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Introduction by the Organisers

The workshop Low-Dimensional Topology and Number Theory, organised by Paul
E. Gunnels (Amherst), Walter Neumann (New York), Don Zagier (Bonn) and
Adam S. Sikora (New York) was held August 17th – August 23rd, 2014. This
meeting was a part of a long-standing tradition of collaboration of researchers in
these areas. The preceding meeting under the same name took place in Oberwol-
fach two years ago. At the moment the topic of most active interaction between
topologists and number theorists are quantum invariants of 3-manifolds and their
asymptotics. This year’s meeting showed significant progress in the field. The
workshop was attended by many researchers from around the world, at different
stages of their careers – from graduate students to some of the most established
scientific leaders in their areas. The participants represented diverse backgrounds.
There were 24 talks ranging intertwined with informal discussions.
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Abstracts

Quantum Chern-Simons theory for SL(n,C)

Joergen Ellegaard Andersen

By applying geometric quantization w.r.t. a real polarization (depending on a
complex structure on the surface) of the SL(n,C) moduli space of flat connections
on a closed genus g surface we obtain in joint work with Niels Gammelgaard a
representation of the mapping class group Γ of the surface:

ρtSL(n,C) : Γ→ PAut(C∞(M,Lk))

where M is the moduli space of flat SU(n)-connections on the surface, L is the
SU(n) Chern-Simons line bundle on M and 2πk = Re(t).

In joint work with Rinat Kashaev we have extended these representations to the
Ptolemy groupoid and we have given a mathematical construction of the associated
TQFT by providing the explicit charged tetrahedral partition function in terms of
Faddeev’s quantum dilogarithm Ψb. In case the surface is the torus T 2 the formula
reads:

Tb : C
∞(T 2, Lk)⊗ C∞(T 2, Lk)→ C∞(T 2, Lk)⊗ C∞(T 2, Lk)

given by Tb =

Ψb(u1 − v1 + v2)Ψb̄(ū1 − v̄1 + v̄2)e
2πi(v1u2+v̄1ū2)

and Tb(a, c) =

e−πic2b(4(a−c)+1)/be4πicb(cu2−au1)e−4πicb̄(c̄ū2−āū1)Tbe
−4πicb(av2−cu2)e4πicb̄(āv̄2−c̄ū2)

where

u =
1

2πb
∇ ∂

∂v′
− ibu′

ū = ib̄u′

v̄ = − 1

2πb̄
∇ ∂

∂u′

− ib̄v′

v = ibv′

where (u′, v′) are log-coordinates on T 2 and ∇ is the connection in Lk with
curvature F∇ = −2πidu′dv′.
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Analytic properties of fiber knot invariants in Seifert spaces

Gaëtan Borot

(joint work with Bertrand Eynard)

1. Introduction

If G is a compact Lie group and R an irreducible representation of G, quantum
invariants V G

R (K) for knots K in S3 are usually defined as Laurent polynomials in
a variable q. Such a definition is not possible for knots in 3-manifolds M different
from S3. We focus on one of the approaches to bypass this impossibility. If M is a
rational homology 3-sphere, one can build the generating series of LMO invariants
of M [11, 2], which is a graph-valued formal series in ~. And, if K is a knot in M ,
we also have the Kontsevich integral of K, which is another graph-valued formal
series in ~, that generates finite type invariants of K. Then, the group G defines
a weight system that assigns ”values” to a graph, and we can end up defining the
free energy of a closed 3-manifold lnZG(M) ∈ ~−2Q[[~]], and invariants V G

R (K) ∈
~−|R|Q[[~]] for a knot K in M . When M = S3, the latter coincide with the ~→ 0
expansion of the quantum invariants V G

R (K) evaluated at q = e~/dG , where dG = 1
or 2 depending on the group G. Comparing to Witten’s approach to quantum
invariants, those formal series realize the perturbative expansion of Chern-Simons
theory in M around the trivial flat connection. We will call them perturbative
invariants.

There is a theory of large N = rank(G) transitions, which relates Chern-Simons
theory on M and topological strings on a target space depending on M . It is very
explicit at least for S3 (or lens spaces) : the string target space is the resolved
conifold (modified by a rational framing). From this perspective, one considers
the infinite series of Lie groups:

AN = SU(N + 1), BN = SO(2N + 1), CN = Sp(2N), DN = SO(2N)

and let N →∞ while u = N~ is kept fixed. Then, studying the weight system of
G, one can show that free energy of M can be decomposed as a formal series in ~:

(1) lnZG(M) =
∑

g

N2−2g Fg(M ;u)

with FG
g (M ;u) ∈ Q[[u]]. Here, g ∈ N for the A series, while g ∈ N/2 for the BCD

series. By a theorem of [10], for any rational homology sphere M , the so-called
genus g free energy FA

g (M ;u) has a non-zero radius of convergence independent
of g ∈ N. It is thus analytic in the neighborhood of u = 0, and one may wonder
where are the singularities in the u complex plane, and what is their nature.

For a knot K from the large N perspective, it is clever to arrange the perturba-
tive invariants differently. Firstly, we can extend the definition of V G

R by linearity
to any R in the representation ring of G. In particular, we can form the invariant

W
G

k [K;m1, . . . ,mk](u) for the virtual representation associated to the power sum
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pm1 · · · pmk
. Secondly, we introduce its connected parts WG

k [K;m1, . . . ,mk](u),
uniquely defined by the property:

(2) W
G

k [K;m1, . . . ,mk](u) =
∑

J partition of [1,k]

∏

i

WG
|Ji|

[K;mj, j ∈ Ji](u)

The collection of WG
ℓ [K][m1, . . . ,mℓ] for ℓ ≤ k and m1, . . . ,mℓ ≥ 0 contain the

same information as the collection of V G
R (K) for highest weight representations

with less than k rows. The advantage is that now, we have a decomposition:

(3) WG
k [K;m1, . . . ,mk](u) =

∑

g

N2−2g−kWG
g,k[K;m1, . . . ,mk](u)

whereWG
g,k[K;m1, . . . ,mk](u) ∈ Q[[u]], and the range of g depends on G as before.

We can also ask if it is possible to upgrade the definition of Wg,k’s from formal
series of u to analytic functions of u, and if their singularities in the u-complex
plane can be described. For knots in S3, we know that the genus g correlators are
entire functions of eu. For knots in other manifolds, one does expect singularities,
but very few is known so far. Our work bring some insight for simple knots in the
simplest manifolds which are not S3, namely fiber knots in Seifert spaces.

2. The matrix model for Seifert spaces

The Seifert spaces M we consider are S1-bundles over S2 with orbifold points
Za1 , . . . ,Zar

[13]. The orbifold Euler characteristics χ = 2 − r + ∑r
i=1 1/ai will

play an important role. The geometry also depends on another rational number,
denoted σ. There is a finite list of Seifert spaces with χ > 0, and they all appear as
quotients of S3 by a finite group of isometries. Up to central extension by a cyclic
group, these are the binary polyhedral groups, which have an ADE classification.
The most famous example, S3/E8, is the Poincaré integral homology sphere.

There are several ways to compute the LMO generating series of Seifert spaces
[1, 12, 3, 4], and they all yield:

(4) ZG(M) = CG(M)

∫

RN

∏

α>0

[
sh(α · t/2)

]2−r
r∏

i=1

sh(α · t/2ai)
N∏

j=1

e−Nσt2j/2udtj

The product ranges over all positive roots of the Lie algebra of G, and the Cartan
subalgebra has been identified with RN . We assume sign(uσ) > 0 so that the
integral converges, and CG(M) is a known constant. The invariants of the knot
Kai

along the exceptional fiber of order ai can be computed as an expectation
value with respect to the measure integrated in (4):

W
G

k [Kai
;m1, . . . ,mk](u) =

〈 k∏

j=1

Tr(etmj/ai)
〉
G

This is conveniently repackaged in the functions:

wG
k (x1, . . . , xk;u) =

〈 k∏

j=1

Tr
xj

xj − et/a
〉
G
, a = lcm(a1, . . . , ar)
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upon series expansion when xi → 0, and their corresponding connected parts
wk(x1, . . . , xk;u).

Our strategy is to study the largeN asymptotics of this model, considering u not
as a formal parameter, but as a fixed value. In the case χ > 0 and u small enough,
this model falls into the scope of the theory developed in [6], which establish
existence of an asymptotic expansion of the form (1) for the free energy, and
(3) for the correlators. Once this is guarantees, a general result of [5] shows that
WG

g,k[Kai
;m1, . . . ,mk](u) are computed by the topological recursion of Eynard and

Orantin [9], for any ai. This is a universal recursion on 2g−2+k, whose initial data
is wG

0,1 and wG
0,2, to which one should add wG

1/2,1 for the BCD series. This initial

data contain for instance the large N limit of the HOMFLY-PT and Kauffman
invariants of the knots Kai

. The main task of our work [7] is the computation of
this initial data, and I will describe now some of our results on wG

0,1(x;u), which
is called the spectral curve.

We find that wA
0,1(x; 2u) = wBCD

0,1 (x;u), and the function w(x) = wA
0,1(x;u)

is characterized by a scalar, non-local Riemann-Hilbert problem with boundary
conditions limx→0 w(x) = 0 and limx→∞ w(x) = 1. To find the solution, we need
to understand the monodromy group of w(x). It is in general infinite, but we can
cut it down and surprisingly, finite Weyl groups come on the stage.

Theorem 1. [7] Assume χ > 0. Set c = e−χu/2a and y(x) = −xeχu/a(w(x)−1/2).
There exists a non-zero (vj)j∈Za

such that Y (x) =
∏

j∈Za
yvj (e2iπj/ax) is an alge-

braic function, i.e. Pc(x, Y (x); c) = 0 for some polynomial Pc. It defines a curve
Σ, and there exists a finite Weyl group W acting on the sheets of the covering
x : Σ→ C. We denote d = degx Pc and d′ = degY Pc, and h = genus(Σ).

Seifert (a1, . . . , ar) d d′ h W

lens spaces (a1, a2) a a1 + a2 (a1 − 1)(a2 − 1) Aa1+a2−1

S3/Dp+2 (p even) (2, 2, p) 2p p+ 1 0 Ap

S3/Dp+2 (p odd) (2, 2, p) 4p 2(p+ 1) 2p+ 1 Dp+1

S3/E6 (2, 3, 3) 8 8 5 D4

S3/E7 (2, 3, 4) 36 27 46 E6

S3/E8 (2, 3, 5) 540 270 1471 E8

We can also describe explicitly the Newton polygon of Pc, and the coefficients
on the boundary of the Newton polygon, which are monomials in c. The inner
coefficients satisfy algebraic constraints in terms of c, and if these constraints were
independent – a property we have not been able to check, given their complexity –,
it would show P that depends on c algebraically. The fact that a always coincides
with the Coxeter number of W is quite mysterious. We can also show, for χ < 0,
that there does not exist v 6= 0 such that Y (x) is an algebraic function. We think
that the algebraicity of the spectral curve for χ > 0 is the sign for existence of a
nice dual geometry in topological strings, still to be identified.
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3. Analyticity of perturbative knot invariants

The initial data for lens spaces is well-understood [8, 5]. We could also obtain it
for the prismatic varieties (2, 2, p) with p even. In particular, the spectral curve is
rational and can be parametrized:

x(z) = z
zp − κ2
zpκ2 − 1

, y(z) = − (zp/2 − κ)(zp/2κ+ 1)

(zp/2 + κ)(zp/2κ− 1)
,

2κ1+1/p

1 + κ2
= e−u/4p2

with the choice of branch 0 < κ < 1 for u > 0. We deduce a complete description
of the analytic properties of the perturbative invariants of the fiber knots.

Theorem 2. [7] Assume p even. Let L = Q(κ)[κ2] where

κ2 =
√
(1 + κ−2)((p+ 1)− (p− 1)κ2)

All the A series, genus g perturbative invariants of the fiber knots K2 and Kp in
S3/Dp+2 belong to L.

For the BCD series, a similar result holds with u replaced by u/2 in the definition
of L. It would be interesting to find a geometric meaning L. We actually propose:

Conjecture 3.1. For any Seifert space with χ > 0, there exists a finite degree
extension L(M) of Q(eu), so that all A series genus g perturbative invariants of
fiber knots in M belong to L(M).
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Unramified Extensions of Imaginary Quadratic Fields

Nigel Boston

Throughout, K will denote an imaginary quadratic field and L/K an unramified
Galois extension, Galois over Q, and we denote Gal(L/K) by H and Gal(L/Q) by
G. We let the maximal unramified extension of K be Kur. We are interested in
which H arise, and how often, as K varies.

We begin with the case of H abelian. From Class Field Theory the maximal
unramified abelian extension ofK has Galois group Cl(K), the ideal class group of
K, and so its maximal subextension of p-power degree has Galois group the Sylow-
p subgroup, Clp(K). Cohen and Lenstra [5] conjectured that the proportion of K

with Clp(K) isomorphic to a given finite abelian p-group H (p odd) is 1/|Aut(H)|
Wp

where Wp =
∏
(1− p−n)−1.

Note that there are only finitely many K with Cl(K) of any given order, so
only finitely many with Cl(K) isomorphic to a given H . [9] notes that there are
93 K with class number 27, none of which have Cl3(K) ∼= (Z/3)3. Likewise, a
given finite group H arises as Gal(Kur/K) only finitely often. Secondly, the case
p = 2 is different but [7] conjectures that the 4-rank behaves similarly (proven
in [6]). Finally, the Cohen-Lenstra conjecture is equivalent to the tidy conjecture
that, for any given finite abelian p-group H , the expected number of unramified
H-extensions of K is 1.

As for more general H , we begin with p-groups. Let Kp,ur denote the maximal
unramified p-extension of K. For p odd, [2] conjectures that the proportion of K

with Gal(Kp,ur/K) isomorphic to H is 1/|Autσ(H)|
Wp

, for any finite Schur σ-group

H (meaning that d(H) = r(H) and H has an automorphism of order 2 acting by
inversion on its finite abelianization Hab [8]), where Autσ(H) is the centralizer of
σ in Aut(H). For a given finite p-group H , this is equivalent to saying that the
expected number of unramified H-extensions Galois over Q is 1 [4]. Without the
Galois assumption it is fa(H)(p

d(H)), where a(H) is a certain invariant of H and
fn the nth Rogers-Szëgo polynomial.

