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Introduction by the Organisers

The workshop “Algebraische Zahlentheorie” was held at the Mathematisches Fos-
chungs Institut between July 7-14, 2014. The organizers were Ben Howard, Guido
Kings, Sujatha Ramdorai and Otmar Venjakob. The workshop covered different
aspects of Algebraic Number theory, ranging from classical diophantine themes to
modern arithmetic geometry, modular forms and p-adic aspects in number theory.

The conference opened with a talk by Henri Darmon, the Simons Visiting Pro-
fessor, on progress towards constructing new Euler systems or at least specific
global cohomology classes. Kato’s Euler system which was introduced by Kato
more than two decades back, marks a major milestone in the Iwasawa theory
of p-adic Galois representations. Darmon, Massimo Bertolini and Victor Rotger
constructed global Galois cohomology classes arising from Gross-Kudla-Schoen
diagonal cycles in a tower of triple products of modular curves, which generalize
both Kato classes and Beilinson-Flach elements. In his talk, Darmon explained
how these constructions lead to new results concerning the generalized Birch and
Swinnerton-Dyer (BSD) Conjecture, and how the older results fit within this
framework. Victor Rotgers continued to talk on their joint work by illustrating
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four concrete settings in which progress on the BSD conjecture has been made. In
particular he stated an explicit conjecture on the existence of certain p-adic peri-
ods which should one allow to express the above mentioned cohomology classes in
terms of the determinant of an explicit matrix. This makes these cases of the BSD
conjecture accessible to computer calculations and verifications. Recent construc-
tions of Euler systems using Beilinson-Flach elements, due to Guido Kings, David
Loeffler and Sarah Zerbes along with the variation of special elements in Hida
families were reported in the the talk by Zerbes. She explained how a refinement
of the above techniques relying on Kings’ Λ-adic sheaves allows one to bound not
only the Mordell-Weil group but also the Selmer group attached to an elliptic curve
E. In particular, they show that the non-vanishing of the Hasse-Weil L-function
L(E, ρ, 1) at 1 of an elliptic curve E without complex multiplication twisted by
a two-dimensional odd Artin representation ρ implies the rank-statement of the
generalized BSD conjecture concerning the ρ-part of the Mordell-Weil group of
E as well as the finiteness of the ρ-part of the p-primary Tate-Shafarevich group
attached to E. The p-adic invariant cycle theorem for semi-stable curves was con-
sidered in Valentina Di Proietto’s talk, in which she spoke about a direct and
very geometric proof of a theorem of Mokrane in this special case. The topic of
Ashay Burungale was the reduction of generalized Heegner cycles modulo p over
the antcyclotomic Zℓ-extension. His results refine earlier results of Cornut and
Vatsal in the case of weight 2 modular forms and rely on a p-adic Waldspurger
formula of Bertolini-Darmon-Prasanna.

A recurring theme in the talks was about the geometry of Shimura varieties
and connections with automorphic forms. George Pappas spoke about joint work
with Mark Kisin on the construction of integral models of Shimura varieties with
bad reduction, and about techniques for analyzing the structure of their singular-
ities. Benoit Stroh spoke about joint work with Tom Haines on the construction
of integral models of symplectic and unitary Shimura varieties with even worse re-
duction, and applications to the calculation of nearby cycles. Fabrizio Andreatta
spoke about joint work with Adrian Iovita generalizing the all-important Eichler-
Shimura isomorphism for modular curves which enables one to define spaces of
overconvergent Hilbert and Siegel modular forms, and to construct eigenvarieties
for these spaces. Jan Bruinier explained his proof (with Martin Raum) of a re-
markable result asserting, roughly, that any formal power series that looks like it
could be the Fourier-Jacobi expansion of a Siegel modular form must automatically
be one. Arithmetic aspects of other types of varieties were also discussed. Kazuya
Kato presented joint work with Spencer Bloch describing asymptotic bounds on
the variation of Beilinson-Bloch heights in families of smooth varieties. Héléne
Esnault reported on the question of when automorphisms of K3 surfaces in char-
acteristic p can be lifted to characteristic 0. The answer, from her joint with Keiji
Oguiso: almost never. In his talk on Plectic cohomology, Jan Nekovar speculated
about a new framework, in which one might hope to find new Euler systems (‘plec-
tic Siegel units’) in an adapted arithmetic (absolute) cohomology theory attached
to abelian varieties with real multiplication by a totally real number field.
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The talk of Veronika Ertl explained the extension of the comparison isomor-
phism between overconvergent de Rham-Witt cohomology andMonsky-Washnitzer
cohomology to the respective cohomology theories with coefficients. The main new
ingredient here is the construction of good coefficients for the overconvergent de
Rham-Witt complex. Philipp Graf gave a new and purely topological construction
of Harder’s Eisenstein classes for Hilbert modular varieties, which gives an a priori
proof of the rationality of the classes, avoiding multiplicity one arguments as used
by Harder. Oliver Wittenberg reported on joint work with Y. Harpaz on a con-
jecture of Colliot-Théleǹe-Sansuc and Kato-Saito on the exactness of a sequence
involving the Chow groups of zero cycles on a smooth proper variety X over a
number field k, and those of Xv as v varies over the finite places of kv.

Kiran Kedlaya spoke about integrating the theory of (φ,Γ)-modules with work
of Peter Scholze via the theory of relative (φ,Γ)-modules, which leads to finiteness
results for the cohomology of these modules via the study of étale Qp-local sys-
tems in a rigid analytic space and is a vast generalization of earlier finiteness results
due to Tate, Herr, Liu. Laurent Berger explained the theory of multi-variable (or
Lubin-Tate) (φ,Γ)-modules, where the theory of locally analytic vectors allows for
the construction of Lubin-Tate (φ,Γ)-modules over some power series rings in sev-
eral variables. Specialising to the study of one variable Lubin-Tate (φ,Γ)-modules
attached to F -analytic vectors, Berger establishes a folklore conjecture of Colmez
and Fontaine. Anna Caraiani spoke on her recent work (joint with Emerton, Gee,
Geraghty, Paskunas and Shin) that describes an approach to p-adic local Lang-
lands correspondence (LLC) for GLn(F ) where F/Qp is a finite extension, by using
global methods and completed cohomology. This leads to an affirmative answer
in many cases of a conjecture of Breuil and Schneider. Pierre Colmez spoke about
his work which partially extends the p-adic LLC for GL2(Qp) to (φ,Γ)-modules
over the Robba ring, and a conjectural extension of this construction to analytic
(φ,Γ)-modules for Lubin-Tate extensions and analytic representations of GL2(F ).

Thus the talks in the conference covered a broad range of topics that are at
the forefront of current research in Algebraic Number theory. Befitting the Ober-
wolfach tradition, these were supplemented by stimulating discussions among the
participants. The inclement weather aided the interaction among the participants.
In conclusion, this workshop reflected the breadth and depth of on-going research
in this old and beautiful area of mathematics. The historic World Cup match
between Germany and Brazil during the week of the workshop added to the ex-
citement!

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Henri René Darmon in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Euler systems and the Birch and Swinnerton-Dyer conjecture

Henri Darmon

(joint work with Massimo Bertolini, Victor Rotger)

The Birch and Swinnerton-Dyer conjecture for an elliptic curve E/Q asserts that

(0.1) ords=1L(E, s) = rank(E(Q)),

where L(E, s) is the Hasse-Weil L-function attached to E. The scope of the
conjecture can be broadened somewhat by introducing an Artin representation

(0.2) ̺ : GQ −→ Aut(V̺) ≃GLn(C),

and studying the Hasse-Weil-Artin L-function L(E, ̺, s), namely, the L-function
attached to H1

et(EQ̄,Qp) ⊗ V̺, viewed as a (compatible system of) p-adic repre-
sentations. The “equivariant Birch and Swinnerton-Dyer conjecture” states that

(0.3) ords=1L(E, ̺, s) = dimC homGQ
(V̺, E(H)⊗ C),

where H is a finite extension of Q through which ̺ factors. Denote by BSDr(E, ̺)
the assertion that the right-hand side of (0.3) is equal to r when the same is true
of the left-hand side. Virtually nothing is known about BSDr(E, ̺) when r > 1.
For r ≤ 1, there are the following somewhat fragmentary results, listed in roughly
chronological order:

Theorem (Gross-Zagier 1984, Kolyvagin 1989) If ̺ is induced from a ring class
character of an imaginary quadratic field, and r ≤ 1, then BSDr(E, ̺) holds.

Theorem A (Kato, 1990) If ̺ is abelian (i.e., corresponds to a Dirichlet charac-
ter), then BSD0(E, ̺) holds.

Theorem B (Bertolini-Darmon-Rotger, 2011) If ̺ is an odd, irreducible, two-
dimensional representation whose conductor is relatively prime to the conductor
of E, then BSD0(E, ̺) holds.

Theorem C (Darmon-Rotger, 2012) If ̺ = ̺1 ⊗ ̺2, where ̺1 and ̺2 are odd,
irreducible, two-dimensional representations of GQ satisfying:

(1) det(̺1) = det(̺2)
−1, so that ̺ is isomorphic to its contragredient repre-

sentation;
(2) ̺ is regular, i.e., there is a σ ∈ GQ for which ̺(σ) has distinct eigenvalues;
(3) the conductor of ̺ is prime to that of E;

then BSD0(E, ̺) holds.

This lecture endeavoured to explain the proofs of Theorems A, B, and C, empha-
sising the fundamental unity of ideas underlying all three.

The key ingredients are certain global cohomology classes

κ(f, g, h) ∈ H1(Q, Vf ⊗ Vg ⊗ Vh(c))
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attached to triples (f, g, h) of modular forms of respective weights (k, ℓ,m); here
Vf , Vh and Vg denote the Serre-Deligne representations attached to f , g and h,
and it is assumed that the triple tensor product of Galois representations admits
a Kummer-self-dual Tate twist, denoted Vf ⊗ Vg ⊗ Vh(c). (This is true when the
product of nebentype characters associated to f , g and h is trivial.)

When f , g and h are all of weight two and level dividing N , and f is cuspi-
dal, associated to an elliptic curve E, say, the class κ(f, g, h) admits a geometric
construction via p-adic étale regulators/Abel-Jacobi images of

(1) Beilinson-Kato elements in the higher Chow group CH2(X1(N), 2) of the
modular curve X1(N), when g and h are Eisenstein series of weight two
arising as logarithmic derivatives of suitable Siegel units;

(2) Beilinson-Flach elements in the higher Chow group CH2(X1(N)2, 1) when
g is cuspidal and h is an Eisenstein series;

(3) Gross-Kudla-Schoen diagonal cycles in the Chow group CH2(X1(N)3),
when all forms are cuspidal.

When g and h are of weight one rather than two, and hence, are associated to
certain (possibly reducible) odd two-dimensional Artin representations, the con-
struction of κ(f, g, h) via K-theory and algebraic cycles ceases to be available.
The class κ(f, g, h) is obtained instead by a process of p-adic analytic continua-
tion, interpolating the geometric constructions at all classical weight two points
of Hida families passing through g and h in weight one, and then specialising to
this weight. The resulting κ(f, g, h) is called the generalised Kato class atttached
to the triple (f, g, h) of modular forms of weights (2, 1, 1).

The generalised Kato classes arising from (p-adic limits of) Beilinson-Kato el-
ements, Beilinson-Flach elements, and Gross-Kudla-Schoen cycles are germane to
the proofs of Theorems A, B and C respectively. The key point in all three proofs
is an explicit reciprocity law which asserts that the global class κ(f, g, h) is non-
cristalline at p pecisely when the classical central critical value L(f ⊗ g ⊗ h, 1) =
L(E, ̺, 1) is non-zero. The non-cristalline classes attached to (f, g, h) (of which
there are actually four, attached to various choices of ordinary p-stabilisations of
g and h) can then be used (by a standard argument involving local and global
Tate duality) to conclude that the natural inclusion of E(H) into E(H ⊗ Qp)
becomes zero when restricted to ̺g ⊗ ̺h-isotypic components, and hence, that
homGQ

(V̺, E(H)⊗ C) is trivial when L(E, ̺, 1) 6= 0.
The lecture strived to set the stage for the two that immediately followed, which

were both devoted to further developments arising from these ideas:

(1) Victor Rotger’s lecture studied the generalised Kato classes κ(f, g, h) when
L(f, g, h, 1) = 0. In that case, they belong to the Selmer group of E/H ,
and can be viewed as p-adic avatars of L′′(E, ̺, 1);

(2) Sarah Zerbes’ lecture reported on [LLZ1], [LLZ2], [KLZ] in which the study
of Beilinson-Flach elements undertaken in [BDR] is generalised, extended
and refined. By making more systematic use of the Euler system prop-
erties of Beilinson-Flach elements, notably the possibility of “tame defor-
mations” at primes ℓ 6= p, the article [KLZ] is also able to establish strong
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finiteness results for the relevant ̺-isotypic parts of the Shafarevich-Tate
group of E over H , in the setting of Theorem B.
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Euler systems and the Birch and Swinnerton-Dyer conjecture II

Victor Rotger

(joint work with Henri Darmon)

Let E/Q be an elliptic curve over the rational numbers and let

(0.1) ̺ : GQ −→ Aut(V̺) ≃ GLn(L)

be an Artin representation, factoring through the Galois group of a finite extension
H/Q and taking values in the group of linear automorphisms of a vector space V̺

of dimension n ≥ 1 over a finite extension L/Q.
Let L(E, ̺, s) be the Hasse-Weil-Artin L-function associated to the twist of E

by ̺, that is to say, the L-function attached to H1
et(E × Q̄,Qℓ)⊗ V̺, viewed as a

compatible system of ℓ-adic representations.
Define the ̺-isotypic component of the Mordell-Weil group of E over H as

E(H)̺ := homGQ
(V̺, E(H)⊗ L).

