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Introduction by the Organisers

The workshop Calculus of Variations brought together 52 participants from 9
countries, including experts in minimal surfaces, optimal transportation, nonlin-
ear elasticity, geometric flows, geometry in metric measure spaces, stochastic ho-
mogenization, geometric measure theory, elliptic partial differential equations, and
general relativity. All of these topics were represented in the formal part of the
scientific program, which consisted of 21 talks of 60 minutes each, including dis-
cussions. Eight of the 21 speakers were junior researchers – graduate students or
postdoctoral fellows. The workshop was organized by Simon Brendle (Stanford),
Camillo de Lellis (Zürich), and Robert Jerrard (Toronto).
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Minimal surfaces were first considered by Lagrange over 250 years ago, and
since then have been a continuing preoccupation in the Calculus of Variations.
Together with related geometric variational problems, they have provided the im-
petus for the development of modern tools such as geometric measure theory, and
for a deep regularity theory. Contributions in this direction included striking new
regularity results for stationary varifolds, Brakke solutions of the mean curvature
flow, and semi-calibrated integral currents. A high point of the conference was
a breakthrough result that provides a lower bound on the filling area associated
to an integer multiple of an integral cycle. New results relating the topology and
index of minimal surfaces were presented, and shown to yield the proof of an old
conjecture about nonexistence of a class of minimal surfaces. Novel directions
relating to the classical theory were apparent in a talk on fractional minimal sur-
faces, which included some of the first nontrivial examples of such objects. A
Frobenius property of integral currents was presented, and was used to complete
a counterexample to a conjecture about the decomposability of normal currents.

Other topics connected to geometry included the shape on large surfaces of
prescribed Gaussian curvature; a construction of mean curvature flow with surgery;
and a sharp quantitative version of the classical Faber-Krahn inequality, describing
domains that nearly optimize the principle eigenvalue of the Laplacian.

A number of talks explored different variational problems arising in materials
science and nonlinear elasticity. These included a derivation of quasistatic evolu-
tion model for plasticity, obtained as a limit of parabolic problems; a fine analysis of
the energy scaling associated to wrinkling in stressed thin elastic films; a derivation
of Young’s law, relying on deep new regularity results for free boundary problems
for almost-minimizers of elliptic integrands; and new results on variational models
for dislocations – an emerging area with numerous difficult and interesting open
questions. Quite different connections to mathematical physics were exemplified in
a talk that presented results on variational problems arising in General Relativity,
illustrating the fact that General Relativity is a fertile source of compelling vari-
ational problems. Another talk connected to applications presented a variational
model for the educational labor market, one that predicts certain singularities at
the top of the wage scale.

Several talks highlighted the strong connections of the Calculus of Variations to
other areas of mathematics. These included a novel approach to the foundations of
differential geometry in very general metric measure spaces; a quantitative descrip-
tion of stochastic homogenization of convex integral functionals; and a provocative
proposal for using variational methods to develop what might be called a “dissi-
pative action principle” for some Hamiltonian systems.

Overall, the participants and lectures at the workshop represented well the
diversity, vitality, and depth of the contemporary Calculus of Variations.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
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Abstracts

Frobenius property for integral currents and decomposition of normal
currents

Annalisa Massaccesi

(joint work with Giovanni Alberti)

1. Frobenius property for integral currents

The Frobenius Theorem states the equivalence between the complete integrability
of a k-dimensional simple vector field ξ = τ1 ∧ . . . ∧ τk ∈ C1(Rd; Λk(R

d)) (that
is, the existence of a local foliation of Rd by k-dimensional tangent submanifolds)
and the involutivity condition for ξ, that is

[τm, τn](x) ∈ span{τ1(x) . . . , τk(x)} ∀x ∈ R
d , ∀m,n = 1, . . . , k.

It is natural to arise the following question: consider a k-vector field ξ, for which
weak notion of k-dimensional surface the conclusions of the Frobenius Theorem
still hold? There have been various attempts to answer this question, for instance
when ξ is the horizontal distribution of the Heisenberg group H

d (see [3] and [4]
for the cases of a 2-dimensional Lipschitz graph in H1 and the image of a function
in W 1,1

loc (Ω,R
3) with maximal rank Jacobian matrix, respectively).

We prove that integral currents behave like submanifolds with respect to the
integrability problem.

Theorem 1. Let ξ = τ1 ∧ . . . ∧ τk be a k-dimensional simple vector field in
Rd, with τ1, . . . , τk ∈ C1(Rd), and let R ∈ Ik(Rd) be a k-dimensional integral
current with R = JΣ, ξ, θK (i.e., R(ω) =

∫

Σ〈ω(x), ξ(x)〉θ(x) dH1(x) for every ω ∈
C∞

c (Rd; Λk(Rd)), where Σ ⊂ Rd is a rectifiable set), then

[τm, τn](x) ∈ span{τ1(x), . . . , τk(x)}
for every pair m,n = 1, . . . , k and for every x in the closure of the set of points of
positive density of Σ.

The proof of the theorem is carried out by contradiction, exploiting the following
results.

Lemma 1. Given a non-involutive simple k-vector field ξ = τ1 ∧ . . . ∧ τk, with
τ1, . . . , τk ∈ C1(Rd), there exist an open subset U ⊂ Rd and a (k− 1)-form α such
that

〈dα(x), ξ(x)〉 6= 0 ∀x ∈ U

and

〈α(x), η(x)〉 = 0 ∀x ∈ R
d

whenever η is a simple (k − 1)-vector field representing a linear subspace of ξ for
every x ∈ R

d.
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Theorem 2. Let ξ be a continuous k-dimensional vector field on R
d and let R ∈ Ik

be a k-dimensional integral current with R = JΣ, ξ, θK. If ∂R = JΣ′, η, θ′K, then

span η(x) ⊂ span ξ(x) Hk−1− a.e. x ∈ Σ′ .

The contradiction for the proof of Theorem 1 is obtained testing ∂R = JΣ′, η, θ′K
on the (k − 1)-form α provided by Lemma 1. Indeed

0 =

∫

Σ′

〈α, η〉θ′ dHk−1 = ∂R(α) = R(dα) =

∫

Σ

〈dα, ξ〉θ dHk 6= 0 .

From the assumptions in Theorem 2 one sees why we can state Theorem 1
for integral currents, but not for rectifiable currents (see also [2]) nor for normal
currents. Indeed, even if ξ is a non-involutive simple k-vector field of class C1,
the current T := ξ ∧ Ld is a locally normal current. An interesting open problem
is to reduce all the normal k-currents which misbehave with respect to Theorem
1 to currents of a certain type. More specifically, let us consider the horizontal
non-involutive simple 2-vector field ξ = X ∧ Y in H1 ∼= R3 (that is, X(x, y, z) =
(1, 0,−x/2) and Y (x, y, z) = (0, 1, y/2)) and a normal current T = ξ∧µ ∈ N2(R

3):
is it possible to prove that µ is necessarily absolutely continuous with respect to
the Lebesgue measure L3?

Concerning open problems, what happens if we drop the condition about the
C1-regularity of ξ and we use weaker definitions of involutivity, not involving the
Lie bracket?

2. Decomposition of normal currents

In [1], F. Morgan formulated the following problem for the decomposition of normal
currents: given a normal current T ∈ Nk(R

d), we ask whether there exists a family
of integral currents (Rλ)λ∈L,where L is a suitable measure space, such that

(i) T =
∫

L
Rλ dλ;

(ii) M(T ) =
∫

L M(Rλ) dλ;

(iii) M(∂T ) =
∫

LM(∂Rλ) dλ.

Thanks to Theorem 1, we can complete the proof of a counterexample already
proposed by M. Zworski in [6]: the aforementioned normal current T := ξ ∧ Ld ∈
Nk(R

d), with ξ non-involutive simple k-vector field of class C1, does not even
admit a decomposition in integral currents (Rλ)λ∈L satisfying the conditions (i)
and (ii). In fact, conditions (i) and (ii) imply that Rλ = JΣλ, ξ, θλK for almost
every λ ∈ L. Let us point out that the situation changes dramatically if we allow
a decomposition in rectifiable currents, as pointed out by G. Alberti (see Section
4.5 of [5]).
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Transition between planar and wrinkled regions in uniaxially stretched
thin elastic film

Peter Bella

When a thin elastic material is confined, it relaxes the compression by buck-
ling/wrinkling out-of-plane. In [2], Kohn and the author studied a model problem
for wrinkling of a thin elastic sheet caused by compression. We considered thin
elastic annular sheet subject to radial dead loads Tin on the inner boundary and
Tout on the outer boundary. If Tin is large enough compared to Tout, some con-
centric circles are pushed towards the center of the annulus and so the sheet is
expected to wrinkle out-of-plane near the inner part of the annulus, and be planar
near the outer boundary (see [3] for heuristic arguments). Rather than trying to
explicitly find a minimizer of the elastic energy of the sheet (which in this case
seems to be very hard, if not impossible, task), we first studied minimum value of
the energy and its dependence on the thickness of the sheet. We showed that

(1) E0 + C0h ≤ minEh(u) ≤ E0 + C1h,

where 0 < h < 1 is thickness of the film, E0 and 0 < C0 < C1 are constants
(independent of h), Eh is energy of the system (normalized per unit thickness),
and we minimized over deformations u. To obtain the upper bound, for each h
one constructs a deformation (based on some ansatz) with small enough energy,
whereas the lower bound needs to be ansatz-free.

In phycics literature one mostly finds upper bounds (i.e., constructions of de-
formations with small energy). For the above problem, deformations with energy
E0+Ch(| logh|+1) were explicitly constructed in [3]. Those (suboptimal) deforma-
tions were obtained by superimposing wrinkles with radius-dependent amplitude
onto some planar deformation. The number of wrinkles is obtain by optimiza-
tion but does not vary with radius. To obtain the upper bound in (1) (i.e, to
get rid of the logarithmic factor), we used construction where number of wrinkles
changes (it increases near the free boundary between wrinkled and planar region).
Deformations with such cascade of wrinkles achieves optimal energy scaling, but
it is not clear whether minimizers (or low-energy configuration) have to exhibit
such behavior. Moreover, there is no experimental evidence supporting such con-
structions (in the physical experiments the number of wrinkles did not vary with
radius).

To understand whether such a cascade of wrinkles is necessary we considered
a toy model, which should capture essential features of the original problem, but
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should be easier to analyze [1]. We study minimization of Föppl-von Kármán
energy with prescribed metric
(2)

Eh(w, u3) =

∫

Ω

|e(w) +∇u3 ⊗∇u3/2− xe2 ⊗ e2|2 + h2|∇∇u3|2 − 2

∫

x=±1

w1.x,

where Ω = [−1, 1]× [−1, 1], w : Ω → R
2 and u3 : Ω → R are respectively in-plane

and out-of-plane displacement, both periodic in y, and e(w) = (∇w + ∇Tw)/2
denotes the symmetric gradient. Using arguments behind (1) we immediately get
that C0 ≤ 1

h (minEh(w, u3)− E0) ≤ C1.
For very small thickness h, wrinkling (more precisely, the out-of-plane displace-

ment u3) should play a dominant role in determining shape of low-energy defor-
mations. In fact, we prove that

(3) lim
h→0

inf(w,u3) Eh(w, u3)− E0
h

= 2 inf
L>0

σL,

where

SL(u) :=
1

2L

∫ 1

0

∫ L

−L

u2
,x + u2

,yy, σL := inf
u∈AL

SL(u)

with

AL :=

{

u ∈ W 1,2((0, 1)× (−L,L)), u(0, ·) = 0,

for (a.e.) x ∈ (0, 1) : u(x, ·) is 2L−periodic and 1
2L

∫ L

−L u2
,y(x, y)d y = 2x

}

.

In order to show (3), one of the main steps was to show regularity of u ∈ AL, a
ground state of SL. More precisely, for L ≥ 1 we showed that there exists a global
minimizer u ∈ AL of the functional SL, u is odd in the y-variable, and for every
x ∈ (0, 1) satisfies:

1

2L

∫ L

−L

u2(x, y) dy ≤ Cx2(| lnx|+ 1),

1

2L

∫ L

−L

u2
,x(x, y) dy ≤ C(| lnx|+ 1),

1

2L

∫ L

−L

u2
,xx(x, y) dy ≤ Cx−2(| lnx|7 + 1),

1

2L

∫ L

−L

u2
,xy(x, y) dy ≤ Cx−1(| lnx|2 + 1),

1

2L

∫ L

−L

u2
,yy(x, y) dy ≤ C(| lnx|+ 1),

1

2L

∫ L

−L

u2
,xyy(x, y) dy ≤ Cx−2(| lnx|3 + 1),

where C does not depend on L.
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Regularity of semi-calibrated integral 2-cycles

Costante Bellettini

A calibration is a closed (smooth) differential form φ (say of degree k) on a Rie-
mannian manifold (Mn, g) with the following key property that relates φ and the
metric g. For any x ∈ M and for any oriented k-plane V in TxM the action of
φ on V is bounded from above by the action of the k-dimensional volume form
(induced by g). In other words, for any unit simple k-vector ξ we have φ(ξ) ≤ 1.
The unit simple k-vectors on which equality is realized are called calibrated planes,
in other words they are the oriented k-planes on which the form φ acts just like
the k-dimensional volume form. An integral k-current is said to be calibrated
by φ when its approximate tangent planes (that exist Hk-a.e.) are calibrated by
φ. The notion of calibration appeared in full generality in the landmark paper
[7] and using the closedness of the form it is straightforward to conclude that an
integral current calibrated by φ is a mass-minimizer in its homology class. By
dropping the closedness assumption on the differential form φ, and keeping the
property relating it with the metric g, we obtain what is usually referred to as a
semi-calibration. In the same way as before we can define semi-calibrated integral
currents. From the variational point of view, due to the lack of closedness of φ,
such currents are generally only almost-minimizers in their homology class. A very
important example of semi-calibration arises when we look at tangent cones to a
calibrated integral k-current, [7]. Each tangent cone here is an integral k-cycle
invariant under dilations about the vertex and calibrated by a parallel form in Rn.
The radial invariance can simplify the study of the cone in that it is enough to look
at the slice of the cone with a sphere centered at the vertex. We are then looking
at a (k − 1)-dimensional integral cycle which turns out to be semi-calibrated in
the sphere Sn−1. The study of semi-calibrated integral cycles thus has a direct
impact on the understanding of tangent cones to calibrated currents1.

