 and Kp,1 grow polynomially on an arbitrary
variety.

Theorems B and C follow in a surprisingly simple manner from a small variant of
the Hilbert scheme computations pioneered by Voisin in her proof [8], [9] of Green’s
conjecture for general canonical curves. The idea in effect is to push down Voisin’s
computation to a suitable symmetric product of C, where the p-very-amplitude
hypothesis is easily visible in terms of a tautological vector bundle associated to
B. Then one can deduce Theorem B simply from Serre vanishing.
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The combinatorics and topology of proper toric maps

Mircea Mustaţă

(joint work with Mark A. de Cataldo and Luca Migliorini)

The topology of toric varieties has been extensively studied (see for example [3]). If
X is a complete, simplicial, complex toric variety, then there is an explicit formula
for the Betti numbers of X in terms of the f -vector of X , a combinatorial invariant
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which encodes the number of cones of each dimension in the fan ∆X defining X .
When X is complete, but not-necessarily-simplicial, then the cohomology of X is
not a combinatorial invariant; the right topological invariant to consider in this
setting is the intersection cohomology of X , whose dimension in each degree only
depends on the combinatorics of ∆X (see [5], [2], and [4]).
We are interested in two related questions. First, we study the cohomology of the
fibers of proper toric maps f : X → Y , with X simplicial. Note that each fiber is a
union of complete, simplicial toric varieties. However, since the fibers are in general
reducible, the usual results do not apply. Second, we use the understanding we
have on the cohomology of fibers to study the support loci for the Decomposition
Theorem in the toric setting.

The following is our main result concerning the cohomology of fibers of toric maps.
For the standard terminology and notation in toric geometry, see [3]. All varieties
we consider are defined over C. Recall that a proper map f : X → Y is a fibration
if it is surjective and has connected fibers (if f is a toric map, this condition is
equivalent with the corresponding lattice map being surjective).

Theorem 1. Let f : X → Y be a proper toric map, with X simplicial, and let
y ∈ Y .

i) For every q, the cohomology Hq(f−1(y),Q) is pure, of weight q, and of
Hodge-Tate type. In particular, this is zero if q is odd.

ii) If f is a fibration and τ ∈ ∆Y is such that y lies in the orbit O(τ), then

dimQH2m(f−1(y),Q) =
∑

ℓ≥m

(−1)ℓ−m

(
ℓ

m

)
dℓ(X/τ),

where dℓ(τ) is the number of cones σ ∈ ∆X with codim(σ) = codim(τ) +
ℓ and such that f(O(σ)) = O(τ). In particular, we have χ(f−1(y)) =
d0(X/τ).

For every complex variety W , we denote by ICW the intersection complex on
W . In the toric setting, we show that the Decomposition Theorem of Beilinson-
Berstein-Deligne-Gabber [1] takes the following form.

Theorem 2. If X and Y are toric varieties and f : X → Y is a toric fibration,
then we have a decomposition

(1) Rf∗(ICX) ≃
⊕

τ∈∆Y

⊕

b∈Z

IC
⊕sτ,b
V (τ) [−b],

where the nonnegative integers sτ,b satisfy sτ,b = 0 if b + dim(X)− dim(V (τ)) is
odd.

We note that for any proper toric map, by taking the Stein factorization, we
obtain a version of the statement in Theorem 2. In the setting of this theorem,
an irreducible closed subset V (τ) of Y is a support if some sτ,b is nonzero. Our
goal is to determine the supports of toric fibrations, and more precisely, to give a
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combinatorial description of δτ :=
∑

b sτ,b. The description is especially nice when
both X and Y are simplicial.

Theorem 3. If f : X → Y is a toric fibration, with X and Y simplicial toric
varieties, then for every cone τ ∈ ∆Y , we have

(2) δτ =
∑

σ⊆τ

(−1)dim(τ)−dim(σ)d0(X/σ).

In fact, in this case we obtain an explicit formula for each of the numbers sτ,b in
Theorem 2. An interesting consequence of Theorem 3 is that the expression on
the right-hand side of (2) is nonnegative. It would be desirable to find a direct
combinatorial argument for this fact. When f is birational and dim(τ) ≤ 3, we
give a combinatorial description of δτ which implies that it is nonnegative, but we
don’t have such a formula in general.
For arbitrary toric varieties X and Y , the description of the supports is more
involved, and we need to introduce some notation. Given a toric variety Y and two
cones τ ⊆ σ in the fan ∆Y defining Y , we put rτ,σ := dimQ H∗(ICV (τ))xσ

, where
xσ can be taken to be any point in the orbit O(σ) ⊆ V (τ). It is a consequence of
the results in [4] that rτ,σ is a combinatorial invariant. In turn, we then obtain an
invariant r̃τ,σ defined for cones τ ⊆ σ in ∆Y , uniquely determined by the property
that for every τ ⊆ σ, the sum

∑
τ⊆γ⊆σ rτ,γ · r̃γ,σ is equal to 1 if τ = σ and it is

equal to 0, otherwise. Suppose now that f : X → Y is a toric fibration. For a
cone σ ∈ ∆Y , we put pσ(f) := dimQ H∗(f−1(xσ), ICX), where again we may take
xσ to be any point in the orbit O(σ). The next result gives a description of δτ in
terms of the above invariants. The second part implies that the invariants pσ(f),
hence also the δτ , are combinatorial.

Theorem 4. With the above notation, if f : X → Y is a toric fibration, then the
following hold:

i) For every cone τ ∈ ∆Y , we have δτ =
∑

σ⊆τ r̃σ,τ · pσ(f).
ii) For every cone σ ∈ ∆Y , we have pσ(f) =

∑
i r0,σi

, where the σi are the
cones in the fan ∆X defining X with the property that f(O(σi)) = O(σ)
and dim(O(σi)) = dim(O(σ)).
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Tropical methods for linear series

Sam Payne

(joint work with Dave Jensen)

Let X be a regular semistable curve over C[[t]], with generic fiber X and special
fiber X. Let L be a line bundle of degree d on X . Then L extends to a line bundle
on the total space X, but this extension is not unique.

If the special fiber X is of compact type, meaning that its Jacobian is compact
or, equivalently, its dual graph is a tree, then for each component Xi there is a
unique extension Li such that

degLi|Xj
=

{
d if i = j,
0 otherwise.

Then all of the interesting information about degenerations of sections of Li is
concentrated on Xi.

If W ⊂ Γ(X,L) is a linear series of rank r then those sections of Li|Xi
that

are limits of sections of L form a linear series of degree d and rank r on Xi. This
yields a collection of grds, one on each component of X, which satisfy a natural
compatibility condition that can be phrased in terms of vanishing sequences at the
nodes where the components intersect. The combinatorics of these compatibility
conditions are at the heart of the theory of limit linear series, due to Eisenbud
and Harris, which gives proofs of the Brill-Noether and Gieseker-Petri Theorems
[EH83, EH86] along with many other fundamental facts about the geometry of
curves and their moduli.

Now, suppose X is not of compact type. Then L may or may not extend to a
line bundle Li on X such that

degLi|Xj
=

{
d if i = j,
0 otherwise.

The obstruction to finding such an extension can be measured by the component
group of the Néron model of the Jacobian of X , which is the Jacobian of the dual
graph of X. Tropical geometry systematically studies, refines, and exploits this
obstruction theory to understand the degeneration of the complete linear series
of L. One fundamental tool in this approach is Baker’s Specialization Lemma
[Bak08], which gives an explicit obstruction for a component of the Néron model
of the Jacobian of X to intersect the closure of a line bundle of degree d and
rank r. When every component is obstructed in this way, we can conclude, based
solely on the dual graph of X, that X has no grds. This observation is at the
heart of the tropical proof of the Brill-Noether Theorem [CDPR12], although an
important refinement is required to control the dimension of the space of grds when
it is nonempty.

