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Introduction by the Organisers

The workshop Analysis, Geometry and Topology of Positive Scalar Curvature Met-
rics was attended by some fifty participants from Europe, the US, South America
and Japan, including a number of young scientists on a doctoral or postdoctoral
level. Rather than representing a single mathematical discipline the workshop
aimed at bringing together researchers from different areas, but working on sim-
ilar questions. Hence special emphasis was put on the exchange of ideas and
methods from mathematical physics, global analysis and topology, providing an
attractive and diverse scientific program.

The foundations of the subject were laid in the sixties, seventies and eighties
in the work of Kazdan-Warner, Lichnerowicz, Hitchin, Schoen-Yau and Witten,
among others: On the one hand it is well known that each smooth function on a
closed smooth manifold M of dimension at least 3 can be realized as the scalar
curvature of a Riemannian metric on M , if and only if M admits a metric of pos-
itive scalar curvature. On the other hand, by combining the Weitzenböck formula
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from spin geometry with the Atiyah-Singer index theorem, a closed spin manifold
with non-vanishing Â-genus cannot carry a metric of positive scalar curvature. In
combination with the Kazdan-Warner result, which relies on the analysis of geo-
metric PDEs, this reveals a deep interplay of the theory of geometric PDEs and
subtle differential-topological invariants. Additional obstructions based on min-
imal hypersurfaces and the positive mass theorem establish close connections to
variational methods and general relativity.

All of these, by now classical, aspects play important roles in today’s research
and were represented in the scientific activities during the workshop. After two
ninety minutes survey lectures on index theory and general relativity the state of
the art was unfolded in sixteen one hour lectures and eight short contributions.

Among the broad range of subjects a major theme was the discussion of the
Einstein constraint equations from general relativity including the optimal locali-
sation of asymptotically flat metrics of non-negative scalar curvature on Euclidean
space.

A number of talks was devoted to invariants detecting the topology of the space
of positive scalar curvature metrics on a fixed manifold based on higher ρ-invariants
and up to date methods from differential topology.

The discussion of the Schoen-Yau minimal hypersurface obstruction for non–
smooth metrics of positive scalar curvature, of the indices of minimal surfaces and
of large scale obstructions to positive scalar curvature metrics like macroscopic
dimension were the content of three more talks.

Futher topics of interest were the construction of Riemannian metrics satisfying
certain criticality conditions on connected sums of Einstein manifolds and the
discussion of the Yamabe invariant on products of manifolds.

The long time properties of Ricci solitons, metrics with invertible Dirac oper-
ators on spin manifolds and their behaviour under surgery, spectral properties of
the conformal Laplacian and metrics of almost non–negative sectional curvature
also attracted special attention.

Shorter contributions by young participants dealt with equivariant aspects of
the positive scalar curvature problem, its relation to stable homotopy theory and
higher index theory, and the index theory of pseudodifferential operators on open
manifolds, among others.

An informal problem session at the end of the conference collected important
topics for future investigations.

The interdisciplinary character of the workshop was reflected by the fact that
the lectures were not on a highly specialized, technical level, but accessible to an
audience with different mathematical backgrounds.

The atmosphere during the workshop was both relaxed and inspiring, with many
questions and discussions during and outside the lectures. A perfect organization
and management by the staff of the Oberwolfach institute created an optimal
working environment.



Analysis, Geometry and Topology of Positive Scalar Curvature Metrics 1993

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.





Analysis, Geometry and Topology of Positive Scalar Curvature Metrics 1995

Workshop: Analysis, Geometry and Topology of Positive Scalar
Curvature Metrics

Table of Contents

Alessandro Carlotto (joint with Richard M. Schoen)
Localizing solutions of the Einstein constraint equations . . . . . . . . . . . . . . 1997

Alexander Engel
Indices of Pseudo-Differential Operators on Open Manifolds . . . . . . . . . . 2000

Andreas Hermann (joint with E. Humbert)
Surgery and the Positive Mass Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 2001

Ben Sharp
A compactness theorem for embedded minimal hypersurfaces with bounded
area and index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2002

Boris Botvinnik (joint with Johannes Ebert, Oscar Randal-Williams)
Topology of the space of metrics with positive scalar curvature . . . . . . . . . 2002

Burkhard Wilking
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Abstracts

Localizing solutions of the Einstein constraint equations

Alessandro Carlotto

(joint work with Richard M. Schoen)

The object of Mathematical General Relativity is the study of spacetimes, namely
of Lorentzian manifolds (L, γ) with signature (−+++) solving the Einstein equa-
tion G = T where G = Ric(γ)− 1

2R(γ)γ (or possibly with an extra cosmological
term) and T is the stress-energy tensor of the matter fields. In such investigation,
and more specifically in the investigation of the large time behaviour of (L, γ), for
instance of its geodesic completeness, a great deal of information can be extracted
from the analysis of Riemannian slices (M, g, k) consisting of all those events that
happen at a given instant in time for some physical observer. Results of this
flavour, that go back to Penrose and Hawking, motivate the study of solutions to
the Einstein constraint equations

{
1
2

(
R(g) + (trgk)

2 − ‖k‖2g
)
= µ

divg (k − (trgk) g) = J,

that any such slice (M, g, k) is required to satisfy because of the Gauss and Codazzi
equations for submanifolds. Here g (resp. k) are the first (resp. second) fundamen-
tal form of M in (L, γ), while µ (the mass density) and J (the current density)
are suitable components of the tensor T . Furthermore, this differential system
comes together with the functional inequality µ ≥ |J |g which follows from a basic
physical axiom, known as dominant energy condition, that prescribes the matter
density measured by any physical observer to be non-negative at each point. In
the most basic of all cases, that is when k = 0 (in which case we will say that the
data (M, g, k) are time-symmetric) the Einstein constraints reduce to the single
equation

R(g) = 2µ

namely to a scalar curvature prescription problem, where the function µ is non-
negative. More generally, a similar conclusion applies to the Hamiltonian con-
straint in the maximal case namely when trgk = 0, for in that case one studies

the problem R(g) = 2µ+ ‖k‖2g (coupled with divg(k) = J).

In this report, we are concerned with a special (yet fundamental) class of so-
lutions of the Einstein constraints, the asymptotically flat ones and for the sake
of simplicity we will mostly refer to the aforementioned time-symmetric setting.
An easy way to describe the presence of gravitational fields, namely the displace-
ment of a given asymptotically flat manifold (M, g) from the trivial ground state
(R3, δ) is by introducing a scalar invariant called ADM mass, which can be com-
puted as a certain flux integral at infinity in (M, g). The celebrated Positive Mass

Theorem by Schoen-Yau [13] precisely states that the local constraints above do
have dramatic global consequences: if (M, g) is asymptotically flat and R(g) ≥ 0,
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then MADM ≥ 0 with equality if and only if (M, g) is the Euclidean space. For
instance, this implies the following remarkable

Corollary. Let g be a Riemannian metric on R3 having non-negative scalar cur-
vature. Suppose that there exists a compact set K such that g is exactly Euclidean
outside of K. Then g is the Euclidean metric on the whole R3.

With a little bit more effort, one can get a sharper form of the previous statement.
Given an asymptotically metric g on Rn we let U(g) = {x ∈ Rn | Ric(g)(x) 6= 0}
and define the content at infinity of g to be the asymptotic size of the set U

Θ(g) = lim inf
σ→∞

σ1−nHn−1(U ∩B(σ))

for B(σ) the ball centered at the origin and having radius σ. With this notation
introduced, one can then easily show that the following implication holds:

MADM > 0 =⇒ Θ(g) > 0

forMADM the ADM mass of (Rn, g) (here we need 3 ≤ n ≤ 7 orM spin). Roughly
speaking, this says that an asymptotically flat metric cannot be localized inside
sets that are asymptotically too small, for instance a cylinder or a slab between
two parallel planes. Thus one is naturally led to the following basic question.

Problem. What is the optimal localization of an asymptotically flat metric of
non-negative scalar curvature?

For instance, can we construct an asymptotically flat metric of non-negative
scalar curvature, positive ADM mass and which is exactly trivial in a half-space?

In joint work with Richard Schoen [5], we give an essentially complete answer
to such question, by developing a systematic method to localize a given scalar flat,
asymptotically flat metric inside a cone of arbitrarily small aperture. To state our
main theorem precisely, we need some notation.

Let (M, ǧ, ǩ) be an initial data set for the vacuum Einstein equation, with
decay assumption of the form |ǧij(x)− δij | . |x|−p̌, and

∣∣ǩij(x)
∣∣ . |x|−p̌−1 for

(n − 2)/2 < p̌ ≤ n − 2 (hence we are assuming that the Einstein constraint
equations are satisfied for µ = J = 0). Given an angle 0 < θ < π and a point
a ∈ Rn with |a| >> 1 we denote by Cθ(a) the region ofM consisting of the compact
part together with the set of points x in the exterior region which make an angle
less than θ with the vector −a. If we are given two angles 0 < θ0 < θ1 < π we
consider the region between the cones. By regularizing this region near the vertex
a we get two smooth hypersurfaces Σ0 and Σ1 such thatM \ (Σ0∪Σ1) is a disjoint
union of three domains ΩI , Ω, and ΩO where we refer to ΩI as the inner region,
Ω the transition region, and ΩO the outer region.

Theorem. Assume that we are given a set of initial data (M, ǧ, ǩ) as above to-
gether with angles θ0, θ1 satisfying 0 < θ0 < θ1 < π. Furthermore, suppose
(n−2)/2 < p < p̌. Then there exists a∞ so that for any a ∈ Rn such that |a| ≥ a∞
we can find a metric ĝ and a symmetric (0, 2)−tensor k̂ so that (M, ĝ, k̂) satisfies
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the vacuum Einstein constraint equations, ĝij = δij + O(|x|−p) k̂ij = O(|x|−p−1)
and

(ĝ, k̂) =

{
(ǧ, ǩ) in ΩI(a)

(δ, 0) in ΩO(a).

A few remarks concerning our gluing scheme are in order. First of all, let us
point out that, as a function of |a|, our construction satisfies an interesting con-
tinuity property in suitable weighted Sobolev spaces, so that the ADM 4-vector

of (M, ĝ, k̂) converges to the ADM 4-vector of (M, ǧ, ǩ) as |a| → ∞. Second:
while the conceptual scheme of the proof of this theorem goes along the lines of
[10] and [11] (see also [8]), it turns out that such proof relies on rather subtle
improved functional inequalities, of independent interest. In addition, the whole
construction happens to be truly delicate as one needs to work in doubly weighted

Sobolev/Hölder spaces because of the need of controlling the regularity at the
boundary of the gluing region as well as the decay at infinity at the same time.
Third: for any θ1 < π/2 the data that we produce are flat on a half-space and
therefore they contain plenty of stable (in fact: locally area-minimizing) minimal
hypersurfaces, in striking contrast with various recent scalar curvature rigidity re-
sults both in the closed and in the free-boundary case (see the works [2, 12, 1]).
Together with our rigidity counterparts, contained in [3] and [4], the theorem above
also sheds some light on the problem of existence of stable minimal hypersurfaces
in asymptotically flat manifolds (more generally: marginally outer trapped hyper-
surfaces in initial data sets).

One can then essentially iterate the construction and get a new class of N -body
solutions for the Einstein constraint equations, which the reader should compare
to the results in [6, 7, 9]. More precisely, we can assembly together conical regions
Ω(1), . . . ,Ω(N), belonging to given data (M1, g1, k1), . . . , (MN , gN , kN ) respectively,
and we can perform this construction in a way that the vertices of such cones (with
respect to the Euclidean coordinates in the background) occupy, possibly modulo
rescaling, a pre-assigned configuration (the axes of the cones also being given).

These N -body solutions exhibit, following a defintion by P. Chruściel, the phe-
nomenon of gravitational shielding in the sense that one can prepare subclasses
of data that do not have any interaction for finite but arbitrarily long times when
evolved by means of the Einstein field equations, in striking contrast with the
Newtonian gravity scenario. The fine geometric properties of such exotic data, for
instance the characterization of their large isoperimetric domains and more specif-
ically the question whether the large stable constant mean curvature spheres in
the Euclidean regions are in fact isoperimetric are under our current investigation.
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Indices of Pseudo-Differential Operators on Open Manifolds

Alexander Engel

For a metric space X we define uniform K-theory by

K∗
u(X) := K−∗(Cu(X)),

where Cu(X) denotes the C∗-algebra of all bounded, uniformly continuous func-
tions on X .

