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Abstract. The Oberwolfach workshop Cryptography brought together sci-
entists from cryptography with mathematicians specializing in the algorith-
mic problems underlying cryptographic security. The goal of the workshop
was to stimulate interaction and collaboration that enables a holistic approach
to designing cryptography from the mathematical foundations to practical
applications. The workshop covered basic computational problems such as
factoring and computing discrete logarithms and short vectors. It addressed
fundamental research results leading to innovative cryptography for protect-
ing security and privacy in cloud applications. It also covered some practical
applications.
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Introduction by the Organisers

The goal of the workshop Cryptography, organized by Johannes Buchmann (Darm-
stadt) and Shafi Goldwasser (Boston) was to stimulate interaction and collabora-
tion between mathematicians and computer scientists that enables a holistic ap-
proach to designing cryptography from the mathematical foundations to practical
applications.

The goal of the workshop is of great importance both from a research and an
application point of view. Cryptographic schemes are of very important in practice
as they are indispensable building blocks of cyber security solutions. On the other
hand, the development of cryptography is a major scientific challenge since its
security is threatened by new attacks, for example by quantum computers, and
the protection of new applications such as cloud computing requires innovative
cryptographic models and techniques.
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The talks given at the workshop covered important recent results in the areas
relevant for the workshop.

The talks on the mathematical foundations addressed both traditional and more
recent algorithmic problems that serve as the security basis of modern cryptogra-
phy. Among the topics were new algorithms for factoring integers and computing
discrete logarithms in the multiplicative group of finite fields, problems whose hard-
ness is the foundation of current public-key cryptography. The presented results
showed that there is progress in dealing with these problems. This implies that
alternative problems must be studied. Progress with respect to a very important
alternative, the problem of finding short vectors in lattices (SVP), was the topic
of several talks at the workshop. SVP not only allows for the construction of new
encryption and signature schemes but is also the basis of most relevant advanced
cryptographic constructions. The presentations at the conference illuminated the
mathematical structure of SVP and adressed new algorithmic approaches.

The presentations on advanced cryptographic constructions covered both se-
curity and functionality aspects. For example, one of the security topics was
“quantum random oracles”. In view of the development of quantum computers it
is a fundamental task of cryptography to take such computers into account when
modelling security. The talks on cryptography with advanced functionality cov-
ered homomorphic encryption and signatures, program obfuscation, and garbled
RAMs. These techniques adress the very important problem of privacy protec-
tion when data storage and computation on these data is outsourced. The recent
breakthroughs in this area were very well represented in the talks of the workshop.

As cryptography is a topic with great real world relevance, there were finally
a number of talks that dealt with practical issues such as differential privacy,
multi-party-computation, and the practical exploitability of the TLS protocol.

The talks stimulated a very intense discussion among the participating scientists
from the different fields. This discussion lead already to further collaborations. At
the end of the workshop, the participants were very enthusiastic about its success.
They expressed the hope that the workshop will be repeated in the not too far
future.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.



Cryptography 1935

Workshop: Cryptography

Table of Contents

Antoine Joux
A simplified setting for discrete logarithms in small characteristic finite
fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1939

Benny Applebaum (joint with Jonathan Avron, Christina Brzuska)
Arithmetic Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1940

Yuval Ishai (joint with Daniel Genkin, Manoj Prabhakaran, Amit Sahai,
Eran Tromer)
Circuits Resilient to Additive Attacks with Applications to Secure
Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1941

Elette Boyle (joint with Kai-Min Chung, Rafael Pass)
Large-Scale Secure Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1942

Daniele Micciancio (joint with Michael Walter)
A New Variant of Kannan’s Lattice Enumeration Algorithm . . . . . . . . . . 1944

Sergey Gorbunov (joint with Vinod Vaikuntanathan, Daniel Wichs)
(Leveled) Fully Homomorphic Signatures from Lattices . . . . . . . . . . . . . . . 1944

Jintai Ding (joint with Chengdong Tao)
A New Algorithm for Solving the Approximate Common Divisor Problem
and Cryptanalysis of the Fully Homomorphic Encryption Schemes . . . . . 1946

Dennis Hofheinz
Compact and tightly secure cryptography in the standard model . . . . . . . . 1948

Chris Peikert
Ring switching and Bootstrapping Fully Homomorphic Encryption . . . . . 1950

Moni Naor (joint with Ben Fisch, Daniel Freund)
Physical zero knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1950
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Abstracts

A simplified setting for discrete logarithms in small characteristic
finite fields

Antoine Joux

The hardness of computing discrete logarithms in finite field has served as a foun-
dation for many public key cryptosystems. In the last two years, tremendous
progress have been made in the case of small characteristic finite fields.

In this talk, we present a simplified description of the algorithmic framework
that has been developed to solve this problem faster. This framework is an index
calculus approach that relies on two main ingredients, the definition of the exten-
sion field and the generation of multiplicative relations in this field. Given a base
field Fq, we construct its extension field Fqk in the following way: we find two poly-
nomials of low degree h0 and h1 with coefficients in Fq such that xqh1(x)− h0(x)
has an irreducible factor Ik of degree k over Fq. Let θ denotes a root of Ik and
define Fqk as Fq(θ). In the larger finite field, we know that by construction θ
satisfy the relation:

(1) θq =
h0(θ)

h1(θ)
.

Note that, it is also possible to work with an alternative definition of the form
θ = h0(θ

q)/h1(θ
q).

To generate relations, we start from the well-known identity:

(2) xq − x =
∏

α∈Fq

x− α.

Replacing x by A(θ)/B(θ) in (2) and multiplying by B(θ)q we find:

B(θ)A(θ)q −A(θ)B(θ)q = B(θ)
∏

α∈Fq

(A(θ) − αB(θ)).

Assume that A and B are two polynomials of degree at most D with coefficients
in Fq, by linearity of the Frobenius, we can replace A(θ)q by A(h0(θ)/h1(θ)) and
rewrite the equation as:

(3)
[A,B]D(θ)

h1(θ)D
=

∏

α∈P1(Fq)

(A(θ) − αB(θ)).

To make (3) more compact, we define A(θ) − αB(θ) as an alias for B(θ) when α
is the point at infinity in P1(Fq). Moreover, we let [A,B]D denote the polynomial
h1(x)

D (B(x)A(h0(x)/h1(x)) −A(x)B(h0(x)/h1(x))). We remark that [A,B]D is
a polynomial of degree at most D · (H + 1) where H denotes the maximum of
the degrees ofh0 and h1. The bracket [A,B]D has some interesting properties: it
is alternating and Fq bilinear. Using these properties, we can easily transform A
and B to make them monic and ensure that deg(A) > deg(B). In particular, this
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indicates that choosing A(X) = XD + A0(X) and B(X) = XD−1 + B0(X) with
A0 and B0 of degree D − 2 is a good way to obtain distinct equations.

Finally, remark that when [A,B]D factors into terms of degree at most D, then
(3) gives a multiplicative relation between monic irreducible polynomials of degree
at most D. Since there are approximately qD/D such polynomials and since the
above process generates at most q2(D−1) equations, it is clear that D = 0 and
D = 1 cannot be enough. Taking D = 3, we obtain an algorithm with complexity
O(q7) to obtain the logarithms of the low degree irreducibles. This is in line with
the literature on the topic.

Once this is done, we use a descent procedure to recursively express any element
of the finite field Fqk into elements represented by polynomials of lower degree.
This procedure is quite complex but ultimately leads to a quasi-polynomial time
algorithm for the discrete logarithm problem in small characteristic finite fields.

References
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Arithmetic Cryptography

Benny Applebaum

(joint work with Jonathan Avron, Christina Brzuska)

We study the possibility of computing cryptographic primitives in a fully-black-box
arithmetic model over a finite field F . In this model, the input to a cryptographic
primitive (e.g., encryption scheme) is given as a sequence of field elements, the
honest parties are implemented by arithmetic circuits which make only a black-box
use of the underlying field, and the adversary has a full (non-black-box) access to
the field. This model captures many standard information-theoretic constructions
including the classical secure multiparty protocols of [BGW88, CCD88].

We prove several positive and negative results in this model for various crypto-
graphic tasks. On the positive side, we show that, under coding-related assump-
tions, computational primitives like commitment schemes, public-key encryption,
oblivious transfer, and general secure two-party computation can be implemented
in the arithmetic model. On the negative side, we prove that garbled circuits,
multiplicative homomorphic encryption, and secure computation with low online
communication complexity cannot be achieved in this model.
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Our results reveal a qualitative difference between the standard model and the
arithmetic model, and explain, in retrospect, some of the limitations of previous
constructions.

References

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). pages
1–10, 1988.
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Circuits Resilient to Additive Attacks with Applications to Secure
Computation

Yuval Ishai

(joint work with Daniel Genkin, Manoj Prabhakaran, Amit Sahai, Eran Tromer)

We study the question of protecting arithmetic circuits against additive attacks,
which can add an arbitrary fixed value to each wire in the circuit. This extends the
notion of algebraic manipulation detection (AMD) codes, which protect informa-
tion against additive attacks, to that of AMD circuits which protect computation.

We present a construction of such AMD circuits: any arithmetic circuit C
over a finite field F can be converted into a functionally-equivalent randomized

arithmetic circuit Ĉ of size O(|C|) that is fault-tolerant in the following sense.

For any additive attack on the wires of Ĉ, its effect on the output of Ĉ can be
simulated, up to O(|C|/|F|) statistical distance, by an additive attack on just the
input and output. Given a small tamper-proof encoder/decoder for AMD codes,
the input and output can be protected as well.

We also give an alternative construction, applicable to small fields (for example,
to protect Boolean circuits against wire-toggling attacks). It uses a small tamper-
proof decoder to ensure that, except with negligible failure probability, either the
output is correct or tampering is detected.

Our study of AMD circuits is motivated by the goal of simplifying and improving
protocols for secure multiparty computation (MPC). Typically, securing MPC
protocols against active adversaries is much more difficult than securing them
against passive adversaries, who follow the protocol but try to learn additional
information from messages they receive. We observe that in simple MPC protocols
that were designed to protect circuit evaluation only against passive adversaries,
the effect of any active adversary corresponds precisely to an additive attack on
the original circuit’s wires. Thus, to securely evaluate a circuit C in the presence

of active adversaries, it suffices to apply the passive-secure protocol to Ĉ. We use
this methodology to simplify feasibility results and attain efficiency improvements
in several standard MPC models.

Our work gives rise to several open questions and directions for further re-
search. The first is to improve the security and efficiency of the construction for
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the case of small fields. In our current construction, there may be a correlation
between the input and the event that an error is detected. Such correlations pre-
vent us from applying the constructions over small fields in the context of MPC.
A second direction is to extend the study of AMD circuits to accommodate other
classes of attacks. Finally, the applications to MPC can be extended to cover
information-theoretic “constant-rate” protocols with sub-optimal security thresh-
old and computationally secure protocols.

References

[1] D. Genkin, Y. Ishai, M. Prabhakaran, A. Sahai, E. Tromer, Circuits Resilient to Additive
Attacks with Applications to Secure Computation, Proceedings of STOC 2014, 495–504.

Large-Scale Secure Computation

Elette Boyle

(joint work with Kai-Min Chung, Rafael Pass)

The notion of secure multi-party computation (MPC), introduced in the seminal
works of Yao and Goldreich, Micali and Wigderson, is one of the cornerstones in
cryptography. An MPC protocol for computing a function f allows a group of
parties to jointly evaluate f over their private inputs, with the property that an
adversary who corrupts a subset of the parties does not learn anything beyond the
inputs of the corrupted parties and the output of the function f .

An emerging area of potential applications for secure MPC is to address privacy
concerns in data aggregation and analysis to match the explosive current growth
of the amount of available data. Cryptographic techniques such as MPC for secure
function evaluation where data items are equated with servers can be utilized to
prevent unnecessary leakage of information.

However, before MPC can be effectively used to address today’s challenges,
we need protocols whose efficiency and communication requirements scale prac-
tically to the modern regime of massive data. When the data set contains tens
of thousands of users’ web traffic patterns or personal genetic information, it be-
comes unreasonable to assume any single user can provide memory, computation,
or communication resources on the order of the data of all users. When the com-
putations to be executed are lightweight, depend on a small subset of inputs, or
require small memory, it will be unacceptable to obliterate these savings to achieve
security. In this regime, the efficiency of existing solutions breaks down: either re-
quiring resources linear in the circuit representation size of the function (including
works in the line of scalable MPC [1, 2, 3, 4, 5]), or requiring parties to store and
communicate information on the order of all parties’ combined inputs (by näıve
extension of two-party protocols for RAM programs such as [6, 7, 8, 9] to the
multiparty setting).

We achieve secure multiparty computation that directly supports evaluating
RAM programs on parties’ inputs, with a protocol that preserves the per-party
memory and computation complexity requirements of the participating parties.
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Our construction is information theoretically secure against (1/3 − ǫ) statically
scheduled corruptions, within a synchronous communication network.