The equivariant Birch and Swinnerton-Dyer conjecture for the pair (E, ̺) predicts
that

(0.2) ords=1L(E, ̺, s) = dimLE(H)̺.

Denote by BSDr(E, ̺) the assertion that the right-hand side of (0.2) is equal
to r when the same is true of the left-hand side.

As reported by Henri Darmon in his lecture, BSD0(E, ̺) is known in a number
of scenarios, due to the works of Gross-Zagier (1984), Kolyvagin (1989), Kato
(1990), Bertolini-Darmon-Rotger (2011) and Darmon-Rotger (2012). We refer to
Darmon’s report in this workshop for more details about the precise statements
and methods of proof.

In my lecture, I focussed on the case r = 2 in the setting where

̺ = ̺1 ⊗ ̺2
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is the tensor product of two odd, irreducible, two-dimensional representations ̺1
and ̺2 of GQ, subject to the following assumptions:

(1) det(̺1) = det(̺2)
−1;

(2) the conductors NE and N̺ of E and ̺ are relatively prime;
(3) ̺ is regular, i.e., there is a σ ∈ GQ for which ̺(σ) has distinct eigenvalues;

While hypothesis (1) appears to be crucial, assumptions (2) and (3) can be
significantly relaxed, and the results and conjectures that are described below
hold in greater generality. Hypothesis (1) implies that ̺ is isomorphic to its
contragredient representation, and (2) implies that all local signs of the functional
equation of L(E, ̺, s) are +1, and hence ran(E, ̺) = ords=1L(E, ̺, s) is even.

As a piece of notation, set N = NE · N̺ and let χ : (Z/NZ)× → L× denote
the determinant of ̺1, regarded as a Dirichlet character.

By the results of Wiles, Khare, Wintenberger et al. both the elliptic curve E and
the Artin representations ̺1 and ̺2 are modular. Let f ∈ S2(N), g ∈ S1(N,χ) and
h ∈ S1(N,χ−1) be eigenforms of level N associated to E, ̺1 and ̺2, respectively.

Fix a prime p not dividing N at which E is ordinary, and let g and h be
Hida families of overconvergent modular forms passing through given ordinary p-
stabilizations gα and hα of g and h in level Np. For every ℓ ≥ 1, let gℓ and hℓ

denote the classical specialization of g and h at ℓ, respectively.
Associated to these choices, we can construct a one-variable p-adic family of

global cohomology classes

κ(f, g, h) ∈ H1(Q, Vf,g,h)

with values on a suitable twist of the tensor product Vf ⊗ Vg ⊗ Vh of Hida-Wiles’

Λ-adic representations associated to the Hida families, satisfying the following
properties:

(i) For every ℓ ≥ 1, the specialization of Vf,g,h at (2, ℓ, ℓ) is the Kummer self-

dual twist of the tensor product Vf⊗Vgℓ⊗Vhℓ
of the Galois representations

associated to f , gℓ and hℓ, respectively.
(ii) For every ℓ ≥ 2, the specialization κ(fk, gℓ, hℓ) of κ(f, g, h) at (2, ℓ, ℓ) is

critalline at p and coincides (up to an expicit fudge factor) with the image
under the étale Abel-Jacobi map of a generalized diagonal cycle on the
product of three Kuga-Sato varieties.

(iii) The image of κ(f, g, h) under the Λ-adic regulator of Perrin-Riou and
Loeffler-Zerbes ([LZ]) is the triple-product p-adic L-function.

(iv) The specialization κ(fk, gα, hα) of κ(f, g, h) at (2, 1, 1) is cristalline at p if
and only if L(E, ̺, 1) = 0.

We refer to κ(fk, gα, hα) as the generalized Kato class associated to the triplet
(f, gα, hα), because when g and h are taken to be Eisenstein then Kato’s construc-
tion in [Ka] bears strong analogies with ours.

Assume L(E, ̺, 1) = 0, so that κ(fk, gα, hα) lies in the Bloch-Kato Selmer group
Selp(E, ̺) of the twist of E by ̺.

Darmon and I conjecture that this class actually belongs to E(H)̺ ⊗ Qp, and
it is actually trivial as soon as ran(E, ̺) > 2. When ran(E, ̺) = 2, we propose an
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explicit conjectural recipe describing it, in terms of suitable p-adic periods arising
from p-adic Hodge theory.

Together with Alan Lauder, in [DLR] we provide abundant numerical evidence
for the logarithm of this conjecture, and prove it in the scenario where Heegner
points co-exist.
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Euler systems and explicit reciprocity laws

Sarah Livia Zerbes

(joint work with Guido Kings, Antonio Lei, David Loeffler)

This is a brief summary of my recent research with Lei and Loeffler [LLZ14, LLZ13]
and with Kings and Loeffler [KLZ14] on Euler systems for p-adic Galois represen-
tations and explicit reciprocity laws.

1. Euler systems

One of the central questions in number theory is to understand the cohomology
of p-adic Galois representations, and the links between these cohomology groups
and the values of L-functions.

The theory of Euler systems (originally due to Kolyvagin, and later greatly
extended by Rubin) is a powerful technique for proving conjectures of this kind. If
V is a p-adic representation of Gal(Q/Q), and T is a lattice in V , the machinery
of Euler systems allows one to prove the finiteness of H2(Q, T ) and bound its
order, using a suitable collection of elements of H1(Q(µn), T ) for varying n. If V
is unramified outside a finite set of primes Σ (including p), Rubin has defined an
Euler system for V as a collection of classes

zn ∈ H1(Q(µn), T )

satisfying the compatibility condition

norm
Q(µnℓ)
Q(µn)

(
znℓ

)
=

{
zn if ℓ | n or ℓ ∈ Σ

Pℓ(σ
−1
ℓ )zn otherwise,

where Pℓ(X) is the local Euler factor of V ∗(1) at ℓ.
One expects that the classes in the Euler system should be related to values of

the L-function L(V, s), via an explicit reciprocity law describing the image of the
Euler system classes under the Bloch–Kato dual exponential map.
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When V is the representation associated to a modular form, Kato has con-
structed an Euler system for V using classes in K2 of modular curves, and proved
a reciprocity law for this Euler system; the bounds for Selmer groups implied by
these results give one inequality in the Bloch–Kato conjecture for the representa-
tion V .

2. A new Euler system

As far back as 1984, it was noted by Beilinson [Bĕı84] that there were natural
K-theory classes associated to the product of two copies of the modular curve
Y = Y1(N): these are given by the images of modular units on Y via pushforward
along the diagonal embedding Y →֒ Y ×Y . Applying a p-adic etale regulator map
to this class (for any prime p) gives a Galois cohomology class living in

H1(Q, Vp(f)
∗ ⊗ Vp(g)

∗)

for any weight 2 modular forms f , g, which we shall call the Beilinson–Flach class.
The point of departure for our work was a theorem of Bertolini–Darmon–Rotger

[BDR12] showing that if p does not divide the level of f and g, the image of the
Beilinson–Flach class under the Bloch–Kato logarithm map is related to a special
value of Hida’s p-adic Rankin–Selberg L-function. This strongly suggests that the
Beilinson–Flach class should form part of an Euler system. Constructing such an
Euler system was the main result of the paper [LLZ14]:

Theorem (Lei–Loeffler–Zerbes). There exists an Euler system (zn) for the Galois
representation V = Vp(f)

∗ ⊗ Vp(g)
∗, where f and g are any two weight 2 modular

forms, such that z1 is the Beilinson–Flach class.

The applications of this theorem are, however, somewhat limited by the fact
that the explicit reciprocity law proved by Bertolini–Darmon–Rotger involves the
Bloch–Kato logarithm, rather than the dual exponential (the latter vanishes on
the Beilinson–Flach class) and more importantly that the L-value involved is a
non-critical value of a p-adic L-function.

3. P -adic variation and explicit reciprocity laws

It is fairly straightforward to show, from the construction of the Euler system of
Beilinson–Flach classes, that these classes interpolate in p-adic families: if f and
g are two Hida families of ordinary modular forms, then one can construct 3-
parameter families of cohomology classes interpolating the Beilinson–Flach classes
for all weight 2 specializations of the families f and g, twisted by all Dirichlet
characters of p-power conductor.

However, only finitely many specializations (f, g, χ) will have levels coprime to p,
so the explicit reciprocity law of Bertolini–Darmon–Rotger only applies at a finite
number of points in this family; so, although we can construct by this method
cohomology classes for arbitrary specializations of the family, the construction
gives no information about the resulting classes.

In [KLZ14], we solve this problem by proving the following theorem:
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Theorem. (1) There exist generalized Beilinson–Flach cohomology classes
(arising from K-theory of Kuga–Sato varieties) in

H1(Q, Vp(f)
∗ ⊗ Vp(g)

∗(−j)),

for any modular forms f, g of weights k+2, k′ + 2 and integer j such that
0 ≤ j ≤ min(k, k′).

(2) If f and g have level coprime to p, the images of these generalized Beilinson–
Flach classes under the Bloch–Kato logarithm are related to non-critical
values of the p-adic Rankin–Selberg L-function.

(3) If f , g are specializations of Hida families f , g, then the Beilinson–Flach
cohomology classes constructed geometrically for f , g coincide with the
classes obtained by p-adic deformation from the Beilinson–Flach classes
for weight 2 specializations of f and g.

The last point – asserting the equality of two a priori different cohomology
classes for Vp(f)

∗ ⊗ Vp(g)
∗(−j), one defined geometrically using Kuga–Sato vari-

eties, and the other defined by p-adic deformation which has no a priori reason to
be geometric – is the most subtle aspect of the construction.

With this theorem in hand, one obtains a family of cohomology classes which
is related to p-adic L-values at a Zariski–dense set of points in its domain; hence
the relation holds everywhere in the domain, including the points where the p-adic
L-function interpolates a critical value of the corresponding complex L-function.
This gives the following result:

Theorem. If f , g are p-ordinary modular forms of weights ≥ 1 and j is an integer
such that s = 1+ j is a critical value of the L-function L(f, g, s), then there is an
Euler system (zn) for Vp(f)

∗⊗Vp(g)
∗(−j), whose image under the dual exponential

map is related to the algebraic part of the critical L-value L(f, g, 1 + j).

4. Arithmetic applications

The strong explicit reciprocity law obtained in [KLZ14] has many arithmetic ap-
plications. We have concentrated on the case where f corresponds to an ellip-
tic curve E, and the form g is a weight 1 θ-series obtained from a finite-order
Grössencharacter Ψ of an imaginary quadratic field K. In this case, the Rankin–
Selberg L-value L(f, g, 1) can be expressed as an L-value L(E/K,Ψ, 1) of f over
K twisted by Ψ; and the corresponding Selmer group is related to the Ψ-isotypical
components of the Mordell–Weil and Tate–Shafarevich groups of E/F , where F/K
is the finite abelian extension through which Ψ factors.

In order to apply the Euler system machinery to E/K, one needs to extend
the Euler system somewhat, by constructing classes over all abelian extensions
of K (not just those which are abelian over Q). This is carried out in [LLZ13].
Combined with the above reciprocity law, one obtains the following result:

Theorem. In the above setting, if L(f/K,Ψ, 1) 6= 0, then the Ψ-isotypical compo-
nent of the Mordell–Weil group of E/F is finite, and the Ψ-isotypical component
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of the p-part of the Tate–Shafarevich group of E/F is finite for infinitely many
primes p.

The finiteness of the Ψ-component of the Mordell–Weil group in this setting
has already been proved by Bertolini–Darmon–Rotger, via a related method (also
involving Beilinson–Flach classes); our approach using Euler systems has the ad-
vantage of also giving control of the Tate–Shafarevich group.

References
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A topological construction of Eisenstein cohomology classes for
Hilbert-Blumenthal-varieties

Philipp Graf

G. Harder has constructed Eisenstein cohomology classes for GL2 over any num-
berfield. We want to give an alternative topological approach, when F is a totally
real field.
Let us quickly recall Harder′s situation in [Ha].
One considers the space

SK := KK∞ \GL2(AF )/GL2(F ),

where AF is the ring of adeles over F and

K∞ = Z(F⊗QR)
∏

ν place of F, ν|∞

SO(2), K = ker
(
GL2(OF ⊗ Ẑ)→ GL2(OF /N)

)

with Z ⊂ GL2 the center.
With SK there comes a second space

∂SK := KK∞ \GL2(AF )/B(F ),

where B ⊂ GL2 denotes the standard Borel of upper-triangular matrices. Recall,
that ∂SK is actually homotopy eqivalent to a disjoint union of pointed neihghbor-
hoods of the cusps, the boundary of the Borel-Serre compactification of SK .
The standard GL2(F )-representations on

Symk
QF

2, k ≥ 0
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induce local systems
Symk

QHSK
, k ≥ 0

on SK . One has the natural restriction map

res : Hp(SK , Symk
QHSK

)→ Hp(∂SK , Symk
QHSK

).