As for completely general H , since the inertia subgroups of G have order 1 or
2, intersect H trivially, and generate G (Minkowski), we see that H embeds with
index 2 in a group G generated by the involutions outside H . Equivalently, H has
an automorphism σ of order 2 such that H is generated by the elements inverted
by σ. We then say H has a GI-extension G.

The first thing to determine is which groups do not have a GI-extension. [3]
showed that exactly 2 groups of order 64 do not and also found infinitely many
such 2-groups. [1] proved that 2-generated 2-groups have at most 1 GI-extension.
Another source of groups with no GI-extension are Frobenius groups such as
F (q, d) := {x 7→ ax + b |a, b ∈ Fq, a

d = 1}, where Alberts proved that this has a
GI-extension if and only if there exists g such that pg ≡ −1 (mod d). All instances
of groups of order ≤ 100 with no GI-extension can be explained by extending this
result or by p-groups coming from [3] or not being Schur. [10] found Gal(Kur/K)
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for allK of discriminant ≥ −719 under GRH, allowing testing of natural heuristics
for how often H is a quotient of this Galois group.
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Topological Consequences of Actions of 3-manifold Groups on the
Reals

Steven Boyer

(joint work with Adam Clay)

The use of linear representations has long been a crucial ingredient in the study of
3-dimensional topology and geometry. More recently it has become apparent that
the existence of a representation of the fundamental group of a 3-manifold with
values in Homeo+(R) has strong topological consequences for the manifold1. This
talk discussed some of these consequences in the context of graph manifolds.

Three-manifold groups which admit non-trivial representations to Homeo+(R)
are left orderable, and conversely [BRW, Theorem 1.1]. Studying the existence of
such representations through left orders is helpful in various ways. For instance,
the topology defined by Sikora [Si] on the set of left orders is compact metric, which
can be exploited. Also, the non-left orderability of a finitely generated group can
be determined algorithmically, a fact which was used to produce the first examples
of hyperbolic 3-manifolds which do not support co-oriented taut foliations. See
[CD] (and compare with [RSS]).

Theorem 1. ([BC1]) Let W be a graph manifold. The following statements are
equivalent.

(1) There is a homomorphism ρ : π1(W )→ Homeo+(R) with non-trivial image.

1We assume that such representations are non-trivial in the sense that they have non-trivial
image.
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(2) π1(W ) is left orderable.
(3) W admits a co-oriented taut foliation.

Conjecture 1 of [BGW] contends that an irreducible rational homology 3-sphere
W is not an L-space if and only if its fundamental group is left orderable. Closed,
orientable 3-manifolds which admit smooth co-oriented taut foliations are not L-
spaces ([OSz, Theorem 1.4]) and Ozsváth and Szabó have asked whether the con-
verse is true. Recently Juhász conjectured that it is. See [Ju, Conjecture 5].

While it is unknown whether manifolds admitting topological co-oriented taut
foliations can be L-spaces, there is enough control in our constructions for us to
obtain the following consequence of the theorem above. (See [BC2, Theorem 1.1]
for a proof.)

Theorem 2. ([BC2]) If a graph manifold rational homology 3-sphere has a left
orderable fundamental group, then it is not an L-space.

A co-dimension 1 foliation in a graph manifold W is called horizontal if it is
transverse to the Seifert fibres in each piece of W . We can refine our results by
restricting attention to foliations of this type. Let sh(1) : R → R denote the
homeomorphism sh(1)(x) = x+ 1.

Theorem 3. ([BC1]) Let W be a graph manifold rational homology 3-sphere. The
following statements are equivalent.

(1) W admits a co-oriented horizontal foliation.
(2) π1(W ) admits a left order in which the class of any Seifert fibre in any piece

of W is cofinal.
(3) There is a homomorphism ρ : π1(W ) → Homeo+(R) such that the image

of the class of any Seifert fibre in any piece of W is conjugate in Homeo+(R) to
sh(±1).

Here is another refinement. Call a co-oriented taut foliation strongly rational
if up to isotopy it intersects each JSJ torus of W in a fibration by simple closed
curves. Up to arranging that the Seifert structures on pieces homeomorphic to
twisted I-bundles over the Klein bottle have orientable base orbifolds, a strongly
rational co-oriented taut foliation is necessarily horizontal. One interest in con-
sidering strongly rational co-oriented taut foliations is that graph manifolds which
admit them also admit smooth strongly rational co-oriented taut foliations.

It was shown in [BB] that a graph manifold integer homology 3-sphere admits a
strongly rational co-oriented taut foliation if and only if it is neither the 3-sphere
nor the Poincaré homology 3-sphere. For the general graph manifold rational
homology 3-sphere we have the following result.

Theorem 4. ([BC1]) Let W be a graph manifold rational homology 3-sphere. The
following statements are equivalent.

(1) W admits a strongly rational co-oriented taut foliation.
(2) π1(W ) admits a left order o in which the class of any Seifert fibre in any

piece of W is cofinal and there is an o-convex normal subgroup C of π1(W ) such
that C ∩ π1(T ) ∼= Z for each JSJ-torus T in W .
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(3) There is a homomorphism ρ : π1(W )→ Homeo+(R) such that the image of
the class of a ny Seifert fibre in any of W is conjugate in Homeo+(R) to sh(±1)
and ker(ρ|π1(T )) ∼= Z for each JSJ-torus T in W .

The strategy for establishing these theorems is based on two technical results,
a slope detection theorem and a gluing theorem. More precisely, it is possible to
define four different methods of detecting a family of slopes on the boundary of a
Seifert fibred manifoldM : using representations, using left orders, using foliations,
and using Heegaard-Floer homology. (It would also be possible to detect slopes in
a fifth way, via contact structures, but we do not consider this in [BC1].)

Let Nt be a Seifert fibred space with base orbifold a 2-disk and two singular
fibres with Seifert invariants (t, 1) and (t, t− 1). Thus N2 is the twisted I-bundle
over the Klein bottle.

Here is a special case of the slope detection theorem.

Theorem 5. ([BC1]) Let M be a Seifert manifold with base orbifold P (a1, . . . , an)
or Q(a1, . . . , an) where P is a punctured 2-sphere and Q is a punctured projective
plane. Let ∅ 6= ∂M = T1 ∪ . . . ∪ Tr be the decomposition of ∂M into its toral
boundary components. Let [αj ] be a slope on Tj and set [α∗] = ([α1], [α2], . . . , [αr]).
The following statements are equivalent.

(1) [α∗] is detected by some co-oriented taut foliation on M .
(2) [α∗] is detected by some left order on π1(M).
(3) If no [αj ] is vertical in a Seifert piece incident to Tj, [α∗] is detected by

some homomorphism ρ : π1(M)→ H̃omeo+(S
1).

(4) If [α∗] is rational, then there is an integer t ≥ 2 such that if W is any
manifold obtained by attaching r copies of Nt to M such that the rational longitude
of Nt is identified with [αj ] for each j, then W is not an L-space.

Next we have a special case of the gluing theorem.

Theorem 6. ([BC1]) Let W be a graph manifold rational homology 3-sphere
with JSJ pieces M1, . . . ,Mn. For each piece Mi and m-tuple of slopes [α∗] =
([α1], [α2], ...

. . . , [αm]), one for each of the JSJ tori, let [α
(i)
∗ ] be the sub-tuple of [α∗] corre-

sponding to the boundary components of Mi. Then,
(1) W admits a co-oriented taut foliation if and only if there is an m-tuple of

slopes [α∗] such that for each i, [α
(i)
∗ ] is detected by some co-oriented taut foliation

on Mi.
(2) π1(W ) is left orderable if and only if there is an m-tuple of slopes [α∗] such

that for each i, [α
(i)
∗ ] is detected by some left order on π1(Mi).

It is of great interest to prove an analogue of the gluing theorem in the context
of L-spaces.
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Negative curves on surfaces

Ted Chinburg

(joint work with Matthew Stover)

This talk was about curves on surfaces with negative self intersection, which we will
call negative curves. A well known problem concerning such curves is the bounded
negativity conjecture. This states that if X is a smooth projective surface over
C, then there is a lower bound for the self intersection of any reduced irreducible
curve on X .

For a survey of recent results related to the bounded negativity conjecture, see
[1] and [2]. For example, in [1] it was shown that one cannot find a counterex-
ample to the bounded negativity conjecture that involves only curves of bounded
arithmetic genus. Further, it was also shown in [1] that if X is a Shimura surface
uniformized by the product of upper half planes that is not a product of curves,
one cannot find a counterexample to the bounded negativity conjecture using only
totally geodesic curves. More recently, this was extended to all Shimura surfaces
in [5, 6]. It follows from [4, Ex. V.1.10] that the bounded negativity conjecture
does not hold over an algebraically closed field of positive characteristic.

The following more precise question was studied in [1]. Given integers m and
g, what is the size of the set CX(m, g) of curves C on X with arithmetic genus
g(C) = g for which C2 = m? In [1] it was shown that for all m < −1 and g ≥ 0,
there is a complex projective surface for which CX(m, g) is infinite. Question 4.3
of [1] asks if for each g > 1 there is always an X for which CX(−1, g) is infinite.

In this paper we consider upper bounds on the size of the set

C−X(g) =
⋃

m<0

CX(m, g)

of all negative curve of a given genus g, where X is a projective surface over an
arbitrary field k. Let b1(X) denote the first betti number of X , which equals the
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dimension of the ℓ-adic cohomology group H1
ét(X,Qℓ) for ℓ 6= char(k). If k is

the field of complex numbers, b1(X) is the dimension of Betti cohomology group
H1(X,C), b1(X)/2 equals the irregularity q(X) = h0,1(X) of X , and q(X) also
equals the dimensions of H1(X,OX) and H0(X,Ω1). Let N(X) be the Néron
Severi group of X , and let ρ̂(X) be the rank of N(X) modulo torsion, i.e., the
dimension of N(X)⊗ZQ as a vector space over Q. Note that ρ̂(X) ≤ ρ(X), where
ρ(X) is the Picard number. We prove the following.

Theorem 1. Let X be a smooth projective surface over a field k with first betti
number b1(X) and let ρ̂(X) = dimQ(N(X) ⊗Z Q). There is a universal constant
t > 1 such that the set ⋃

g<b1(X)/4

C−X(g)

of all irreducible negative curves on X of arithmetic genus less than b1(X)/4 has
order less than tρ̂(X)−1. In particular, this set is finite.

When k is an algebraically closed field of characteristic p > 0, this result is
optimal. Indeed, this is closely related to the failure of the bounded negativity
conjecture. Let X be the direct product C × C, where C is a smooth absolutely
irreducible curve of genus g defined over Fp, and let Dn be the graph of Fn : C →
C, where F is the Frobenius automorphism. ThenDn is a reduced irreducible curve
on X of arithmetic genus g, and [4, Ex. V.1.10] implies that D2

n → −∞ as n→∞.
Note that b1(X) = 4g. In particular, there are infinitely many distinct reduced
irreducible curves on X of genus g = b1(X)/4 with negative self-intersection. For
the examples in [1] with CX(m, g) infinite, g ≥ (b1(X)− 2)/2. We do not know if
our result is optimal in characteristic zero.

To prove Theorem 1, we show that sufficiently large collections of negative
curves on a surface must generate an effective ample divisorD with two irreducible
components. Here, the number two is clearly optimal. More precisely, we prove
the following.

Theorem 2. There is a universal constant t > 1 with the following property. Let
X be smooth projective surface over a field k, and let ρ̂(X) = dimQ(N(X)⊗Z Q).
Suppose F is a set of irreducible curves on X with negative self-intersection. If F
contains more than tρ̂(X)−1 elements, then there are two curves C1, C2 ∈ F such
that aC1 + bC2 is an ample divisor on X for some integers 0 < a, b ∈ Z.

This theorem is proved by restating the result as a packing problem concerning
N discs on the surface of the unit sphere in Rρ̂(X)−1. We then bound the N for
which this packing problem has a solution.

Theorem 1 is proved in the following way. For simplicity, we assume k has
characteristic 0. If Theorem 1 were false, Theorem 2 would imply that there are
two curves C1 and C2 on X of genus less than b1(X)/4 such that D = aC1 + bC2

is ample for some 0 < a, b ∈ Z. By a Lefschetz theorem (see [3]), the induced map
of étale fundamental groups

π1(|D|, x)→ π1(X, x)
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at some geometric point x ∈ D ∩ X has image of finite index in π1(X). This
implies that the natural morphism

Jac(C♯
1)⊕ Jac(C♯

2)→ Alb(X)

is surjective, where C♯
i is the normalization of Ci and Alb(X) is the Albanese

variety of X . Since

g(Ci) ≥ g(C♯
i ) = dim(Jac(C♯

i )),

this implies that

max(g(C1), g(C2)) ≥ dim(Alb(X))/2 = b1(X)/4,

which is a contradiction.
We should note that it was shown in [7] that if the set F in Theorem 2 has

more than ρ(X)2 + ρ(X) + 1 elements, then there is a nonnegative integral linear
combination of elements of elements of F that is ample. However, by the above
arguments, this leads to replacing the genus bound b1(X)/4 in Theorem 1 by the
weaker bound b1(X)/(ρ(X)2 + ρ(X) + 1). In particular, it is crucial for the proof
of Theorem 2 that we reduce the number of curves from F involved in an ample
divisor down to the minimum possible of two.
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Geometrically and diagrammatically maximal knots

Abhijit Champanerkar

(joint work with Ilya Kofman, Jessica Purcell)

In this paper, we prove the existence of families of hyperbolic knots and links that
are, as precisely defined below, geometrically and diagrammatically maximal.

Volume density. For a hyperbolic knot or link K, let vol(K) denote the hyper-
bolic volume of S3−K and c(K) denote its crossing number. We call vol(K)/c(K)
the volume density of K.