If X = M is a Riemannian manifold of bounded geometry (i.e., its injectivity
radius is uniformly positive and the curvature tensor and all its derivatives are
bounded in sup-norm), then we may prove the following:

K0
u(M) ∼= {[E]− [F ]: E,F →M are vector bundles of bounded geometry}.

Uniform K-theory is the dual theory to uniform K-homologyKu
∗ (X) which was

introduced by Spakula in [1]. If Mm is a Spinc-manifold of bounded geometry,
then we have a Poincaré duality theorem:

K∗
u(M) ∼= Ku

m−∗(M)

Using this we may now generalize John Roe’s Index Theorem from [2] from
operators of Dirac type to pseudo-differential operators on open manifolds.
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Surgery and the Positive Mass Conjecture

Andreas Hermann

(joint work with E. Humbert)

Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3 and let Lg be the
conformal Laplace operator for the metric g. We assume that

• all eigenvalues of Lg are strictly positive and
• the metric g is flat on an open neighborhood of a point p ∈M .

Then we define the mass of (M, g) at p as the constant term in the expansion of
the Green function of Lg at p. Using surgery methods from an article by Gromov
and Lawson [1] we prove the following result (see [2]). Assume that there exists
a closed simply-connected non-spin manifold M of dimension n ≥ 5 such that for
all metrics g on M with the two properties stated above the mass of (M, g) is
non-negative. Then the mass is non-negative for all such metrics on every closed
manifold of the same dimension as M . It follows from known results ([5], [3])
that in this case one would also have a proof of the Positive Mass Conjecture for
all asymptotically flat Riemannian manifolds of the same dimension as M . The
Positive Mass Conjecture has been proved in all dimensions less or equal to 7 by
Schoen and Yau [4]. It is an open problem whether for every n ≥ 8 one can find a
closed simply-connected non-spin manifold M of dimension n such that for every
metric as above on M the mass is non-negative. Possible candidates are CP

2k or
CP

2k × Sℓ, k ≥ 1, ℓ ≥ 2.
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A compactness theorem for embedded minimal hypersurfaces with
bounded area and index

Ben Sharp

We present a compactness theorem for embedded minimal hypersurfaces in a com-
pact Riemannian manifold. The predecessor of this is a paper of Schoen-Simon [2]
where they prove a regularity and compactness theorem for stable hypersurfaces,
allowing for a general existence theory for minimal hypersurfaces and extending
the fundamental work of Pitts [1]. Here we weaken the hypothesis of Schoen-Simon
to include hypersurfaces of bounded index.

A simplified statement of the Schoen-Simon compactness theory is that if
(Nn+1, g) is an orientable and closed Riemannian manifold with {Mn

k } ⊂ N a
sequence of stable, smooth, embedded minimal hypersurfaces and Hn(Mk) ≤ Λ <
∞, then (up to subsequence) there exists a stable (possibly singular) embedded
hypersurface M ⊂ N such that Mk → M in the varifold sense and

• if n < 7 then M is smooth
• if n = 7 then M is smooth away from a finite set of points
• if n > 7 then Hα(sing(M)) = 0 for all α > n − 7 and the singular set
sing(M) ⊂M is closed.

Our result is that the same conclusions hold if we weaken the stability hypothesis
to Index(Mk) ≤ I ∈ N, and the limit has Index(M) ≤ I. We note that the index
of the limit is well defined due to the relative smallness of the singular set. We
prove furthermore that the convergence is smooth and graphical away from a set
S formed of the singular set of M and at most I points on the regular part of M .
Moreover if the number of approximating sheets is ≥ 2 then M must be stable.
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Topology of the space of metrics with positive scalar curvature

Boris Botvinnik

(joint work with Johannes Ebert, Oscar Randal-Williams)

For a closed Spin d-manifold W , we let Riem+(W ) be the space of psc-metrics.
Let h ∈ Riem+(W ) be a base point, then for another psc-metric g we can form the
path of metrics gt = (1−t) ·h+t ·g, t ∈ [0, 1]. This gives a path of associated Dirac

operators in the space Fredd of Cld-linear Fredholm operators on Hilbert space,
and it starts and ends in the subspace of invertible operators, which is contractible.
This gives a well-defined homotopy class of maps

inddiffh : Riem+(W ) −→ Ω∞+d+1KO
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Theorem A. Let W be a Spin manifold of dimension d ≥ 6, and fix h ∈
Riem+(W ). If k = 4s− d− 1 ≥ 0 then the map

(inddiffh)k ⊗Q : πk(Riem+(W ), h)⊗Q −→ KO4s(∗)⊗Q = Q

is surjective. If e = 1, 2 and k = 8s+ e− d− 1, then the map

(inddiffh)k : πk(Riem+(W ), h) −→ KO8s+e(∗) = Z/2

is surjective. In other words, the map (inddiffh)k is nontrivial if k ≥ 0, d ≥ 6 and

the target is nontrivial.

In order to prove Theorem A, we show that for even dimensional manifolds (of
dimension at least six), the map α : Ω∞MTSpin(d) → Ω∞+dKO representing
the KO-theory orientation of the Madsen–Tillmann–Weiss spectrum MTSpin(d)
factors through the space of psc metrics on such manifolds, i.e. there exists a map
ρ : Ω∞+1MTSpin(2n) → Riem+(W ) such that the composition

Ω∞+1MTSpin(2n)
ρ−→ Riem+(W )

inddiffh−→ Ω∞+2n+1KO

is weakly homotopic to Ωα.
We prove a similar result for odd-dimensional manifolds (of dimension at least

seven), which is derived from the even-dimensional case, with the help of the
(Clifford-linear) family version of the spectral-flow theorem.

Besides standard surgery Gromov-Lawson technique for psc-metrics, we use new
key ingredient provided by the work by the third named author and Galatius on
moduli spaces of high-dimensional manifolds.

Vanishing of the Â-Genus

Burkhard Wilking

Does the Â-genus of an abstract non-negatively curved spin manifold vanish?

We report on some progress towards an affirmative answer of the above question,
which was first posed by John Lott. More precisely, we give a generalization of a
theorem of Gromov: Given n and D, there exists ε(n,D) such that any manifold
with curvature K > −1, diam(M) ≤ D and

1

vol(M)

∫

M

‖Rm‖ < ε(n,D)

is finitely covered by a nilmanifold. We then explain why one might hope that this
should give an affirmative answer to the above question.
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Small Eigenvalues of the Conformal Laplacian

Christian Bär

(joint work with Mattias Dahl)

This talk is based on the paper [1]. Throughout the talk let M be a compact
oriented differentiable manifold of dimension n ≥ 3. Given a Riemannian metric
g on M the conformal Laplacian Lg is defined as

Lg = ∆g +
n− 2

4(n− 1)
· Scalg : C∞(M) → C∞(M) ⊂ L2(M),

where ∆g = d∗d is the Laplacian and Scalg is the scalar curvature of g. The
operator Lg is an elliptic differential operator of second order, essentially self-
adjoint in L2(M). Let µ0(g) ≤ µ1(g) ≤ µ2(g) ≤ . . . be the spectrum of Lg, the
eigenvalues being repeated according to their multiplicities. Let f be a positive
smooth function onM . The conformal Laplacian of the conformally related metric

g = f
4

n−2 g is given by

(1) Lgu = f−
n+2

n−2Lg(fu).

Applying (1) to the function u ≡ 1 gives the formula

(2) Scalg =
4(n− 1)

n− 2
f−

n+2

n−2Lgf

for the scalar curvature of g.
We now introduce a differential topological invariant of a compact manifold by

counting the number of small eigenvalues of the conformal Laplacian.

Definition. LetM be a compact differentiable manifold. The κ-invariant κ(M) is
defined to be the smallest integer k such that for every ε > 0 there is a Riemannian
metric gε on M for which

{
µk(gε) = 1,
|µi(gε)| < ε, 0 ≤ i < k.

If no such integer exists set κ(M) := ∞.
Heuristically, κ(M) is the dimension of the “almost-kernel” of the conformal

Laplace operator.
By rescaling the metrics gε accordingly one sees that κ(M) is also the smallest

integer k such that for each constant C > 0 there exists a Riemannian metric gC
for which {

µk(gC) > C,
|µi(gC)| ≤ 1, 0 ≤ i < k.

Hence κ(M) tells us which is the first eigenvalue that can be made arbitrarily
large for appropriate metrics while keeping the preceding ones bounded.

If we made this definition using the Laplace operator acting on p-forms instead
of the Conformal Laplacian, then by Hodge theory the resulting invariant would
be nothing but the pth Betti number bp(M).
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Open Question. Does the case κ(M) = ∞ occur?
We will see that for simply connected manifolds of dimension≥ 5 the κ-invariant

is always finite.
From the fact that the spectrum of the disjoint union M1 ∐M2 is the disjoint

union of the spectra of M1 and of M2 it follows that

(3) κ(M1 ∐M2) = κ(M1) + κ(M2).

The next proposition concerns the relation between κ(M) and scalar curvature.

Proposition 1. Let M be a compact differentiable manifold of dimension n ≥ 3.
Then

(1) κ(M) = 0 if and only if M carries a metric of positive scalar curvature.
(2) If M has a metric with Scal ≥ 0, then κ(M) ≤ b0(M).

Proof. If κ(M) = 0, then there is a metric with µ0 = 1. The corresponding
eigenfunction f0 can chosen to be positive. From Equation (2) it follows that

g = f
4

n−2

0 g has positive scalar curvature. Conversely, if g is a metric of positive
scalar curvature on M , then Lg > 0 and we can rescale so that µ0 = 1. Hence
κ(M) = 0.

For a metric g with Scal ≥ 0 onM we have Lg = ∆g ≥ 0 and the zero eigenspace
consists of the locally constant functions. Hence µ0(g) = . . . = µb0(M)−1(g) = 0
and µb0(M)(g) > 0. �

The following theorem controls the spectrum of Lg under surgeries of codimen-
sion at least three. This enables us to examine the behavior of κ(M) under such
surgeries.

Theorem 2. Let (M, g) be a closed Riemannian manifold. Let M̃ be obtained
from M by surgery in codimension at least three. Then for each k ∈ N and for

each ε > 0 there exists a Riemannian metric g̃ on M̃ such that the first k + 1
eigenvalues of the operators Lg and Lg̃ are ε-close, that is

|µj(g)− µj(g̃)| < ε

for j = 0, . . . , k.
As an immediate consequence we obtain

Corollary 3. Let M be a compact differentiable manifold of dimension n ≥ 3.

Suppose M̃ is obtained from M by surgery of codimension ≥ 3. Then

κ(M̃) ≤ κ(M).

Hence for any κ0 ∈ N0 the property of having κ ≤ κ0 is preserved under surgery
of codimension at least three. For κ0 = 0 this means that the property of admitting
a metric of positive scalar curvature is preserved under such surgeries. This is a
famous by now classical result of Gromov and Lawson [3]. We do not give a new
proof of this fact since we use the work of Gromov and Lawson when we prove
Theorem 2.
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As to the case κ0 = 1 it is interesting to note that the property of allowing a
scalar flat metric is not preserved under such surgeries. It follows that the converse
of statement (2) in Proposition 1 does not hold. For example, the n-dimensional
torus T n has a flat metric but no metric of positive scalar curvature [4]. Thus
κ(T n) = 1. Performing surgery in codimension at least three on T n yields a
manifold Mn not admitting metrics with positive or zero scalar curvature. Yet we
have κ(Mn) = 1.

Also note that the condition κ = 0 is not preserved under surgery of codimension
2. Like any compact connected 3-manifold the 3-torus T 3 can be obtained from S3

by a sequence of surgeries in codimension 2. But we have κ(T 3) = 1 > κ(S3) = 0.
This also shows that Theorem 2 cannot hold for surgeries in codimension less than
three.

The κ-invariant measures how close L can come to being a positive operator
for some Riemannian metric on M . Since L is positive if and only if M allows a
metric of positive scalar curvature one can also view κ as a measure of how close
one can get to having positive scalar curvature. Therefore it is not unreasonable
to suspect that κ is related to the Â or α-genus of M , the primary obstruction
to allowing metrics of positive scalar curvature. We show that this indeed is the
case. On the one hand we have

Theorem 4. Let M be a compact spin manifold of dimension n = 4m. Then

|Â(M)| ≤ 22m−1κ(M).

Open Question. Can one replace the factor 22m−1 in Theorem 4 by 2m?
Theorem 4 together with a classical eigenvalue estimate by Cheeger [2] implies

the following isoperimetric result.