Note, that the cohomology of the boundary is supported in degrees 1, ..., 2g − 1,
with g = [F : Q].

The problem of Eisenstein cohomology classes is an explicit description of the
subspace

Hp
Eis(SK , Symk

QHSK
) ⊂ Hp(SK , Symk

QHSK
),

with
Hp

Eis(SK , Symk
QHSK

)
∼=
→ im(res),

in terms of cohomology classes of the boundary. Harder solves this problem by
extending coefficients to C and constructing an operator

Eis : im(res)C → Hp(SK , Symk
QHSK

)C

right-inverse to res on the level of de Rham cohomology. The construction of
Eis and the description of im(res) go actually hand in hand. If k ≥ 1, we have
explicitly

Eis(ω) =
∑

γ∈GL2(F )/B(F )

γ∗ω

If k = 0 Eis has to be defined by analytic continuation of the sum. In order to
show, that his operator respects the given Q-structures of the cohomology groups,
Harder has to use strong multiplicity one.

We want to take a different route.
SK is a finite disjoint union of Hilbert-Blumenthal varieties. Blottiere [Bl] and
Kings [Ki] have already shown, that polylogarithmic cohomology classes living
on universial abelian schemes above certain Hilbert-Blumenthal varieties may
give non trivial Eisenstein cohomology classes in degree 2g − 1 by specialization
along the zero-section. Over SK there is no universial abelian scheme, as the
parametrized abelian varieties have non trivial automorphisms by a congruence
subgroup of the units of F . This is exactly reflected by the fact, that

Z(K) := Z(F ) ∩ (Z(F ⊗Q R)0K)

acts trivially on
KK∞ \GL2(AF )

due to the fact, that we devide by Z(F ⊗Q R) from the left. We introduce a new
topological manifold

MK := KK1
∞ \GL2(AF )/GL2(F ),

where
K1

∞ =
∏

ν place of F, ν|∞

SO(2).
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Now GL2(F ) acts properly discontinously and fixpoint free and we may define a
universial topological torus

TK := NOF ⊗ Ẑ ⋊KK1
∞ \ A

2
F ⋊GL2(AF )/F

2 ⋊GL2(F )
π
→MK

TK is a group object in the category of manifolds overMK and its fibres are abelian
varieties with real mutiplication. Moreover TK has a level-N structure. On such
a family of topological tori one has the Logarithm sheaf enabling a topological
construction of polylogarithmic Eisenstein cohomology classes. More precisely,
consider D ⊂ TK the union of images of all N-torsion sections, which are disjoint
from the zero section. One has

H0(D,Q) =
⊕

06=v∈(OF /NOF )2

H0(MK ,Q)
sum
→ H0(MK ,Q)

and for each f ∈ ker(sum) we get polylogarithmic Eisenstein cohomolology classes

(Eisk(f))k≥0 ∈
∏

k≥0

H2g−1(MK , SymkH),

where SymkH is the local system onMK associated to the GL2(F )-representation
Symk

QF
2. This construction can be found in [Ki], but the ideas go back to [B-L].

Recall, that on the limit of our spaces we have a

Gf := GL2(AF,f )× π0(GL2(F ⊗Q R))

action by left-multiplication. This induces an action on the colimit of cohomology
groups. We drop the subscript K, when we go to the limit of spaces or the colimit
of cohomology groups.
By naturality of the construction above we get a Gf -equivariant operator

Eisk : H0(M,Q)⊗Q S(A2
F,f ,Q)0 → H2g−1(M, SymkH)

Here S(A2
F,f ,Q)0 are Q-valued Schwartz-functions f on A2

F,f with
∫

v∈A2
F,f

f(v)dv = f(0) = 0.

Now we have to push Eisk forward to S.
To do so, we consider the canonical map

φ :MK → SK

This map is a locally trivial fibration with fibre

Z(F ⊗Q R)0/Z(K).

Proposition. There are cohomology classes in H•(MK ,Q) defining a trivializa-
tion of the local system R•φ∗(Q) via the canonical map

H•(MK ,Q)→ R•φ∗(Q)(SK).
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We denote with H•(Z) their Q-span. One obtains a Leray-Hirsch style isomor-
phism ⊕

p+q=n

Hp(Z)⊗Hq(SK , SymkHSK
)→ Hn(MK , SymkH)

induced by cup-product.

Now we may decompose Eisk by evaluation on H•(Z) to obtain operators

Eiskq : H0(M, Hq(Z)∗)⊗Q S(A2
F,f ,Q)0 → H2g−1−q(S, SymkHS)

Note, that Eiskq andHq(Z) are supported in degrees 0, ..., g−1 = rank of units of F .
Therefore we get Eisenstein cohomology classes in cohomological degrees n =
g, ..., 2g− 1. Moreover, [Ha] Theorem 2 tells us, that we only miss the n = 0 part,
which just plays a role, if k = 0.

Theorem. The operator Eiskq factors as

Eiskq : H0(M, Hq(Z)∗)⊗Q S(A2
F,f ,Q)0 → H2g−1−q

Eis (S, SymkHS)

It is surjective, if k ≥ 1. If k = 0, the image is desribed in [Ha] (4.2.1) Corollary
(b).

The proof relies on Nori′s [No] description of the polylogarithm over C as a
current with values in the Logarithm-sheaf. As the proof is very explicit, no
theorems of automorphic representation theory are needed.
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Non-liftability of automorphism groups of a K3 surface in positive
characteristic

Hélène Esnault

(joint work with Keiji Oguiso)

A K3 surface X over a field k is a smooth geometrically connected 2-dimensional
proper scheme X such that H1(X,OX) = 0 and the dualizing sheaf ωX is trivial,
so ωX

∼= OX . This implies in particular that if k is algebraically closed, the Picard
group Pic(X) is discrete, thus is equal to its Néron-Severi quotient NS(X), and in
addition, it is torsion-free. If the characteristic of k is equal to 0, then the Picard
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rank of X (that is the rank of NS(X) as a Z-module) is between 1 and 20, and one
knows it takes all possible values, while if the characterisitc of k is positive, then
it could be 22 = dimkH

2(Xét,Qℓ) = dimKH2(X/K), where K = Frac(W (k)), the
former group is étale cohomology, and the latter group is crystalline cohomology.

If R is a complete discrete valuation ring with residue field k, a model of X
over R is a flat morphism XR → Spec(R) such that XR ⊗R k is isomorphic to X .
If X is projective, with polarisation L, and if L lifts to LR over XR, then LR is
projective as well, so the model is projective.

If k is the field of complex numbers C, assuming X is projective, we know
from Hodge theory and the knowledge of the period domain that in the analytic
category there is always a projective model X → ∆, where ∆ is the unit disc, such
that if t is a general point of ∆ in the complex sense, that is outside of a countable
union of closed subsets of ∆, then the Picard rank of Xt is equal to 1 ([Og03]).

Theorem 1 ([EO14], Thm.4.2). Let X be a K3 surface defined over an alge-
braically closed field k of characteristic p > 0, where p > 2 if X is Artin-
supersingular. Then there is a discrete valuation ring R, finite over the ring of
Witt vectors W (k), together with a projective model XR → SpecR, such that the
Picard rank of XK̄ is 1, where K = Frac (R) and K̄ ⊃ K is an algebraic closure.

The restriction on the characteristic is due to the fact that for the proof, we use
the existence of a line bundle on X , the Hodge class of which in H1(X,Ω1

X/k) does

not vanish. For this, we have to use the Tate conjecture [MPe13]. It would be nice
if there was a more direct way. We refer to [LieOls11] for another proof, based
on the methods of [Ogu83], also in larger characteristic. Our proof of Theorem 1
relies on [Del81] and yields a precise statement on the Gauß-Manin connection of
the universal formal family along certain hypersurafaces.

A corollary of Theorem 1 is the following theorem.

Theorem 2 ([EO14], Thm.5.1). Let X be a K3 surface defined over an algebraic
closed field k of characteristic p > 0, where p > 2 if X is Artin-supersingular.

1) Assume that either the Picard number of X is ≥ 2 or that Pic (X) = Z ·H
and H2 6= 2. Then there is a DVR R, finite over W (k), together with a
projective model XR → SpecR of X → Speck such that no subgroup G ⊂
Aut (X), except for G = {idX} is geometrically liftable to XR → SpecR;

2) Assume that Pic (X) = Z·H and (H2) = 2. Then, for any projective model
XR → SpecR with R finite over W (k), the specialization homomorphism
Aut(XR)→ Aut(X) is an isomorphism, and Aut(X) = Z/2.

For a complex projective K3 surface X , for any choice of 5 line bundles Li, i =
0, . . . , 4, with L0 ample, there is a projective model X → ∆ in the analytic category
such that all Li lift ([Og03]).

We show [EO14, Prop.6.2] that on the Kummer K3 surface X = Km(E ×k E),
where E is a supersingular elliptic curve over an algebraically closed field k of
characteristic 3, there are 3 such line bundles Li, i = 0, 1, 2 with L0 ample, together
with 2 automorphisms τi of order 2, such that there is no model XR → Spec(R),
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with R finite over W (k), such that L0, L1, L2, τ1, τ2 lift. More precisely, L1, L2 are
nef, big, but not ample, with hi(L1) = hi(L2) = 0, h0(L1) = h0(L1) = 3, they
define projective (non-finite) maps |Ln| : X → P2 of degree 2, thus involutions τn
on X , n = 1, 2, L0 is any ample line bundle.

Pushing the computation further, we show [EO14, Thm.6.4] that this surface
admits an automorphism of entropy a Salem number of degree 22. Thus for all
possible projective models XR → Spec(R), this automorphism can not lift.

The computation is mildly computer aided and relies on [KS12].
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faisceaux cohérents, Première partie, Publ. math. I. H. É. S. 11 (1961), 5–167.
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Local models for Γ1(p)-level structures

Benôıt Stroh

(joint work with Tom Haines)

In this talk, we describe local models for Γ1(p)-level structures (and their older
avatars for Γ0(p)-level structures). We use such models to construct many central
functions in the pro-p-Iwahori-Hecke algebra.

Let g ≥ 1 be an integer, p a prime number and N ≥ 3 an integer not divisible
by p. Denote by A0 the moduli space over Spec(Zp) parametrizing quadruples
(G,H•, λ, ι) where (G, λ) is an abelian variety endowed with a prime-to-p polar-
ization, ι : G[N ] ≃ (Z/N)2g is a symplectic similitude and H• = (H1 ⊂ H2 ⊂
· · · ⊂ H2g = G[p]) is a flag of finite flat group schemes such that Hi is of rank pi

and H⊥
i+g = Hg−i under the Weil pairing for all 1 ≤ i ≤ g.

Denote by Ki = Hi/Hi−1 for all 1 ≤ i ≤ 2g with the convention H0 = 0.
Then Ki is an Oort-Tate group scheme associated to an Oort-Tate data (Li, ai, bi).

Here Li is a line bundle on A0 and ai ∈ Γ(A0,L
p−1
i ), bi ∈ Γ(A0,L

1−p
i ) with

ai · bi = ωp where ωp ∈ p ·Z∗
p is an explicit element constructed by Oort and Tate.

Because Ki is the Cartier dual of K2g+1−i we have L2g+1−i = L
−1
i and a2g+1−i

corresponds to bi via this identification. In particular, ai · a2g+1−i is independent
of i.
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Denote by A1 → A0 the moduli space of sections zi ∈ Γ(Li) such that zp−1
i = ai

and zi · z2g+1−i is independent of i. We get a ramified cover with (F∗
p)

g+1 acting
transitively in the fibers ; over Spec(Qp), this cover is Galois étale.

Theorem 1. There exists explicit projective schemesM0 andM′
0 over Spec(Zp),

an explicit Deligne-Mumford stack M1 and a commutative diagram

M′
1

!!❈
❈❈

❈❈
❈❈

❈

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

��
A1

��

M′
0

""❉
❉❉

❉❉
❉❉

❉

}}④④
④④
④④
④④

M1

��
A0 M0

with smooth representable diagonals arrows of same relative dimension and with
M′

1 = A1 ×A0M
′
0.