For any diagram of K, D. Thurston gave an upper bound for vol(K) by decom-
posing S3−K into octahedra, placing one octahedron at each crossing, and pulling
remaining vertices to ±∞. Any hyperbolic octahedron has volume bounded above
by the volume of the regular ideal octahedron, v8 ≈ 3.66386. Hence

(1)
vol(K)

c(K)
≤ v8.

Definition 1. A sequence of knots or links Kn with c(Kn)→∞ is geometrically
maximal if

lim
n→∞

vol(Kn)

c(Kn)
= v8.

Diagrammatic density. Similarly, for any non-split knot or link K, we call
2π log det(K)/c(K) its diagrammatic density. The following upper bound for the
diagrammatic density comes from Kenyon’s conjecture for planar graphs ([4]).

Conjecture 0.1. If K is any knot or link,

2π log det(K)

c(K)
≤ v8.

Definition 2. A sequence of knots or links Kn with c(Kn)→∞ is diagrammat-
ically maximal if

lim
n→∞

2π log det(Kn)

c(Kn)
= v8.

Infinite weave. Let the infinite weaveW be the infinite alternating link with the
square lattice projection. We obtain a hyperbolic structure on R3 −W by coning
the square lattice to ±∞, which gives a tessellation by ideal hyperbolic octahedra.
We obtain a complete hyperbolic structure by giving each of these ideal octahedra
the structure of a regular ideal octahedron. See Figure 1. Therefore, a natu-
ral place to look for geometrically maximal knots is among those with geometry
approaching R3 −W .

Definition 3. Let G(W ) be the infinite square lattice. For any finite subgraph H,
let ∂H be the set of vertices of H that share an edge with a vertex not in H. Let |H |
and |∂H | denote the number of vertices in the graph and in the set, respectively.
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Figure 1. Infinite weave W , associated circle packing and top
half of regular, ideal octahedron

An exhausting nested sequence of connected subgraphs, {Hn ⊂ G(W ) : Hn ⊂
Hn+1, ∪nHn = G}, is a Følner sequence for G(W ) if

lim
n→∞

|∂Hn|
|Hn|

= 0.

Finally, we say Hn is a regular Følner sequence for G(W ) if there is a sequence
of convex sets Sn in R2 such that Sn ⊂ Sn+1 and each Sn contains a ball of radius
Rn, with Rn →∞ as n→∞, and Hn = Sn ∩G(W ).

For any link diagram K, let G(K) denote the projection graph of the diagram.
We show two strikingly similar ways to obtain geometrically and diagrammatically
maximal links.

Theorem 1. Let Kn be a sequence of links with prime, alternating, twist-reduced
diagrams that contain no cycle of tangles, such that

(1) there are subgraphs Gn ⊂ G(Kn) that form a regular Følner sequence for
G(W ), and

(2) lim
n→∞

|Gn|/c(Kn) = 1.

Then Kn is geometrically maximal: lim
n→∞

vol(Kn)

c(Kn)
= v8.

Theorem 2. Let Kn be any sequence of alternating links such that

(1) there are subgraphs Gn ⊂ G(Kn) that form a Følner sequence for G(W ),
and

(2) lim
n→∞

|Gn|/c(Kn) = 1.

Then Kn is diagrammatically maximal: lim
n→∞

2π log det(Kn)

c(Kn)
= v8.

Ideas for the proof of Theorem 1 follow from unpublished results of Agol, (for
example, mentioned in [2]). Theorem 1 applies to more general families of links.

Special case. We provide an explicit example of a family of knots and links
satisfying the conditions of Theorems 1 and 2. A weaving knot W (p, q) is the
alternating knot or link with the same projection as the standard torus knot or
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Figure 2. W (5, 4) is the closure of this braid.

link T (p, q). For example see Figure 2. X.-S. Lin studied weaving knots to find
knots with largest volume for fixed crossing number.

Another main result of this paper is to give asymptotically sharp, explicit vol-
ume bounds for W (p, q) in terms of p and q alone. We use completely different
methods than the ones used in the proof of Theorem 1. Using angle structures,
we are also able to prove geometric convergence of the complements.

Theorem 3. (1) If p ≥ 3 and q > 6, then

v8 (p− 2)q

(
1− (2π)2

q2

)3/2

≤ vol(W (p, q)) ≤

(2) As p, q →∞, W (p, q) is geometrically maximal.
(3) As p, q →∞, S3 −W (p, q)→ R3 −W geometrically.

Questions and Conjectures. We highlight some questions and conjectures aris-
ing out of our investigations.

Question 1. Is any diagrammatically maximal sequence of knots geometrically
maximal, and vice versa?

Conjecture 0.2. For any alternating hyperbolic link K,

vol(K) < 2π log det(K).

Remark 1. Using SnapPy [1], we have verified Conjectures 0.1 and 0.2 for alter-
nating knots up to 16 crossings and for weaving knots W (p, q), for 3 ≤ p ≤ 50 and
2 ≤ q ≤ 50.

The proof of Theorem 1 uses the following main ingredients: (1) Guts of checker-
board surfaces to get volumes bounds in terms of right-angled polyhedra, (2) Circle
pattern rigidity to approach the circle pattern for the square grid, and (3) Volume
decay to control the asymptotics of the lower volume bound. Theorem 2 follows
from results on asymptotic enumeration of spanning trees for the square lattice.
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A Spectral Perspective on Neumann-Zagier: extended abstract

Tudor Dan Dimofte

(joint work with Roland van der Veen)

This talk is based on joint work with Roland van der Veen, which appeared in
a preliminary form in arxiv.org/abs/1403.5215. It is also heavily inspired by
work of Gaiotto, Moore, and Neitzke (GMN). Our main philosophy, adopted from
GMN, is that coordinates for the moduli space of PGL(K,C) flat connections
on a d-manifold M can be obtained from coordinates on the moduli space of
abelian GL(1,C) flat connections on a K-fold cover of M . Many deep properties
of coordinates on PGL(K,C) moduli spaces then trivialize when viewed in terms
of the cover. In the context of Higgs bundles on surfaces (closely related to flat
connections), such covers are called “spectral covers,” whence the title of the talk.

We applied the spectral cover philosophy to a famous old result of Neumann
and Zagier about the symplectic properties of Thurston’s gluing equations for hy-
perbolic 3-manifolds. These symplectic properties have been central to the quan-
tization of hyperbolic structures (more generally, flat PGL(2,C) or PGL(K,C)
connections) on 3-manifolds, among many other contexts. We wanted to find an
intuitive, topological proof of the symplectic properties, which would immediately
allow them to be generalized beyond the cusped hyperbolic manifolds that Neu-
mann and Zagier had considered.

Let us recall what the gluing equations look like. An ideal hyperbolic tetra-
hedron ∆ has a triple (z, z′, z′′) of shape parameters assigned to its edges, equal
on opposite edges, and satisfying zz′z′′ = −1 around each vertex (as well as
z + z′−1 − 1 = 0, which will not play a role here). Suppose that M = S3\K
is a knot complement with an ideal triangulation M = ∪Ni=1∆i. Topologically,
this means that M is tiled by truncated tetrahedra, in such a way that the small
triangles at truncated vertices come together to tile the torus boundary ∂M = T 2.
Thurston’s gluing equations take the form

(1)

ℓ2 = ±zAz′A′

=: ±∏N
i=1 z

Ai

i z′i
A′

i

m2= ±zBz′B′

cj = ±zCjz′C
′

j = 1 (j = 1, ..., N) ,

where zi, z
′
i, z

′′
i are the triples of shapes for each tetrahedron, ℓ2 andm2 are square-

eigenvalues of the hyperbolic or PGL(2,C) holonomy around the meridian and
longitude cycles of ∂M (expressed as products of shapes on the angles subtended
by a meridian or longitude path), and the cj are products of shapes around each
internal edge Ij of the triangulation, forced to equal one in order for the hyperbolic
structure to glue up consistently. Neumann and Zagier proved that the (N +2)×
(2N) matrix of exponents of the gluing equations has rank N + 1 and obeys

(2)



A A′

B B′

C C′




(
0 IN×N

−IN×N 0

)

A A′

B B′

C C′




T

=




0 2 02×N

−2 0
0N×2 0N×N


 .
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This “symplectic” property can be usefully rephrased in terms of moduli spaces.
The space of framed flat PGL(2,C) connections on the boundary of a tetrahedron
has the (local) form P∆ = {z, z′, z′′ ∈ C∗ | zz′z′′ = −1} ≃ C∗ × C∗, with Atiyah-
Bott symplectic form Ω∆ = d log z ∧ d log z′. The corresponding space of framed
flat PGL(2,C) connections on T 2 = ∂M has the form PT 2 = {ℓ2,m2} ≃ C∗×C∗,
with ΩT 2 = 1

2d log ℓ
2 ∧d logm2. Then the symplectic property implies that PT 2 is

a finite quotient of the symplectic quotient
(∏N

i=1 P∆i

)
//(C∗)N−1, where N − 1

independent cj are used as moment maps.
We re-prove (and generalize) the symplectic properties using double covers

of boundaries of 3-manifolds. For the torus T 2 = ∂M , we consider a triv-

ial, disconnected double cover ΣT 2
π→ T 2 (so ΣT 2 = T 2 ⊔ T 2). The homology

H1(ΣT 2 ,Z) = 〈α+, α−, β+, β−〉 is generated by lifts of the A- and B-cycles of T 2

to the two sheets of the cover. The odd homology (odd under deck transforma-
tions) is generated by α := α+ − α− and β := β+ − β−, with intersection form
〈α, β〉 = 2.

Dually, we may consider the moduli space Pab
T 2 of abelian GL(1,C) flat connec-

tions A on ΣT 2 that are also odd under deck transformations (meaning roughly
that the determinant of the push-forward connection π∗(A) is trivial). Coordi-
nates xλ on this space are given by computing abelian holonomies around cycles
λ ∈ H−

1 (ΣT 2 ,Z), and satisfy xλ+λ′ = xλxλ′ . Moreover, the Atiyah-Bott Poisson
bracket is just the intersection form, {xλ, xλ′} = 〈λ, λ′〉xλxλ′ . Thus, Pab

T 2 has ex-
actly the same form as the PGL(2,C) space PT 2 if we identify (ℓ2,m2) = (xα, xβ).

Similarly, for a tetrahedron, we consider a double cover Σ∆ → ∂∆ that is
branched over four points, one in the middle of each tetrahedron face. Topologi-
cally, ∂∆ ≃ S2 and Σ∆ ≃ T 2. The odd homology H−

1 (Σ∆,Z) = H1(Σ∆,Z) = Z2

is generated by three cycles γ, γ′, γ′′ with γ + γ′ + γ′′ = 0 and intersection form
〈γ, γ′〉 = 1. Roughly, the cycles label the edges of ∆. Correspondingly, the space of
abelian flat connections Pab

∆ = {xγ , xγ′ , xγ′′ |xγxγ′xγ′′ = 1} looks almost identical
to P∆, aside from a sign in the relation xγxγ′xγ′′ = 1. (This sign can be fixed by
considering certain twisted abelian flat connections instead.)

An elementary topological argument now shows that when gluing N tetrahedra
∆i to form a knot complement M , the odd homology groups of double covers of
the boundaries are related by a lattice symplectic quotient with respect to the
intersection form,

(3) H−
1 (ΣT 2 ,Z) ≃ H−

1 (⊔Ni=1Σ∆i
,Z)//G := ker〈G, ∗〉|H−

1 (⊔N
i=1Σ∆i

,Z)

/
G ,

where G is the subgroup of H−
1 (⊔Ni=1Σ∆i

,Z)//G generated by elements µj =∑N
i=1(Cjiγi + C′

jiγ
′
i), one for every internal edge of the triangulation, with C

and C′ as in (1). This implies that the abelian moduli spaces Pab
T 2 and

∏N
i=1 Pab

∆i

are also related by a holomorphic symplectic quotient, with respect to the Atiyah-
Bott symplectic structure. This sort of topological gluing argument extends easily
to prove symplectic properties of gluing equations for more general triangulated
manifolds.
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To tie everything together, we define (following GMN) a non-abelianization
map

(4) Φ :
Pab
T 2

∼−→ PT 2

Pab
∆

∼−→ P∆ ,

which is a symplectomorphism relating (algebraically open subsets of) spaces of
abelian flat connections on covers of boundaries and PGL(2,C) flat connections on
the boundaries themselves. The non-abelianization map involves pushing forward
an abelian flat connection, then including unipotent modifications to extend the
push-forward smoothly over branch points. (The map is also defined for bound-
aries of much more general triangulated manifolds.) The non-abelianization map
commutes with symplectic reduction, and lets us translate simple statements about
symplectic gluing of abelian connections on covers to statements about symplec-
tic gluing of PGL(2,C) flat connections on boundaries of the 3-manifolds we’re
interested in.

Topology versus geometry of hyperbolic 3-manifolds

Nathan Dunfield

(joint work with Jeff Brock)

By Mostow rigidity, the geometric properties of a hyperbolic 3-manifold are com-
pletely determined by its underlying topology. In this lecture, I will explore the
extent to which certain geometric and topological properties can be varied in-
dependently. The particular questions discussed are motivated by the work of
[BV, Le, ABBGNRS, BSV], and so have connections to deep conjectures concern-
ing torsion growth, behavior of Ray-Singer torsion in towers of covers, automorphic
forms, etc. A specific focus will be some very recent joint work with Jeff Brock
exploring the relationship between the Thurston and harmonic norms discovered
by Bergeron-Şengün-Venkatesh. Specifically, we’ve just shown:

Theorem (Brock-D. 2014) There exist closed hyperbolic 3-manifolds Mn with
b1 = 1 so that for all n:

(a) R1
Th

(
Mn

)
≥ C0 exp

(
C1Vol(Mn)

)
.

(b) inj(Mn) ≥ ǫ0 and Vol(Mn)→∞.
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State integrals, q-series and their evaluations

Stavros Garoufalidis

I will talk about three sources of q-series in quantum topology: (a) tails of col-
ored Jones polynomials of alternating knots (b) the 3D index of Dimofte-Gaiotto-
Gukov, proven to be a topological invariant of hyperbolic knots and (c) state
integrals whose integrand is the quantum dilogarithm of Faddeev.