The main topic of this talk is joint work with Dave Jensen [JP14] refining
this tropical approach to studying linear series on X , when X is not of compact
type. In particular, we developed tools for studying degenerations of multiplication
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maps and found tropical obstructions to the existence of a nonzero kernel in a
multiplication map

Γ(X,L)⊗ Γ(X,M) → Γ(X,L⊗M).

We have used these methods to give a new proof of the Gieseker-Petri Theorem
via explicit computations on graphs, showing that if the dual graph of X is a
particular chain of loops with bridges, with generic edge lengths, then the adjoing
multiplication map

Γ(X,L)⊗ Γ(X,K ⊗ L−1) → Γ(X,K)

is injective for all L. Refinements of this method may be used to control dimensions
of kernels of multiplication maps when they are nonempty, and we hope to develop
these techniques further in future work.

In the last section of the talk, I discussed computations on Jacobians of random
graphs and a Cohen-Lenstra heuristic for these Jacobians, based on joint work
with Julien Clancy, Nathan Kaplan, Timothy Leake, and Melanie Wood [CLP13,
CKLPW14], several of which are now proved by Wood [Woo14]. Our cyclicity
conjecture is still open. We predict that for any fixed 0 < q < 1, the probability
that the Jacobian of the Erdös-Renyi random graph G(n, q) is cyclic tends to the
infinite product ζ(3)−1ζ(5)−1ζ(7)−1ζ(9)−1 · · · , which is roughly .7935.

References

[Bak08] M. Baker. Specialization of linear systems from curves to graphs. Algebra Number
Theory, 2(6):613–653, 2008.

[CDPR12] F. Cools, J. Draisma, S. Payne, and E. Robeva. A tropical proof of the Brill-Noether
theorem. Adv. Math., 230(2):759–776, 2012.

[CKLPW14] J. Clancy, N. Kaplan, T. Leake, S. Payne, and M. Wood, On a Cohen–Lenstra
heuristic for Jacobians of random graphs, preprint, arXiv:1402.5129, 2014.

[CLP13] J. Clancey, T. Leake, and S. Payne, A note on Jacobians, Tutte polynomials, and
two-variable zeta functions of graphs, preprint, arXiv:1309.3340, 2013.

[EH83] D. Eisenbud and J. Harris. A simpler proof of the Gieseker-Petri theorem on special
divisors. Invent. Math., 74(2):269–280, 1983.

[EH86] D. Eisenbud and J. Harris. Limit linear series: basic theory. Invent. Math.,
85(2):337–371, 1986.

[JP14] D. Jensen and S. Payne, Tropical multiplication maps and the Gieseker-Petri The-
orem, preprint, arXiv:1401.2584, 2014.

[Woo14] M. Wood, The distribution of sandpile groups of random graphs, preprint, 2014.

Effective divisors on moduli spaces of sheaves on the plane

Izzet Coskun

(joint work with Jack Huizenga, Matthew Woolf)

Let ξ be the Chern character of a stable sheaf F on P2. In joint work with Jack
Huizenga and MatthewWoolf, we determine the effective cone of the moduli spaces
M(ξ) of Gieseker semi-stable sheaves on P2 with Chern character ξ. For simplicity,
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assume that the rank r of ξ is positive. It is then convenient to record ξ in terms

of the slope µ = c1
r and the discriminant ∆ = µ2

2 − ch2

r .

A sheaf E satisfies interpolation with respect to a coherent sheaf F on P2 if
hi(E ⊗ F ) = 0 for every i (in particular, χ(E ⊗ F ) = 0). The stable base locus
decomposition of M(ξ) is closely tied to the higher rank interpolation problem.

Problem 3 (Higher rank interpolation). Given F ∈M(ξ) determine the minimal
slope µ ∈ Q with µ+ µ(ξ) ≥ 0 for which there exists a vector bundle E of slope µ
satisfying interpolation with respect to F .

If E satisfies interpolation with respect to F , then the Brill-Noether divisor

DE := {G ∈M(ξ)|h1(E ⊗G) 6= 0}

is an effective divisor that does not contain F in its base locus. The interpolation
problem in general is very hard, but has been solved in the following cases:

(1) F = IZ , where Z is a complete intersection, zero-dimensional scheme in
P2 [CH].

(2) F = IZ , where Z is a monomial, zero-dimensional scheme in P2 [CH].
(3) F = IZ , where Z is a general, zero-dimensional scheme in P2 [H].
(4) F ∈M(ξ) is a general stable sheaf [CHW].

These theorems depend on finding a good resolution of F . If F were unstable,
then the maximal destabilizing object would yield an exact sequence

0 → A→ F → B → 0.

The idea is to destabilize F via Bridgeland stability and use the exact sequence
arising from the Harder-Narasimhan filtration just past the wall where F is desta-
bilized. If a bundle E satisfies interpolation with respect to A and B, then E
satisfies interpolation for F by the long exact sequence for cohomology. One may
hope that for an interpolating bundle E with minimal slope, E satisfies interpola-
tion for F because it does so for both A and B. Because the Harder-Narasimhan
filtrations of A and B are “simpler”, we can try to prove interpolation inductively.
This strategy works in all 4 cases listed above.

We first explain the case of monomial schemes. The Grothendieck K group of
P2 is a free abelian group of rank 3. Let χ(ξ, ζ) =

∑2
i=0 ext

i(F,E), where F and
E are sheaves with Chern characters ξ and ζ. Then there is a natural pairing on
K(P2) given by (ξ, ζ) = χ(ξ∗, ζ). If we scale by the rank, every Chern character ξ
(of positive rank) determines a parabola Qξ of orthogonal invariants in the (µ,∆)-
plane defined by P (µ(ξ) + µ)−∆(ξ) = ∆, where P (m) = 1

2 (m
2 + 3m+ 2) is the

Hilbert polynomial of OP2 . The invariants of any sheaf satisfying interpolation
with respect to F lie on the parabola Qξ.

A monomial scheme Z can be represented by a box diagram DZ recording the
monomials that are nonzero in C[x, y]/IZ . Let hi be the number of boxes in the
ith row counting from the bottom and let vi be the number of boxes in the ith
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column counting from the left. Define

µj = −1 +
1

j

j∑

i=1

(hi + i− 1) , νk = −1 +
1

k

k∑

i=1

(vi + i− 1), µZ = max
j,k

(µj , νk).

Assume that the maximum is achieved by µh, (i.e., µZ = µh). Let DU be the
portion of DZ lying above the hth horizontal line and let DV be the potion of
DZ lying below this line. The diagrams DU and DV correspond to monomial
zero-dimensional schemes U, V . We then have the following theorem.

Theorem 1. [CH] Let Z be a zero-dimensional monomial scheme with Chern
character ξ. There exists a vector bundle E of slope µ ∈ Q satisfying interpolation
for IZ if and only if µ ≥ µZ . We may take E to be prioritary. Furthermore, if
there exists stable bundles of slope µ along Qξ, we may take E to be stable.

The Bridgeland destabilizing sequence is given by

0 → IU (−h) → IZ → IV ⊂hL → 0,

where L is the line defined by y = 0. One proves the theorem by inducting on the
complexity of Z. In fact, one computes the entire Harder-Narasimhan filtration of
IZ for different Bridgeland stability conditions, inductively decomposing the box
diagram of the monomial scheme into pieces until each piece is a rectangle. As
a corollary, one determines when monomial schemes are in the stable base loci of
linear systems on the Hilbert schemes of points.