Theorem (Informal – Load-Balanced, Communication-Local MPC for RAM Pro-
grams) For any constant ǫ > 0, there exists an n-party statistically secure (with
error negligible in n) protocol for computing any adaptively chosen sequence of N
RAM programs Πj (that may have shared state), handling (1/3−ǫ) fraction static
corruptions making an initial use of a single broadcast per party (of polylog(n)
bits), and with the following complexities (where |x|, |y| denote input and output
size):

• Memory per party: Õ
(
|x|+maxNj=1 Space(Πj)/n

)
.

• Computation per party: Õ
(
|x|+

∑N
j=1 T ime(Πj)/n+N |y|

)
.

• Round complexity: Õ
(∑N

j=1 T ime(Πj)
)
.

where Space(Π) and T ime(Π) denote the worst-case space and runtime require-
ments of Π over different inputs. Additionally, our protocol achieves polylog(n)
communication locality, and a strong “online” load-balancing guarantee such that
at all times during the protocol, all parties’ communication and computation loads
vary by at most a multiplicative factor of polylog(n) (up to a polylog(n) additive
term).

Note that the initial one-time uses of a broadcast channel can be implemented
via execution of a broadcast protocol of choice. We separate the broadcast cost
from our protocol complexity measures to emphasize that any (existing or fu-
ture) broadcast protocol can be directly plugged in, yielding associated desirable
properties.

We additionally remark that even without considering communication local-
ity, amortization of setup over multiple RAM program executions, or the com-
munication/computation load-balancing properties achieved by our protocol, our
results already yield the first protocol whose total communication and compu-
tation complexities for securely evaluating a single RAM program Π grow as
poly(n) + Õ(T ime(Π)) while simultaneously requiring only Õ(|x| + Space(Π)/n)
memory per party. Indeed, all existing solutions either require converting the pro-
gram into a circuit representation, or require parties to maintain storage Ω(n|x|).
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A New Variant of Kannan’s Lattice Enumeration Algorithm

Daniele Micciancio

(joint work with Michael Walter)

Enumeration algorithms are the best currently known methods to solve lattice
problems, both in theory (within the class of polynomial space algorithms) and in
practice (where they are routinely used to evaluate the concrete security of lattice
cryptography). However, there is a big gap between our theoretical understanding
and the practical performance of lattice enumeration algorithms. We present a
variant of the algorithm of Kannan, matching it’s theoretical asymptotic perfor-
mance, but with much smaller overhead, comparable to the algorithms used in
practice already in relatively small dimension.

(Leveled) Fully Homomorphic Signatures from Lattices

Sergey Gorbunov

(joint work with Vinod Vaikuntanathan, Daniel Wichs)

With advances in cloud computing, an increasing amount of sensitive data is stored
and computations on them are performed remotely, raising questions of privacy of
the data and correctness of computations. Recently, a number of cryptographic
schemes have been developed to address these concerns. For example, fully ho-
momorphic encryption [1, 2] enables us to compute on encrypted data, paving the
road to achieving privacy in outsourcing. Many flavors of verifiable outsourcing
schemes have been developed to deal with the question of correctness of compu-
tations (cf. [3, 4, 5, 6] and many others). A particularly natural way to verifiably
outsource computation is through the notion of homomorphic signatures [7, 8, 9].

A homomorphic signature scheme is one where anyone can homomorphically
compute on the signatures ~σ = (σ1, σ2, . . . , σℓ) corresponding to a dataset ~µ =
(µ1, µ2, . . . , µℓ) and produce a signature σ′ for a circuit C and the result µ′ = C(~µ)
of applying C to the dataset ~µ. Given only the public key pk and the signature σ′

on the circuit C and a message µ′, anyone can verify that σ′ is indeed the result
of applying C to some set of signed messages ~µ. In order to tie the signature to
a particular dataset, we “tag” each dataset of messages, and give the tag to the
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verification algorithm as well. A key feature is that this verification can be done
without knowing the original dataset ~µ.

The signature σ′ “proves” that the computation was done correctly, in the sense
that computing a signature σ′ for any pair (C, µ′) where µ′ 6= C(~µ) is hard for
any PPT adversary. Moreover, the resulting signature is compact, namely, its size
and the time to verify it depends neither on the size of the original data or the
size of the circuit that was computed on it. This gives us a very natural, publicly
verifiable scheme to outsource computation (in an amortized setting).

However, constructions of homomorphic signatures have been few and far be-
tween. In particular:

• The initial schemes [7, 8] handled only linear functions. The state of the
art is a scheme of Boneh and Freeman [9] that can compute constant degree
polynomial functions on signed messages.
• The schemes are shown secure in the random oracle model.
• Finally, the polynomially homomorphic schemes rely on the short integer
solutions (SIS) problem on ideal lattices. In contrast, in the case of fully
homomorphic encryption, we know several solutions by now that rely on
the SIS problem on arbitrary lattices with no ideal structure.

In this work, we construct the first leveled fully homomorphic signature schemes
that can evaluate arbitrary circuits over signed data, where only the maximal depth
d of the circuit needs to be fixed a priori. The size of the evaluated signature
grows polynomially in d, but is otherwise independent of the circuit size or the
data size. Our solutions are based on the hardness of the small integer solution
(SIS) problem, which is in turn implied by the worst-case hardness of problems
in standard lattices. We get a scheme in the standard model, albeit with large
public parameters whose size must exceed the total size of all signed data. In the
random-oracle model, we get a scheme with short public parameters.

As a building block of independent interest, we introduce a new notion called
homomorphic trapdoor functions (HTDF). We show to how construct homomor-
phic signatures using HTDFs as a black box. We construct HTDFs based on the
SIS problem by relying on a recent technique developed by Boneh et al. [10] in
the context of attribute-based encryption.

Interesting open problems include removing the dependency on the circuit depth
in the evaluated signature and making the size of the public parameters indepen-
dent on the size of the dataset in the standard model.

References

[1] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169-178,
2009.

[2] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309-325, 2012.

[3] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253-1298, 2000.
[4] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract).

In STOC, 1992.



1946 Oberwolfach Report 35/2014

[5] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In STOC, pages 113-122, 2008.

[6] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space. In
STOC, 2013.

[7] Denis Xavier Charles, Kamal Jain, and Kristin Lauter. Signatures for network coding. IJI-
CoT, 2009.

[8] Dan Boneh, David Mandell Freeman, Jonathan Katz, and Brent Waters. Signing a linear
subspace: Signature schemes for network coding. In Public Key Cryptography, 2009.

[9] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions.
In EUROCRYPT, 2011.

[10] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryp-
tion, arithmetic circuit abe and compact garbled circuits. In EUROCRYPT, 2014.

A New Algorithm for Solving the Approximate Common Divisor
Problem and Cryptanalysis of the Fully Homomorphic Encryption

Schemes

Jintai Ding

(joint work with Chengdong Tao)

Approximate common divisor problem was first introduced by Howgrave-Graham
in [14]. There are several fully homomorphic encryption schemes which are based
on the approximate common divisors problem [8][9][10][19].Approximate common
divisors problem is defined as follows:

• General approximate common divisors(GACD) problem: For a
set of parameters γ, η, and ρ, given polynomial (in γ, η, and ρ) many
different integers in the form: xi = pqi + ri(i = 1, . . . , n), the problem is
to recover p, where xi are of bit length γ, p is of bit length η, ri are small
integers with the bit length no more than ρ. Here ri are called the error
terms.

A simple approach for solving GACD problem is exhaustive search on the error
terms. If ri are sufficiently small, then we can find p by exhaustive search, i.e.,
one can try every r1 and r2 and check whether gcd(x1 − r1, x2 − r2) is sufficiently
large and eventually recover p, where gcd() is the algorithm for solving the greatest
common divisor. The state of the art algorithm for computing greatest common
divisor is the Stehlè-Zimmermann algorithm with time complexity O(γ) for in-
tegers of γ bits[18]. In EUROCRYPT’12, Chen and Nguyen gave an algorithm
which provides an exponential speedup over exhaustive search to solve approxi-
mate common divisors problem [6], which is essentially based a clever exhaustive
search on the error terms through certain polynomials. However, their approach
requires very large memories. For their algorithm, they only need 2 elements in

the set of xi and the complexity is given as O(2 3

2
ργ).

In [14], Howgrave-Graham also gives a lattice approach to solve two elements
GACD problem. This approach is related to Coppersmith’s algorithm for finding
small solutions to univariate and bivariate modular equations. When ρ

γ is smaller
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than ( ηγ )
2, this approach recovers p. However, when ρ, η, γ do not satisfy the con-

straint, the approach does not degrade gracefully. Furthermore, in [7], Cohn and
Heninger analyze the multivariate generalization of Howgrave-Graham’s algorithm
for the GACD problem by using many xi. In this algorithm, the GACD problem
used in cryptography is reduced to running the LLL algorithm on a lattice basis
of high dimension and large entries to directly find all the error terms ri. How-
ever, in [6], they show that the Cohn-Heninger attack on the FHE challenges in
[8] is actually slower than exhaustive search on the challenges, and therefore much
slower than the attack in [6].

In this talk, we propose a new algorithm for solving the approximate common
divisors problem. We consider the first t integers x1, . . . , xt in GACD problem,
where t satisfies γ

t + ρ+ t log δ + 3
2 log t+ 2 < η, and δ is the root Hermit factor.

Without loss of generality, we assume that xt = max{x1, ..., xt}. Since the error
terms r1, ..., rt are small relative to p, the main ideal of our algorithm is to find a

vector u = (u1, ..., ut) such that
t∑

i=1

ui ·xi < p and ‖u‖ < 2η−ρ−1/
√
t. Assume that

we find such a vector u, then we obtain an equation over Z with the unknowns

r1, ..., rt as follows:
t∑

i=1

ui · ri =
t∑

i=1

ui · xi. By collecting sufficiently many such

vectors, we obtain r1, ..., rt through solving those integer equations with the help
of the bound of ri and the LLL algorithm, then eventually can recover p via
Euclidean algorithm. We actually find such a vector u via the LLL reduction
algorithm on the lattice L which is generated with the row vectors of the matrix:




1 x1

1 x2

. . .
...

1 xt−1

xt




.

The coordinate verctor of the shortest vector of the LLL reduction gives us a

vector u = (u1, ..., ut) satisfying
t∑

i=1

ui · ri =
t∑

i=1

ui · xi. By computer experiments,

from the LLL-reduced basis of lattice L, we can find t − 1 such vectors, which
allows us to find ri and recover p via Euclidean algorithm.

We show that our algorithm is more efficiency than the algorithm proposed in
[14] and we show that our algorithm can be used to attack the fully homomor-
phic encryption schemes, which are based on the approximate common divisors
problem.
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Compact and tightly secure cryptography in the standard model

Dennis Hofheinz

Tight security reductions. To argue for the security of a given cryptographic
scheme S, we usually employ a security reduction. That is, we try to argue that
every hypothetical adversary AS on S can be converted into an adversary AP

on an allegedly hard computational problem P . In that sense, the only way to
break S is to solve P . Of course, we are most interested in reductions to well-
investigated problems P . Furthermore, there are reasons to consider the tightness
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of the reduction: a tight reduction guarantees that AP ’s success εP in solving P
(in a reasonable metric) is about the same as AS ’s success εS in attacking S.

To explain the impact of a (non-)tight reduction in more detail, consider a
public-key encryption (PKE) scheme S that is deployed in a many-user environ-
ment. In this setting, an adversary AS on S may observe, say, nC ciphertexts gen-
erated for each of the, say, nU users. Most known security reductions in this setting
are non-tight, in the sense that εP ≤ εS

nU ·nC
. As a consequence, keylength recom-

mendations should also take nU and nC into account; no “universal” keylength
recommendations can be given for such a scheme. This is particularly problematic
in settings that grow significantly beyond initial expectations.

Tightly secure encryption and signature schemes. The construction of
tightly secure cryptographic schemes appears to be a nontrivial task. For instance,
although already explicitly considered in 2000, tightly secure PKE schemes have
only been constructed very recently.1 Moreover, the existing schemes have rather
large ciphertexts, or require large parameters.

The situation for tightly secure signature schemes is somewhat brighter, but
results are still limited. There are efficient signature schemes that are tightly
secure under “q-type” or interactive assumptions, or in the random oracle model.
There are also more recent and somewhat less efficient schemes tightly secure
under standard assumptions. Some of these latter schemes can even be converted
into tightly secure PKE schemes; however, all of the resulting schemes suffer from
asymptotically large parameters, keys, or signatures (resp. ciphertexts).

One difficulty in achieving tight security is that a tight reduction cannot afford
to modify many challenges one by one. For instance, a common strategy to prove
ciphertext indistinguishability (IND-CCA security) of a PKE scheme is to fully
randomize all challenge ciphertexts given to an adversary. If this randomization
is done via a hybrid argument over all challenge ciphertexts, randomizing one
ciphertext at a time, then the reduction becomes non-tight. On the other hand,
most existing strategies to construct efficient IND-CCA secure PKE schemes (such
as hash proof systems, lossy trapdoor functions, or more specific strategies) are
tailored towards randomizing only a single challenge ciphertext at a time.