In the case k = 2 a classical example of calibration is the Kähler form on
a Kähler manifold and calibrated currents are the holomorphic ones. In [5] it
is proven that, given an arbitrary semi-calibration ω of degree 2, it is possible
(locally) to treat any semi-calibrated integral cycle as a pseudo-holomorphic one,

1The interest in semi-calibrations goes however beyond this particular aspect, see e.g. the
introduction of [5].
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i.e. there exists2 an almost complex structure J in the ambient manifold such
that the approximate tangents to the cycle are invariant under the action of J and
positively oriented by J . In other words, semi-calibrated integral 2-cycles can be
studied by exploiting an extra structure in the ambient space. We present here
the following regularity result:

Theorem 1. Let ω be a semi-calibration of degree 2 on a Riemannian manifold
(Mn, g) and let T be an integral 2-cycle semi-calibrated by ω. Then the singular
set of T is made of (at most) isolated points.

We recall here the notion of a smooth point. This means that in a neighbour-
hood of this point the current coincides with the current of integration on a smooth
submanifold counted with an integer (constant) multiplicity. The complement of
the set of smooth points is the so-called singular set and it is by definition always
a closed set. In particular Theorem 1 states that there are at most finitely many
singularities in every compact region. The counterpart of the previous theorem in
terms of calibrated cones is the following

Theorem 2. Let φ be a parallel calibration of degree 3 in Rn and let C be an
integral 3-dimensional cone without boundary (in particular, C can be a tangent
cone at any point of an arbitrary 3-dimensional calibrated integral cycle). Then
the singular set of C is made of (at most) finitely many half-lines.

Important examples of calibrations of degree 3 are the Special Lagrangian cal-
ibration on Calabi-Yau 3-folds and the associative calibration on G2-manifolds.
Theorem 2 extends the result of [1] where the authors dealt with 3-dimensional
Special Lagrangian cones.

The proof of Theorem 1 is based on a pseudo-holomorphic blow-up, a technique
introduced in [3], [4]. This is an implementation, in an almost complex setting, of
the classical blow-up of a point in algebraic geometry or symplectic geometry. In
[4] the technique is employed to prove the uniqueness of tangent cones for pseudo-
holomorphic integral cycles. The construction itself requires the presence of an
almost-complex structure in the ambient manifold. In the proof of Theorem 1
such a structure can be assumed to exist by virtue of [5].

Semi-calibrated integral cycles have, by the monotonicity of the mass ratio, a
density (or multiplicity) that is well-defined everywhere on their support (and not
just almost everywhere) and in the case of cycles of dimension 2, this density is
everywhere a positive integer. The proof of Theorem 1 proceeds by induction on
the multiplicity3. A point of density 1 is a smooth point by Allard theorem and
we must prove the inductive step: for any Q ∈ N we assume that the theorem is

2We are tacitly assuming that the ambient manifold is even dimensional. When this is not
the case it is enough to embed it in its cartesian product with R.

3The inductive scheme is used in [10], [8], [9], [1], [2] as well. All of these works deal with
particular types of semi-calibrated integral 2-cycles with an almost complex structure that in-
duces the semi-calibration: the almost complex structure is either given in the setting ([10], [8],
[9]) or proven to exist ([1], [2]). The common conclusion is that the singular set is made of at
most isolated points and our Theorem 1 contains these results as particular cases.
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true under the assumption that the density is locally bounded by Q − 1 and we
want to show that it is also true when the density is locally bounded by Q. The
proof requires repeated blow-ups of the current at a singular point. The intuitive
idea is that this should mimic the resolution of singularities in the classical setting
of algebraic curves.

This is quite evident in the case that we are dealing with a singular point (let us
assume that it is the origin of coordinates) with tangent cone made of two distinct
planes counted with multiplicity (e.g. a point with density 5 where the tangent
cone is of the form 3JD1K+2JD2K, where D1 and D2 are distinct 2-planes). As it is
customary we localize our current and dilate it around the origin enough to obtain
that in the ball of radius 1 around the origin the support of the current is contained
in a small conic neighbourhood of D1 and D2. After the blow up, we find that the
current actually becomes the union of two disjoint pseudo holomorphic integral
2-cycles with strictly lower multiplicities (in the example, a cycle with density
bounded by 3 and a cycle with density bounded by 2). Here (after the blow up)
we can use the inductive assumption, which tells us that all points except possibly
finitely many are smooth. The blow up map is a diffeomorphism away from the
origin and therefore the regularity properties are preserved (except possibly at the
origin) when we perform it. In view of this also the original current must have at
most finitely many singularities (we have added at most another singular point -
the origin).

The situation is more complicated when the tangent is made of a single plane
counted with multiplicity4. To give a concrete example, consider the curve w =
3z3 + z5 + z20/3 in C2. The origin is a singular point of density 3 and the tangent
cone there is the 2-plane {w = 0} counted with multiplicity 3 (remark that the
curve is expressed as a 3-valued graph on its tangent). Blowing up the origin
corresponds essentially to the change of variable ξz = w (whilst the variable z
stays the same) which leads to the curve ξ = 3z2 + z4 + z17/3. With two more
blow-ups (from now on we use variables ξ and z for all subsequent blow ups) we
get the curve ξ = 3 + z2 + z11/3. At this stage we can translate the curve and
get ξ = z2 + z11/3. The blow-up map is a diffeomorphism away from the origin
and therefore the three blow-ups and the translation that we have performed have
preserved the regularity properties of the original curve away from the origin5. If
we perform two further blow-ups we obtain the curve ξ = 1+z5/3 and then with a
translation we can still preserve the regularity and face the6 curve ξ = z5/3. Again,
this curve has the same regularity as the original one away from the origin and its

4This always turns out to be the hard case, compare [10], [8], [9], [1], [2].
5In this specific example the regularity has been preserved at the origin as well, but, as it

happens when resolving singularities, regularities could improve at the origin. Remark that at
this stage we could blow-down three times and get the curve w = z5 + z20/3, in other words we
have removed the first term in the Taylor expansion of the original 3-valued graph.

6Remark that at this stage we could blow-down two+three times and get the curve w = z20/3,
in other words we have removed the first two terms in the Taylor expansion for the original three-
valued graph. This idea replaces the construction of the center manifold in the regularity results
for mass-minimizers, see e.g. [6].
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tangent cone at the origin is made of the 2-plane {w = 0} counted with multiplicity
3. So what have we gained? The gain becomes evident in the next step. We can
blow up again and we obtain the curve ξ = z2/3. Two things have happened now:
the tangent cone has tilted7, as now the curve is tangent to {z = 0}, and, very
importantly, the density has strictly dropped ! The density at the origin is now 2.
So, to sum up, we have passed to a curve with the same regularity as the original
one (except possibly at the origin) and with stricly lower density. The proof of
Theorem 1 requires to implement this pattern on semi-calibrated currents rather
than curves: after a finite number of blow ups8 we have a pseudo holomorphic
integral 2-cycle with the same regularity, except possibly at the origin, but with
strictly lower density at the origin itself. The inductive assumption then applies,
proving the inductive step.

It is not obvious that the tilting of the tangent should happen (and that in that
case density should drop) after a finite number of blow ups. We can prove that
the only case when this does not happen is when the original current is made of a
smooth submanifold counted an integer number of times. This can be understood
in the sense of unique continuation. For example, can it happen that we keep
blowing up and at all steps the current is tangent to {w = 0}? If this is the case,
then we can observe the following. We restrict the current to the region |z| ≤ 1
(this region does not change with the blowups) and the boundary of the restricted
current lives in the region {|z| = 1, |w| ≤ δ} for some δ > 0 (recall that we are
assuming that the tangent is {w = 0} - by localizing and dilating around the
origin we can assume that the support of the current in the unit ball lives a conic
neighbourhood of {w = 0}). With the change of variable ξz = w that induces the
blow up, we can see that the boundary will once again live in exactly the same
region {|z| = 1, |ξ| ≤ δ}. By a maximum principle (to be shown) the current after
the blow up must all live in the region {|z| ≤ 1, |ξ| ≤ δ}. This means however that
the original current lived in the region {|z| ≤ 1, |ξ| ≤ δ|z|}. If we iterate n blow
ups, we will have a current that lives in the same region after n blow ups, which
would force the original current to live in the region {|z| ≤ 1, |ξ| ≤ δ|z|n}. Now
the original current must have some strictly positive separation between the sheets
(say at |z| = 1

2 ), unless it is a single sheet counted an integer number of times. If
n can be chosen as large as we want in the previous iteration, then this separation
would become at some point too large to fit in the region {|z| ≤ 1, |ξ| ≤ δ|z|n}.
A similar argument applies when, rather than having that the tangent is {w = 0}
at every iteration, we have more generally that the tangent is always of the form
{w = 0} or {w = αz}, again yielding the conclusion that, locally around the
chosen point, we are dealing with a smooth submanifold conted an integer number
of times.

7When we speak of tilting we actually mean that the tangent goes from {w = 0} to {z = 0},
we do not mean that it becomes of the form {w = αz} for some complex number α. In this
latter case, indeed by performing one more blow up and a translation, we find again a current

with the same density and tangent {w = 0}.
8What we show here is that if we repeatedly blow up around a singularity, after a finite

number of step the tangent tilts as in the example of the curve and the density drops strictly.
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A dissipative least action principle for Hamiltonian ODEs and PDEs

Yann Brenier

At a formal level, the “inviscid Burgers” equation ∂tu + u∂xu = 0 is a time-

reversible, conservative equation, which preserves E(t) =
∫ +∞
−∞ u2(t, x)dx as time

evolves. Furthermore, this equation has a Hamiltonian structure and can be de-
rived from a suitable least action principle.

However, the so-called “entropy solutions” obtained (as in [7]) by letting ǫ go to
zero in the Burgers equation ∂tu+ u∂xu = ǫ∂xxu, behave in a very different way.
For all smooth compactly supported initial conditions not identically equal to zero,
they always produce discontinuities in finite time and, then, dissipate E(t). These
entropy solutions are definitely not time reversible. (One may conjecture -although
this is highly controversial- a similar behaviour for the vanishing viscosity solutions
of the Navier-Stokes equations, following Kolmogorov’s theory of turbulence [6, 5].)

So a natural question arises: can we modify the least action principe in order to
get “dissipative” solutions for similar Hamiltonian ODEs or PDEs? This problem
has been already addressed, in particular in [8]. Here, we refer to [2] and provide
a simple class of Hamiltonian ODEs for which this seems possible. Given a closed
bounded subset S of the Euclidean space (with inner product ((·, ·)) and norm
|| · ||), let us consider the Hamiltonian ODE

(1)
d2X

dt2
= X − (∇K)[X ], K[X ] = sup{((X, s))− ||s||2

2
; s ∈ S}.
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Note that K is a Lipschitz convex function, everywhere differentiable except on a
“meager” set N , which is not empty, unless S is convex. [An example is

S = {(aσi , · · ·, aσN ) ∈ RN, σ ∈ ΣN}, aj =
j

N
− 1

2
, j = 1, · · ·, N,(2)

where ΣN is the symmetric group. In that case, (1) reads

d2Xi

dt2
= Xi −

1

N

N
∑

j=1

(1{Xi > Xj} − 1/2), i = 1, · · ·, N,

and describe the motion of a cloud of N self-gravitating particles moving along
the real line (with a neutralizing background, as usual in Cosmology [3]).]
Because K is just a Lipschitz convex function, the Cauchy problem cannot be
treated by the standard Cauchy-Lipschitz approach. Nevertheless, following
Bouchut [1], equation (1) can be solved in the “almost everywhere” sense of

DiPerna-Lions and Ambrosio: for almost every initial condition (X0, dX
0

dt ), equa-

tion (1) admits a unique global C1 solution, which is time-reversible and conserva-
tive. [In case (2) this corresponds to gravitation with elastic collisions.] Equation
(1) is Hamiltonian and can be derived by minimizing

(3)

∫ t1

t0

{1
2
||dX
dt

||2 +Φ[X ]}dt, Φ[X ] =
1

2
||X ||2 −K[X ] =

1

2
dist2(X,S),

as the end points (t0, X(t0)) and (t1, X(t1)) are fixed. Note that, except on N ,
the squared distance function to S is everywhere differentiable and equal to its
own squared gradient. Thus, the “action” can be written

∫ t1

t0

1

2
{||dX

dt
||2 + ||∇Φ[X ]||2}dt,(4)

at least for those “good” curves X that touch the “bad” set N only for a negligible
amount of time. For such good curves, the action principle is therefore equivalent
to

inf

∫ t1

t0

1

2
||dX
dt

−∇Φ[X ]||2}dt(5)

since the rectangle term in the square depends only on the end-points. So, obvious
“action minimizers” are all solutions X of the “gradient flow” equation

dX

dt
= ∇Φ[X ] = X − (∇K)[X ],(6)

as long as they almost never touch N . Because K is a Lipschitz convex function,
first order equation (6) can be easily solved in the sense of maximal monotone
operator theory [4]: for every initial conditionX0, there is a unique global Lipschitz
generalized solution, which is everywhere right-differentiable with

dX(t+ 0)

dt
= X(t)− d0K[X(t)], ∀t ≥ 0,(7)
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where d0K[X ] denotes the unique element in the subdifferential ∂K[X ] with min-
imal Euclidean norm. Typically, such a solution takes values in N for a non-
negligible amount of time and is not C1. In particular, it is not time-reversible
and cannot be solution of (1) in the Bouchut-Ambrosio sense. We get a completely
different type of solutions. [In case (2), this exactly corresponds to gravitation with
sticky collisions.] So we suggest the use of a modified action

∫ t1

t0

1

2
||dX
dt

−X + d0K[X ]||2(8)

to get “dissipative solutions” of (1). The analysis of this minimization problem
is still largely open. [In case (2), the analysis is greatly simplified by the use of
rearrangement tools. In particular, a time-discrete scheme can be easily derived
as follows. We first introduce an explicit time-discrete scheme for (7), namely

Xn+1 = R((1 + h)Xn − hA),(9)

where R denotes the sorting operator in increasing order, A = (a1, · · ·, aN ), h > 0
is the time step and Xn = (Xn

1 , · · ·, Xn
N ) are the approximate positions of the

gravitating sticky particles at time t = nh. (N.B. there is no need here for the
“implicit” Euler scheme commonly used in maximal monotone operator theory
[4] since K is not only convex but also Lipschitz continuous.) Then we look for
minimizers of the time-discrete version of (8), namely

n=n1
∑

n=n0

||Xn+1 −R((1 + h)Xn + hA)||2.(10)

The resulting variational scheme simply reads

Xn+1 = R(
Xn − Zn−1

1 + h
+ (1 + h)Xn − hA), Zn = R((1 + h)Xn − hA)(11)

and has provided very satisfactory numerical results.]
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Rigidity and flexibility phenomena in asymptotically flat spaces

Alessandro Carlotto

Over the last few decades, General Relativity has proven to be a wonderful source
of deep variational problems and we will report here about our contributions to
one of the most basic questions one might possibly ask:

Problem (A). Are there complete, stable minimal hypersurfaces in asymptotically
flat manifolds?