We now describe the effective cone of M(ξ) in general. The possible invariants
of stable vector bundles on P2 have been classified by Drézet and Le Potier [DLP],
[LP]. First, there are exceptional bundles which are stable bundles E such that
Ext1(E,E) = 0. The moduli space of an exceptional bundle is a single isolated
point. The slope α of an exceptional bundle Eα is called an exceptional slope. The
exceptional slopes exhibit remarkable number theoretic properties. For example,
the even length continued fraction expansions of exceptional slopes between 0 and
1
2 are palindromes consisting of 1s and 2s [H].

There is an explicit fractal curve δ in the (µ,∆)-plane made of pieces of parabo-
las. For each exceptional slope α, there is an interval Iα = [α− xα, α+ xα] where
over that interval the curve δ is Q−α on [α − xα, α] and Q−α−3 on [α, α + xα].
The complement of these intervals is a Cantor set C with the following property
(which plays an essential role in the geometry).

Theorem 2. [CHW] A point of C is either an end point of an Iα (hence a qua-
dratic irrational) or transcendental.

Drézet and Le Potier prove that there exists a positive dimensional moduli space
of stable bundles with invariants (r, µ,∆) if and only if rµ, r(P (µ) −∆) ∈ Z and
∆ ≥ δ(µ) [DLP]. In this case, the moduli space is normal, projective, Q-factorial
of dimension r2(2∆ − 1) + 1 [LP]. The stable bundles with ∆ = δ(µ) are called
height zero bundles and their moduli spaces have Picard rank 1. For moduli spaces
M(ξ) with ∆ > δ(µ), the Picard group is isomorphic to Z⊕Z naturally identified
with ξ⊥ in K(P2) with respect to the Euler pairing introduced above.
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Since the intersection of Qξ with ∆ = 1
2 is a quadratic irrational, by Theorem

2, Qξ intersects ∆ = 1
2 along some Iα and determines an exceptional bundle Eα.

This bundle controls the effective cone of M(ξ). Let ξα be the Chern character of
Eα. Our main theorem is in terms of the following invariants:

(1) If χ(ξ, ξα) > 0, let (µ+,∆+) = Qξ ∩Q−α.
(2) If χ(ξ, ξα) = 0, let (µ+,∆+) = (α,∆α).
(3) If χ(ξ, ξα) < 0, let (µ+,∆+) = Qξ ∩Q−α−3.

Theorem 3. [CHW] Let F be a general point of M(ξ) and let r+ be sufficiently
large and divisible. Let ζ be the Chern character with rank r+, slope µ+ and
discriminant ∆+. Then the general point E of M(ζ) satisfies interpolation with
respect to F . Furthermore, the Brill-Noether divisor DE spans an extremal ray of
the effective cone of M(ξ). If χ(ξ, ξα) 6= 0, then DE also spans an extremal ray of
the movable cone.

The Beilinson spectral sequence for an exceptional collection explicitly deter-
mined by α [Dr] yields a canonical two term complex. One thus obtains a good
resolution of F that allows one to compute cohomology. (This resolution also
coincides with the destabilizing sequence in the sense of Bridgeland.) In particu-
lar, one obtains a rational map to a moduli space of Kronecker modules. When
χ(ξ, ξα) 6= 0, the divisor DE is the pullback of the ample generator via this map.
Using the fact that there are complete curves in the fibers, we deduce that DE

is extremal. When χ(ξ, ξα) = 0, the rational map is birational and contracts the
divisor DE .
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Knotty character varieties

Vivek Shende

LetM be a smooth manifold. Recall that its cotangent bundle T ∗M is canonically
a symplectic manifold, and that the Nadler-Zaslow correspondence[6] asserts an
equivalence

Fuk(T ∗M) ∼= Sh(M)



Classical Algebraic Geometry 1721

where the right hand side denotes the A-infinity category of twisted complexes over
the infinitesimally wrapped Fukaya category, and the LHS denotes the DG category
of complexes of sheaves onM . It is natural to use a Legendrian Λ at contact infinity
– the infinite co-sphere bundle T∞M – to impose boundary conditions on this
category [8]. The corresponding category FukΛ(T

∗M) morally consists of objects
whose underlying Lagrangians are asymptotic to Λ; more formally, ShΛ(M) is by
definition those complexes of sheaves whose singular support intersects T∞M in
a subset of Λ. The following results indicate the naturality of this invariant:

Theorem 1. [8] The category ShΛ(M) is an invariant of Hamiltonian isotopy

Theorem 2. [7] When M = R2, the category ShΛ(M) is the representation cat-
egory of the Chekanov-Eliashberg DGA for the Legendrian Λ.

We now restrict ourselves to the case when M is two-dimensional. Then there
is a ‘microlocal monodromy’ map ShΛ(M) → Loc(Λ); we write M1(Λ) for the
moduli space of objects whose microlocal monodromy is a one-dimensional local
system. We recall that for a (topological) knot, the HOMFLY polynomial is a
certain invariant taking values in Z[a±1, (q1/2 − q−1/2)±1].

Theorem 3. [8] When M = S1 × R and Λ ⊂ T∞M is a positive braid closure,
the orbifold cardinality #M1(Λ)(Fq) is the highest degree coefficient of ‘a’ in the
HOMFLY polynomial of Λ.

This coefficient of the HOMFLY polynomial has appeared before in algebraic
geometry:

Theorem 4. [5, 4, 3] Let C be a singular plane curve, and J the compactified

Jacobian of its blowup. Then up to a normalization factor,
∑
qiχ(GriPH

∗(J)) is
the highest degree coefficient of ‘a’ in the HOMFLY polynomial of the link of C.
Here, P is the local perverse Leray filtration induced by any smoothing of J into
an integrable system.

As observed in [8], the relation between Theorems 3 and 4 above is reminiscent
of the P=W conjecture relating the perverse filtration on the moduli of Higgs
bundles to the weight filtration on the corresponding character variety [1]. This
suggests that M1(Λ) should admit an interpretation as a wild character variety.
In fact, this is a consequence of the wild Riemann-Hilbert correspondence.

Theorem 5. (Deligne-Malgrange [2]) Let C̃ be by taking the real blowup of the
complex plane at the origin, and gluing in an annulus inside the puncture. For any
given formal type of singularity of ordinary differential equation, there is an ex-
tension of OC\0 to this annulus such that the solution functor gives an equivalence
of categories between differential equations of this formal type and its image in the
category of constructible sheaves on the annulus. Moreover, all these sheaves have
the same singular support Λ, and the image category is exactly the rank one objects
of ShΛ. Thus M1(Λ) is the wild character variety of the given formal type.
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Stability conditions on threefolds via a conjectural

Bogomolov-Gieseker type inequality

Emanuele Macr̀ı

(joint work with A. Bayer and P. Stellari)

The talk was based on the results contained in the work in progress [BMS14]. The
main result is the construction of Bridgeland stability conditions on any abelian
threefold, as well as on Calabi-Yau threefolds that admit an étale cover by an
abelian threefold, or that are constructed as crepant resolutions of singular quo-
tients of abelian threefolds.

The existence of Bridgeland stability conditions [Bri07] on smooth projective
three-dimensional varieties in general, and more specifically on Calabi-Yau three-
folds, is often considered the biggest open problem in the theory of Bridgeland sta-
bility conditions. Until the recent work [MP13a, MP13b], they were only known to
exist on threefolds whose derived category admits a complete exceptional collection
[Mac14, Sch13]. Possible applications of stability conditions range from modular-
ity properties of generating functions of Donaldson-Thomas invariants [Tod14] to
Reider-type theorems for adjoint linear series [BBMT11].

