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Introduction by the Organisers

Tomography includes a range of scientific modalities and underlying mathemat-
ics that provides information about internal structures of objects from indirect
data: in medical imaging in a non-invasive way or in industrial environment in
a non-destructive way. In these imaging modalities, the searched-for information
is not directly accessible which means that one has to first setup a mathematical
model relating the desired information with the available data and then to develop
reconstruction formulas and algorithms reconstructing the information from the
measured data.

Mathematics is fundamental to the field of tomography. Classical X-ray com-
puted tomography became successful only when mathematics (including theory
and algorithms) was developed for the problem. Since then, new imaging tech-
nologies have been invented and the dependence on mathematical results increased.
Time dependent problems, vector-valued problems, novel integral transforms, and
harmonic, numerical, and microlocal analysis, are among the ingredients in the ba-
sic mathematical research. The development of reconstruction methods relies on
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these theoretical and numerical analytic results, allowing for algorithms superior
to those found without this research.

The first Oberwolfach tomography workshop in 1980 helped define this young
field. Many of the fundamental problems in the field were first articulated, in some
form, at that meeting, and the subsequent Oberwolfach workshops have reflected
the growing breadth of the area.

This year’s workshop brought together 44 international experts, young scien-
tists, and graduate students from Europe, North America, and Asia. The par-
ticipants represented a broad range of areas from pure mathematics to numerical
analysis to medicine and industry.

This ninth workshop mirrors the growth of the field. Modalities discussed in-
clude optical CT, magnetic resonance imaging, radar, seismic imaging, ultrasound,
electron microscopy, impedance imaging, photoacoustic tomography, emission to-
mography, elastography, and vector tomography as well as X-ray CT. General
algorithmic issues were discussed that are important in a range of tomography
problems. Even in X-ray CT, one of the oldest modalities, new problems and
mathematics were described as well as new views on algorithm development. New
inversion methods were given for modalities including X-ray CT and thermoa-
coustic tomography. Several speakers provided novel reconstruction methods for
dynamic CT, in which the body is moving, causing motion artifacts in standard
reconstructions.

The analysis and mitigation of artifacts was another theme in the conference.
Numerical analysis was used to analyze artifacts in cone beam CT. Speakers used
microlocal methods to analyze the strength and location of artifacts in radar and
photoacoustic tomography, providing a general methodology to characterize these
artifacts, and precise estimates of the strength of the artifacts.

Fields including vector tomography, elastography, electron microscope tomog-
raphy, PET, optical CT, and single photon emission tomography were explored
algorithmically, by developing better physical models and in theoretical results.
Time of flight PET was used to estimate attenuation and activity.

Summing up, tomography is a lively branch of science with an inexhaustible
supply of mathematical problems. Every new imaging modality poses new math-
ematical questions, and new mathematics suggests new imaging modalities. This
conference can be viewed as a snapshot of this lively field.

The organizers are indebted Prof. Dr. Huisken and the staff of the Mathe-
matiches Forschungsinstitut Oberwolfach for creating an excellent environment to
do serious mathematics. We thank the MFO for their efficient and very helpful
organization that made the conference go smoothly and allowed us to focus on the
mathematics. We thank the MFO also for supporting several young mathemati-
cians through the OWLG program. Lastly, we thank the participants for making
this a stimulating enjoyable conference.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Mathematical Modeling of Optical Coherence Tomography

Otmar Scherzer

(joint work with Peter Elbau, Leonidas Mindrinos)

We present a general mathematical model based on the electromagnetic theory for
Optical Coherence Tomography (OCT).

OCT is a non-invasive imaging technique producing high-resolution images of
biological tissues. It is based on Low (time) Coherence Interferometry measure-
ments to image micro-structures with a resolution of a few micrometers. Standard
OCT operates using broadband and continuous wave light in the visible and near-
infrared spectrum. Images are obtained by measuring the time delay and the
intensity of back-scattered or back-reflected light from the sample under investi-
gation [2].

We describe mathematically the propagation of electromagnetic waves through
an inhomogeneous sample with Maxwell’s equations [1]. The sample is considered
as a linear dielectric medium (inhomogeneous and anisotropic). Moreover, the
medium is considered weakly scattering so that the first order Born approximation
is applicable.

The optical properties of the medium are described by the (electric) suscepti-
bility χ : R×R3 → R

3×3, assuming χ(t < 0, x) = 0, and that is the quantity to
be imaged. The time dependence of χ hereby describes the fact that a change in
the electric field cannot immediately cause a change in the electric displacement.

The measurements M are obtained by the combination of the back-scattered
field from the sample and the back-reflected field from a reference mirror. In
addition, the back-scattered light is detected far enough away from the sample so
that the far field approximation can be assumed to be valid for the measurement
data.

The mathematical formulation of the direct problem of OCT consists in simu-
lating measurement dataM of back-reflected waves for some χ. These simulations
can be written as an integral operator F : χ 7→M .

The inverse problem is to reconstruct the susceptibility of the medium given
the measurements for different positions of the mirror. In mathematical terms we
consider solving the operator equation

Fχ =M.

With certain experimental design it is possible to express the measurement data
as

(1) pj
[
ϑ× (ϑ× χ̃(ω, ωc (ϑ+ e3))p)

]
j
, j = 1, 2,

where p ∈ R2×{0} denotes the polarisation of the initial illumination, ω ∈ R\{0}
is the frequency and ϑ ∈ S2

+ is the direction from the origin (where the sample
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is located) to a detector point. Here χ̃ denotes the Fourier transform of χ with
respect to time and space.

In order to obtain χ from (1) we consider different approaches depending on
the different assumptions made about the optical properties of the sample. In
the special case of an isotropic medium, meaning that the susceptibility matrix
χ is just a multiple of the unit matrix, it remains the problem of reconstructing
the four dimensional susceptibility data from the three dimensional measurement
data.

For non-dispersive media, where the temporal Fourier transform of χ does not
depend on frequency, several algorithms to recover the scalar susceptibility have
been considered. In the case of a dispersive medium, we propose a recursive
formula to get limited angle Radon data χ̄ assuming a certain discretisation of χ
with respect to the detection points and its support. This procedure is applied to
a full field OCT system and an extension to standard (time and frequency domain)
OCT is briefly presented.

The anisotropic case is also considered and the proposed reconstruction method
has to be combined with different initial polarisation vectors and rotations of
the sample in order to provide sufficient information to reconstruct χ̄. Then, it
is possible via an inversion of a limited angle Radon transform to recover the
susceptibility χ.

A detailed exposition of this topic can be found in [3].

References

[1] D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory, volume 93
of Applied Mathematical Sciences. Springer-Verlag, Berlin, second edition, 1998.

[2] W. Drexler and J. G. Fujimoto. Optical Coherence Tomography. Springer, Berlin, Heidel-
berg, 2008.

[3] P. Elbau, L. Mindrinos and O. Scherzer. Mathematical Modelling of Optical Coherence
Tomography, (to be published in Springer) arXiv:1403.0726 [math.NA].

Imaging moving objects

Bernadette Hahn

The measuring process in tomographic imaging takes a considerable amount of
time. In computerized tomography, for example, the X-ray source has to be rotated
around the specimen. In positron emission tomography, the radioactive decay is
observed over a certain time period. Analogously, this arises in MRI, EIT, etc. to
name only a few. Most reconstruction methods for these imaging techniques make
the assumption that the object is stationary during the data acquisition. However,
in many applications, this supposition does not hold, e.g. in medical imaging due
to respiratory and cardiac motion. A dynamic behavior of the specimen results in
inconsistent data sets and the application of standard algorithms leads to motion
artifacts in the images. Consequently, the reconstruction method has to take into
account the deformations of the object.
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Let the mathematical model for an imaging modality with a stationary object
be given by an initial inverse problem

(1) Astath(t, y) = g(t, y)

with linear integral operator Astat : L2(ΩX) → L2(RT × ΩY ). ΩX and ΩY are
compact subsets of Rn and Rm, respectively, and RT denotes the time interval
covering the period required for the scanning. Thus, the model (1) already takes
into account that the acquisition of the data g is time-dependent.

Consequently, an object f ∈ L2(RT ×ΩX) which changes during the measuring
procedure has to be recovered from the equation

(2) Af(t, y) = g(t, y),

with the dynamic operator

Af(t, y) := Astatft(t, y), t ∈ RT , y ∈ ΩY .

According to the initial inverse problem (1), data for different values of t are re-
quired to reconstruct a stationary object. Thus, the measured data in the dynamic
case cannot provide enough information to reconstruct the different states of the
object properly. Therefore, we include an a priori information about the movement
via diffeomorphic motion functions

Γt : R
n → Rn,

where the value Γtx denotes which particle is at position x at time t.
Solving the inverse problem (2) requires a regularization scheme. Using the

method of the approximate inverse [1], a mollified version of the solution, fγ(t, x) =
〈f, eγt,x〉 is calculated from the measured data via

fγ(t, x) = 〈g, ψγ
t,x〉,

where the reconstruction kernel ψγ
t,x is precomputed by solving A∗ψγ

t,x = eγt,x.
The a priori information about the motion model is incorporated by choosing

the dynamic mollifier eγt,x in accordance to the motion functions,

eγt,x(v, z) =

(∫

RT

| detDΓ−1
τ (Γvz)| dτ

)−1

δγΓtx
(Γvz)

with a given static mollifer δγx ∈ L2(R
n) [2]. If eγt,x is not in the range of the

operator A∗, we precompute the kernel ψγ
t,x by minimizing a Thikonov-Phillips

functional, see [2]. By choosing the static mollifier δγx , we can even compute
features of the object, e.g. edges, directly from the measured data.

To illustrate the motion compensation property of the proposed algorithm, we
apply the procedure in computerized tomography. In this case, the initial inverse
problem (1) is given by the Radon transform R. As numerical test object, we
consider a locally changing chest phantom, whose initial state is shown in Figure
1. During the scanning, its heart is beating whereas the other organs are stationary.

To compensate for this local motion, we first have to determine which part of the
object is affected by the deformation before applying the proposed reconstruction
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Figure 1. Original phantom at the initial time.

Figure 2. Dynamic (left) and static (right) reconstruction.

procedure. A suitable detection method is based on the symmetry property of the
Radon transform R,

Rh(−θ,−s) = Rh(θ, s), θ ∈ S1, s ∈ R.

If the object changes locally, the symmetry condition does not hold on detector
points s covering the dynamic region. Thus, we can determine which detector
points record inconsistent data. Taking into account the respective angle of view,
we obtain constraints for the dynamic area of the object [3].

This detection method is applied to the chest phantom and we use the derived
information within the reconstruction process: For a reconstruction point x in
the detected area, we incorporate the exact motion functions within a mollifier δγx
for the so-called Lambda tomography [4], as explained before. This yields local
algorithms which are especially suitable in the case of local deformations. For
reconstruction points outside the dynamic region, we use the respective stationary
kernel [5].

Figure 2 shows the reconstruction result for the object’s state at the initial
time t = 0. The shape of the heart is reconstructed very well and there are hardly
any distortion artefacts in the hearts vicinity. However, the standard algorithm in
Lambda tomography leads to serious distortions of the heart, see Figure 3.
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Finite Hilbert transform with incomplete data and the interior

problem of tomography

Alexander Katsevich

(joint work with Marco Bertola, Alexander Tovbis)

Inversion of the finite Hilbert transform (FHT) is an important problem, which
arises in many areas of pure and applied mathematics. The work presented in this
talk is motivated by the use of the FHT in tomography, which goes back to the
Gelfand-Graev formula [4]. The Gelfand-Graev formula shows how to compute
the Hilbert transform of an unknown function µ knowing all line integrals of µ
(which are obtained from the tomographic data). Coupled with the FHT inversion
formula, it leads to the development of new flexible reconstruction algorithms that
require the minimum amount of CT data [10, 3, 14]. More recently it became clear
that the Hilbert transform plays a key role in solving the so-called interior problem,
which consists of reconstructing a region of interest (ROI) inside the support of
µ only from integrals of µ along lines that intersect the ROI [13, 11, 12, 8, 2].
By using the Gelfand-Graev formula, the interior problem of tomography can be
reduced to the problem of inverting the FHT from incomplete data. In [6, 7] the
speaker found a differential operator L that commutes with the FHT on different
intervals of a real line. A corollary to this result is a singular value decomposition
(SVD) of the FHT [6, 7]. Based on the SVD, a robust algorithm for solving the
interior problem of tomography was developed in [5]. In this talk we continue the
analysis of the FHT and report on several recent results.

First we present the results obtained in [9]. Let f(x), x ∈ R, be a compactly
supported sufficiently smooth function, and H denote the finite Hilbert transform.
First we show that the commutation result can be derived by replacing the FHT of
f with the Cauchy transform of f and appealing to the Riemann-Hilbert problem.
Unique recovery of f is possible if Hf is known for all x ∈ supp f . Our second
result is the characterization of the null-space of the FHT in the case of incomplete
data, i.e. when Hf is known only on some interval inside supp f . The SVD of
the FHT is obtained via solving certain singular Sturm-Liouville problems for L.
Our next result is the uniform asymptotic expansion of the eigenfunctions of L
as n → ∞, where n is the index of the eigenfunction. Using this asymptotics we
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derive the asymptotics of the singular values of the FHT in three different cases
of incomplete data.