HereM0 is the local model for Γ0(p)-level structures, which was constructed by
De Jong and Rapoport-Zink, and M1 the local model for Γ1(p)-level structures.
Here is a quick definition of M0 and M1 : denote by V• = (V0 → · · · → V2g)
the standard chain where Vi = Z2g

p and Vi−1 → Vi multiplies the i-th base vector
by p and is the identity on the other vectors of the canonical basis. Then M0

parametrizes on S → Spec(Zp) the commutative diagrams

V0 ⊗OS
// · · · // V2g ⊗OS

W0
//?�

OO

· · · // W2g

?�

OO

where Wi →֒ Vi ⊗ OS is locally a rank g direct factor and W0 and Wg are to-
tally isotropic. Denote by δi : Wi−1 → Wi the horizontal transition map for
all 1 ≤ i ≤ 2g. It gives rise to a section di = det(δi) of det(Wi)⊗ (det(Wi−1))

−1.
Moreover di · d2g+1−i is naturally identified with a function independent of i.
ThenM1 →M0 is the Deligne-Mumford stack parametrizing families (Li, zi) for

all 1 ≤ i ≤ 2g where Li is a line bundle endowed with an isomorphism Lp−1
i ≃

det(Wi) ⊗ (det(Wi−1))
−1 and zi ∈ Γ(Li) is such that zp−1

i maps to di under the

previous isomorphism. One requires moreover that Li = L−1
2g+1−i and zi · z2g+1−i

is independent of i.
By definitionM′

0 parametrizes isomorphisms between V•⊗OS and the relative
de Rham homology HdR

1 (G/H•) of the chain of universal abelian varieties G =
G/H0 → G/H1 → · · · on A0. By definition we also haveM′

1 =M′
0 ×A0 A1. The

main difficulty in the demonstration of the previous theorem is then to construct
the map fromM′

1 toM1. This uses the co-Lie complex of Illusie and the theory
of det and Div of Mumford-Knudsen.
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One can also introduce a rigidification M+
1 → M

+
0 → M0 where all objects

are schemes, the first map is a ramified (F∗
p)

g+1-cover and the second a Gg+1
m -

torsor. For this, just denote by M+
0 → M0 the space of trivializations ϕi :

OS ≃ det(Wi) ⊗ (det(Wi−1))
−1 for all 1 ≤ i ≤ 2g such that ϕi · ϕ2g+1−i is

independent of i. Under ϕ•, the previous sections d• corresponds to functions D•.
Let finally π :M+

1 →M
+
0 denote the space of functions Zi such that Zp−1

i = Di

for all 1 ≤ i ≤ 2g and Zi · Z2g+1−i is independent of i.
One would like then to relate the semi-simple trace of Frobenius on

π∗RΨM+
1
(Qℓ)

to some function in a Γ1-Hecke algebra. Denote for this I+(Fp) the subgroup of
all γ ∈ GSp2g(Fp[[t]]) such that γ mod t is strictly upper triangular.

Proposition 2. There exists a natural embedding

M+
0 (Fp) →֒ GSp2g(Fp((t)))/I

+(Fp)

with image stable by the left action of I+(Fp) on the target. The semi-simple trace
of the geometric Frobenius on π∗RΨM+

1
(Qℓ) gives rise thanks to this embedding to

a function
τ : GSp2g(Fp((t)))/I

+(Fp) −→ Q̄ℓ

which is left-invariant by I+(Fp).

Therefore, the function τ naturally belongs to the convolution Hecke algebra H
for the level subgroup I+(Fp). The main theorem is the following.

Theorem 3. The function τ is central and has explicit image under Bernstein
and Roche isomorphisms.

The proof of this theorem uses, as in the Iwahori case, a geometric construction
of the convolution product, a proof of its commutation with the nearby cycles
functor and a proof a geometric commutativity statement in generic fiber.
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Reductions of Shimura varieties at tame primes

George Pappas

(joint work with Mark Kisin)

We construct integral models of Shimura varieties of abelian type at primes where
the group is tamely ramified and the level subgroup is parahoric in the sense of
Bruhat-Tits.

Let (G,X,K) be Shimura data: G is a reductive group over the rational num-
bers Q, X the conjugacy class of a Deligne cocharacter h : ResC/RGm → GR

satisfying Deligne’s axioms [1], and K =
∏

l Kl ⊂ G(Af ), Kl ⊂ G(Ql), a compact
open subgroup of the finite adelic points of G. The Shimura variety

ShK(G,X) = G(Q)\X ×G(Af )/K

is an algebraic variety with a canonical model over the reflex field E = E(G,X) ⊂
C; this is the field of definition of the conjugacy class of the corresponding cochar-
acter µ = µh : Gm,C → GC.

Suppose that p is an odd prime such that the reductive group GQp
splits over a

tamely ramified extension of Qp and assume that the level subgroup Kp ⊂ G(Qp)
is parahoric, i.e. it is the connected fixer of a facet in the Bruhat-Tits affine
building of G(Qp). Let v be a prime of E above p. Denote by Ev the completion
of E at v, and let O(v), Ov, be the localization, resp. completion, of the ring of
integers O of E at v.

Let Mloc be the “local model” which was constructed starting from the local
Shimura data (GQp

, {µ}v,Kp) over v in [3]. This is a flat projective scheme over
Spec(Ov) whose generic fiber is a homogeneous space for GEv

(the base change of
the compact dual of X .) When p does not divide the order of the algebraic funda-
mental group of the derived group Gder

Q̄p
, the local model Mloc is normal and has

reduced special fiber which can be embedded in a generalized affine Grassmannian.
Assume that this condition on p is also satisfied.

Suppose that (G,X) is of abelian type. The main result described in the talk
is the construction of a Hecke equivariant normal model SK(G,X) of ShK(G,X)
over O(v) which, provided

∏
l 6=p Kl is sufficiently small, has each of its local rings

étale locally isomorphic to a corresponding local ring of Mloc.
The construction is performed in two steps: We first deal with the case where

(G,X) is of Hodge type, i.e. there is an embedding (G,X) →֒ (GSp, S±) in
Siegel Shimura data. Then the model is obtained as the normalization of the
Zariski closure of the Shimura variety in a suitable integral model of a Siegel
moduli space. The integral model in the general abelian type case is obtained by a
quotient construction that uses the formalism of the theory of connected Shimura
varieties. Our method uses p-adic Hodge theory as in [2] but also constructions
from the Bruhat-Tits theory of buildings for p-adic groups.
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On the non-triviality of generalised Heegner cycles modulo p

Ashay A. Burungale

When a motive over a number field is self-dual with root number −1, the Bloch-
Beilinson conjecture implies the existence of a non-trivial null-homologous cycle
in a Chow group. For a prime p, one generically expects the non-triviality of the
p-adic Abel-Jacobi image of these cycles.

An instructive set up arises from a self-dual Rankin-Selberg convolution of an
elliptic Hecke eigenform and a theta series over an imaginary quadratic extensionK
with root number −1. In this situation, a natural candidate for a non-trivial null-
homologous cycle is the generalised Heegner cycle. It lives in a middle dimensional
Chow group of a fiber product of a Kuga-Sato variety arising from a modular
curve curve and a self product of a CM elliptic curve. In the case of weight two,
the cycles coincide with the Heegner points. For a prime l, twists of the theta
series by l-power order anticyclotomic characters of K give rise to an Iwasawa
theoretic family of generalised Heegner cycles. Under mild hypotheses, we prove
the generic non-triviality of the p-adic Abel-Jacobi image of these cycles modulo p.
In particular, this implies the generic non-triviality of the cycles in the top graded
piece of the coniveau filtration along the Zl-anticyclotomic extension of K.

In the report, for brevity we mostly restrict to the case of Heegner points.
Let p > 3 be an odd prime. We fix two embeddings ι∞ : Q→ C and ιp : Q→ Cp.

Let vp be the p-adic valuation induced by ιp so that vp(p) = 1. Let mp be the

maximal ideal of Zp.
Let K/Q be an imaginary quadratic extension and O the ring of integers. We

assume the following:
(ord) p splits in K.

For an integral ideal n of K, we fix a decomposition n = n+n− where n+ (resp.
n−) is only divisible by split (resp. ramified or inert) primes in K/Q. Let Hn be
the ring class field of K of conductor n.

Let N be a positive integer prime to p. Let f be a normalised elliptic Hecke-
eigen cuspform of weight 2, level Γ0(N) and neben-character ǫ. Let Nǫ|N be the
conductor of ǫ. Let Ef be the Hecke field of f . Let ρf : GQ → GL2(Zp) be the
corresponding p-adic Galois representation.
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We assume the following Heegner hypothesis:
(Hg) O contains a cyclic ideal N of norm N .
From now, we fix such an ideal N. Let Nǫ|N be the unique ideal of norm Nǫ.

Let N denote the norm Hecke character of Q and NK := N ◦ NK
Q the norm

Hecke character of K. For a Hecke character λ of K, let fλ (resp. ǫλ) denote its
conductor (resp. central character i.e. λ|

A
×
Q

, where AQ denotes the adele ring

over Q). We say that λ is central critical for f if it is of infinity type (j1, j2) with
j1 + j2 = 2 and ǫλ = ǫfN

2.
Let b be a positive integer prime to pN . Let Σcc(b,N, ǫ) be the set of Hecke

characters λ such that:
(C1) λ is central critical for f ,
(C2) fλ = b ·Nǫ and
(C3) The local root number ǫq(f, λ

−1) = 1, for all finite primes q.
Let χ be a finite order Hecke character such that χNK ∈ Σcc(b,N, ǫ). Let Ef,χ

be the finite extension of Ef obtained by adjoining the values of χ.
Let X1(N) be the modular curve of level Γ1(N), ∞ a cusp of X1(N) and J1(N)

the corresponding Jacobian. Let Bf be the abelian variety associated to f by
the Eichler-Shimura correspondence and Tf ⊂ Ef an order such that Bf has Tf -
endomorphisms. Let Φf : J1(N) → Bf be the associated surjective morphism.
Let ωf be the differential form on X1(N) corresponding to f . We use the same
notation for the corresponding one form on J1(N). Let ωBf

∈ Ω1(Bf/Ef,χ)
Tf

be the unique one form such that Φ∗
f (ωBf

) = ωf . Let Ab be an elliptic curve
with endomorphism ring Z + bO, defined over the ring class field Hb. Let t be
a generator of Ab[N]. We thus obtain a point (Ab, Ab[N], t) ∈ X1(N)(HbN). Let
∆b = [Ab, Ab[N], t] − (∞) ∈ J1(N)(HbN) be the corresponding Heegner point on
the modular Jacobian. We regard χ as a character χ : Gal(HbN/K)→ Ef,χ. Let
Gb = Gal(HbN/K). Let Hχ be the abelian extension ofK cut out by the character
χ. To the pair (f, χ), we associate the Heegner point Pf (χ) given by

Pf (χ) =
∑

σ∈Gb

χ−1(σ)Φf (∆
σ
b ) ∈ Bf (Hχ)⊗Tf

Ef,χ.

The restriction of the p-adic formal group logarithm gives a homomorphism logωBf
:

Bf (Hχ)→ Cp. We extend it to Bf (Hχ)⊗Tf
Ef,χ by Ef,χ-linearity.

We now fix a finite order Hecke character η such that ηNK ∈ Σcc(c,N, ǫ), for
some c. For v|c−, let ∆η,v be the finite group η(O×

Kv
). Here OKv

denotes the
integer ring of the local field Kv. Let l 6= p be an odd prime unramified in K and
prime to cN . Let HcNl∞ =

⋃
n≥0 HcNln be the ring class field of conductor cNl∞.

Let Γn = Gal(KcNln/K) and Γl = lim
←−

Γn. Let Xl be the set of l-power order

characters of Γl. We consider the non-triviality of logωBf
(Pf (ην))/p modulo p, as

ν ∈ Xl varies.

Theorem. Let f ∈ S2(Γ0(N), ǫ) be a Hecke eignform and η a finite order Hecke
character such that ηNK ∈ Σcc(c,N, ǫ), for some c. In addition to the hypotheses
(ord) and (Hg), suppose that
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(1). The residual representation ρf |GK
mod mp is absolutely irreducible and

(2). (p,
∏

v|c− ∆η,v) = 1.

Then, for all but finitely many ν ∈ Xl we have

vp

( logωBf
(Pf (ην))

p

)
= 0.

In particular, for all but finitely many ν ∈ Xl the Heegner points Pf (ην) are non-
zero in Bf (Hην)⊗Tf

Ef,ην .

Note that “In particular” part of the theorem involves only the prime l in its
formulation. For an analog of the theorem in the case of generalised Heegner
cycles modulo p, we refer to [3, §3.2]. As indicated above, the non-triviality gives
an evidence for the refined Bloch-Beilinson conjecture (cf. [2, §2]).

Our approach is modular, based on Bertolini-Darmon-Prasanna’s p-adic Wald-
spurger formula (cf. [1, Thm. 5.13]) and Hida’s approach to non-triviality of
anticyclotomic toric periods modulo p (cf. [7]). The later fundamentally relies on
Chai-Oort rigidity principle that a Hecke stable subvariety of a mod p Shimura
variety is a Shimura subvariety (cf. [6]).

“In particular” part of the theorem was conjectured by Mazur and proven in-
dependently by Cornut and Vatsal. We give a new approach and as far as we
know the theorem is a first result regarding the non-triviality of the p-adic formal
group logarithm of Heegner points modulo p. It seems suggestive to compare our
approach with the earlier approach. In Vatsal’s approach, Jochnowitz congru-
ence is a starting point. It reduces the non-triviality of the Heegner points to the
non-triviality of the Gross points on a suitable definite Shimura “variety”. The
later non-triviality fundamentally relies on Ratner’s theorem regarding closures of
unipotent flows on p-adic Lie groups. In our approach, the non-triviality is based
on the modular curve itself. As indicated above, our approach fundamentally re-
lies on Chai’s theory of Hecke stable subvarieties of a mod p Shimura variety. It
is rather surprising that we have these quite different approaches for the same
characteristic zero non-triviality. Before the p-adic Waldspurger formula, the non-
triviality and Hida’s approach appeared to be complementary. The formula also
allows a rather smooth transition to the higher weight case.

In [4], we consider a (p, p)-analogue of the theorem for generalised Heegner
cycles arising fron indefinite Shimura curves over the rationals. In [5], we plan
to consider a direct analogue of the theorem for the cycles. Recently, the p-adic
Waldspurger formula has been generalised by Liu-Zhang-Zhang to the case of
indefinite Shimura curves over a totally real field. In the near future, we hope to
consider an analogous non-triviality of generalised Heegner cycles over a CM field.