Asymptotically flat manifolds should be thought of as natural models for isolated
gravitational systems, that is the way our solar system was classically thought
of. We specify here, once and for all, that the word complete is meant here to
implicitly refer to unbounded minimal hypersurfaces. Apart from their intrinsic
relevance, stable minimal hypersurfaces naturally arise as limits of two categories
of variational objects:

(L1) sequences of minimizing currents solving the Plateau problem for diverging
boundaries;

(L2) sequences of large isoperimetric boundaries or of large volume-preserving
CMC hypersurfaces;

and thus their study plays a key role in the process of deeper understanding the
large scale geometry of initial data sets for the Einstein field equations.

Even in the most basic of all cases, namely when (M, g) is Rn with its flat metric
and Σn−1 is assumed to be an entire minimal graph, the study of Problem (A)
has played a crucial role in the development of Analysis along the whole course of
the twentieth century:

Problem (B). Are affine functions the only entire minimal graphs over Rn−1 in
Rn?

Indeed, minimal graphs are automatically stable (in fact: area-minimizing) by
virtue of a well-known calibration argument and thus (B) can be regarded as the
most special subcase of (A). Such problem, which is typically named after S. N.
Bernstein, was formulated around 1917 as an extension of the n = 3 case, which
Bernstein himself had settled. In higher dimension, the answer is positive only
up to ambient dimension 8 and is due to De Giorgi (for n = 4), Almgren (for
n = 5) and Simons (for 6 ≤ n ≤ 8) who also showed that the conjecture is false
for n ≥ 9 because of the existence of non-trivial area-minimizing cones in Rn−1

(as later investigated in detail by Bombieri, De Giorgi and Giusti).
When the ambient manifold is Euclidean, but Σ is only known to be stable (and

not necessarily graphical) a similar classification result is only known when n = 3
and it was obtained independently by do Carmo and Peng and Fischer-Colbrie
and Schoen:

Theorem. [4, 5] The only complete stable oriented minimal surface in R3 is the
plane.
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However, the same statement is still not known to be true in R
n for n ≥ 4 unless

the minimal hypersurface Σn−1 under consideration is assumed to have polynomial
volume growth meaning that for some (hence for any) point p

H
n−1(Σ ∩Br(p)) ≤ θ∗rn−1, for all r > 0.

Before stating our main rigidity theorems concerning question (A), we need to
recall an essential physical point. It is customary in General Relativity to assume
that the mass density measured by any physical observer is non-negative at each
point: as a result, time-symmetric data have non-negative scalar curvature and
thus it is natural and standard to restrict our study to manifolds with this property.

Our first theorem states that there is a wide and phyisically relevant class of
asymptotically flat manifolds for which the presence of a positive ADM mass is an
obstruction to the existence of stable minimal surfaces. For the sake of this report,
our readers may simply consider the ADM mass M a scalar quantity measuring
the gravitational deformation of (M, g) from the trivial couple (Rn, δ).

Theorem 1. Let (M, g) be an asymptotically Schwarzschildean 3-manifold of non-
negative scalar curvature. If it contains a complete, properly embedded stable min-
imal surface Σ, then (M, g) is isometric to the Euclidean space R3 and Σ is an
affine plane.

An analogous result is obtained for ambient dimension 4 ≤ n ≤ 7 under an
a-priori bound on the volume growth of Σ and provided the stability assumption
is replaced by strong stability.

Theorem 2. Let (M, g) be an asymptotically Schwarzschildean manifold of di-
mension 4 ≤ n ≤ 7 and non-negative scalar curvature. If it contains a complete,
properly embedded strongly stable minimal hypersurface Σ of polynomial volume
growth, then (M, g) is isometric to the Euclidean space Rn and Σ is an affine
hyperplane.

These two theorems also apply to the physically relevant case when the ambient
manifold M has a compact boundary (an horizon, for instance) once it is assumed
that Σ ⊂ M \∂M . If instead Σ is allowed to intersect the boundary ∂M (and thus
to have a boundary ∂Σ), then we need to add extra requirements. For instance,
when n = 3 we need Σ to be a free boundary minimal surface (with respect to
∂Σ ⊂ ∂M) and

∫

∂Σ
κ dH 1 ≥ −2π.

We do not expect the assumption of properness to be inessential to the above
theorems, unless Σ is assumed to be (locally) area-minimizing in which case proper-
ness can be easily proved via a standard local replacement argument. Moreover,
we expect Σ to be automatically proper whenever (M, g) has an outermost min-
imal horizon: however, we will not discuss these aspects here any further as we
plan to analyse them carefully in a forthcoming paper with O. Chodosh and M.
Eichmair.

Theorem 1 has several remarkable consequences and, among these, we would
like to mention an application to the study of sequences of solutions to the Plateau
problem for diverging boundaries belonging to a given hypersurface. As will
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be apparent from the statement, this can be interpreted as a result concerning
the failure of the convex hull property in asymptotically flat spaces. Given an
asymptotically flat manifold (M, g) with one end and, correspondingly, a system
of asymptotically flat coordinates {x} we call hyperplane a subset of the form
Π =

{

x ∈ Rn \B |∑n
i=1 aix

i = 0
}

for some real numbers a1, a2, . . . , an. Possibly
by changing {x} one can reduce to the case when a1 = . . . = an−1 = 0 and an = 1.
In this setting, we define height of a point in M \ Z ≃ Rn \ B the value of its
xn−coordinate.

Corollary 3. Let (M, g) be an asymptotically Schwarzschildean 3-manifold of
non-negative scalar curvature and positive ADM mass, let Π an hyperplane and
let (Ωi)i∈N

any monotonically increasing sequence of regular, relatively compact
domains such that ∪iΩi = Π. For any index i, define Γi to be a solution of the
Plateau problem with boundary ∂Ωi. Then for each x′ ∈ Π the sequence (Γi)i∈N

cannot have uniformly bounded height at x′, namely

lim inf
i→∞

max
(x′,x3)∈Γi

x3 = +∞.

As anticipated above, our proof of Theorem 1 is inspired by the proof given
by Schoen-Yau of the Positive Mass Theorem in [6] where (arguing by contradic-
tion) negativity of the ADM mass is exploited for constructing a (strongly) stable
minimal surface of planar type, thereby violating the stability inequality by a pre-
liminary reduction to a Riemannian metric of strictly positive scalar curvature (at
least outside a compact set). In our case, we need to deal with two substantial
differences:

(1) the hypersurface Σ is not constructed but is just assumed to exist and
thus its structure and its behaviour at infinity are not known a priori;

(2) the metric g is only required to have non-negative scalar curvature, thereby
admitting the (relevant) case when it is in fact scalar flat, as prescribed
by the Einstein constraints in the vacuum case.

One crucial part of our study is indeed to characterize the structure at infinity
of a complete minimal hypersurface having finite Morse index. Essentially, we
extend to asymptotically flat manifolds the Euclidean structure theorem which
states, roughly speaking, that any such minimal hypersurface has to be regular at
infinity in the sense that it can be decomposed (outside a compact set) as a finite
union of graphs with at most logarithmic growth when n = 3 or polynomial decay
(like |x′|3−n) when n ≥ 4. For n = 3 Schoen proved this theorem making use of
the Weierstrass representation, a tool which is peculiar of the Euclidean setting
as its applicability relies on the fact that the coordinate function have harmonic
restrictions to minimal submanifolds. In our case, a key point in the proof of
Theorem 1 is showing (via a preliminary study of the limit laminations which may
arise by blow-down of Σ) that any such Σ has finite total curvature and hence its
Gauss map extends continuously at infinity. Instead, such an argument is not at
disposal in the higher-dimensional case and hence a deep result of L. Simon [7, 8]
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concerning the analysis of isolated singularities of minimal subvarieties has to be
used.

In fact, Theorem 1 follows from a more general rigidity result, given in [2],
concerning marginally outer-trapped surfaces (or MOTS), a class of objects of
fundamental importance in General Relativity and which coincide with minimal
surfaces for time-symmetric data. This extension is not trivial since MOTS are
not known to have a variational nature.

We would like to conclude this report by mentioning the paper [3] by the author
and R. Schoen, where we show that the rigidity Theorem 1 (as well as Theorem
2) is essentially sharp by constructing asymptotically flat solutions of the Einstein
constraint equations in Rn (for n ≥ 3) that have positive ADM mass and are
exactly flat outside of a solid cone (for any positive value of the corresponding
opening angle) so that they contain plenty of complete, area-minimizing hyper-
surfaces. A posteriori, this strongly justifies our requirement that the metric g is
asymptotically Schwarzschildean.

Theorem 4. Let (M, g) be a scalar flat asymptotically flat manifold of dimension
n and order of decay p > (n − 2)/2. Given θ0, θ1, q with 0 < θ0 < θ1 < π and
(n− 2)/2 < q < p ≤ n− 2, there is an a∞ sufficiently large so that for any a ∈ Rn

with |a| > a∞ we can find a metric ĝ on M with ĝ = g in Cθ0(a), ĝ = δ outside
Cθ1((|a|+ 1)a/|a|), and

ĝij = δij +O(|x|−q), R(ĝ) ≡ 0.

(Here Cθ(a) is the cone of vertex a made of vectors making an angle less than θ
with the vector −a).
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On the topology and index of minimal surfaces

Otis Chodosh

(joint work with Davi Maximo)

A well known result of Fischer–Colbrie [4] and Gulliver–Lawson [6, 7] states that
for a minimal surface Σ2 in R3, finite Morse index is equivalent to finite total
curvature. To define the Morse index of Σ, we first define index(Σ ∩ BΣ

R(p)) to
be the number of negative Dirichlet eigenvalues of the second variation operator
L := −∆+2κ. Here, κ is the Gauss curvature of Σ and ∆ is the intrinsic Laplacian.
Then, Σ is said to have finite Morse index if

lim
R→∞

index(Σ ∩BΣ
R(p)) < ∞,

and in this case, the Morse index of Σ, denoted index(Σ) is defined to be the limit.
The surface Σ is said to have finite total curvature if

∫

Σ

|κ| < ∞.

Some examples of surfaces of finite Morse index include the plane (index 0), the
catenoid (index 1), Enneper’s surface (index 1), and the Costa–Hoffman–Meeks
surfaces (the Costa surface with genus one, with two catenoidal ends and one flat
end has index 5, as proven in [9]). Recently there have been a wide range of
examples constructed by various authors.

A classical result of Osserman [10] says that a minimal surface Σ2 in R3 of
finite total curvature (equivalently, finite Morse index) is conformally equivalent
to a punctured compact Riemann surface Σ \ {p1, . . . , pr}, and the Gauss map
extends meromorphically across the punctures. This places strong restrictions on
the topology and geometry of such surfaces. As such, one might hope to classify
such surfaces under a “small index” or “simple topology” assumption. Indeed,
several such results have been obtained, including the following “small index”
classification results:

• The plane is the unique two-sided stable (index 0) minimal surfaces, as
proven independently by Fischer-Colbrie–Schoen [5], do Carmo–Peng [3],
and Pogorelov [11].

• There are no one-sided stable minimal surfaces, as proven by Ros [12].
• The catenoid and Enneper’s surface are the unique two-sided minimal
surfaces of index 1, by work of López–Ros [8].

As such, it is natural to consider the case of classifying surfaces of index 2 and
indeed, it was conjectured by Choe in [2] that there are no such surfaces. In [1]
we confirmed this conjecture in the case of embedded surfaces.

Theorem 1. There are no embedded minimal surfaces in R3 of index 2.

The key ingredient in the proof of this is the following new estimate relating
the index and topology of the surface:
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Theorem 2. Suppose that Σ → R
3 is an immersed, complete, two-sided, minimal

surface of genus g and r ends. Then

index(Σ) ≥ 2

3
(g + r)− 1.

To see how Theorem 2 allows one to prove Theorem 1, note that in the index
2 case, we obtain g + r ≤ 4. This allows us to use classification results of “simple
topology” minimal surfaces of finite total curvature to rule out such a surface, in
the embedded case.

An additional consequence of Theorem 2 is the following (the upper bound in
the following corollary is due to Tysk [13], it is the lower bound that follows from
Theorem 2)

Corollary 1. For Σ a two-sided minimal surface in R3 with embedded ends and
finite total curvature, we have that

−1

3
+

2

3

(

− 1

4π

∫

Σ

κ

)

≤ index(Σ) ≤ (7.7)

(

− 1

4π

∫

Σ

κ

)

.

This shows that the index of such a surfaces is related to the total curvature
in a linear sense (with quite reasonable bounds). This bound can be viewed as
a partial answer to a remark of Fischer–Colbrie that there should be a relation
between the total curvature and the index.