Next we present the results obtained in [1]. We study the asymptotics of singular
values and singular functions of a Finite Hilbert transform (FHT), which is defined
on several intervals. We suggest a novel approach based on the technique of the
matrix Riemann-Hilbert problem and the steepest descent method of Deift-Zhou.
We obtain a family of matrix RHPs depending on the spectral parameter λ and
show that the singular values of the FHT coincide with the values of λ for which
the RHP is not solvable. Expressing the leading order solution as λ → 0 of the
RHP in terms of the Riemann Theta functions, we prove that the asymptotics of
the singular values can be obtained by studying the intersections of the locus of
zeroes of a certain Theta function with a straight line. This line can be calculated
explicitly, and it depends on the geometry of the intervals that define the FHT.
The leading order asymptotics of the singular functions and singular values are
explicitly expressed in terms of the Riemann Theta functions and of the period
matrix of the corresponding normalized differentials, respectively. We also obtain
the error estimates for our asymptotic results.
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Inversion of the spherical means transform by reduction to the

classical Radon transform

Leonid Kunyansky

Thermo- and photo- acoustic tomography (TAT and PAT) aim to recover initial
pressure of acoustic wave from pressure time series measured on a certain surface
partially or completely surrounding the region of interest. The wave is incited
by illuminating the tissue with a very short laser pulse whose energy is partially
absorbed by the tissue, which slightly increases the temperature and causes ther-
moacoustic expansion. The distribution of the initial pressure is closely related to
the conductivity of the tissue, allowing one to reconstruct high resolution images
of vasculature or cancerous tumors.

We are interested in finding exact closed-form reconstruction formulas for these
imaging modalities. In addition to a clear theoretical insight, such formulas usu-
ally result in simple and efficient algorithms that allow one to reconstruct the
initial pressure from the measured time series. In the context of thermo- and
photo-acoustic tomography, the existence of explicit inversion formulas depends
on the measurement surface. In particular, exact closed-form reconstruction for-
mulas have been obtained for planes, infinite cylinders, spheres and ellipsoids;
cubes, certain triangles and tetrahedra; paraboloids and two-sheet hyperboloids,
and some other, more complicated surfaces.

In the present work we consider corner-like acquisition geometries, such as a
boundary of an octant Q ≡ {x ∈ R3|x1 > 0, x2 > 0, x3 > 0} in 3D, or a boundary
of a quadrant in 2D. Inversion formulas for such surfaces are of interest since the
corresponding acquisition schemes are frequently used in practice. In particular, in
order to speed up the measurements, researchers utilize one-dimensional assemblies
of detectors combined with acoustical lenses. In common use are also optically
scanned glass plates whose surfaces play roles of arrays of acoustic sensors. In
order to see all the material interfaces, such detectors have to surround the region
of interest (at least partially), resulting in the configurations considered here.

We assume that reflection of acoustic waves from the detectors is negligible.
Such an assumption is realistic when detectors are small, or when a reflected
wave propagates away from detectors and vanishes at infinity. In particular, if
an optically scanned glass plate is used as a detector, the experiment should be
repeated three times, with the glass plate placed in alternative positions. The use
of several perpendicular glass plates simultaneously leads to occurrence of multiple
reflections, and traditional TAT/PAT techniques are no longer applicable. Such
a situation is not covered by the present work and is considered by the author
elsewhere.
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We present here the 3D version of the problem; the 2D version is simpler and
can be solved quite similarly. Under assumption of constant speed of sound (that
can be set to 1 without loss of generality), acoustic pressure u(t, x) satisfies the
wave equation

∆u = utt in R3, u(0, x) = f(x),
∂u

∂t
(0, x) = 0.

Initial pressure f(x) is supported within bounded region Ω lying within the oc-
tant Q. Measurements g(t, z) coincide with pressure u(t, z) on boundary ∂Q of
Q (the boundary is a subset of the three coordinate planes). Using the retarded
Green’s function G(t, z − x) of the wave equation in R3 the measurements can be
expressed in the following form

g(t, z) =
∂

∂t

∫

Ω

f(x)G(t, z − x)dx, G(t, x) =
δ(t− |x|)

4π|x|
,

where δ(t) is the Dirac’s delta-function.
Consider the following combination of delta-functions supported on planes:

U(t, x) =

7∑

j=0

(−1)jδ(t− x · ωj),

where vectors ωj are multiple reflections the vector ω0 = (ω1, ω2, ω3) ∈ Q, and
the signs in the above formula are chosen so that the distribution U(t, x) is odd
with respect to each of the coordinates xj , j = 1, 2, 3. Let us denote by ∂Qj the
intersection of ∂Q with the coordinate plane xj = 0, j = 1, 2, 3. Then it can be
shown that the inner product of f(x) and Uδ(t, x, ω) can be expressed through the
measured data g(t, z) by the sum of the following three integrals:

∫

Q

f(x)Uδ(t, x, ω)dx = 2(ω1I1 + ω2I2 + ω3I3),(1)

I1 =

∫

∂Q1

[g(t+ y2ω3 + y3ω2, y) + g(t− y2ω3 − y3ω2, y)

− g(t+ y2ω3 − y3ω2, y)− g(t− y2ω3 + y3ω2, y)]dy,

where the expressions for integrals I2 and I3 are obtained from that for I1 by
permuting roles of y1, y2, and y3, and the roles of ω1, ω2, and ω3.

Further, one can show that inner product (1) coincides with the Radon trans-
form of the odd part Of of f(x):

(ROf) (ω, t) ≡

∫

R3

δ(t− x · ω)Of(x)dx =

∫

R3

f(x)Uδ(t, x, ω)dx,

where Of(x) is defined as

Of(x) ≡ f(x)− f(R1x)−f(R2x) − f(R3x) + f(R2R1x) + f(R3R1x)

+ f(R3R2x)− f(R3R2R1x),
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and where Rj are reflections of a vector with respect to coordinate planes xj =
0, j = 1, 2, 3. Since f(x) is supported within Q, it can be reconstructed from
Of(x) simply by restricting values of x to Q. It follows that f(x) can be explicitly
reconstructed from the data g(t, z) by computing the values of the Radon transform
(ROf) (ω, t) using formula (1), and by applying to the result any of the known
inversion formulas for the Radon transform in 3D.

ART Exhibit

Per Christian Hansen

In Kaczmarz’s formulation [6] of the algorithm from 1937, each iteration takes the
form of a sweep over the rows aTi of the matrix A ∈ Rm×n – from top to bottom –
where we orthogonally project the current iterate x on the hyperplane defined by
row aTi and the corresponding element bi of the right-hand side:

x← Pi x = x+
bi − a

T
i x

‖ai‖22
ai , i = 1, 2, . . . ,m .

Herman and his coworkers [3] rediscovered the algorithm 1970 (for the case where
all elements of A are 0 or 1). They named it “ART,” introduced a nonnegativity
projection and used a different normalization:

x← max

{
0 , x+

bi − a
T
i x

‖ai‖1
ai

}
, i = 1, 2, . . . ,m .

This version does not have the simple interpretation as a sequence of orthogonal
projections; in later works (e.g., [5]) the name ART is used synonymously with
the Kaczmarz formulation. Current versions of ART also include a relaxation
parameter λk and a projection PC on a convex set C (e.g., the positive orthant or
the box [0, 1]n):

x← PC

(
x+ λk

bi − a
T
i x

‖ai‖22
ai

)
, i = 1, 2, . . . ,m .

In spite of its success there are many open questions associated with the use of
this method, and hence it is a rich source for research problems! Below two of
some of these issues, with a strong bias towards my own research and my ongoing
work with the MATLAB package AIR Tools [4]. Please note the effort by Joost
Batenburt from CWI to develop a highly efficient toolbox ASTRA [9], based on a
MATLAB wrapper around native C++ and CUDA code.

Semi-Convergence Theory. There is a rich convergence theory for ART and its
many block extensions; but most of this theory exclusively deals with its asymp-
totic convergence. However, the power of ART really lies in its ability to converge
fast to a good approximate/regularized solution during the initial iterations –
while at later stages its slows down considerably and eventually converges to an
undesirable solution dominated by noise from the data.

Specifically, ART is observed to exhibit semi-convergence [8], where the itera-
tion number plays the role of the regularizing parameter. In the early stages the
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iterates approach a regularized solution, while continuing the iteration leads to
iterates deteriorated by noise. A few attempts have been made to give a rigorous
foundation for this observed behavior, such as [1]; but more work is needed to
demonstrate in which circumstances we are guaranteed to have semi-convergence,
to give rates for the initial convergence, etc.

Implementation of Block ART. There are surprisingly many ways to define block
extensions of ART; some of them are surveyed in [2] and [10]. These block methods
lends themselves naturally to distributed computing systems and MPI-type imple-
mentations for large-scale problems [7]. The block methods are also well suited
for multi-core computers [10] as well as systems based on GPUs. Some important
questions here are:

• How do we best choose the number of blocks on a given computer?
• How can we best utilize the structural orthogonality between the matrix
rows to choose the blocks adaptively?
• What is the best combination of block iteration (sequential/parallel) and
treatment of the individual blocks (by a direct or iterative method)?

To best utilize the specialized architecture of the GPU, the matrix-free multi-
plications are implemented such that the backprojection corresponds to multipli-

cation with the transposed of a matrix Ã that is slightly different from the matrix
A associated with the forward computation [11]. The unmatched transpose may
prevent asymptotic convergence; it is unclear how it affects the semi-convergence
and the accuracy of the reconstruction.
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Monostatic SAR with Fold-Cusp Singularities

Clifford Nolan

(joint work with Raluca Felea)

In this talk we reported on preliminary work on imaging terrain using Synthetic
Aperture Radar (SAR) where the flight track of the Radar follows a curve whose
curvature is only allowed to vanish simply. For a microlocal review of SAR, see [1]
and for related technical tools, see [3].

This work is a natural progression from [2] where the curvature of the flight
track either (i) never vanishes or else (ii) is identically zero. In both cases (i) and
(ii), the natural projections (πL, πR) from the wavefront relation Λ of the forward
modelling (scattering) operator F into the cotangent space of the data (T ∗Y ) and
the cotangent space of the model (T ∗X) respectively have singularities. In both
case (i) and (ii) we have that πL has a fold singularity. On the other hand, we
have that the πR projection has a fold singularity in case (i) and a blowdown
singularity in case (ii). Both cases lead to artifacts in the backprojected image.
This is reflected mathematically by showing that the Schwartz kernel of F∗F is a
paired Lagrangian distribution associated to the diagonal △ and a non-diagonal
canonincal relation Λ (responsible for the artifacts).

In this current work [4], we investigate what happens in the intermediate case
where the curvature is allowed to vanish but only simply. We establish that the
Schwartz kernel of F∗F is no longer a paired Lagrangian distribution. We also
show that artifacts are still present as this is intuitively clear if one considers say a
sinusoid flight track with an inflexion point where the curvature vanishes simply.
Now this flight track consists of two open curves where the curvature is never zero
together with the inflexion point itself. Therefore we expect to obtain the artifacts
predicted by [2].

We also develop a weak normal form for the phase function of the Fourier
integral operator F in the case of simply vanishing curvature and we use it to
prove the results in the previous paragraph in a more general setting for any FIO
with fold/cusp singularites.
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Artifacts in limited view tomography

Jürgen Frikel

(joint work with Eric Todd Quinto)

Introduction. In many tomographic imaging scenarios the measured data is avail-
able only from a limited range of view. As a consequence, only specific features
of the unknown object can be reconstructed reliably [11] and added artifacts can
be generated [2, 6]. The added artifacts can degrade the image quality and com-
plicate an accurate interpretation of images. It is therefore essential to develop
a mathematical understanding of these phenomena and to derive artifact reduc-
tion strategies that can be easily incorporated into widely used reconstruction
algorithms. Here, we consider filtered backprojection type reconstructions from
limited view data and present a paradigm to characterize visible and added sin-
gularities (artifacts). Our methodology is based on the framework of microlocal
analysis and the calculus of Fourier integral operators. Particularly, we present
characterizations of visible and added singularities for limited angle x-ray and
photoacoustic tomography reconstructions.

The presented results were obtained in our recent works [2, 3]. For x-ray lambda
tomography similar results were obtained in [6]. Recently, L. Nguyen has analyzed
the strength of the added artifacts generated in reconstructions from limited angle
Radon transform and spherical Radon transform data [9, 10].

Microlocal analysis of general limited data problems. In what follows, we
assume that the forward operator T : E ′(Ω)→ E ′(Ξ) is a Fourier Integral operator
(FIO), where Ω denotes the object space and Ξ is the data space. The limited data
reconstruction problem consists in recovering a function f (or an approximation)
from the data g(y) = Tf(y) on a restricted subset A of the data space, i.e.,
y ∈ A ( Ξ. Therefore, the limited view forward operator is given by TAf = χATf ,
where χA denotes the characteristic function of A. In cases we consider, the
reconstruction operators B are of filtered backprojection (FBP) type:

BgA = T ∗PgA, gA = TAf,

where P is a pseudodifferential operator and T ∗ is the dual (or backprojection)
operator to T .

To understand visible and added singularities of BgA = T ∗PTAf , our goal is to
calculate WF(T ∗P TAf), where WF(u) denotes the wavefront set [4]. Before we
can start the calculations, we first need to check that the product TAf = χATf is
well-defined in the sense of distributions. This can be done by making sure that
the non-cancellation condition holds for χA and Tf , i.e., (y, ξ) ∈ WF(Tf) ⇔
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(y,−ξ) /∈ WF(χA). In the next step we apply the Hörmander Sato lemma [12]
which states that if T is a FIO and C its associated canonical relation, then
WF(Tf) ⊂ C ◦WF(f) = {(y, ηdy) : ∃(x, ξdx) ∈WF(f) : (y, ηdy;x, ξdx) ∈ C}.
Furthermore, by noting that T ∗ is a FIO associated to the canonical relation
Ct = {(y, ηdy;x, ξdx) : (x, ξdx; y, ηdy) ∈ C} [12], we conclude that

WF(T ∗P TAf) ⊂ C
t ◦WF(P TAf) ⊂ C

t ◦WF(TAf).

The latter inclusion follows from the pseudolocal property of pseudodifferential
operators [12]. To compute visible and added singularities we eventually need to
compute the set WF(TAf) and the composition Ct ◦WF(TAf). For more details
we refer to [3].

Visible and added singularities in x-ray and photoacoustic tomography.