We thank Henri Darmon, Haruzo Hida, Ben Howard, Ming-Lun Hsieh, Jan
Nekovář, Kartik Prasanna, Burt Totaro and Eric Urban for helpful comments.
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Multivariable (ϕ,Γ)-modules for the Lubin-Tate extension

Laurent Berger

1. Introduction

The goal of my talk was to explain some recent progress concerning (ϕ,Γ)-modules
in the “Lubin-Tate” setting. This work was motivated by the p-adic local Lang-
lands correspondence for GL2(Qp). This correspondence is a bijection between

the set of irreducible 2-dimensional p-adic representations of Gal(Qp/Qp) and the
set of some Qp-Banach representations of GL2(Qp).

The construction of the p-adic local Langlands correspondence for GL2(Qp)
(see for instance [Bre10], [Col10] and [Ber11]) uses the theory of (cyclotomic)
(ϕ,Γ)-modules in an essential way. Consider the ring Zp[[X ]], and endow it with a
Frobenius map ϕ given by (ϕf)(X) = f((1 +X)p − 1) and with an action of the
group Γ = Gal(Qp(µp∞)/Qp) ≃ Z×

p given by ([a]f)(X) = f((1+X)a−1) if a ∈ Z×
p .

A (cyclotomic) (ϕ,Γ)-module is a module D over a ring which contains Zp[[X ]], and
endowed with a semilinear Frobenius map ϕ and a compatible semilinear action
of Γ.

We can package this data into an action of the monoid
(
Zp\{0} Zp

0 1

)
on D, with

ϕ given by ( p 1 ), [a] given by ( a 1 ), and multiplication by (1+X)b given by ( 1 b
1 ).

Colmez makes a similar definition and then extends the action of
(
Zp\{0} Zp

0 1

)
on

D to an action of GL2(Qp) on a bigger space.
If we are interested in a p-adic local Langlands correspondence for GL2(F ), with

F a finite extension of Qp, then the above construction shows that it is possible
that we will need (ϕ,Γ)-modules with Γ ≃ O×

F , so that instead of working with
the cyclotomic extension, we should work with Lubin-Tate extensions.

2. Fontaine’s (ϕ,Γ)-modules

Let F be a finite Galois extension of Qp of degree h, let πF be a uniformizer of

OF , let q be the cardinality of kF , let GF = Gal(Qp/F ), and let E = Emb(F,Qp)

be the set of embeddings of F into Qp. Let LT be the Lubin-Tate formal group
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attached to πF and choose some variable T for the formal group law. We then have
for every a ∈ OF a power series [a](T ) = a ·T +deg ≥ 2 giving the multiplication-
by-a map. Let χF : GF → O

×
F be the Lubin-Tate character and let HF = kerχF

and ΓF = GF /HF . If F = Qp and πF = p, all of this is the usual cyclotomic data.
Let Y be a variable and let OE(Y ) be the set of power series f(Y ) =

∑
i∈Z aiY

i

such that ai ∈ OF for i ∈ Z and ai → 0 as i → −∞. Let E(Y ) = OE(Y )[1/πF ].
This is a two-dimensional local field. We endow it with a relative Frobenius map
ϕq by (ϕqf)(Y ) = f([πF ](Y )), and an action of ΓF by (gf)(Y ) = f([χF (g)](Y )).

A (ϕ,Γ)-module over E(Y ) is a finite dimensional E(Y )-vector space endowed
with a compatible Frobenius map ϕq and a compatible action of ΓF . We say that
it is étale if it admits a basis in which Mat(ϕq) ∈ GLd(OE(Y )). By a theorem of
Kisin-Ren (theorem 1.6 of [KR09]), based on the constructions [Fon90] of Fontaine,
there is an equivalence of categories between {F -linear representations of GF } and
{étale (ϕ,Γ)-modules over E(Y )}. Let D(V ) denote the étale (ϕ,Γ)-module over
E(Y ) attached to a representation V .

The (ϕ,Γ)-module D(V ) is useful if one can relate it to p-adic Hodge theory,
in particular the ring BdR and its subrings [Fon94]. This is possible if D(V )
is overconvergent, that is if it admits a basis in which Mat(ϕq) and Mat(g), for
g ∈ ΓF , belong to GLd(E

†(Y )), where E†(Y ) denotes the subfield of E(Y ) consisting
of those power series f(Y ) that have a nonempty domain of convergence. We say
that V is overconvergent if D(V ) is.

Which representations are overconvergent? If F = Qp, then all of them are by
a theorem of Cherbonnier and Colmez [CC98]. If F 6= Qp, then not all representa-
tions are overconvergent [FX13]. Let us say that an F -linear representation V of
GF is F -analytic if for all τ ∈ E \ {Id}, V is Hodge-Tate with weights 0 “at τ”, or
in other words if Cp ⊗

τ
F V is the trivial Cp-semilinear representation of GF . For

example F (χF ) is F -analytic but F (χcyc) is not if F 6= Qp. The following result
(theorem 4.2 of [Ber13]) shows that most representations of GF are not overcon-
vergent if F 6= Qp: if V is absolutely irreducible and overconvergent, then there is

a character δ : ΓF → O
×
F such that V (δ) is F -analytic.

Conversely, we have the following theorem [Ber14]: if V is F -analytic, then it
is overconvergent. This theorem had been proved for crystalline representations
by Kisin and Ren [KR09], and for some reducible representations by Fourquaux
and Xie [FX13]. Kisin and Ren had further suggested that in order to have over-
convergent (ϕ,Γ)-modules for all F -representations of GF , we need rings of power
series in [F : Qp] variables, one for each τ ∈ E. Later on we will see how to achieve
this with the variables {Yτ}τ∈E where g(Yτ ) = [χF (g)]

τ (Yτ ) (if f(T ) =
∑

aiT
i

with ai ∈ OF , then f τ (T ) =
∑

τ(ai)T
i).

3. Construction of overconvergent (ϕ,Γ)-modules

We start by reviewing overconvergent (ϕ,Γ)-modules in the cyclotomic setting. Let
F = Qp and πF = p and let X denote the variable Y above. The Robba ring R(X)

is a ring of holomorphic power series, which contains E†(X). Let B̃ = B̃†
rig denote

one of Fontaine’s big rings of periods [Ber02]. It contains the element π = [ε]− 1
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of p-adic Hodge theory, for which g(π) = (1+π)χcyc(g)−1 and ϕ(π) = (1+π)p−1.

There is therefore a ϕ-and-GQp
compatible injection R(X)→ B̃, sending X to π.

Let D(V ) denote the (ϕ,Γ)-module D†
rig(V ) over the Robba ring attached to V ,

whose existence follows from the Cherbonnier-Colmez theorem (we drop the deco-
rations to lighten the notation). In order to construct it, we first descend from Qp

to Qp(µp∞) by setting D̃(V ) = (B̃⊗Qp
V )HQp . There then exists some analogues

of Tate’s normalized trace maps [Tat67], Tn : D̃(V )→ ϕ−n(R(π))⊗RD(V ), which

allow us to “decomplete” D̃(V ). This procedure is analogous to the construction
of DSen(V ) in Sen theory [Sen81], where one decompletes (Cp ⊗Qp

V )HQp using
Tate’s normalized trace maps. This procedure, descent and decompletion, is how
the Cherbonnier-Colmez theorem is proved.

The main idea for our construction of multivariable (ϕ,Γ)-modules is that there
is a different way of decompleting, which is still available in the cases when Tate’s
normalized trace maps no longer exist (which is the case as soon as F 6= Qp). If W
is an LF space (i.e., an inductive limit of Fréchet spaces), that is endowed with a
continuous action of a p-adic Lie group G, then following [ST03], we can consider
the locally analytic vectors of W . We let W la be the set of vectors of W such that
the orbit map g 7→ g(w) is locally analytic on G.

Let B̃Qp
= B̃HQp . This is an LF space, with an action of ΓQp

≃ Z×
p . We have

[Ber14] (B̃Qp
)la = ∪n≥0ϕ

−n(R(π)) and D̃(V )la = ∪n≥0ϕ
−n(R(π))⊗RD(V ). This

gives a powerful alternate way of decompleting D̃(V ).

If F 6= Qp, we proceed in a similar way. Let F0 = F ∩Qunr
p , let B̃ = F ⊗F0 B̃

†
rig

and let D̃(V ) = (B̃ ⊗F V )HF . Using almost étale descent, it is easy to show that

D̃(V ) is a free B̃F -module of rank d, stable under ϕq and ΓF . We then have the

following theorem [Ber14]: D̃(V )la is a free B̃la
F -module of rank d. It is therefore a

(ϕ,Γ)-module over B̃la
F .

4. The structure of B̃la
F

The above theorem is meaningful if we understand the structure of B̃la
F . Using

the theory of p-adic periods, we can construct [Col02] for each τ ∈ E an element

yτ ∈ B̃F such that g(yτ ) = [χF (g)]
τ (yτ ) if g ∈ ΓF and ϕq(yτ ) = [πF ]

τ (yτ ). This
way, we get a (ϕ,Γ)-equivariant map from the Robba ring R({Yτ}τ∈E) in the h

variables alluded to at the end of §2 to B̃F , by sending Yτ to yτ . This map is

injective. In addition, it extends to a map ∪n≥0ϕ
−n
q (R({Yτ}τ∈E)) → B̃F , whose

image is then dense in B̃F for the locally analytic topology [Ber14]. This is why

we call (ϕ,Γ)-modules over B̃la
F multivariable (ϕ,Γ)-modules.

We can ask whether D̃(V )la descends to a nice subring of B̃la
F . The main

result of [Ber13] shows that if V is crystalline, then D̃(V )la descends to a reflexive
coadmissible module over the ring R+({Yτ}τ∈E) of power series that converge on
the open unit polydisk.
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In general, since the action of ΓF on D̃(V )la is locally analytic, it extends to an
action of Lie(ΓF ). For each τ ∈ E, there is an element∇τ ∈ F⊗Lie(ΓF ) that is the
“derivative in the direction of τ”. Let tτ = logτLT(yτ ), so that g(tτ ) = χτ

F (g) · tτ . If
f((Yσ)σ) ∈ R({Yτ}τ∈E), then we have ∇τf((yσ)σ) = tτ ·vτ ·∂f((yσ)σ)/∂Yτ where
vτ is a unit. Using these operators, we can prove the theorem to the effect that
F -analytic representations are overconvergent. First, we can relate Sen theory
and (ϕ,Γ)-modules as in the cyclotomic case [Ber02], and we get [Ber14] that V

is Hodge-Tate with weights 0 at τ if and only if ∇τ (D̃(V )la) ⊂ tτ · D̃(V )la. If

this is the case, and if ∂τ = t−1
τ ∇τ , then ∂τ (D̃(V )la) ⊂ D̃(V )la, so that if V is

F -analytic, then D̃(V )la is endowed with a system {∂τ}τ∈E\{Id} of p-adic partial
differential operators, as well as a compatible Frobenius map ϕq. A monodromy

theorem [Ber14] then allows us to show that (D̃(V )la)∂τ=0 for τ∈E\{Id} is free of

rank d over (B̃la
F )

∂τ=0 for τ∈E\{Id}. Finally, we show that (B̃la
F )

∂τ=0 for τ∈E\{Id} =

∪n≥0ϕ
−n
q (R(yId)). This way, we can descend D̃(V )la to R(Y ) and then finally

prove our theorem, using Kedlaya’s theory of Frobenius slopes [Ked05].
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Patching and p-adic local Langlands

Ana Caraiani

(joint work with Matthew Emerton, Toby Gee, David Geraghty, Vytautas
Paskunas, Sug Woo Shin)

The p-adic local Langlands correspondence is an exciting, recent generalization
of the classical Langlands program. For GL2(Qp) it consists of functors between
two-dimensional, continuous p-adic representations of Gal(Q̄p/Qp) and certain ad-
missible unitary p-adic Banach space representations of GL2(Qp) [4, 9, 5]. The
correspondence has several remarkable properties, namely it is compatible with de-
formations and reduction mod p, with the classical local Langlands correspondence
via taking locally algebraic vectors, and with the global p-adic correspondence, i.e.
with the completed cohomology of modular curves. These properties led to spec-
tacular applications to the Fontaine-Mazur conjecture for GL2 over Q [6, 8].

However, most techniques involved in the construction of the p-adic local Lang-
lands correspondence seem to break down if one tries to move beyond GL2(Qp).
For GLn(F ), it is unclear even what the precise conjectures should be, though
the best possible scenario would involve all three of the properties listed above. In
this talk, I described the construction of a candidate for the p-adic local Langlands
correspondence for GLn(F ), where F/Qp is a finite extension, using global tech-
niques, specifically the Taylor-Wiles-Kisin patching method applied to completed
cohomology [3].

More precisely, we associate to a continuous n-dimensional representation r of
Gal(Q̄p/F ) an admissible Banach space representation V (r) of GLn(F ), by p-
adically interpolating completed cohomology for global definite unitary groups.
The method involves working over an unrestricted local deformation ring of the
residual r̄, finding a global residual Galois representation which is automorphic
and restricts to our chosen local representation r̄, and gluing corresponding spaces
of completed cohomology with varying tame level at so-called Taylor-Wiles primes.
The output is a module M∞ over Rr̄, which also has an action of GLn(F ) and
whose fibers over closed points are admissible, unitary p-adic Banach spaces. We
define V (r) to be the fiber of M∞ over the point of Rr̄ corresponding to r.