Finally, we briefly mention the key ingredients in the proof of Theorem 2. The
basic tool in the argument is a link between harmonic 1-forms on the surface
and the index; various authors have considered harmonic 1-forms as destabilizing
directions, but our argument is inspired by the one of Ros [12], where he shows
that the dimension of the space of harmonic 1-forms in L2 provides a linear lower
bound for the index. However, on minimal surface of finite total curvature having
genus g and r ends, the dimension of the harmonic 1-forms in L2 is 2g (this follows
from the conformal invariance of the L2-norm in this setting). So such an argument
proves a weaker bound, which does not take into consideration the number of ends,
only the genus.

On the other hand, it turns out that there are forms on Σ \ {p1, . . . , pr} which
resemble ± dz

z near a pair of the pi’s. These forms are not in L2, but by using the
behavior of the ends, it is possible to show that they are in some slightly bigger
weighted L2 space L2

−δ(Σ) ⊃ L2(Σ). It does not seem possible to compare the

forms in the weighed L2 space with the L2-index in the sense of Fischer–Colbrie,
but a careful reworking of her work shows that it may be extended to the weighted
setting. A key observation is that the “weighted” index and “standard” index are
the same, because on a fixed compact set, the norms are equivalent, and hence the
min-max definition of index via the Rayleigh quotient shows that the two notions
of index agree at this scale; taking the limit as the compact set exhausts Σ proves
the equality of both notions.
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Faber-Krahn inequalities in sharp quantitative form

Guido De Philippis

(joint work with Lorenzo Brasco and Bozhidar Velichkov)

1. Introduction

Let Ω ⊂ RN be an open set with finite measure, the first eigenvalue of the Dirichlet-
Laplacian of Ω is defined by

λ(Ω) = min
u∈W 1,2

0 (Ω)

{
∫

Ω

|∇u|2 dx : ‖u‖L2(Ω) = 1

}

.

If we denote by ∆ the usual Laplace operator, λ(Ω) coincides with the smallest
real number λ for which the Helmholtz equation

−∆u = λu in Ω, u = 0, on ∂Ω,

admits non-trivial solutions.
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A classical optimization problem connected with λ is the following one: among
sets with given volume, find the one which minimizes the principal frequency λ.
Actually, balls are the (only) solutions to this problem. As λ has the dimensions
of a length to the power −2, this “isoperimetric” property can be equivalently
rewritten as

(1) |Ω|2/N λ(Ω) ≥ |B|2/N λ(B),

whereB denotes a genericN−dimensional ball and |·| stands for theN−dimensional
Lebesgue measure of a set. Moreover, equality holds in (1) if and only if Ω is a
ball. The estimate (1) is the celebrated Faber-Krahn inequality.

The fact that balls can be characterized as the only sets for which equality holds
in (1), naturally leads to consider the question of its stability. More precisely,
one would like to improve (1), by adding in its right-hand side a reminder term
measuring the deviation of a set Ω from spherical symmetry. A typical quantitative
Faber-Krahn inequality then reads as follows

(2) |Ω|2/N λ(Ω) − |B|2/N λ(B) ≥ g(d(Ω)),

where g is a modulus of continuity and Ω 7→ d(Ω) is some scaling invariant asym-
metry functional. The quest for quantitative versions like (2) is not new and has
attracted an increasing interest in the last years. To the best of our knowledge,
the first ones to prove partial results in this direction have been Hansen and Nadi-
rashvili in [10] and Melas in [12]. Both papers treat the case of simply connected
sets in dimension N = 2 or the case of convex sets in general dimensions. These
pioneering results prove inequalities like (2), with a modulus of continuity (typ-
ically a power function) depending on the dimension N and with the following
asymmetry functionals

d1(Ω) = 1− rΩ
rBΩ

, where
rΩ = inradius of Ω,

rBΩ
= radius of the ball BΩ,

like in [10], or

d2(Ω) = min

{

max{|Ω \B1|, |B2 \ Ω|}
|Ω| : B1 ⊂ Ω ⊂ B2 balls

}

,

as in [12]. It is easy to see that for general sets an estimate like (2) with the
previous asymmetry functionals can not be true (just think of a ball with a small
hole at the center). In the general case, a better notion of asymmetry is the so
called Fraenkel asymmetry, defined as

(3) A(Ω) = inf

{ |Ω∆B|
|B| : B ball such that |B| = |Ω|

}

,

where the symbol ∆ now stands for the symmetric difference between sets. For
such an asymmetry functional, Bhattacharya and Weitsman [4] and Nadirashvili
[13] indipendently conjectured the following.

Conjecture There exists a dimensional constant σ > 0 such that

(4) |Ω|2/N λ(Ω) − |B|2/N λ(B) ≥ σA(Ω)2.
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The aim of the talk is to provide a positive answer to the above conjecture, namely
we have

Theorem([5]) There exists a constant σ = σ(N), depending only on the dimension
N , such that (4) is satisfied by every open set Ω ⊂ RN with finite measure.

Let us notice that the previous result is sharp, since the power 2 on the asym-
metry can not be replaced by any smaller power. Indeed one can verify that the
family of ellipsoids

Ωε =
{

(x′, xN ) ∈ R
N : |x′|2 + (1 + ε)x2

N ≤ 1
}

, 0 < ε ≪ 1,

are such that

A(Ωε) ≃ ε and |Ωε|2/N λ(Ωε)− |B|2/N λ(B) ≃ ε2.

2. Strategy of the proof

Let us now explain the main ideas behind the proof of (4). First by an applica-
tion of the Kohler-Jobin inequality ([11]) one can show that (4) is implied by the
following inequality

(5) E(Ω)− E(B1) ≥ σA(Ω)2, for every Ω such that |Ω| = |B1|,
where σ is a dimensional constant and B1 is the ball of radius 1 and centered at
the origin. Here E(Ω) is the energy functional of Ω,

E(Ω) = min
u∈W 1,2

0 (Ω)

1

2

∫

Ω

|∇u|2 dx−
∫

Ω

u dx =
1

2

∫

Ω

|∇uΩ|2 dx −
∫

Ω

uΩ dx,

where uΩ ∈ W 1,2
0 (Ω) is the (unique) function achieving the above minimum.

Suppose now by contradiction that (5) is false. Since it is pretty easy to see
that (5) can only fail in the small asymmetry regime (i.e. on sets converging in L1

to the ball), we find a sequence of sets Ωj such that

(6) |Ωj | = |B1|, εj := A(Ωj) → 0 and E(Ωj)− E(B1) ≤ σA(Ωj)
2,

with σ as small as we wish. We now look for an “improved” sequence of sets
Uj , still contradicting (5) and enjoying some additional smoothness properties.
In the spirit of Ekeland’s variation principle, these sets will be selected through
some minimization problem. Roughly speaking we look for sets Uj which solve
the following

(7) min
{

E(Ω) +
√

ε2j + σ(A(Ω) − εj)2 : |Ω| = |B1|
}

.

One can easily show that the sequence Uj still contradict (5) and that A(Uj) →
0. Relying on the minimality of Uj, one then would like to show that the L1

convergence to B1 can be improved to a smooth convergence. If this is the case,
then the second order expansion of E(Ω) for smooth nearly spherical sets done in
[9] shows that (6) cannot hold true if σ is sufficiently small.
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The key point is thus to prove (uniform) regularity estimates for sets solving
(7). For this, first one would like to get rid of volume constraints applying some
sort of Lagrange multiplier principle to show that Uj minimizes

(8) E(Ω) +
√

ε2j + σ(A(Ω) − εj)2 + Λ |Ω|.

Then, taking advantage of the fact that we are considering a “min–min” problem,
the previous is equivalent to require that uj = uUj minimizes

1

2

∫

RN

|∇v|2 dx−
∫

RN

v dx+ Λ
∣

∣{v > 0}
∣

∣+
√

ε2j + σ(A({v > 0})− εj)2,(9)

among all functions with compact support. Since we are now facing a perturbed
free boundary type problem, we aim to apply the techniques of Alt and Caffarelli
[1] (see also [6, 7]) to show the regularity of ∂Uj = ∂{uj > 0} and to obtain the
smooth convergence of Uj to B1.

Even if this will be the general strategy, several non-trivial modifications have to
be done to the above sketched proof. In particular, although solutions to (9) enjoy
some mild regularity property, we cannot expect ∂{uj > 0} to be smooth. Indeed,
by formally computing the first order optimality condition in (9) and assuming
that B1 is the unique optimal ball for {uj > 0} in (3), one gets that uj should
satisfy
∣

∣

∣

∣

∂uj

∂ν

∣

∣

∣

∣

2

= Λ+
σ(A({uj > 0})− εj)

√

ε2j + σ(A({uj > 0})− εj)2

(

1
RN\B1

− 1B1

)

, on ∂{uj > 0},

where 1A denotes the characteristic function of a set A and ν is the outer normal
versor. This means that the normal derivative of uj is discontinuous at points
where Uj = {uj > 0} crosses ∂B1. Since classical elliptic regularity implies that if

∂Uj is C
1,γ then uj ∈ C1,γ(Uj), it is clear that the sets Uj can not enjoy too much

smoothness properties.
To overcome this difficulty, inspired by [2], we replace the Fraenkel asymmetry

with a new “distance” between a set Ω and the set of balls, which behaves like a
squared L2 distance between the boundaries, namely

(10) α(Ω) =

∫

Ω∆B1(xΩ)

∣

∣1− |x− xΩ|
∣

∣ dx,

where xΩ is the barycenter of Ω. One can then shows that

α(Ω) ≥ c(N, diam(Ω))A(Ω)2.

By exploiting the ideas described above one then obtain that

E(Ω)− E(B1) ≥ σ1(N, diamΩ)α(Ω) ≥ σ2(N, diam(Ω))A(Ω)2

for every Ω such that |Ω| = |B1|, establishing the validity of (4) for bounded sets.
In the last step of the proof one then shows how to pass from the case of general
sets to the case of bounded ones.
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Quasistatic evolution as limit of dynamic evolutions: the case of
perfect plasticity

Gianni Dal Maso

(joint work with Riccardo Scala)

The quasistatic evolution of rate independent systems has been often studied as
the limit case of viscosity driven evolutions. In this talk we present a case study of
approximation of a quasistatic evolution by dynamic evolutions, where all inertial
effects are taken into account.

We consider the quasistatic evolution problem in linearly elastic perfect plastic-
ity. In [6] it was obtained as a vanishing viscosity limit of Perzyna visco-plasticity,
Therefore we consider a dynamic model which couples dynamic visco-elasticity
with Perzyna visco-plasticity, and obtain the quasistatic case as limit when a pa-
rameter connected with the speed of the process tends to 0.

In our model the reference configuration is a bounded open set Ω ⊂ Rn with
sufficiently smooth boundary. The linearized strain Eu (the symmetric part of
the gradient of the displacement u) is decomposed as Eu = e + p, where e is the
elastic part and p is the plastic part. The stress σ = A0e + A1ė is the sum of an
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elastic part A0e and a viscous part A1ė, where A0 is the elasticity tensor, A1 is
the viscosity tensor, and ė is the derivative of e with respect to time. As usual
we assume that A0 is symmetric and positive definite, while we only assume that
A1 is symmetric and positive semidefinite, so that we are allowed to consider also
A1 = 0, which corresponds to a dynamic version of Perzyna visco-plasticity.

Assuming, for simplicity, that the mass density is identically equal to 1, the
balance of momentum leads to the equation

ü− divσ = f,

where f is the volume force. As in Perzyna visco-plasticity, another important
ingredient of the model is a convex set K in the space of deviatoric symmetric
matrices. The evolution of the plastic part is determined by the flow rule

ṗ = σD − πKσD,

where σD is the deviatoric part of σ and πK is the projection onto K, which can
be interpreted as the domain of visco-elasticity. Indeed, if σD belongs to K during
the evolution, then there is no production of plastic strain, so that, if p = 0 at the
initial time, then p = 0 for every time and the solution is purely visco-elastic.

The complete system of equations is then

Eu = e+ p,(1a)

σ = A0e+A1ėA1
,(1b)

ü− divσ = f,(1c)

ṗ = σD − πKσD,(1d)

where eA1
denotes the projection of e into the image of A1. This system is sup-

plemented by initial and boundary conditions.
Other dynamic models of elasto-plasticity with viscosity have been considered

in [1] and [2]. The main difference with respect to our model is that they couple
visco-elasticity with perfect plasticity, while we couple visco-elasticity with visco-
plasticity.

Under natural assumptions on A0, A1, f , and K we prove (see [4])existence and
uniqueness of a solution to (1) with initial and boundary conditions. In analogy
with the energy method for rate independent processes developed by Mielke (see
[5] and the references therein), we first prove that (1) has a weak formulation
expressed in terms of a sort of stability condition together with an energy balance.
The proof of the existence of a solution to this weak formulation is obtained by time
discretization. In the discrete formulation we solve suitable incremental minimum
problems and then we pass to the limit as the time step tends to 0.

Our main result concerns the behavior of the solution to system (1) as the data
of the problem become slower and slower. After rescaling time we are led to the
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study of the system

Euǫ = eǫ + pǫ,(2a)

σǫ = A0e
ǫ + ǫA1ė

ǫ
A1

,(2b)

ǫ2üǫ − divσǫ = f,(2c)

ǫṗǫ = σǫ
D − πKσǫ

D,(2d)

as ǫ tends to 0.
Under suitable assumptions we prove (see [4]) that these solutions converge,

up to a subsequence, to a weak solution of the quasistatic evolution problem in
perfect plasticity (see [6] and [3]), whose strong formulation is given by

Eu = e + p,(3a)

σ = A0e,(3b)

− divσ = f,(3c)

σD ∈ K and ṗ ∈ NKσD,(3d)

where NKσD denotes the normal cone to K at σD.
The proof of this convergence result is obtained using the weak formulation of

(1) mentioned above. We show that we can pass to the limit obtaining the energy
formulation of (3) developed in [3]. A remarkable difficulty in this proof is due to
the fact that problems (1) and (3) are formulated in completely different function
spaces.
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Examples of fractional minimal surfaces

Manuel del Pino

(joint work with Juan Dávila, Juncheng Wei)

Let 0 < s < 1. According to the notion introduced in [2] and [1], a s-minimal
(stationary) surface Σ = ∂E in Ω ⊂ RN is one that satisfies

(1) Hs
Σ(p) :=

∫

RN

χE(x) − χEc(x)

|x− p|N+s
dx = 0 for all p ∈ Σ ∩Ω.