In [BMT14], the first two authors and Yukinobu Toda, also based on discus-
sions with Aaron Bertram, proposed a general approach towards the construction
of stability conditions on a smooth projective threefold X . The construction is
based on the auxiliary notion of tilt-stability of certain two-term complexes, and a
conjectural Bogomolov-Gieseker type inequality for the third Chern character of
tilt-stable objects. It was shown that this conjecture would imply the existence of
Bridgeland stability conditions.

Our first main result is the following, generalizing the result of [MP13a, MP13b]
for the case when X has Picard rank one:

Theorem 1. The Bogomolov-Gieseker type inequality for tilt-stable objects holds
when X is an abelian threefold.
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There are Calabi-Yau threefolds that admit an abelian variety as a finite étale
cover; these are usually called Calabi-Yau threefolds of abelian type. Our result
applies similarly in these cases:

Theorem 2. The Bogomolov-Gieseker type inequality for tilt-stable objects holds
when X is a Calabi-Yau threefold of abelian type.

Combined with the results of [BMT14], these theorems imply the existence of
Bridgeland stability conditions in either case. There is one more type of Calabi-Yau
threefolds whose derived category is closely related to those of abelian threefolds:
namely Kummer threefolds, that are obtained as the crepant resolution of the
quotient of an abelian threefold X by the action of a finite group G. Using the
method of “inducing” stability conditions on the G-equivariant derived category
of X and the BKR-equivalence, we can also treat this case.

Theorem 3. Bridgeland stability conditions exist when X is an abelian threefold,
or a Calabi-Yau threefold of abelian type, or a Kummer threefold.

Approach. Let X be a smooth projective threefold over C. We fix a very ample
divisor class H ∈ NS(X). The conjectural Bogomolov-Gieseker type inequality
depends on the choice of two divisor classes

ω = αH B = βH,

for α > 0 and β ∈ R.
The first part of our approach is as follows. We reduce the conjectural Bogomo-

lov-type inequality to a statement that only considers objects E that are stable in
the limit as α → 0 and the tilt slope να,β(E) → 0; if β := limβ, the claim is then

∫
e−βHch(E) ≤ 0.

The reduction is based on the methods of [Mac14]: as we approach this limit, either
E remains stable, in which case the above inequality is enough to ensure that E
satisfies our conjecture everywhere. Otherwise, E will be strictly semistable at
some point; we then show that all its Jordan-Hölder factors have strictly smaller
H-discriminant (which is a variant of the discriminant appearing in the classical
Bogomolov-Gieseker inequality). This allows us to proceed by induction.

In the case of an abelian threefold, we then make extensive use of the multipli-
cation by m map m : X → X ; the key observation being that if E is tilt-stable,
then so is m∗(E).

Via pull-back and tensor product with line bundles, we can then assume that
β = 0. We then have to prove that ch3(E) ≤ 0; in other words, we have to prove
an inequality of the Euler characteristic of E. To obtain a contradiction, assume
that ch3(E) > 0, and consider further pull-backs:

(1) χ(OX ,m
∗(E)) = ch3(m

∗(E)) = m6ch3(E) ≥ m6.

However, by stability we have Hom(OX(H),m∗(E)) = 0; moreover, if D ∈ |H | is
a general element of the linear system of H , classical arguments give a bound of
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the form

h0(m∗(E)) ≤ h0(m∗(E)|D) = O(m4)

Similar bounds for h2 lead to a contradiction to (1).
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Beauville-Voisin Conjecture for generalized Kummer varieties

Lie Fu

In [1], Beauville and Voisin observe the following property of the Chow rings of
projective K3 surfaces.

Theorem 0.3 (Beauville-Voisin). Let S be a projective K3 surface. Then
(i) There is a well defined 0-cycle o ∈ CH0(S), which is represented by any point
on any rational curve on S. It is called the canonical cycle.
(ii) For any two divisors D, D′, the intersection product D ·D′ is proportional to
the canonical cycle o in CH0(S).
(iii) c2(TS) = 24o ∈ CH0(S).
In particular, for any algebraic cycle which is a polynomial on Chern classes of
the tangent bundle TS and of line bundles on S, it is rationally equivalent to zero
if and only if it is numerically equivalent to zero.

The above result is surprising because CH0(S) is very huge (‘infinite dimen-
sional’ in the sense of Mumford [2], cf. [3, Chapter 10]). In a subsequent paper
[4], Beauville proposed a conjectural explanation for Theorem 0.3 to put it into a
larger picture. To explain his idea, let us recall a notion generalizing K3 surfaces
to higher dimensions: a smooth projective complex variety X is called hyperkähler
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or irreducible holomorphic symplectic, if it is simply connected and H2,0(X) is
1-dimensional and generated by a holomorphic 2-form which is non-degenerate at
each point of X . In particular, a hyperkähler variety has trivial canoncial bundle.
Here are some basic examples of projective hyperkähler manifolds:

• (Beauville [5]) Let S be a projective K3 surface and n ∈ N, then S[n],
which is the Hilbert scheme of subschemes of dimension 0 and length n, is
hyperkähler of dimension 2n.

• (Beauville [5]) Let A be an abelian surface and n ∈ N. Let s : A[n+1] →
A be the natural morphism defined by the composition of the Hilbert-
Chow morphism A[n+1] → A(n+1) and the summation A(n+1) → A using
the group law of A. It is clear that s is an isotrivial fibration. Then a
fibre Kn := s−1 (OA) is hyperkähler of dimension 2n, called generalized
Kummer variety. The name is justified by the fact that K1 is exactly the
Kummer K3 surface associated to A.

• (Beauville-Donagi [6]) Let X ⊂ P5 be a smooth cubic fourfold, then its
Fano variety of lines F (X) :=

{
l ∈ Gr

(
P1,P5

)
| l ⊂ X

}
is hyperkähler

of dimension 4.

As an attempt to understand Theorem 0.3 in a broader framework, Beauville
gives the point of view in [4] that we can regard this result as a ‘splitting property’
of the conjectural Bloch-Beilinson-Murre filtration on Chow groups (see [7], [8]) for
certain varieties with trivial canonical bundle. He suggests to verify the following
down-to-earth consequence of this conjectural splitting of the conjectural filtration
on Chow groups of hyperkähler varieties. As a first evidence, the special cases when
X = S[2] or S[3] for a projective K3 surface S are verified in his paper loc.cit.

Conjecture 0.4 (Beauville). Let X be a projective hyperkähler manifold, and
z ∈ CH(X)Q be a polynomial with Q-coefficients of the first Chern classes of
line bundles on X. Then z is homologically trivial if and only if z is (rationally
equivalent to) zero.

Voisin pursues the work of Beauville and makes in [9] the following stronger
version of Conjecture 0.4, by involving also the Chern classes of the tangent bundle:

Conjecture 0.5 (Beauville-Voisin). Let X be a projective hyperkähler manifold,
and z ∈ CH(X)Q be a polynomial with Q-coefficients of the first Chern classes of
line bundles on X and the Chern classes of the tangent bundle of X. Then z is
numerically trivial if and only if z is (rationally equivalent to) zero.

Here we replaced ‘homologically trivial’ in the original statement in Voisin’s pa-
per [9] by ‘numerically trivial’. But according to the standard conjecture [10], the
homological equivalence and the numerical equivalence are expected to coincide.

In [9], Voisin proves Conjecture 0.5 for the Fano varieties of lines of cubic
fourfolds, and for S[n] if S is a projective K3 surface and n ≤ 2b2,tr+4, where b2,tr
is the second Betti number of S minus its Picard number. We remark that here
we indeed can replace the homological equivalence by the numerical equivalence
since the standard conjecture in these two cases has been verified by Charles and
Markman [11].
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The main purpose of this talk is to prove the Beauville-Voisin conjecture 0.5
for generalized Kummer varieties.