Corollary 5. Let M be a compact spin manifold of dimension n = 4m with
|Â(M)| > 22m−1. Then there exists a constant C = C(M) such that for each
Riemannian metric with |Scal| ≤ 1 there exists a hypersurface S ⊂M dividing M
into two connected components M1 and M2 such that

voln−1(S) ≤ C ·min{voln(M1), voln(M2)}.

On the other hand, we can bound κ(M) from above in terms of the dimension
and the α-genus, at least for simply connected manifolds of dimension n ≥ 5. First
we make the following

Observation. Let M be a simply connected compact differentiable manifold of
dimension n ≥ 5. If M is non-spin or if n ≡ 3, 5, 6, 7 mod 8 then

κ(M) = 0.

This comes from the fact that in these cases M is well known to carry a metric
of positive scalar curvature, see [3], [5].

In dimensions n ≡ 1, 2 mod 8 we have α(M) ∈ KO−n(pt) ∼= Z/2Z. By
|α(M)| ∈ Z we mean 0 if α(M) is trivial and 1 otherwise.
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Theorem 6. Let M be a simply connected spin manifold of dimension n = 8l+1
or 8l+ 2, l ≥ 1. Then

κ(M) = |α(M)|.

This shows that κ(M) can distinguish certain exotic spheres. In particular,
κ(M) is not invariant under homeomorphisms, only under diffeomorphisms.

In dimensions n ≡ 0 mod 4 the α-genus of a spin manifold is integer-valued and
it essentially coincides with the Â-genus. In these dimensions one can bound the

κ-invariant in terms of the Â-genus. In these remaining dimensions KO−n(pt) = 0
and κ(M) = 0 for simply connected M .

Even though Theorem 4 shows that κ(M) can become arbritrarily large it turns
out that in a stable sense it takes only the values 0 and 1. More precisely, let B be

a compact simply connected 8-dimensional spin manifold with Â(B) = 1. Then
α(M ×B) = α(M) for all spin manifolds M .

Theorem 7. Let M be a simply connected spin manifold. Then

κ(M ×Bp) ≤ 1

for all sufficiently large p.
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A Positive Mass Theorem for Metrics with Weakened Regularity

Dan A. Lee

(joint work with Philippe G. LeFloch)

In this work we prove a version of the positive mass theorem for metrics with
regularity C0 ∩ W 1,n

loc , where n is the dimension of the manifold and W 1,n
loc is a

Sobolev space. With this level of regularity, the scalar curvature can be defined as
a distribution. Recall that the positive mass theorem was established by Schoen
and Yau in dimensions n less than eight [18, 17] and Witten for spin manifolds
[20], under the assumption that the underlying metric is regular. Bartnik [1]

showed that Witten’s spinor argument works whenever the metric is W 2,p
loc with

p > n. For the slightly weaker integrability class C0 ∩W 2,n/2
loc , see [5]. As far as

solely “piecewise regular” metrics are concerned, Miao [15] used a smoothing plus
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conformal deformation (following Bray [3]) and proved a version of the positive
mass theorem for metrics that are singular only along a hypersurface. Similar
results were also proved by Shi and Tam [19] (using Witten’s spinor method) and
McFeron and Székelyhidi [14] (using the Ricci flow). The conformal deformation
method was also used by Lee [6] to treat metrics with low-dimensional singular
sets.

Our result generalizes all of those previous results in the spin case. It also fits
together with and was motivated by earlier work by LeFloch and collaborators
[9, 10, 11, 13], who defined and investigated the Einstein equations within the

broad class of metrics with L∞ ∩W 1,2
loc regularity and established existence results

for the Cauchy problem at this level of regularity.

Theorem 1 (The positive mass theorem for distributional curvature).
Let M be a smooth n-manifold (n ≥ 3) endowed with a spin structure and a

C0∩W 1,n
−q regular and asymptotically flat, Riemannian metric g, with q ≥ (n−2)/2.

If the distributional scalar curvature Rg of g is non-negative, then its generalized
ADM mass is non-negative. Moreover, the mass is zero only when (M, g) is iso-
metric to Euclidean space.

We find it convenient to choose a smooth background metric h on M that is
identically equal to the Euclidean metric outside a compact set. Using this metric,
it is a standard matter to define the Lebesgue spaces and Sobolev spaces, which
do not depend upon the choice of h. The q subscript in W 1,n

−q refers to the decay
rate of the metric g − h.

Let g be a C2 metric and define

Γk
ij :=

1

2
gkl(∇̄igjl + ∇̄jgil − ∇̄lgij),

where ∇̄ denotes the Levi-Civita connection of the background metric h. In gen-
eral, we use the background metric h for computing barred quantities. A straight-
forward computation shows that

Rg = ∇̄kV
k + F,

where
V k := gijgkℓ(∇̄jgiℓ − ∇̄ℓgij),

F := R̄− ∇̄kg
ijΓk

ij + ∇̄kg
ikΓj

ji + gij
(
Γk
kℓΓ

ℓ
ij − Γk

jℓΓ
ℓ
ik

)
.

This calculation motivates the following definition.

Definition 2. Let M be a smooth manifold endowed with a smooth background
metric h. Given any Riemannian metric g with L∞

loc ∩W
1,2
loc regularity and locally

bounded inverse g−1 ∈ L∞
loc, the scalar curvature distribution Rg is defined,

for every compactly supported smooth (test-) function u :M → R by

〈Rg, u〉 :=
∫

M

(
−V · ∇̄

(
u
dµg

dµh

)
+ F u

dµg

dµh

)
dµh,

in which the dot product is taken using the metric h and dµh and dµg denote the
volume measures associated with h and g, respectively.
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This definition makes sense because the assumption that g ∈ L∞
loc∩W

1,2
loc implies

that Γ ∈ L2
loc, V ∈ L2

loc, F ∈ L1
loc, and

dµg

dµh
∈ L∞

loc ∩W
1,2
loc . Although this level of

regularity is enough to show that the scalar curvature distribution is well-defined,
we need more regularity to carry our Witten’s spinor proof of the positive mass
theorem. In particular, we have the following:

Proposition 3 (A Lichnerowicz-Weitzenböck identity for metrics with

distributional curvature). Assume that g is a C0 ∩W 1,n
loc metric on a smooth

n-manifold M . If ψ and φ are W 1,2
loc spinors and φ has compact support, then

0 = −〈Dψ,Dφ〉L2 + 〈∇ψ,∇φ〉L2 +
1

4
〈Rg, 〈ψ, φ〉〉 ,

where all quantities are computed using g, and D is the Dirac operator.

One last point worth mentioning is that our regularity of g is not strong enough
for the boundary integrals appearing in the usual definition of ADM mass to be
well-defined. So instead, we make the following more general definition that only
involves integration over an annulus.

Definition 4. Let g be a C0 ∩W 1,n
−q regular and asymptotically flat, Riemannian

metric on Mn with q ≥ (n − 2)/2. The generalized ADM mass of such a
manifold is then defined as

m :=
1

2(n− 1)ωn−1
inf
ǫ>0

lim inf
ρ→+∞

(
1

ǫ

∫

ρ<r<ρ+ǫ

V · ∇̄r dµh

)
,

where V is the vector field defined above, r is the radial coordinate of the asymp-
totically flat coordinate chart, and ωn−1 is the volume of the standard unit (n−1)-
sphere.

Under the hypotheses of Theorem 1, the lim infρ→+∞ in the formula always
exists and is independent of ǫ, though it could be +∞.
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On the topology and index of minimal surfaces

Davi Maximo

(joint work with Otis Chodosh)

The work of Schoen and Yau on the Positive Mass Theorem [11] and also on
metrics of positive scalar curvature [12] made well known that the existence of
minimal submanifolds of certain topological and Morse index type can impose
restrictions on the curvature of the ambient manifold, and vice-versa. On several
instances since, the index of minimal submanifolds have played a key role in the
study of curvature: manifolds with positive isotropic curvature [8], the finite time
extinction of three-dimensional Ricci flow [3], the Willmore conjecture [7], to cite
a few.

Granted all this, the connection between the index of minimal submanifolds,
their topology, and the curvature of the ambient remains elusive − even when the
ambient manifold has constant curvature. In recent work with Otis Chodosh [2],
we investigated the relationship between the index and the topology of minimal
surfaces in R3. We showed a lower bound for the index of a minimal surface in
terms of its genus and number of ends:

Theorem 1. Suppose that Σ → R3 is an immersed complete two-sided minimal
surface of genus g and with r ends. Then

Index(Σ) ≥ 2

3
(g + r) − 1.
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The main consequence of Theorem 1 is that it allows one to extend the classi-
fication of minimal surfaces with “small” index. Previously, minimal surfaces of
R3 with index zero ([5],[4],[9],[10]) and index one [6] were classified. One can use
Theorem 1 to show that there are no embedded minimal surfaces of index two, as
conjectured by Choe [1]:

Theorem 2. There are no embedded minimal surfaces of index two in R3.
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A Positive Mass Theorem for Asymptotically Flat Manifolds with a
Non-Compact Boundary

Ezequiel Barbosa

(joint work with Sérgio Almaraz, Levi Lopes de Lima)

We consider an oriented asymptotically flat Riemannian manifold (Mn, g) with
boundary Σ and dimension n ≥ 3, modeled on the half-space Rn

+ (see [1] for
precise definitions). We denote by Rg the scalar curvature of (M, g). We also
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assume that Σ is oriented by an outward pointing unit normal vector η, so that
its mean curvature is Hg = divgη. In terms of asymptotically flat coordinates, we
define a mass-type quantity, which is the analogue to the ADM mass, by

m(M,g) := lim
r→+∞

{∫

Sn−1

r,+

(gij,j − gjj,i)µ
idSn−1

r,+ +

∫

Sn−2
r

gαnϑ
αdSn−2

r

}
,

where Sn−1
r,+ ⊂ M is a large coordinate hemisphere of radius r with outward unit

normal µ, and ϑ is the outward pointing unit co-normal to Sn−2
r = ∂Sn−1

r,+ , viewed
as the boundary of the bounded region Σr ⊂ Σ. We prove that m(M,g) is a
geometric invariant, in the sense that it does not depend on the asymptotically
flat coordinates chosen. Moreover, assuming that Rg ≥ 0 and Hg ≥ 0, and either
3 ≤ n ≤ 7 or n ≥ 3 and M is spin, we obtain that m(M,g) ≥ 0, with the equality
m(M,g) = 0 occurring if and only if (M, g) is isometric to (Rn

+, δ).
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Low Dimensional Polar Actions

Francisco J. Gozzi

A proper isometric action of a Lie group G on a Riemannian manifold M is called
polar if it admits a section, i.e., an immersed complete submanifold Σ of M in-
tersecting every orbit orthogonally. These actions are special in that they can
be reconstructed from its orbit space together with a marking of isotropy groups
along strata, as it was shown by Grove and Ziller [1].

In the case of cohomogeneity one actions Hoelscher [2] gives an equivariant
classification of the actions on compact simply-connected manifolds of dimension 7
or less. We finish the classification of polar actions on compact simply-connected
manifold up to dimension 5, by addressing the case of cohomogeneity at least two.
This classification is both equivariant and topological.

Our main contribution is the description of effective polar T2-actions as the re-
sult of equivariant surgery operations starting from linear polar actions on spheres
and products of spheres, or biquotient T2-actions on either of the two S3 bundles
over S2. The equivariant surgeries correspond to connected sums at fixed points
and surgeries along regular orbits.