Here χ denotes characteristic function, Ec = RN \ E. The integral is understood
in a principal value sense

Hs
Σ(p) = lim

δ→0

∫

RN\Bδ(p)

χE(x) − χEc(x)

|x− p|N+s
dx,

and it is well-defined provided that Σ is regular near p. It agrees with usual mean
curvature in the limit s → 1 by the relation

(2) lim
s→1

(1− s)Hs
Σ(p) = cNHΣ(p).

Besides, (1) is the Euler-Lagrange equation for the fractional perimeter functional
introduced in [1]

Is(E,Ω) =

∫

E∩Ω

∫

Ec

dx dy

|x− y|N+s
+

∫

E∩Ωc

∫

Ec∩Ω

dx dy

|x− y|N+s
.

Clearly a hyperplane in RN is a s-minimal surface for any s. Next in complexity
in R3 is the axially symmetric case. In the classical case, the minimal surface
equation reduces to an ODE from which the catenoid C1 is obtained:

C1 = {(x1, x2, x3) / |x3| = log(r +
√

r2 − 1), r =
√

x2
1 + x2

2 > 1}.
In [4] wa construct an axially symmetric s-minimal surface Cs for sclose to 1 in
such a way that Cs → C1 as s → 1 on bounded sets. We call this surface the
fractional catenoid. A striking feature of the surface of revolution Cs is that it
becomes at main order as r → ∞ a cone with small slope rather than having
logarithmic growth. More precisely, in [4] we have established the following:

For all 0 < s < 1 sufficiently close to 1 there exists a connected surface of
revolution Cs such that if we set ε = (1− s) then

sup
x∈Cs∩B(0,2)

dist (x,C1) ≤ c

√
ε

| log ε| ,

and, for r =
√

x2
1 + x2

2 > 2 the set Cs can be described as |x3| = f(r), where

f(r) =







log(r +
√
r2 − 1) +O

(

r
√
ε

| log ε|

)

if r < 1√
ε

r
√
ε+O(| log ε|) +O

(

r
√
ε

| log ε|

)

if r > 1√
ε
.

A plane is a s-minimal surface for any 0 < s < 1. In the classical scenario, so
is the union of two parallel planes, say x3 = 1 and x3 = −1. This is no longer the
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case when 0 < s < 1 since the nonlocal interaction between the two components
deforms them and in fact equilibria is reached when the two components diverge
becoming cones. In [4] we have built a two-sheet nontrivial s-minimal surface Ds

for s close to 1 where the components eventually become at main order the cone
x3 = ±r

√
ε.

More precisely, for all 0 < s < 1 sufficiently close to 1 there exists a two-
component surface of revolution Ds = D+

s ∪ D−
s such that if we set ε = (1 − s)

then D±
s is the graph of the radial functions x3 = ±f(r) where f is a positive

function of class C2 with f(0) = 1, f ′(0) = 0, and

f(r) =

{

1 + ε
4r

2 +O (εr) if r < 1√
ε

r
√
ε+O(1) +O (εr) if r > 1√

ε
.

We consider, for given n,m ≥ 1, and 0 < s < 1 the problem of finding a value
α > 0 such that the Lawson cone

(3) Cα = {(u, v) ∈ R
m × R

n / |v| = α|u|}
is a s-minimal surface in Rm+n \ {0}. For the classical case s = 1 we compute
directly that mean curvature of this cone is zero if and only if n = m = 1 or

n ≥ 2, m ≥ 2, α =

√

n− 1

m− 1
.

We have proven in [4] that for any given m ≥ 1, n ≥ 1, 0 < s < 1, there is a unique
α = α(s,m, n) > 0 such that the cone Cα given by (3) is an s-fractional minimal
surface. We call this Cn

m(s) the s-Lawson cone. For n = 3, C2
1 (s) is precisely

the s-minimal cone that represents at main order the asymptotic behavior of the
revolution s-minimal surfaces described above.

In [6, 5] it is proven that smooth regularity of fractional s-perimeter minimizing
surfaces except for a set of Hausdorff dimension at most N−3, improving previous
results in [1]. In [3], regularity of non-local minimizers is found up to a (N −
8)-dimensional set, whenever s is sufficiently close to 1. Thus, there remains a
conspicuous gap between the best general regularity result found so far and the
case s close to 1. We find in [4] the following result: there is a s0 > 0 such that for
each s ∈ (0, s0), all minimal cones Cn

m(s) are unstable if N = m+n ≤ 6 and stable
if N = 7 (stability is understood in the sense of second variation of s-perimeter).
This suggests that regularity only up to and (N − 7)-dimensonal set may be the
best possible for minimizers and general s.
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Nonsmooth differential geometry

Nicola Gigli

The first issue one encounters when doing analysis on metric measure spaces is the
lack of all the classical tools of differential geometry used to perform computations.

In the talk I presented some recent results of mine [1], inspired by an earlier
work of Weaver [2], which aim to build a working differential structure on metric
measure spaces. In situations where a lower Ricci curvature bound is imposed on
the space, the theory can be pushed up to the construction of Hessians, covariant
and exterior derivative and of Ricci curvature, but the talk focussed on the first
order structure which is present on general complete and separable metric spaces
equipped with a nonnegative Radon measure (X, d,m).

The crucial notion of the approach is that of L2(m)-normed L∞(m) module,
which is a structure (M, ‖ · ‖M, ·, | · |) where: (M, ‖ · ‖M) is a Banach space, · is
a multiplication of elements of M with L∞(m) functions satisfying

f(gv) = (fg)v and 1v = v for every f, g ∈ L∞(m), v ∈ M,

with 1 being the function identically equal to 1, and | · | : M → L2(m) is the
‘pointwise norm’, i.e. a map assigning to every v ∈ M a non-negative function in
L2(m) such that

‖v‖M = ‖|v|‖L2(m),

|fv| = |f ||v|, m− a.e.
for every f ∈ L∞(m) and v ∈ M,

so that in particular we have

‖fv‖M ≤ ‖f‖L∞(m)‖v‖M, for every f ∈ L∞(m) and v ∈ M.

The basic example of L2(m)-normed module is the space of L2 (co)vector fields
on a Riemannian/Finslerian manifold: here the norm ‖ · ‖M is the L2 norm and
the multiplication with an L∞ function and the pointwise norm are defined in the
obvious way.

The job that the notion of L2(m)-normed module does is to revert this procedure
and give the possibility of speaking about L2 sections of a vector bundle without
really having the bundle.

This fact is of help when trying to build a differential structure on metric
measure spaces, because it relieves from the duty of defining a tangent space at
every, or almost every, point, allowing one to concentrate on the definition of L2

(co)vector field. Then one constructs the cotangent module starting from the
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notion of Sobolev function and of weak upper gradient. Thus let S2(X) be the
class of real valued functions f on X having 2-weak upper gradient |Df | in L2(m)
and recall that the basic calculus rules for |Df | are:

|Df | = 0, m− a.e. on {f = 0}, ∀f ∈ S2(X),

|D(ϕ ◦ f)| = |ϕ′| ◦ f |Df |, ∀f ∈ S2(X), ϕ ∈ C1(R),

|D(fg)| ≤ |f ||Dg|+ |g||Df |, ∀f, g ∈ S2 ∩ L∞(X).

The idea to define the cotangent module is then to ‘pretend that it exists’ and
that for each f ∈ S2(X) and Borel set E ⊂ X the abstract object χEdf , to be
interpreted as the 1-form equal to the differential of f on E and 0 on X \ E, is
an element of such module. The definition comes via explicit construction. We
introduce the set ‘Pre-cotangent module’ Pcm as

Pcm :=
{

{(fi, Ai)}i∈N : (Ai)i∈N is a Borel partition of X ,

fi ∈ S2(X) ∀i ∈ N, and
∑

i∈N

∫

Ai

|Df |2 dm < ∞
}

and an equivalence relation on it declaring {(fi, Ai)}i∈N ∼ {(gj , Bj)}j∈N provided

|D(fi − gj)| = 0, m− a.e. on Ai ∩Bj ∀i, j ∈ N.

Denoting by [(fi, Ai)] the equivalence class of {(fi, Ai)}i∈N, the operations of ad-
dition, multiplication by a scalar and by a simple function (i.e. taking only a finite
number of values) and the one of taking the pointwise norm can be introduced as

[(fi, Ai)] + [(gj , Bj)] := [(fi + gj, Ai ∩Bj)]

λ[(fi, Ai)] := [(λfi, Ai)]
(

∑

j

αjχBi

)

· [(fi, Ai)] := [(αjfi, Ai ∩Bj)],

∣

∣[(fi, Ai)]
∣

∣ :=
∑

i

χAi |Dfi|,

and it is not difficult to see that these are continuous on Pcm/ ∼ w.r.t. the

norm ‖[fi, Ai]‖ :=
√

∫

|[(fi, Ai)]|2 dm and the L∞(m)-norm on the space of sim-

ple functions. Thus they all can be continuously extended to the completion of
(Pcm/ ∼, ‖ · ‖): we shall call such completion together with these operation the
cotangent module and denote it by L2(T ∗X). When applied to a smooth Rie-
mannian/Finslerian manifold, this abstract construction is canonically identifiable
with the space of L2 sections of the cotangent bundle T ∗X , whence the notation
chosen.

Given a Sobolev function f ∈ S2(X), its differential df is a well defined
element of L2(T ∗X), its definition being

df := [(f,X)],
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and from the properties of Sobolev functions one can verify that the differential is
a closed operator. Directly from the definition we see that |df | = |Df | m-a.e., and
with little work one can check that the calculus rules for |Df | can be improved to:

df = 0, m− a.e. on {f = 0} ∀f ∈ S2(X),

d(ϕ ◦ f) = ϕ′ ◦ fdf, ∀f ∈ S2(X), ϕ ∈ C1(R),

d(fg) = fdg + gdf, ∀f, g ∈ S2 ∩ L∞(X),

where thanks to the L∞-module structure the chain and Leibniz rules both make
sense and the locality condition is interpreted as χ{f=0}df = 0.

Once the notion of cotangent module is given, the tangent module L2(TX) can
be introduced by duality: it is the space of linear continuous maps L : L2(T ∗X) →
L1(m) satisfying

L(fω) = fL(ω), ∀ω ∈ L2(T ∗X), f ∈ L∞(m),

and it is not hard to see that it carries a canonical structure of L2(m)-normed
module as well, so that in particular for any vector field Z, i.e. every element of
the tangent module L2(TX), the pointwise norm |Z| is a well defined function in
L2(m).

Based on these grounds, a general first-order differential theory can be developed
on arbitrary metric measure spaces. Properties worth of notice are:

- In the smooth setting, for every smooth curve γ the tangent vector γ′
t is

well defined for any t and its norm coincides with the metric speed of the
curve.

A similar property holds on metric measure spaces provided one replaces
‘smooth curve’ be ‘test plan’, a rigorous meaning of this being also based
on the notion of pullback of a module.

- (co)vector fields are transformed via ‘regular’ maps between metric mea-
sure spaces as in the smooth setting, i.e. we can speak of pullback of forms
and these regular maps possess a differential acting on vector fields.

Here the relevant notion of regularity for a map ϕ from (X2, d2,m2) to
(X1, d1,m1) is to be Lipschitz and such that ϕ∗m2 ≤ Cm1 for some C > 0.

- The gradient of a Sobolev function is in general not uniquely defined and
even if so it might not linearly depend on the function, as it happens
on smooth Finsler manifolds. Spaces where the gradient ∇f ∈ L2(TX)
of a Sobolev function f ∈ S2(X) is unique and linearly depends on f are
those which, from the Sobolev calculus point of view, resemble Riemannian
manifolds among the more general Finsler ones and can be characterized
as those for which the energy E : L2(m) → [0,+∞] defined as

E(f) :=







1

2

∫

|Df |2 dm, if f ∈ S2(X),

+∞, otherwise.

is a Dirichlet form. On such spaces, the tangent module (and similarly
the cotangent one) is, when seen as Banach space, an Hilbert space and
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its pointwise norm satisfies a pointwise parallelogram identity. Thus by
polarization it induces a pointwise scalar product

L2(TX) ∋ Z,W 7→ 〈Z,W 〉 ∈ L1(m),

which we might think of as the ‘metric tensor’ on our space. It can then be
verified that for f, g ∈ L2 ∩ S2(X) the scalar product 〈∇f,∇g〉 coincides
with the Carré du champ Γ(f, g) induced by the Dirichlet form E.
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Mean curvature flow with surgery

Gerhard Huisken

The lecture describes the construction and a priori estimates for mean curvature
flow F : Mn × [0, T ) → (Nn+1, ḡ)

d

dt
F = H̄ = −Hν (MCF )

of smooth, closed mean-convex hypersurfaces in a smooth closed Riemannian man-
ifold, interrupted by surgery at finitely many times 0 = t0 < t1 < . . . tN < T , where
necks of type Sn−1× (a, b) are replaced by spherical caps of much lower curvature.

Main results are

Theorem A (joint with Carlo Sinestrari, 2009)[6])
If Mn

0 is mean convex with λi + λj > 0, i 6= j for all pairs of principal curvatures,
n ≥ 3, (N3, ḡ) = (R3, δ), then (MCF) with surgery always exists.

Theorem B (joint with Simon Brendle, 2013)[4])
If n = 2 and M2

0 is mean convex and embedded, then (MCF) with at most finitely
many surgeries always exists. If T = ∞, M2

t tends to a weakly stable minimal
surface of smaller genus than the initial surface as t → ∞.

The proof of Theorem B is based on a sharpening of the non-collapsing results
of White[7] and Andrews [1] by Brendle [2], a pseudo locality estimate, an interior
gradient estimate by Haslhofer-Kleiner [5] and new estimates on the improvement
of collapsing properties in cylindrical necks. Convergence for t → ∞ is shown
with the help of regularity results due to White [7], an interior radius estimate in
3-manifolds of Brendle and a modified monotonicity formula of Brendle [3].



Calculus of Variations 1837

References

[1] B. Andrews, Non-collapsing in mean convex mean curvature flow, preprint (2011),
arXiv:1108.0247.