The story starts with the tail
∞∑

n=0

(−1)n q
n(3n+1)/2

(q)3n

and its radial limits, guessed at fist by joint work with Zagier and now proven to
be related to the asymptotics of the Kashaev invariant of the 41 knot at roots of
unity. The state integral of 41 and its expressions in terms of q-series and q̃-series
gives a companion series G(q) to g(q), explains why the 3D index of 41 is G(q)
and explains the relation between the radial asymptotics of g(q) and the Kashaev
invariant of 41. The same holds for 52 and the (-2,3,7)-pretzel knot. This is joint
work with Rinat Kashaev and Don Zagier.

Quantum modular form from torus knots

Kazuhiro Hikami

(joint work with Jeremy Lovejoy)

Quantum modular form (QMF) was introduced by Zagier [12] as a function f :
Q→ C such that

hγ(x) := f(x)− χ(γ) (cτ + d)−kf

(
ax+ b

cx+ d

)
, γ ∈ Γ ⊂ SL(2;Z),

has “some nice property of continuity or analyticity”. A typical example of QMF
is the Kontsevich–Zagier series

(1) F (q) :=

∞∑

n=0

(q)n,

where (x)n := (x; q)n =
∏n

j=1(1 − xqj−1). A transformation formula was given

in [11] for φ(z) := e
πi
12 zF (e2πiz) and z ∈ Q

φ(z) +
1

(iz)
3
2

φ(−1/z) =
√
3i

2π

∫ i∞

0

η(w)

(w − z) 3
2

dw.

In [2] studied is a strongly unimodal sequence, 0 < a1 < a2 < · · · < ak >
ak+1 > ak+2 > · · · > as > 0. Let u(m,n) be the number of such sequences
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with a1 + · · · + as = n and s − 2k + 1 = m. A generating function U(x; q) :=∑
m,n u(m,n)x

mqn is identified with

U(x; q) =
∞∑

n=0

(−xq)n(−x−1q)nq
n+1 = q + q2 + (x+ 1 + x−1)q3 + · · ·(2)

This is a mixed mock modular form satisfying [2, 1]

ψ(z) +
1

(−iz) 3
2

ψ(−1/z) =
√
3i

2π

∫ i∞

0

η(w)

(w + z)
3
2

dw +
η(z)2

2
√
i

∫ i∞

0

η(w)3

(w + z)
1
2

dw

for ψ(z) := e−
πi
12 zU(−1; e2πiz) and z ∈ Q ∪H.

It was further shown [2] that for ζN = e
2πi
N

(3) F (ζ−1
N ) = U(−1; ζN ).

This identity can be seen from quantum topology as follows. Let JN (K; q) be the
N -colored Jones polynomial for knot K normalized to be JN (unknot; q) = 1. We
have nice q-hypergeometric expressions for some knots K in literature, e.g. [3, 8, 9]

JN (T(2,3); q) = q1−N
∞∑

n=0

q−nN (q1−N )n,

JN (T ∗
(2,3); q) =

∞∑

n=0

qn(q1−N )n(q
1+N )n,

where T(s,t) is torus knot, and K∗ denotes a mirror image of knot K. The
identity (3) follows immediately from the well known fact that JN (K∗; q) =
JN (K; q−1).

Our motivation is to study a generalization of (3). On the one hand, a general-
ization of the Kontsevich–Zagier series is studied in [5]. We define for 1 ≤ m ≤ t

(4) F
(m)
t (q) := qt

∞∑

k1,...,kt=0

(q)kt
qk

2
1 +···+k 2

t−1+km+···kt−1

t−1∏

j=1

[
kj+1 + δj,m−1

kj

]

q

.

This coincides with the N -colored Jones polynomial for torus knot,

F
(1)
t (ζN ) = JN (T(2,2t+1); ζN ),

and the following transformation formula [5, 6] proves the quantum modularity:

φ
(m)
t (z) +

1

(iz)
3
2

t∑

m′=1

2√
2t+ 1

(−1)t+1+m+m′

sin

(
2mm′

2t+ 1
π

)
φ
(m′)
t (−1/z)

=

√
(2t+ 1)i

2π

∫ i∞

0

Φ
(m)
t (w)

(w − z) 3
2

dw,
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where z ∈ Q and φ
(m)
t (z) := e

2πiz

(

−t+ (2t+1−2m)2

8(2t+1)

)

F
(m)
t (e2πiz). A weight-1/2 vec-

tor modular form Φ
(m)
t (τ) is

Φ
(m)
t (τ) := q

(2t+1−2m)2

4(4t+2) (qm, q2t+1−m, q2t+1; q2t+1)∞,

where (a1, a2, · · · ; q)∞ = (a1; q)∞(a2; q)∞ · · · . This corresponds to the Gordon–
Andrews q-series (the Rogers–Ramanujan q-series for t = 2).

To find a dual pair to the function F
(m)
t (q), we recall the Habiro cyclotomic

expansion of the colored Jones polynomial for knot K [4],

JN (K; q) =

∞∑

n=0

Cn(K; q) (q1+N )n (q1−N )n.

This expansion is regarded as the Bailey pair, and an inverse formula is

Cn(K; q) = −qn+1
n+1∑

ℓ=1

(1− qℓ)(1 − q2ℓ)
(q)n+1−ℓ(q)n+1+ℓ

(−1)ℓq 1
2 ℓ(ℓ−3) Jℓ(K; q).

By use of an explicit form of the colored Jones polynomial for T(2,2t+1) [10], we ob-
tain the Habiro expansion. Applying several identities of q-hypergeometric series,
we define [7]

(5) U
(m)
t (x; q) := q−t

∑

kt≥···≥k1≥0
kt≥1

(−xq)kt−1(−x−1q)kt−1q
kt

× qk 2
1 +···+k 2

t−1

t−1∏

j=1

(q1−j+
∑j

i=1(2ki+χ(m>i)))kj+1−kj

(q)kj+1−kj

,

which satisfies U
(1)
t (−qN ; q) = JN (T ∗

(2,2t+1); q). Here we mean χ(X) = 1 (resp. 0)

when X is true (resp. false).
One of our main results [7] is

(6) F
(m)
t (ζ −1

N ) = U
(m)
t (−1; ζN).

We do not have a transformation formula of U
(m)
t (−1; q) for |q| < 1 at this stage.

Although, we expect that U
(m)
t (−1; q) is a mixed mock modular form, as we have

a Hecke-type formula [7] such as

U
(m)
t (−1; q) = −q−t

∑

n≥1

q(t+1)n2 1 + qn

1− qn
n−1∑

k=−n

(−1)kq− 2t+1
2 k(k+1)+mk.
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Hyperbolic 3-manifolds of bounded volume and trace field degree

BoGwang Jeon

For a hyperbolic 3-manifold M , let ρ : π1(M) −→ SL2C be a faithful represen-
tation inducing the complete hyperbolic structure of M and Q

(
tr(π1M)

)
be the

trace field defined by

Q(trρ(r) : r ∈ π1(M)).

By Mostow rigidity, both Q
(
tr(π1M)

)
and the volume of M depend only on the

undelying topology of M , and these are widely researched topics in the study of
3-manifolds. So the following question is very natural.

Question 1. For a given number D > 0, are there only finitely many hyper-
bolic 3-manifolds whose volume and degree of its trace field are bounded by D?

For hyperbolic 3-manifolds of bounded volume, Jorgensen and Thurston showed
their structure can be greatly simplified as follows [1]:

Theorem 0.1. For any D > 0, there exists a finite set of non-compact manifolds
M1, ...,Mn such that all closed hyperbolic 3-manifolds of volume less than or equal
to D are obtained by hyperbolic Dehn surgery on some Mi.

Here Dehn filling is the topological action which attaches solid tori D2 × S1

to the boundary tori of ∂M . Now applying the Jorgensen-Thurston theorem, to
answer Question 1 it is enough to answer the following question.

Question 2. For an n-cusped manifold M and a constant D > 0, are there
finitely many Dehn fillings of M whose trace fields have degree ≤ D?
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It is commonly believed that the answer to both questions is yes and this was
proved for the 1-cusped case by Hodgson, but little was known for manifolds with
k ≥ 2 cusps in general. In this talk, we suggest a way to attack this question for
more cusped cases. For instance, the following is one of the main theorems of our
paper [3]:

Theorem 0.2. Suppose that the answer is yes to Question 2 for any s-cusped
manifolds where 1 ≤ s ≤ k − 1. Let X be the deformation variety of k-cusped
hyperbolic 3-manifold M . If X is simple, then the answer is yes to Question 2

for M .

To prove the theorem, we first employ the notion of height from number theory,
which is the standard way of measuring the complexity of algebraic numbers, and
define it for each Dehn filling of M . Specifically, we define it as the trace value
of the core geodesic of a Dehn filling. It is a fundamental theorem in number
theory that there are only finitely many algebraic numbers of bounded height and
degree. Hence, in terms of height instead of degree, to get the affirmative answer
to Question 2, it is enough to answer the following stronger question:

Question 3. For a k-cusped manifold M , is there a constant D > 0 such that,
for any Dehn filling of M , its height is uniformly bounded by D?

According to Thurston’s hyperbolic Dehn filling theory, each Dehn filled mani-
fold of M corresponds to a point on the deformation variety (of hyperbolic struc-
tures on M) satisfying certain additional conditions regarding to its Dehn filling
coefficients. (Let’s call this a “Dehn filling point”) By using the appropriate ver-
sion of the deformation variety (precisely, the one having the holonomies of the
longitude-meridian pairs as parameters), these conditions can be represented by
a set of multiple equations defining an algebraic subgroup. So a Dehn filling
point on the deformation variety becomes an intersection point between the defor-
mation variety and an algebraic subgroup. Furthermore, using some elementary
properties of height, it can be shown that if the height of a Dehn filling point
is bounded, then the height of the corresponding Dehn filled manifold is also
bounded. Thus, to answer Question 3, it is sufficient to prove the heights of
intersection points (i.e. Dehn filling points) between the given algebraic varieties
are uniformly bounded. As a result, the original problem in hyperbolic geometry
is transformed into a problem in arithmetic geometry.

The height distribution of points on an algebraic variety is widely studied topic
in arithmetic geometry and there are various theorems regarding to this theme.
Among them, we use the one which is so called the Bounded Height Conjecture,
originally formulated by E. Bombieri, D. Masser, U. Zannier, and proved by P.
Habegger in [2].

Theorem 0.3. (Bounded Height Conjecture=Habegger’s theorem) Let X ⊂ (Q
∗
)n

be an irreducible variety over Q. Then there is a Zariski open subset Xoa of X,
which is the complement of the union of anomalous subvarieties of X, so that the
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height is bounded in the intersection of Xoa with the union of algebraic subgroups
of dimension ≤ n− dim X.

In fact, Habegger’s theorem already tells us a lot about the uniform boundedness
of heights of most Dehn filling points unless Xoa 6= ∅. In Theorem 0.2, the
holonomy variety X being “simple” is an ideal assumption on X so that each
subvariety X , (X\Xoa) and (X\Xoa)

∖
(X\Xoa)oa (and so on) contains only a

finite number of anomalous subvarieties. As a result, we prove the conjecture by
applying Habegger’s theorem repeatedly, a finite number of times, to each of them
and their anomalous subvarieties.

Although the holonomy variety being “simple” is defined from a purely algebro-
geometrical (or number-theoretical) viewpoint, interestingly enough, it turns out
that this definition gives a very nice structure from the hyperbolic geometric side
as well, as the following theorem shows:

Theorem 0.4. [3] Let M be a 2-cusped hyperbolic 3-manifold with rationally in-
dependent cusp shapes. If the deformation variety of X is not simple, then the two
cusps of M are strongly geometrically isolated.

If a hyperbolic 3-manifoldM has strongly geometrically isolated cusps, then its
deformation variety X is always non-simple so there’s no obvious way to get the
desired result from Habegger’s theorem. However, in this case, it is known that
its structure appears as a product of two less cusped manifolds, so we still get
uniform boundedness of the heights of Dehn filling points by the induction step.
As a consequence, combining with Theorem 0.2, when a 2-cusped manifold has
rationally independent cusp shapes, then whether its deformation variety is simple
or not, the height of each Dehn filling is uniformly bounded.

For the higher cusped cases in general, the non-simple phenomenon is poorly
understood, but we think Theorem 0.4 can be further extended, so we formulate
it as a conjecture:

Conjecture 1. Let X be a k-cusped hyperbolic 3-manifold. If the deformation va-
riety of X is not simple, thenM has a set of cusps which are strongly geometrically
isolated from the rest.

This conjecture, together with Theorem 0.2, suggest the following seemingly
plausible conjecture, which is the affirmative answer to Question 3:

Conjecture 2. (Bounded Height Conjecture in Hyperbolic 3-manifolds) Let M
be a k-cusped hyperbolic 3-manifold. Then the height of any Dehn filling of M is
uniformly bounded.

Even though we only deal with manifolds under certain restrictions, it is strongly
believed that the above conjecture is true and this approach will eventually give
us the complete positive answer to Question 1.

Remark. Recently, we announced a proof of Conjecture 1 in [4]
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Calculations in Teichmüller TQFT

Rinat Kashaev

(joint work with Joergen Ellegaard Andersen)

During the last 3 years I and J.E. Andersen formulated a TQFT model based on
the quantum Teichmüller theory [1, 2]. The model is based on a special function
called Faddeev’s quantum dilogarithm defined by the formula

Φb(x) = exp

(
1

4

∫

C

e−2ixz

sinh(zb) sinh(zb−1)

dz

z

)

Where the contour C is given by C = R+ iǫ. The function is extended to the
complex plane by analytic continuation.