We consider the classical Radon transform R : E ′(Ω)→ E ′([0, 2π]×R) as a forward
operator for x-ray tomography, [8], and the limited angle data set A = [a, b]× R.
The circular Radon transform M : E ′(Ω) → E ′([0, 2π] × (0,∞)) is a standard
forward operator for photoacoustic tomography, [1, 7], which we study with the
limited angle data set A = [a, b]× (0,∞). The next theorem shows explicitly that
the Radon transforms detect singularities conormal to the set being integrated over
(cf. [5]), and that added artifacts can appear only on lines (forR) or circles (forM),
respectively, that are conormal to singularities of f with directions corresponding
to the boundary of the angular range [a, b].

Theorem 1 ([2, 3]). Let T ∈ {R,M}, f ∈ E ′(Ω), and let P be a pseudodifferential
operator on D′(Ξ). Then,

WF(T ∗PTAf) ⊂WF[a,b](f) ∪A{a,b}(f),

where WF[a,b](f) := WF(f)∩V[a,b] ⊂WF(f) is the set of visible singularities and
A{a,b}(f) is the set of possible added singularities. Let θ(φ) = (cosφ, sinφ) and

θ⊥(φ) = (− sinφ, cosφ), then we have for the classical Radon transform R:

V[a,b] = {(x, ξdx) ∈ T
∗(Ω): α 6= 0, φ ∈ [a, b]}

A[a,b](f) = {(x+ tθ⊥(φ), αθ(φ)dx) : φ ∈ {a, b},

α, t 6= 0, x ∈ L(φ, s), (x, αθ(φ)) ∈WF(f)}

whereas for the circular Radon transform M we have:

V[a,b] = {(x, ξdx) ∈ T
∗(Ω): ∃φ ∈ [a, b], ∃α 6= 0, ξ = α(x − θ(φ))}

A{a,b}(f) =
{
(x, d(x − θ(φ)dx) : x ∈ Ω, φ ∈ {a, b},

∃x′ ∈ C (φ, ‖x− θ(φ)‖), (x′, d(x′ − θ(φ))dx) ∈WF (f)
}

The next theorem shows that no added singularities are introduced in the re-
construction if the limited view data is smoothly truncated at the boundary of the
angular range.

Theorem 2 ([2, 3]). Let T ∈ {R,M} and let κ : [0, 2π]→ R be a smooth function
such that supp(κ) ⊂ [a, b]. Let K be the operator defined by Kg(φ, s) = κ(φ)g(φ, s).
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Then, the operator T ∗P KTA is a standard pseudodifferential operator and for
f ∈ E ′(D),

WF(T ∗P K(TAf ) ) ⊂WF[a,b](f),

where WF[a,b](f) is the corresponding set of visible singularities given above.
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Boundary rigidity and lens rigidity

Gunther Uhlmann

Abstract

We survey some recent results on the boundary rigidity problem with partial data
based on [40]. The local result leads to a global result for the lens rigidity problem.

The boundary rigidity problem with partial data

Travel time tomography deals with the problem of determining the sound speed
or index of refraction of a medium by measuring the travel times of waves going
through the medium. This type of inverse problem, also called the inverse kine-
matic problem, arose in geophysics in an attempt to determine the substructure
of the Earth by measuring the travel times of seismic waves at the surface. We
consider an anisotropic index of refraction, that is the sound speed depends on
the direction. The Earth is generally anisotropic. More recently it has been re-
alized, by measuring these travel times, that the inner core of the Earth exhibits
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anisotropic behavior with the fast direction parallel to the Earth’s spin axis, see
[4]. In the human body, muscle tissue is anisotropic. As a model of anisotropy, we
consider a Riemannian metric g = (gij). The problem is to determine the metric
from the lengths of geodesics joining points on the boundary.

This leads to the general question of whether given a compact Riemannian
manifold with boundary (M, g) one can determine the Riemannian metric in the
interior knowing the boundary distance function joining points on the bound-
ary dg(x, y), with x, y ∈ ∂M. This is known as the boundary rigidity problem.
Of course, isometries preserve distance, so that the boundary rigidity problem is
whether two metrics that have the same boundary distance function are the same
up to isometry. Examples can be given of manifolds that are not boundary rigid.
Such examples show that the boundary rigidity problem should be considered un-
der some restrictions on the geometry of the manifold. The most usual of such
restrictions is simplicity of the metric. A Riemannian manifold (M, g) (or the met-
ric g) is called simple if the boundary ∂M is strictly convex and any two points
x, y ∈M are joined by a unique minimizing geodesic. Michel conjectured [17] that
every simple compact Riemannian manifold with boundary is boundary rigid.

Simple surfaces with boundary are boundary rigid [24]. In higher dimensions,
simple Riemannian manifolds with boundary are boundary rigid under some a-
priori constant curvature on the manifold or special symmetries [1], [9]. Several
local results near the Euclidean metric are known [32], [15], [2]. The most general
result in this direction is the generic local (with respect to the metric) one proven
in [34]. Surveys of some of the results can be found in [12], [35], [7].

The paper [40] considers the boundary rigidity problem in the class of metrics
conformal to a given one and with partial data, that is, we know the boundary
distance function for points on the boundary near a given point. Partial data
problems arise naturally in applications since in many cases one doesn’t have access
to the whole boundary. In [40] it is proven the first result on the determination of
the conformal factor locally near the boundary from partial data without assuming
analyticity.

We now describe the known results with full data on the boundary. Let us fix
the metric g0 and let c be a positive smooth function on the compact manifold with
boundaryM . The problem is whether we can determine c from dc−2g0(x, y), x, y ∈
∂M. Notice that in this case the problem is not invariant under changes of variables
that are the identity at the boundary so that we expect to be able to recover c
under appropriate a-priori conditions. This was proven by Mukhometov in two
dimensions [19], and in [20] in higher dimensions for the case of simple metrics. Of
particular importance in applications is the case of an isotropic sound speed that
is when we are in a bounded domain of Euclidean space and g0 is the Euclidean
metric. This is the isotropic case. This problem was considered by Herglotz [10]
and Wieckert and Zoeppritz [43] for the case of a spherical symmetric sound speed.
They found a formula to recover the sound speed from the boundary distance
function assuming d

dr (
r

c(r)) > 0. Notice that this condition is equivalent in the

radial case to non-trapping and is more general than simplicity.



2068 Oberwolfach Report 37/2014

From now on we will call d the function dc−2g0 .
It is shown in [40] the following uniqueness result:

Theorem 3. Let n = dimM ≥ 3, let c > 0, c̃ > 0 be smooth and let ∂M be
strictly convex with respect to both g = c−2g0 and g̃ = c̃−2g0 near a fixed p ∈ ∂M .
Let d(p1, p2) = d̃(p1, p2) for p1, p2 on ∂M near p. Then c = c̃ in M near p.

This is the only known result for the boundary rigidity problem with partial
data except in the case that the metrics are assumed to be real-analytic [15]. The
latter follows from determination of the jet of the metric at a convex point from
the distance function known near p.

Lens rigidity

The boundary rigidity problem is closely connected to the lens rigidity one. To
define the latter, we first introduce the manifolds ∂±SM , defined as the sets of all
vectors (x, v) with x ∈ ∂M , v unit in the metric g, and pointing outside/inside
M . We define the lens relation

(1) L : ∂−SM −→ ∂+SM

in the following way: for each (x, v) ∈ ∂−SM , L(x, v) = (y, w), where y is the exit
point, and w the exit direction, if exist, of the maximal unit speed geodesic γx,v
in the metric g, issued from (x, v). Let

ℓ : ∂−SM −→ R ∪∞

be its length, possibly infinite. If ℓ <∞, we call M non-trapping.
The lens rigidity problem is whether the lens relation L (and possibly, ℓ) de-

termine g (and the topology of M) up to an isometry as above. The lens rigidity
problem with partial data for a sound speed is whether we can determine the speed
near some p from L known near Sp∂M . For general metrics, we want to recover
isometric copies of the metrics locally, as above.

We assume that ∂M is strictly convex at p ∈ ∂M w.r.t. g. Then the boundary
rigidity and the lens rigidity problems with partial data are equivalent: knowing
d near (p, p) is equivalent to knowing L in some neighborhood of Sp∂M . The size
of that neighborhood however depends on a priori bounds of the derivatives of the
metrics with which we work. This equivalence was first noted by Michel [17], since
the tangential gradients of d(x, y) on ∂M × ∂M give us the tangential projections
of −v and w, see also [31, sec. 2]. Note that local knowledge of ℓ is not needed for
either problems, and in fact, ℓ can be recovered locally from either d or ℓ.

Vargo [42] proved that real-analytic manifolds satisfying an additional mild
condition are lens rigid. Croke has shown that if a manifold is lens rigid, a finite
quotient of it is also lens rigid [7]. He has also shown that the torus is lens rigid
[3]. G. Uhlmann and P. Stefanov have shown lens rigidity locally near a generic
class of non-simple manifolds [37]. The only result we know for the lens rigidity
problem with partial data is for real-analytic metric satisfying a mild condition
[37]. While in [37], the lens relation is assumed to be known on a subset only, the
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geodesics issued from that subset cover the whole manifold. In contrast, in [40],
we have localized information.

The linearization of the boundary rigidity and lens rigidity problem is the tensor
tomography problem, i.e., recovery of a tensor field up to “potential fields” from
integrals along geodesics joining points on the boundary. It has been extensively
studied in the literature for both simple and non-simple manifolds [8, 21, 22,
23, 18, 25, 30, 27, 33, 36, 39]. See the book [28] and [23] for a recent survey.
The local tensor tomography problem has been considered in [13] for functions
and real-analytic metrics and in [14] for tensors of order two and real-analytic
metrics. Those results can also be thought of as support theorems of Helgason type.
The only known results for the local problem for smooth metrics and integrals of
functions is [41]. In [44] this type of result was proven for more general curves
than geodesics and more general weights using similar methods.

Now we use a layer stripping type argument to obtain a global result which is
different from Mukhometov’s for simple manifolds.

Definition 1. Let (M, g) be a compact Riemannian manifold with boundary. We
say that M satisfies the foliation condition by strictly convex hypersurfaces if M
is equipped with a smooth function ρ : M → [0,∞) which level sets Σt = ρ−1(t),
t < T with some T > 0 are strictly convex viewed from ρ−1((0, t)) for g, dρ is
non-zero on these level sets, and Σ0 = ∂M and M \∪t∈[0,T )Σt has empty interior.

The statement of the global result on lens rigidity proven in [40] is as follows:

Theorem 4. Let n = dimM ≥ 3, let c > 0, c̃ > 0 be smooth and equal on ∂M ,
let ∂M be strictly convex with respect to both g = c−2g0 and g̃ = c̃−2g0. Assume
that M can be foliated by strictly convex hypersurfaces for g. Then if L = L̃ on
∂−SM , we have c = c̃ in M .

A more general foliation condition under which the theorem would still hold is
formulated in [38]. In particular, Σ0 does not need to be ∂M and one can have
several such foliations with the property that the closure of their union isM . If we
can foliate only some connected neighborhood of ∂M , we would get c = c̃ there.
Note that it is enough to require that M \ ∪t∈[0,T )Σt is simple to prove c = c̃ in
∪t∈[0,T )Σt first, and then use Mukhometov’s results to complete the proof. The
class of manifolds we get in this way is larger than the simple ones.

Spherically symmetric c(x) under the condition considered by Herglotz and
Wieckert and Zoeppritz satisfy the foliation condition of the theorem. Other ex-
amples of non-simple metrics that satisfy the condition are the tubular neighbor-
hood of a closed geodesic in negative curvature. These have trapped geodesics.
Also the rotationally symmetric spaces on the ball with convex spheres can be far
from simple. It follows from the result of [26], that manifolds with no focal points
satisfy the foliation condition. It would be interesting to know whether this is also
the case for simple manifolds. As it was mentioned earlier manifolds satisfying the
foliation condition are not necessarily simple.

The linearization of the non-linear problem with partial data considered in The-
orem 3 was considered in [41], where uniqueness and stability were shown. This
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corresponds to integrating functions along geodesics joining points in a neighbor-
hood of p. The method of proof of Theorem relies on using an identity proven
in [32] to reduce the problem to a ”pseudo-linear” one: to show uniqueness when
one integrates the function f = and its derivatives on the geodesics for the met-
ric g joining points near p, with weight depending non-linearly on both g and g̃.
Notice that this is not a proof by linearization, and unlike the problem with full
data, an attempt to do such a proof is connected with essential difficulties. The
proof of uniqueness for this linear transform follows the method of [41] introduc-
ing an artificial boundary and using Melrose’ scattering calculus. The we use the
method of [32] to reduce the problem to a “pseudo-linear problem” and apply
similar techniques to [41].

Stability estimates

In Theorem 5 and Theorem 6 were proven in [40] giving a Hölder conditional
stability estimates of local and then of global type respectively. In case of data
on the whole boundary, such an estimate was proved in [34, section 7] for simple
manifolds and metrics not necessarily conformal to each other. Below, the Ck

norm is defined in a fixed coordinate system in the local result, and with respect
to a fixed finite collection of local chart in the global case.

Theorem 5. There exists k > 0 and 0 < µ < 1 with the following property. For
any 0 < c0 ∈ C

k(M), p ∈ ∂M , and A > 0, there exists ε0 > 0 and C > 0 with the
property that for any two positive c, c̃ with

(2) ‖c− c0‖C2 + ‖c̃− c0‖C2 ≤ ε0, and ‖c‖Ck + ‖c̃‖Ck ≤ A, j = 1, 2,

and for any neighborhood Γ of p on ∂M , we have the stability estimate

(3) ‖c− c̃‖C2(U) ≤ ‖d− d̃‖
µ
C(Γ×Γ)

for some neighborhood U of p in M .