[2] S. Brendle, A sharp bound for the inscribed radius under mean curvature flow, preprint
arxiv:1309.1459.

[3] S. Brendle, A monotonicity formula for mean curvature flow with surgery, preprint
arxiv:1312.0262.

[4] S. Brendle, G. Huisken, Mean curvature flow with surgery of mean convex surfaces in R3,
eprint arXiv:1309.1461v1.

[5] R. Haslhofer, B. Kleiner, Mean curvature flow of mean convex hypersurfaces, preprint
(2013).

[6] G. Huisken, C. Sinestrari, Mean curvature flow with surgery of 2-convex hypersurfaces,
Invent. Math. 175, 137–221 (2009).

[7] B. White, The nature of singularities in mean curvature flow of mean convex sets, J.
Amer.Math.Soc. 16 123–138 (2003).

Regularity of free boundaries in anisotropic capillarity problems and
the validity of Young’s law

Francesco Maggi

(joint work with G. De Philippis)

The classical description of capillarity phenomena involves the study of Gauss free
energy for a liquid inside a container, which takes the form

Hn−1(A ∩ ∂E) +

∫

∂A∩∂E

σ(x) dHn−1(x) +

∫

E

g(x) dx − l |E| .

Here A is an open set in Rn (n ≥ 2), the container of the fluid; E ⊂ A is the
region occupied by the fluid, with volume |E|; Hn−1(A ∩ ∂E) is the total surface
tension energy of the interior interface A ∩ ∂E; the surface tension between the
liquid and the boundary walls of the container is obtained by integrating over the
wetted surface ∂A ∩ ∂E the coefficient σ(x); finally, g(x) is the potential energy
density (typically, when n = 3 one considers g(x) = ρ g0 x3 where ρ is the constant
density of the fluid and g0 the gravity of Earth), and l is a Lagrange multiplier. If
M = A ∩ ∂E is smooth enough, then the equilibrium conditions are

HE + g = l on A ∩ ∂E ,(1)

νE · νA = σ on ∂A ∩ ∂E ,(2)

where νE is the outer unit normal to E and HE is the mean curvature of A∩ ∂E.
These conditions, first described by Young in [12], have then been expressed in
analytic form by Laplace in 1805; see [5]. The second condition, commonly known
as Young’s law, enforces |σ| ≤ 1 and is independent from the potential energy g.

Volume constrained minimizers of the Gauss free energy are found in the class
of sets of finite perimeter. One is thus lead to discuss a regularity problem in
order to validate (1) and (2). Interior regularity has been addressed in the classical
theory developed by De Giorgi, Federer, Almgren, and others in the Sixties: if ∂∗E
denotes the reduced boundary of the minimizer E, and we set M = closure(A ∩
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∂∗E), then there exists a closed set Σ ⊂ M such that M \ Σ is “as smooth as
g allows it to be” and Σ has Hausdorff dimension at most n − 8. The situation
concerning boundary regularity is less conclusive. Taylor [11] proved in dimension
n = 3 everywhere regularity of M at ∂A (in the more general context of (M, ξ, δ)-
minimal sets). Cafferelli and Friedman [2] addressed the sessile droplet problem
(A = {xn > 0} and g(x) = g(xn)) in the case when −1 < σ(x) < 0 for every
x ∈ {xn = 0} and 2 ≤ n ≤ 7 by mixing symmetrization arguments, barrier
techniques, interior regularity for perimeter minimizers, and the regularity theory
of free boundary problems associated to quasilinear uniformly elliptic equations.
Grüter [7, 8, 9] and Grüter and Jost [6] addressed the case when σ ≡ 0 by exploiting
reflection techniques and interior regularity.

Motivated by applications to relative isoperimetric problems in Riemannian and
Finsler geometry, one would also like to understand the regularity of minimizers
of anisotropic surface energies of the form

I(E) =

∫

A∩∂E

Φ(νE) dHn−1 +

∫

∂A∩∂E

σ dHn−1

where Φ : A × Rn → [0,∞) is such that Φ(x, ·) positively one-homogeneous and
convex on Rn for every x ∈ A. The typical assumption to obtain regularity here is
that Φ(x, ν) is l-elliptic in ν: roughly speaking, one asks that for some l ∈ (0, 1],
and for every x ∈ A and ν ∈ Sn−1,

l ≤ Φ(x, ν) ≤ 1

l
, ∇2Φ(x, ν) ≥ lId on ν⊥ .

Under this assumption, interior regularity is known since the works of Almgren [1],
and Schoen, Simon and Almgren [10]. In [3, 4] we address boundary regularity.

Theorem 1. Let ∂A ∈ C1,1, Φ be l-elliptic in ν and uniformly Lipschitz in x,
let σ ∈ Lip(Rn) be such that −Φ(x,−νA) < σ(x) < Φ(x, νA) for x ∈ ∂A, and let
E ⊂ A be such that

I(E) ≤ I(F ) + Λ |E∆F | ,
whenever F ⊂ A, E∆F ⊂⊂ Bx,r where x ∈ A and r < δ. Then E is equivalent to
an open set, ∂E ∩ ∂A is a set of finite perimeter in ∂A, and there exists a closed
set Σ ⊂ closure(A∩∂E) =: M such that M \Σ is a C1,1/2-manifold with boundary,
Hn−3(Σ) = 0, and the (anisotropic) Young’s law

∇Φ(x, νE(x)) · νA(x) = σ(x) ,

holds for every x ∈ (M \ Σ) ∩ ∂A.

As said, the fact that A ∩ (M \Σ) is a C1,1/2-manifold for a closed set Σ ⊂ M
with Hn−3(A ∩ Σ) = 0 is proved in [1, 10]: our contribution here is addressing
the situation at boundary points, namely, on M ∩ ∂A. As explained above, this
last problem was still partially open in the isotropic case, and, to the best of
our knowledge, completely open in the genuinely anisotropic case. In [3] we have
proved Theorem 1 in a weaker form, where one only concludes thatHn−2(∂A∩Σ) =
0; starting from this dimensional estimate, in [4] we have further developed our
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analysis to conclude thatHn−3(∂A∩Σ) = 0, thus matching the best known interior
regularity results.
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The structure of minimum matchings

Mircea Petrache

(joint work with Roger Züst)

1. Calibrations without orientation

We recall here the setting of the theory of calibrations (see [5], [4]). The following
is a simple proof that the shortest oriented curve connecting two points a, b ∈ Rn

is the oriented segment [a, b]. Let α be the constant coefficient differential 1-form
dual to the unit vector τ orienting [a, b]. Then for any other Lipschitz curve γ
from a to b we have

(1) lenght([a, b]) =

∫

[a,b]

α =

∫

γ

α ≤ lenght(γ) ,
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where we used the fact that dα = 0 for the middle equality and the fact that τ
realizes the maximum of α and α measures the lenght along [a, b]

(2) 〈α, τ〉 = max
τ ′∈Sn−1

〈α, τ ′〉 = 1 ,

for the remaining equality and inequality. More in general, we may apply the
same method for minimizers of the following problem. Consider the 0-current
[[X±]] :=

∑n
i=1([[x

+
i ]]− [[x−

i ]]). Consider then

(3) Fill([[X±]]) := inf

{

M(C)

∣

∣

∣

∣

C is an integer multiplicity 1-current
and ∂C = [[X±]]

}

.

This can be generalized to prove the minimality of k-dimensional oriented sub-
manifolds of Rn as well, using their duality with smooth k-forms. A calibration
of dimension k is a comass-1 closed k-form. This is one of the most robust tools
for testing the minimality of submanifolds. For more precise definitions and ex-
tensions see [5].

The above reasoning is strongly based on a linear structure, namely the duality
between k-currents and k-forms. How much of the procedure can be retrieved if
we discard part of this structure? The main goal of the work [7] which is described
in this report is to give a complete answer to this in a simple case.

2. Results

We will consider the unoriented version of (3). Let n ∈ N andX = {x1, . . . , x2n}
a set with 2n points equipped with a pseudometric d. A matching on X is a
partition π of X into n pairs of points, π = {{x1, x

′
1}, . . . , {xn, x

′
n}}. The set of

all matchings on X is denoted by M(X). We consider the minimum matching
problem for d:

(4) m(X, d) := min
π∈M(X)

∑

{x,x′}∈π

d(x, x′) .

Note that this corresponds to the minimization of mass for flat 1-chains with
coefficients in Z2. The basic observation which we made is that the dual prob-
lem for (4) uncovers a wonderful geometric structure. Namely, dual objects are
parameterized trees:

Theorem 1. For any pseudometric d on X, there is a tree-like pseudometric D
on X with D ≤ d and m(X,D) = m(X, d).

A pseudometric space (X, d) is said to be tree-like if for any choice of points
x1, x2, x3, x4 ∈ X ,

(5) d(x1, x3) + d(x2, x4) ≤ max{d(x1, x2) + d(x3, x4), d(x1, x4) + d(x2, x3)} .

(X, d) is tree-like if and only if it can be realized as a subset of a metric tree,
see [3]. Metric trees can be characterized as uniquely arcwise connected geodesic
metric spaces. Throughout these notes we will also assume that metric trees are
complete.
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3. Unoriented Kantorovich duality

Based on Theorem 1, we obtain the following:

Theorem 2 (unoriented Kantorovich duality). Let (X, d) be a pseudometric space
of cardinality 2n. Then

(6) m(X, d) = max

{

m(X, f∗dT )

∣

∣

∣

∣

f : X → (T, dT ) is 1-Lipschitz
and (T, dT ) is a metric tree

}

.

This can be compared with the following classical result (see [6] for the origi-
nating idea, and see e.g. [8, Lemma 2.2] for a proof of this precise statement). Let
(X, d) be a metric space of cardinality 2n. Let Π = {{x+

1 , . . . , x
+
n }, {x−

1 , . . . , x
−
n }}

be a partition of X into two n-ples of points. Consider µ± := 1
n

∑n
i=1 δx±

i
and

define M(Π, d) := W1(µ
+, µ−) where W1 is the 1-Wasserstein distance defined on

probability measures (cfr. [9], [1] and the references therein). By density consid-

erations, if X̃ is Polish, then giving W1 on averages of Dirac masses is the same
as giving it on the whole set of probability measures on X̃.

Note that for any 1-Lipschitz function f : X → R there holds

(7)

n
∑

i=1

f(x+
i )− f(x−

i ) = min
σ∈Sn

n
∑

i=1

dR

(

f
(

x+
i

)

, f
(

x−
σ(i)

)

)

= M(Π, f∗dR) .

Then one can compare Theorem 2 with the following:

Theorem 3 (Kantorovich duality, equivalent formulation). Let (X, d) be a metric
space of cardinality 2n. Let Π = {{x+

1 , . . . , x
+
n }, {x−

1 , . . . , x
−
n }} be a partition of X

into two n-ples of points. Then the following holds,

(8) M(Π, d) = max {M(Π, f∗dR) : f : X → R is 1-Lipschitz} .

The important difference between this theorem and Theorem 2 is that here the

minimization is done amongst a wider class of competitors. The set X has (2n)!
2nn!

matchings and once we fix a partition Π only n! of them are admissible connections
for it. Therefore there holds

(9) m(X, d) ≤ M(Π, d) ,

with a strict inequality in general. It might then look slightly surprising that, while
on the one hand in the unoriented version the minimum on the left decreased, on
the other hand in order to achieve the same number by the maximum we have
to enlarge the space of 1-Lipschitz maps competing for the dual problem on the
right, passing form R to general metric trees.

4. Global calibrations modulo 2

We now describe a consequence of Theorem 1 in the spirit of unoriented mincut-
maxflow theorems which allows to build a solid analogy with the result of the
introduction.
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A 1-Lipschitz function ρ : T → R is an orientation modulo 2 for A ⊂ T if for any
arc [a, b] ⊂ T we have J(ρ|[a,b])(t) = 1 for H1-a.e. t ∈ [a, b] ∩ A. Such orientations
for T are given for example by the distance functions t 7→ dT (p, t) for any p ∈ T .

As defined in [2], the set R1(X̃,Z2) of rectifiable 1-chains modulo 2 is composed

of chains [[Γ]], where Γ is some H1-rectifiable set Γ ⊂ X . If f : X̃ → R is Lipschitz
we can define its action on [[Γ]] as follows. Fix some countable parameterization
γi : Ki ⊂ R → γi(Ki) ⊂ Γ, i.e. Ki is compact, the images γi(Ki) are pairwise
disjoint, all γi are bi-Lipschitz and H1(Γ \ ∪iγi(Ki)) = 0. Then we define

[[Γ]](df) :=
∑

i

∫

Ki

|(f ◦ γi)′(t)| dH1(t) .

It is not hard to check that this definition does not depend on the parame-
terization and on the choice of the set Γ representing [[Γ]] as above. Further,
[[Γ]](df) ≤ Lip(f)M([[Γ]]) and if f ∈ C1(Rn) and γ : [0, 1] → Rn is Lipschitz

and injective, then [[im(γ)]](df) =
∫ 1

0 |df(γ′(t))| dt, justifying the use of df in the
definition of this action. In contrast to chains with coefficients in Z, this action
is not linear. For Lipschitz functions f, g and C,C′ ∈ R1(X̃,Z2) there holds,
C(d(f + g)) ≤ C(df) + C(dg) and (C + C′)(df) ≤ C(df) + C′(df), with strict
inequalities in general.

Consider now the problem

(10) FillZ2
([[X ]]) := inf

{

M(C)

∣

∣

∣

∣

C a 1-chain with coefficients
in Z2 and ∂C = [[X ]]

}

We next describe the dual to it. Given a closed set A ⊂ X̃ and a set X ⊂ X̃ of
even cardinality, we say that A is a Z2-cut of X if at least one of the connected
components of X̃ \A contains an odd number of points in X . Then denote

(11) CutZ2
(A,X) := #

{

connected components A′ of A
that are Z2-cuts

}

.

For a Lipschitz function ϕ : X̃ → R we define

(12) levZ2
(ϕ,X) :=

∫

R

CutZ2
(ϕ = t,X) dt .

We then consider the following real number:

(13) LevZ2
(X) := sup

{

levZ2
(ϕ) : ϕ : X̃ → R is 1-Lipschitz

}

.