We also show that, when r is de Rham, we can recover the compatibility with
classical local Langlands r 7→ πsm(r) in many situations. More precisely, when r
lies on an automorphic component of a local deformation ring, we can compute
the locally algebraic vectors in V (r) and show that they have the expected form
πsm(r)⊗ πalg(r). This involves first establishing an inertial local Langlands corre-
spondence via the theory of types. The next step is to construct a map from an
appropriate Bernstein center to a local deformation ring for a specific inertial type,
a map which interpolates classical local Langlands. Finally, we appeal to the au-
tomorphy lifting theorems of [1] to guarantee that the locally algebraic vectors we
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obtain are non-zero. Our control over locally algebraic vectors allows us to prove
many new cases of an admissible refinement of the Breuil-Schneider conjecture [2],
concerning the existence of certain unitary completions.

Theorem 1. Suppose that p > 2, that r : GF → GLn(Q̄p) is de Rham of regular
weight, and that r is generic. Suppose further that either

(1) n = 2, and r is potentially Barsotti–Tate, or
(2) F/Qp is unramified and r is crystalline with Hodge–Tate weights in the

extended Fontaine–Laffaille range, and n 6= p.

Then πsm(r)⊗ πalg(r) admits a nonzero unitary admissible Banach completion.

For example, when F/Qp is unramified and p is large, Theorem 1 applies to all
unramified principal series representations. Note that this existence is a purely
local result, even though it is proved using global, automorphic methods.

Unfortunately, the Taylor-Wiles patching method involves gluing spaces of au-
tomorphic forms with varying tame level in a non-canonical way, using a sort
of diagonal argument to ensure that their compatibility can always be achieved.
Therefore, it is not at all clear that r 7→ V (r) is a purely local correspondence: it
depends on the choice of global residual representation as well as on the choice of
a compatible system of Taylor-Wiles primes. If there was a purely local correspon-
dence satisfying all three properties listed in the beginning, then our construction
would necessarily recover it. This is the case for GL2(Qp) and, in fact, the six of us
are in the process of writing a paper elaborating on this and reproving many prop-
erties of the p-adic local Langlands correspondence for GL2(Qp), without making
use of Colmez’s functors. Our arguments rely heavily instead on the ideas of [9],
especially the use of projective envelopes. For GLn(F ), the question of whether
our construction is purely local seems quite hard.

However, there is forthcoming work of Scholze, who constructs a purely local
functor in the opposite direction: from admissible unitary p-adic Banach space
representations of GLn(F ) to admissible representations of D× ×WF , where D
is a division algebra with center F and invariant 1/n. His construction uses the
cohomology of the Lubin-Tate tower, which is known to realize both classical
local Langlands and the Jacquet-Langlands corespondence when l 6= p [7]. This
functor satisfies local-global compatibility, in the following sense: if the input is the
completed cohomology for a definite unitary group G, split at p, then the output is
the completed cohomology of a Shimura variety associated to an inner form J of G
which is isomorphic to D× at p. Just as one can patch completed cohomology for
G, it is also possible to patch completed cohomology for J . Moreover, Scholze can
even prove that if one uses our patched module M∞ as the input for his functor,
then the output is the patched object for J . A consequence of this is that, at the
very least, it should be possible to recover the Galois representation r from the
Banach space V (r).
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Finiteness of cohomology for relative (ϕ,Γ)-modules

Kiran S. Kedlaya

(joint work with Ruochuan Liu)

Fix a prime number p and a finite extension K of Qp. For V a finite-dimensional
Qp-vector space equipped with a continuous action of the absolute Galois group
GK of K (for short a p-adic representation), it was shown by Tate [17] that the
continuous Galois cohomology groups Hi

cont(GK , V ) are finite-dimensional over
Qp. This was later reproved by Herr [9] using Fontaine’s equivalence of cate-
gories between p-adic representations and étale (ϕ,Γ)-modules. As per Fontaine’s
original formulation [8], (ϕ,Γ)-modules are finite free modules over a certain ring
equipped with semilinear extensions of certain endomorphisms of the base ring;
the étale condition posits the existence of a suitable lattice in such a module. Herr
showed that the Galois cohomology of a p-adic representation is computed by the
continuous cohomology of the (ϕ,Γ)-module for the topological monoid generated
by the endomorphism ϕ and the group of endomorphisms Γ.

Subsequent work of various authors [2, 3, 5, 10] implies that one can realize
equivalent categories of étale (ϕ,Γ)-modules over various rings, the most conve-
nient of which seems to be the Robba ring (a certain ring of convergent Laurent
series). For example, Berger used this base ring to explicate Fontaine’s period
functors [2] and to recover the Colmez-Fontaine characterization of admissible fil-
tered isocrystals [3].

The resulting full embedding of the category of p-adic representationts into the
category of (not necessarily étale) (ϕ,Γ)-modules over the Robba ring, originally
used by Berger to explicate Fontaine’s period functors [2], has proved unexpect-
edly fruitful: in particular, the fact that an irreducible Galois representation can
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become reducible in the larger category of (ϕ,Γ)-modules provides a vast general-
ization of the triangular decomposition of an ordinary Galois representation. This
was originally realized by Colmez in the course of his construction of a p-adic local
Langlands correspondence for GL2(Qp) [6]. With this in mind, Liu [14] showed
(by reduction to Herr’s theorem) that for D an arbitrary (ϕ,Γ)-module, the coho-
mology groups Hi(D) (defined as per Herr) are again finite-dimensional Qp-vector
spaces. In particular, if V is a p-adic representation and D is its associated (ϕ,Γ)-
module, any exact sequence

0→ D1 → D → D2 → 0

of (ϕ,Γ)-modules gives rise to a long exact sequence

· · · → Hi(D1)→ Hi
cont(GK , V ) = Hi(D)→ Hi(D2)→ · · ·

of finite-dimensional Qp-vector spaces; in this sense, even if one is only interested
in p-adic representations, the larger category of (ϕ,Γ)-modules makes its presence
known via Galois cohomology. This has strong consequences for Iwasawa theory,
particularly in the study of Selmer groups of nonordinary representations [15].

In this lecture, we describe a generalization (to appear in [12]) of Liu’s theorem
to the category of relative (ϕ,Γ)-modules associated to a rigid analytic space X
over K in [11]. By analogy with the previous discussion, this category admits a
full embedding from the category of étale Qp-local systems constructed by de Jong
[7]. The relative (ϕ,Γ)-modules over X are modules over a certain sheaf of rings
on the pro-étale site of X in the sense of Scholze [16] equipped with a semilinear
extension of the action of an endomorphism ϕ on the base sheaf. There is no
Γ-action, as this is subsumed by the sheaf property. The cohomology of a relative
(ϕ,Γ)-module F is defined as the hypercohomology of the complex

0→ F
ϕ−1
→ F → 0;

we prove that if X is smooth proper, then these cohomology groups are finite-
dimensional Qp-vector spaces.

The proof of the theorem amounts to an application of the Cartan-Serre finite-
ness criterion [4] as adapted to rigid analytic geometry by Kiehl [13]. When X
is reduced to a point, the statement specializes back to Liu’s theorem, but the
proof is different: one constructs a pair of complexes computing the same (ϕ,Γ)-
cohomology using power series on annuli, one embedded in the other, so that the
quasi-isomorphism between the two complexes consists of completely continuous
morphisms of Banach spaces over Qp. In the general case, one proceeds similarly,
but there is an important subtlety: the relative (ϕ,Γ)-modules as constructed
above are defined over rings on which ϕ is bijective, but to use the mechanism of
completely continuous morphisms one must “deperfect” the base rings so that ϕ is
only injective. This cannot be done in a global or functorial way; instead, one must
work locally by choosing suitable coordinates. This amounts to a moderate gener-
alization of the construction of multivariate (ϕ,Γ)-modules by Andreatta-Brinon
[1].
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Towards a crystalline Eichler-Shimura map

Fabrizio Andreatta

(joint work with Adrian Iovita)

Let K be a complete discrete valuation field of characteristic 0 and perfect residue
field k of characteristic p ≥ 3. We normalize the valuation v on K so that v(p) = 1.
Let R be an integral normal domain, p-adically complete and separated and flat
over OK .

We say that an elliptic curve E → Spec(R) is close to be ordinary if the Frobe-

nius morphism H1
(
E,OE/pOE

)(p)
→ H1

(
E,OE/pOE

)
has cokernel annihilated

by an element pw of OK of valuation w < 1
p . Under this assumption E admits a

canonical subgroup scheme C ⊂ E[p]. Notice that, if w = 0 then E has ordinary
reduction and viceversa.

Let R ⊂ R be the union of all finite normal extensions of R, étale after inverting
p (contained in a common algebraic closure of the fraction field of R). Let Tp(E)
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be the p-adic Tate module of E over R[1/p] and assume that the Cartier dual of
C is constant over R[1/p]. Set v := w

p−1 . It is then proven in [3]

Theorem 1 There exists a unique free R-submodule ΩE/R of the invariant

differentials ωE/R such that the Hodge-Tate map HT: Tp(E) ⊗ R̂ → ωE/R ⊗R R̂

has ΩE/R⊗R R̂ as image. Moreover, the Hodge-Tate map induces an isomorphism
a : C∨(R)⊗Fp

R/pvR ∼= ΩE/R/p
vΩE/R.

Application 1: Construction of overconvergent elliptic modular forms:

Fix an integer N ≥ 4 prime to p. Let χ : Z∗
p → K∗ be an analytic weight.

Following Katz we define an overconvergent modular form of width w and weight
χ over OK to be a rule associating to E/R as above, a Γ1(N)-structure ΨN , a
generator Ω of ΩE/R and a generator γ of C∨(R) such that a(γ ⊗ 1) ≡ Ω an
element f(E/R,ΨN ,Ω, γ) ∈ R such that for every α ∈ Z∗

p(1 + pvR) we have

f(E/R,ΨN , αΩ, αγ) = χ(α)−1f(E/R,ΨN ,Ω, γ).

A variant of this definition provides (families of) sheaves Ωχ of overconvergent
modular forms of arbitrary p-adic weights χ whose sections, after inverting p and
taking limits for w → 0, are proven in [3] to coincide with Coleman’s notion of
(families of) overconvergent modular forms of weight χ.

Application 2: Construction of eigenvarieties:

The approach in Application 1 does not make any use of Eisenstein series/families
which are at the heart of Coleman’s method. In particular it can be extended to
other Shimura varieties, such as Siegel and Hilbert modular varieties, allowing the
construction of eigenvarieties in those cases. See [1] and [2].

Work in progress with Adrian Iovita and Jacques Tilouine should allow to
extend the construction of the overconvergent sheaves to arbitrary Hodge type
Shimura varieties under the assumption that the ordinary locus is dense.

Application 3: The Eichler-Shimura morphism for modular symbols:

Let Γ be the modular group Γ0(p)∩Γ1(N), X(N, p) the modular curve of level
Γ over K and X(N, p)(w) the neighborhood of the ordinary locus of width w.
Let Dχ be the K-Banach space of analytic distributions, homogeneous of degree χ
constructed by G. Stevens. They p-adically interpolate the natural representations
Symk(K2) for k a positive integer. We then construct in [4] a Eichler-Shimra map

ESχ : H
1
(
Γ,Dχ

)(≤h)
⊗K Cp(1) −→ lim

w→0
H0

(
X(N, p)(w),Ωχ+2

)(≤h)
⊗K Cp,

equivariant for the actions of the Galois group of K and of the Hecke algebra
and interpolating the classical Eichler-Shimura morphism constructed by Faltings
for χ = k a positive integer. The superscript (≤ h), with h a non-negative integer,
refers to a slope decomposition with respect to the action of the Up-operator.
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Future directions:

It can be shown that the map ESχ is not surjective in general. In order to
understand this phenomenon and to extend Application 2 to Hodge type Shimura
varieties, we have studied the lift of the Hodge-Tate map to the crystalline level,
constructed and analyzed in general by Faltings and Fargues, under the further
assumption that E admits a canonical subgroup. Such lift is a map

αcris : Tp(E)⊗ Acris(R)→ D(E)⊗ Acris(R)

where Acris(R) is a suitable crystalline relative period ring for R and D(E) is the
covariant Dieudonné module of E over R/pR. In this direction we can prove in
work in progress

Theorem 2 We can find a “modification” D′(E) of D(E) and a “modification‘”
A′

cris(R) of the period ring Acris(R) such that αcris factors via D
′(E) and its matrix,

with respect to suitable bases, is

(
t ∗
0 1

)
.

Here t is Fontaine’s multiplicative period. The module D′(E) should be thought
of as an analogue of the ‘modification” ΩE/R of ωE/R. Notice that if E has ordinary
reduction, then the connected-étale decomposition of Tp(E) provides a basis with
respect to which αcris has the shape required in the Theorem, even over Acris(R).
So Theorem 2 can be phrased by saying that, upon passing to a big period ring,
if E is close to be ordinary, the crystalline period matrix has the shape of the
crystalline period matrix of an ordinary elliptic curve.
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Asymptotic behaviours of heights and regulators

Kazuya Kato

The subject of this talk is that the study of degeneration of Hodge structure has
applications to arithmetic.