Our contribution. We describe the first (almost) tightly secure signature and
PKE schemes that are compact, in the sense that parameters, keys, and signa-
tures (resp. ciphertexts) only contain a constant number of group elements. Our
security reduction loses only a factor of O(k), where k is the security parame-
ter. In particular, our security reduction does not degrade in the number of users
or signatures, resp. ciphertexts. The security of our schemes is based upon the
Decisional Diffie-Hellman (DDH) assumption in pairing-friendly groups.

1We note that certain earlier PKE schemes achieve at least a certain form of tight security
under nonstandard, “q-type” assumptions, or in the random oracle model.
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Ring switching and Bootstrapping Fully Homomorphic Encryption

Chris Peikert

We describe a technique for homomorphically evaluating any desired R-linear func-
tion L : R′ → R on a ciphertext over R′ (yielding a ciphertext over R), where
R,R′ are arbitrary cyclotomoic rings and R is a subring of R′. The security of the
method relies on the hardness of the ring-LWE problem over the base ring R.

We then extend the above method to give a quasi-linear Õ(λ) algorithm for
‘bootstrapping’ a somewhat (for ‘packed’ ciphertexts over a ring) into a fully ho-
momorphic one. The main technique involves switching through a sequence of ‘hy-
brid’ rings, which has the effect of homomorphically evaluating a discrete Fourier
transform on a plaintext.

Physical zero knowledge

Moni Naor

(joint work with Ben Fisch, Daniel Freund)

Is it possible to prove that two DNA-fingerprints match, or that they do not match,
without revealing any further information about the fingerprints? Is it possible to
prove that two objects have the same design without revealing the design itself?
In the digital domain, zero-knowledge is an established concept where a prover
convinces a verifier of a statement without revealing any information beyond the
statement’s validity. However, zero-knowledge is not as well-developed in the
context of problems that are inherently physical. In this paper, we are interested
in protocols that prove physical properties of physical objects without revealing
further information. The literature lacks a unified formal framework for designing
and analyzing such protocols. We suggest the first paradigm for formally defining,
modeling, and analyzing physical zero-knowledge (PhysicalZK) protocols, using
the Universal Composability framework. We also demonstrate applications of
physical zero-knowledge to DNA profiling and neutron radiography. Finally, we
explore public observation proofs, an analog of public-coin proofs in the context of
PhysicalZK.

Zero-knowledge proofs are protocols that prove an assertion without reveal-
ing any information beyond that assertion’s validity. Zero-knowledge proofs were
first introduced by Goldwasser, Micali, and Rackoff in 1985. The power of zero-
knowledge proofs is quite remarkable: anything that can be proved efficiently can
be proved with a zero-knowledge protocol, under the cryptographic assumption
that one-way functions exist (see Goldreich).

Zero-knowledge proofs have also been considered in a physical setting. A num-
ber of works have explored constructions of zero-knowledge protocols that can be
physically implemented. One goal of those works was to design protocols with sim-
ple procedures and security arguments that the participating parties could easily
understand. An added advantage of simple physical protocols is that humans can
implement them without the aid of computers. Moran and Naor give methods
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for polling people on sensitive issues using physical envelopes as an alternative
to electronic polling, where humans might not trust computers to behave hon-
estly. Many works have also addressed the incorporation of physical hardware
into broader cryptographic schemes. In some cases, these hybrid protocols achieve
efficiency or security gains that are unachievable in a standard computation model.
Examples of physically realizable functionalities that have been suggested for aid-
ing general cryptographic protocols include tamper-evidence, tamper-proof tokens,
one-time programs, and physically uncloneable functions.

Previous literature on zero-knowledge in a physical setting addressed physical
protocols for tasks that could otherwise be solved digitally. There is compara-
tively little formal work on protocols for inherently physical tasks that cannot be
solved digitally. One example that has been studied rigorously is distance bound-
ing protocols, introduced by Brands and Chaum in 1993, in which a verifier party
determines or verifies an upper bound on its physical distance to a prover party.
In 2012, Glaser, Barak, and Goldston suggested applying zero-knowledge concepts
to the task of proving that a nuclear weapon is authentic without revealing sen-
sitive information about its actual design, a problem that arises in the context of
nuclear disengagement treaties. They presented an ǫ-knowledge protocol for this
task, but did not have a rigorous framework for formally defining and analyzing
the protocol’s ǫ-knowledge security.
Our contributions. We present the first formal treatment of physical zero-know-
ledge (PhysicalZK) proofs for inherently physical claims. In our setting, a prover
convinces a verifier that an input object satisfies a given physical property. Our
framework for designing and analyzing PhysicalZK protocols uses the Universally
Composable (UC) security framework, popularly applied in analysis of hybrid pro-
tocols involving physical hardware.

Expanding on Glaser et al., we present the first PhysicalZK protocols for the
warhead verification problem, or the general task of verifying object neutron radio-
graph equality. Another application of PhysicalZK proofs is for DNA profiling in
which a prover (e.g. a suspect) convinces a verifier (e.g. the police) that its DNA
profile does not match a target profile (e.g. obtained from a crime scene) without
revealing to the verifier any further information about the profiles, and discuss
a protocol for parental testing. In particualr we adapt the Goldwasser-Sipser set
lower bound in order to obtain publcally observable protocols.

A further goal of our work is to initiate a rigorous study into the foundations of
physical zero-knowledge. We point out both differences and similarities between
physical and standard ZK where they arise. In particular, Section 3 compares the
UC properties of physical vs. digital ZK, and Section 6 explores a physical analog
of public coin proofs.
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Learning with Errors in the Exponent

Özgür Dagdelen

(joint work with Sebastian Gajek, Florian Göpfert)

We initiate the study of a novel class of group-theoretic intractability problems.
Inspired by the theory of learning in presence of errors [1] we ask if noise in the
exponent amplifies intractability. We put forth the notion of Learning with Errors
in the Exponent (LWEE) and rather surprisingly show that various attractive
properties known to exclusively hold for lattices carry over. Most notably are
worst-case hardness and post-quantum resistance. In fact, LWEE’s duality is due
to the reducibility to two seemingly unrelated assumptions: learning with errors
and the representation problem [2] in finite groups. For suitable parameter choices
LWEE superposes properties from each individual intractability problem. The
argument holds in the classical and quantum model of computation. We give the
very first construction of a semantically secure public-key encryption system in the
standard model. The heart of our construction is an “error recovery” technique
inspired by [3] to handle critical propagations of noise terms in the exponent.

Blending Group and Lattice Theory. The LWEE assumption reconciles
the group theoretic structure of discrete log related problems with the algebraic
simplicity of lattice theory. The technical idea behind the LWEE assumption
can be summarized as planting an LWE sample (~a, b = 〈~a,~s〉 + e) ∈ Z

n
q × Zq in

the exponent of a generator g of some group G of order q. That is, the LWEE
distribution consists of samples (g~a, g〈~a,~s〉+e) ∈ Gn×G where ~a is sampled uniformly
from Z

n
q , and ~s ←R χn, e ←R χ from some distribution χ. Similar to LWE,

learning with errors in the exponent comes in two versions: The search version of
LWEE asks to compute the secret vector ~s while in the decisional variant one is
supposed to distinguish g〈~a,~s〉+e from a randomly sampled group element in G.

Existential Relations. In an attempt to confine LWEE, we prove that
learning with errors in the exponent may take over the hardness from both the-
ories. While striving for the existential relation to the family of group-theoretic
assumptions, we infer a rather surprising connection to the (search) representation
problem (ℓ-SRP) introduced by Brands [2]. We give a tight reduction from ℓ-SRP
to the search version of the LWEE problem.

Looking at the decisional learning with errors in the exponent problem, we first
introduce the decisional pendant of the representation problem (ℓ-DRP): Given a
tuple g, g1, . . . , gℓ, g

x1 , . . . , gxℓ , h from G, where x1, . . . , xℓ ← χ are sampled from
some distribution χ, one cannot distinguish between Πℓ

i=1g
xi

i = h and a randomly
sampled value h in G. In the same vain as done for the k-linear assumption, we
show that ℓ-DRP becomes progressively harder to solve in generic group model.
We then give a reduction from DRP to LWEE. We note that both of our reduc-
tions from the RP problem are tight, and they hold for (necessarily non-uniform)
distributions χ, if the underlying RP holds for the representation sampled from
the same distribution.
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Investigating the relation to lattices, we show that an algorithm solving either
the search or decisional LWEE problem efficiently can be turned into a successful
attacker against the search or decisional LWE problem. Our reductions are tight
and hold for (necessarily non-uniform) distributions χ as well.

A Concrete Cryptosystem. In the light of LWEE we give a construction
of a public-key encryption scheme. One may scale the magnitude to which the
RP and LWE intractability contributes to the overall security of the system. The
selection of parameters (e.g., modulus, dimension) offers a flexibility to fine-tune
the cryptosystem’s resilience against progress in attacking the underlying RP or
LWE problem or the evolution of quantum computers. Concretely, one may choose
to make the scheme short, post-quantum secure, or double-hard.
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An Almost-Optimally Fair Three-Party Coin-Flipping Protocol

Iftach Haitner

(joint work with Eliad Tzfadia)

In a multiparty fair coin-flipping (-tossing) protocol, the parties output a common
(close to) unbiased bit, even though some corrupted parties try to bias the output.
More formally, such protocols should satisfy the following two properties: first,
when all parties are honest (i.e., follow the prescribed protocol), they all output
the same bit, and this bit is unbiased (i.e., uniform over {0, 1}). Second, even
when some parties are corrupted (i.e., collude and arbitrarily deviate from the
protocol), the remaining parties should still output the same bit, and this bit
should not be too biased (i.e., its distribution should be close to uniform over
{0, 1}). We emphasize that, unlike weaker variants of coin-flipping protocol known
in the literature, the honest parties should output a common bit, regardless of what
the corrupted parties do. In particular, they are not allowed to abort if a cheat
was noticed.

When a majority of the parties are honest, efficient and completely fair coin-
flipping protocols are known as a special case of secure multiparty computation
with an honest majority [BGW88].1 When an honest majority is not guaranteed,
however, the situation is more complex.

1Throughout, we assume a broadcast channel is available to the parties.
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Negative results. [Cle86] showed that for any efficient two-party m-round coin-
flipping protocol, there exists an efficient adversary to bias the output of the
honest party by Θ(1/m). This lower bound extends to the multiparty case via a
simple reduction.
Positive results. Assuming one-way functions exist, [Cle86] showed that a simple
m-round majority protocol can be used to derive a t-party coin-flipping protocol
with bias Θ( ℓ√

m
) (against dishonest majority), where ℓ is the number of corrupted

parties. For more than two decades, [Cle86]’s protocol was the best known fair
coin-flipping protocol (without honest majority), under any hardness assumption,
and for any number of parties. In a recent breakthrough result, [MNS09] con-
structed an m-round, two-party coin-flipping protocol with optimal bias of Θ( 1

m ).
The result holds for any efficiently computable m, and under the assumption that
oblivious transfer protocols exist. In a subsequent work, [BOO10] extended the
result of [MNS09] for the multiparty case in which less than 2

3 of the parties can be

corrupted. More specifically, for any ℓ < 2
3 · t, they presented an m-round, t-party

protocol, with bias 22ℓ−t

m against (up to) ℓ corrupted parties.

Still for the case of 2
3 (or more) corrupted parties, the best known protocol was

the Θ( ℓ√
m
)-bias majority protocol of [Cle86]. In particular, this was the state of

affairs for the natural three-party case (where two parties are corrupt).
Our result. We present an almost-optimally fair, three-party coin-flipping protocol.
Specifically, assuming the existence of oblivious transfer protocols, we show that
for any m ∈ poly there exists an m-round, three-party coin-flipping protocol, with

bias O(log2 m)
m (against one, or two, corrupted parties).

As a building block towards constructing our three-party protocol, we present
an alternative construction for two-party, almost-optimally fair coin-flipping pro-
tocols. Our approach does not follows the “threshold round” paradigm used in
[MNS09, BOO10], but rather is a variation of the aforementioned Θ( ℓ√

m
)-bias,

coin-flipping protocol of [Cle86].
Open Problems. The existence of an optimally fair three-party coin-flipping pro-
tocol (without the O(log2 m) factor) is still an interesting open question. A more
fundamental question is whether there exists a fair coin-flipping protocol for any
number of parties (against any number of corrupted parties). While constructing
(at least, almost) optimally fair, m-round coin-flipping protocols for a constant (or
even log(m)) number of parties seems within the reach of our current technique,
handling a super-logarithmic number of parties, not to mention Ω(m), seems to
require a completely new approach, and may not be possible at all.
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The Computational Benefit of Correlated Instances

Huijia Lin

(joint work with Irit Dinur, Shafi Goldwasser)

The starting point of this research is that instances of computational problems
often do not exist in isolation. Rather, multiple and correlated instances of the
same problem arise naturally in the real world. The challenge is how to gain
computationally from instance correlations when they exist. We will be interested
in settings where significant computational gain can be made in solving a sin-
gle primary instance by having access to additional auxiliary instances which are
correlated to the primary instance via the solution space.