For a map f : X → T defined on an even cardinality metric space X into a tree,
define

(14) AX :=
⋃

{

[f(x), f(y)]

∣

∣

∣

∣

{x, y} appears in some
minimal matching of (X, d)

}

.

The analogue of CutZ2
(A,X), levZ2

(ϕ,X) for the minimization on integral 1-

currents like in the introduction is as follows. For a closed set A ⊂ X̃ and for
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Π = {{x+
i }, {x−

i }} a partition of X into two equal parts, define the quantity

CutZ(A,Π) :=
∣

∣#A ∩ {x+
i } −#A ∩ {x−

i }
∣

∣ .

Then for a 1-Lipschitz function f : X̃ → R define

(15) levZ(f,Π) :=

∫

R

CutZ({f ≤ t},Π) dt ≤ FillZ([[X
±]]) .

If LevZ(Π) is defined to be the supremum of levZ(f,Π) among all f as above,
then we see immediately that Theorem 3 states exactly that FillZ([[X

±]]) = LevZ(Π).
For usual calibrations we have the following characterizing properties.

Proposition 4. Let X̃ be a connected Riemannian manifold with H1(X̃) = 0 and

Π be some partition {{x+
1 , . . . , x

+
n }, {x−

1 , . . . , x
−
n }} of a finite subset X of X̃. Let

C be an integer 1-chain with ∂C = [[X±]] and M(C) = Fill([[X±]]). For a flat

1-form α on X̃ the following are equivalent:

(1) α is a calibration for C.
(2) α is a calibration for any minimizer C as above.

(3) α = df for some 1-Lipschitz function f : X̃ → R for which

min
σ∈Sn

n
∑

i=1

d
(

x+
i , x

−
σ(i)

)

=
n
∑

i=1

f(x+
i )− f(x−

i ) .

(4) α = df for some 1-Lipschitz function f : X̃ → R realizing the equality
levZ(f,Π) = LevZ(Π).

We have the following analogue of the above proposition.

Proposition 5. Let X̃ be a connected Riemannian manifold with H1(X̃) = 0 and

let X ⊂ X̃ be an even cardinality set. Let C be a chain modulo 2 with ∂C = [[X ]]

and M(C) = FillZ2
([[X ]]). For a closed flat 1-form α on X̃ consider the following

statements:

(1) α has comass 1 and for a fixed C as above, C(α) = M(C).
(2) α has comass 1 and for any minimizer C as above, C(α) = M(C).

(3) α = d(ρ ◦ f), where f : X̃ → T is a 1-Lipschitz map into a finite tree
(T, dT ) such that m(X, d) = m(X, f∗dT ) and ρ is an orientation for AX

defined in (14).

(4) α = dϕ for some 1-Lipschitz function ϕ : X̃ → R realizing the equality
levZ2

(ϕ,X) = LevZ2
(X).

Then (4) ⇔ (3)Rightarrow(2)Rightarrow(1) and the other implications are false
in general.

Therefore we define:

Definition 6 (global calibrations modulo 2). Let (X̃, d) be a geodesic metric space

and let [[X ]] be a 0-boundary modulo 2 in X̃. The differential d(ρ ◦ f) for f, ρ as
above is called a global calibration modulo 2 for [[X ]].
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Figure 1. Illustrated is a 1-Lipschitz map f : R2 → T corre-
sponding to a global calibration modulo 2 for the set X displayed
by the four dots and mutual geodesics by thick lines on the left.
The dotted lines indicate some possible level sets.

5. Matching dimension

As a concrete application of our new global duality result for matchings, we prove
an incompressibility property for minimum matchings. For a metric space (X, d),
an even number k ∈ N and ǫ > 0 define the matching numbers

mk(X, d) := sup{m(X ′, d) : X ′ ⊂ X, |X ′| = k} ,

m′
ǫ(X, d) := sup{m(X ′, d) : X ′ is ǫ-separated in X} .

Depending on some geometric conditions on a metric space we give some bounds
to these matching numbers.

Proposition 7. Let (X, d) be a compact metric space and n ≥ 1. Assume that
there are constants 0 < c1 < C1 such that for every 0 < ǫ < diam(X),

c1ǫ
−n < sup{|X ′| : X ′ ⊂ X has even cardinality and is ǫ − separated} ≤ C1ǫ

−n .

Then, there is a constant c > 0 such that for all 0 < ǫ < diam(X) and all even
numbers k,

(16) mk(X, d) ≥ ck
n−1
n , and m′

ǫ(X, d) ≥ c1ǫ
1−n .

Let Y ⊂ X. Assume that Hn(X) < ∞ and that there are constants C2 > 0 and
0 < λ2 < 1

2 such that for all points x, x′ ∈ Y and all open sets U ⊂ X with

B(x, λ2d) ⊂ U and B(x, λ2d) ⊂ X \ Ū there holds

Hn−1(∂U) ≥ C2d
n−1 .

Then, there is a constant C > 0 such that for all 0 < ǫ < diam(X) and all even
numbers k,

(17) mk(Y, d) ≤ CHn(X)
1
n k

n−1

n , and m′
ǫ(Y, d) ≤ CHn(X)ǫ1−n .
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The shape of “large” conformal metrics with prescribed Gauss
curvature

Michael Struwe

1. Main result

Let (M, g0) be a closed Riemann surface of genus at least 2, endowed with a
smooth background metric g0. Following [8], [9], for a given function f ∈ C∞(M)
we consider the equation

(1) −∆g0 u+Kg0 = fe2u on M.

whose solutions induce metrics g = e2ug0 of Gauss curvature Kg = f on M . By
the uniformization theorem we may assume that g0 has constant Gauss curvature
Kg0 ≡ k0. Moreover, we normalize the volume of (M, g0) to unity.

Solutions u of (1) can be characterized as critical points of the functional

Ef (u) =
1

2

∫

M

(

|∇u|2g0 + 2k0u− fe2u
)

dµg0 , u ∈ H1(M, g0) .

Note that Ef is strictly convex and coercive on H1(M, g0) when f ≤ 0 does not
vanish identically. Hence for such f the functional Ef admits a strict absolute
minimizer u ∈ H1(M, g0) which is the unique solution of (1).

Let f0 ≤ 0 be a smooth, non-constant function, all of whose maximum points p0
are non-degenerate with f0(p0) = 0, and for λ ∈ R let fλ = f0 + λ, Eλ(u) = Efλ .
Then for λ ≤ 0 by the preceding observation Eλ admits a strict absolute minimizer
uλ ∈ H1(M, g0) which is the unique solution of (1) for fλ. Moreover, by the
implicit function theorem also for suitably small λ > 0 the functional Eλ admits
a strict relative minimizer uλ ∈ H1(M, g0), smoothly depending on λ. However,
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for λ > 0 the functional Eλ is no longer bounded from below, as can be seen by
choosing a comparison function v ≥ 0 supported in the set where fλ > λ/2 and
looking at Eλ(sv) for large s > 0. Thus, for small λ > 0 the functional Eλ exhibits
a “mountain pass” geometry and one may expect the existence of a further critical
point of saddle-type.

In fact, Ding-Liu [6] show the following result.

Theorem 1 (Ding-Liu [6]). For any smooth, non-constant function f0 ≤ 0 =
maxp∈M f0(p) consider the family of functions fλ = f0 + λ, λ ∈ R, and the
associated family of functionals Eλ(u) = Efλ(u) on H1(M, g0). There exists a
number λ∗ > 0 such that for 0 < λ < λ∗ the functional Eλ admits a local minimizer
uλ and a further critical point uλ 6= uλ not of minimum type.

Unaware of the Ding-Liu [6] result, in 2011 together with Franziska Borer and
Luca Galimberti we gave a different proof of Theorem 1, reported on in my Ober-
wolfach report [14]. This new approach crucially relies on the “entropy bound”

(2) lim inf
λ↓0

(

λ

∫

M

e2u
λ

dµg0

)

≤ 8π.

for the “large” solutions uλ that we obtained using the “monotonicity trick” from
[11], [12], [13] in a way similar to [15]. Note that the bound (2) by the Gauss-
Bonnet identity

(3) 2πχ(M) =

∫

M

fλe
2uλ

dµg0 = λ

∫

M

e2u
λ

dµg0 −
∫

M

|f0|e2u
λ

dµg0

gives a bound on the total curvature of the metrics gλ = e2u
λ

g0 as λ ↓ 0 suitably,
which allows to invoke results of Brezis-Merle [3] and others to study their blow-up
behavior. In are thus able to establish the following result.

Theorem 2 (Borer-Galimberti-Struwe [2]). Let f0 ≤ 0 be a smooth, non-constant
function, all of whose maximum points p0 are non-degenerate with f0(p0) = 0,
and for λ ∈ R also let fλ = f0 + λ, Eλ(u) = Efλ as in Theorem 1 above. There
exist I ∈ N, a sequence λn ↓ 0 and a sequence of non-minimizing critical points

un = uλn of Eλn such that for suitable r
(i)
n ↓ 0, p

(i)
n → p

(i)
∞ ∈ M with f(p

(i)
∞ ) = 0,

1 ≤ i ≤ I, the following holds.

i) We have smooth convergence un → u∞ locally on M∞ = M \ {p(i)∞ ; 1 ≤
i ≤ I}, and u∞ induces a complete metric g∞ = e2u∞g0 on M∞ of finite total
curvature Kg∞ = f0.

ii) For each 1 ≤ i ≤ I, either a) there holds r
(i)
n /

√
λn → 0 and in local conformal

coordinates around p
(i)
n we have

wn(x) := un(r
(i)
n x) − un(0) + log 2 → w∞(x) = log

( 2

1 + |x|2
)

smoothly locally in R
2, where w∞ induces a spherical metric g∞ = e2w∞gR2 of

curvature Kg∞ = 1 on R2, or b) we have r
(i)
n =

√
λn, and in local conformal
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coordinates around p
(i)
∞ with a constant c

(i)
∞ there holds

wn(x) = un(r
(i)
n x) + log(λn) + c(i)∞ → w∞(x)

smoothly locally in R2, where the metric g∞ = e2w∞gR2 on R2 has finite volume

and finite total curvature with Kg∞(x) = 1 + (Ax, x), where A = 1
2Hessf(p

(i)
∞ ).

Remark 1. i) Without the bound (2) neither the results of Brezis-Merle [3] nor
those of Martinazzi [10] can be applied to (1).

ii) Comparing the bound (2) with the threshold value 2π for blow-up at a point p0
resulting from work of Brezis-Merle [3] we see that our sequence (un) can blow up
in at most I = 4 points, regardless of how many maximum points the function f0
possesses. Thus if there are m > 4 distinct maximum points pi where f(pi) = 0, we
may conjecture that Eλ for sufficiently small λ > 0 admits multiple non-minimizing
critical points. In fact, in a recent preprint Manuel Del Pino and Carlos Román
[5] via matched asymptotic expansions achieve a construction of precisely 2m − 1
different families of solutions uλ

k , 1 ≤ k < 2m, blowing up as λ ↓ 0.
iii) We do not know if solutions of the type arising in case ii.b) exist; see Cheng-

Lin [4] for related results.
iv) In a forthcoming paper, Luca Galimberti [7] proves the analogue of Theorem

2 for a closed surface of genus 1.
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asymptotic estimate for the Ginzburg-Landau model] C. R. Acad. Sci. Paris Sr. I Math. 317
(1993), no. 7, 677-680.

[14] Struwe, Michael: Prescribed Gauss curvature on closed surfaces of higher genus, Oberwol-
fach Report 36/2012, 2261-2264.

[15] Struwe, Michael; Tarantello, Gabriella: On multivortex solutions in Chern-Simons gauge
theory. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 1, 109-121.

A regularity theorem for curvature flow of networks

Yoshihiro Tonegawa

(joint work with Neshan Wickramasekera)

We report some regularity results of general 1-dimensional Brakke curvature flow
of networks on R2 which exhibits various singularities such as triple junctions and
their collisions. Due to the singular nature of the flow, the problem is set most
naturally in the framework of varifold as was originally formulated by Brakke
[1]. We first state the definition of general Brakke mean curvature flow for any
dimension and co-dimension. Let 1 ≤ k < n be integers. A one parameter family
of k-dimensional varifolds {Vt}t≥0 in U ⊂ Rn is called Brakke mean curvature flow
if

(i) Vt is integral for a.e. t ≥ 0,
(ii) generalized mean curvature h(Vt, ·) exists for a.e. t ≥ 0 and h(Vt, ·) ∈

L2
loc(‖Vt‖ × dt),

(iii) for all 0 ≤ t1 < t2 < ∞ and φ ∈ C1
c (U × [0,∞);R+),

(1)

∫

U

φ(·, t) d‖Vt‖
∣

∣

∣

t2

t=t1
≤

∫ t2

t1

dt

∫

U

(∇φ − φh(Vt, ·)) · h(Vt, ·) +
∂φ

∂t
d‖Vt‖.

If spt ‖Vt‖ is compact in U and if we take φ such that φ = 1 on spt ‖Vt‖, we have

‖Vt2‖(U)− ‖Vt1‖(U) ≤ −
∫ t2

t1

dt

∫

U

|h(Vt, ·)|2 d‖Vt‖ ≤ 0

which shows that the total mass of varifold is monotone decreasing. The inte-
grability condition in (ii) may be considered as a natural and necessary condition
to make sense of (1). Otherwise, it is reasonable to assume that Vt vanishes
when h(Vt, ·) stops being L2 integrable with respect to space-time. Though it
may not be so obvious, the condition (iii) is equivalent to the definition of clas-
sical mean curvature flow when the varifolds are smoothly moving k-dimensional
surfaces. The general existence of such family of varifolds for any dimension and
co-dimension was studied by Brakke [1], where he proved that there exists such a
solution given any initial integral varifold with some mild finiteness assumption.
For the 1-dimensional case on the plane, there have been a number of papers on
the existence, stability and asymptotic behavior of regular network solutions. On
the other hand, much is unknown about the fine regularity property of general
Brakke curvature flow. Here we present a general regularity statement for any
1-dimensional Brakke curvature flow which may be the starting point for further
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studies on similar higher dimensional singularities. First we note that the fol-
lowing partial regularity result has been known [1, 3, 5] for any dimension and
co-dimension:

Theorem 1. In addition to {Vt}t≥0 being k-dimensional Brakke mean curvature
flow, for a.e. t ≥ 0, assume that Vt is a unit density varifold (i.e., the multiplicity
function is equals to 1, ‖Vt‖ a.e.). Then for a.e. t ≥ 0, there exists a closed
set Ct ⊂ U such that Hk(Ct) = 0. For any x ∈ U \ Ct, there exists a space-time
neighborhood O ⊂ U×R containing (x, t) such that ∪s>0 spt ‖Vs‖×{s} is a smooth
k + 1-dimensional surface in O moving by mean curvature.