I collaborated with C. Nakayama and S. Usui on the degeneration of Hodge
structures, and worked with S. Bloch to apply this to the asymptotic behaviours
of height pairings and regulators. The height pairings and the regulators are
described by using the invariant of Hodge structures, and their asymptotic be-
haviours are understood by using the theory of degeneration of Hodge structures.
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Overconvergent de Rham–Witt connections

Veronika Ertl

Let k be a perfect field of positive characteristic p, W = W (k) its ring of p-typical
Witt vectors, and K the fraction field of W . Let further X/k be a smooth variety.

In this talk we generalise a definition of Bloch [1] to not necessarily proper
varieties and introduce overconvergent de Rham–Witt connections. This provides
a tool to extend the comparison isomorphism of Davis, Langer and ZInk [3] (see
also [2]) between overconvergent de Rham–Witt cohomology and rigid respectively
Monsky–Washnitzer cohomology to coefficients.

There is a well-known equivalence of categories between crystals on X/W , hy-
per PD-stratifications and integrable, quasinilpotent connections on ΩX/W . By a
result of Bloch and Etesse [1], [6] this data allows us to associate to a crystal E a
WX -module together with an integrable quasinilpotent connection

∇ : E → E ⊗WΩX/k,

where WΩ denotes the de Rham–Witt complex as defined by Illusie. Bloch shows
that this functor provides an equivalence of categories between the category of
locally free crystals on X/W and the category of locally free WX -modules with
quasinilpotent, integrable connection [1, Theorem1.1]. We construct a subcategory
of the latter category in order to obtain a suitable category of coefficients for the
overconvergent de Rham–Witt complex W †Ω.

Definition 1. An overconvergent de Rham–Witt connection consists of a W †
X -

module E together with a map

∇ : E → E ⊗W †
X

W †ΩX/k

Which satisfies the Leibniz rule. It is said to be integrable if for the induced map
on the complex ∇2 = 0.

We restrict our attention to locally free W †
X -modules with overconvergent, in-

tegrable, quasinilpotent de Rham–Witt connections (E ,∇).

Remark 2. In the obvious way, one can define overconvergent F - de Rham–Witt
connections. The category of locally free, quasinilpotent integrable overconvergent
F -de Rham–Witt connections should be, via Bloch’s equivalence of categories, a
full subcategory of the category of locally free F -crystals.

To compare this to Monsky–Washnitzer cohomology, let B be a smooth k-
algebra, B a smooth lift to W and B† its weak completion. We can now consider
the associated Monsky–Washnitzer complex. Coefficients in this case are given by
pairs (EMW,∇MW), where EMW is a locally free B†-module and ∇MW : EMW →
EMW ⊗ Ω1

B†/W an integrable quasinilpotent connection.

For a smooth Frobenius lift F to B†, Davis, Langer and Zink construct a com-
parison map

tF : ΩB†/W → W †ΩB/k.
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Using this map, one can associate to (EMW,∇MW) an overconvergent de Rham–
Witt connection by setting E = EMW ⊗W †(B) and ∇ to be the composition of
the two maps

EMW ⊗W †(B)→ EMW ⊗ Ω1
B†/W ⊗W †(B)⊕ EMW ⊗W †ΩB/k,

given by ∇MW ⊗ id+ id⊗ d and

EMW ⊗ Ω1
B†/W ⊗W †(B)⊕ EMW ⊗W †ΩB/k → EMW ⊗W †Ω1

B/k
,

given by id⊗ tF + id⊗ id.
One can show that in the derived category this construction and the associated

comparison map
EMW ⊗ ΩB†/W → E ⊗W †ΩB/k

is in a sense independent of the choice of Frobenius lift F and that this provides
a rational isomorphism

H∗
MW(B/K, EMW)

∼
−→ H∗(W †ΩB/k).

In order to pass to more general settings, one would like to globalise this result to
rigid cohomology. The glueing process however causes some problems. In the case
of a smooth quasiprojective verity Davis, Langer and Zink are able to construct a
comparison isomorphism

H∗
rig(X/K)

∼
−→ H∗(W †ΩX/k)⊗Q.

Considering the results described above, it is natural to follow their argumentation.
In the same way as above we associate to an overconvergent isocrystal E on X ⊂

X/K a locally free, rational, integrable overconvergent de Rham–Witt connection

(E ,∇ : E ⊗W †ΩX/k ⊗Q).

For a suitable cover of X , one finds oneself locally in the Monsky–Washnitzer sit-
uation described above, where the desired result was shown. Via Grosse-Klönne’s
theory of dagger spaces and a spectral sequence argument, one passes from the
local to the global situation and so obtains the main result.

Theorem 3. Let X be a smooth quasi-projective scheme over k, and E ∈ Isoc†(X ⊂
X/W (k)) a locally free isocrystal. Then there is a natural quasi-isomorphism

RΓrig(X, E)→ RΓ
(
X, E ⊗ (W †ΩX/k ⊗Q)

)
.

Note that once one has the local result for coefficients, the argumentation of
Davis, Langer and Zink carries over almost verbatim.
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Kudla’s Modularity Conjecture and Formal Fourier Jacobi Series

Jan Hendrik Bruinier

(joint work with Martin Raum)

Starting with the celebrated paper of Hirzebruch and Zagier [5] on intersection
numbers of Hirzebruch-Zagier curves on Hilbert modular surfaces, the interplay
of the geometry of special cycles on certain Shimura varieties and coefficients of
modular forms has been a subject of active research with various applications.

Gross, Kohnen and Zagier proved in connection with their work on height pair-
ings of Heegner points that the generating series of certain Heegner divisors on
modular curvesX0(N) is a (vector valued) modular form of weight 3/2 with values
in the first Chow group of X0(N), see [4]. A far-reaching generalization of this
result for Shimura varieties associated with orthogonal groups was conjectured by
Kudla in [7]. Here we briefly recall the background and report on recent results
on the problem [10], [2], [9], [3].

Let (V,Q) be a quadratic space over Q of signature (n, 2), and write (·, ·) for
the bilinear form corresponding to Q. The hermitian symmetric space associated
with the special orthogonal group SO(V ) of V can be realized as

D = {z ∈ V ⊗Q C : (z, z) = 0 and (z, z̄) < 0}/C×.

This domain has two connected components. We fix one of them and denote it
by D+. Let L ⊂ V be an even lattice. For simplicity we assume throughout this
exposition that L is unimodular. This simplifies several technical aspects. For the
general case we refer to [3]. Let Γ ⊂ SO(L) be a subgroup of finite index which
takes D+ to itself. The quotient

XΓ = Γ\D+

has a structure as a quasi-projective algebraic variety of dimension n. It has a
canonical model defined over a cyclotomic extension of Q. For instance, if n = 1,
then SO(V ) ∼= PB× for a quaternion algebra B over Q which is split at the
archimedian place, D+ is isomorphic to the upper complex half plane H, and XΓ

is a (connected) Shimura curve.
There is a vast supply of algebraic cycles onXΓ arising from embedded quadratic

spaces V ′ ⊂ V of smaller dimension. Let 1 ≤ g ≤ n. For any λ = (λ1, . . . , λg) ∈ Lg

with positive semi-definite inner product matrix Q(λ) = 1
2 ((λi, λj))i,j there is a

special cycle

Yλ = {z ∈ D+ : (z, λ1) = · · · = (z, λg) = 0}
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on D+, whose codimension is equal to the rank of Q(λ). Its image in XΓ defines
an algebraic cycle, which we also denote by Yλ. If T ∈ Symg(Q) is positive semi-
definite of rank r(T ), we consider the special cycle on XΓ of codimension r(T )
given by

Y (T ) =
∑

λ∈Lg/Γ
Q(λ)=T

Yλ,

see [6], [7]. We obtain a class in the Chow group CHg(XΓ) of codimension g cycles
by taking the intersection pairing

Z(T ) = Y (T ) · (L∨)g−r(T )

with a power of the dual of the tautological bundle L on XΓ. Since the cycles Yλ

depend only on the orthogonal complement of the span of the vectors λ1, . . . , λg,
the cycles Z(T ) satisfy the symmetry condition

Z(T ) = Z(utTu)(0.1)

for all u ∈ GLg(Z).
The following conjecture [7, Section 3, Problem 3] describes all rational relations

among these cycles in an elegant way by means of a generating series on the
Siegel upper half plane Hg of genus g. For τ ∈ Hg we put qT = e(tr(Tτ)) =
exp(2πi tr(Tτ)). The space of Siegel modular forms of weight k for the symplectic

group Spg(Z) of genus g is denoted by M
(g)
k .

Conjecture 1 (Kudla). The formal generating series

Ag(τ) =
∑

T∈Symg(Q)
T≥0

Z(T ) · qT

is a Siegel modular form of weight 1 + n/2 for Spg(Z) with values in CHg(XΓ)C.
That is, for any linear functional h : CHg(XΓ)C → C, the series

h(Ag)(τ) =
∑

T∈Symg(Q)
T≥0

h(Z(T )) · qT

is a Siegel modular form in M
(g)
1+n/2.

The analogous statement for the cohomology classes in H2g(XΓ) of the Z(T )
was proved by Kudla and Millson in a series of paper, see e.g. [8]. However, the
cycle class map CHg(XΓ) → H2g(XΓ) can have a large kernel. For instance, if
n = g = 1 then its kernel consists of the subgroup of divisor classes of degree 0,
which is arithmetically of great significance.

For modular curvesX0(N), the above conjecture is true essentially by the Theo-
rem of Gross-Kohnen-Zagier. For general n and codimension g = 1 (and arbitrary
lattices and level) it was proved by Borcherds [1].
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In the case of general n and general codimension g, Zhang proved the following
partial modularity result. Write the variable τ ∈ Hg and T ∈ Symg(Q) as block
matrices

τ =

(
τ1 z
zt τ2

)
, T =

(
n r/2

rt/2 m

)
,

where τ1 ∈ H1, τ2 ∈ Hg−1 and z ∈ C1×(g−1), and analogously n ∈ Q≥0, m ∈

Symg−1(Q) and r ∈ Q1×(g−1). Then we have qT = e(nτ1 + rzt + tr(mτ2)). For
fixed m ∈ Symg−1(Q) we consider the partial generating series

φm(τ1, z) =
∑

n∈Q≥0

r∈Q
1×(g−1)

Z

(
n r/2

rt/2 m

)
· e(nτ1 + rzt),

which can be viewed as the m-th formal Fourier-Jacobi coefficient of Ag. The
truth of Kudla’s conjecture would imply that φm(τ1, z) is a Jacobi form of index
m. Zhang established this statement without assuming Kudla’s conjecture. We
write Jk,m for the space of Jacobi forms of weight k and index m for the Jacobi

group SL2(Z)⋉ Z2×(g−1).

Theorem 2 (Zhang). The generating series φm(τ1, z) is a Jacobi form in J1+n/2,m

with values in CHg(XΓ)C, that is, an element of J1+n/2,m ⊗C CHg(XΓ)C.

The proof of this result is based on the fact that φm(τ1, z) can be interpreted as a
sum of push forwards of divisor generating series on embedded smaller orthogonal
Shimura varieties of codimension g−1. The modularity of divisor generating series
is known by Borcherds’ result.

If we knew that the generating series Ag converged, then Zhang’s theorem
together with (0.1) would imply Kudla’s conjecture, since the symplectic group
is generated by translations, the discrete Levi factor GLg(Z), and the embedded

Jacobi group SL2(Z) ⋉ Z2×(g−1). However, there seems to be no direct way to
obtain any such convergence result.

In [3] we prove a general modularity result for formal Fourier-Jacobi series,
which implies the desired convergence statement. We now describe this.

A formal Fourier-Jacobi series of genus g (and weight k and cogenus g− 1) is a
formal series

f(τ) =
∑

m∈Symg−1(Q)
m≥0

φm(τ1, z)q
m
2 ,

with coefficients φm ∈ Jk,m. Here qm2 = e(trmτ2) and τ1 ∈ H, z ∈ C1×(g−1). We
denote the Fourier coefficient of index (n, r) of φm by c(φm, n, r), and define the

formal Fourier coefficient of f of index T =
(

n r/2

rt/2 m

)
by

c(f, T ) = c(φm, n, r).

The formal Fourier-Jacobi series f is called symmetric, if

c(f, T ) = det(u)k · c(f, utTu), for all u ∈ GLg(Z).
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Theorem 3 (see [3]). Every symmetric formal Fourier-Jacobi series of genus
g and weight k converges, that is, it is the Fourier-Jacobi expansion of a Siegel

modular form in M
(g)
k .

Corollary 4. Conjecture 1 is true.

Proof of the corollary. The result of Zhang shows that the generating series Ag is
a formal Fourier-Jacobi series of weight 1+n/2 and genus g and cogenus g− 1. It
is symmetric because of (0.1). Hence the claim follows from Theorem 3. �

Corollary 5. The subgroup of CHg(XΓ) generated by the classes Z(T ) for T ∈

Symg(Q) positive semi-definite has rank ≤ dim(M
(g)
1+n/2.