The global estimate for the lens rigidity problem assuming the foliation condi-
tion is as follows:

Theorem 6. Assume that M0 ⊂ M can be foliated by strictly convex hyper-
surfaces. Let D ⊂ ∂−SM be a neighborhood of the compact set of all β ∈
∂−SM ∩ ∂−SM0 with the property that the geodesic γβ stays in M0 and hits ∂M
again at a point on ∂M0. Then with k, µ, c0, c, c̃, ε0 and A as in Theorem 5, we
have the stability estimate

(4) ‖c− c̃‖C2(M0) ≤ C‖L− L̃‖
µ
C(D)

for c1, c2 satisfying (2).

The quantity L− L̃, and its C(D) norm make sense in a finite system of charts
covering ∂M .
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Tomography of small residual stresses

Vladimir Sharafutdinov

(joint work with Jenn-Nan Wang)

We study the inverse problem of determining the residual stress in Man’s model [1]
using tomographic data. Theoretically, the tomographic data are obtained at the
zeroth approximation of geometrical optics for Man’s residual stress model. For
compressional waves, the inverse problem is equivalent to the problem of inverting
the longitudinal ray transform of a symmetric tensor field. For shear waves, the in-
verse problem, after the linearization, leads to another integral geometry operator
which is called the mixed ray transform. Under some restrictions on coefficients,
we are able to prove the uniqueness results in these two cases.
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Some steps in making tomography algorithms practical

Kees Joost Batenburg

In the past decades, X-ray tomography has developed into an advanced field of
experimental research, utilizing not just the absorption contrast, but also phase,
chemical and directional information to characterize the interior structure of the
scanned object. Achieving the best possible results is becoming more and more an
interdisciplinary effort, combining state-of-the-art experimental hardware, care-
ful experiment design, mathematical modeling, customized algorithms and high
performance computing.

One of the key challenges is to obtain accurate reconstructions from a limited
set of measurements (a small number of projections, limited angular range, etc.).
In this domain, recent mathematical advances in incorporating various types of
prior knowledge in the reconstruction algorithm have the potential to provide vast
improvements in image quality.

However, it is not at all straightforward to translate advanced numerical al-
gorithms into a software implementation that can be applied effectively to large
experimental datasets. In particular

• Practical data sets are often extremely large, requiring highly efficient
parallel processing and efficient memory usage.
• A broad range of geometrical projection configurations is used in modern
experiments, such that algorithms based on particular geometries (e.g.
parallel beam, circular cone beam) can often not be used.
• A broad collection of structural errors and uncertainties introduced during
image acquisition (alignment errors, flat field fluctuations, etc.) impose
strong requirements on the robustness of the algorithm with respect to
model errors.

At the Computational Imaging group of CWI (Amsterdam, The Netherlands)
and the ASTRA group at the University of Antwerp (Belgium), we aim to de-
velop methodologies that allow to bridge this gap between advanced mathemati-
cal algorithms and real-world experimental data. In particular, we have developed
the ASTRA toolbox, an open-source software toolbox that offers flexible, high-
performance GPU implementations of the tomographic forward and back projec-
tion operators [1, 2]. Through an interface with high-level scripting languages
(Matlab and Python), algorithms can be expressed in an intuitive mathematical
way, while being directly applicable to large experimental datasets.
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Simultaneous estimation of attenuation and activity in time-of-flight

positron emission tomography.

Michel Defrise

(joint work with J. Nuyts, A. Rezaei, V. Panin, M. Caey, C. Michel, G. Bal, C.
Watson, M. Conti)

Positron emission tomography (PET) aims at estimating the spatial distribution
of a tracer labelled with a positron emitting isotope. This distribution, called
the activity image λ, is reconstructed from the emission data m, which consist
of pairs of 511 keV photons detected in coincidence by detectors surrounding the
patient. An accurate reconstruction requires in addition information on the spatial
distribution of the attenuation coefficient, (the attenuation image µ), which is
needed to compensate for the absorption or scattering of the photons.

In practice the attenuation is measured independently using a CT scan (x-ray
transmission tomography). However there are situations where the CT information
is incomplete or inaccurate. The most common source of bias is the geometrical
mismatch between the emission data and the attenuation image caused by patient
motion or by different respiratory patterns in the CT and PET scans.

This talk describes recent results on the simultaneous estimation of the atten-
uation and activity images from time-of-flight (TOF) PET data, without using
information from a CT or MR scan. This approach guarantees that the attenu-
ation correction perfectly matches the PET data, both spatially and temporally.
It is well known that the problem of simultaneously estimating the attenuation
µ(x), x ∈ Ω ⊂ R3 and activity λ(x) in PET has no unique solution [1]. We revisit
this problem for time-of-flight (TOF) PET. Here, the data m depend on an ad-
ditional TOF variable t equal to the time difference between the two coincident
photons. In 2D, m(φ, s, t) = a(φ, s)p(φ, s, t) for φ ∈ [0, π), s, t ∈ IR, with

(1) a(φ, s) = exp{−(Rµ)(φ, s)} = exp{−

∫
dl µ(s cosφ− l sinφ, s sinφ+ l cosφ)}

the attenuation factor along the line defined by the angle φ and radial position s,
and the non-attenuated data are

(2) p(φ, s, t) =

∫
dl λ(s cosφ− l sinφ, s sinφ+ l cosφ)h(t − l)

with h(t) the probability distribution of the uncertainty on the measured time-
of-flight. This function is usually, and in this work, modeled by a gaussian of
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standard deviation σ. The non-attenuated data satisfy the range condition [2]

(3) Dp = t
∂p

∂s
+
∂p

∂φ
− s

∂p

∂t
+ σ2 ∂

2p

∂s∂t
= 0

By requiring that the corrected data p = m/a are in the range, and with weak
smoothness assumptions, we show by solving D(m/a) = 0 [3] that the gradient
∇Rµ of the Radon transform of µ is determined by the measured data m for all
lines such that m(φ, s) > 0. A corollary is that the solution of the TOF-PET
simultaneous estimation is unique in the sense that

• the activity image λ is determined up to a global multiplicative constant,
• the attenuation factors a are determined for all lines which have activity,
up to the reciprocal of the same multiplicative constant.

The proof is extended to 3D TOF-PET, where the data is function of 5 variables
and satisfies two 2nd order partial differential equations, which generalize John’s
equation.

We also apply maximum likelihood (ML) estimation to a discrete version of this
non-linear inverse problem with a Poisson likelihood model. Two approaches are
discussed:

• The first one maximizes the likelihood with respect to λ and µ [4]. This
is done by alternatively updating λ and µ using an algorithm originally
introduced for non-TOF PET [5]. Similar techniques have been proposed
for non-TOF PET [6, 7, 8], and recently [9] for TOF-PET.
• The second ML approach maximizes the likelihood with respect to λ and to
the attenuation factors a. When the data are free of background (scatter
and accidental coincidences), this second approach allows explicit opti-
mization with respect to a, and we derive by optimization transfer a very
simple monotonous algorithm to recover λ[10].

Examples with simulated and real PET data are presented.
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New Inversion Formula for the X-ray transform and its Application to

CT Reconstruction

Steven Oeckl

The (divergent) X-ray transform is the mathematical modell for Computerized
Tomography (CT). The two dimensional (2D) and the three dimensional (3D)
X-ray transform is related to fan-beam and cone-beam CT, respectively. Analyt-
ical reconstruction algorithms are therefore based on the inversion of the X-ray
transform especially for dimensions n ∈ {2, 3}. Instead of inverting the 2D X-ray
transform usually the 2D Radon transform in combination with an appropriate
transformation is used to derive reconstruction algorithms for fan-beam CT, see
for example [1]. In case of cone-beam CT several inversion formulas for the 3D
X-ray transform are well-known, see [2], [3], [4] [5], [6]. The mentioned formu-
las have all in common that one has to deal with the derivative of the Crofton
symbol which is usually a discontinuous function and therefore causes numerical
challenges. Here we present an inversion formula for the X-ray transform for ar-
bitrary dimensions. Using this approach we avoid the derivative of the Crofton
symbol.

Let n ∈ N be a natural number with n ≥ 2 and let r ∈ R+ be a positive real
number. We define N0 := N ∪ {0}, Rn

∗ := Rn \ {0}, and Ωn
r := {x ∈ Rn : ‖x‖ < r}

the open n-dimensional ball with radius r. Let Sn−1 := {x ∈ Rn : ‖x‖ = 1}
be the n-dimensional unit sphere and Hα(Ωn

r ) the Sobolev space of order α ∈
R+ ∪ {0}. Let f be an appropriate function. We define the Fourier transform

f̂ := (2π)−n/2
∫
Ωn

r
f(x)e−i〈x,·〉 dx and for x ∈ Rn the translation Txf := f(· − x).

For f ∈ L1(Rn), a ∈ Rn, θ ∈ Sn−1 and k ∈ N0 with k < n we define

Dkf(a, θ) := Dk
af :=

∫ ∞

0

ρkf(a+ ρθ) dρ ,

Df(a, θ) := Daf(θ) := D
0
af(θ) .

The operator D is called X-ray transform. We call Dk generalized X-ray transform
and we define the abbreviation Gkf(a, θ) := Gkaf(θ) := D

k
af(θ) +D

k
af(−θ).

Let Λ ⊂ R be a closed interval. The curve that corresponds to a path φ : Λ→
Rn is denoted by Γφ := R(φ) ⊂ Rn. The set of all paths where the corresponding
curve is lying outside of Ωn

r is defined by Φn,r(Λ) := {φ : Λ→ Rn |R(φ) ⊂ Rn\Ωn
r }.

Within this paper we make always use of an admissible path φ, i.e. φ ∈ Φn,r(Λ)
and

∫
Λ ‖φ(λ) − r‖

n−1 dλ < ∞. This condition ensures that the X-ray transform



Mathematics and Algorithms in Tomography 2077

depending on an admissible path φ which is defined for λ ∈ Λ und θ ∈ Sn−1

by Dφf(φ(λ), θ) := Dφ(λ)f(θ) turns into a continuous operator Dφ : L2(Ωn
r ) →

L2(Γφ × S
n−1).

In [2] it was shown that a stable inversion of the X-ray transform can be per-
formed if the path fulfills the so-called Tuy conditions, i.e. φ ∈ Φn,r(Λ) is bounded,
continuous, differentiable a.e., and for all (x, θ) ∈ Ωn

r × S
n−1 there exists an ele-

ment λ ∈ Λ such that 〈x, θ〉 = 〈φ(λ), θ〉 and 〈φ′(λ), θ〉 6= 0. Obviously, for the same
λ ∈ Λ and all ρ ∈ R \ {0} the equations 〈x, ρθ〉 = 〈φ(λ), ρθ〉 and 〈φ′(λ), ρθ〉 6= 0
are also valid. Based on a Tuy path we define for θ ∈ Sn−1 and s ∈ R the Crofton
symbol by nφ(θ, s) := #{λ ∈ Λ : 〈φ(λ), θ〉 = s}. For ρ ∈ R we get immediately
nφ(ρθ, ρs) = nφ(θ, s). Using the Crofton symbol we define a function that is im-
portant for the inversion of the X-ray transform: Let φ ∈ Φn,r(Λ) be a Tuy path,
λ ∈ Λ and y ∈ Ωn

r . We define

tφ,λ,r(y) := |〈φ
′(λ), y〉|nφ(y, 〈φ(λ), y〉)

−1 .

The function tφ,λ,r is even and homogeneous of degree 1. Using the function tφ,λ,r
we can formulate the following inversion formula for the X-ray transform.

Theorem Let β ∈ R+ with β > max{1, n− 3/2}, f ∈ L2(Ωn
r ), φ ∈ Φn,r(Λ) a Tuy

path with tφ,λ,r ∈ H
β(Ωn

r ) for λ ∈ Λ and cn := (2π)−n/2−1. Then we have for
almost every x ∈ Ωn

r

(1) f(x) = cn

∫

Λ

∫

Sn−1

Dφ(λ)f(θ)G
n−2
φ(λ)Txt̂φ,λ,r(θ) dθ dλ .