As an application of our classification and the explicit description of what the
sections are in each case, we are able to determine which actions admit invariant
non-negative sectional curvature.
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Twisted Spin Cobordism

Fabian Hebestreit

(joint work with Michael Joachim)

The surgery theorem of Gromov and Lawson in [1] showed that the existence of
a metric of positive scalar curvature (psc) on a given connected, closed, smooth
manifold M of dimension n greater than 4 depends only on its bordism class in a
certain bordism group; precisely which bordism group is determined by the normal
1-type of M (compare e.g. [4, 8, 13]). For spin manifolds, for example, one has to
consider the spin bordism group

ΩSpin
n (Bπ1(M))

Their approach has lead to strong existence theorems for psc-metrics (see [9]): For
example Gromov and Lawson used the well-known computation of the oriented
bordism ring to conclude that any closed, simply connected, non-spin manifold
of dimension greater than 4 does admit a psc metric. For spin manifolds on the
other hand the indices of various Dirac-operators associated with the spin structure
give well-known obstructions to the existence of such metrics. These indices were
coalesced into a single class in the operator K-theory group KOn(C

∗π1(M)) by
Rosenberg in [2], which he conjectured to be a complete obstruction (but see
[7, 10]); here C∗G denotes the (reduced) C∗-algebra associated to a given group
G. As it is invariant under spin bordism one obtains a map

ΩSpin
n (Bπ1(M)) → KOn(C

∗π1(M))

which factors over the connective K-homology group kon(Bπ1(M)) via the Atiyah-
Bott-Shapiro-orientation α and an assembly map. The strongest general theorem
available in this case is due to Stolz and Führing (see [5, 12]): The vanishing of
α(M) ∈ kon(Bπ1(M)) is sufficient for the existence of a psc-metric on M . Since
the assembly map alluded to above is an isomorphism in the case of π1(M) = 0,
this in particular covers the case of simply connected manifolds originally solved
in [3].
While the dividing line for the existence of index-theoretic obstructions seems to
be a spin structure on the universal cover of M (compare e.g. [11]), an analogue
of the above result remains a conjecture (due to Stolz) for this greater class of
manifolds. Various ingredients, however, are already in place: The correct bor-
dism groups are twisted spin bordism groups ΩSpin

n (Bπ1(M), w(M)) (see [13]),
Stolz constructed a generalisation of Rosenberg’s invariant (taking values in the
K-theory of a C∗ algebra assiociated to the fundamental super-group of M) in
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[15], Joachim provided a twisted version of the Atiyah-Bott-Shapiro orientation
in [6] and we prove a factorisation of Stolz’ invariant through twisted, connective
K-homology in [13].
In my talk I reported on recent work (from my PhD-thesis [14]) giving both a ho-
motopical and a homological description of the underlying parametrised spectrum
M2O representing twisted spin cobordism. Specifically, I presented a generalisation
of the Anderson-Brown-Peterson splitting (which is the basis for the computation
of the spin cobordism ring) and computed H∗(M2O,Z/2) as a module over an
appropriately extended Steenrod algebra.
These computations should be regarded as a first step towards a proof of Stolz’
conjecture.
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Recent Progress on the Equivariant Yamabe Problem

Farid Madani

Lichnerowicz conjecture. For every compact Riemannian manifold (M, g)
of dimensions n ≥ 3, which is not conformal to the round sphere Sn, there exists
a metric g̃ conformal to g, for which Isom(M, g̃) = Conf(M, g) and the scalar
curvature Scalg̃ is constant.

In order to solve this conjecture, Hebey and Vaugon [2] introduced the following
problem:

Let G be a subgroup of the isometry group Isom(M, g). Is there a G−invariant
metric g0 which minimizes the functional

J(g′) :=

∫
M Scalg′dvg′

(
∫
M dvg′)

n−2

n

,

where g′ belongs to the G−invariant conformal class of metrics g defined by:

[g]G := {g̃ = efg | f ∈ C∞(M), σ∗g̃ = g̃ ∀σ ∈ G}
Using the result of Lelong-Ferrand [3], which asserts that Conf(M, g) is compact

if and only if (M, g) is not conformal to the round sphere Sn, Hebey–Vaugon proved
that a solution to the equivariant Yamabe problem implies that the Lichnerowicz
conjecture holds.

We define the integer ω at the point p as

ω = inf{i ∈ N | ‖∇iWeylg(p)‖ 6= 0}
Hebey–Vaugon conjecture. If (M, g) is not conformal to the round sphere
Sn, or if the action of G has no fixed point, then the following inequality holds

(1) inf
g′∈[g]G

J(g′) < n(n− 1)vol(Sn)2/n( inf
q∈M

card G(q))2/n

This conjecture is a generalization of Aubin’s conjecture [1] for the Yamabe
problem (it corresponds to G = {id}).

Assuming the Positive Mass Theorem and using the test function of Aubin [1]
and Schoen [6], Hebey and Vaugon [2] proved that the Hebey–Vaugon conjecture
holds when the action of G is free, when the dimension of M is between 3 and 11,
or when there exists p ∈M with finite minimal orbit, such that ω > (n− 6)/2 or
ω ≤ 2.

In [4] and [5], the author proved recently that the Hebey–Vaugon conjecture
holds if there exists p ∈ M with finite minimal orbit, such that ω ≤ (n − 6)/2.
Therefore, the Lichnerowicz conjecture holds and the equivariant Yamabe problem
has solutions, if the positive mass theorem holds, for any dimension n ≥ 3.
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The Yamabe equation on Riemannian products and the Yamabe
invariant

Jimmy Petean

(joint work with Guillermo Henry)

Consider the Einstein-Hilbert functional (or normalized total scalar curvature) S
on the space of Riemannian metrics on a closed smooth manifold M of dimension
n ≥ 3 and restrict it to a conformal class [g]. If we let p = pn = 2n

n−2 and write

h ∈ [g] as h = fp−2 for a positive function f then

S(h) =

∫
M an‖∇f‖2 + sgf

2 dvg

‖f‖2p
.

Here an = 4n−1
n−2 , sg is the scalar curvature of g and dvg its volume element.

Written in this way the Euler-Lagrange equation of S|[g] is

−an∆f + sgf = λfp−1

where λ is a constant. And this means that h has constant scalar curvature if and
only if f solves the previous equation, which is called the Yamabe equation.

By a fundamental result it is known that there is always a solution to the
Yamabe equation since the minimum of S|[g] is always achieved. The infimum
is called the Yamabe constant of [g], Y (M, [g]). This constant is positive if and
only if there is a metric of positive scalar curvature in [g]. When Y (M, [g]) ≤
0 the minimizing solution is the only solution, i.e. for a fixed volume there is
exactly one metric of constant scalar curvature in the conformal class. But in
the positive case the space of solutions can be very complicated. A particular
case to consider is the conformal class of a Riemannian product of round spheres
(Sn × Sm, [gn0 + Tgm0 ], where gk0 is the curvature one metric on the k-sphere and
T is a positive number. Besides the case of conformal classes of Einstein metrics
(where there is also only one solution by a classical theorem of M. Obata) the case
where n = 1 or m = 1 is one of the few cases where one can completely describe
the space of solutions). When n,m ≥ 2 the problems is already very difficult
and we can give multiplicity results by looking for solutions which bifurcate from
the product metric (the constant solution). These products are of course very
natural to consider by themselves but they are also very important in the theory
of the Yamabe invariant, Y (M), which is defined as the supremum of the Yamabe
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constants of all conformal classes of metrics on M ([1]). To study the invariant is
important to understand its behavior under surgery and the conformal classes of
these products play a fundamental role.

There is a value T = T0 such that the product is Einstein. For T small (T <
T0) we can see that all solutions bifurcating from the constant solution depend
only on Sn (the ”big” variable). Moreover, by looking at solutions adapted to
an isoparametric function (in particular radial functions) one can see that each
value of T at which the linearized equation has a non-trivial kernel is a bifurcation
point ([2, 3]). In this way one can prove existence of solutions whose level sets are
any given isoparametric hypersurface. By using global bifurcation techniques one
can give multiplicity results for solutions of the equation for all small values of T
([2, 3]). Moreover, by a careful study of the behavior of the family of solutions
appearing at the bifurcation points one can also show the existence of degenerate
solutions of the equation ([4]).

Several interesting questions can be asked related to these results. Of course
it would be very important if one could understand all solutions of the Yamabe
equation in these products. In particular one would like to know if there might
be new bifurcating points appearing at the branches of solutions constructed. It
would also be interesting to know how does the space of solutions look like around
the bifurcating points (are there solutions whose level sets are not isoparametric
hypersurfaces?). Is the space of solutions (parametrized by T) connected? (do all
solutions come from the constant solution by a sequence of bifurcations?). Are
there solutions which depend non-trivially on both variables? This last question
is particularly important for applications to the Yamabe invariant.
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Stability and Instability of Ricci Solitons

Klaus Kröncke

A Riemannian metric (M, g) is called a Ricci soliton if it satisfies the equation

Ricg +
1

2
LXg = c · g

for some smooth vector field X and some constant c ∈ R. If (M, g) is not Einstein,
we call it nontrivial. We call a soliton gradient if X = gradf for some smooth
function f . If c > 0, the soliton is called shrinking, if c = 0, it is steady and if
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c < 0, we call it expanding. Ricci solitons appear in Ricci flow theory as self-similar
solutions of the Ricci flow

ġ(t) = −2Ricg(t).

In this talk, we discuss stability properties of compact Ricci solitons under the
Ricci flow. The Ricci flow is not a gradient flow in the strict sense, but Perelman
made the remarkable discovery that it can be regarded as the gradient flow of the
functional

ν(g) = inf
τ>0, f∈C∞(M)∫

M
e−fdV=(4πτ)n/2

1

(4πτ)n/2

∫

M

[τ(|∇f |2g + scalg) + f − n]e−fdVg

on the space of metrics modulo diffeomorphism and rescaling [5]. This functional,
which is often called shrinker entropy, admits precisely shrinking Ricci solitons as
its critical points.

In this talk, I prove the following two assertions (which are the main results of
[4]):

Theorem. Let (M, g) be a compact shrinking Ricci soliton. If g is a local max-
imizer of ν in the space of metrics, it is dynamically stable, i.e. for any Ck-
neighbourhood U , k ≥ 3, there exists a Ck+5-neighbourhood V ⊂ U such that any
volume-normalized Ricci flow starting in V exists for all time and converges modulo
diffeomorphism to a Ricci soliton in U as t→ ∞.

Theorem. Let (M, g) be a compact shrinking Ricci soliton. If g is not a local
maximizer of ν, it is dynamically unstable, i.e. there exists a nontrivial ancient
normalized Ricci flow converging modulo diffeomorphism to g as t→ −∞.

The converse implications also hold due to monotonicity of ν along the flow.
Observe that either of the above cases occur and we have a complete description
of the Ricci flow as a dynamical system close to g. These theorems generalize
results previously obtained in the Ricci-flat and the Einstein case [2, 3]. Compact
expanding and steady Ricci solitons are known to be Einstein and so they are
already covered by those results.

An important tool in the proof of both theorems is a Lojasiewicz-Simon in-
equality: For any compact shrinking Ricci soliton (M, g0), there exists a C2,α-
neighbourhood U in the space of metrics and constants C > 0, σ ∈ [1/2, 1) such
that

|ν(g)− ν(g0)|σ ≤ C

∥∥∥∥Ricg +∇2fg −
1

2τg
g

∥∥∥∥
L2

for all g ∈ U . Here, fg and τg denote the minimizers in the definition of ν(g).
The following theorem relates stability properties of a given Ricci soliton to the

eigenvalues of an elliptic operator coming from the second variation of ν, provided
that an additional technical condition holds:



Analysis, Geometry and Topology of Positive Scalar Curvature Metrics 2019

Theorem. Let (M, g) be a compact shrinking Ricci soliton. Suppose that all in-
finitesimal solitonic deformations are integrable (i.e. for all h ∈ ker(ν′′) there is a
curve g(t) of Ricci soliton metrics such that g(0) = g and g′(0) = h). Then, g is
a local maximizer of ν if and only if ν′′ ≤ 0.

Note that the implication “local maximizer of ν ⇒ ν′′ ≤ 0” is immediate and
does not need the integrability condition. For symmetric spaces of compact type,
the largest eigenvalue of ν′′ is known [1]. Thus, stability properties can be read
off, provided that the integrability condition holds (e.g. Sn and Spin(n), n ≥ 7
are stable but HPn and Spin(5) are unstable). The CPn with the Fubini-Study
metric statisfies ν′′ ≤ 0 but it violates the integrability condition and it is not a
local maximizer of ν, hence it is unstable.

All known nontrivial Ricci solitons are known to be unstable (because ν′′ admits
positive eigenvalues). It is an open question whether this property holds for all
nontrivial Ricci solitons.
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[4] K. Kröncke, Stability and Instability of Ricci solitons, Calc. Var. Partial Differ. Eqn. (2014),
doi:10.1007/s00526-014-0748-3

[5] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv
preprint math/0211159.

Critical metrics on connected sums of Einstein four-manifolds

Matthew Gursky

(joint work with Jeff Viaclovsky)

In this talk I describe a gluing procedure designed to obtain canonical metrics on
connected sums of Einstein four-manifolds. These metrics are critical points of the
quadratic Riemannian functional which assigns to each metric g the quantity

Bt[g] =

∫
|Wg |2dv + t

∫
R2

g dv,(1)

where W = Wg is the Weyl tensor and R = Rg is the scalar curvature. Here,
t is a free parameter. In the special case when t = 0, critical metrics are called
Bach-flat, and examples include self-dual (W− = 0) and anti-self-dual (W+ = 0)
metrics.