Theorem 0.6. Let A be an abelian surface, n ≥ 1 be a natural number. Denote
by Kn the generalized Kummer variety associated to A. Consider any algebraic
cycle z ∈ CH(Kn)Q which is a polynomial with rational coefficients of the first
Chern classes of line bundles on Kn and the Chern classes of the tangent bundle
of Kn, then z is numerically trivial if and only if z is (rationally equivalent to)
zero.

There are two key ingredients in the proof of the above theorem:
Ingredient I: De Cataldo-Migliorini’s result. Let S be a projective surface, n ∈ N+

and P(n) be the set of partitions of n. For any such partition µ = (µ1, · · · , µl),
we denote by lµ := l its length. Define Sµ := Slµ = S × · · · × S︸ ︷︷ ︸

lµ

, and also a natural

morphism from it to the symmetric product:

S
µ → S(n)

(x1, · · · , xl) 7→ µ1 x1 + · · ·+ µl xl.

Now define Eµ :=
(
S[n] ×S(n) Sµ

)
red

to be the reduced incidence variety inside

S[n] × Sµ. Then Eµ can be viewed as a correspondence from S[n] to Sµ, and
we will write tEµ for the transpose correspondence, namely the correspondence
from Sµ to S[n] defined by the same subvariety Eµ in the product. Let µ =

(µ1, · · · , µl) = 1a12a2 · · ·nan be a partition of n, we define mµ := (−1)n−l
∏l

j=1
µj

and cµ := 1
mµ

1
a1!···an!

.

Theorem 0.7 (De Cataldo-Migliorini [12]). Let S be a projective surface, n ∈ N+.
For each µ ∈ P(n), let Eµ and tEµ be the correspondences defined above. Then
the sum of the compositions

∑

µ∈P(n)

cµ tEµ ◦ Eµ = ∆S[n]

is the identity correspondence of S[n], modulo rational equivalence.

Return to the case where S = A is an abelian surface. We view A[n+1] as a
variety over A by the natural summation morphism s : A[n+1] → A. Similarly, for
each µ ∈ P(n+ 1) of length l, Aµ also admits a natural morphism to A, namely,
the weighted sum. Now by taking their fibres over the origin of A, we obtain a
correspondence Γµ := π−1

µ (OA) between the generalized Kummer variety Kn :=
s−1 (OA) and the possibly non-connected abelian variety Bµ := ker (sµ : A

µ → A).
Theorem 0.7 then implies the following

Corollary 0.8. For each µ ∈ P(n + 1), let Γµ be the correspondences between
Kn and Bµ defined above. Then for any γ ∈ CH

(
A[n+1]

)
, we have

∑

µ∈P(n+1)

cµΓ∗
µ ◦ Γµ ∗(γ|Kn

) = γ|Kn
in CH(Kn),
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where for a partition µ = (µ1, · · · , µl) = 1a12a2 · · · (n + 1)an+1 ∈ P(n + 1), the
constant cµ is defined as 1

(−1)n+1−l
∏

l
j=1

µj
· 1
a1!···an+1!

.

Ingredient II: Moonen-O’Sullivan’s result. The following consequence of Beauville’s
conjecture for algebraic cycles on abelian varieties is verified:

Theorem 0.9 (Moonen[13] , O’Sullivan [14]). Let A be an abelian variety. Let
P ∈ CH∗(A) be a polynomial with rational coefficients in the first Chern classes of
symmetric line bundles on A, then P is numerically equivalent to zero if and only
if P is (rationally equivalent to) zero.

Strategy of the proof of main theorem. On the one hand, as in [9], the result of
De Cataldo-Migliorini above relates the Chow groups of A[n] to the Chow groups
of various products of A. On the other hand, the result on algebraic cycles on
abelian varieties due to Moonen and O’Sullivan allows us to upgrade a relation
modulo numerical equivalence to a relation modulo rational equivalence. To verify
that Moonen and O’Sullivan’s theorem indeed applies to our situation, we use a
similar technical computation as in [9].
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Tautological cycles on powers of varieties

Qizheng Yin

We report a number of results obtained in [15] and [16] about tautological cycles
on curves, Jacobians and K3 surfaces.

Throughout, Chow groups CH are taken with Q-coefficients. Let X be a smooth
projective variety over a field k. For n ≥ 1 and m ≥ 0, consider maps T =
(T1, . . . , Tm) : Xn → Xm such that each Ti is a projection of Xn to one of its
factors (we set X0 = k). These maps are called tautological maps.

Choose a (usually finite-dimensional) subspace A ⊂ CH(X) of classes carry-
ing certain geometric information. The tautological rings of Xn with respect to
A, denoted by RA(X

n), form the smallest system of Q-subalgebras of CH(Xn)
containing A and closed under pull-backs and push-forwards via all tautological
maps. Later we shall drop the subscript A when the choice of A is clear from the
context.

One may also extend this definition to the relative setting, where X is a smooth
projective scheme over a smooth connected k-scheme M , and Xn stand for the
powers of X relative to M (we set X0 =M). Another generalization is to include
subspaces A ⊂ CH(Xn) for some n > 1.

Curves. We look at the case of curves in the relative (or universal) setting. Con-
sider the universal curve Cg over the moduli space of smooth genus g curves Mg

(we assume g ≥ 2). Then by setting A = ∅ ⊂ CH(Cg), we recover the tautological
ring R(Mg) introduced by Mumford [9]. One classical problem is to study rela-
tions between the generators of R(Mg) (and more generally R(C n

g )), which is the
subject of the Faber conjectures [4].

It is often convenient to work with a variant: the moduli of smooth pointed
genus g curves Mg,1 and the universal curve Cg,1. Denote by x0 : Mg,1 → Cg,1

the section (marked point). We set A = Q ·
[
x0(Mg,1)

]
and we obtain the tauto-

logical rings R(C n
g,1). The section x0 induces the Abel-Jacobi map C n

g,1 → Jg,1,

where Jg,1 is the universal Jacobian. It factors through the symmetric power C
[n]
g,1 ,

whose tautological ring R(C
[n]
g,1 ) is identified with theSn-invariant part of R(C n

g,1).

Although R(C n
g,1) becomes more complicated as n increases, we get somewhat

better control of R(C
[n]
g,1 ). The reason is simply that when n ≥ 2g − 1, the map

C
[n]
g,1 → Jg,1 is a Pn−g-bundle. Then there is an isomorphism of Q-algebras

(1) CH(C
[n]
g,1 ) ≃ CH(Jg,1)[t]

/〈
P (t)

〉
,

where P (t) is a polynomial of degree n − g + 1 with coefficients in CH(Jg,1).

We have figured out the Jacobian counterpart of R(C
[n]
g,1 ) under this isomorphism.

Interestingly, it was also called tautological ring when introduced by Beauville [1].

Jacobians. With Jg,1 being an abelian scheme, its Chow ring carries a second
ring structure given by the Pontryagin product. There is also the action of the
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multiplication [N ] : Jg,1 → Jg,1, for N ∈ Z. Consider the Abel-Jacobi embed-
ding Cg,1 →֒ Jg,1. Following Beauville, we define the tautological ring of Jg,1 to
be the smallest Q-subspace of CH(Jg,1) containing [Cg,1] and closed under both
products as well as the action of [N ]. We use a different notation T (Jg,1) for
this ring.

The study of T (Jg,1) is powered by several structures on the Chow ring of
abelian schemes, namely the Beauville decomposition, the Fourier transform and
the Lefschetz decomposition (or sl2-action). As is shown by Künneman [7], the
background is the so-called motivic Lefschetz decomposition. These structures
have been studied in details by Polishchuk [11] in the Jacobian context. Using
Polishchuk’s formulas we obtain the following result, which generalizes previous
works of Beauville and himself to the relative (or universal) setting.