The geometric input is given by a triangulated 3-manifold where each tetrahe-
dron is provided by the structure of an ideal hyperbolic tetrahedron so that we
have a 3-manifold with conical singularities along some of the edges of the trian-
gulation along which the total dihedral angle is different from 2π. By calculations
in particular simple examples we conjecture that the partition function of our
model decays exponentially, the decay rate being given by the hyperbolic volume
of the corresponding (underlying) 3-manifold with conical singularities. Namely
the formula reads as follows:

|Zb(X)| ∼ e−vol(X)/2πb2 b→ 0
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Commensurability of hyperbolic Coxeter groups

Ruth Kellerhals

(joint work with Rafael Guglielmetti, Matthieu Jacquemet)

This work deals with the determination of the wide commensurability classes of a
certain large family P of discrete groups of isometries of n-dimensional hyperbolic
space Hn. For n > 2 this family consists of all hyperbolic Coxeter n-pyramid
groups of finite covolume. It is a finite set as shown by Tumarkin [11], [12] who
listed them in 2004. For the basic notions of geometric Coxeter group theory,
including Coxeter graphs, combinatorics, criteria for finite covolume (cofiniteness)
and arithmeticity, we refer to Vinberg’s seminal work as summarised in [14] and
[15].

In the sequel we abbreviate the terminology and shall use the term commensu-
rable for two groups Γ1,Γ2 ⊂ Isom(Hn) if there exists an element γ ∈ Isom(Hn)
such that the intersection Γ1 ∩ γΓ2γ

−1 is of finite index in both Γ1 and γΓ2γ
−1.

In particular, any subgroup of finite index is commensurable to its supergroup.
Furthermore, commensurability is an equivalence relation preserving properties
such as cocompactness, cofiniteness and arithmeticity.

For n = 2 and n = 3, any discrete subgroup Γ ⊂ PSL2(k) of orientation preserv-
ing hyperbolic isometries, where k = R or k = C, gives rise to a subalgebra of the
matrix group M2(k), and is in fact a quaternion algebra. For arithmetic subgroups
Γ ⊂ PSL2(k), these quaternion algebras are defined over number fields, and their
classification up to commensurability corresponds to the classification up to iso-
morphism of the quaternion algebras (see also [13]). In this way, Takeuchi [10] clas-
sified the arithmetic triangle groups while Maclachlan and Reid [7] determined the
commensurability classes of all cocompact arithmetic Coxeter tetrahedral groups.

In [4] and [5], together with Johnson, Ratcliffe and Tschantz, we determined
all subgroup relations and covolumes of hyperbolic Coxeter n-simplex groups and
classified them up to commensurability. These are groups generated by the reflec-
tions in the hyperplanes bounding hyperbolic n-simplices whose dihedral angles
are all of the form π/m for an integer m ≥ 2 and which are of finite volume.
When assuming n > 2, this family comprises finitely many examples, including
some non-arithmetic ones. Notice that they exist in Isom(Hn) for n ≤ 9, only.

Let us return to the class P of Tumarkin’s hyperbolic Coxeter n-pyramid groups
of finite covolume. They are generated by n + 2 reflections in the hyperplanes
bounding an n-dimensional Coxeter pyramid with an apex on the boundary ∂Hn

at infinity whose horospherical neighborhood is a product of two simplices, each
of dimension ≥ 2. A nice combinatorial-metrical feature of such a pyramid is that
it relates to a hyperbolic truncated Coxeter simplex (for more details, see [3]).
Observe that there is no classification of hyperbolic Coxeter groups with more
than n+2 generators which are not cocompact but of finite volume. By Vinberg’s
arithmeticity criterion, one checks easily that there are non-arithmetic elements
in P . For example, the group Γ4 ⊂ Isom(H10) described by the Coxeter graph
in Figure 1 is the top-dimensional non-arithmetic group in P . Observe that the
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group Γ3 ⊂ Isom(H10) given by the same graph after replacement of the edge with
weight 4 by an edge without weight (or equivalently by an edge with weight 3) is
an arithmetic element in P .

The classification results of Tumarkin show that P contains groups acting on
Hn for n ≤ 17, only.

s s s
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s
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∞

4

�
�

Figure 1. The non-arithmetic Coxeter pyramid group acting on H10

In fact, the group Γ∗ given by the Coxeter graph in Figure 2 is the (single)
top-dimensional group in P . The orientation preserving subgroup Γ′

∗ of Γ∗ is
distinguished by the amazing fact that the quotient space Hn/Γ′

∗ built upon the
17-dimensional pyramid P∗ has minimal volume among ALL orientable arithmetic
hyperbolic n-orbifolds, and that it is as such unique. This result is due to Emery
[1] who computed the minimal volume according to

vol17(H
n/Γ′

∗) = vol17(P∗) =
691 · 2617

238 · 310 · 54 · 72 · 11 · 13 · 17 ζ(9)
by a clever exploitation of Prasad’s volume formula and other sophisticated tools.
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Figure 2. The single Coxeter pyramid group Γ∗ acting on H17

Let us return to and discuss the commensurability classification of elements
in P . For the large subset of arithmetic groups in P , we exploit the results of
Maclachlan [7] about commensurability of discrete arithmetic hyperbolic groups
in the special case of Coxeter groups in P . The results in [7] show that the com-
mensurability classes in P are in one-to-one correspondence with the isomorphism
classes of quaternion algebras over certain number fields. We determined explicitly
the classes and identified representatives in terms of certain hyperbolic Coxeter
simplex groups whenever possible. Some representatives are related to Mcleod’s
Coxeter groups which appear as a subgroup of the automorphism group of the
Lorentzian lattice −3x20 + x21 + · · · + x2n for certain n. All their covolumes were
determined by Ratcliffe and Tschantz [9]. Therefore, by exploiting the volume
results in [4] and [9], we can proceed in order to list the volumes of all arithmetic
Coxeter pyramids and to find all subgroup relations.

In the case of the non-arithmetic elements in P which show up mainly in low
dimensions, different ad hoc methods such as scissors congruences, glueings in the
spirit of Gromov-Piatetski Shapiro [2] for groups such as Γl for l = 2, 3, 4, volume
computations based on Schläfli’s volume differential and ratio tests, are involved.
This part of the work is also much inspired by [5].
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From isolated codes to isolated 3-manifolds

Matthias Kreck

1. Isolated codes

Codes mean linear error correcting codes over a finite field Fq, i.e. linear sub-
spaces C of Fn

q . There are two fundamental invariants attached to codes, the
dimension d(C) and the minimal distance ∆(C), which is the minimal distance for
the Hamming metric between two different elements of C. From these one obtains
by dividing by n two rational numbers

R(C) :=
d(C)

n
and

δ(C) :=
∆(C)

n
.

They are a measure for the quality of C, one wants both to be large, since ∆(C) ≥
2k + 1 implies that one can correct k errors, and d(C) large allows to send many
different messages.
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Manin in the eighties (for a actual account see [M-M]) has studied the subset Pq

of the unit cube [0, 1]× [0, 1] given by the pairs (δ(C), R(C)) coming from linear
codes over Fq. He proved the following remarkable result:

Theorem 1. There is a continuous decreasing function

αq : [0, 1] −→ [0, 1]

such that all points below the graph are accumulation points of Pq and all points
above are isolated points.

He calls codes above αq isolated codes.

2. From manifolds to codes

V. Puppe [P] has attached to a closed manifold M with involution τ with isolated
fixed points an self dual code C(M, τ) over F2. Here self dual means that with
respect to standard bilinear form on Fn

2 this form vanishes identically on C and
dimC = n/2. Self dual codes are closely related to arithmetic since there is an
attached unimodular lattice L(C) in Rn, and these lattices are not understood.

There is an obvious generalization to periodic maps ρ of order a prime p and
not necessarily self dual codes over Fp. One actually obtains a family Ck(M,ρ) of
codes. Let F0 be the set of isolated fixed points.

C(M,ρ) := image(i∗ : Hk
Z/p(M ;Fp) −→ Hk

Z/p(F0;Fp)).

Here i is the inclusion. To interpret this as a code one has to identify Hk
Z/p(pt;Fp)

with F p. We do this by choosing the generator in H1 given by the dual of the
standard generator of π1 and the generators in Hk by the powers of this, for p = 2
and the generators obtained by applying the Bockstein and powers.

3. Isolated manifolds

Although the following definition looks a bit ad hoc, the context above somehow
suggests it.

Definition. A closed smooth manifold is called isolated if for some p it has a
Z/p action ρ such that

C(M,ρ)

is isolated.

This definition is interesting in the light of a ”conjecture” which says that a
manifold ”picked at random” is asymmetric which means has no effective action
of a compact Lie group. Thus typically a manifold should be asymmetric and so
not isolated.
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4. Codes from manifolds and existence of isolated manifolds

In [K-P] we proved that all self dual codes are realized by an involution on a closed
3-manifold. The methods of the proof allow the following generalization:

Theorem 2. Let C be a linear code over Fp. Then there is a closed smooth
4-manifold M with Z/p-action ρ such that

C1(M,ρ) = C

if and only if the diagonal element (1, ..., 1) is contained in C.

Using this one can show that most of the isolated codes come from smooth
manifolds, which by definition then are isolated. Examples of isolated manifolds
include the obvious candidates: Spheres, projective spaces, all surfaces, the 3-
torus, the K3-surface. But the question which manifolds are isolated is of course
widely open.
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On Kauffman Bracket Skein Modules at Root of Unity

Thang Lê

1. Definitions

1.1. Skein modules. Suppose M is an oriented compact 3-manifold. The Kauff-
man bracket skein module (J. Przytycki, V. Turaev) of M is defined by

S(M) = C[t±1]− span of framed unoriented links in M/relations (1) & (2).

Here

L = tL+ + t−1L−(1)

L ⊔ U = −(t2 + t−2)L,(2)

where in (1), the links L, l+, L− are identical everywhere except in a small balls
where they look like in Figure 1, and in (2) L ⊔ U means the union of a framed
link L and a trivial knot U which lies in a 3-ball disjoint from L.

By convention, the empty set is also considered a framed link.
For 0 6= ξ ∈ C, define

Sξ(M) := S(M)/(t− ξ).
Suppose Σ is an oriented compact surface, possibly with boundary. Define

S(Σ) := S(Σ× [−1, 1]).
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Figure 1. The links L, L+, and L− in (1).

Then S(Σ) has a C[t±1]-algebra structure, where the product is given by:

L1L2 = L1 on top of L2,

for framed links L1, L2 in S(Σ× [−1, 1].
It might happen that Σ1 × [−1, 1] ∼= Σ2 ⊗ [−1, 1] with Σ1 6∼= Σ2. In that case,

S(Σ1) and S(Σ2) are the same as C[t±1]-modules, but the algebra structures may
be different.

A non-trivial simple closed curve K ⊂ Σ = Σ × 0 ⊂ Σ × [−1, 1] is considered
as a framed knot in Σ× [−1, 1], where the framing at every point is given by the
vector colinear with [−1, 1].

If p(z) ∈ C[z] and K ⊂ Σ is a simple closed curve, one can define p(K) by
applying the polynomial p to the element K of the algebra S(Σ).
1.2. Chebyshev polynomial. Let TN(z) ∈ C[z] be the Chebyshev polynomials
of type 1 defined recursively by

T0(z) = 2, T1(z) = 1, Tn(z) = zTn−1(z)− Tn−2(z), ∀n ≥ 2.

2. Central elements

Definition 1. A polynomial p(z) ∈ C[z] is central at ξ ∈ C× if for any oriented
surface Σ and any knot K in Σ, p(K) is central in the algebra Sξ(Σ).
Theorem 1 (T. Lê [Le1]). A non-constant polynomial p(z) ∈ C[z] is central at
ξ ∈ C× if and only if ξ is a root of unity and p(z) ∈ C[TN (z)], i.e. p is a C-
polynomial in TN(z), where N is the order of ξ2.

This is an extension of a result of Bonahon and Wong [BW], which says if ξ
is root of unity of order 2N , then TN(z) is central. Bonahon and Wong’s proof
used representation theory of quantum Teichmüller spaces (Chekhov-Goncharov,
Kashaev), although the formulation of the theorem does not involve quantum
Teichmüller spaces. Our proof uses only elementary skein techniques.

3. Positive basis

Now we assume that the ground ring is R = Z[t±1] (instead of C[t±1]). It is known
that S(Σ) is a free Z[t±1]-module with basis the set of all links in Σ without trivial
components, including the empty link, see [PS].

One can group components of links which are parallel and get the following
parametrization of the above mentioned basis.
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An integer lamination of Σ is an unordered collection µ = {(ai, Ci)}ki=1, where

• each ai ∈ Z>0.
• each Ci is an essential simple closed curve
• no two Ci intersect, no two Ci are parallel.

Define

b(µ) =
k∏

i=1

Cai

i .

Then {b(µ) | µ integer laminations} is a Z[t±1]-basis of S(Σ).
Suppose P = {pi}∞i=0, where pi ∈ Z[z] with leading term zi. Define

bP(µ) =

k∏

i=1

pai
(Ci).

Then bP = {bP(µ) | µ integer laminations} is a R-basis of S(Σ).
Let T = {Ti}∞i=0, the collection of Chebyshev polynomials.

Theorem 2 (D.Thurston [Th]). bT is a positive basis of the algebra S1(Σ).
Here for a Z-algebra A a Z-module basis {e(i) | i ∈ I} is a positive basis if

eiej =
∑

k∈I

ckij e(k),

with the structure constants ckij ∈ Z≥0. For general t, Thurston gave the following
conjecture.

Conjecture 3.1. bT is a positive basis for S(Σ). (The structure constants are
polynomials in t, t−1 with non-negative coefficients.)

We have the following result which complements Thurston’s one and support
the above conjecture.

Theorem 3 (T. Lê [Le2]). (a) Suppose bP , with P = {pi}∞i=0, is a positive basis
for S1(Σ), then each pi is a Z≥0-linear combination of Tn(z).