Note that (up to topological terms) any quadratic Riemannian functional is a
linear combination of the three terms∫

|Wg|2dv,
∫

|Ricg|2dv,
∫
R2

gdv,
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where Ric is the Ricci tensor. However, due to the Chern-Gauss-Bonnet formula

32π2χ(M) =

∫

M

|Wg|2dv − 2

∫

M

|Ricg|2dv +
2

3

∫

M

R2
gdv

one can write the Ricci term as linear combination of the Weyl and scalar terms,
so that any quadratic functional can be written in the form of (1).

The Euler-Lagrange equations of Bt are given by

Bt ≡ B + tC = 0,(2)

where B is the Bach tensor defined by

Bij ≡ −4
(
∇k∇lWikjl +

1

2
RklWikjl

)
,(3)

and C is the tensor defined by

Cij = 2∇i∇jR− 2(∆R)gij − 2RRij +
1

2
R2gij .(4)

It follows that any Einstein metric is critical for Bt. We will refer to such a critical
metric as a Bt-flat metric. Note that by taking a trace of (2), it follows that the
scalar curvature of a Bt-flat metric on a compact manifold is necessarily constant.
Therefore a Bt-flat metric satisfies the equation

B = 2tR ·E,(5)

where E denotes the traceless Ricci tensor. That is, the Bach tensor is a constant
multiple of the traceless Ricci tensor.

The gluing problem for the anti-self-dual equations W+ = 0 in dimension four
has been very successful; see for example [1, 2, 3, 4]. However, gluing for the
Bt-flat equations is much more difficult because, as in the Einstein case, this is a
self-adjoint problem. The parameter t is the key to overcoming this difficulty.

The main building blocks of our construction are the Fubini-Study metric
(CP2, gFS), and (S2×S2, gS2×S2), the product of 2-dimensional spheres with unit
Gauss curvature. Both are Einstein, so are Bt-flat for all t. A key result we need
is the rigidity of these metrics for certain ranges of t, which was proved in our
previous work [5]. That is, these metrics admit no non-trivial infinitesimal Bt-flat
deformations for certain ranges of t (other than scalings).

For the general gluing problem, even if the pieces are rigid, there can be nonzero
infinitesimal kernel elements due to the presence of gluing parameters. In general,
there are infinitesimal kernel elements corresponding geometrically to freedom of
scaling the factors, rotating, and moving the base points of the gluing. Since these
manifolds are toric, we can use the torus action plus a certain discrete symmetry,
called a diagonal symmetry, to eliminate all gluing parameters except for the
scaling parameter.
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Our main result is:

Main Theorem. The following 4-manifolds admit a (toric-invariant) Bt-flat
metric:

CP2♯CP
2
, CP2♯2CP

2
, 2♯S2 × S2,

for some value of t < 0.

Remarks and Questions

(1) The value of t can be made arbitrarily close to specified values; see the
complete statement in [6].

(2) Other gluing configurations are possible, cf. [6].

(3) In fact, the construction allows for a family of critical metrics which
vary according to the choice of a gluing parameter. This implies the
following interesting dichotomy: either (i) there is a critical metric at
exactly one value of t = t0, in which case there would necessarily be a
1-dimensional moduli space of solutions for this fixed t0 (this indeed hap-
pens for CP2#CP

2, in which case there is a 1-parameter family of self-dual
metrics). Or, the other possibility (ii) is that for each value of the gluing
parameter a sufficiently small, there will be a critical metric for a corre-
sponding value of t0 = t0(a). Trying to determine which holds is ongoing
work.

References

[1] S. Donaldson and R. Friedman, Connected sums of self-dual manifolds and deformations of
singular spaces, Nonlinearity, 2 (1989), 197–239.

[2] A. Floer, Self-dual conformal structures on lCP2, J. Differential Geom. 33 (1991), 551–573.
[3] C. Taubes, The existence of anti-self-dual conformal structures, J. Differential Geom. 36

(1992), 163–253.
[4] A. Kovalev and M. Singer, Gluing theorems for complete anti-self-dual spaces, Geom. Funct.

Anal. 11 (2001), 1229–1281.
[5] M. Gursky and J. Viaclovsky, Rigidity and stability of Einstein metrics for quadratic cur-

vature functionals, to appear in Crelle’s journal.
[6] M. Gursky and J. Viaclovsky, Critical metrics on connected sums of Einstein four-manifolds,

preprint.



2022 Oberwolfach Report 36/2014

Gromov Positive Scalar Cuvature and Rationally Inessential
Macroscopically Large Manifolds

Michal Marcinkowski

1. Overview

Macroscopic dimension was defined by Gromov ([2]) in search of topological ob-
structions for manifolds to admit a Riemannian metric with positive scalar curva-
ture (briefly PSC). He conjectured that such manifolds tend to have deficiency of
macroscopic dimension.

There are different notions of small and large manifolds. E.g. manifolds with no
deficiency of macroscopic dimension are called macroscopically large. On the other
hand, vaguely speaking, rationally inessential manifolds are small in the homologi-
cal sense. The purpose of this talk was to present examples of rationally inessential
but macroscopically large manifolds ([1]). Such manifolds are counterexamples to
Dranishnikov’s rationality conjecture. Moreover, they do not admit a metric of
positive scalar curvature, thus satisfy Gromov’s positive scalar curvature conjec-
ture. In the talk we outlined the construction which uses small covers of convex
polyhedrons (or alternatively Davis complexes) and surgery. We discussed also
the notion of right angled Coxeter groups, which are fundamental groups of the
manifolds in question.

2. Details

Let X be a metric space and let Y be a topological space. We say that a
map f : X → Y is uniformly cobounded if there exists real number C such that
diam(f−1(y)) < C for every y ∈ Y .

Definition. The macroscopic dimension of X , denoted dimmc(X), is the small-
est number k, such that there exist a k-dimensional simplicial complex K and a
continuous, uniformly cobounded map f : X → K.

Let M̃ be the universal cover of M . Note that dimmc(M̃) is never greater than
topological dimension.

Gromov Conjecture. Let M be a closed n-dimensional manifold. If M admits

a Riemannian metric of positive scalar curvature, then dimmc(M̃) ≤ n− 2.

We always assume that a metric on M̃ is pulled back from some Riemannian

metric on M . Macroscopic dimension of M̃ does not depend on metric chosen on
M .

The n − 2 in the conjecture comes from the following prototypical example:
for any Mn−2, the manifold M ′ = M × S2 admits a PSC metric. We have

dimmc(M̃ ′) = dimmc(M̃ × S2) = dimmc(M̃) ≤ n − 2. Thus inequality in the
conjecture is sharp.
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There is also a version of Gromov Conjecture, called weak Gromov conjec-

ture, which asserts that if M admits PSC, then dimmc(M̃) ≤ n− 1.

The Gromov conjecture was proven for 3-dimensional manifolds ([3]) and for
manifolds with some assumptions on their fundamental groups ([4, 5]). In the
present state of the art, the Gromov conjecture (and even its weak version) is
considered to be out of reach. It implies other longstanding conjectures, e.g., the
Gromov-Lawson conjecture, which asserts that aspherical manifolds do not admit
PSC metric.

Let us consider the following:

Example. Let M be a closed oriented manifold, π = π1(M), and let Bπ be a
classifying space endowed with a structure of a CW-complex. Denote by f : M →
Bπ the map classifying the universal bundle. If f∗([M ]) = 0 ∈ Hn(Bπ;Z), then
there is a homotopy of f to some map g : M → Bπ[n−1]. It follows that there exist

an equivariant homotopy of a lift f̃ : M̃ → Eπ to g̃ : M̃ → Eπ[n−1]. Then g̃ is
a cobounded map, thus M cannot be macroscopically large.

An n-dimensional manifoldM is called macroscopically large if dimmc(M̃) =
n. One can ask if the property that a manifold M is large or not can be expressed
in homological terms. To do that, let us introduce the following notions (using
the notation from the example above). We call M inessential if f∗([M ]) = 0 ∈
Hn(Bπ;Z) and rationally inessential if f∗([M ]) = 0 ∈ Hn(Bπ;Q) (note thatM
is rationally inessential if and only if f∗([M ]) ∈ Hn(Bπ;Z) is torsion). The example
of rationally inessential (but essential) orientable manifold isM = RP3. Obviously

dimmc(M̃) = 0, thus being essential is not enough to be macroscopically large.
Gromov expected, that if f∗([M ]) is rationally essential, thenM is macroscopically
large. A. Dranishnikov disproved this conjecture and found the right homology
theory where one should place a fundamental class [M ] to test if M is large just
by checking if the class is non-trivial ([6]). Moreover, he showed that [M ] is large

if and only if there exist a bounded homotopy from f̃ : M̃ → Eπ to some map
which ranges in Eπ[n−1]. In [5] he conjectured the following:

Rationality Conjecture. IfM is rationally inessential, then it is macroscopically
small.

It would imply the weak Gromov conjecture for rationally inessential manifolds.
In this paper we give counterexamples to this conjecture. In terms of homotopy

theory, they are rationally inessential manifolds, such that f̃ : M̃ → Eπ can not
be deformed by means of bounded homotopy to a map which ranges in Eπ[n−1].
Our manifolds are spin and we also prove that they do not admit a PSC metric.
Thus they satisfy the Gromov Conjecture.
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Circle actions and positive scalar curvature

Michael Wiemeler

In my talk I discussed the following question:
Let G be a compact connected Lie group which acts effectively on a closed man-

ifold M . Does there exist an invariant metric of positive scalar curvature on M?
It has been shown by Lawson and Yau [5] that M admits such a metric if G is

non-abelian. Therefore in the following we restrict to the case where G is a torus or
S1. This case is more complicated. There exist manifolds which admit a non-trivial
S1-action but no metric of positive scalar curvature, e.g., there exist S1-actions
on certain exotic spheres not bounding spin manifolds [2], [4], [7]. Moreover, there
are manifolds which admit a non-trivial S1-action and a non-invariant metric of
positive scalar curvature, but no invariant such metric [1].

Existence results for invariant metrics of positive scalar curvature on certain
S1-manifolds without fixed points have been obtained by Berard Bergery [1] and
Hanke [3]. Therefore we restrict to S1-actions with fixed points.

For the case that the S1-action on a connected manifold M has a fixed point
component of codimension two, we show in [8] that there is an invariant metric of
positive scalar curvature on M .

Fixed point components of codimension two exist if, for example, one of the
following two condition holds:

• M has dimension four and the Euler-characteristic of M is negative.
• M has dimension 2n and there is an effective action of an n-dimensional
torus T with fixed point onM . Then there is a circle subgroup of T which
has a codimension two fixed point component. Moreover, in this case M
admits an T -invariant metric of positive scalar curvature.

In [8] we also have existence results for the case that the S1-action on a simply
connected manifold M , dimM ≥ 6, is semi-free and there is no fixed point com-
ponent of codimension two. Here one has to distinguish between three cases: M is
not spin; M is spin and the S1-action is of odd type; M is spin and the S1-action
is of even type.

In the first two cases we show that the equivariant connected sum of two copies
of M admits an invariant metric of positive scalar curvature. In the third case
there is an obstruction against an invariant metric of positive scalar curvature on
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M . It is a generalised Â-genus of the orbit space M/S1 defined by Lott in [6].
We show that if it vanishes, then there is an invariant metric of positive scalar
curvature on the equivariant connected sum of sufficiently many copies of M .
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Invertible Dirac operators and handle attachments

Nadine Große

(joint work with Mattias Dahl)

Mathematicians got interested in Dirac operators and spin manifolds since they
provide an obstruction to the existence of positive scalar curvature. More precisely,
as soon as the scalar curvature of a closed Riemannian spin manifold (Mn, g) is
everywhere positive, the Lichnerowicz formula implies that the Dirac operator Dg

of M has no kernel. While in general the dimension of the kernel Dg depends on
the manifold and the metric, one can obtain by the index theorem an – in general
nontrivial – lower bound for dimkerDg that no longer depends on the metric, cf.
[4], [2, Sect. 3],

dim kerDg ≥





|Â(M)| if n ≡ 0 mod 4
1 if n ≡ 1 mod 8 and α(M) 6= 0
2 if n ≡ 2 mod 8 and α(M) 6= 0
0 else.

(1)

Here, the Â-genus Â(M) ∈ Z and the α-genus α(M) ∈ Z2 are invariants of the
spin bordism class of the differentiable spin manifold M .