Theorem 0.10 ([16], Theorem 3.5). The ring T (Jg,1) admits an explicit finite
set of generators with respect to the intersection product. There is also an explicit
description of the sl2-action on T (Jg,1) in terms of the generators.

One consequence is that the ring R(Mg,1) can be identified with a Q-subalgebra
of T (Jg,1). With some more effort we prove the following comparison (previously
obtained by Moonen and Polishchuk [8] in an easier context).

Theorem 0.11 ([16], Theorem 5.4). When n ≥ 2g − 1, the isomorphism (1)
restricts to an isomorphism of Q-algebras

R(C
[n]
g,1 ) ≃ T (Jg,1)[t]

/〈
P (t)

〉
.

Polishchuk [10] also described how to obtain relations between the generators
via the sl2-action. The recipe is simple yet powerful: we know the maximal weight
of T (Jg,1) as an sl2-representation. All polynomials in the generators that are
beyond the maximal weight vanish for obvious reasons. Then one applies the
sl2-action to those polynomials to get not-so-obvious relations.

Using these relations we can study (analogues of) Faber’s Gorenstein conjec-
ture for various tautological rings. We confirm that R(Mg,1) (resp. R(Mg)) is
Gorenstein for g ≤ 19 (resp. g ≤ 23). As far as computation goes, we seem to
obtain the same set of relations as the Faber-Zagier relations. Further, we are
able to formulate the Gorenstein property for T (Jg,1) and prove the following
equivalence.

Corollary 0.12 ([16], Theorem 6.15). The ring T (Jg,1) is Gorenstein if and

only if R(C
[n]
g,1 ) is Gorenstein for all n ≥ 0.

Again we confirm these Gorenstein properties for g ≤ 7, leaving g = 8 the
ultimate critical case.

As is mentioned above, the relations via sl2 are of motivic nature. Polishchuk [10]
conjectured that for the generic Jacobian and modulo algebraic equivalence, the
sl2-action should provide all the relations. Following this idea, we may ask a sim-

ilar question for T (Jg,1) (and R(C
[n]
g,1 )): are all relations of motivic nature? A

positive answer to the question would explain why the Gorenstein properties might
not hold in general.
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K3 surfaces. Let S be a K3 surface over k. We set A = Pic(S) and get the
tautological rings R(Sn). Inspired by the Beauville conjecture for the Hilbert
schemes of S (see [5]), Voisin [13] conjectured that (the restriction of) the cycle
class map cl : R(Sn) → H(Sn) is injective. The case n = 1 is the classical result
of Beauville and Voisin [2] on the existence of a distinguished point cS . In fact,
they proved the following stronger result

(2) [∆123]−
(
[∆12 × cS ] + perm.

)
+
(
[cS × cS × S] + perm.

)
= 0 in R(S3),

where ∆123 is the small diagonal in S3.
Voisin’s conjecture turns out to be rather strong. Notably it implies the Kimura-

O’Sullivan finite-dimensionality conjecture [6] for S, which predicts that

(3)
∑

σ∈S25

25∏

i=1

sgn(σ)[∆i,25+σ(i) ] = 0 in R(S50),

and corresponds to the vanishing ∧25H(S) = 0. The latter is known for example
for all K3 surfaces dominated by products of curves. One may also consider
the conjectural relation in R(S2(btr+1)) corresponding to ∧btr+1H2

tr(S) = 0, with
H2

tr(S) the transcendental part of H2(S) and btr its Betti number.
Surprisingly, we have the following algebraic result.

Theorem 0.13 ([15], Theorem). All relations in cl
(
R(Sn)

)
are generated by (2)

and the variant of (3) corresponding to ∧btr+1H2
tr(S) = 0. In particular, Voisin’s

conjecture holds for S if and only if S is finite-dimensional.

As a consequence, we obtain the Beauville-Voisin conjecture for the Hilbert
schemes of finite-dimensional S (here k is algebraically closed; see [5] for an intro-
duction). More precisely, let X = S[m] be the m-th Hilbert scheme of S. We define
the tautological ring R(X) (also called the Beauville-Voisin ring) and more gener-
ally R(Xn) by setting A = Pic(X) +Q · {ci(X)}. By the work of de Cataldo and
Migliorini [3], there is a motivic decomposition h(X) ≃ ⊕ν∈P(m)h(S

(ν))(l(ν)−m),
which induces a decomposition of Chow groups

(4) CHi(X) ≃
⊕

ν∈P(m)

CHi+l(ν)−m(S(ν)).

Here P(m) is the set of partitions of m, l(ν) is the length of the partition ν and
S(ν) is the quotient of Sl(ν) by the symmetries of ν. One also gets similar de-
compositions for Xn. The calculation of Voisin [13] shows that under (4), the ring

R(Xn) is always mapped to R(Sn′

) for various n′. Hence in view of Theorem 0.13,
the finite-dimensionality of S implies the injectivity of cl : R(Xn) → H(Xn).

More recently, Voisin [14] made an interesting observation. First, the decom-
position (4) and the calculation in [13] works for arbitrary surfaces. Moreover,
the first statement in Theorem 0.13 holds for any regular surface (i.e. of Albanese
dimension 0). On the other hand, the conjectural relation (3) depends on the Betti
numbers of the surface. The conclusion is that whenever one considers a specific
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relation in cl
(
R(Sn)

)
that is not sensitive to the surface, it has to be generated

by (2) and thus holds in R(Sn) for the K3 surface S.
Further, Vial [12] made the following remark. As is discussed in [5], the back-

ground of the Beauville-Voisin conjecture is a multiplicative splitting of the con-
jectural Bloch-Beilinson filtration on the Chow ring of hyper-Kähler manifolds. In
the case of Hilbert schemes of K3 surfaces X = S[m], the motivic decomposition
in [3] induces a Chow-Künneth decomposition h(X) ≃ ⊕ih

i(X). Then one can
formally split a Bloch-Beilinson type filtration on CH(X) by setting

(5) CHi
(j)(X) := CHi

(
h2i−j(X)

)
, so that CHi(X) ≃

⊕

j

CHi
(j)(X).

The remark is that whether (5) is multiplicative can be expressed in terms of
certain relations in R(X3). We know that these relations hold in cohomology and
that they are not sensitive to the surface, so they hold in R(X3) unconditionally.
It follows that we get a multiplicative decomposition of CH(X) as in (5).

Of course, the Beauville-Voisin conjecture for X = S[m] remains open in general
and cannot be deduced from this decomposition. However, one can restate and
generalize the conjecture as follows.

Conjecture 0.14. In (5), we have CHi
(j)(X) = 0 for j < 0. Moreover, the cycle

class map cl : CHi
(0)(X) → H2i(X) is injective.
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Matrix factorizations and families of curves of genus 15

Frank-Olaf Schreyer

The moduli spaces Mg of curves of genus g are known to be unirational for g ≤ 14,
[15, 14, 3, 16]. For g = 22 or g ≥ 24 they are known to be of general type
[12, 7, 10, 11]. The cases in between are not fully understood: M23 has positive
Kodaira dimension [10], M15 is rationally connected [4, 1], and M16 [5, 11] is
uniruled. In this paper we are mainly concerned with M15 and an attempt to
prove its unirationality.

By Brill-Noether theory, a general curve of genus 15 has a smooth model of
degree 16 in P4. Let

H ⊂ Hilb16t+1−15(P
4)

be the component of the Hilbert scheme of curves of degree d = 16 and genus
g = 15 in P4, which dominates the moduli space M15. Let

M̃4
15,16 ⊂ {(C,L) | C ∈ M15, L ∈W 4

16(C)}

be the component which dominates M15. So H//PGL(5) is birational to M̃4
15,16.