We focus on Constraint Satisfaction Problems (CSPs), a very expressive class
of computational problems that is well-studied both in terms of approximation
algorithms and NP-hardness and in terms of average case hardness and usage for
cryptography, e.g. Feige’s random 3-SAT hypothesis, Goldreich’s one way function
proposal, learning-parity-with-noise, and others.

To model correlations between instances, we consider generating processes over
search problems, where a primary instance I is first selected according to some
distributionD (e.g. worst case, uniform, etc); then auxiliary instances I1, ..., IT are
generated so that their underlying solutions S1, ..., ST each are a “perturbation” of
a primary solution S for I. For example, St may be obtained by the probabilistic
process of flipping each bit of S with a small constant probability.

We consider a variety of naturally occurring worst case and average case CSPs,
and show how availability of a small number of auxiliary instances generated
through a natural generating process, radically changes the complexity of solv-
ing the primary instance, from intractable to expected polynomial time. Indeed,
at a high-level, knowing a logarithmic number of auxiliary instances enables a close
polynomial time approximation of the primary solution, and when in addition the
“difference vector” between the primary and the auxiliary solution is known, the
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primary solution can be exactly found. Furthermore, knowing even a single aux-
iliary instance already enables finding the exact primary solution for a large class
of CSPs.

An Algebraic Approach to Non-Malleability

Alon Rosen

(joint work with Vipul Goyal, Silas Richelson, Margarita Vald)

In their seminal work on non-malleable cryptography, Dolev, Dwork and Naor,
showed how to construct a non-malleable commitment with logarithmically-many
”rounds”/”slots”, the idea being that any adversary may successfully maul in some
slots but would fail in at least one. Since then new ideas have been introduced,
ultimately resulting in constant-round protocols based on any one-way function.
Yet, in spite of this remarkable progress, each of the known constructions of non-
malleable commitments leaves something to be desired.

We propose a new technique that allows us to to construct a non-malleable
protocol with only a single “slot”, and to improve in at least one aspect over
each of the previously proposed protocols. Two direct byproducts of our new
ideas are a four round non-malleable commitment and a four round non-malleable
zero-knowledge argument, the latter matching the round complexity of the best
known zero-knowledge argument (without the non-malleability requirement). The
protocols are based on the existence of one-way permutations (or alternatively
one-way functions with an extra round) and admit very efficient instantiations via
standard homomorphic commitments and sigma protocols.

Theorem. Assume the existence of a 2-round statistically binding commitment
scheme (which holds if and only if one-way functions exist) then there is a 4-round
non-malleable commitment scheme.

Theorem. Assume the existence of one-way functions. Then there is a 4-round
black-box non-malleable zero-knowledge argument for every language in NP .

Our analysis relies on algebraic reasoning, and makes use of error correcting
codes in order to ensure that committers’ tags differ in many coordinates. One
way of viewing our construction is as a method for combining many atomic sub-
protocols in a way that simultaneously amplifies soundness and non-malleability,
thus requiring much weaker guarantees to begin with, and resulting in a protocol
which is much trimmer in complexity compared to the existing ones.

The New Protocol. Suppose that committer C wishes to commit to message
m, and let t1, . . . , tn ∈ Z be a sequence of tags that uniquely correspond to C’s
identity (more on the tags later). Let Com be a statistically binding commitment
scheme, and suppose that m ∈ Fq where q > maxi 2

ti . The protocol proceeds as
follows:

(1) C picks random r = (r1, . . . , rn) ∈ F
n
q and sends Com(m), {Com(ri)}ni=1

to R;
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(2) R sends C a query vector alpha = (α1, . . . , αn) where each αi is drawn
randomly from

[
2ti

]
⊂ Fq;

(3) C sends R the response a = (a1, . . . , an) where ai = riαi +m;
(4) C proves in ZK that the values a (from step 3) are consistent with m and

r (from step 1).

The statistical binding property of the protocol follows directly from the binding
of Com. The hiding property follows from the hiding of Com, the zero-knowledge
property of the protocol used in step 4, and from the fact that for every i the
receiver R observes only a single pair of the form (αi, ai), where ai = riαi +m.

Note the role of C’s tags in the protocol: ti determines the size of the i−th co-
ordinate’s challenge space. Historically, non-malleable commitment schemes have
used the tags as a way for the committer to encode its identity into the protocol
as a mechanism to prevent M (whose tag is different from C’s tag) from mauling.
In our protocol the tags play the same role, albeit rather passively. For example,
though the size of the i−th challenge space depends on ti, the size of the total
challenge space depends only on the sum

∑n
i=1 ti of the tags. In particular, our

scheme leaves open the possibility that the left and right challenge spaces might
have the same size (in fact this will be ensured by our choice of tags). This raises
a red flag, as previous works go to great lengths to set up imbalances between the
left and right challenge spaces in order to force M to “give more information than
it gets”. Nevertheless, we are able to prove that any mauling attack will fail.
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The Fiat-Shamir Transformation in the Quantum Random Oracle
Model

Marc Fischlin

(joint work with Özgür Dagdelen, Tommaso Gagliardoni)

In the random oracle model (ROM) all protocol participants, including the adver-
sary, get oracle access to a random function [5, 2]. This random function repre-
sents an idealized version of a public cryptographic hash function which displays
no weaknesses, and which the parties can only use via its input/output behavior.
The ROM facilitates the design of very efficient and provably secure protocols,
although proofs in the ROM only provide heuristic security arguments in real-
ity when the idealized hash function is eventually implemented by some concrete
function.

The ROM is more and more now also applied in settings where the adversary
may have quantum power. As pointed out in [3] these quantum capabilities of
the adversary open up another attack strategy which is still compliant with the
idea that the adversary does not exploit the inner structure of the hash function.
Namely, the quantum adversary may now evaluate the concrete hash function in
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superposition. To capture such attacks in the model, Boneh et al. [3] introduced
the quantum random oracle model (QROM) in which the adversary can now ask
the random function oracle about quantum states and receives, appropriately en-
coded, all answers in superpositions. This corresponds to the adversary’s ability to
evaluate the actual hash function on a quantum machine, without exploiting any
structural properties beyond this purely technological advantage. Boneh et al. [3]
show that switching from the ROM to the QROM can indeed make cryptographic
protocols insecure.

One of the classical applications of the ROM is to turn interactive identification
protocols between a prover and a verifier into (non-interactive) signature schemes
via the Fiat-Shamir transformation [5]. If applied correctly, this transformation
yields a secure signature scheme in the ROM [7]. Here we investigate the question
if this security is also preserved in the QROM. If so, then using quantum-resistant
cryptographic primitives for the identification protocol would potentially also give
quantum-resistant signature schemes assuming idealized hash functions. Our main
result, however, is negative in this regard: Basically, if the identification protocol
is secure against so-called active attacks and the prover’s first message in the
identification protocol is independent of the secret key, then giving a security
proof for the signature scheme seems to be hard [4]. Another negative result in
this vein appears in a recent work by Ambainis et al. [1].

Nonetheless, we can provide some positive results, saying that the Fiat-Shamir
transformation also works in the QROM if the first message in the identification
protocol could have been generated by the (honest) verifier obliviously, in such a
way that only the prover could compute a matching randomness via some trapdoor
information. We use this result to conclude that a (modification of a) signature
scheme by Lubashevsky based on lattices [6] is secure in the QROM.
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Lattice Algorithms for Learning with Errors

Steven Galbraith

Lattice-based cryptography provides interesting new cryptographic functions that
are good candidates for being secure even against quantum adversaries. One of the
most versatile computational assumptions for lattices is the learning with errors
(LWE) problem [8]. An important topic is to determine the best algorithms for
this problem or special cases of it. We define a variant of it now that may be useful
to obtain efficient cryptosystems for some applications.
Definition: Let q be an odd prime and n,m ∈ N. Let s ∈ {0, 1}n or {−1, 0, 1}n
be secret (column vector) that is sampled uniformly at random. Let A be an
m× n matrix over Zq chosen uniformly at random. Let e be a length m column
vector with entries sampled from a fixed error distribution (i.e., a discrete Gaussian
with small standard deviation compared with q, or perhaps {−1, 0, 1}m). Let
b ≡ As + e (mod q). The binary-LWE distribution is the distribution on
pairs (A,b) ∈ Z

m×n
q × Z

m
q produced by the above process.

TheDecisional-binary-LWE problem is to distinguish the binary-LWE distribu-
tion from the uniform distribution. The (Computational-)binary-LWE prob-
lem on input (A,b) from the binary-LWE distribution is to compute the most
likely solution (s, e).

There are hardness results for binary-LWE due to Brakerski, Langlois, Peikert,
Regev and Stehlé [4] and Micciancio and Peikert [7]. It is necessary to take larger
values for n compared with the traditional LWE case. One can also consider ring
variants. Binary-Ring-LWE with errors in {−1, 0, 1}m is essentially the same as
the NTRU problem.

The asymptotically fastest attack on LWE is due to Blum-Kalai-Wasserman
(BKW), and it runs in time 2O(n). Albrecht, Faugère, Fitzpatrick and Perret [1]
have customised the BKW algorithm for the case of binary-LWE. The BKW al-
gorithm runs faster in this case, but the complexity is still 2O(n). One drawback
of BKW is that it needs many samples (officially it requires 2O(n) samples, but it
seems this can be relaxed in practice).

We consider lattice attacks for several reasons. One is the issue of the number
of LWE samples above. Another is because lattice algorithms usually work much
better in small dimensions than the analysis predicts. Certainly, BKW is not the
best attack on LWE for the kind of problems suggested for practical cryptosystems,
and it is not primarily how we decide parameters for given security levels.

Given an LWE instance (A,b) one considers the lattice L = {v ∈ Z
m : v ≡ As

(mod q) for s ∈ Z
n}. To solve LWE we want to find a lattice point y ≡ As

(mod q) close to b. The basic approach of lattice attacks is to first compute a
basis matrix B for the lattice L. Then run BKZ lattice basis reduction on B.
Finally, the close vector is found using the embedding technique or some kind of
enumeration (see Liu and Nguyen [6]).

Attacks on binary LWE. We now restrict to the case s ∈ {−1, 0, 1}n and e
sampled from a discrete Gaussian with standard deviation σ > 1 (our results are
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most interesting when σ is moderately large). It is clear that the lattice attack
does not exploit the fact that s is binary (it only depends on the difference e to
the nearest lattice point As (mod q)).

Hence we translate the LWE instance b = As+e (mod q), where s, e are short,
to an (n+m)×m ISIS instance

(A|Im)( s
e
) ≡ b (mod q).

However, note that ‖s‖ (which is roughly
√
n/2) is much smaller in general than

‖e‖ (which is roughly
√
mσ). Hence it is natural to try to balance the problem.

To solve this problem compute any vector y ∈ Z
m (not necessarily small) such

that Ay ≡ b (mod q) and then find a lattice point in L close to y where

L = {v ∈ Z
m : Av ≡ 0 (mod q)}.

If v is close to y then s = y− v is a short vector such that As ≡ b (mod q).
Let B be the basis matrix for L. We re-scale the problem by multiplying the

first n rows of B,v and y by σ. Then (renaming those quantities) we have

y− v = (σs
e
).

The vectors σs and e now have similar-sized entries. The effect on the lattice
problem is this: The new error vector (σs

e
) has similar norm to the original vector,

whereas the lattice volume is increased by σn. For details and security estimations
see [3].

Conclusions. The theoretical hardness results for binary-LWE require increasing
n to n log(q) ≈ n log(n) to achieve the same level of security for LWE and binary-
LWE. Our experiments suggest that this is overkill and that n log(log(n)) is more
than sufficient, however more is research needed to clarify this.

There are a number of open questions:

• Is it possible to prove binary LWE is hard for smaller values of n (in other
words, give a tighter reduction of LWE to binary-LWE)?
• Find better ways to “amplify” LWE in the case where the number of
samples is limited. Do BKW with fewer samples.
• Exploit the ring structure to get improved versions of these attacks.
• Consider cryptographic applications of binary-LWE in detail to determine
if the benefits of using binary-LWE to implement schemes are stronger
than the additional costs from using larger matrices.
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Interactive Proofs of Proximity: Delegating Computation in Sublinear
Time

Guy Rothblum

(joint work with Salil Vadhan, Avi Wigderson)

We initiate a study of interactive proofs with sublinear time verifiers. These can
be used by a sublinear-time client to delegate computations to a powerful but
untrusted prover/server.

As in the study of sublinear-time algorithms, randomness is essential. Following
the literature on property testing, we seek proof systems where the verifier accepts
inputs in a language, and rejects (with high probability) inputs that are far from
the language. We call such a system an ”interactive proof of proximity.” We
explore the power of this model, and show general upper and lower bounds.

How to Delegate Computations: The Power of No-Signaling Proofs

Yael Tauman Kalai, Ron D. Rothblum

(joint work with Ran Raz)

1. Delegation for P
We construct a 1-round delegation scheme (i.e., argument-system) for every lan-
guage computable in time t = t(n), where the running time of the prover is poly(t)
and the running time of the verifier is n · polylog(t). In particular, for every lan-
guage in P we obtain a delegation scheme with almost linear time verification. Our
construction relies on the existence of a computational sub-exponentially secure
private information retrieval (PIR) scheme.