Thus, one obtains a topological obstruction to the existence of elements in
kerDg, so-called harmonic spinors, and, hence, to the existence of metrics of pos-
itive scalar curvature. In particular, the space of Riemannian metrics on M with
positive scalar curvature, Metrpos(M), is contained in the space of Riemannian

metrics on M with invertible Dirac operator, Metrinv(M).
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While the topological obstruction obtained by the index theorem for Dg is not
the only obstruction to positive scalar curvature, it actually is the only obstruction
to invertibility of the Dirac operator:

Theorem. [1, Thm. 1.1] Let M be a closed Riemannian spin manifold. Then, the
space of Riemannian metrics for which Inequality (1) is saturated is dense in the
C∞-topology and open in the C1-topology in the space of all Riemannian metrics.

The main technique in proving this result is surgery. In particular, the authors
show that if a closed spin manifold N is obtained from a Riemannian spin manifold
(M, g) by surgery of codimension ≥ 2, then there is a metric h on N such that
dim kerDh ≤ dim kerDg.

We obtained a similar surgery result for manifolds with boundary and handle
attachments.

Theorem. [3, Thm. 1.2] Let (M, g) be a compact Riemannian spin manifold with
boundary and invertible Dirac operator, see below for the meaning of invertible
here. Let a compact spin manifold N with boundary be obtained from M by handle
attachment of codimension ≥ 2. Then, N admits a metric with invertible Dirac
operator.

In order to define the notion of invertible Dirac operators for manifolds with
boundary, we restrict to metrics that have product structure near the boundary.
This has several advantages. First, we have a good notion of invertible Dirac
operator: For a Riemannian spin manifold (M, g) with boundary ∂M such that
in a neighborhood U := ∂M × (−ǫ, 0] of ∂M the metric has product form g|U =
g|∂M +dt2 we can glue along the boundary the half-cylinder ∂M × [0,∞) with the
metric g|∂M + dt2. Thus, we obtain a manifold (M∞, g∞) with cylindrical end.
We say that Dg is invertible if the Dirac operator Dg∞ on M∞ is invertible as an
operator from L2(M∞, g∞) to itself.

Second, if (Mi, gi), i = 1, 2, are compact Riemannian spin manifold with bound-
ary ∂M1 = (∂M2)

− and g1|∂M1
= g2|∂M2

(Here (.)− denotes the manifold with
opposite orientation.) and if, moreover, both Dgi are invertible, then the manifold
(ML, gL) := (M1, g1) ∪∂M1

(∂M1 × [0, L], g|∂M + dt2) ∪∂M2
(M2, g2) has invertible

Dirac operator for large enough L.
The gluing property allows to use the above surgery result in order to make

statements on the space of invertible Dirac operators on closed manifolds by using
handle decompositions. One application is for example that the space of metrics
with invertible Dirac operators on the 3-sphere has infinitely many path com-
ponents. This contrasts with the connectedness of the space of metrics on the
3-sphere with positive scalar curvature that was recently proven by Marques [5].
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Dirac Eigenvalues of Higher Multiplicity

Nikolai Nowaczyk

Let (M,Θ) be a closed spin manifold of dimension m ≥ 3 with fixed topological
spin structure Θ. For any Riemannian metric g, one can construct the associated
Dirac operator Dg. The spectrum of this Dirac operator depends on g, of course.
In 2005, Dahl conjectured that M can be given a metric for which a finite part
of the spectrum consists of arbitrarily prescribed eigenvalues of arbitrary (finite)
multiplicity, see [1]. The only constraints one has to respect are the exception
of the zero eigenvalue (due to the Atiyah-Singer index theorem) and in certain
dimensions the quaternionic structure of the eigenspaces and also the symmetry
of the spectrum. Dahl also proved his conjecture in case all eigenvalues have
simple multiplicities. The question if one can prescribe eigenvalues of arbitrary
multiplicity, or if the existence of eigenvalues of higher multiplicity might somehow
be topologically obstructed, has been open ever since.

We will show the following result: Let (M,Θ) be a closed spin manifold of
dimension m ≡ 0, 6, 7 mod 8. There exists a Riemannian metric g on M such
that the Dirac operator Dg has at least one eigenvalue of multiplicity at least two.
In addition, g can be chosen such that it agrees with an arbitrary metric g̃ outside
an arbitrary small neighborhood on M .

The proof introduces a technique which “catches” the desired metric with a
loop in the space of all Riemannian metrics on M . We will first construct such a
loop on Sm explicitely and then show that it is stable under certain surgeries, in
particular the connected sum, by extending the results form [2]. This techinque
also requires a global enumeration of the Dirac spectrum by continuous functions
on the Riemannian metrics as in [3].
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Selected Mathematical Problems in General Relativity

Piotr T. Chruściel

General relativity aims to explain how bodies move, and how they affect the motion
of other bodies. According to Einstein, this is best described using a Lorentzian
metric g. Einstein postulates that the motion of test bodies takes place along
timelike geodesics of g, and that matter deforms the metric according to the equa-
tion

(1) Rµν − 1

2
R gµν = 8πTµν ,

where Rµν is the Ricci tensor of g, R is its curvature scalar, Λ is a constant called
the cosmological constant, and Tµν is the energy-momentum tensor of matter fields.
The vacuum equations are obtained when Tµν vanishes.

The theory has been very successful in verifying or predicting many astrophys-
ical and cosmological phenomena. One of the most spectacular examples are the
recent studies of Sagittarius A∗, an object of about four million sollar masses lo-
cated at the center of our galaxy, whose properties are best explained by assuming
that the associated space-time metric is that of a black hole [20, 21].

The aim of mathematical general relativity (MGR) is to provide a firm mathe-
matical basis for the associated physical theory, see [9] for a primer. Its foundations
have been laid by Yvonne Choquet-Bruhat in her seminal 1952 paper [19], where
she showed that the equations split into a set of hyperbolic evolution equations
and a set of underdetermined elliptic constraint equations. A key later result is the
proof, in 1962, of existence of maximal globally hyperbolic developments of vacuum
Cauchy data by Choquet-Bruhat and Geroch [3]. A version of this result with
metrics of low regularity can be found in [5].

The ultimate goal of MGR is a complete understanding of the dynamics of
solutions of Einstein equations. A challenging problem is the Belinski-Lifschitz-
Khalatnikov conjecture, which asserts that the dynamics of the gravitational field
near singularities possess universal chaotic features, see [9, 16, 23] and references
therein. Another is to unravel the fate of five-dimensional “black strings” sub-
jected to the Gregory-Laflamme instabilities, as analyzed numerically by Lehner
and Pretorius [25]. Yet another are the instabilities of anti-de Sitter space-time
whose generic perturbations, no matter how small, seem to lead to black-hole
formation [2], while fine-tuned perturbations lead, numerically, to time-periodic
solutions [27]. This is in sharp contrast with Minkowski space-time, shown to be
nonlinearly stable in the celebrated work of Christodolou and Klainerman [4]; a
simplified proof has been subsequently given by Lindblad and Rodnianski [26].

One of the tools of MGR is the causality theory, whose early achievements
include the incompleteness theorems of Hawking and Penrose [22]. (A Riemannian
version of the trapped surface incompleteness theorem has been recently provided
by Eichmair, Galloway and Pollack [17].) A new approach to causality theory has
been initiated by Fathi and Siconolfi [18], in their study of manifolds equipped
with a distributions of convex cones. The recent results of Minguzzi [28] lead to
dramatic simplifications of the proof of the Hawking area theorem (compare [8]),
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as well as the proof of smoothness of compact Cauchy horizon in space-times
satisfying the dominant energy condition. This last result has been independently
established by Larsson [24], using completely different methods.

The initial data for, say, the vacuum Einstein equations consist of a Riemann-
ian metric g on the initial data manifold M and a symmetric two-covariant tensor
field K on M representing the second-fundamental form of M when embedded in
the associated space-time. The fields (g,K) have to satisfy the general relativis-
tic constraint equations, discussed in detail by other speakers in this workshop.
These constraints are a consequence of the Gauss-Codazzi-Mainardi embedding
equations. Interesting classes of initial data sets include constant mean curvature
(CMC) data, where trK is a constant, or maximal data, where trK vanishes. Im-
pressive progress in the understanding of the constraint equations will be presented
in Carlotto’s and Gicquaud’s lectures in this workshop.

The CMC condition is a non-linear elliptic equation on M , structurally remi-
niscent of the minimal surface equation [1]. The case of zero mean-curvature is
especially relevant for this meeting, as then the vacuum scalar constraint equation,

R = |K|2 + 2Λ− (trK)2 ,

implies that the initial-data metric g has non-negative scalar curvature. The exis-
tence of maximal hypersurfaces trK = 0 plays a key role in the theory of uniqueness
of stationary black holes [6], and has only been settled for black-holes with bifur-
cate Killing horizons [15]. The case of degenerate Killing horizons remains open,
and it would be of interest to fill this gap, see [7, 14].

The experimental verification of positivity of the cosmological constant Λ [29]
led to new studies of the corresponding initial data: large families of initial data
with Λ > 0 and with asymptotic ends of cylindrical type have been constructed
in [10, 11]. Gluing constructions with constant scalar curvature, where the final
metric has constant scalar curvature and coincides with the original ones away
from a small neighborhood of the gluing region have been carried-out in [12, 13].
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[7] P.T. Chruściel, J. Lopes Costa, and M. Heusler, Stationary Black Holes: Uniqueness and

Beyond, Living Rev. Rel. 15 (2012), 7, arXiv:1205.6112 [gr-qc].
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partielles non linéaires, Acta Math. 88 (1952), 141–225.
[20] A.M. Ghez, S. Salim, N.N. Weinberg, J.R. Lu, T. Do, et al., Measuring Distance and Prop-

erties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits, Astrophys.
Jour. 689 (2008), 1044–1062, arXiv:0808.2870 [astro-ph].

[21] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, et al., Monitoring stellar
orbits around the Massive Black Hole in the Galactic Center, Astrophys. Jour. 692 (2009),
1075–1109, arXiv:0810.4674 [astro-ph].

[22] S. W. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology,
Proc. Roy. Soc. London Ser. A 314 (1970), 529–548.

[23] J.M. Heinzle, C. Uggla, and N. Rohr, The cosmological billiard attractor, Adv. Theor. Math.
Phys. 13 (2009), 293–407, arXiv:gr-qc/0702141.

[24] E. Larsson, Lorentzian Cobordisms, Compact Horizons and the Generic Condition, (2014),
arXiv:1406.6194 [gr-qc].

[25] L. Lehner and F. Pretorius, Final State of Gregory-Laflamme Instability, (2011),
arXiv:1106.5184 [gr-qc].

[26] H. Lindblad and I. Rodnianski, Global existence for the Einstein vacuum equations in wave
coordinates, Commun. Math. Phys. 256 (2005), 43–110, arXiv:math.ap/0312479.

[27] M. Maliborski and A. Rostworowski, Time-Periodic Solutions in an Einstein AdSMassless-
Scalar-Field System, Phys.Rev.Lett. 111 (2013), no. 5, 051102, arXiv:1303.3186 [gr-qc].

[28] E. Minguzzi, Area theorem and smoothness of compact Cauchy horizons, (2014),

arXiv:1406.5919 [gr-qc].
[29] A.G. Riess et al., New Hubble Space Telescope discoveries of type Ia Supernovae at z > 1:

Narrowing constraints on the early behavior of dark energy, Astroph. Jour. 659 (2007),
98–121, arXiv:astro-ph/0611572.



Analysis, Geometry and Topology of Positive Scalar Curvature Metrics 2031

Higher rho invariants and their geometric applications

Paolo Piazza

(joint work with Thomas Schick)

In this talk, a sort of continuation of the survey-lecture given by Thomas Schick, I
have reported on the content of the recently published paper [4] as well as on some
more recent literature related to it. As the title suggests, the talk was centered
around the definition of higher rho-invariants in K-theory, a notion due originally
to Nigel Higson and John Roe, their main properties and some specific applications
to the world of positive scalar curvature.

Recall first of all the main ideas leading to Dirac index classes on spin manifolds.
Let (M, g) be a spin manifold with fundamental group Γ. We assume initially that
M is even dimensional. For simplicity we assume that BΓ is a finite CW-complex.
We denote by S/ the associated spinor bundle and by D/g the Dirac operator. In
order to produce an index class one starts by producing a short exact sequence
of C∗-algebras 0 → I → A → A/I → 0 (needless to say, this sequence must
be related to the given geometry) and then consider the associated six-term long
exact sequence in K-theory:

· · · → K1(A) → K1(A/I)
δ−→ K0(I) → · · · .