(b) Suppose bP , with P = {pi}∞i=0, is a positive basis for S(Σ), then each pi is
a Z≥0[t

±1]-linear combination of Tn(z).
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The twisted L2-torsion function and its application to 3-manifolds

Wolfgang Lück

The talk is about an ongoing project joint with Stefan Friedl.
Let G be a group, G → X → X be a G-covering over a finite CW -complex

X and φ : G → Z be a group homomorphism. If G is residually finite and X is

L2-acyclic, i.e., all L2-Betti numbers b
(2)
n (X,N (G)) vanish, we can assign to it a

function
ρ(2)(X,N (G);φ) : (0,∞)→ R

which is essentially the L2-torsion of X twisted with the 1-dimensional real rep-
resentation R on which g ∈ G acts by multiplication with tφ(g). (Actually this
function is only well-defined up to adding k · ln(t) for some k ∈ Z). If G =

π1(X) and X is the universal covering X̃, then we abbreviate ρ(2)(X̃;φ) :=

ρ(2)(X̃,N (π1(X));φ). See [5, 4, 3]. For basics about L2-invariants we refer to [7].
We present some basic properties such as homotopy invariance, sum formula,

product formula or more generally a formula for fibrations with L2-acyclic fiber,
passage to finite covering, scaling φ, Poincaré duality, and compute it for S1-spaces
with appropriate S1-action and mapping tori Tf for φ the canonicial homomor-
phism π1(Tf )→ π1(S

1) = Z.
Then we pass to 3-manifolds and compute it for graphmanifolds and 3-manifolds

which fiber over S1. We show that for a knotK ⊆ S3 with knot complementX(K)

and φ ∈ H1(X(K);Z) ∼= Z a generator that ρ(2)(X̃(K), φ) detects the trivial knot,
see [1, 8].

A function ρ is asymptotically monomial if for some constants C0 and C∞ the
limits limt→0

(
ρ(t)− C0 · ln(t)

)
and limt→∞

(
ρ(t)− C∞ · ln(t)

)
exists. In this case

we define the degree deg(ρ) to be C∞−C0. Denote by xM (φ) the Thurston norm
of φ ∈ H1(X ;Z).

Our main the theorem is

Theorem 1. Let M be a compact connected orientable irreducible 3-manifold
with infinite fundamental group π and empty or incompressible torus boundary.
Consider φ ∈ H1(X ;Z). Then

deg
(
ρ(2)(M̃ ;φ)

)
= −xM (φ).

We can actually generalize it to other coverings than the universal covering.

Theorem 2. Let M be a compact connected orientable irreducible 3-manifold with
infinite fundamental group π and empty or incompressible torus boundary which
is not a closed graph manifold.

Then there is a virtually finitely generated free abelian group Γ, and a factoriza-

tion π1(M)
α−→ Γ

β−→ H1(M)f := H1(M)/ tors(H1(M)) of the canonical projection
into epimorphisms, an element m ∈ H1(M)f , an integer k ≥ 1 such that the
following holds:

For any group homomorphism φ : H1(π)f := H1(π)/ tors(H1(π)) → Z and any

factorization of α : π → Γ into group homomorphisms π
µ−→ G

ν−→ Γ for a residually
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finite group G, there exists real numbers constants D2 ≥ 0 and D4 ≥ 0 such that
for the G-covering M →M associated to µ we get

φ(m)

k
· ln(t)−D2 ≤ ρ(2)(M,N (G);φ ◦ β ◦ ν)(t) ≤ φ(m)

k
· ln(t) for t ≤ 1;

and
(
−xM (φ) +

φ(m)

k

)
· ln(t)−D4 ≤ ρ(2)(M,N (G);φ ◦ ν)(t)

≤
(
−xM (φ) +

φ(m)

k

)
· ln(t) for t ≥ 1.

In particular ρ(2)(M,N (G);φ ◦ ν) is asymptotically monomial and satisfies

deg
(
ρ(2)(M,N (G);φ ◦ ν)

)
= −xM (φ).

We use this to show for the higher order Alexander polynomial of Cochrane
and Harvey, see [2, 6], that their degree coincides with the Thurston norm in the
situation of the last theorem provided that G is torsionfree elementary amenable
and residually finite. Previously only an inequality was known.
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Dimension and character formulas for modular TQFT representations
of mapping class groups in the natural characteristic

Gregor Masbaum

The Witten-Reshetikhin-Turaev quantum invariants of 3-manifolds fit into a Topo-
logical Quantum Field Theory (TQFT) in the sense of Atiyah and Segal. Here
we consider SO(3)-TQFT at the p-th root of unity, where p ≥ 5 is an odd inte-
ger. The dimension of the SO(3)-TQFT vector space associated to a surface of
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genus g ≥ 1 with one boundary component labelled by an even integer 2c (where
0 ≤ 2c ≤ p− 3) is given by the following variant of the Verlinde formula:

(1) D(2c)
g (p) =

(p
4

)g−1
(p−1)/2∑

j=1

(
sin

πj(2c+ 1)

p

)(
sin

πj

p

)1−2g

.

This (complex) vector space carries a linear representation of an appropriate
central extension of the mapping class group Γg,1 of the genus g surface with one
boundary component. In the special case c = 0, this representation factors through
the corresponding central extension of the mapping class group Γg of the closed
surface. Note that the right hand side of (1) simplifies for c = 0.

Let us now assume p ≥ 5 is an odd prime. Let ζp be a primitive p-th root of
unity. We denote the corresponding ring of cyclotomic integers by Z[ζp]. The the-
ory of Integral SO(3)-TQFT developed in [1, 2] shows that our TQFT-vector space
contains a natural free Z[ζp]-module (a.k.a. Z[ζp]-lattice) preserved by the action
of the mapping class group. In [3], this Z[ζp]-module is denoted by Sp(Σg(2c)). In
this abstract, however, we will denote this module simply by S. But notice that S
depends on the genus g, the boundary label 2c, and the order p of the root of unity.
The rank of S is given again by (1) and S spans the TQFT-vector space over the
complex numbers. We refer to S as the Integral SO(3)-TQFT representation of
the mapping class group.

For every ideal I ⊂ Z[ζp], we have an induced representation on the Z[ζp]/I-
module S/IS. In this way, we can get modular representations of the mapping
class group, namely when Z[ζp]/I is a finite field of characteristic ℓ. If ℓ 6= p,
we speak of modular TQFT representations of mapping class groups in unequal
characteristic, while the characteristic ℓ = p is called the natural characteristic.

Of course, S/IS is only a first approximation to the Integral TQFT represen-
tation, and one may also consider the mapping class group representation on the
higher quotients S/INS for N ≥ 2. But here we will only consider S/IS and
only in the case when Z[ζp]/I is a finite field. Thus, S/IS is indeed a modular
representation, that is, a representation of a group on a vector space over a finite
field.

The unequal characteristic case was exploited in my joint work with Alan Reid
[5] where we used these modular representations to show that all finite groups are
involved in the mapping class group Γg (for any fixed genus g.) I talked about
this result last time [6].

I would now like to report on my joint work with Pat Gilmer [3], where we
study irreducibility properties of the mapping class group representations S/IS.
These can be deduced fairly easily if one knows the sub Z[ζp]-algebra of the endo-
morphism algebra EndZ[ζp](S) generated by the matrices by which mapping class
group elements act on S. (Note that EndZ[ζp](S) is isomorphic to the matrix
algebra

M(D(2c)
g (p),Z[ζp]) ,
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since S is a free module of rank D
(2c)
g (p).) Therefore we have computed this

subalgebra in [3]. I will not give details here, but our result implies for example
that in characteristic ℓ 6= p our modular TQFT representations over Fℓ of mapping
class groups are always irreducible. Here, unequal characteristic can be understood
to include the case of characteristic zero as well. Indeed, our result also implies that
the original SO(3)-TQFT representation over the complex numbers is irreducible.
This generalizes a result of Justin Roberts [9] who proved irreducibility over the
complex numbers of the mapping class group representations. Actually Roberts
considered SU(2)-TQFT rather than SO(3)-TQFT and only the case of closed
surfaces, and he asked what happens for surfaces with boundary.

Let us now look at our modular TQFT representations of mapping class groups
in the natural characteristic ℓ = p. Then a new phenomenon appears and the
representations are no longer irreducible. Here are some details of this, following
[3]. In the natural characteristic case we have I = (1 − ζp) and Z[ζp]/I is the
finite field Fp. Let us denote S/IS by F (and recall that F depends on p, g,
and 2c, which we have suppressed from the notation). This F is an Fp-vector of
dimension given by the Verlinde formula (1). It turns out [2] that F carries a
linear representation of the mapping class group Γg itself (in particular, no central
extension is needed) and that the Johnson kernel (but not the Torelli subgroup)
of Γg acts trivially on F . As already mentioned, this representation is usually not
irreducible. The situation is described precisely as follows.

Theorem 1. If g ≤ 1 or if (g, c) = (2, 0), then F is an irreducible representa-
tion of Γg. Otherwise, F has a composition series with exactly two irreducible
factors: there is a unique irreducible subrepresentation F odd of dimension denoted

by o
(2c)
g (p), and the quotient F/F odd, of dimension denoted by e

(2c)
g (p), is again

irreducible. Moreover, the dimensions of these irreducible factors can be computed
from the Verlinde formula (1) for

D(2c)
g (p) = e(2c)g (p) + o(2c)g (p)

and the following new kind of Verlinde formula for

δ(2c)g (p) = e(2c)g (p)− o(2c)g (p) :

(2) (−1)cδ(2c)g (p) =
41−g

p

(p−1)/2∑

j=1

(
sin

πj(2c+ 1)

p

)(
sin

πj

p

)(
cos

πj

p

)−2g

.

Notice the similarity of the formulas for D
(2c)
g (p) and δ

(2c)
g (p): if one substitutes

p/ sin2(πj/p) for 1/ cos2(πj/p) in the right hand side of (2), one gets the right hand
side of (1).

The reader may wonder about the notations F odd, e
(2c)
g (p), o

(2c)
g (p) in the above

statements, but I cannot explain the reason for these notations here for lack of
space. See §2 of [3] for explanations, where one can also find more discussion of
this result and of formula (2).
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I concluded this talk with an application of the above to representation theory.
One can show [7] that the irreducible Γg-representations F

odd and F/F odd factor
through the finite symplectic group Sp(2g,Fp). A natural question then is exactly
which irreducible representations of Sp(2g,Fp) arise in this way? Pat Gilmer
and I observed in §8 of [3] that for p = 5 the four representations we obtain
have the same dimensions as the irreducible representations of Sp(2g,Fp) with
fundamental highest weight ωj (g−3 ≤ j ≤ g) considered by Gow [4]. But at that
time we could not prove that our representations had those highest weights, i.e.
that our representations were indeed isomorphic to those considered by Gow. In
more recent work [8], we have now proved this, and for all odd primes p we have
now computed the highest weights of the irreducible Sp(2g,Fp)-representations
obtained as as above, i.e. obtained as first approximation to the Integral SO(3)-
TQFT representations of mapping class groups in the natural characteristic. In
particular, we have explicit dimension and character formulas for the irreducible
Sp(2g,Fp)-representations with these highest weights. This may be interesting
because the highest weights we obtain are not fundamental weights when p > 5.
We are told that dimension and character formulas for such highest weights are
probably not known, at least not in general. Details of this will be given in [8].
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Arithmetic of universality in simple Lie algebras

Ruben L. Mkrtchyan

We report on the development of ”universal” approach in the theory of simple Lie
algebras and their applications, which reveals an unexpected relations with number
theory. The origin is in Vogel’s study of algebras of diagrams in knots theory [1],
Deligne’s series of Lie algebras [2], ’t Hooft’s 1/N [3] expansion in gauge theories,
N → −N duality of SO(N)/Sp(N) gauge theories [4] and others.
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Consider Vogel’s universal expression for dimensions of simple Lie algebras:

dim g =
(α− 2t)(β − 2t)(γ − 2t)

αβγ
, t = α+ β + γ(1)

where projective (Vogel’s, universal) parameters α, β, γ define a point on a Vo-
gel’s plane, which is the projective plane factorized w.r.t. the all permutations of
three projective parameters. Expression (1) gives dimensions of simple Lie (su-
per)algebras when evaluated at special points at Vogel’s plane, given in a Table 1,
[1]. Such an expressions we shall call universal. Dimensions of many other irreps
of simple Lie algebras can be represented in a similar universal form [5]. One can
try to ”universalize” (unify) the (part of the) theory of simple Lie algebras and
groups, and their applications, expressing it on the language of Vogel’s parameters.

Table 1. Vogel’s parameters for simple Lie (super)algebras

Algebra/Parameters α β γ t = α+ β + γ
SL(N) -2 2 N N

SO(N)/Sp(-N) -2 4 N-4 N-2
Exc(n) -2 n+4 2n+4 3n+6
D2,1,λ α β γ 0

Here for SL(N) and SO(N) N is positive integer, for Sp(-N) N is negative even in-
teger, for exceptional line Exc(n) n=-1,-2/3,0,1,2,4,8 for A2, G2, D4, F4, E6, E7, E8

respectively. N → −N transformation corresponds to transposition α↔ β.
In [6] we present a universal expressions for generating function for eigenvalues

of higher Casimir operators on adjoint representation. In [7] we derive universal
expression for character of adjoint representation on Weyl line xρ, where x is an
arbitrary parameter, ρ is Weyl vector in root space, half the sum of positive roots.
This expression appears to be very useful in further developments:

f(x) = χad(xρ) =
sinh(xα−2t

4 )

sinh(xα
4 )

sinh(xβ−2t
4 )

sinh(xβ
4 )

sinh(xγ−2t
4 )

sinh(xγ
4 )

(2)

Similar universal characters can be obtained for all representations with universal
dimension formula.

For points from Table 1 this expression is regular at finite x plane since it is a
finite sum of exponents. One can turn problem upside down and seek the points
in Vogel’s plane for which this expression is regular at finite x. It appears [8] that
universal parameters of such points are expressed in terms of three integers k, n,m ,
which have to satisfy one of seven Diophantine equations of the type knm =second
order polynomial over k, n,m. E.g. one of these equations is knm = kn + nm +
km+3n+3k+3m+5. For k, n,m 6= −1 this equation and corresponding expressions
of Vogel’s parameters in terms of k,m, n can be written in more memorable form:
2

k+1 + 2
n+1 + 2

m+1 = 1, α = 2t
k+1 , β = 2t

n+1 , γ = 2t
m+1 .
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There are two types of solutions of this and other six equations. One is the
series, i.e. depends on parameter (integer or continuous), and other an isolated
ones. Series solutions are:

SL(N) : (k, n,m) = (−N − 1, N − 1, 1), (α, β, γ) = (2,−2, N)

D2,1,λ : (k, n,m) = (−1,−1,−1), α+ β + γ = 0

There are 15 isolated solutions (up to symmetries on permutations of parame-
ters), particularly (k,n,m)=(4,2,-31) and (3,2,-13), corresponding to E8 and E6,
respectively. Beside these solutions, there are other solutions e.g. (k,n,m)=(41,6,2)
denoted Y47 with (α, β, γ) = (1, 6, 14) with dimension -492. It is unclear, to what
objects these type solutions correspond to, but they have features similar to oth-
ers, particularly they give integers (of both signs) when substituted into dimension
formulae.