Using equation (1) we can derive reconstruction algorithms of filtered backpro-
jection type. Depending on the number of approximations we achieve shift-variant
or shift-invariant filtering. Based on equation (1) we can additionally derive an
inversion formula for the extended X-ray transform which leads to a reconstruction
algorithm of filtered layergram type. In this case no approximations are necessary.
Details on all results of this contribution can be found in [7].
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Thermoacoustics and the Spherical Radon Transform

S.K. Patch

(joint work with MCW team)

Consider a spherical Radon transform

Rf(x, t) =

∫

|x−y|=νst

f(y)dSy

where x represents the location of an ultrasound transducer, t is time, and νs =
1.5mm/µs is propagation speed. Ultrasound reflection tomography motivated
Norton and Linzer to derive series solutions for f for specific measurement geome-
tries [1, 2, 3]. Concurrent experimental research on thermoacoustic phenomena
neglected the mathematics of image reconstruction, although the idealized math-
ematical models were essentially identical [4, 5, 6, 8, 7]. Early thermoacoustic
tomography systems reconstructed via filtered backprojection, applying the fil-
ter and weights of the standard (planar) Radon transform but accounting for the
spherical integration surface during backprojection [9]. This approach causes low-
frequency shading across the image volume, but was sufficiently accurate near
the origin. Mathematically exact approaches to image reconstruction via filtered
backprojection and also from a wide range of measurement geometries have been
developed, primarily by members of the mathematical community. Image recon-
struction is not currently a limiting factor in the development of thermoacoustic
imaging. Understanding the thermoacoustic contrast mechanisms is required be-
fore thermoacoustic techniques can be translated into the clinic. For instance, just
as xray CT projections are highly dependent upon the energy of the irradiating
xrays, thermoacoustic signal production is as a function of irradiation frequency.
Additionally, clinical ultrasound arrays rarely provide sufficient coverage to collect
mathematically complete data. Finally, experimental constraints cause measured
data to deviate from that modeled by the spherical Radon transform.
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Inversion of the attenuated Radon transform via circular harmonics

expansions and contours reconstruction

Gaël Rigaud

(joint work with Aref Lakhal)

The attenuated Radon transform has been widely studied in the past decades
due to its involvement in the modeling in medical imaging (SPECT) or physical
imaging (Doppler tomography) [1]. This stimulating inverse problem were solved
by Novikov in 2001 [2] and later by Natterer [3] in the non-uniform case. Before
them, Tretiak and Metz [4] worked out a solution for a constant attenuation. We
can also recall the recent work of Puro and Garin who have recently proposed in
[5] an analytical inversion formula based on circular harmonic decomposition and
for axially symmetric attenuation.
Chapman and Cary [6] studied the circular harmonic decomposition (CHD) of the
classical (non attenuated in our context) Radon transform and showed the rele-
vance of this approach. In particular, the induced image reconstruction algorithm
presents similar results with the widely used filtered backprojection algorithm
(FBP). The application of the CHD for SPECT data was also shown to be rel-
evant in [7] which encourages the study of the attenuated Radon transform in
circular harmonic space. A pioneering numerical algorithm based on this explicit
inversion formula was derived and implemented in [8]. Akin to FBP, this algorithm
uses Fourier space to implement the Riesz potential before to backproject.
As an alternative way, we propose to expand the reconstruction kernel of the
attenuated Radon transform in circular harmonics to obtain a new reconstruction
algorithm. In comparison with Kunyansky’s algorithm [8] in which the inversion
is proceeded in 2D-Fourier space, we use here an angular Fourier transform. From
[3], we can deduce the reconstruction kernel of the attenuated Radon transform
at a point x

Ψx(p, θ) =
eh(p,θ)

4π2
divx

[
θ

x · θ − p
e−u(x,θ)

]
.
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with u(x, θ) = h(x · θ, θ)− (Da) (x, θ⊥) and

h(p, θ) =
1

2
(I + iH) (Ra) (p, θ)

is the analytic representation of the signalRa in which I, H and D are respectively
the identity operator, the Hilbert transform and the Divergent beam transform.
The induced reconstruction method can be understood as an extension of the
Cormack’s inversion formula [9] to the attenuated Radon transform without dif-
ferentiation of the data. In addition the advantages of using the CHD remain and
this new formulation may bring a new overview on the inversion of the attenuated
Radon transform for further analytical investigations.
In addition, we propose to extract analytically the contours of the sought object
from its attenuated Radon transform. Louis introduced in [10] a method to com-
bine image reconstructon and image analysis. Using similar technique, we show
the feasibility of this approach for such applications. Numerical results attest of
the accuracy and stability of our method for image reconstruction and feature
extraction.
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Mathematics of STEM tomography

Holger Kohr

(joint work with T. Dahmen)

In HAADF-STEM (High Angle Annular Dark Field Scanning Transmission
Electron Microscopy), the imaging system consists of a focused electron beam
which is moved across the specimen under investigation (scanning). This is in
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contrast to conventional transmission electron microscopy where one single illumi-
nation of a sample yields an image showing absorption and diffraction contrast. In
STEM imaging, the contrast mechanism is based on incoherent scattering to high
angles. Since only these scattered electrons are noticed by the annular detector
while the main beam does not contribute, one speaks of dark field imaging.

The most common mathematical model for STEM tomography has been the
Radon transform since a very small opening angle of the electron beam allowed it
to be well approximated by a ray. However, for thick specimens, blurring effects far
from the focal plane are no longer negligible. Moreover, modern microscopes offer
significantly larger beam opening angles, which makes it possible to acquire depth-
resolved information about the specimen by varying the focal plane, thus acquiring
a focal series, instead of performing rotations in order to apply tomography.

Recently, the two approaches were combined in the acquisition of a tilt focal
series, and an ART-like iterative algorithm was implemented to compute recon-
structions, however with a simplified adjoint operator not consistent with the for-
ward model [2]. The talk introduced the measurement principle and the resulting
convolution model

(1) g(y) = p ∗ f(y) =

∫

R3

p(y − x)f(x) dx, y ∈ R3,

with the real-valued probe function p describing the spatial electron distribution
of the beam during an illumination. Its actual form depends on the electron source
size and directional distribution as well as some characteristic parameters of the
optics which focus the beam [3]. Since this model is rotationally invariant, i.e.

p ∗ f
(
R−1 ·

)
= p

(
R−1 ·

)
∗ f

for any rotation matrix R, it suffices to investigate the case when p describes
a beam aligned with the x3 axis. In a simple approximation, it can be assumed
that the electron density is uniform inside a double cone with opening semi-angle
α ∈]0, π/2[,

C =
{
x ∈ R3

∣∣ |x′| < tanα |x3|
}
, x′ = (x1, x2).

The corresponding probe function is given by

(2) p(x) =
1

π tan2 αx23
·

{
1, if |x′| < tanα |x3|,

0, otherwise,

where the normalization factor ensures that physically, the total flux through
each lateral cut of the cone is constant for each value of x3.

Due to the simple convolution structure of the forward model, it is possible to
deduce a Fourier slice theorem in order to gain insight into the frequency informa-
tion about the unknown f contained in the data g. Since the connection is given

by the classical formula ĝ = (2π)
3/2 p̂ · f̂ , the shape and the support of p̂ determine
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the frequency content of g. Performing first the 2D Fourier transform with respect
to (x1, x2), one acquires

2πF2p(ξ
′, x3) = (π tan2 αx23)

−1

∫

|x′|<tanα |x3|

e−i〈ξ′, x′〉 dx′

= 2
J1
(
tanα |x3| |ξ

′|
)

tanα |x3| |ξ′|

with J1 being the Bessel function of the first kind with index 1. The remaining
FT can now be computed to

(2π)
3/2 p̂ = 2

∫

R

J1
(
tanα |x3| |ξ

′|
)

tanα |x3| |ξ′|
eiξ3x3 dx3

=
4

tanα |ξ′|

∫ ∞

0

J1(t)

t
e
−it

ξ3
tan α |ξ′| dt

=
4

tanα |ξ′|
·

{√
1−

ξ2
3

tan2 α |ξ′|2 , if tanα |ξ′| > |ξ3|,

0, otherwise,

where the last step makes use of [1, Formula (11.4.25)]. This formula has some
interesting consequences due to the fact that p̂ is supported in the complement of
a cone with opening angle π/2− α. Firstly, f can be uniquely recovered by a tilt
series using equidistant angles with a step of less than α. Secondly, the resolution
along the beam is bad since the extent of the support in that direction is very
small under practical conditions. Thirdly, however, in a combined tilt and focal
series, the sampling distance of the focal planes can be chosen much larger than
in the lateral direction, which makes it more attractive for practical scenarios.
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Methods for accelerating x-ray tomographic reconstruction

Ming Jiang

(joint work with Jason Cong, Yijin Guan, Peng Li, Guojie Luo, Peter Maaß,
Thomas Page, Li Shen, Pei Wang, Peng Zhang, Wentai Zhang)

In addition to multi-CPU clusters, GPU and DSP, FPGA (field-programmable
gate array) is another hardware accelerating approach. High-level synthesis tools
from C to FPGA can optimize the implementation under the performance, power,
and cost constraints, and enable energy-efficient accelerator-rich architecture. In
previous work, we used FPGA for the simultaneous image reconstruction and seg-
mentation with Mumford-shah regularization for XCT under -convergence, and
achieved 31X speed-up and 622X energy efficiency compared to CPU implementa-
tion [5, 8]. However, FGPA was only used to accelerate the computation of forward
and backward projections. In this talk, we are reporting algorithmic development
to accelerate the reconstruction further.

Because of the limited memory on chip, we proposed to use a combination of
order-subset and coordinate decent methods to formulate our algorithms so that
only small and necessary data are moved between the main memory and FPGA,
so that the communication expense between CPU and FPGA can be reduced.
The ordered-subset method, is also called the block-iterative method, and the
online learning method in machine learning, and can be derived by the incremental
gradient method in optimization theory [6, 4]. Assume that the reconstruction
functional is of the following form

(1) f(x) =

M∑

j=1

fj(x).

At one iteration, fj is chosen to update the image and the current image block
under update is xi. Then an update of the image block xi by the incremental
gradient descent method is

(2) xi ← xi − λ∇xi
fj(x).

For XCT, each image block is naturally specified by the pixels intersected by one
beam. For XCT, after applying the above scheme (2) to f , either the least-squares
functional or the Kullback-Leibler divergence, we obtain the Kaczmarz method
(also called the algebraic reconstruction techniques (ART)) or the row-action of
the RAMLA method [7, 3, 1], respectively.

We propose to implement as many numbers of such algorithm blocks as possible
in FPGA in an accelerator-rich architecture. Although algorithms in the above
formulations (2) are sequential, they can also run in parallel with asynchronous
updates to improve speed-up. Based on the previous results on block-iterative
methods and asynchronous incremental gradient methods [2, 10, 6, 4], we ex-
pect the convergence of the proposed asynchronous parallel Kaczmarz (ART) and
RAMLA methods with diminishing relaxations. Preliminary results demonstrate
better early reconstruction images with both the asynchronous parallel Kaczmarz
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(ART) and RAMLA methods with diminishing relaxations, than their conven-
tional sequential versions.

After the talk at Oberwolfach, the speaker was kindly informed the work in
[11, 9] by Prof. Stephen J. Wright of University of Wisconsin. The asynchro-
nous parallel Kaczmarz method has been studied from the perspective of machine
learning. The convergence of the asynchronous parallel Kaczmarz method has
been established in the consistent case with constant relaxations in [9], together
with extensions to inconsistent cases.

The proposed asynchronous parallel scheme fits well with the architecture of
FPGA and reduces the communication cost, and is applicable to other parallel
architectures in general (e.g. multi-core CPUs). In this talk, we also discuss more
general asynchronous parallel data-block and image-block iterative methods with
regularization similar to (1) and (2), and approaches to establish their convergence.

This work is supported in part by National Basic Research and Development
Program of China (2011CB809105), and National Science Foundation of China
(61121002).
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Acousto-Optic Inverse Source Problem

John C. Schotland

(joint work with Guillaume Bal)

The development of tools for molecular imaging has had a transformative effect
on biomedical research [1]. There are multiple applications including mapping
gene expression and following the course of infection in a single animal, among
others. Optical methods hold great promise for molecular imaging, due to their
spectroscopic sensitivity to chemical composition, nondestructive nature and rela-
tively low cost [2]. One particularly popular modality, known as bioluminescence
imaging, makes use of a bioluminescent marker, most often the luciferin-luciferase
system, as a reporter of molecular activity [3, 4]. In a typical experiment, genet-
ically modified light-emitting cells are introduced into a model organism and a
CCD camera is used to record the intensity of emitted light. The resulting images
convey information about the spatial distribution of the labeled cells. However,
the images are not tomographic nor are they quantitatively related to the number
density of the cells. One approach to this problem is to reconstruct the number
density (optical source) from measurements of multiply-scattered light, a method
known as bioluminescence tomography (BLT) [5, 6, 7, 8, 9, 10, 12, 11, 13]. The
corresponding inverse problem is a classical inverse source problem (ISP) and it is
well known that such problems do not have unique solutions [14]. That is, more
than one source can give rise to the same measurements. Uniqueness can be re-
stored under strong mathematical assumptions, requiring a priori knowledge of
the source geometry.

To overcome the problem of non uniqueness in BLT requires a fundamen-
tally new approach. In this work, we propose a novel imaging modality termed
ultrasound modulated bioluminescence tomography (UMBLT), which is in the
spirt of several recently developed hybrid imaging methods. In hybrid imag-
ing (also called multi-wave imaging), an external field is used to control the
material properties of a medium of interest, which is then probed by a second
field [15, 16, 17, 19, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. In the physical
setting we consider, the source density is spatially modulated by an acoustic wave,
while measurements of the emitted light are recorded. We find that it is possible
to uniquely reconstruct the source density by an algebraic formula. Moreover, the
reconstruction is stable in the sense that an error in the measurements is linearly
related to the error in recovering the source. We note that the inverse problem
of UMBLT has a quite different mathematical structure than those that arise in
other hybrid imaging modalities such as acousto-optic tomography (AOT) [18].
In particular, the inverse problem of AOT is an inverse scattering problem which
consists of solving a nonlinear partial differential equation. In contrast, the inverse
problem of UMBLT is an inverse source problem which is formulated as a linear
partial differential equation.
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Regularisation Methods for Joint Image Reconstruction

Simon Arridge

(joint work with Matthias J. Ehrhardt)

Combining images of the same object from several different instruments has been
a widely studied problem, and is often approached as a task in data fusion, for
example involving the determination of an unknown transformation that registers
two or more images acquired in different coordinate systems, so that common
structures may be visualised. In contrast to this, fully multimodal systems are be-
coming increasingly prevelent in medical imaging, including commercial systems
based on PET-CT, SPECT-CT and MRI-PET, amongst others[1, 2]. These sys-
tems acquire data simultaneously, and suggest that the corresponding problem to
be studied is one of joint image reconstruction.