The proof exploits a curious connection between the problem of computation
delegation and the model of multi-prover interactive proofs that are sound against
no-signaling (cheating) strategies, a model that was studied in the context of multi-
prover interactive proofs with provers that share quantum entanglement, and is
motivated by the physical principle that information cannot travel faster than
light.
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For any language computable in time t = t(n), we construct a multi-prover
interactive proof (MIP) that is sound against no-signaling strategies, where the
running time of the provers is poly(t), the number of provers is polylog(t), and the
running time of the verifier is n · polylog(t).

In particular, this shows that the class of languages that have polynomial-time
MIPs that are sound against no-signaling strategies, is exactly EXP. Previously,
this class was only known to contain PSPACE.

To convert our MIP into a 1-round delegation scheme, we use the method sug-
gested by Aiello et al. [ABOR00], which makes use of a PIR scheme. This method
lacked a proof of security. We prove that this method is secure assuming the
underlying MIP is secure against no-signaling provers.

2. Arguments of Proximity

An interactive proof of proximity (IPP) is an interactive protocol in which a prover
tries to convince a sublinear-time verifier that x ∈ L. Since the verifier runs in
sublinear-time, following the property testing literature, it is only required that
the verifier rejects inputs that are far from L. In a recent work, Rothblum et al.
[RVW13] constructed an IPP for every language computable by a low depth circuit.

We study the computational analogue, where soundness is required to hold only
against computationally bounded cheating provers, and refer to such protocols as
interactive arguments of proximity.

We construct one-round arguments of proximity for every language computable
in time t, where the running time of the verifier is o(n) + polylog(t) and the run-
ning time of the prover is poly(t). We obtain this result by following the paradigm
of Kalai et al. [KRR13a]: First, we construct a multi-prover interactive proof of
proximity (MIPP) that is sound against no-signaling strategies, which is a strong
notion of soundness inspired by quantum physics and the principal that informa-
tion cannot travel faster than light. Then we show how to convert any such MIPP

into a one-round argument of proximity.
The parameters of our protocols are similar to those obtained by Rothblum

et. al. We also give a lower bound, showing that in both cases, these parameters
are close to optimal.

Finally, we observe that any one-round argument of proximity immediately
yields a one-round delegation scheme (without proximity) where the verifier runs
in linear time.
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Garbled RAM from One-way Functions

Rafail Ostrovsky

(joint work with Sanjam Garg, Steve Lu, Alessandra Scafuro)

Consider the following concrete problem. A user U wants to store a large dataset
D on an untrusted server S and to outsource to S the ability to execute programs
P1, P2, . . . on inputs x1, x2, . . ., where the programs may modify D, such that S
does not learn anything about the inputs or how the database is being accessed
or modified, except the output of the programs. One of the simplest motivating
examples to consider is that of binary search. In this example, the running time
of insecure binary search is T = poly(logn) for n = |D|.

We can solve this problem, for example, using garbled circuits, a technique
introduced by Yao [3]. Garbled circuits allow a user to convert a circuit C into a

garbled version C̃ and an input x intro a garbled version x̃ in such a way that C̃ can
be evaluated on x̃ to reveal the output C(x) but nothing else. Crucially, C̃ can be
used one time only. Continuing with our binary search example, we can transform
the code of binary search into a circuit C that has the dataset D hardwired. Then
we compute C̃, x̃ using garbled circuits and the problem is solved. The running
time of this solution is poly(|D|, κ) where κ is the security parameter, for each
query x.

The overhead of this solution is a severe drawback. Indeed, it is exponential
in the running time T of the program. Moreover, for each new query x′, the user
needs to send a new garbled circuit C̃. In general, garbled circuits are inadequate
to solve any problem where the program that we want to garble runs in time
polylogarithmic in the size of D. We need a scheme that instead of working
with circuits (which needs the entire dataset hardwired), can interoperate with
previously stored data directly and gives an overhead that is proportional only to
the running time T of the program.

Prior works have proposed different models to address the issues of this poten-
tially exponential gap. We work in the specific RAM model where there is a RAM
(Random Access Memory) that stores the data and the program code, and a small,
stateless CPU that reads and writes to RAM. Furthermore, we are interested in a
non-interactive solution where the user U sends a single message for each program
P that S wants to run on D.

In [2] Lu and Ostrovsky introduce garbled RAM. Their construction works as
follows. The program P is decomposed into a sequence of T CPU steps and each
CPU step is represented as a circuit. Each CPU step reads and (potentially) writes
one bit of the RAM. The RAM stores the dataset D. Then the garbling works as
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follow. First the RAM is garbled in some manner with a master key k and sent
to the server S. Second, each CPU circuit is garbled, using a scheme for garbling
circuit. To enable each CPU circuit to read and write from the garbled RAM and
to communicate with the CPU circuit for the next step, all CPU circuits have
hardwired within them the secret key k that was used to garble the RAM. Indeed,
the garbled circuits communicate to each other by sending encryption of labels,
that can be decrypted by the user using the garbled values stored in the RAM.
During the computation, a location i of the RAM might be read and updated
several times. Therefore, location i is garbled using the following information: the
index i, the key k, and the time t in which the location was accessed last. Because
timestamps are used in the garbling of the RAM, it also required a mechanism
that allows the circuits to calculate the time when a location was last written.

An important property of the garbled RAM is that the main RAM,D, is garbled
only once at the beginning, and for any new query or program, the user only needs
to send one garbled circuit per CPU time step. This solution is based on the
minimal assumption of the existence of one-way functions, and the running time
and space complexity of the online garbled CPU steps is T · poly(log(n), κ).

The above solution requires a circularity assumption (see [1] for a detailed
discussion) due to a subtle technical issue that comes up in the security proof. On
a very high level the issue is the following. At each step j of the computation a
garbled circuit C̃j encrypts both labels to evaluate the next garbled circuit C̃j+1,
using two PRF evaluations under key k. The evaluator will obtain only one PRF
evaluation from the RAM, that allows to decrypt one label only. The security
of C̃j+1 relies on the fact that only one label can be decrypted by the evaluator,
therefore depends on the security of the encryption computed under a key derived
from k. However, the security of the encryption scheme relies on the fact that the
key k remains secret, and therefore depends on the security of the circuit C̃j+1

that has k hardwired. Technically, the problem is that, when arguing security of
the encryption scheme, we need to show a reduction to an adversary that does not
know k. However, to run this reduction, we need to compute the garbled circuits
{C̃l}l∈T and for that we need to know k.

To avoid this circularity assumption, [1] use the following property: the key used

to encrypt the labels for circuit C̃j+1 is independent of the keys hardwired in any

circuit C̃l for l > j+1. More specifically, [1], propose two schemes that do not need
the circularity assumption. The first solution used the following observation: the
garbled circuits need only information to encrypt, while the garbled memory needs
to store the information to decrypt. Therefore, instead of using a symmetric-key
encryption scheme, let us use a public key encryption scheme, where the garbled
circuits have only the public key hardwired (that will be known to the reduction),
while each location of the garbled memory corresponds to a special secret key that
allows to decrypt the ciphertexts computed by the garbled circuits. More precisely
their idea can be built off of Identity Based Encryption (IBE), where the circuits
have hardwired the master public key MPK, and each location i of the memory
corresponds to a secret key for identity i, t (where t is the time i was accessed
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last). This solution fixes the problem and keeps the same overhead of the original
solution, but it requires IBE which is a stronger assumption than OWFs.

The other solution proposed to dynamically “revoke” keys as the circuits access
memory locations from one time step to the next. More precisely, in the original
construction the key ki, used to encrypt the labels for a circuit that need to read
location i, is computed as the PRF evaluation under secret key k of the location
i and time t. Their idea is to revoke the point ki in the PRF evaluation once this
point has been evaluated. This construction solves the circularity problem, while
maintaining the minimal assumption of OWF. The downside of this construction
is that circuits have to remember the keys that have been revoked so far: at each
step j of computation, C̃j needs to obtain the list of j − 1 PRF points evaluated
so far. If the CPU runs for T steps, the overall cost will be T 2 · poly(log(n), κ),
and with a recursive solution, can be reduced to T ·min(T, nǫ) · poly(log(n), κ) for
any ǫ > 0.

It is left as an open problem in [1] to construct a garbled RAM based only on
OWF (without the circularity assumption) with overhead poly(log(n), κ).

Our result. In this work we resolve this open problem. First, instead of garbling
the RAM with a master key, we garble each RAM location i with an freshly sampled
random key ki ∈ {0, 1}κ. Thus we have this huge key K = k1, . . . , kn that is κn
bits, that obviously cannot be hardwired in the garbled circuits.

Thus, as second step, we store the huge key in a binary tree data structure: we
arrange the keys on the leaves and build up a tree where each internal node has
a key that allows the decryption of its two children. Thus, starting from the key
of the root, one can navigate the tree and reach any key ki in logn steps only.
Intuitively, the goal here is that each garbled circuit C̃j needs to remember only
the key of the root in order to reach any actual key ki. As a circuit navigates
the tree, it will update all the nodes visited using fresh keys. For this purpose,
each garbled circuit is equipped with logn fresh keys used to update the nodes
visited along the path towards the leaf in position i. Note that there is no need
to remember at which time a key was updated or a node navigated, because the
keys are read on the fly. The only information the circuits need to be synchronized
about is the key of the root.

The circularity problem is solved for the following reason. First, each garbled
circuit does not need to memorize any key except the root of the garbled tree.
Second, at each step, the visited path is in some sense “revoked” as it is replaced
with a fresh path. An interesting property of our solution is that it does not
requires timestamps and does not require any mechanism to remember when a
location was accessed last.

Our solution only requires poly(κ, log(n)) overhead to store the garbed tree and
poly(log(n)) additional overhead in the running time of the CPU circuit, required
to navigate the tree. Therefore it achieves the same overhead as the original
solution of [2] but without the circularity assumption.
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Lattices with symmetry, and the extended tensor algebra

Hendrik W. Lenstra, Alice Silverberg

For large ranks, there is no good algorithm that decides whether a given lattice has
an orthonormal basis. But when the lattice is given with enough symmetry, we
can construct a provably deterministic polynomial time algorithm to accomplish
this, based on an algorithm of Gentry and Szydlo in §7 of [1]. In addition, we put
the Gentry-Szydlo algorithm into a mathematical framework, and show that it is
part of a general theory of “lattices with symmetry”.

A lattice (or integral lattice) is a finitely generated abelian group L equipped
with a positive definite symmetric bilinear map 〈 , 〉 : L×L→ Z. An isometry of

lattices L
∼−→L′ is a group isomorphism respecting 〈 , 〉. Let G be a finite abelian

group equipped with an element u of order 2. We write Z〈G〉 for the modified
group ring Z[G]/(u + 1); if G = S ⊔ uS, then Z〈G〉 = ⊕

σ∈S Z · σ. We define

an involution a =
∑

σ∈G aσσ 7→ a =
∑

σ∈G aσσ
−1 of Z〈G〉, and a Z-linear map

t : Z〈G〉 → Z where t(
∑

σ∈G aσσ) = a1 − au; here aσ ∈ Z.
By a G-lattice we mean a lattice L equipped with a group homomorphism from

G to the group of self-isometries of L, written σ 7→ (x 7→ σx), such that ux = −x
(with x ∈ L). An example is L = Z〈G〉, with 〈x, y〉 = t(xy), which has S as an
orthonormal basis.

The main result is a deterministic polynomial time algorithm that given G and
a G-lattice L decides whether there is an isometry Z〈G〉 ∼−→L that respects the G-
action, and if so exhibits one. The techniques involve algorithmic algebraic number
theory, analytic number theory, commutative algebra, and lattice basis reduction,
along with the methods of Gentry and Szydlo [1] that this work extends.

The algorithm starts off by testing whether L is an invertible G-lattice, i.e.,
whether the map L ⊗Z〈G〉 L→ Z〈G〉, x ⊗ y 7→∑

σ∈S〈x, σy〉σ, is an isomorphism;

here L is a G-lattice with an isometry L
∼−→L, x 7→ x satisfying σx = σ x. If

L is invertible, one can define the ring Λ =
⊕

i∈Z
L⊗i (the “extended tensor

algebra”), where L⊗0 = Z〈G〉, L⊗i = L ⊗ L ⊗ · · · ⊗ L (with i L’s) for i > 0, and
L⊗i = L⊗L⊗ · · · ⊗L (with −i L’s) for i < 0, where ⊗ always means ⊗Z〈G〉. The
ring Λ has several useful theoretical and algorithmic properties, and forms the
natural habitat for the computational techniques proposed by Gentry and Szydlo.