Note that it is not known in general whether the rank of CHg(XΓ) is finite.
Finally, we briefly comment on the idea of the proof of Theorem 3, referring

to [3] for details. The space of Siegel modular forms M
(g)
k is a subspace of the

space FM
(g)
k of symmetric formal Fourier-Jacobi series of weight k and genus g.

In easy special cases (certain cases in genus 2) one can show that the dimensions
of the two spaces agree and thereby prove the theorem. However, in general this
seems hopeless. Instead, we use the symmetry condition and slope bounds for
Siegel modular forms to compare the dimension asymptotics for k → ∞. While

dim(M
(g)
k ) grows like a positive constant times k

g(g+1)
2 , we can establish the bound

dim(FM
(g)
k )≪ k

g(g+1)
2 .

This implies that any f ∈ FM
(g)
k satisfies a non-trivial algebraic relation over the

graded ring of Siegel modular forms. Now, viewing f as an element of the comple-
tion of the local ring Ôa at boundary points a of a regular toroidal compactification
of XΓ, one can deduce that f converges in a neighborhood of the boundary. Again
using the algebraic relation, it can be shown that f has a holomorphic continuation
to the whole domain Hg.
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Plectic cohomology

Jan Nekovář

(joint work with A.J. Scholl)

Let Sh(G,X) be the Shimura stack attached to a Shimura datum (G,X), where
G = RF/Q(H) is the restriction of scalars from a totally real number field F . Let

Aut(F ⊗ Q/F )[µ] ⊃ Aut(Q/Q)[µ] = Aut(Q/E) be the respective stabilisers of

the conjugacy class [µ] ∈ AutAlgGp/Q(Gm,Q, GQ)/int(G(Q)) of the cocharacter µ

attached to (G,X) in the groups Aut(F ⊗Q/F ) ⊃ Aut(Q/Q).
We conjecture that RΓet(Sh(G,X) ⊗E Q,Ql) ∈ D+(Ql[Aut(Q/E)] − Mod)

admits a canonical lift R̃Γet(Sh(G,X) ⊗E Q,Ql) ∈ D+(Ql[Aut(F ⊗Q/F )[µ]] −

Mod), compatible with products and the action of G(Q̂).
If true, then one can define – for certain j – plectic l-adic etale cohomol-

ogy RΓpl−et(Sh(G,X),Ql(j)) = RΓ(Aut(F ⊗ Q/F )[µ],−) ◦ R̃Γet(Sh(G,X) ⊗E

Q,Ql(j)).
In the simplest case H = GL(2)F the corresponding plectic cohomology of

Hilbert modular stacks – if it exists – can be used to construct an Euler system of
rank [F : Q] (with coefficients in Ql) for Hilbert modular forms of weight two.

On a p-adic invariant cycles theorem

Valentina Di Proietto

(joint work with Bruno Chiarellotto, Robert Coleman, Adrian Iovita)

In my talk I explained the results proven in the paper [2]; it is about a p-adic
version of the invariant cycles theorem.

We recall what is the invariant cycles theorem in the complex setting, following
the works of Clemens, Schmid, Steenbrink, El Zein, Saito and others.

Let ∆ be the unit disk in the complex plane. Let X be a smooth complex variety
which is a Kähler manifold; and let π : X → ∆ be a semistable degeneration, i.e.
a proper holomorphic, flat map, such that Xt := π−1(t) is smooth for t 6= 0
and X0 is sum of smooth irreducible components which meet transversally. The
special fiber X0 is a strong deformation retract of X , and the retraction induces
an isomorphism in cohomology1: Hm := Hm(X ) ∼= Hm(X0). The inclusion of the
smooth fiber i : Xt → X induces a map in cohomology i∗ : Hm(X ) → Hm(Xt).
The cohomology of the smooth fiber comes equipped with a monodromy action
N : Hm(Xt)→ Hm(Xt) induced by the Picard-Lefschetz transformation.

1We consider cohomology with rational coefficients
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The classical invariant cycles theorem asserts that for all m the following se-
quence is exact

Hm i∗
−→ Hm(Xt)

N
−→ Hm(Xt),

moreover for m = 1 the first arrow is injective. If we want the above sequence to
be exact not only as a sequence of vector spaces, but as sequence of mixed Hodge
structures, we have to consider instead of Hm(Xt) and N , the limit cohomology
Hm

lim with the induced action of the monodromy operator N .
Let k be a perfect field of characteristic p > 0, let W := W (k) be the ring of

Witt vectors of k and let K be the fraction field of W . Let X be a semistable
curve over W , so the generic fiber XK is smooth and the special fiber Xk is a
normal crossing divisor. Moreover we suppose that Xk is connected, with at least
two irreducible components and that all the intersection points of the irreducible
components of Xk are k-rational.

The p-adic analogue of Hm is Berthelot’s rigid cohomology Hm
rig(Xk), while

Hm
lim, endowed with the monodromy operator N , becomes in the p-adic setting

the Hyodo-Kato cohomology Hm
log−cris(Xk) endowed with its monodromy operator

N .
The theorem reads as follows

Theorem 1. The following sequence is exact:

0→ H1
rig(Xk)

i∗
−→ H1

log−cris(Xk)
N
−→ H1

log−cris(Xk)

Remark 2. If |k| < ∞ Chiarellotto proved in [1] that theorem 1 is a consequence
of the weight monodromy conjecture.

Remark 3. We can read theorem 1 as a way to look at rigid cohomology à la
Fontaine, indeed if K is an algebraic closure of K

Dst(H
1
ét(XK ×K,Qp)) = H1

log−cris(Xk)⊗K

DN=0
st = Dcris,

then

H1
rig(Xk) = Dcris(H

1
ét(XK ×K,Qp))

We give a direct proof of theorem 1, which uses the theory developed by Cole-
man and Iovita in [3]: using their description of the action of the monodromy
operator we are able to translate the study of the exactness of the invariant cycles
in terms of a linear algebra problem on the dual graph of the curve.

We look also at the case of cohomologies with non-trivial coefficients.

Question 4. Let E be F -convergent isocrystal, is the following sequence exact?

(0.1) H1
rig(Xk, E)

i∗E−→ H1
log−cris(Xk, E)

NE−−→ H1
log−cris(Xk, E)

Using the description of the monodromy operator NE given by Coleman and
Iovita in [4] we prove the following theorem.
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Theorem 5. Let be the hypothesis as before, then

- i∗E is injective
- i∗E(H

1
rig(Xk, E)) ⊂ Ker(NE)

- the sequence (0.1) is not necessarily exact

We analyze in particular the case of E a unipotent F -isocrystal and we give a
sufficient condition for the non exactness.

In view of this result, the following natural question arises.

Question 6. What are the coefficients for which the sequence (0.1) is exact?

The expectation is that coefficients that come from geometry should give rise
to exact sequences.
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Chow groups of zero-cycles in fibrations

Olivier Wittenberg

(joint work with Yonatan Harpaz)

Let X be a smooth, proper, irreducible variety over a number field k. Denote
by CH0(X) the Chow group of zero-cycles up to rational equivalence, by Br(X)
the cohomological Brauer group of X , by Ω = Ωf ⊔Ω∞ the set of places of k, and

let M̂ = lim
←−n≥1

M/nM for any abelian group M . According to the reciprocity

law of global class field theory, the local pairings

✝✝✽✽−,−
✽✽
✝✝v : CH0(X ⊗k kv)× Br(X ⊗k kv)→ Br(kv) →֒ Q/Z

for v ∈ Ω, characterised by the property that ✝✝✽✽P, α
✽✽
✝✝v is the local invariant of

α(P ) ∈ Br(kv(P )) whenever P is a closed point of X ⊗k kv, fit together in a
complex

̂CH0(X) // ̂CH0,A(X)

∑
v∈Ω

✝✝✽✽−,−

✽✽
✝✝v // Hom(Br(X),Q/Z),

where

CH0,A(X) =
∏

v∈Ωf

CH0(X ⊗k kv)×
∏

v∈Ω∞

CH0(X ⊗k kv)

Nk̄v/kv
(CH0(X ⊗k k̄v))

.
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Conjecture (Colliot-Thélène [1], Kato and Saito [7, §7]). The above complex is
exact for any smooth, proper, irreducible variety X over k.

For rational surfaces, a more precise conjecture, which also predicts the kernel
of the first map, appears in [3]. Even the case of cubic surfaces over Q is still
widely open.

A notable consequence of the exactness of this complex would be that X pos-
sesses a zero-cycle of degree 1 if and only if there exists a family (zv)v∈Ω of local
zero-cycles of degree 1 whose image in Hom(Br(X),Q/Z) vanishes.

Saito [9] proved the conjecture for curves, under the assumption that the divis-
ible subgroup of the Tate–Shafarevich group of the Jacobian is trivial. (When the
curve has a rational point, this assumption is in fact equivalent to the conjecture.)
The aim of the talk was to discuss the following fibration theorem and its proof.

Theorem. Let f : X → C be a dominant morphism with rationally connected
( e.g., geometrically unirational) generic fiber, where C is a smooth, proper, ir-
reducible curve with X(k, Jac(C))div = 0. If the smooth fibers of f satisfy the
conjecture, then so does X.

The oldest instance of a fibration argument establishing a particular case of
the above conjecture is Hasse’s proof of the Hasse–Minkowski theorem for qua-
dratic forms in four variables with rational coefficients. It was based on Dirichlet’s
theorem on primes in arithmetic progressions and on the global reciprocity law.
A delicate argument relying on the same two ingredients allowed Salberger [10]
to settle the conjecture for conic bundle surfaces over P1

k. His proof was later
generalised in various directions (see [5], [4], [2], [6], [11], [12], [8]). In all of
these papers, Dirichlet’s theorem on primes in arithmetic progressions for general
number fields was used in the following form: given a finite subset S ⊂ Ωf and
elements ξv ∈ k∗v for v ∈ S, there exists ξ ∈ k∗ arbitrarily close to ξv for v ∈ S
such that ξ is a unit outside S except at a unique (unspecified) place v0, at which
it is a uniformiser. (Strictly speaking, when k is not totally imaginary, a more
general statement which incorporates approximation conditions at the real places,
and which builds on results of Waldschmidt in transcendence theory, needs to be
used.) Given a finite abelian extension L/k from which ξv is a local norm for v ∈ S
and which is unramified outside S, it then follows, in view of the global reciprocity
law, that ξ is a local norm from L at v0 too, and hence that v0 splits in L.

The reciprocity argument we have just described fails when the extension L/k
is not abelian. This failure has led to severe restrictions on the fibrations to which
the previous methods could apply. In the proof of the above theorem, the following
elementary lemma serves as a substitute for Dirichlet’s theorem.

Lemma. Let L/k be a finite Galois extension. Let S be a finite set of places of k.
For each v ∈ S, let ξv ∈ k∗v . If ξv is a local norm from L/k for each v ∈ S, there
exists ξ ∈ k∗ arbitrarily close to ξv for v ∈ S, such that ξ is a unit outside S except
at places which split in L.

Proof. Affine space minus any codimension 2 subset satisfies strong approximation
off one place. The lemma is a consequence of this fact applied to (RL/kA

1
L) \ F ,
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where F denotes the singular locus of the complement of the torus RL/KGm

in RL/kA
1
L. �

Another ingredient of the proof is an arithmetic duality theorem (obtained in
[12, §5]) for a variant of Rosenlicht’s relative Picard group, denoted Pic+(C),
whose definition we briefly recall. Let M ⊂ C be the set of points over which the
fiber of f is singular. For each m ∈ M , fix a finite extension Lm/k(m). Then
Pic+(C) is defined as the quotient of Div(C \M) by the subgroup generated by
the principal divisors div(h) such that for each m ∈M , the function h is invertible
at m and h(m) is a norm from Lm.

In the very simple situation of a fibration over P1
k with only two singular fibers,

above 0 and∞, each of which possesses an irreducible component of multiplicity 1,
if we let L0 = L∞ = L and if we are given an adelic point (Pv)v∈Ω ∈ X(Ak)
supported outside of f−1(M), it is easy to see that the class of (f(Pv))v∈Ω belongs
to the image of the diagonal map Pic+(C) →

∏
v∈Ω Pic+(C ⊗k kv) if and only if

there exists c ∈ k∗ such that ctv is a local norm from L for all v ∈ Ω, where tv ∈ k∗v
denotes the coordinate of f(Pv) ∈ P1(kv). If this condition is satisfied, applying
the lemma to ξv = ctv and setting t = ξ/c yields a point t ∈ k∗ = Gm(k) ⊂ P1(k)
such that Xt(Ak) 6= ∅, provided L and S were chosen large enough in the first
place. It is this argument, which bypasses any abelianness assumption, which
forms the core of the proof of the theorem.

References

[1] J.-L. Colliot-Thélène, L’arithmétique du groupe de Chow des zéro-cycles, J. Théor. Nombres
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Local-global compatibility in weight 1

Pierre Colmez

I described partial extensions of the p-adic local Langlands correspondence for
GL2(Qp) to rank 2 (ϕ,Γ)-modules, not necessarily étale, over the Robba ring (with
a conjectural extension to analytic representations of GL2(F ), for a finite extension
F of Qp). I also explained how to recover the classical Langlands correspondence
from the p-adic one in weight 1.

Reporter: Veronika Ertl
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Department of Mathematics & Statistics
McGill University
805, Sherbrooke Street West
Montreal, QC H3A 0B9
CANADA

Dr. Valentina Di Proietto

I.R.M.A.
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