Considering the case of two images u, v we define the forward model
(
A(u)

A(v)

)
:

(
u
v

)
7→

(
g(u)

g(v)

)
,

and the corresponding data fit terms

ℓ(g(u), A(u)(u)) = − logP (g(u)|u) ; ℓ(g(v), A(v)(v)) = − logP (g(v)|v)

where each of the mappings A(u), A(v) may be seperately either well-posed or
weakly or strongly illposed, and either linear or non-linear. If we assume that
the noise models of each modality are uncorrelated then the reconstructed images
will also be uncorrelated except through the involvement of a coupled image prior
model π(u, v) and the corresponding regularisation functional Ψ = − log π. Two
different cases can be defined :

• “One-sided” reconstruction assumes that A(v) is well posed and that the
image v∗ is stably reconstructed and used as a fixed auxiliary image to
inflence the reconstruction of u, through the conditional prior Ψ(u|v∗) =
− logπ(u|v∗). In the Bayesian framework this leads to a minimisation
problem for the Maximum a Posteriori (MAP) estimate :

u∗ = min
u

[
− logP (u|g(u), v∗) := ℓ(g(u), A(u)(u)) + Ψ(u|v∗)

]

• Joint reconstruction which optimises for both images simultaneously to
give the Joint Maximum a Posteriori (JMAP) estimate:

(
u∗
v∗

)
= min

u,v

[
− logP (u, v|g(u), g(v)) := ℓ(g(u), A(u)(u)) + ℓ(g(v), A(v)(v)) + Ψ(u, v)

]

Two contrasting approaches to defining the joint prior π(u, v) or conditional
prior π(u|v) can be identified. The first uses a statistical similarity such as joint
entropy [3]

π(u, v) = exp

[∫

Ω(u)

∫

Ω(v)

P (u, v) log(P (u, v)dxu dxv

]
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which favours joint images with the minimum number of classes and the mini-
mum within-class variance, and is closely related to the corresponding optimisa-
tion problem used in many image registration problems. The second approach
defines a prior which favours joint structural similarity and/or joint sparsity. In
our approach we consider a model which we call Parallel Level Sets [4] and define
a functional of the form

Ψ(u, v) =

∫

Ω

ϕ

(
ψ (||∇u|| ||∇v||)− ψ (| 〈∇u,∇v〉 |)

)

where ϕ, ψ : [0,∞)→ R are strictly increasing and ϕ(0) = 0. Minimisation of this
functional leads to an image flow of the form

∂u

∂t
= ∇ ·

(
R[v]Λ[u, v]R[v]T∇u

)

∂v

∂t
= ∇ ·

(
R[u]Λ[v, u]R[u]T∇v

)

where R[u], R[v] are rotation matrices defining local guage coordinates normal and
parallel to the level sets of u, v respectively, and Λ[u, v] = diag

(
γ⊥(u, v), γ‖(u, v)

)

defines the anisotropy of flow in the normal and tangential directions.
Different image flow behaviour results from different choices of φ and ψ. A

desirable form would be one that becomes isotropic in the absence of gradients
in either image, and becomes edge-enhancing for strong gradients, whilst being
unbiased in the case that structure is absent in either image seperately. In [5],
results have been shown for a model of MRI-PET, with underampled k-space for
MRI and partial volume and Poisson statistics for PET. It was found that the
joint regularisation improves over other approaches such as joint-TV.
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On an exact inversion formula for 3D cone beam vector tomography

Thomas Schuster

(joint work with Alexander Katsevich)

Cone beam vector tomography means the determination of a 3D vector field f(x)
from integral data that are acquired from ultrasound measurements. E.g. such a
vector field is the velocity field of a moving fluid inside a bounded domain Ω ⊂ R3.
The data are accomplished by either measuring the time-of-flight or the Doppler
spectral shift, both of which yield the integral of f along the path of the ultra
sound beam probed by its tangential direction. In case of a homogeneous medium
the ultra sound beams propagate as lines and the mathematical model hence is
described by the cone beam transform

(1) [Df ]
(
y(s),Θ

)
=

∞∫

0

f
(
y(s) + tΘ

)
·Θdt .

Here y(s), s ∈ Λ ⊂ R, denotes the parametrization of a source trajectory Γ ⊂

(R3\B3) and Θ ∈ S2 := {x ∈ R3 : |x| = 1} = ∂B3 is the unit vector along the
ray that emanates from the source y(s). It is assumed that Θ ∈ C, where C is
a cone and that B3 ⊂ y(s) + C, i.e. the unit ball is completely contained inside
the union of the rays emanating from any source position y(s). It is obvious that
any potential field f = ∇v with potential v ∈ H1

0 (Ω) is in the null space of D and
thusly only solenoidal vector fields can be reconstructed.

In the talk we present an inversion formula for D which is exact for smooth,
divergence free vector fields f , i.e. ∇ · f = 0. A key role plays a Grangeat-like
formula which has been proven by Kazantsev and Schuster in [3] and which relies
on a splitting of the Radon transform

[Rf ](p, η) =

∫

x·η=p

f(x) dx

into its normal part

[R(nor)f ](p, η) := (η · [Rf ](p, η))η, p ∈ [−1, 1] , η ∈ S2

and its tangential part

[R(tan)f ](p, η) := [Rf ](s, η)− [R(nor)f ](p, η) .

This formula reads as (compare [3, Theorem 5.1])

−

∫

S2

[D(even)f ](x,Θ) δ′′(η ·Θ)dΘ =(2)

(
divη[R

(tan)f ](p, η)
)∣∣

p=η·x
+ x ·

∂

∂p
[R(tan)f ](p, η)

∣∣
p=η·x

.

Here D(even)f means the even part of the measure data,

[D(even)f ]
(
y(s),Θ

)
=

[Df ]
(
y(s),Θ

)
+ [Df ]

(
y(s),−Θ

)

2
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and divη is the operator of surface divergence. In [3] the authors could prove
that, if Γ satisfies a Tuy condition of order 3, which means that any plane passing
through B3 intersects Γ in at least 3 points which are not located on a line, then
a solenoidal vector field can be completely recovered from (1) using formula (2).
The reconstruction is done in two steps:

(1) Compute R(tan)f with the help of eq. (2) using Tuy’s condition of order
3.

(2) Determine R(nor)f from R(tan)f using an expansion with respect to vector
spherical harmonics.

We note that step (2) is only possible for solenoidal f .
To deduce an exact inversion formula, that means a formula which avoids any

series expansions, we hold on this scheme and use arguments from [1] where the
author obtained an inversion formula for the scalar cone beam transform. Con-
sequently our inversion formula consists of two parts, f1, f2. The main result is
subsumed in the following theorem.

Theorem 1: Let fs ∈ H(div;B3) be the projection of a C∞
0 (B3)-vector field f

onto the solenoidal vector fields, and Γ satisfy Tuy’s condition of order 3. Then

fs = f1 + f2

with

f1(x) =
1

8π2

∫

Λ

1

|x− y(s)|

∫ 2π

0

[Φθθ(s, α(θ)) +Φ(s, α(θ))]

×

∫ 2π

0

g
(
y(s), cos γ α⊥(θ) + sin γ β(s, x)

)

cos2 γ
dγ dθ ds,

f2(x) = −

∫

S2

α

∫

S2

∑

s̃j∈S̃

φ(s̃j , S̃)G(s̃j , η) · ∇ηK(α · η) dη dα

)
,

where β(s, x) = (x − y(s))/|x − y(s)|, α(θ) ∈ (S2 ∩ β⊥) for θ ∈ [0, 2π), α⊥(θ) =

α(θ) ∧ β, S̃ = S̃(x · α, η) is any nondegenerate triple of points obtained by solving

y(s̃) · η = x · α,

g = D(even)f is the even part of the cone beam transform of f ,

G(s, α) = −

∫

S2

g(y(s),Θ)δ′′(Θ · α) dΘ,

4πK(t) =

√
2

1− t
− ln

(
1 +

√
(1 − t)/2

)
+

1

2
ln((1− t)/2)− 1,

and φ, Φ are certain, known functions defined on Λ× S2 and depending solely on
Γ.
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Details of the proof are outlined in [2]. Figure 1 shows a numerical reconstruc-
tion using Theorem 1 of the solenoidal vector field f(x) = curl

(
hr(x)F(x)

)
with

F(x) = (0, 0, x1 + x2) and a cut-off function hr which is compactly supported in
Br(0) with r = 1.95.

Figure 1. Exact and reconstructed field (left picture) using 50
sources and 22× 22 detector elements; error (right picture). The
plots show the x− y-plane.
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Contrast-enhanced and sparse reconstruction for sub-sampled MR

velocity imaging

Carola-Bibiane Schönlieb

(joint work with Martin Benning, Lynn Gladden, Daniel Holland, Andy
Sederman, Tuomo Valkonen)

In Phase-encoded Magnetic Resonance (MR) velocity imaging the inverse prob-
lem is the retrieval of the velocity of a fluid (or gas) from Fourier measurements.
Here, the velocity is computed as the difference of the phases of complex signals
encoded in MR measurements at two consecutive times. It is used widely. In
medical imaging, it is used to study the distribution and variation in flow in blood
vessels and around the heart to both diagnose and understand congenital heart
disease and the behaviour of heart valves [1]. In the physical sciences, MR veloc-
ity imaging has been used to study the rheology of complex fluids [2], liquids and
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gases flowing through packed beds [3, 4, 5], granular flows [6, 7] and multiphase
turbulence [8]. The main advantage of MR for studying flow is that it is possible
to non-invasively image systems without the use of a tracer. However, a major
drawback of the technique, in both medical and non-medical applications, is the
acquisition time of the measurement. In the medical field, long acquisition times
(∼min) necessitate breath hold or triggered acquisition techniques that, although
impressive, are susceptible to artefacts and may be impractical in certain cases. In
non-medical applications, long acquisition times require very stable systems and
can prohibit the study of certain features, e.g. fine vortices in turbulent flow. To
overcome these limitations many studies have explored methods to increase the
temporal resolution of velocity-encoded imaging (e.g. [9, 10, 11]). These ultra-fast
(¡ 1 s imaging time) techniques have all been demonstrated to provide a substan-
tial improvement in the temporal resolution. However, despite these advances,
each has limitations in terms of the systems that can be studied and the trade-off
between spatial and temporal resolution. In this talk we discuss two variational
regularisation approaches which can both improve upon the spatial resolution of
reconstructions from sub-sampled k-space data. Both methods are based on the
theory of compressed sensing, exploiting prior knowledge of the signal or the veloc-
ity in terms of appropriate variational regularisation techniques. The first method
is discussed in [12]. It constitutes the solution of the linear inverse problem of
reconstructing a complex signal from its MR measurements by variational regu-
larisation, and computing the velocity as the difference of the phases of two so
reconstructed signals. We are particularly interested in regularisers that correctly
treat both smooth and geometric features of the image. These features are com-
mon to velocity imaging, where the flow field will be smooth but interfaces between
the fluid and surrounding material will be sharp, but are challenging to represent
sparsely. As an example we demonstrate the variational approaches on velocity
imaging of water flowing through a packed bed of solid particles. We evaluate
Wavelet regularisation against Total Variation and the relatively recent second
order Total Generalised Variation regularisation. We combine these regularisation
schemes with a contrast enhancement approach called Bregman iteration. We ver-
ify for a variety of sampling patterns that Morozovs discrepancy principle provides
a good criterion for stopping the iterations. Therefore, given only the noise level,
we present a robust guideline for setting up a variational reconstruction scheme
for MR velocity imaging. The main disadvantage of this first approach is that
prior knowledge in terms of regularisation is not formulated for the quantity of
interest, the velocity. This is suboptimal, especially since the amplitude and phase
of the complex image have very difference regularity properties, the former being
relatively smooth while the latter being better approximated by a piecewise con-
stant function. Therefore, we investigate a second approach where we attempt to
reconstruct the desired velocity (the difference of the phases) directly, cf. also [13].
This amounts to the solution of a nonlinear inverse problem in which the phase is
nonlinearly (via the exponential function) related to the MR measurements. We
again derive a variational regularisation model (this time the regularisation acts on
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the velocity directly!) and employ for the solution of this – now nonlinear prob-
lem – simultaneously linearisation and ADMM iteration. In each iteration this
results in the solution of an unconstrained linear problem which we further break
down to pure proximity operations by a surrogate approach. First experiments
with this approach promise improved reconstruction properties. The convergence
of the resulting iterative scheme still has to be analysed in more detail.
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Multi-resolution method for choosing the total variation regularization

parameter in X-ray tomography

Samuli Siltanen

(joint work with Keijo Hämäläinen, Aki Kallonen, Ville Kolehmainen, Matti
Lassas, Esa Niemi and Kati Niinimäki)

Consider the pencil-beam modelm0 = Af for X-ray tomography [3, Section V.4.1].
Here f ∈ Rn is a discrete model of the unknown X-ray attenuation function, and
m ∈ Rk is the data vector. The inverse problem of tomography is to recover f
approximately and stably from a noisy measurement m = Af + ε.

In total variation (TV) regularization one finds a regularized solution as the
minimizer of this functional:

(1) ‖Af −m‖22 + α‖Lf‖1,

where L is a discretization of a first-order differential oprator and α > 0 is a regu-
larization parameter. Choosing α automatically is a challenging research problem;
there are only a few suggested solutions in the literature [5, 1, 2]

In the schematic setup below we have 5 projection directions and a 10-pixel
detector. Therefore, the number of data points is k = 50. The resolution of
the discrete model can be freely chosen according to computational resources and
other considerations. The number of degrees of freedom in the three discrete
models below are n = 16 and n = 64 and n = 256, respectively.

Our hypothesis is that if one solves the minimization problem (1) with the same
data vector m but with several resolutions n, the resulting reconstructions should
converge to a limit case as n → ∞. We tested this hypothesis in [4] using tomo-
graphic data measured from a walnut.

TV reconstructions of a walnut at three resolutions using α = 0.001:

128× 128 192× 192 256× 256
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TV reconstructions at three resolutions using a larger parameter α = 10:

128× 128 192× 192 256× 256
As you can see in the above pictures, the smaller parameter leads to reconstruc-

tions that are unstable with respect to the resolution. On the other hand, using
the larger parameter apparently gives converging reconstructions.