See [2] for an extended abstract and see [3] for details. In future work we will
extend the theory to “CM-orders”.
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The Locality of Searchable Symmetric Encryption

Stefano Tessaro

(joint work with David Cash)

Searchable symmetric encryption (SSE) enables a client to encrypt an index of
record/keyword pairs and later issue tokens allowing an untrusted server to re-
trieve the (identifiers of) all records matching a keyword. SSE aims to hide sta-
tistics about the index to the greatest extent possible while maintaining practical
efficiency for large indexes like email repositories or personal document stores.
These schemes employ only fast symmetric primitives and recent implementations
have shown that, in contrast to most applications of advanced cryptography, cryp-
tographic processing like encryption is not the bottleneck for scaling. Instead,
lower-level issues dealing with memory layouts required by the schemes are the
limiting factor for large indexes.

This work studies how the security definitions for SSE inherently hamper scaling
for large indexes. It proves an unconditional lower bound on the trade-off between
server storage space and the spatial locality of its accesses to the encrypted index
during a search. At a high level, the bound says that, for an index withN pairs, any
secure SSE must either pad the encrypted index to an impractical (super-linear,
ω(N)) size or perform searching in a very non-local way (with ω(1) contiguous
accesses or by reading far more bits than is necessary). Either of these options
is likely to incur a large slow-down over a properly designed plaintext searching
system with an O(N)-size index that can search with O(1) contiguous accesses.

The issue of locality in SSE surfaced in recent works where implementations
showed that the non-local use of external storage was a bottleneck preventing
scaling to large indexes. The only works with a highly local access pattern gener-
ated very large (roughly O(N2)) encrypted databases that also prevented scaling.
This paper explains this dichotomy of padding versus spatial locality by proving
it is an unavoidable consequence of the SSE security definition. As more crypto-
graphic applications are developed for securely outsourcing large amounts of data
(while maintaining either authenticity or secrecy), lower-level issues like locality
may become more relevant. While in some contexts (like secure multiparty com-
putation) it is clear that the entire input must be touched during computation,
this work appears to be the first to study of the effect of security on locality in
detail.
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The lower bound suggests the question of a matching upper bound. We give
a new scheme with an O(N logN) size encrypted index and O(logN) locality
via a different padding strategy, which compares to a scheme with a O(N2) size
encrypted index and O(1) locality. This scheme may not be competitive with
prior highly-optimized implementations, but it serves as intermediate point in the
trade-off curve implied by the lower bound. The interesting question of closing
the gap is left open.

A Surprising Application of Differential Privacy

Cynthia Dwork

(joint work with Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold,
Aaron Roth)

False discovery is widely felt to be a growing problem in scientific research, and
the past few decades have seen a great deal of effort to understand and propose
mitigations for this problem. These efforts range from the use of holdout sets for
estimating generalization error in machine learning, through sophisticated cross-
validation techniques, to the use of deep statistical methods for controlling the false
discovery rate in multiple hypothesis testing. Nonetheless, the theory surrounding
this body of work assumes a fixed collection of hypotheses to be tested, or learning
task to be achieved, selected non-adaptively before the data are gathered, whereas
science is by definition an adaptive process, in which data are shared and re-used,
and hypotheses and new studies are generated on the basis of data exploration
and previous outcomes.

Although not usually understood in these terms, Freedman’s paradox exempli-
fies the dangers of adaptivity: an equation is fitted, variables with small t statistics
are dropped, and the – adaptively generated – new equation is refitted, with fa-
mously misleading results. When the relationship between the dependent and
explanatory variables is weak, or even non-existent, the procedure overfits, erro-
neously “finding” significant relationships. We may think of this as generating a
hypothesis for which the actual database is not representative of the distribution
from which the database was drawn.

Differential privacy is a definition of privacy tailored to privacy-preserving data
analysis [DMNS06, Dwo06]. A rapidly growing literature contains highly accurate
differentially private algorithms for a broad range of common computational tasks.
Roughly speaking, differential privacy ensures that the probability of observing
any outcome from an analysis is “essentially unchanged” by changing any single
database element. Here the probability distribution is over randomness introduced
by the algorithm. Differentially private algorithms avoid overfitting because they
do not rely too heavily on individual database elements.

Using insights derived from differential privacy we address the issue of adap-
tivity. We show that differentially private data exploration makes it hard to find
a computation on which the data set is not representative. More precisely, it en-
sures that interacting with the data set yields no appreciable advantage in finding
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such a computation, beyond what can be done without interacting with the data
set. Thus, differential privacy neutralizes the risks due to adaptivity. A deeper
examination of this phenomenon shows that the same holds whenever the data
analyst’s choice of the next computation to be carried out, or hypothesis to be
tested, does not reveal too much information about the database. We formalize
this sufficient condition with max information, a cross between mutual information
and min entropy. Differential privacy is known to control the max information.

A common practice in machine learning is to use a holdout set to estimate the
quality of the result of an analysis. For example, if the analysis learns a classifier
then the holdout may be used to estimate the generalization error. In abstract
and very simple terms, we can think of the holdout set as providing an oracle
that makes Yes/No pronouncements on the validity of the outcome. The theory of
holdout sets under adaptive computations is not developed: when can a holdout
set be reused? What is to be done if the holdout indicates the outcome is not
valid? Similarly, what is to be done when cross-validation procedures indicate
a problematic outcome? The traditional approach is to recruit new data points
sampled from the same distribution, which can be prohibitive when gathering new
data is costly. In particular, this approach precludes sharing data sets for follow-up
studies.

Our work provides a method for safely reusing a holdout set a great many times
without undermining its accuracy as a validity oracle, even when hypotheses and
computations are chosen adaptively. Armed with this technique, the analyst is free
to explore the data ad libitum, generating and evaluating hypotheses and choosing
new algorithms, verifying results on the holdout, and backtracking as needed.

This is achieved by partitioning the data into a training set and a holdout.
The analyst is given unfettered access to the training set. Once she has reached
her (possibly tentative) conclusions, she may check them against the holdout set;
however, interactions with the holdout set are carried out in a differentially private
fashion. The analyst is free to repeat this procedure a great – but not arbitrarily
– many times.

By viewing the training set as part of the analyst’s program, this setup is
equivalent to an “expanded” analyst who interacts in a differentially private fashion
with a data set. To be specific, the expanded analyst, who now has the training
set hard-coded into her program, interacts with a differentially private holdout set.
Since differential privacy neutralizes the risks inherent in adaptivity, the holdout
set remains representative, that is, it serves the role of a “fresh” holdout set every
time it is used.

References

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In TCC ’06, pages 265–284, 2006.

[Dwo06] C. Dwork. Differential privacy. In Proceedings of the 33rd International Colloquium
on Automata, Languages and Programming (ICALP)(2), pages 1–12, 2006.



1970 Oberwolfach Report 35/2014

On Virtual Grey Box Obfuscation for General Circuits

Omer Paneth

(joint work with Nir Bitansky, Ran Canetti, Yael Tauman Kalai)

Program obfuscation, namely the ability to efficiently compile a given program into
a functionally equivalent program that is “unintelligible”, is an intriguing concept.
Starting with the work of Barak et al. [2], a number of measures of security for
program obfuscation have been proposed. Let us briefly review three notions of
interest.

The first, virtual black box (VBB) obfuscation [2], requires that having access
to the obfuscated program is essentially the same as having access to the program
only as black box. Concretely, representing programs as circuits, an obfuscator
O for a family of circuits is VBB if for any poly-time adversary A, there exists
a poly-time simulator S, such that for any circuit C from the family, and any
predicate π(·), A cannot learn π(C) from O(C) with noticeably higher probability
than S can, given only oracle access to C. While this VBB obfuscation is natural
and expressive, Barak et al. [2] showed that VBB is, in general, unobtainable.

A weaker variant of VBB, called virtual grey-box (VGB) [1], allows the sim-
ulator to be semi-bounded; namely, it can be computationally unbounded, while
still making only a polynomial number of oracle queries to the circuit C. While
significantly weaker than VBB in general, VGB is still meaningful for circuits that
are unlearnable even by semi-bounded learners. Furthermore, VGB obfuscators
for circuits escape the general impossibility results that apply to VBB obfuscators.

A weaker notion yet, called indistinguishability obfuscation (IO) [2], allows the
(now computationally unbounded) simulator to also make an unbounded number
of queries to C. Equivalently, O is an IO for a circuit collection if for any two
circuits C0 and C1 in the collection, having the same size and functionality, O(C0)
and O(C1) are indistinguishable.

While IO has some attractive properties, and important cryptographic applica-
tions, the security guarantees provided by IO seem significantly weaker than those
provided by either VBB or VGB obfuscation.

On the algorithmic level, for many years we had candidate obfuscators only
for very simple functions such as point functions and variants. The landscape
has changed completely with the recent breakthrough work of [6], which proposed
a candidate general-purpose obfuscation algorithm for all circuits. [6] show that
their scheme resists some simple attacks; but beyond that, they do not provide
any analytic evidence for security.

Subsequently, considerable efforts have been made to analyze the security of
the obfuscator in [6], and variants. The difficulty appears to be in capturing the
security properties required from the graded encodings schemes [5], which is a
central component in the construction. As a first step towards understanding the
security of the obfuscator in [6], [4, 3] consider an ideal algebraic model, where
the adversary is given “generic graded encodings” that can only be manipulated
via admissible algebraic operations. They show that, in this model, variants of
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the scheme in [6] are VBB obfuscators for all poly-size circuits. Still, neither of
these idealized constructions or their analyses have, in of themselves, any bearing
on the security of obfuscation algorithms in the plain model.

Pass et al. [7] make the first step towards proving the security of a general
obfuscation scheme based on some natural hardness assumption in the plain model.
They define a semantic security property for graded encoding schemes, aimed at
capturing what it means for a graded encoding scheme to “behave as an ideal
multi-linear graded encoding oracle”. They then show that a specially-crafted
variant of the obfuscator of [3], with the ideal graded encoding scheme replaced
by a semantically-secure graded encoding scheme, is IO for all circuits. But what
about stronger security notions?

In this work, we obtain worst-case VGB obfuscation for NC1, based on a slight
strengthening of the assumptions used in [7] to show IO for NC1. As an in-
termediate step towards this goal, we put forth a somewhat stronger variant of
indistinguishability obfuscation, called strong IO (SIO). Informally, an obfuscator
O is SIO for a class of circuits C if O(C) ≈ O(C′) not only when C,C′ ∈ C have
the same functionality, but also when C and C′ come from distributions over cir-
cuits in C that are “close together”, in the sense that for any given input x, the
probability that C(x) 6= C′(x) is negligible.

We show that SIO is in fact equivalent to worst-case VGB obfuscation. Fur-
thermore, for certain classes of functions, such as point functions, hyperplanes, or
fuzzy point functions, SIO is equivalent to full-fledged worst-case VBB obfusca-
tion. These equivalences hold unconditionally. Then, assuming existence of graded
encoding schemes that satisfy a somewhat stronger variant of the semantic secu-
rity notion of Pass et al. [7], we show that known obfuscation schemes are SIO for
all circuits in NC1.

We also give evidence for the necessity of semantically-secure graded encoding
for obtaining VGB. Specifically we show that, assuming existence of VGB obfus-
cators for all circuits, there exist mutlilinear jigsaw puzzles satisfying a form of se-
mantic security. Multilinear jisaw puzzles, defined in [6], are a limited-functionality
variant of multilinear maps. They suffice for obtaining the positive result described
above.
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Indistinguishability Obfuscation from Semantically-Secure Multilinear
Encodings

Rafael Pass

(joint work with Karn Seth, Sidharth Telang)

The goal of program obfuscation is to “scramble” a computer program, hiding its
implementation details (making it hard to “reverse-engineer”), while preserving
the functionality (i.e, input/output behavior) of the program. Precisely defining
what it means to “scramble” a program is non-trivial: on the one hand, we want a
definition that can be plausibly satisfied, on the other hand, we want a definition
that is useful for applications.

Hada [Had00] and Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and
Yang [BGI+01] show that simulation-based notion such as virtual black-box obfus-
cation (VBB) [BGI+01]—which, roughly speaking, require that everything that
can be learn from the code of the obfuscated program can be simulated using just
black-box access to the functionality—run into strong impossibility results.

We here focus on the notion of indistinguishability obfuscation, first defined by
Barak et al. [BGI+01] and explored by Garg, Gentry, Halevi, Raykova, Sahai,
and Waters [GGH+13b]. Roughly speaking, this notion requires that obfuscations
O(C1) and O(C2) of any two equivalent circuits C1 and C2 (i.e., whose outputs
agree on all inputs) from some class C are computationally indistinguishable. In a
very recent breakthrough result, Garg, Gentry, Halevi, Raykova, Sahai, and Wa-
ters [GGH+13b] provided the first candidate constructions of indistinguishability
obfuscators for all polynomial-size circuits, based on so-called multilinear graded
encodings [GGH13a]—for which candidate constructions were recently discovered
in the seminal work of Garg, Gentry and Halevi [GGH13a], and more recently,
alternative constructions were provided by Coron, Lepoint and Tibouchi [CLT13].

But despite these amazing developments, the following question remains open:

Can the security of general-purpose indistinguishability obfuscators
be reduced to some “natural” intractability assumption?

The principal goal of the current paper is to make progress toward addressing this
question.