Our main result connects this moduli space to a moduli space of certain matrix
factorizations.

Theorem 1. The moduli space M̃4
15,16 of curves of genus 15 together with a g416

is birational to a component of the moduli space of matrix factorizations of type
(ψ : O18(−3) → O15(−1)⊕O3(−2), ϕ : O15(−1)⊕O3(−2) → O18) of cubic forms
on P4.

As a corollary of our proof we obtain the dimension statement in

Theorem 2. A general cubic threefold in P4 contains a 32-dimensional uniruled
family of smooth curves of genus 15 and degree 16.

Since a general curve in H lies on a unique cubic threefold, and cubic three-
folds depend on 10 parameters up to projectivities, the dimension 32 fits with
dimM15 = 42.

Our approach to construct a family of curves of genus 15 builds upon the con-
struction of a matrix factorization on a cubic as a syzygy module of an auxiliary
module N . We use Boij-Söderberg theory [8], [2], and the Macaulay2 package

[9] to get a list of candidate Betti tables. In all our cases the sheaf L = Ñ will
be a line bundle on an auxiliary curve E. The choice of E and L is motivated
by a dimension count and the shape of the Betti table of N . We succeeded to
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construct altogether 20 families of curves in H, and 17 of the families are uni-
rational. However, the unirational families do not dominate M15 although the
number of parameters in the construction exceeds 42. Three of these families have
a non-unirational step in their construction. (We need an effective divisor on the
auxiliary curve). Precisely, those three families dominate M15. We use one of the
non-unirational families to prove

Theorem 3. The moduli space M̃4
15,16 is uniruled.

and the uniruledness in Theorem 2.
The proofs of the Theorems in this article rely on computer algebra. An imple-

mentation of all necessary computations can be found on my homepage.
Many of the images of the unirational families have dimension 39. There is

one of dimension 41, one of dimension 40, and some of dimension < 39. A good
explanation why I failed to prove the unirationality of M15 with this method could
be

Conjecture 3. The maximal rationally connected fibration of M̃4
15,16 has a three

dimensional base.
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Toward an Effective Theory of GW-Invariants of Quintic

CY-Threefolds

Jun Li

(joint work with Huailiang Chang, Weiping Li and Mellisa Liu)

Explicitly solving all genus Gromov-Witten invariants (in short GW invariants) of
quintic Calabi-Yau threefolds is one of the major goals in the subject of Mirror
Symmetry. The genus zero GW invariants of quintic threefolds has been solved
following the work of [Ko, Gi, LLY]. For positive genus, besides the solution of
genus one invariants of quintics by the work of [LZ, Zi], no effective theory for
higher genus is known, other than that by mathematical physics based on Mirror
Symmetry conjecture. In addition, the algorithm proposed in [MP] using the
degeneration of GW invariants, though useful in theoretical study, so far has not
been implemented.

In a joint work with Huailiang Chang, Weiping Li and Mellisa Liu, we are de-
veloping an effective theory towards evaluating all genus GW invariants of quintic
Calabi-Yau threefolds.

Our theory builds on a transition between FJRW invariants [FJR1] and GW
invariants of stable maps with p-fields [CL]. Recall that the former is the LG
theory taking values in [C5/µ5] (via Spin fields), and the later is the LG theory
taking values in the tautological line bundle KP4 (via P-fields). As pointed out by
Witten, [C5/µ5] and KP4 are the two GIT quotients of [C6/Gm](15,−5) and these
two theories should be connected via a wall-crossing of GIT.

We realize this by intruding the notion of Mixed-Spin-P fields (MSP fields)
and its LG theory, providing a geometric theory of the transition between the LG
theories of the two GIT quotients of [C6/Gm],

An MSP field is a collection (ΣC ,C ,L ,N , ϕ, ρ, ν) of twisted curves ΣC ⊂ C ,
and a collection of fields (ϕ, ρ, ν). An MSP field comes with numerical invariants:
the genus of C , the monodromies γ, and the bi-degree d = (d0, d∞). We form
the moduli Wg,γ,d of equivalence classes of stable MSP fields of numerical data
(g, γ,d). It is a separated DM stack, locally of finite type, and with a perfect
obstruction theory.

We construct a properly supported virtual cycle of Wg,γ,d by constructing a
cosection σ of its obstruction sheaf and applying the theory of cosection localized
virtual cycles of [KL]. The degeneracy locus W−

g,γ,d of the cosection σ is a closed
substack of Wg,γ,d, proper and of finite type. We then build a Gm structure on
(Wg,γ,d, σ), with Gm-equivariant perfect obstruction theory, making the cosection
localized virtual cycle [Wg,γ,d]

vir
σ an equivariant cycle.
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Applying the analogous virtual localization formula of [GP], we obtain vanish-
ings

∑

Γ

[
uδ(g,0,d) ·

[WΓ]
vir

e(NWΓ/Wg,0,d
)

]
0
= 0,

which after a detailed study of the fixed locus (Wg,γ,d)
Gm , provides us polyno-

mial relations among the GW invariants of the quintic threefolds and the FJRW
invariants of the Fermat quintic polynomial w5 = x51 + · · ·+ x55.

Let Ng(d) be the genus g degree d GW invariants of the quintic threefolds. We
prove using the mentioned relations

Theorem 0.15. The relations provide an effective algorithm to determine the GW
invariants Ng(d) provided
(1). genus g′ FJRW invariants of multiple insertions − 2

5 are known for g′ ≤ g;
(2). Ng′(d′) are known for (g′, d′) such that g′ < g, and d′ ≤ d;
(3). Ng(d

′) are known for d′ ≤ g.

Using the full set of relations and the moduli of some variations of MSP fields,
we conjecture

Conjecture 0.16. The moduli of MSP-fields will provide an effective algorithm
to determine all genus FJRW invariants of the quintic polynomial w5 of multiple
insertions − 2

5 and all genus GW invariants Ng(d).
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Local cohomology wih determinantal support and syzygies

Claudiu Raicu

(joint work with Jerzy Weyman)

This is a report on joint work with Jerzy Weyman on the study of local coho-
mology modules with support in generic determinantal ideals. We compute the
multiplicities of the simple equivariant D-modules that arise in the Jordan–Hölder
decomposition of the local cohomology modules, and give an explicit description
of the characters of these D-modules. The main technical part of our approach is
the calculation of certain Ext modules. This is done using Grothendieck duality,
which allows one to translate everything into a computation with homogeneous
bundles on a product of partial flag varieties, followed by a direct application of
the Borel–Weil–Bott theorem. The calculation of Ext modules has further ap-
plications to computing the syzygies of certain equivariant thickenings of generic
determinantal ideals. Many of our techniques, just like so many of the successful
instances of computing syzygies in an equivariant setting, use geometric ideas that
go back to the seminal work of Kempf in the 70s.

One of the early motivations for our investigation of local cohomology was to un-
derstand the Cohen–Macaulayness of modules of covariants: when H is a reductive
group acting linearly on a polynomial ring S, for which irreducible representations
of H is the module of covariants (S ⊗ U)H Cohen–Macaulay? This question orig-
inated in the work of Stanley, who formulated a precise conjecture [7], and was
studied extensively by Van den Bergh (see [8] for a survey). When U is the trivial
representation, the C–M property of the ring of invariants SH is a classical result
of Hochster and Roberts [2]. The general question is equivalent to understanding
when U∗ appears as a subrepresentation of the local cohomology modules H•

I (S),
where I is the ideal in S generated by the positive degree invariants, so it can be
easily answered by knowing the characters of H•

I (S). For instance, we show:

Theorem [4, Thm. 4.6] Consider positive integers m > n and let W = (Cn)⊕m

denote the direct sum of m copies of the standard representation of the group
SLn. Let S = Sym(W ) and consider the irreducible SLn-representation U = SµC

n

associated to some partition µ = (µ1 ≥ µ2 ≥ · · · ≥ µn = 0). The module of
covariants (S ⊗ U)H is Cohen–Macaulay if and only if µs − µs+1 < m− n for all
s = 1, · · · , n− 1.