The flow considered in [3] is more general and their local regularity theorem may
be also seen as a strict parabolic generalization of the Allard regularity theorem.

For one dimension, one wonders naturally if the size of the singular set Ct

may be much smaller than H1(Ct) = 0 in general. It is expected that Ct may
constitute a discrete set for most of the time and furthermore, they are regular
triple junctions meeting at 120 degrees and moving smoothly in space-time. The
result pointing toward such speculation is what we report in the following. We
report two main results, and the first one, stated rather imprecisely, is as follows.

Theorem 2. Any Brakke curvature flow sufficiently close to a static triple junction
in space-time in measure must be regular triple junctions moving by curvature.

Note that, even if a Brakke flow is close to a static triple junction in measure, it
is not apparent whether or not there may be a fine complexity persisting around
the junction point. The above theorem basically says that such phenomena cannot
occur and that the regular triple junction is in some sense a dynamical attractor
for the curvature flow. For stating above claim precisely, define one standard triple
junction

J := {(s, 0) : s ≥ 0} ∪ {(−s/2,
√
3s/2) : s ≥ 0} ∪ {(−s/2,−

√
3s/2) : s ≥ 0}

and let φ1, φ2, φ3 be non-negative smooth approximations of characteristic func-
tions

χB1/2(1,0), χB1/2(−1/2,
√
3/2), χB1/2(−1/2,−

√
3/2),

respectively, so that they are identical to each other under 120 degree rotations
centered at the origin. Define

λ :=

∫

J

φ1 dH1
(

=

∫

J

φ2 dH1 =

∫

J

φ3 dH1
)

which is close to 1 due to the definition.

Theorem 3. Given ν ∈ (0, 1) and E1 ∈ (1,∞), there exists ε = ε(ν, E1) ∈ (0, 1)
with the following. Suppose that {Vt}t∈[−2,2] is 1-dimensional Brakke curvature
flow in B2 (i.e., it satisfies (i)-(iii) with U = B2) and assume in addition that

(a) supBr(x)⊂B2, t∈[−2,2]
‖Vt‖(Br(x))

2r ≤ E1,

(b) ∃j1 ∈ {1, 2, 3} :
∫

B2
φj1 d‖V−2‖ ≤ λ(2 − ν),

(c) ∃j2 ∈ {1, 2, 3} :
∫

B2
φj2 d‖V2‖ ≥ λν,
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(d) µ :=
( ∫ 2

−2 dt
∫

B2
(dist (x, J))2 d‖Vt‖(x)

)
1
2 ≤ ε.

Then there exists a family of smooth curves {l1(t), l2(t), l3(t)}t∈[−1,1] in B1 meeting

at a(t) ∈ B1 with 120 degree angles such that spt ‖Vt‖∩B1 = ∪3
j=1lj(t). Moreover,

the deviation of ∪3
j=1lj(t) from J in C1,α norm as well as ‖a‖

C
1+α
2

are bounded

by a constant multiple (depending only on ν, E1, α) of µ.

We remark that the condition (a) is always satisfied for some finite E1 (assuming
that Vt is defined on a larger space-time domain) due to Huisken’s monotonicity
formula [2], thus it is included merely as a quantifier. The condition (b) excludes
the possibility of having two static triple junctions which are both close to J . Ob-
viously, they cannot be represented as such three curves stated in the conclusion.
The condition (c) excludes Vt ≡ 0, which happens to satisfy all the other condi-
tions trivially. The condition (d) requires Vt is close to J in L2 sense in space-time.
Such distance is an appropriate one under the weak topology of measure. The con-
clusion is that the support of ‖Vt‖ is a regular triple junction in B1 for t ∈ [−1, 1],
with the stated estimates in terms of µ.

The proof of Theorem 3 borrows ideas from [4] on the analysis of singular set
of minimal submanifolds, with a number of new and extra estimates which are
not needed for Simon’s case. The key estimate is the so called ‘no L2 concentra-
tion estimate’, which shows that the portion of L2 distance norm near the triple
junction is small with respect to µ. In the talk, an outline of proof is given as a
sequence of propositions.

By applying White’s stratification theorem [7] of mean curvature flow, we obtain
the second main result:

Theorem 4. Suppose that we have a Brakke curvature flow {Vt}t≥0 in U with
an additional property that there is no static tangent flow of density ≥ 2 at each
space-time point (x, t). Then there exists a closed set C ⊂ U × [0,∞) with par-
abolic Hausdorff dimension at most 1 such that ∪s>0 spt ‖Vs‖ × {s} is a regular
2-dimensional triple junction in U × (0,∞) \ C.

If we have the stated assumption on the static tangent flow, we either have a
unit density static line or a triple junction as a tangent flow outside of a set C
of parabolic Hausdorff dimension at most 1. In the former case, we may apply
[3, 5] to show the regularity, and in the latter case of triple junction, we apply
Theorem 3. These regularity theorems show that such regular (including regular
triple junction) points constitute an open set in space-time, thus the set C is
closed. We note that C can be further stratified into two disjoint sets, one being a
discrete set of ‘shrinking tangent flow’ and the other being the complement within
C, which is a set of ‘quasi-static tangent flow’. The detail is described in [6].
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Filling multiples of embedded cycles

Robert Young

Given a smooth curve T in RN , there is a minimal surface U with boundary T . If
we trace T twice to get a curve 2T , there is a minimal surface U ′ with boundary 2T .
One might guess that U ′ = 2U , and, by a theorem of Federer [1], this holds when
N ≤ 3, but a remarkable example of L. C. Young shows that U ′ and U may be
very different. Young [5] constructed a smooth curve T drawn on a nonorientable
surface in R4 such that areaU ′ ≈ (1+1/π) areaU . Morgan [3] and White [4] later
found other examples of this phenomenon with different multipliers. A version of
Young’s example is shown in Figure 1.

T A filling of T A filling of 2T

Figure 1. Fillings of a 1-cycle on a Klein bottle. The 1-cycle T
consists of 2k + 1 loops in alternating directions. In the middle,
we fill T with k cylindrical bands and a disc, and on the right, we
fill 2T with 2k+1 cylindrical bands with alternating orientations.

One can generalize this to arbitrary dimensions. If T is a d-cycle in R
N , we

define FV(T ) to be the minimum mass of an integral d + 1-chain with boundary
T . Young’s example can then be generalized to an example of a d-cycle in Rd+3

such that FV(T ) > FV(2T )/2.
One might ask whether the ratio FV(2T )/FV(T ) can be made arbitrarily small.

In fact, the following holds:
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Theorem 1. Let 0 < d < N be natural numbers. There is a C > 0 depending on
d and N such that if T ∈ Cd−1(R

N ;Z) is a boundary, then

FV(T ) ≤ C FV(2T ).

This theorem can be reduced to the problem of proving that any mod-2 cellular
cycle U in RN (for instance, a minimal filling of 2T ) is congruent mod-2 to an
integral cycle of comparable mass. That is,

Proposition 1. There is a c > 0, depending on d and N such that for every
mod-2 cellular d-cycle U in the unit grid in RN , there is an integral d-cycle R
such that U ≡ R (mod 2) and massR ≤ cmassU .

A weaker version of the proposition, showing that there is an R such that U ≡ R
(mod 2) and massR ≤ cmassU(logmassU), can be proved by using the Federer-
Fleming Deformation Theorem to construct a sequence of approximations of U , a
method similar to those used in [6] and [2].

To remove this factor of logmassU , we use uniform rectifiability. Uniformly
rectifiable sets were developed by David and Semmes as a quantitative version
of the notion of rectifiable sets. Recall that a set E ⊂ R

n is d-rectifiable if it
can be covered by countably many Lipschitz images of Rd. Uniform rectifiability
quantifies this by bounding the Lipschitz constants and the number of images
necessary to cover E. We introduce a decomposition of cellular cycles in RN into
sums of cellular cycles supported on uniformly rectifiable sets.

Specifically, we prove:

Theorem 2. If A ∈ Cd(τ ;Z/2) is a d-cycle in the unit grid in RN , then there are
cycles M1, . . . ,Mk ∈ Cd(τ ;Z/2) and uniformly rectifiable sets E1, . . . , Ek ⊂ RN

such that

(1) A =
∑

i Mi,
(2) suppMi ⊂ Ei,
(3) massMi ∼ |Ei|, and
(4)

∑

i |Ei| . massA.

Here, | · | represents d-dimensional Hausdorff measure.
This reduces the proof of Proposition 1 to the case where T is supported on a

uniformly rectifiable set. We then prove Proposition 1 by using a corona decom-
position to break T into pieces that are close to d-planes in RN .

Open questions

We can ask a similar question about the relationship between real filling volume
and integral filling volume. That is, if FVR(T ) is the minimum mass of a d+1-chain
with boundary T and real coefficients, then is FVR(T )/FV(T ) bounded below?

There are several related questions in geometric measure theory about the re-
lationship between real chains, integral chains, and mod-2 chains, several of which
were studied by Almgren. For instance, is the integral flat norm of a chain bounded
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in terms of its real flat norm? Is every normal mod-2 current equivalent to a nor-
mal integral current? Generalizing Theorem 2 to the context of currents rather
than cellular cycles might help answer some of these questions.
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Boundary Behavior in Mean Curvature Flow

Brian White

Consider a compact variety M ⊂ R3 that has a connected boundary, near which
M is a smooth manifold-with-boundary. Thus if ǫ is sufficiently small, then

{x ∈ M : dist (x, ∂M) ≤ ǫ}
is an annulus. We let L(M) denote the mod 2 linking number of the two boundary
components of that annulus. For example, ifM is an embedded disk, then L(M) =
0, and if M is an embedded Möbius Strip, then L(M) = 1.

Theorem 1. There exists a smooth, simple closed curve Γ ⊂ R3 with total curva-
ture < 4π and a mean curvature flow:

t ∈ R 7→ M(t) ⊂ R
3

with the following properties:

(1) At all times, ∂M(t) = Γ.
(2) At almost all times, M(t) is a compact, smoothly embedded surface.
(3) As t → −∞, M(t) converges smoothly to a compact, smoothly embedded

minimal surface M−∞ with L(M−∞) = 1.
(4) As t → ∞, M(t) converges smoothly to a compact, smoothly embedded

minimal surface M∞ with L(M∞) = 0.

Theorem 2. The flow in Theorem 1 must have one or more boundary singu-
larities. At such a singularity, the tangent flow is given by a smoothly embedded,
nonorientable, self-similarly shrinking surface Σ ⊂ R3 whose boundary is a straight
line through the origin.
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Theorem 2 makes no assertion as to whether the flow also has interior singular-
ities.

Sketch of proof of Theorem 2. By Theorem 1, there are times t0 and t1 such that
for all t < t0, the surface M(t) is isotopic to M−∞, and for all t > t1, the surface
M(t) is isotopic to M∞. Since M−∞ and M∞ are topologically different, one
or more singularities must occur in the time interval [t0, t1]. Moreover, because
L(M−∞) 6= L(M∞), there must be at least one boundary singularity.

(Note that no surgeries away from the boundary on a surface M can change
the linking number L(M).)

The tangent flow at a boundary singularity is given by a self-similar shrinker Σ
with straight line boundary through the origin.

One can show that monotonicity and the total curvature bound on Γ imply
that the Gaussian density of the flow is < 2 at each interior point, and that the
Gaussian density is < 3

2 at each boundary point. That in turn implies (with a
little work) that Σ is smoothly embedded.

Because the flow has a singularity at the space-time point in question, Σ cannot
be a half-plane. Non-orientability of Σ then follows from Theorem 3 below. �

Remark. I believe the method of proof used to show Theorem 1 actually produces
an example in which M−∞ is a Möbius Strip and M∞ is a disk. I expect such a
flow to have a boundary singularity at which the tangent flow Σ is a self-similarly
shrinking Möbius Strip (with straight line boundary).

Theorems 1 and 2 are in sharp contrast to the following theorems:

Theorem 3. Let Σ be a smoothly embedded, orientable, m-dimensional manifold-
with-boundary in Rm+1 such that ∂Σ is an (m − 1)-dimensional linear subspace
and such that Σ is a self-similar shrinker under mean curvature flow. Then Σ is
a half-plane.

Theorem 4. Let N be a mean convex, smooth, compact (m + 1)-dimensional
Riemannian-with-boundary (such as a ball in Rm+1). Let M ⊂ N be a smoothly
embedded, compact m-dimensional manifold-with-boundary such that Γ := ∂M ⊂
∂N . Let t ∈ [0,∞) 7→ M(t) be a mean curvature flow, as constructed by elliptic
regularization, with M(0) = M and with ∂M(t) ≡ Γ for all t.

Then M(t) is smooth near Γ at all times.

In other words, although the flow may have interior singularities, it can never
have boundary singularities.

Remark. Though mean curvature flow is unique up until the first singularity, it
might not be afterwards. In case of non-uniqueness, Theorem 4 does not rule out
some of the flows having boundary singularities. Rather, it asserts that there is a
natural class of flows (including those produced by elliptic regularization) for which
boundary singularities do not occur.
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These theorems are from a work in preparation. Theorems 3 and 4 are inspired
by the work of Hardt and Simon on boundary regularity for area-minimizing in-
tegral currents in codimension 1 (Annals of Math. 110 (1979), 439–486).

Reporter: Otis Chodosh
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Universidad de Chile
Correo 3
Casilla 170
Santiago
CHILE

Dr. Guido de Philippis

Institut für Mathematik
Universität Zürich
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