Note that while the construction of indistinguishability obfuscation of Garg
et al is based on some intractability assumption, the assumption is very tightly
tied to their scheme—in essence, the assumption stipulates that their scheme is
a secure indistinguishability obfuscator. The VBB constructions of Brakerski and
Rothblum [BR14] and Barak et al [BGK+13] give us more confidence in the plau-
sible security of their obfuscators, in that they show that at least “generic” attacks
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– that treat multilinear encoding as if they were “physical envelopes” on which
multilinear operations can be performed – cannot be used to break security of
the obfuscators. But at the same time, non-generic attacks against their scheme
are known – since general-purpose VBB obfuscation is impossible. Thus, it is not
clear to what extent security arguments in the generic multilinear encoding model
should make us more confident that these constructions satisfy e.g., a notion of
indistinguishability obfuscation. In this work, we initiate a study of this question.

We define a notion of semantic security of multilinear graded encoding schemes,
which stipulates security of class of algebraic “decisional” assumptions: roughly
speaking, we require that for every nuPPT distribution D over two constant-
length sequences ~m0, ~m1 and auxiliary elements ~z such that all arithmetic circuits
(respecting the multilinear restrictions and ending with a zero-test) are constant
with overwhelming probability over (~mb, ~z), b ∈ {0, 1}, we have that encodings of
~m0, ~z are computationally indistinguishable from encodings of ~m1, ~z. Assuming the
existence of semantically secure multilinear encodings and the LWE assumption,
we demonstrate the existence of indistinguishability obfuscators for all polynomial-
size circuits. We additionally show that if we assume subexponential hardness,
then it suffices to consider a single (falsifiable) instance of semantical security
(i.e., that semantical security holds w.r.t to a particular distribution D) to obtain
the same result.

We rely on the beautiful candidate obfuscation constructions of Garg et al
[GGH+13b] , Brakerski and Rothblum [BR14] and Barak et al [BGK+13] that
were proven secure only in idealized generic multilinear encoding models, and
develop new techniques for demonstrating security in the standard model, based
only on semantic security of multilinear encodings (which trivially holds in the
generic multilinear encoding model).

We also investigate various ways of defining an “uber assumption” (i.e., a super-
assumption) for multilinear encodings, and show that the perhaps most natural
way of formalizing the assumption that “any algebraic decision assumption that
holds in the generic model also holds against nuPPT attackers” is false.
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How to Avoid Obfuscation Using Witness PRFs

Mark Zhandry

The goal of program obfuscation in cryptography is to scramble a program with
the intention of hiding embedded secrets. Recently, Garg et al. [1] gave the first
candidate construction of a program obfuscator, which has sparked a flurry of re-
search showing many exciting uses of obfuscation. Such uses include functional
encryption [1], short signatures and deniable encryption [2], multiparty key ex-
change and traitor tracing [3], and much more [4, 5, 6, 7, 8, 9].

While these results are exciting, instantiating these schemes with current can-
didate obfuscators [1, 10, 11, 12, 13] has several drawbacks:

• First, these obfuscators only build obfuscation for formulas. Getting ob-
fuscation for all circuits currently requires an expensive boosting step in-
volving obfuscating the decryption algorithm for a fully homomorphic en-
cryption scheme.
• Second, all of these constructions first convert the formula into a branching
program that is either very long (in the case of [1, 10, 11, 12]) or very wide
(in the case of [13]). Then, the branching program is encoded in a multilin-
ear map. Long branching programs require a high level of multilinearity,
and long or wide programs both require many group elements.

Our Results. In this work, we show that for several applications of obfuscation, a
weaker primitive we call witness pseudorandom functions (witness PRFs) actually
suffices. Informally, a witness PRF for an NP language L is a PRF F such that
anyone with a valid witness that x ∈ L can compute F(x), but for all x /∈ L, F(x)
is computationally hidden. More precisely, a witness PRF consists of the following
three algorithms:

• Gen(λ, L, n) takes as input (a description of) an NP language L and in-
stance length n, and outputs a secret function key fk and public evaluation
key ek.
• F(fk, x) takes as input the function key fk, an instance x ∈ {0, 1}n, and
produces an output y
• Eval(ek, x, w) takes the evaluation key ek, and instance x, and a witness w
for x, and outputs F(fk, x) if w is a valid witness, ⊥ otherwise.

For security, we require that for any x ∈ {0, 1}n \ L, F(fk, x) is pseudorandom,
even given ek and polynomially many PRF queries to F(fk, ·).

Witness PRFs are closely related to the concept of smooth projective hash
functions, and can be seen as a generalization of constrained PRFs [14, 15, 16] to
arbitrary NP languages. We first show how to replace obfuscation with witness
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PRFs for certain applications. We then show how to build witness PRFs from
multilinear maps. Our witness PRF is more efficient than current obfuscation
candidates, with similar efficiency to existing witness encryption constructions.
Moreover, our construction relies on very natural assumptions about the underly-
ing maps. Below, we list our applications of witness PRFs:

• Multiparty non-interactive key exchange without trusted setup.
The first such scheme is due to Boneh and Zhandry [3], which is built
from indistinguishability obfuscation (iO) and pseudorandom generators
(PRGs). We give a closely related construction, where the obfuscator is
replaced with a witness PRF, and prove that security still holds.
• Poly-many hardcore bits. Bellare, Stepanovs, and Tessaro[17] con-
struct a hardcore function of arbitrary output size for any one-way func-
tion. They require differing inputs obfuscation[18, 6, 7], which is a form
of knowledge assumption for obfuscators. We show how to replace the
obfuscator with a witness PRFs that satisfies an extractability notion of
security.
• Reusable Witness Encryption. Garg, Gentry, Sahai, and Waters [19]
define and build the first witness encryption scheme from multilinear maps.
Later, Garg et al. [1] show that indistinguishability obfuscation implies
witness encryption. We show that witness PRFs are actually sufficient.
We also define a notion of reusability for witness encryption, and give the
first construction satisfying this notion.
• Rudich Secret Sharing for mNP. Rudich secret sharing is a general-
ization of secret sharing to the case where the allowed sets are instances
of a monotone NP (mNP) language, and an allowed set of shares plus the
corresponding witness are sufficient for learning the secret. Komargodski,
Naor, and Yogev [9] give the first construction for all of mNP using wit-
ness encryption. We give a related protocol using witness PRFs that is
reusable.
• Fully distributed broadcast encryption. Boneh and Zhandry [3] ob-
serve that certain families of key exchange protocols give rise to distributed
broadcast encryption, where users generate their own secret keys. How-
ever, the notion has some limitations, which we discuss. We put forward
the notion of fully distributed broadcast encryption which sidesteps these
limitations, and give a construction where secret keys, public keys, and
ciphertexts are short.

Open Questions. In terms of functionality, witness PRFs can be seen as lying
somewhere between witness encryption and obfuscation; understanding how wit-
ness encryption, witness PRFs, and obfuscation compare is an important goal. For
example, for what other applications of obfuscation do witness PRFs actually suf-
fice? Can witness PRFs be built generically from any witness encryption scheme?
In terms of efficiency, witness PRFs are much closer to witness encryption — can
witness PRFs be strengthened even further while maintaining the efficiency of
witness encryption?
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Outsourcing Private RAM Computation

Daniel Wichs

(joint work with Craig Gentry, Shai Halevi, Mariana Raykova)

In this talk1 we consider the challenge of privately outsourcing computation where
a weak client wants to execute a program on a remote server while hiding from it
the raw data to be used in the computation. Moreover, we want to ensure that: (1)
The client should perform significantly less work than executing the program on
his own, and (2) The server should not have to do much more work than executing
the program.

One method of outsourcing computation relies on fully homomorphic encryption
(FHE), where the client simply encrypts her input and decrypts the output, and
the server computes the program on encrypted data. Unfortunately, this solution
requires the server to translate the program into a circuit and therefore work as
hard as the circuit size of the computation, which in general, can be much larger
than the work needed to execute the program on a random-access machine (RAM).

In this talk we describe reusable garbled RAM schemes, which offer the first
solution to private outsourcing of RAM computation, where the server’s work is
only proportional to the RAM run-time of the computation and the client’s work
is essentially independent of the complexity of the computation altogether. In
addition, these protocols are non-interactive and have the structure of reusable
garbled RAM schemes.

Garbled Computation. Garbled circuits allow a client to garble a circuit C
and then an input x in such a way that a server can use these garbled values to
compute C(x) without learning anything more about x. Until recently, all such
known schemes became insecure if the server ever got to see more than one garbled
input per garbled circuit. In particular, such schemes are not very useful in the
context of outsourcing computation, since the client would have to create a fresh
garbled circuit for each computation and therefore perform work proportional to
the circuit size. Last year Goldwasser et al. described the first reusable circuit-
garbling scheme [GKP+13] where the client can garble a single circuit and then
garble many inputs to that circuit without losing security. This allows private
outsourcing of circuit computation where the client only needs to do a one-time
pre-processing step to garble the circuit, at a cost proportional to the circuit size.
Also recently, Lu and Ostrovsky introduced the notion of garbled RAM [LO13,
GHL+14]. Similar to garbled circuits, the client can garble a RAM program P ,
and later garble an input x in such a way that a server can use these garbled values
to compute P (x) without learning anything more about x. The complexity of
garbling a RAM program (client complexity), the size of the garbled RAM, and the
complexity of evaluating a garbled RAM (server complexity) are all proportional
to the RAM run-time of the program rather than its circuit size. Just like in
Yao’s circuits, the scheme is not reusable and becomes completely insecure if the
server sees more than a single garbled input per garbled program. In other words,

1This talk outlines the results published in [GHRW14].
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the client has to garble a fresh program for every computation, which requires as
much work as doing the computation and therefore does not offer any savings in
the context of outsourcing. The above raises the natural question whether we can
obtain a reusable garbled RAM achieving the best of both worlds. In a reusable
garbled RAM scheme, the client can garble a program P once as a potentially
expensive pre-processing step, and later outsource many arbitrary computations
of this program to a server by efficiently garbling fresh inputs xi. The server can
evaluate the garbled program on each garbled input in time proportional to the
RAM complexity of the program. Furthermore, we would also like to do this in a
setting where the client initially garbles a large persistent memory (e.g., database)
and the programs can read/write to this memory.

Our Solutions. We describe the first solutions to the above problem of reusable
garbled-RAM. As our “basic” solution, we describe a protocol that works in the
setting without persistent memory, and requires the client to perform an expensive
one-time pre-processing step to garble the program. As our “best-case” solution,
we describe a protocol that also works in the more complex setting involving per-
sistent memory (e.g., database) and does not require any expensive pre-processing.
Our solutions are built from non-reusable garbled RAM in conjunction with new
types of reusable garbled circuits that are more efficient than prior solutions but
only satisfy weaker security. For the basic setting without a persistent database,
we can instantiate the required type of reusable garbled circuits from indistin-
guishability obfuscation or from functional encryption for circuits as a black-box.
For the more complex setting with a persistent database, we can instantiate the
required type of reusable garbled circuits using stronger notions of obfuscation. It
remains an open problem to get solutions under weaker assumptions.
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Practical Multi-Party Computation

Nigel P. Smart

In recent years actively secure MPC has moved from a theoretical subject into
one which is becoming more practical. In the variants of multi-party computation
which are based on secret sharing the major performance improvement has come
from the technique of authenticating the shared data and/or the shares themselves
using information theoretic message authentication codes (MACs). This idea has
been used in a number of works: In the case of two-partyMPC for binary circuits in
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[10], for n-party dishonest majority MPC for arithmetic circuits over a “largish”
finite field [3, 6], and for n-party dishonest majority MPC over binary circuits
[7]. All of these protocols are in the pre-processing model, in which the parties
first engage in a function and input independent offline phase. The offline phase
produces various pieces of data, often Beaver style [2] “multiplication triples”,
which are then consumed in the online phase when the function is determined and
evaluated.

In the case of the protocol of [10], called Tiny-OT in what follows, the authors
use the technique of applying information theoretic MACs to the oblivious transfer
(OT) based GMW protocol [8] in the two party setting. In this protocol the offline
phase consists of producing a set of pre-processed random OTs which have been
authenticated. The offline phase is then executed efficiently using a variant of
the OT extension protocol of [9]. For a detailed discussion on OT extension see
[1, 9, 10]. In this talk we shall take OT extension as a given sub-procedure.

One can think of the Tiny-OT protocol as applying the authentication technique
of [3] to the two party, binary circuit case, with a pre-processing which is based
on OT as opposed to semi-homomorphic encryption. For two party protocols over
binary circuits practical experiments show that Tiny-OT far out-performs other
protocols, such as those based on Yao’s garbled circuit technique. This is because
of the performance of the offline phase of the Tiny-OT protocol. Thus a natural
question is to ask, whether one can extend the Tiny-OT protocol to the n-party
setting for binary circuits.

In this talk we mainly address ourselves to the above question, i.e. how can we
generalize the two-party protocol from [10] to the n-party setting?