In several examples one then produces the following data:
- a fundamental class [D/g] ∈ K1(A/I);

- an index class Ind(D/g) := δ[D/g] ∈ K0(I);

- a (specific) lift of [D/g] ∈ K1(A/I) to ρ(D/g) ∈ K1(A) if g has positive scalar

curvature (≡ PSC)
Notice that the last point implies, in particular, that the index class Ind(D/g) ∈
K0(I) vanishes if g has positive scalar curvature. Since, on the other hand, in all
known examples, Ind(D/g) ∈ K0(I) can be proved to have a topological meaning,
independent of g, it is clear that this method produces interesting obstructions to
the existence of PSC metrics on M .

There are three classical examples of index classes that fit into this scheme
when M is compact: (i) the classical numeric index of D/g; (ii) the α-invariant of

Hitchin; (iii) the Mishchenko-Fomenko index of the operator D/g twisted by the
Mishchenko bundle. All these three examples, however, don’t produce interesting
rho-invariants; indeed, K1(A) vanishes in these three examples.

In order to get interesting rho-invariants we must enter into the world of coarse
geometry and coarse index theory, a discipline initiated by Roe, see for example
[5], and greatly developed by Higson and Roe.

Consider, quite generally, a complete riemannian manifold (X, g) and a general-
ized Dirac operatorD. Let H be a Hilbert space, with a representation of C0(X) in
B(H). We consider D∗(X,H), the closure in B(H) of D∗

c (X,H), the bounded op-
erators that are of finite propagation and pseudolocal; we also consider C∗(X,H),
the closure in B(H) of C∗

c (X,H), the operators in D∗
c (X,H) that are, in addition,

locally compact. C∗(X,H) is an ideal in D∗(X,H) and so we have a short exact
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sequence of C∗-algebras 0 → C∗(X,H) → D∗(X,H) → D∗(X,H)/C∗(X,H) → 0.
The associated long exact sequence in K-theory is called the Higson-Roe surgery
sequence. The K-theory groups of these C∗-algebras turn out to be independent
of H . Moreover, they enjoy natural functoriality properties; in particular, given a
coarse continuous map f : X → Y we have homomorphisms f∗ : K∗(C

∗(X)) →
K∗(C

∗(Y )) and f∗ : K∗(D
∗(X)) → K∗(D

∗(Y )). If a discrete group Γ acts freely
and isometrically on X then we also have D∗(X)Γ and C∗(X)Γ (obtained by
closing-up the Γ-invariant elements in D∗

c (X) and C∗
c (X)). It is also important to

recall that if X/Γ is compact, then K∗+1(D
∗(X)Γ/C∗(X)Γ) ≃ K∗(X/Γ) (Paschke

duality); moreover K∗(C
∗(X)Γ) ≃ K∗(C

∗
rΓ), with C∗

rΓ the reduced group C∗-
algebra.

Now, assuming for simplicity X/Γ to be compact and using the finite propa-
gation property of the wave operator exp(itD) one can produce the fundamental
class [D] ∈ KdimX+1(D

∗(X)Γ/C∗(X)Γ) = KdimX(X/Γ); the index class δ[D] ∈
KdimX(C∗(X)Γ) = KdimX(C∗

rΓ) and the rho class ρ(D) ∈ KdimX+1(D
∗(X)Γ) if

D is L2invertible (for example if X is spin and has PSC). The definition of the
fundamental class [D] is as follows: if X is even dimensional and the Dirac bundle
E is equal to E+ ⊕ E− then the fundamental class [D] is equal [U∗χ(D)+] ∈
K1(D

∗(X)Γ/C∗(X)Γ) = K0(X/Γ), with U a unitary operator L2(X,E+) →
L2(X,E−) and χ an odd chopping function (a smooth odd function going to
±1 as x → ±∞). If X is odd-dimensional then the fundamental class is equal
to [ 12 (1 + χ(D)] ∈ K0(D

∗(X)Γ/C∗(X)Γ) = K1(X/Γ). If D is L2-invertible and χ
equals 1 on the positive part of the spectrum, then we define the rho-invariants in
even and odd dimension as

ρ(D) = [U∗χ(D)+] ∈ K1(D
∗(X)Γ) and ρ(D) = [

1

2
(1 + χ(D)] ∈ K0(D

∗(X)Γ) .

We can apply this definition to the universal cover M̃ of a compact spin manifold
(M, g) with PSC and fundamental group Γ; if u :M → BΓ is the classifying map,

covered by ũ : M̃ → EΓ, we obtain

ρ(D/g) ∈ KdimM+1(D
∗(M̃)Γ) and ρΓ(D/g) := ũ∗(ρ(D/g)) ∈ KdimM+1(D

∗
Γ)

with D∗
Γ := D∗(EΓ)Γ. These are the invariants we wanted to define. Their

connection with the classical Atiyah-Patodi-Singer rho-invariant is not obvious but
it can be proved, see [2], that ifM is odd dimensional and α, β : π1(M) → U(ℓ) are
two unitary representations, then there exists a homomorphism Θα,β : K0(D

∗
Γ) →

R such that Θα,β(ρΓ(D/g)) = η(D/g,α) − η(D/g,β) and the right hand side is, by
definition, the classical rho invariant of Atiyah-Patodi-Singer. Recent results of
Benameur and Roy extend this result to the Cheeger-Gromov rho-invariant.

The main properties of higher rho invariants with respect to problems related
to PSC metrics is that they define a group homomorphism

(1) ρ : Posspinn (Z) −→ Kn+1(D
∗(Z̃)Γ)

with Z a compact topological space with fundamental group Γ and universal cover

Z̃ (for example Z = M or Z = BΓ). If [M,u : M → Z, gM ] ∈ Posspinn (Z) then
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ρ[M,u : M → Z, gM ] := u∗(ρ(D/gM )). Similarly, one can consider the group P (M)
of concordance classes of PSC metrics and define a group homomorphism

(2) ρ : P (M) → KdimM+1(D
∗(M̃)Γ).

See [6], [8].
Crucial to the proof of these results is the following theorem (the main technical

contribution of [4]) . Let (W, gW ) be an n-dimenisonal Riemannian spin-manifold
with boundary ∂W such that g∂W has positive scalar curvature. Denote by D/W
and D∂W the Dirac operators on W and ∂W . Assume that Γ acts freely isomet-
rically and W/Γ is compact. Then one can prove that there exists a well-defined
index class Ind(D/W ) ∈ Kn(C

∗(W )Γ).
Theorem (Delocalized APS-index theorem) The following formula holds:

(3) ι∗(Ind(D/W )) = j∗(ρ(D/∂W )) in Kn(D
∗(W ))Γ).

Here, we use j : D∗(∂W )Γ → D∗(W )Γ induced by the natural inclusion ∂W →W
and ι : C∗(W )Γ → D∗(W )Γ the inclusion.

This theorem was proved in even dimension in [4]. Later a new proof was pro-
vided by Xie and Yu in [7]; this latter proof establishes the result in all dimensions.

Using the delocalized APS index theorem and employing the fundamental class
of a closed spin manifold N , [D/g], the index class of a manifold with boundary W ,

Ind(D/W ), and the rho-class one can not only prove (1) but in fact map the whole
surgery sequence of Stolz to the surgery sequence of Higson and Roe. See [4].

Recent results of Xie and Yu [8] show that these higher rho invariants do play
a fundamental role in the problem of distinguishing metrics of PSC on an odd
dimensional spin manifold that does carry one such metric. This is a classic prob-
lem, first tackled with these tools by Botvinnik and Gilkey for finite fundamental
groups, see [1], and later by Piazza and Schick in general, see [3]. The results of
Xie and Yu encompass all these previous results: indeed it is proved in [8] that
the rank of the group of coinvariants of P (M) with respect to the action of the
diffeomorphism group is at least 1. Under additional hypothesis on the group
much sharper estimates on this rank, depending on the torsion elements of the
fundamental group, are provided.
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Recent results on the constraint equations in general relativity

Romain Gicquaud

General relativity describe the universe and its time evolution (the spacetime) as
a manifold M of dimension n + 1 endowed with a Lorentzian metric G i.e. a
non-degenerate quadratic form with signature (n, 1) describing the gravitational
field. The Einstein equation tell how non-gravitational fields (matter fields such
as Dirac fields, electromagnetic fields...) imprint the curvature of G:

RicG − ScalG

2
G = T,

where T is the so-called stress-energy tensor which depends on all non-gravitational
fields one wants to consider.

In the sequel, to simplify the exposition, we will consider no non-gravitational
field, i.e. the vacuum case, and hence set T ≡ 0.

One of the major achievements in general relativity was the understanding of
the well-posedness of the Cauchy problem by Yvonne Choquet-Bruhat in [5] and
subsequently with Robert Geroch in [3].

Initial data for the Cauchy problem are usually given as a triple consisting of

• a manifold M ,
• a metric ĝ on M

• and a symmetric 2-tensor K̂ on M .

The Cauchy problem consists then in finding a spacetime (Mn+1,G) solving the
(vacuum) Einstein equations

RicG − ScalG

2
G = 0,

such that there exists an embedding M →֒ M such that M is a 2-sided hypersur-
face in M whose induced metric G|TM = ĝ and whose second fundamental form

is K̂.
It follows from the Gauss and Codazzi equations that part of the Einstein equa-

tions does not describe the evolution of the initial data but are instead constraints
on the choice of ĝ and K̂:

(1)
0 = Scalĝ +

(
trĝK̂

)2
−
∣∣∣K̂
∣∣∣
2

ĝ
,

0 = divĝK̂ − dtrĝK̂.
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We refer the reader to the very nice survey article of Robert Bartnik and James
Isenberg [1] and the beautiful book of Yvonne Choquet-Bruhat [2] for comprehen-
sive introductions to the Cauchy problem in general relativity.

Constructing and classifying solutions to the system (1) then appears as a fun-
damental problem in general relativity. As such, this system is underdetermined

and a natural idea to attack it is to split the variables (M, ĝ, K̂) into given (seed)
data and unknowns that have to be adjusted so to satisfy (1).

One of the main such splitting is the conformal method described in great details
in [9]. The idea is to make the following splitting:

Given data Unknowns
• A manifold M • a conformal factor φ :M → R∗

+

• A metric g • a 1-form W
• A function τ :M → R

• A symmetric 2-tensor σ such that
trgσ ≡ 0 and divgσ = 0,

and cook out of it ĝ and K̂ as follows:

(2) ĝ = φN−2g, K̂ =
τ

n
ĝ + φ−2(LW + σ),

where N = 2n
n−2 and L is the conformal Killing operator (traceless part of LW ♯g):

LWij = ∇iWj +∇jWi −
2

n
∇kWkgij .

Note that τ = trĝK̂ corresponds to the mean curvature of the embedding M →֒
M. The constraint equations (1) translate into the following system for φ and W :

(3)
−4(n− 1)

n− 2
∆φ+ Scalgφ = −n− 1

n
τ2φN−1 +

|σ + LW |2g
φN+1

−1

2
L∗LW =

n− 1

n
φNdτ.

For simplicity, we will assume from now on that the manifold M is compact.
The first equation, the Lichnerowicz equation, is an extension of the prescribed

(non-positive) scalar curvature and is now well understood from the work of James
Isenberg [8]: unless in some degenerate situations, given (M, g), τ , σ and W , the
Lichnerowicz equation admits a unique solution.

The second equation, usually called the vector equation, is linear in W and,
unless the manifold (M, g) has non-trivial conformal Killing vector fields, always
admits a unique solution.

These results suffice to understand the case of constant mean curvature τ and
the reader can convince himself that perturbation arguments can be used to un-
derstand the case when τ is close to being a constant. The situation when τ
is arbitrary appears much harder. Two important progresses were obtained by
Michael Holst, Gabriel Nagy, Gantumur Tsogtgerel in [7] (subsequently improved
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by David Maxwell [10]) and by Mattias Dahl, Emmanuel Humbert and the speaker
in [4] (see also [11]).

The first one, [7], gives existence of a solution (very close to zero) to (3) if σ
is non-zero but very small (for the L2-norm in [11]). While the second method,
[4], studies conditions under which one has a priori estimates for (3): If the limit
equation

−1

2
L∗LV = λ

√
n− 1

n
|LV | dτ

τ
has no non-zero solutions V for all λ ∈ [0, 1], the set of solutions (φ,W ) to (3) is
non-empty and compact.