A systematic study of the same data with two noise levels suggests that it
is reasonable to choose the smallest parameter α > 0 that leads to convergent
reconstructions. Here is a table of TV norms of reconstructions (left: low noise,
right: higher noise):

α 1282 1922 2562 1282 1922 2562

10−4 1.51 2.29 3.64 2.42 5.05 8.71
10−3 1.51 2.29 3.46 2.43 5.05 8.59
10−2 1.50 2.23 2.97 2.42 5.01 8.59
10−1 1.43 1.85 1.93 2.37 4.83 8.16
100 1.08 1.11 1.11 1.99 3.50 5.12
101 0.78 0.78 0.77 0.86 0.86 0.88
102 0.48 0.48 0.48 0.48 0.48 0.48
103 0.12 0.12 0.12 0.12 0.12 0.12
104 0.04 0.04 0.04 0.04 0.04 0.04
105 0 0 0 0 0 0
106 0 0 0 0 0 0

Careful study of the above numbers suggests choosing α = 1 for the low-noise case
and α = 10 for the high-noise case.
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Resolution-controlled conductivity discretization in electrical

impedance tomography

Andreas Rieder

(joint work with Robert Winkler)

In electrical impedance tomography (EIT) one wants to recover an isotropic con-
ductivity distribution σ : Ω→ [c0,∞[, c0 > 0, in the interior of an object Ω ⊂ R2,
e.g., a cross section of the human body. To this end, electric current is applied
on the boundary of the object through electrodes and the resulting voltages are
recorded at these electrodes as well.

The most accurate model for EIT to date is the complete electrode model (CEM)
which we describe now in its variational formulation: Let Ω be a simply connected
Lipschitz domain and let Ej ⊂ ∂Ω, j = 1, . . . , L, denote the distinct electrodes
having positive surface measure. With this electrode configuration we associate
the electrode space

EL := span{χE1
, . . . , χEL

} ∩ L2
⋄(∂Ω) ⊂ L

2
⋄(∂Ω)

where χEj
is the indicator function of Ej and L2

⋄(∂Ω) is the space of L2-functions
with vanishing mean along the boundary. The forward problem now reads: Given
an electrode current I ∈ EL and a contact impedance z > 0, find a voltage potential
up ∈ H

1(Ω) and an electrode voltage U ∈ EL such that

a
(
(up, U), (w,W )

)
=

∫

∂Ω

I WdS for all (w,W ) ∈ H1(Ω)⊕ EL

where the bilinear form a on H1(Ω)⊕ EL is defined by

a
(
(v, V ), (w,W )

)
:=

∫

Ω

σ∇v∇w dx+
1

z

∫

∪jEj

(v − V )(w −W ) dS.

The above problem has a unique solution [5].
The nonlinear forward operator describing CEM is the Neumann-to-Dirichlet

map R : D(R) ⊂ L∞(Ω)→ L(Ep), σ 7→ {I 7→ U}, where D(R) = {σ ∈ L∞(Ω): σ ≥
c0}, that is, R(σ)I = U . Finally, we can phrase the inverse problem of EIT as
the reconstruction of σ from the knowledge of R(σ). Besides its illposedness this
inverse problem suffers from too few measurements. Indeed, since R(σ) can be
represented by a symmetric matrix of order L−1 = dim EL we only have L(L−1)/2
independent measurements.

To bring the best out of the measurements a sensible discretization of the con-
ductivity is required. Conductivity discretizations have been considered before,
see, e.g., [1, 2, 4] to name a few, but an explicit resolution-based quantification of
the discretization size for CEM across Ω is still an open task. In the remainder of
this extended abstract we summarize our contribution to this task.

Motivated by Isaacson [3] we define the relative sensitivity for distinguishing
the conductivity σ̃ from the reference or background conductivity σ by

λσ,σ̃ :=
‖R(σ̃)−R(σ)‖

‖R(σ)‖
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where ‖ · ‖ denotes the spectral norm. We say that the conductivities σ and σ̃
are distinguishable by the measurement device if λσ,σ̃ ≥ ε where ε ∈ ]0, 1[ is the
relative spectral measurement noise.

If Ω is a circular disk we derived in [6] a procedure to calculate λ1,σ̃ explicitly
for the circular inclusion σ̃ = σ̃(x, r) = 1 + ηχBr(x), η > 0, under any electrode
configuration on ∂Ω (Br(x) ⊂ Ω is the ball of radius r and center x). For a large
η, say η = 106, and a given relative measurement noise ε we are now able to
determine the smallest radius rmin = rmin(x, ε) such that

ε = λ1,σ̃(x,rmin).

The area of Brmin
(x) is a characteristic of the resolution provided by CEM in x

under the sensitivity/spectral noise level ε.
To obtain a mesh in Ω where all cells have

roughly the same impact on the measurements
we pack Ω with balls of the same sensitivity
and use their centers as seeds of a Voronoi
tessellation. We call the resulting meshes op-
timal. Two optimal meshes for ε = 0.02 and
for different electrode configurations are dis-
played on the right. The electrodes are indi-
cated by bold segments.

By a heuristic we have been able to extend the concept of optimal meshes to
general simply connected domains. Below you find such meshes for 16 electrodes
and a relative sensitivity ε = 0.02.

Conductivity reconstructions on optimal meshes using synthetic and measured
data are reported in [6].
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Time reversal and Cormack’s last paper

Victor Palamodov

1. Time reversal (in the spirit of M. Fink) [1]
Let H ⊂ Rn be an open set (called cavity) in such that ∂H ⊂ Z, where Z be a

hypersurface (called mirror).
An arbitrary function f supported by H is transmitted in a homogeneous

medium to the manifold R+ × Z, the result is filtered by an operator F acting
in R+ × Z, time reversed and retransmitted and detected as a function g. A re-
construction is given in the form Tf = pg for a known positive function p in H
depending only on the geometry.

2. Theorem. The reconstruction is exact that is Tf = f if p is an arbitrary
oscillatory polynomial and Z is the zero set of p with the density dZ = dx/dp and
H is the hyperbolic cavity of p. The filtration operator F is a universal second
order selfadjoint ”vertical” operator acting in R+ × Z [2],[3].

3. Oscillatory sets. Let p be a real polynomial in Rn of degree m with the zero
set Z. They are called oscillatory with respect to a cavity H ⊂ Rn\Z if p has m
simple zeros in L for almost any line L ⊂ R that meets H. Hyperbolic cavity of
an oscillatory set Z any maximal connected cavity. There is only one bounded
hyperbolic cavity, if Z is compact that is p is elliptic. Any hyperbolic cavity is
convex.

4. Examples. Any ellipsoid, elliptic paraboloid, elliptic and parabolic cylinder is
oscillatory with only one hyperbolic cavity. Two sheet hyperboloid is oscillatory
with two hyperbolic cavities. If P = P (t, x) is a homogeneous polynomial in
Rn+1 that is hyperbolic with respect to t in the sense of I. Petrovsky, then the
polynomial p (x) = P (1, x) is oscillatory in Rn. For arbitrary n,m ≥ 2 the set of
oscillatory polynomials of n variables of degree m depends on several descrete and
continual parameters.

5. Reconstruction from spherical means. This result is equivalent to some explicit
FBP formulas for reconstruction of a function supported in H from data of spherical
integrals for spheres with centers in Z [2],[3].

6. The last paper of Allan Cormack. Cormack proposed a method for determina-
tion of distribution of a scattered material by filtering the scattered light on travel
times. ”Suppose that waves travel in this space with a speed v and that the space
contains a distribution of scattering material with a density f which is assumed
to be smooth and either rapidly decreasing or of compact support... An impulsive
plane wave front with a normal ω reaches 0 at t = 0. As result of the well-
known focusing property of paraboloids the scattering waves arriving at 0 at time
t = 2p/v will all have originated on the paraboloid defined by r (1 + 〈ξ, ω〉) = 2p...”
The mathematical problem is to reconstruct a function in a space from data of inte-
grals over a family of confocal parabolas or confocal paraboloids. A reconstruction
for this acquisition geometry is given by an explicit FBP formula [2],[4].
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On artifacts in the limited data problem of spherical Radon Transform

Linh Nguyen

Let S be a smooth closed surface in Rn. We consider the following restricted
spherical Radon transform

R(f)(z, r) =

∫

S(z,r)

f(y) dσ(y), (z, r) ∈ S × R+.

Here, S(z, r) is the sphere of radius r centered at z. This transform appears in sev-
eral imaging modalities, such as thermo/photo-acoustic tomography, ultrasound
tomography, SONAR, and Inverse Elasticity.

The problem of inverting R has attracted intensive studies in the last decade.
A comprehensive reference list can be found in [4]. In this talk, we discuss the
microlocal analysis of a reconstruction formula with an emphasis on limited data
problem.

Let us assume that S is the boundary of a convex domain Ω. We consider the
following operators:

P (h)(r) =

∫

R

∞∫

0

ei (τ
2−r2)λ |λ|n−1 h(τ) dτ dλ.

and

B(g)(x) =
1

2 πn

∫

S

g(z, |z − x|) 〈z − x, νz〉 dσ(z).

Here, νz is the outward normal of S at z. Then, if f is supported inside Ω,

B P R(f)(x) = f(x) +K(f)(x), for all x ∈ Ω,

where K is a pseudo-differential operator of order −1 (see [3, 1, 2, 4]). Moreover,
K ≡ 0 if S is a sphere or an ellipse/ellipsoid (see [3, 1, 2]).

Let Γ be a proper subset of S with smooth boundary. Assume that we only
know R(f)(z, r) for z ∈ Γ. That is, we only have limited data. Up to now, there
is no closed form formula to find f from the limited data. In order to reconstruct
the visible singularities of f , the following formula has been proposed

T (f)(x) := BΓ P R(f)(x),



2100 Oberwolfach Report 37/2014

where

BΓ(h)(x) =
1

2 πn

∫

Γ

g(z, |z − x|) 〈z − x, νz〉 dσ(z).

Then, T (f) reconstructs all the visible singularities of f with the correct order.
However, it also creates artifacts by rotating each (so-called) boundary singularity
around the corresponding boundary point of Γ ⊂ S. These artifacts are 1

2 -order
smoother than the (original) boundary singularity. Detailed results can be found
in [5, 6].

Similar results for the case that Γ does not have smooth boundary can be found
in [5].
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PET imaging of freely moving mice via image registration

Frank Wübbeling

(joint work with Xiaoyi Jiang, Dirk Mannweiler, Julian Rasch, Klaus Schäfers,
and Sönke Schmid)

Positron Emission Tomography (PET) is an excellent tool for viewing the metab-
olism of a live organism. Basically, a radioactive tracer is injected which accumu-
lates for example at tumor cells. The emitted photons are detected, yielding the
information that a decay took place on a line of response. In the limit of number
of photons going to infinity, the Radon transform of the distribution function of
the tracer is measured on a grid, and standard Radon inversion techniques could
be used [7]. However, since radiation and acquisition time are limited, in practice
these measurements are heavily corrupted by Poisson noise, which is taken into
account by the selection of appropriate statistical reconstruction algorithms [10].

So acquisition time is a crucial parameter for image quality. It is easily around
15 minutes. Therefore, in small animal imaging e.g. mice are typically anaesthe-
tized before studies are done. This prevents the application of PET as a quanti-
tative method to analyze organ function that are affected by anesthesia (see eg.
[1]), in particular brain activity. Thus, PET imaging of conscious, preferably even
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freely moving, animals is highly desirable and currently being tried using dedicated
instruments, see e.g. [5], [9], [4].

We present an alternative that does not employ specialized scanners, and which
was tested with the QuadHIDAC wire chamber scanner. It is based on an algo-
rithmical, mathematical approach, and demonstrates the value of the integration
of image analysis tools into reconstuction algorithms. We give a purely techni-
cal description of what is done, the exact choices for mathematical modeling and
implementation can be found in the cited literature. The procedure is

(1) Take a normal PET scan of a freely moving mouse (it is in a cage).
(2) Determine the motion of the mouse during the scan.
(3) Perform a motion corrected, EM-based reconstruction.

For (1), an appropriate cage was built, equipped with four optical cameras
which are used for mouse localization and motion detection, employing feature
point algorithms. For the reconstruction part, the algorithms implemented in
EMrecon [3] were used.

Optical Tracking provides only surface information. Since for PET reconstruc-
tion we also need the interior motion, it has to be estimated, resulting in unsatis-
factory accuracy.

To deal with this, we propose to complement the video with additional infor-
mation delivered by volume preserving registration algorithms, like they are used
in human PET motion correction [2].

Observation of mice in the cage during the PET acquisition shows that in about
40 percent of the time, the mice are not moving at all. These static phases range
from around 5 to 30 seconds. In order to derive information about interior motion,
the following algorithm is applied.

(1) Using the video tapes, extract scenes without motion, meaning extract
scenes that change by less than a certain threshold in an appropriate norm.

(2) From the low–SNR data acquired in these short scenes, reconstruct pre-
liminary reconstructions. Note that due to the SNR, these will hardly be
quantitative. EMTV–type algorithms are used for this [8].

(3) Use image registration of the low quality images to derive motion of the
interior of the mouse, VAMPIRE [2] and FAIR [6] were employed.

(4) Use the motion information to reconstruct a quantitative image from all
data acquired [3].

As a conclusion, the algorithm generally delivers quantitative results provided
the mice are not running around too erratically. However, it turns out that the
brain, which is the actual target, is extremely difficult to image, so that here the
outcome is still unclear. Currently, the algorithm is in pre–clinical testing.
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A Nonlinear Variational Approach to Motion-Corrected

Reconstruction of Density Images

Sebastian Suhr

(joint work with Martin Burger, Jan Modersitzki)

Modelling and Analysis

In our setup, we will be concerned with reconstruction a sequence of probability
densities ρ0, . . . , ρN on Ω ⊂ Rd, typically d = 2, 3 such that

(1) ρk(x) = ρ0(yk(x))det(∇yk(x)),

with a reasonably smooth deformation field yk. The measurements fk are noisy
versions of K(ρk), with a stationary forward operator K, e.g. a convolution in
fluorescence microscopy or versions of the x-ray transform in PET and SPECT.

We are going to minimize a problem of the form

(2) J(ρ, y) =

N∑

k=0

(D(Kρk, fk) + αkRI(ρk) + βkRM (yk)) ,

subject to (1). Here D is the data fidelity between estimated and measured data,
and RI respectively RM are regularization functionals on the image respectively
motion (with nonnegative regularization parameters αk and βk).