We first describe what are the key technical difficulties we need to overcome.
The Tiny-OT protocol at its heart has a method for authenticating random bits
via pairwise MACs, which itself is based on an efficient protocol for OT-extension.
In [10] this protocol is called aBit. Our aim is to use this efficient two-party
process as a black-box. Unfortunately, if we extend this procedure naively to the
three party case, we would obtain (for example) that parties P1 and P2 could
execute the protocol so that P1 obtains a random bit and a MAC, whilst P2

obtains a key for the MAC used to authenticate the random bit. However, party
P3 obtains no authentication on the random bit obtained by P1, nor does it obtain
any information as to the MAC or the key.

To overcome this difficulty, we present a protocol in which we fix an unknown
global random key and where each party holds a share of this key. Then by
executing the pairwise aBit protocol, we are able to obtain a secret shared value,
as well as a shared MAC, by all n-parties. This resulting MAC is identical to the
MAC used in the SPDZ protocol from [5]. This allows us to obtain authenticated
random shares, and in addition to permit parties to enter their inputs into the
MPC protocol.

The online phase will then follow similarly to [5], if we can realize a protocol
to produce “multiplication triples”. In [10] one can obtain such triples by utiliz-
ing a complex method to produce authenticated random OTs and authenticated
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random ANDs (called aOTs and aANDs)1. We notice that our method for obtain-
ing authenticated bits also enables us to obtain a form of authenticated OTs in
a relatively trivial manner, and such authenticated OTs can be used directly to
implement a multiplication gate in the online phase.

Our contribution is twofold. First, we generalize the two-party Tiny-OT pro-
tocol to the n-party setting, using a novel technique for authentication of secret
shared bits, and completely new offline and online phases. Thus we are able to
dispense with the protocols to generate aOTs and aANDs from [10], obtaining a
simple and efficient online protocol. Second, and as a by product, we obtain a
more efficient protocol than the original Tiny-OT protocol, in the two party set-
ting when one measures efficiency in terms of the number of aBit’s needed per
multiplication gate. The security of our protocols are proven in the standard uni-
versal composability (UC) framework [4] against a malicious adversary and static
corruption of parties.
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Factoring Integers by CVP Algorithms

Claus P. Schnorr

Let N ∈ N have distinct prime factors all greater than the first n primes p1, ..., pn.
We can factor N by solving CVP’s for the prime number lattice L(Bn,c) with

basis matrix Bn,c = [b1, . . . ,bn] ∈ R
(n+1)×n and the target vector N ∈ R

n+1:

Bn,c =




√
ln p1 0 0

0
. . . 0

0 0
√
ln pn

N c ln p1 · · · N c ln pn



, N =




0

...

0
N c lnN



.

We identify each
∑n

i=1 uibi ∈ L(Bn,c) with the pair of pn-smooth u =
∏

ui>0 p
ui

i ,

v =
∏

ui<0 p
−ui

i ∈ N. The goal of the CVP algorithm is to find u, v such that
|u− vN | is so small that it most likely is pn-smooth and thus yields a non trivial
relation

∏n
i=1 p

ei
i = ±1 mod N with ei ∈ Z. Given n such independent mod N -

relations we can factor N . This CVP method generates mod N -relations given
by pn-smooth triples u, v, |u− vN | ∈ N. Recent improvements:

(1) We perform the stages in enumerating vectors b ∈ L(Bn,c) close to N in
the order of their success rate to find some b very close to N. The success
rate is based on the Gaussian volume heuristics [4].

(2) We extremely prune the enumeration of lattice vectors close to N so that a
very small, but sufficient fraction of these vectors gets efficiently generated.

(3) We randomly multiply each of the first n rows of a BKZ-reduced basis of
L(Bn,c) with probability 1/2 by 2 before enumerating lattice vectors close
to N per round. This random scaling generates independent mod N -
relations per round.

(4) While this CVP method finds pn-smooth triples u, v, |u − vN | we must
extend the method to generate relations with arbitrary v ∈ N. This is
because there do not exist enough mod N -relations with pn-smooth v for
very large N .

Under heuristic assumptions the CVP problem for the lattice L(Bn,c) and tar-
get vector N can be solved in polynomial time [5, Cor.3]. This is because the
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relative density rd(L) of L(Bn,c) satisfies rd(L) = o(n−1/4) for large n. By defi-

nition rd(L) transforms the Hermite inequality λ1 ≤ γ
1/2
n det(L)1/n with Hermite

constant γn into the equation λ2
1 = rd(L)2γn det(L)2/n and thus 0 < rd(L ≤ 1.

In order to solve our CVP’s in pol. time we need some nearly shortest lattice
vector. The SVP to find b ∈ L(Bn,c) of length λ1 can be solved by extreme prun-

ing under heuristics in pol. time [5, Prop.1] because rd(L) = o(n−1/4). Moreover,
the analysis of extreme pruning of [1] with an heuristic success rate 1/n has been
improved to a success rate 1− o(1) in [2, chapter 4].

Right now we create one mod N -relations for N ≈ 1014 using n = 90 primes in
6 seconds per relation. There are 6.4 · 105 pn-smooth triples u, v, |u− vN | ≤ p3n.

For N ≫ 214 there exist enough mod N -relations only for possibly non smooth
v ∈ N. Our method for directing and pruning the search towards successful v
can be extended from pn-smooth to arbitrary v : during the enumeration of the
b ∈ L(Bn,c) close to N we iteratively replace N by vN and adjust the target
vector N to Nv = N ln vN/ lnN so that finally ||L(Bn,c)−Nv|| becomes so small
that there exists a pn-smooth u with |u− vN | ≤ p3n.

Towards new record factorisations. For arbitrary N ≈ 2800 and n = 900 primes
there exist 1011 pn-smooth u ≤ N3 such that |u− vN | ≤ p3n holds for some v ∈ N.
This should enable the efficient generation of 900 mod N -relations.

We extend the proof of Lemma 5.3 of [3], we prove λ2
1 ≥ 2c lnN+1−N−c+c/n

√
n

for the lattice L(Bn,c) even when the prime 2 is in the prime basis [5, Le. 2].
A particular advantage of our factoring method is that the prime basis is much

smaller than for all other known factoring methods.
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Non-Black-Box Simulation in the Fully Concurrent Setting

Vipul Goyal

Zero-knowledge proofs have played a central role in the design of secure crypto-
graphic schemes. Introduced in [GMR89], all initial zero-knowledge (ZK) protocols
shared a simple structure: the messages of the verifier in the protocol were simply
random coin tosses. This simple structure is quite appealing in and by itself beyond
any applications. However over a period of time, this public coin property found
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applications in several (even seemingly unrelated) contexts. An (incomplete) list
of such examples include: the Fiat-Shamir paradigm [FS86], zero-knowledge pro-
tocols for IP [BOGG88], efficient parallel repetition theorems [PV07], etc. Much
of the early work on zero-knowledge was for the “stand-alone” setting where there
is a single protocol execution running in isolation.

In a breakthrough work in 2001, Barak [Bar01] introduced non-black-box simu-
lation techniques in cryptography. This was done by giving a protocol which was
public-coin, constant rounds and secure with a bounded number of concurrent
protocol executions. A key feature of the construction was that it did not rely on
the traditional paradigm of rewinding the adversary (and instead the simulator
was “straightline”). Barak’s technique has since then been utilized in a variety of
different contexts and has been used to get results provable impossible using the
traditional black-box simulation based on rewinding techniques.

The fact the protocol is secure only in the bounded concurrent setting has been
an important limitation of Barak’s construction [Bar01]. There has been a long
line of works on developing simulation strategies based on rewinding that would
work in the fully concurrent setting (see [PRS02] and the references there in).
However all these works rely on the paradigm of “extracting some trapdoor” from
the adversarial verifier. This necessarily means that the protocol must not be
public-coin. The existence of a public-coin concurrent zero-knowledge protocol
has remained an intriguing question till now.

We present a new zero-knowledge argument protocol by relying on the non-
black-box simulation technique of Barak [Bar01]. Similar to the protocol of Barak,
ours is public-coin, is based on the existence of collision-resistant hash functions,
and, is not based on “rewinding techniques” but rather uses non-black-box simu-
lation. However in contrast to the protocol of Barak, our protocol is secure even
if there are any unbounded (polynomial) number of concurrent sessions.

This gives us the first construction of public-coin concurrent zero-knowledge.
Prior to our work, Pass, Tseng and Wikström [PTW11] had even shown that
using black-box simulation, getting a construction for even public-coin parallel
zero-knowledge is impossible.

A public-coin concurrent zero-knowledge protocol directly implies the existence
of a concurrent resettably-sound zero-knowledge protocol. This is an improvement
over the corresponding construction of Deng, Goyal and Sahai [DGS09] which
was based on stronger assumptions. Furthermore, this also directly leads to an
alternative (and arguable cleaner) construction of a simultaneous resettable zero-
knowledge argument system.

An important feature of our protocol is the existence of a “straight-line” simula-
tor. This gives a fundamentally different tool for constructing concurrently secure
computation protocols (for functionalities even beyond zero-knowledge).

The round complexity of our protocol is nǫ (for any constant ǫ > 0), and,
the simulator runs in strict polynomial time. The main technique behind our
construction is purely combinatorial in nature.
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On the practical exploitability of Dual EC DRBG in TLS
implementations

Tanja Lange

(joint work with S. Checkowoy, R. Nicolerhagen, M. Fredrikson, A. Everspaugh,
M. Green, T. Ristenport, J. Moskicwicz, and H. Shochom)

Dual EC DRBG is a pseudorandom number generator, which is included in stan-
dards NIST SP800-90, ANSI x9.82, and ISO 18031. Already during the public
comment phase, concerns about its suitability were raised and one year later re-
searchers presented a way that the designer could be hiding a backdoor in the
system. Since the September-2013 publication of a document by Edward Snow-
den, it is clear that the NSA had designed the RNG with the backdoor in mind.
This talk analyses how the backdoor can be exploited in practical applications,
such as TLS on the internet. This involves interesting computations on elliptic
curves.

More information on http://projectbullrun.org/dual-ec.
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Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE, and
Compact Garbled Circuits

Sergey Gorbunov

(joint work with Dan Boneh, Craig Gentry, Shai Halevi, Valeria Nikolaenko, Gil
Segev, Vinod Vaikuntanathan, Dhinakaran Vinayagamurthy)

(Key-policy) attribute-based encryption [1, 2] is a public-key encryption mecha-
nism where every secret key skf is associated with some function f : X → Y and
an encryption of a message µ is labeled with a public attribute vector ~x ∈ X . The
encryption of µ can be decrypted using skf only if f(~x) = 0 ∈ Y. Intuitively,
the security requirement is collusion resistance: a coalition of users learns nothing
about the plaintext message µ if none of their individual keys are authorized to
decrypt the ciphertext.

Attribute-based encryption (ABE) is a powerful generalization of identity-based
encryption and fuzzy IBE and is a special case of functional encryption. It is
used as a building-block in applications that demand complex access control to
encrypted data, in designing protocols for verifiably outsourcing computations,
and for single-use functional encryption.

The past few years have seen much progress in constructing secure and efficient
ABE schemes from different assumptions and for different settings. The first con-
structions [2, 6, 7, 8] apply to predicates computable by Boolean formulas which
are a subclass of log-space computations. More recently, important progress has
been made on constructions for the set of all polynomial-size circuits: Gorbunov,
Vaikuntanathan, and Wee [9] gave a construction from the Learning With Errors
(LWE) problem and Garg, Gentry, Halevi, Sahai, and Waters [10] gave a con-
struction using multilinear maps. In both constructions the policy functions are
represented as Boolean circuits composed of fan-in 2 gates and the secret key size
is proportional to the size of the circuit.

We construct the first (key-policy) attribute-based encryption (ABE) system
with short secret keys: the size of keys in our system depends only on the depth
of the policy circuit, not its size. Our constructions extend naturally to arithmetic
circuits with arbitrary fan-in gates thereby further reducing the circuit depth.
Building on this ABE system we obtain the first reusable circuit garbling scheme
that produces garbled circuits whose size is the same as the original circuit plus
an additive poly(λ, d) bits, where λ is the security parameter and d is the circuit
depth. Save the additive poly(λ, d) factor, this is the best one could hope for.
All previous constructions incurred a multiplicative poly(λ) blowup. As another
application, we obtain (single key secure) functional encryption with short secret
keys.

We construct our attribute-based system using a mechanism we call fully key-
homomorphic encryption which is a public-key system that lets anyone translate
a ciphertext encrypted under a public-key ~x into a ciphertext encrypted under the
public-key (f(~x), f) of the same plaintext, for any efficiently computable f . We
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show that this mechanism gives an ABE with short keys. Security is based on the
subexponential hardness of the learning with errors problem.

We also present a second (key-policy) ABE, using multilinear maps, with short
ciphertexts: an encryption to an attribute vector ~x is the size of ~x plus poly(λ, d)
additional bits. This gives a reusable circuit garbling scheme where the size of
the garbled input is short, namely the same as that of the original input, plus a
poly(λ, d) factor.

It remains an interesting open problem to construct attribute-based encryp-
tion where the parameters do not depend on the depth of the circuit. This will
lead to corresponding improvements in the parameters of the (reusable) garbling
schemes. Also, we expect that fully-key homomorphic encryption can be used in
interesting and versatile applications, and leave it as an open problem to find these
applications.
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