Classical Algebraic Geometry 1737

The vector space of m×n complex matrices (m ≥ n) admits the natural action
of a larger group G = GLm ×GLn, via row and column operations. The orbits of
this action areO0, O1, · · · , On, where Oi consists of all matrices of rank i. Since the
isotropy groups for this action are connected, the only G-equivariant local system
on each Oi is the trivial one. The equivariant version of the Riemann–Hilbert
correspondence [3, Thm. 11.6.1] yields simple G-equivariant regular holonomic D-
modules D0, · · · , Dn, with Di supported on the orbit closure Oi. Their characters,
as well as their multiplicities in the composition series of the local cohomology
modules H•

Ip
(S) (where S is the ring of polynomial functions on m× n matrices,

and Ip is the ideal of p× p minors defining Op−1) are described in the following:

Theorem [5, Thm. 6.1] The following equality holds, with w being a formal
variable, and [M ] denoting the class of a D-module M in the Grothendieck group:

∑

j≥0

[Hj
Ip
(S)] · wj =

p−1∑

s=0

[Ds] · w
(n−p+1)2+(n−s)·(m−n) ·

(
n− s− 1

p− s− 1

)
(w2),

where (
b

a

)
(w) =

∑

b−a≥t1≥···≥ta≥0

wt1+···+ta

is a Gauss polynomial. Moreover, we have a G-equivariant decomposition

Ds =
⊕

λ=(λ1≥···≥λn)∈Z
n

λs≥s−n, λs+1≤s−m

Sλ(s)C
m ⊗ SλC

n,

where for a dominant weight µ, Sµ denotes the associated Schur functor, and

λ(s) = (λ1, · · · , λs, s− n, · · · , s− n︸ ︷︷ ︸
m−n

, λs+1 + (m− n), · · · , λn + (m− n)).

A key step in our proof of the theorem is to compute the modules Ext•S(S/Iµ, S),
where µ = (µ1 ≥ · · · ≥ µn ≥ 0) is a partition and Iµ is the ideal in S generated by
the unique copy of the irreducible representation of G isomorphic to SµC

m⊗SµC
n

contained in S. We then use the fact that H•
Ip
(S) = lim

−→
d

Ext•S(S/Ip×d, S), where

Ip×d = Iµ with µ1 = · · · = µp = d, µi = 0 for i > p. In contrast with the

Ext calculation, the syzygy modules TorS• (S/Iµ,C) turn out to be much more
mysterious. They were understood by Lascoux in the case when Iµ = Ip = Ip×1 is
the ideal of p×p minors, but very little is known in other situations. Together with
Weyman, we are able to compute the syzygies for all the ideals Ip×d, as explained
below.

Akin and Weyman constructed in [1] linear complexes Xp×d, whose homology
groups are direct sums of copies of the ideals I(p+q)×(d+q). Via an iterated mapping
cone construction, it is then easy to obtain a free resolution of Ip×d by putting
together copies of the complexes X(p+q)×(d+q). Such a resolution is not minimal in
general, but using the G-equivariance we can show that the minimal resolution of
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Ip×d has a filtration where the subquotients are the complexes X(p+q)×(d+q). To
compute their multiplicities, as well as the cohomological degrees in which they
live, we use the explicit information encoded by the character of Ext•S(S/Ip×d, S).
We obtain

Theorem [6] Letting Syz(Ip×d) denote the minimal free resolution of Ip×d, we
have with the notation for Gauss polynomials as before,

[Syz(Ip×d)] =

n−p∑

q=0

[X(p+q)×(d+q)] · w
q2+2q ·

(
q +min(p, d)− 1

q

)
(w2).

In the theorem above, the variable w indexes the homological degree. For a
complex X = X•, [X ] :=

∑
i[Xi] · wi, where as before, given a module M , [M ]

denotes its class in the Grothendieck group. It would be desirable to extend this
result to arbitrary ideals of the form Iµ.
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Rational points of K3 surfaces and derived equivalence

Brendan Hassett

(joint work with Yuri Tschinkel)

Let X and Y be projective K3 surfaces over a field F . The surfaces are said to be
derived equivalent if there exists an equivalence of bounded derived categories of
coherent sheaves

Db(X)
∼
→ Db(Y ),

as triangulated categories over F . Such equivalences are induced by Fourier-Mukai
transforms, i.e., if p : X × Y → X and q : X × Y → Y are the projections then
each bounded complex of locally free sheaves E on X × Y induces a transform

ΦE : Db(X) → Db(Y )
F 7→ q∗(p

∗F ⊗ E)
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where the relevant operations are taken in the derived sense. Each derived equiv-
alence takes the form of a Fourier-Mukai transform for a suitable E .

A natural extension is to twisted K3 surfaces, pairs (X,α) where X is a K3
surface and α is in the Brauer group Br(X). If P → X is a Brauer-Severi scheme
of relative dimension n− 1 representing α then we may interpret

(X,α) = [P/ SLn],

the quotient stack arising from the natural action of the special linear group. A
derived equivalence

Db(X,α)
∼
→ Db(Y, β)

is interpreted via coherent sheaves on the associated stacks.
We are interested in how derived equivalence interacts with rational points.

Note that
(X,α)(F ) = {x ∈ X(F ) : α|x = 0 ∈ Br(F )},

the set of points over which the Brauer class vanishes. Thus twisted sheaves are
useful in interpreting and analyzing Brauer-Manin type obstructions; see [2, 3] for
explicit examples.

Our guiding question is

Suppose that (X,α) and (Y, β) are derived-equivalent twisted K3
surfaces over a field F . Is

(X,α)(F ) 6= ∅ ⇔ (Y, β)(F ) 6= ∅?

It would be interesting to have counterexamples to this statement over some field
F . Our main focus is relatively simple fields of arithmetic intersest: finite fields,
R, and p-adic fields, as well as closely related ‘geometric fields’ like C((t)).

For simplicity, we focus on untwisted K3 surfaces. General results include

• invariants like the Brauer group and the stable isomorphism class of the
Picard group are derived invariant;

• other attributes, like whether the automorphism group is finite or infinite
and whether there are smooth rational curves, are not derived invariant;

• the index of a K3 surface, i.e., the greatest common divisor of the degrees
of field extensions over which it has a rational point, is a derived invariant;

• for elliptic K3 surfaces, the existence of a rational point is a derived in-
variant.

For specific fields we have suggestive results:

• Finite fields: Zeta functions are derived invariants [4] so over finite fields
the presence of a rational point is as well.

• R: The diffeomorphism type of the real points of a K3 surface is a derived
invariants by fundamental work of Nikulin.

• C((t)): K3 surfaces with unipotent monodromy have a rational point by
the monodromy classification of Kulikov models; the same holds true for
K3 surfaces with ADE singularities in the central fiber; the case of fi-
nite monodromy can be addressed using classification results for automor-
phisms of finite order.
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• p-adic fields: For K3 surfaces with good or ADE reduction, having a point
over the p-adics is a derived invariant.

Details will be presented in [1].
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École Normale Supérieure
45, rue d’Ulm
75005 Paris Cedex
FRANCE

Dr. Samuel Boissiere
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