Since we aim at reconstructing images with sharp edges we employ total varia-
tion regularization ([1]) on the image, while we choose hyperelastic regularization
([2]) for the motion field. In detail the hyperelastic energy is given by
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(3) Shyper(y) =

∫

Ω

α1 len(∇y) + α2 surf(cof(∇y)) + α3 vol(det(∇y))dx ,

with the penalty functions

len(s) = ‖s− I‖2Fro , surf(s) =
(
‖s‖2Fro − 3

)2
, vol(s) =

(s− 1)4

s2
.

The three terms punish deviations from the identity and in volume, length and
surface. Thus non local diffeomorphic transformations lead to infinite energies.
Unfortunately there are some non global injective transformations, which are lo-
cally injective everywhere.

We turn our focus on the analysis of the presented model. If we follow the direct
method in the calculus of variations, there are two properties of the functional to
be prooved:

• Coercivity
• Lower semi-comtinuity

While coercivity can be obtained from the chosen regularization functionals the
proof of lower semi-continuity is challenging. For weakly convergent sequences

ρk ⇀
∗ ρ in BV yk ⇀ y in H1

we need to proove at least weak convergence, i.e:

(4) ρk(yk) det(∇yk)⇀ ρ(y) det(∇y) in L1

For this we need a changes of variables, but unfortunately the transforamtion
theorem for integrals does not hold in general. Therefore we use a generalized
form, the area formula ([5])

(5)

∫

E

ρ(y) det(∇y)dx =

∫

Rn

ρ(x)Nf (x,E)dx

Ny is the Banach Indicatrix and defined by:

(6) Nf (x,E) := card({f−1(x) ∩ E})

The crucial question is whether we can control the Banach Indicatrix in L∞.
By using results from degree theory for Sobolev mappings ([4]) we can deduce
this from the boundary behaviour of the mapping: An orientation preserving H1

mapping is injevtive, iff it is injective on the boundary.
The question whether we can establish a bound of the following type

(7) ‖Ny‖∞ ≤ C(RM (y),Ω)

remains open.
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Numerical Aspects

Similar to [7] we choose an altermating minimization approach, to minimize a
discretized version of the functional. This leads to a two step algorithm:

(1) Reconstruction Step: Minimize with respect to ρ for fix y
(2) Motion Step: Minimize with respect to y for fix ρ

The first step leads to a minimization problem of the following type:

min
ρ0

∑

i

D(Kρ0(y(ti))|det(Dyi)|, fi) + αJ(ρ0)

ρ ≥ 0

This can be solved via reconstruction algorithms incorporating motion infor-
mation ([3], [1]).

The reconstruction step boils down to:

min
y

n−1∑

i=1

D(Kρ0(yi)|det(Dyi)|, fi) +
β

2

n−1∑

i=1

RM (yi)

(8)

As all summands are independent, we have to solve n−1 registration problems.
Although the distance measure is defined on the detector domain, this can be done
with standard registration algorithms like [6].

While the implementation of both steps is well understood, the challenge lies
in the enforcing of injective transformations. A simple way would be to choose
Dirichlet boundary conditions with y|∂Ω = Id, but this might be too restrictive.
Thus the question of a gereralized registration framework for injective transforma-
tions arises.
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On the V-line Radon transform and its applications in imaging

Gaik Ambartsoumian

(joint work with Rim Gouia-Zarrad, Sunghwan Moon)

Single scattering optical tomography uses light, transmitted and scattered through
an object, to determine the interior features of that object. If the object has mod-
erate optical thickness it is reasonable to assume that the majority of photons
scatter once. Using collimated emitters and receivers one can measure the in-
tensity of light scattered along various broken rays corresponding to the paths of
such photons. These measurements are then used to recover the spatially varying
coefficients of light absorption and/or light scattering. The latter task is mathe-
matically equivalent to the problem of inversion of a generalized Radon transform
integrating along V-shaped broken rays (see [2, 3, 5] and the references there).

Since the family of broken rays in 2D is 4-dimensional, the inversion problem
described above is overdetermined. Hence it is natural to consider the problem of
inversion from integrals of image function along a 2D subset of broken rays.

Definition 2. The V-line Radon transform (VRT) of function f(x, y) is the in-
tegral

(1) Rf(p1, p2) =

∫

BR(p1,p2)

f ds,

of f along the broken ray BR(p1, p2) with respect to line measure ds.

There are many ways to restrict the 4D family of broken-rays to a 2D subset.
Motivated by geometric setups of other tomographic modalities, convenience of
hardware implementation and symmetries simplifying the analysis, we consider
below the cases of VRT in circular and rectangular geometries of data acquisition.

The left figure above describes the circular setup of VRT, where A(φ) corre-
sponds to the location of the light source, the points Cj = C(φ, tj) correspond
to the locations of (an array of) receivers, and Bj = B(φ, tj) are the scattering
points, where tj is the distance from the breaking point to the origin. In the case
of a fixed scattering angle α ∈ (0, π/2) we have proved the following statement.
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Theorem 7. [1] If f(x, y) is a smooth function supported in the disc D(0, R),
then f is uniquely determined by Rf(φ, t), φ ∈ [0, 2π], t ∈ [0, R].

The proof of the theorem also provides an exact reconstruction formula of f
from Rf(φ, t) in this setup. Please see [1] for further details.

In the rectangular setup we consider broken rays with a fixed scattering angle
2β symmetric with respect to y-axis (see the right-hand side figure above). Such
rays can be uniquely parameterized by the Cartesian coordinates (xv, yv) of their
vertices. In this case we have proved the following inversion result.

Theorem 8. [4] Let f(x, y) be a smooth function supported in D = {(x, y) ∈ R2 |
0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax}. For (xv, yv) ∈ R2 and fixed β ∈ (0, π2 ) denote
g(xv, yv) = Rf(xv, yv). Then

f(x, y) = −
cosβ

2

[
∂

∂y
g(x, y) + tan2(β)

∫ ymax

y

∂2

∂x2
g(x, t) dt

]
.

A natural generalization of the rectangular setup to 3D leads to consideration of
the conical Radon transform (CRT). CRT integrates the image function of 3 vari-
ables over a 3D family of circular cones with fixed opening angle symmetric to the
z-axis. Parameterizing each cone by the coordinates of its vertex (xv, yv, zv) and
denoting the CRT g(xv, yv, zv) = Rf(xv, yv, zv), we prove the following statement.

Theorem 9. [4] An exact solution of the inversion problem for CRT is given by

f̂λ,µ(z) = C(β)

∫ z

zmax

J0 (u(z − x))

[
d2

dx2
+ u2

]2 ∫ x

zmax

ĝλ,µ(zv) dzv dx

where ĝλ,µ(zv) and f̂λ,µ(z) are the 2D Fourier transforms of the functions
g(xv, yv, zv) and f(x, y, z) with respect to the first two variables, C(β) =

cos2 β/(2π sinβ) and u = tanβ
√
λ2 + µ2.

The author thanks the organizers of the Oberwolfach workshop “Mathematics
and Algorithms in Tomography” for the invitation and opportunity to participate
in such a great conference. He also expresses gratitude to the Mathematisches
Forschungsinstitut Oberwolfach and US National Science Foundation for his travel
support as a US Junior Oberwolfach Fellow. Part of this work was funded by NSF
DMS-1109417 grant.
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Approximate marginalization of uninteresting unknowns in inverse

problems

Ville Kolehmainen

(joint work with Jari P. Kaipio, Antti Nissinen)

In the Bayesian inverse problems framework, all unknown parameters are treated
as random variables and all uncertainties can be modeled systematically. Recently,
the approximation error approach has been proposed for handling modeling errors
due to unknown nuisance parameters and model reduction [1, 2, 3]. In this ap-
proach, approximate marginalization of the modeling errors is carried out before
the estimation of the interesting variables. In this talk, we describe the approx-
imation error approach and present computational examples that are related to
local X-ray tomography imaging and electrical impedance tomography.
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Cone beam transverse ray transform

David Finch

(joint work with Patcharee Wongsason)

(Preliminary Report)

The object discussed in this talk is the transverse ray transform of a compactly
supported vector field in Euclidean geometry. For a vector field f , point a, and
direction θ, the transverse ray transform of f at a in direction θ, denoted T f(a, θ)
is given by

(1) T f(a, θ) =

∫ ∞

0

Pθf(a+ tθ) dt

where Pθ denotes orthogonal projection on the subspace perpendicular to θ. The
transverse ray transform is complementary to the more frequently studied longitu-
dinal or Doppler transform. The problem addressed is the recovery of a compactly
supported vector field in three dimensional Euclidean space, from the data of its
transverse ray transform for all points a lying in a space curve Γ and for all di-
rections. Our arguments follow closely the work of Katsevich and Schuster, as
presented at this workshop by Prof. Dr. Schuster. Under the assumption that f
is C2 supported in the unit ball, and that Γ is a Tuy curve of order three with



2108 Oberwolfach Report 37/2014

respect to the ball, we show that f may be recovered by an explicit formula. The
proof has three main steps. The first is to establish a Grangeat type formula,
similar to that found by Kazantsev and Schuster for the Doppler transform, which
relates the an operator applied to the tangential part of the Radon transform of f
(taken componentwise) evaluated at (a · θ, θ) ∈ R × S2 to an operator applied to
the transverse ray transform at a. Then, as for Katsevich and Schuster, combining
the results for the several sources lying on the plane containing a with normal θ
allows to solve for the derivative of the tangential part of the Radon transform.
This is the same intermediate data obtained by Katsevich and Schuster, so their
method gives a formula to recover the solenoidal part of f . If f is written as
f = ∇φ+ f s where φ has compact support in the ball and f s has zero divergence,
then T∇φ = D∇φ, where D is the usual divergent beam x-ray transform. Any
of the various reconstruction formulas for the cone beam transform may then be
employed to recover ∇φ. Details will appear in a manuscript in preparation.
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π-line reconstruction formulas in tomography: numerical analysis of

view dependent derivatives

Adel Faridani

(joint work with Ryan Hass)

Let

(1) Df(y, θ) =

∫ ∞

0

f(y + tθ) dt

denote the divergent beam transform. We are concerned with the numerical anal-
ysis of the view dependent derivative

(2)
∂

∂q
Df(y(q), θ)

∣∣∣∣
q=s

that occurs in so-called π-line inversion formulas for fan-beam and 3D helical
tomography [1, 3, 4, 5, 8, 12].
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For example, the derivative is present in the filtered-backprojection reconstruc-
tion formula

(3) f(x) =
1

2π2

∫

Iπ(x)

1

|x− y(s)|

∫ 2π

0

∂

∂q
Df(y(q), θ(s, x, γ))

∣∣∣∣
q=s

dγ

sin γ
ds

derived in [4], as well as in the backprojection-filtration formulas of [12]. It is
worth noting that even in the 2D case where very good algorithms are available,
algorithms based on (3) can offer advantages in some situations, for example when
the x-ray source comes very close to the object. Furthermore, in our numerical
experiments we found the convergence rate for smooth functions f to be the same
as for the standard filtered backprojection algorithm. However, careful implemen-
tation of the derivative (2) has been found to be critical to achieve competitive
performance of reconstruction algorithms. We present a detailed analysis for the
well-known 2D fan-beam case with curved detector array and circular source curve.
In this geometry one measures

g(s, α) = Df(y(s), θ(s, α))

where y(s) = R(cos s, sin s), θ(s, α) = sin(α)eu(s) + cos(α)ev(s), with eu(s) =
(− sin s, cos s), and ev(s) = −y(s)/|y(s)| = −(cos s, sin s). The view dependent
derivative can now be expressed in terms of the detector coordinates (s, α) and
reads

(4)
d

dq
Df(y(q), θ(s, α))

∣∣∣∣
q=s

=
∂g

∂s
(s, α) +

∂g

∂α
(s, α).

We determine the leading error terms for several discretization schemes for (2)
that have been proposed in the literature. Discretization schemes were generally
classified in two distinct groups, depending on wether they were derived directly
from (2) or from discretizing the right hand side of (4). For our analysis we use a
unified framework by expressing all schemes in the second, chain rule based format.
The detailed analysis can be found in our forthcoming paper [2]. Some of main
results are as follows. In practice the sampling stepsize ∆s is usually chosen much
larger than ∆α. This choice is supported by the 2D sampling conditions for the
divergent beam transform [7] and needs to be taken into account when discretizing
(2). Indeed, our analysis shows that this is the main reason why the so-called
direct scheme, a straightforward discretization of (2), does not give satisfactory
results. The NPH scheme derived in [9] improved on the direct scheme but was
later found to have non-isotropic resolution [11]. Our error analysis identifies
the responsible error term. The ingenious NHDLH scheme [10] remedied this
deficiency and set a new standard. Alternative and simpler improvements on the
NPH scheme were the FHS [1] and the K [6] schemes. Our determination of the
leading error terms for each scheme shows that the FHS scheme has the fewest
error terms which are shared by most of the other schemes, each of which also has
additional terms. Nevertheless, in our numerical experiments for this geometry
the FHS, NHDLH, and K scheme give very comparable results. This is also true
for numerical experiments for flat detectors and/or elliptical source curves as long
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as the detector array is aligned perpendicular to the source position y(s). On
the other hand, our experi ments confirmed the findings in [10] that the NHDLH
scheme gives clearly superior results in the particular case of an elliptical source
curve and detector array aligned parallel to d

dsy(s). The reason for this is subject
of our ongoing research.
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Quantum walks with discrete time

F. Alberto Grünbaum

I will describe similarities and differences between classical random walks and
quantum walks, their unitary counterparts. In particular they share a (properly
interpreted) version of the renewal equation, and yet the importance of interference
effects in the quantum case produces very strikingly different results. Some of
these have intriguing topological interpretations. This is part of joint work with
L.Velazquez, R. Werner, A. Werner, J. Bourgain and J. Wilkening. A couple of
joint papers have appeared in the last two years in CMP.

Reporter: Bernadette Hahn
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