Complete set of all seven Diophantine equations is given in [8], namely (after
shift of variable so that r.h.s. becomes linear): knm = li, i = 1, 2...7, l1 = 4k+2m+
2n+8, l2 = 2k+4n+2m+10, l3 = 4k+4n+2m+12, l4 = 4m+4n+4k+16, l5 =
4m+ 4n+ k + 8, l6 = m+ 2n+ 4k + 6, l7 = 2m+ 2n+ 2k + 9.

Complete set of solutions [8] includes as isolated solutions all exceptional groups,
algebra E7 1

2
[9], two yet unidentified algebrasX1, X2 of dimensions 156, 99, and 47

objects Yi, i = 1, 2, ...47 of negative dimensions. Series solutions contain, besides
classical series (including symplectic Sp(N) with odd N, i.e. half integer rank),
also 3d line α + β + 2γ = 0, and 0d line α + 2β + 2γ = 0. Further study of
their properties is presented in [13]. Particularly, the simple transformation [5]
α′ = α, β′ = γ − β, γ′ = β gives a universally characterized subgroup of initial
group. This explains an appearance of 3d and 0d lines - former appears in this
way from line D2,1,λ, and 0d line appear in the same way from 3d line.

P. Deligne [12] suggested that universal characters satisfy usual character re-
lations for decomposition of product of representations at all values of universal
parameters. He checked that up to some extent, particularly he carry on complete
check for SL(N) line. Some additional cases with an arbitrary universal parameters
have been checked in [13].

Another universalization result is universal representation of many quantities
(perturbative partition function, central charge, unknot Wilson average) of Chern-
Simons theory on 3d sphere [7]. The simple universal integral representation for
complete (i.e. including both perturbative and nonperturbative contributions)
partition function is found in [10], which reveals some other relations to number
theory:

− ln(Z) = (dim/2) ln(δ/t) +

∫ ∞

0

dx

x

f(x/δ)− f(x/t)
(ex − 1)

(3)

where δ in minimal normalization (when square of long root is 2, i.e. α = −2)
is usual shifted coupling of Chern-Simons theory. The non-perturbative part of
Chern-Simons’ partition function gives the universal expression for invariant vol-
ume of compact simple Lie groups [10]. Both quantities can be represented [11] as
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a ratio of quadruple Barnes’ gamma functions. Moreover, the partition functions
of Chern-Simons theory on classical and exceptional lines can be represented [13]
as ratio of triple an double sine functions. The product representation of multiple
sine functions gives a Gopakumar-Vafa representation of partition function (plus
non-perturbative terms), hence corresponding invariants of manifolds after geo-
metrical transition. Recurrent relations of Barnes’ gamma-functions lead [11] to
level-rank duality of SU(N) Chern-Simons theory. As discussed in [11, 10], volume
function is not an analytical function on CP 2 but rather the fiber bundle of ana-
lytical functions with structure group S3 of permutations of universal parameters
and transition functions which in SU(N) case are given by Kinkelin’s functional
equation on Barnes’ G-function. Analog of Ooguri-Vafa [14] expansion of volume
for exceptional line is calculated [13].
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The colored Jones polynomial, the Chern-Simons invariant, and the
Reidemeister torsion of a cable knot

Hitoshi Murakami

Let JN (K; q) ∈ Z[q, q−1] be the N -colored Jones polynomial of a knot K in the
three-dimensional sphere S3, associated with the irreducible N -dimensional rep-
resentation of the Lie algebra sl2(C) [6, 8]. The following conjecture (Volume
Conjecture) is well known.

Conjecture 0.1 ([7, 10]). For any knot, the following would hold:

lim
N→∞

log
∣∣JN

(
K; exp(2π

√
−1/N)

)∣∣
N

=
Vol(S3 \K)

2π
,

where Vol denotes the simplicial volume, that is, the sum of the hyperbolic volumes
of the hyperbolic pieces in S3 \K after the JSJ decomposition [4, 5].

More generally, we are interested in the asymptotic behavior of the colored
Jones polynomial evaluated at exp((2π

√
−1 + u)/N) for a complex number u.

Y. Yokota and I proved the following formula

Theorem 1 ([11, 9]). Let E be the figure-eight knot and u be a real number with

0 < u < log((3 +
√
5)/2). Then we have

JN
(
E; exp((2π

√
−1 + u)/N)

)

∼
N→∞

√−π
2 sinh(u/2)

exp

(
N

2π
√
−1 + u

S(u)

)(
N

2π
√
−1 + u

)1/2

T(u)1/2,

where S(u) − u
(
dS(u)/d u+ π

√
−1

)
/2 is the Chern–Simons invariant associ-

ated with a representation ρu : π1(S
3 \ E) → SL(2;C) sending the meridian to(

eu/2 ∗
0 e−u/2

)
, and T(u) is the Reidemeister torsion twisted by ρu.

It is conjectured that a similar formula holds for any hyperbolic knot [2, 1].
On the other hand, for a torus knot, which is not hyperbolic (in fact there is

no hyperbolic pieces in its complement, and so its simplicial volume is 0), we have
the following result. Let ∆(K; t) denote the Alexander polynomial of a knot K.

Theorem 2 ([3]). Let T (2, 2a+1) be the torus knot of type (2, 2a+1) with positive
integer a. If ξ is a complex number with Im ξ > 0 and Re ξ < 0, then we have

JN
(
T (2, 2a+ 1); exp(ξ/N)

)

∼
N→∞

1

∆
(
T (2, 2a+ 1); exp ξ

)

+

√−π
2 sinh(ξ/2)

(
N

ξ

)1/2 ⌊(2a+1)|ξ|/π⌋∑

k=1

(−1)k+1 exp

(
N

ξ
Sk(ξ)

)
T1/2
k ,
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where Sk(u)−u
(
dSk(u)/d u+ π

√
−1

)
/2 is the Chern–Simons invariant associated

with a representation ρu,k : π1(S
3 \ T (2, 2a+ 1))→ SL(2;C) sending the meridian

to

(
eu/2 ∗
0 e−u/2

)
, and Tk is the Reidemeister torsion twisted by ρu,k.

Note that any non-Abelian representation is given by ρk for some k, and the
Alexander polynomial can be regarded as the Reidemeister torsion associated with
an Abelian representation.

In this talk I show the following theorem.

Theorem 3. Let T (2, 2a+ 1)(2,2b+1) be the (2, 2b + 1)-cable of T (2, 2a+ 1) with
a > 0 and 2b + 1 − 4(2a + 1) > 0. We decompose S3 \ T (2, 2a+ 1)(2,2b+1) into
U := S3 \ IntN (T (2, 2a+ 1)) and V := (D2 × S1) \ P (2,2b+1), where IntN(X) is
the open tubular neighborhood of X in S3 and P (2,2b+1) is a knot in the solid torus
D2 × S1 that is wrapped twice along S1 and is twisted 2b+ 1 times around S1. If
ξ is a complex number with Im ξ > 0 and Re ξ < 0, then we have

JN
(
T (2, 2a+ 1)(2,2b+1); exp(ξ/N)

)

∼
N→∞

1

∆
(
T (2, 2a+ 1)(2,2b+1); exp ξ

)

+

√−π
2 sinh(ξ/2)

(
N

ξ

)1/2 ∑

j

(−1)j exp
(
N

ξ
S1,j(ξ)

)
T1/2
1,j

+

√−π
2 sinh(ξ/2)

(
N

ξ

)1/2 ∑

k

(−1)k+1 exp

(
N

ξ
S2,k(ξ)

)
T1/2
2,k

+
π√

2 sinh(ξ/2)

(
N

ξ

)∑

l,m

(−1)l+m exp

(
N

ξ
S3,l,m(ξ)

)
T1/2
3,l,m,

where

(1) S1,j(ξ) determines the Chern–Simons invariant associated with a represen-

tation ρ1,j(ξ) such that ρ1,j(ξ)
∣∣∣
π1(U)

is Abelian and ρ1,j(ξ)
∣∣∣
π1(V )

is non-

Abelian, and T1,j is the Reidemeister torsion twisted by ρ1,j(ξ),
(2) S2,k(ξ) determines the Chern–Simons invariant associated with a repre-

sentation ρ2,k(ξ) such that ρ2,k(ξ)
∣∣∣
π1(U)

is non-Abelian and ρ2,k(ξ)
∣∣∣
π1(V )

is Abelian, and T2,k is the Reidemeister torsion twisted by ρ2,k(ξ), and
(3) S3,l,m(ξ) determines the Chern–Simons invariant associated with a rep-

resentation ρ3,l,m(ξ) such that both ρ3,l,m(ξ)
∣∣∣
π1(U)

and ρ3,l,m(ξ)
∣∣∣
π1(V )

are

non-Abelian, and T3,l,m is the Reidemeister torsion twisted by ρ3,l,m(ξ),.

Note that the Alexander polynomial can be regarded as the Reidemeister torsion

associated with a representation ρ0(ξ) such that both ρ0(ξ)
∣∣∣
π1(U)

and ρ0(ξ)
∣∣∣
π1(V )

are Abelian.
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Idèle theory for 3-manifolds

Hirofumi Niibo

(joint work with Jun Ueki)

The purpose of this report is, following the sprit of arithmetic topology ([Mo1],
[Mo2], [Mo3]), to study an idèle theoretic form of class field theory for 3-manifolds.
We note that idèlic class field theory for 3-manifolds was firstly studied by A. Sikora
([Si1], [Si2]). Our approach is different from his and elementary.

1. Local class field theory for tori

Let k be a number field. For a finite prime p, let vp be the corresponding additive
valuation of k, and kp be the local field obtained as the completion of a number
field k. Let Op be the valuation ring and let Fp be the residue field Op/p, a finite
extension of Fp = Z/pZ. We denote by Up the unit group O×

p . We note that
Up = Ker(vp) and so we have the following split exact sequence

(1.1) 0→ Up → k×p → Z→ 0.
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Let kabp be the maximal Abelian extension of kp. When kp is non-archimedean,
we denote by kurp the maximal unramified extension of kp. Note that the Galois

group Gal(kurp /kp) is identified with Gal(F̄p/Fp) ∼= Ẑ, where Ẑ denotes the profinite
completion of Z. A main part of classical local class field theory for the local field
kp is stated as follows.

Theorem 1 (Classical local class field theory). There is a canonical homomor-
phism, called the local reciprocity homomorphism, ρkp

: k×p → Gal(kabp /kp) which
satisfies the following commutative diagrams with exact horizontal sequences:

0 // Up
//

ρkp |Up

��

k×p

ρkp

��

vp
// Z

��

// 0

0 // Gal(kabp /kurp ) // Gal(kabp /kp) // Gal(F̄p/Fp) // 0.

Then we present a topological analogue of local class field theory for 2-dimensional
tori based on the following analogies.

(1.2)

tubular neighborhood of K p-adic integers
VK ←→ Spec(Op)

boundary of VK p-adic field
∂VK ≃ VK \K ←→ Spec(kp) = Spec(Op) \ Spec(Op/p)

Let K be a fixed knot in an orientable 3-manifold and let VK be a tubular
neighborhood of K. Let TK = ∂VK be the boundary of VK . According to (1.2),
TK and VK are regarded as analogues of a p-adic local field kp and the integer
ring Op. Let m and l be a meridian and a longitude on TK , respectively. The
inclusion TK →֒ VK induces the homomorphism vK : H1(TK) → H1(VK) = Z[l]
whose kernel is Z[m]. Thus we have the exact sequence

(1.3) 0 −→ Z[m] −→ H1(TK) −→ Z[l] −→ 0

which may be regarded as an analogue of the exact sequence (1.1).

Let T ab
K be the maximal Abelian covering of TK . Since VK \ K is homotopy

equivalent to the torus TK , (unramified) coverings of TK correspond to ramified
covering of VK along K. Let T ur

K be the maximal covering of TK which comes from
the maximal (unramified) covering of VK . Then we have the following theorem
which is regarded as an analogy of Theorem 1.

Theorem 2 (Local class field theory for tori [N]). There is a canonical isomor-
phism ρTK

: H1(TK) → Gal(T ab
K /TK) which satisfies following commutative dia-

gram with exact horizontal sequences:
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0 // Z[m] //

ρTK
|Z[m]

��

H1(TK)

ρTK

��

vK
// Z[l]

��

// 0

0 // Gal(T ab
K /T ur

K ) // Gal(T ab
K /TK) // Gal(T ur

K /TK) // 0.

2. Idèlic global local class field theory for 3-manifolds

Now, let k be a number field. We define the idèle group Ik of k by the following
restricted product of k×p ’s with respect to Up’s over all primes p of k:

Ik :=



 (ap)p ∈

∏

p: prime

k×p | vp(ap) = 0 for almost all finite prime p



 .

Since k× is embedded into Ik diagonally, we let Pk be the image of k× in Ik
and call it the group of principal idèles. We then define the idèle class group of k
by Ck := Ik/k

×.
Let F/k be an Abelian extension, and be NF/k : CF → Ck the norm map.

Then we equip the idele class group Ck with a topology by declaring the cosets
aNF/k(CF ) to be a basis of neighbourhoods of a ∈ Ck, where F/k varies over all
finite Abelian extensions of k. We call this topology the norm topology of Ck.

Theorem 3 (Classical global class field theory). There is a canonical homomor-
phism, called the global reciprocity map, ρk : Ck → Gal(kab/k) which has the
following properties:

(1) For any finite Abelian extension F/k, ρk induces the isomorphism
Ck/NF/k(CF ) ∼= Gal(F/k) where NF/k denotes the norm map on the idèle
groups.

(2) The map F 7→ NF/k(CF ) is a 1:1 correspondence between the finite abelian
extensions F/k and the open subgroups of finite index in Ck. The field F/k
corresponding to the subgroup N of Ck satisfies Gal(F/k) ∼= Ck/N.