While seemingly very different, the two methods are in fact two facets of a single
idea descrided in [6].
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On a Variational Characterization of the Exact Solutions for the
Einstein-Maxwell Equation

Sumio Yamada

(joint work with Marcus Khuri, Gilbert Weinstein)

An Einstein metric g is an exact solution for the Einstein-Maxwell equation, which
is

(1) Rab −
1

2
R gab = Tab
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where Rabis the Ricci curvature of the Lorentzian metric g, R is the scalar cur-
vature of g and Tab is the stress-energy tensor. When T is identically zero,
Rab − 1

2R gab = 0 is called the vacuum Einstein equation, and this is equiva-
lent to Rab = 0. Namely the vacuum universe is nothing but a Ricci flat Lorentz
manifold. When the curvature tensor itself vanishes, then the rigidity theorem
tells us that the Lorentz manifold is locally isometric to the Monkowski space-
time R3,1. Hence the vacuum Einstein equation (VEE) can be regarded as the
second simplest curvature condition, the simplest being Rijkl = 0.

The simplest nontrivial solution to the VEE is the Schwarzschild solution, whose
exterior region is given by

g = −v2dt2 + u4δ, N4 = R×
(
R3 \B

)

where B = Bm/2(0) and

v =
1−m/2r

1 +m/2r
, u = 1 +

m

2r

The Riemannian metric u4δ is scalar flat.
Next we look at the Einstein-Maxwell equation

Tab = −
(
FacF

c
b +

1

4
FcdF

cdgab

)

where the electro-magnetic field tensor F behaves as a two form satisfying the
Maxwell equaltion divF = J , dF = 0. The Einstein-Maxwell equation is the
Euler-Lagrange equation of the Hilbert functional [13] H(g) =

∫
N Rg + Ldµg,

where L is the Lagrangian for the electric and magnetic fields given by F abFab.
The simplest solution to the Einstein-Maxwell equation is the Reissner-Nord-

strom (RN) metric, given by

g = −v2dt2 + u4δ, N4 = R×
(
R3 \B

)

where B = B√
m2−q2 /2

(0) and

v =
1− (m2 − q2)/4r2

1 +m/r + (m2 − q2)/4r2
, u =

√
1 +

m

r
+
m2 − q2

4r2

with electric and magnetic fields

E = u−6∇
(q
r

)
, B ≡ 0, R(u4δ) = 2|E|2

The second static solution to the Einstein-Maxwell equation is the Mujumdhar-
Papapetrou(MP) (for a reference, see [1]) defined on the space-time [R3 \∪Pi]×R,
where the punctures Pi represent at the location of the blackhole. It is a static
solution and

g = −u2dt2 + u−2δ N4 = R×
(
R3 \ ∪N

i=1{pi}
)

where

u =

(
1 +

N∑

i=1

mi/ri

)−1

, E = ∇ log u, B ≡ 0.
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mi > 0 is both the mass and charge of each black hole, and ri is the Euclidean
distance to the point pi. We also have R(u−2δ) = 2|E|2.

Recall that the Positive Mass Theorem [11, 12, 15] says that m ≥ 0 with
the equality case realized only by the flat space R3. The Riemannian Penrose
inequality [10, 3, 6] in turn gives a larger bound for the ASDM mass, which is
of geometric origin: m ≥ 1

2r where r is the area radius of the blackhole defined

as 4πr2 = A where A is the area of the outermost horizon. The equality for the
Riemannian Penrose inequality holds if and only if the asymptotically flat three
manifold (M, g) is isometric to the Schwarzschild space-like slice of the same mass
and the area radius. Hence it is natural to hope [7, 4] that another exact solution,
namely the Reissner-Nordstrom(RN) metric provides a lower bound for the initial

data set for the Einstein-Maxwell equation: m ≥ 1
2

(
r + q2

r

)
where q is the total

charge hidden inside the black-hole horizon.
It turns out that the inequality can be violated [14] by the two-neck (N = 2)

MP metric, or rather a small perturbation of the two-neck RN metric, which is
asymptotically flat. In a collaborative work [8] with Marcus Khuri and Gilbert
Weinstein, we showed that
Theorem Let (M, g,E) be an asymptotically flat, time-symmetric initial data set
satisfying the dominant energy condition R ≥ 2|E|2, and having mass m, area

radius r, and charge q. Then r ≤ m +
√
m2 − q2 with equality if and only if the

data is RN.
Note that the inequality is equivalent with the pair of the following inequalities

m ≥ 1

2

(
r +

q2

r

)
if r ≥ |q|

m ≥ |q| if r < |q|

The second inequality is covered by the theorem [5] of Gibbons, Hawking, Horowitz,

and Perry, which states m ≥
√
q2e + q2b , where the equality holds iff there exists an

isometric embedding (M, g, k, E,B) →֒ MP 4. The first inequality was established
using the conformal deformation generalising the method first introduced by H.
Bray [3].

An interpretation of our result is that the positive scalar curvature of the RN
metric accounts for the bigger lower bound of the ADM mass when r ≥ |q|, com-
pared to the case for the scalar-flat Schwarzschild metric. Also, when r < |q|
which causes the dominance of the repulsive forces between the charges over the
attractive gravitational forces between the multiple components of the horizons,
the MP metric provides an interesting situation where the Penrose-type inequal-
ity requires a modification, where the equality case m = |q| for the inequality is
realised by the MP metric.
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The topology of positive scalar curvature

Thomas Schick

(joint work with Paolo Piazza)

Given a smooth closed manifold M we study the space of Riemannian metrics of
positive scalar curvature on M . A long-standing question is: when is this space
non-empty (i.e. when does M admit a metric of positive scalar curvature)? More
generally: what is the topology of this space? For example, what are its homotopy
groups?

Higher index theory of the Dirac operator is the basic tool to address these
questions. This has seen tremendous development in recent years, and in the talk
we present the underlying philosophy for this method.

The underlying observation to for this goes back to Erwin Schrödinger [4],
rediscovered by André Lichnerowicz [1]: If M has positive scalar curvature and a
spin structure then the Dirac operator on M is invertible. This forces its index
(which is the super-dimension of the null space) to vanish.

On the other hand non-vanishing of the index follows from index theorems,
giving rise to powerful obstructions to positive scalar curvature. For example, the
Atiyah-Singer index theorem says that ind(D) = Â(M), where the Â-genus is a
fundamental differential topological invariant (not depending on the metric!).

In particular, we will show how advancements of large scale index theory (also
called coarse index theory) give rise to new types of obstructions, and provide the
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tools for a systematic study of the existence and classification problem via the
K-theory of C∗-algebras. This is part of a program “mapping the topology of
positive scalar curvature to analysis”, compare [2, 5].

The general pattern of the index method is the following:

(1) The geometry of the manifold M produces the interesting Dirac operator
D.

(2) This operators defines an element in an operator algebra A, which depends
on the precise context.

(3) The operator satisfies a Fredholm condition, which means it is invertible
module an ideal I of the algebra A, again depending on the context.

(4) Finally, the above element which is invertible in A modulo an ideal I
defines an element in Kn+1(A/I), where n = dim(M) (the appearence of
n comes from additional Clifford symmetries).

(5) We interpret the class defined by the Dirac operator as a fundamental class
[M ] ∈ Kn+1(A/I). Homotopy invariance of K-theory implies that [M ]
does not depend on the full geometric data which goes in the construction
of the operator D, but only on the topology of M .

(6) The K-theory exact sequence of the extension 0 → I → A → A/I → 0
contains the boundary map δ. We call the image of [M ] under δ the index

δ : Kn+1(A/I) → Kn(I); [M ] 7→ ind(D).

(7) Under positive scalar curvature, the operator D is positive and therefore
invertible already in A, gives rise to a canonical lift of [M ] to an element
ρ(M, g) ∈ Kn+1(A). Because of this, we think of Kn+1(A) as a structure
group and ρ(M, g) is a structure class. It contains information about the
underlying geometry.

Indeed, we want to advocate in the talk that the setup just described has quite
a number of different manifestations, depending on the situation at hand. In
Paolo Piazza’s talk some of these are discussed, more should be the goal of future
research. More details of this are also given in the survey talk [3].
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Exotic Fiber Bundles and Families of p.s.c. Metrics

Wolfgang Steimle

(joint work with Bernhard Hanke, Thomas Schick)

It has been observed a long time ago [6] that non-trivial families of p.s.c. metrics
on a closed manifold may be constructed using the action of the diffeomorphism
group: For a closed smooth manifold M , if (ϕt)t∈Sn represents an element in
πn(Diff(M), id), and g is a p.s.c. metric on M , then (ϕ∗

t g)t∈Sn represents an el-
ement in the homotopy πn(R+(M), g) of the space of p.s.c. metrics on M which
may be non-trivial. Recently Crowley–Schick [3] have used specific constructions
of exotic spheres to deduce the existence of non-trivial elements in certain higher
homotopy groups of Diff(Sn), which lead to non-trivial 2-torsion elements in the
corresponding higher homotopy groups of R+(Sn), detected by the α-invariant.

In our work [5] we use the non-torsion part of the homotopy of KO to detect
elements of infinite order in certain higher homotopy groups of R+(Sn). These
elements do however not come from the Diff(Sn)-action. Roughly speaking, our
construction is as follows: Firstly, using techniques from surgery and pseudoisotopy
theory, we construct non-trivial elements in π∗(Diff(Z), id) for a high-dimensional
spin manifold Z which is spin nullbordant. Any such element gives rise to a smooth
Z-bundle over a sphere, and more precisely, we construct elements such that the

total space of the corresponding bundle has non-trivial Â-genus. Secondly, we use
the Diff(Z)-action on a fixed g ∈ R+(Z) (such an element exists by the Gromov-
Lawson construction [4]) to obtain an element in π∗(R+(Z), g). By means of
index theory, this element can be shown to be automatically non-trivial and of
infinite order. Finally we apply the fiber-wise version of the Gromov-Lawson
construction recently developed by Mark Walsh [7], which yields that R+(Z) is
weakly homotopy equivalent to R+(Sn) in this situation.

Using a connected-sum construction, each of these elements gives rise to an
infinite-order element in π∗(R+(M), g) for each closed spin manifold M of the
same dimension and each g ∈ R+(M).

Remarks. (1) The homotopy classes constructed this way remain non-zero under
the Hurewicz map to H∗(R+(M);Q).

(2) It turns out that for many spin manifolds M , the elements in π∗R+(M)
constructed in this way cannot be obtained by letting Diff(M) act directly on
R+(M) – in other words they survive in the homotopy of the Borel construction
R+(M)//Diff(M). For x ∈M we let Diffx(M) ⊂ Diff(M) be the subgroup of all
diffeomorphisms which fix x and the tangent space at x. If M is connected, the
action of Diffx(M) on R+(M) is easily seen to be free and hence our elements also
survive in the actual quotient space R+(M)/Diffx(M).

(3) For M = Sn and x ∈ Sn it was shown in [2] that the action of Diffx(S
n) on

R+(Sn) can only give rise to torsion classes in πkR+(Sn), provided 0 < k ≪ n.
(4) Recently Botvinnik–Ebert–Randal-Williams [1] have announced a construc-

tion using cobordism categories which also leads to elements of infinite order in
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the homotopy of R+(Sn), but with an improved dimension bound. It is unclear
how these elements relate to the ones constructed by our method.
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Université Libre de Bruxelles
CP 216 Campus Plaine
1050 Bruxelles
BELGIUM

Alexander Volkmann

MPI für Gravitationsphysik
Albert-Einstein-Institut
Am Mühlenberg 1
14476 Golm
GERMANY

Prof. Dr. Hartmut Weiss

Mathematisches Seminar
Christian-Albrechts-Universität Kiel
Ludewig-Meyn-Str. 4
24098 Kiel
GERMANY

Dr. Michael Wiemeler

Institut für Algebra u. Geometrie
Fakultät für Mathematik, KIT
Kaiserstraße 89-93
76133 Karlsruhe
GERMANY

Prof. Dr. Burkhard Wilking

Mathematisches Institut
Universität Münster
Einsteinstr. 62
48149 Münster
GERMANY

Christopher Wulff

Institut für Mathematik
Universität Augsburg
86135 Augsburg
GERMANY

Prof. Dr. Sumio Yamada

Department of Mathematics
Faculty of Science
Gakushuin University
1-5-1 Mejiro, Toshima-ku
Tokyo 171-8588
JAPAN