Then we construct a topological analogue of global class field theory for 3-
manifolds. For a certain given a link K with at most countably many components
in a compact oriented connected 3-manifoldM , we introduce the idèle group I(M ;K)

as a restricted product of H1(∂VK ;Z) over all K in K, and getting local reciprocity
map ρTK

’s together over all K in K, we define the homomorphism

ϕ(M ;K) : I(M ;K) → Gal(M ;K)ab := lim←−
L

Gal(Xab
L /XL)

where L runs over all finite subsets of K, XL := M \ L and Xab
L is the maximal

Abelian covering of XL. The homomorphism ϕ(M ;K) factors through the idèle
class group C(M ;K) := I(M ;K)/P(M ;K) with the principal idèle group P(M ;K), and
hence we obtain an analogue of the global reciprocity homomorphism ρ(M ;K) :

C(M ;K) → Gal(M ;K)ab.
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Let h : N → M be an Abelian cover ramified over L ⊂ K. We define the
norm map h(N/M) : C(N ;h−1(K)) → C(M ;K). Then we equip the idele class group
C(M ;K) with a topology by declaring the cosets a+hN/M(CN ;h−1(K)) to be a basis
of neighbourhoods of a ∈ C(M ;K), where h : N →M varies over all finite Abelian
cover ramified over L ⊂ K. We call this topology the norm topology of C(M ;K).
Then our main result is stated as follows. ([N], [NU])

Theorem 4 (Idèlic global class field theory for a 3-manifold (M ;K) [NU]). Let
M be a rational homology sphere, i.e. Hi(M ;Q) ∼= Hi(S

3;Q).
(1). φ(M ;K) factors through ρ(M ;K) : C(M ;K) → Gal(M ;K)ab such that for any

finite Abelian cover h : N →M ramified over a finite subset of K, ρ(M ;K) induces
an isomorphism C(M ;K)/h∗(C(N ;h−1(K))) ∼= Gal(N/M).

(2). The map (h : N →M) 7→ hN/M (CN ) is a 1:1 correspondence between the
finite Abelian cover ramified over L ⊂ K and the open subgroups of finite index
in C(M ;K). The ramified cover h : N → M corresponding to the subgroup H of
C(M ;K) satisfies Gal(N/M) ∼= C(M ;K)/H.

This result may be regarded as an analogue of the fundamental theorem in
global class field theory for number fields ([Ne]).
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q-hypergeometric series, alternating knots and identities

Robert Osburn

(joint work with Adam Keilthy (TCD))

Two of the most important results in the theory of q-series are the classical Rogers-
Ramanujan identities which state that

(1)
∑

n≥0

qn
2+sn

(q)n
=

1

(q1+s; q5)∞(q4−s; q5)∞

where s = 0 or 1 and
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(a)n = (a; q)n =

n∏

k=1

(1 − aqk−1),

valid for n ∈ N ∪ {∞}. In 1974, Andrews [1] obtained a generalization of (1) to
odd moduli, namely for all k ≥ 2, 1 ≤ i ≤ k,

(2)

∑

n1,n2,...,nk−1≥0

qN
2
1+N2

2+···+N2
k−1+Ni+Ni+1+···+Nk−1

(q)n1(q)n2 · · · (q)nk−1

=
(qi; q2k+1)∞(q2k+1−i; q2k+1)∞(q2k+1; q2k+1)∞

(q)∞

where Nj = nj + nj+1 + · · · + nk−1. There has been recent interest in the ap-
pearance of these (and similar) identities in knot theory. For example, Hikami [10]
considered (1) from the perspective of the colored Jones polynomial of torus knots
while Armond and Dasbach [3] gave a skein-theoretic proof of (2). For similar
identities related to false theta series, see [9] and for other connections between
q-series and quantum invariants of knots, see [4]–[6], [8], [11] and [13].

We consider recent work in [7] whereby the q-multisums ΦK(q) and Φ−K(q)
were associated to a given alternating knot K and its mirror −K. The q-multisum
ΦK(q) occurs as the 0-limit (or “tail”) of the colored Jones polynomial of K (see
Theorem 1.10 in [7]). In Appendix D of [7], Garoufalidis and Lê (with Zagier)
conjectured evaluations of ΦK(q) for 21 knots and of Φ−K(q) for 22 knots in terms
of modular forms and false theta series and state “every such guess is a q-series
identity whose proof is unknown to us”. Before stating these conjectures, we recall
some notation from [7]. For a positive integer b, we define

hb = hb(q) =
∑

n∈Z

ǫb(n)q
bn(n+1)

2 −n

where

ǫb(n) =





(−1)n if b is odd,
1 if b is even and n ≥ 0,
−1 if b is even and n < 0.

Note that h1(q) = 0, h2(q) = 1 and h3(q) = (q)∞. For an integers p, a and b, let
Kp denote the pth twist knot obtained by −1/p surgery on the Whitehead link
and T (a, b) the left-handed (a, b) torus knot. The 43 conjectures from [7] are as
follows:

Here, we have corrected the entries for 61, 73, 81, 84, 85, Kp, p < 0 (and their
mirrors) and 75 in Appendix D of [7]. Note that a conjectural evaluation for Φ85(q)
is not currently known. Three of these Rogers-Ramanujan type identities, namely

(3) Φ31(q) = h3, Φ41(q) = h3 and Φ63(q) = h23
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K ΦK(q) Φ−K(q)
31 h3 1
41 h3 h3
51 h5 1
52 h4 h3
61 h5 h3
62 h3h4 h3
63 h23 h23
71 h7 1
72 h6 h3
73 h5 h4
74 h24 h3
75 h3h4 h4
76 h3h4 h23
77 h33 h23
81 h7 h3
82 h3h6 h3
83 h5 h5
84 h3 h4h5
85 ? h3

Kp, p > 0 h2p h3
Kp, p < 0 h2|p|+1 h3

T (2, p), p > 0 h2p+1 1
Table 2.

have been proven by Andrews [2]. Motivated by his work (and in conjunction
with (3)), the purpose of the talk given on August 19, 2014 at Oberwolfach was
to highlight the role of q-series techniques in proving identities arising from knot
theory. In particular, we discussed the following main result from [12]:

Theorem 1. The identities in Table 2 are true.
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Homology and volume of hyperbolic 3-orbifolds, and enumeration of
arithmetic groups

Peter B. Shalen

If O is a maximal order in a quaternion algebra over a number field k, then the
group of units ΓO of O is a natural object of study from the number-theoretical
point of view. If k has exactly one complex place and B is ramified at all the real
places of k then ΓO is isomorphic in a natural way to a lattice in PGL(2,C). I
will refer to lattices that arise up to commensurability from this construction as
arithmetic lattices.

A theorem of Borel’s [4] asserts that for any positive real number V , there are
at most finitely many arithmetic lattices of covolume at most V . Determining
all of these for a given V is in principle algorithmically possible for a given V
thanks to work by Chinburg and Friedman [5], but appears to be impractical
except for very small values of V , say V = 0.41. (The smallest covolume of a
lattice in PGL(2,C) is about 0.39.) The step that makes computation impractical
is obtaining a good upper bound, in the case of a lattice Γ that is maximal in its
commensurability class, for the order of a certain elementary 2-group which is a
quotient of Γ. The order of such an elementary 2-group is trivially bounded by 2d

where d = dimH1(Γ,Z/2Z).

In the case of a torsion-free lattice, Γ not necessarily arithmetic, joint work of
mine with Marc Culler and others [1], [6], [7], gives good bounds on the dimension
of H1(Γ,Z/2Z) in the presence of a suitable bound on the volume of Γ. The
results are stated in terms of hyperbolic 3-manifolds; if Γ is a torsion-free lattice
in PGL(2,C) then M = H3/Γ is an orientable hyperbolic 3-manifold, the volume
of M is the covolume of Γ, and we have H1(M,Z/2Z) ∼= H1(Γ,Z/2Z).

Given an orientable hyperbolic 3-manifold M , let us set d = dimH1(M,Z/2Z)
and let v denote the volume of M . It was shown in [1], [6], and [7], respectively,
that
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• if v ≤ 1.22 then d ≤ 3;
• if v ≤ 3.08 then d ≤ 5; and
• if v ≤ 3.44 then d ≤ 7.

These results cannot be applied directly to maximal arithmetic lattices, because
they typically have torsion. When Γ has torsion, O = H3/Γ is an orientable hyper-
bolic 3-orbifold, the volume of O is the covolume of Γ, and we have H1(O,Z/2Z) ∼=
H1(Γ,Z/2Z). The purpose of my talk was to describe work in progress concerned
with finding results qualitatively similar to the ones given in [1], [6], and [7], which
apply to the orbifold case and will be of practical use in enumerating arithmetic
lattices with covolume subject to certain bounds.

I described the following results as “probable” in my talk because I had (and have)
not yet checked all the details of the proofs, but I believe the essential arguments
are in place.

Probable Theorem 1. Let O = H3/Γ be an orientable hyperbolic 3-orbifold.
Suppose that every finite subgroup of Γ is cyclic, and that no subgroup of Γ is a
hyperbolic triangle group. If O has volume at most 1.72, then dimH1(O,Z/2Z) ≤
18.

Topologically, O is a 3-manifold (the “underlying manifold”) labeled with a singu-
lar set, which is a graph; each node of the graph is labeled with a finite non-cyclic
subgroup of PGL(2,C) which is the stabilizer of a point of H3 which maps to the
node under the quotient projection H3 → O, and similarly each (arc or simple
closed curve) component of the complement of the set of nodes within the singular
set is labeled with a finite cyclic group. The hypothesis that every finite subgroup
of Γ is cyclic is equivalent to the condition that the singular set of O has no nodes.

The assumption that Γ contains no triangle groups is harmless for the projected
application to arithmetic lattices, because it turns out to be a fairly easy matter
from the number-theoretic viewpoint to classify arithmetic lattices with volume
subject to a prescribed bound that contain triangle groups. On the other hand,
the assumption that the finite subgroups of Γ are cyclic is a serious one, because
maximal arithmetic lattices typically contain dihedral groups. Thus the projected
application will depend on relaxing this assumption.

Probable Theorem 1 would follow formally from two probable propositions:

Probable Proposition 1. Let O = H3/Γ be an orientable hyperbolic 3-orbifold,
and let N denote the underlying manifold of O. Suppose that no subgroup of Γ is a
hyperbolic triangle group. If O has volume at most 3.44, then dimH1(N,Z/2Z) ≤
17.

Probable Proposition 2. Let O = H3/Γ be an orientable hyperbolic 3-orbifold.
Suppose that every finite subgroup of Γ is cyclic. Then O has a two-sheeted orbifold
cover O′ such that the underlying manifold N ′ of O′ satisfies dimH1(N

′,Z/2Z) ≥
dimH1(O,Z/2Z) + 1.
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The probable proof of Propable Proposition 2 is an elementary application of Smith
Theory.

In the special case where N is hyperbolic, Probable Proposition 1 can be de-
duced from the result that I quoted above from [7]. When N is not hyperbolic,
if dimH1(N,Z/2Z) ≥ 2, there always exists an essential sphere or torus in M by
Perelman’s Geometrization Theorem [3]. Such a sphere or torus gives rise to an
incompressible suborbifold of O. The results of [2], which are stated for manifolds
but are easily adapted to orbifolds, give lower volumes for the volume of O in terms
of data involving incompressible suborbifolds of O. These estimates are used in
the probable proof of Probable Proposition 1. The details are rather involved.

References

[1] Ian Agol, Marc Culler, and Peter B. Shalen. Dehn surgery, homology and hyperbolic volume.
Algebr. Geom. Topol., 6:2297–2312, 2006.

[2] Ian Agol, Peter A. Storm, and William P. Thurston. Lower bounds on volumes of hyper-
bolic Haken 3-manifolds. J. Amer. Math. Soc., 20(4):1053–1077 (electronic), 2007. With an
appendix by Nathan Dunfield.

[3] Laurent Bessières, Gérard Besson, Sylvain Maillot, Michel Boileau, and Joan Porti. Ge-
ometrisation of 3-manifolds, volume 13 of EMS Tracts in Mathematics. European Mathe-
matical Society (EMS), Zürich, 2010.
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A MOY state-sum for colored HOMFLY

Roland van der Veen

1. Introduction

The colored HOMFLY polynomial is the most important quantum knot invariant.
Through these invariants low dimensional topology interacts with an incredible
diversity of other fields of mathematics and physics, including number theory, spe-
cial functions, integrable systems, contact geometry, hyperbolic geometry, repre-
sentation theory, Gromov-Witten invariants combinatorics and string theory. The
colored HOMFLY unifies all quantum invariants coming from quantum groups of
type AN and as such includes the colored Jones and the Alexander polynomial.
Direct formulas for the colored HOMFLY are out of reach but many mysterious
structural properties are being uncovered.

We restrict ourselves here to knots and links colored by anti-symmetric pow-
ers of the standard representation. For such colors (representations) restricted
to UqslN Murakami-Ohtsuki-Yamada develped a graphical technique generalizing
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the Kauffman bracket [MOY]. In this work we improve extend the technique to
deal with the unified two-variable HOMFLY version directly. The resulting state
sum is expected to have many applications, for example it gives direct insight
into the behaviour of the maximal degree in q as a function of the weight of the
representations.

2. MOY graphs

In this section we briefly recall the main definitions necessary to state our new
state sum for MOY graphs. This leads to a state sum for knots and links as well
because it was shown in [MOY] that a link diagram can be expanded as a sum of
MOY graphs.

A MOY graph (Γ, γ) is a planar oriented trivalent graph Γ with no sources or
sinks, together with a flow γ : E(Γ) → N. By a flow we mean an assignment
of numbers to each edge so that the sum of the outgoing equals the sum of the
incoming edges at each vertex. MOY graphs can be evaluated in terms of their
cycles. By C we denote the set of cycles. A cycle C is a subset of E(Γ) such that
at each vertex either 2 or 0 edges of C appear and each component of C has a
consistent orientation. By definition each component of a cycle has either clockwise
(-1) or counter-clockwise (+1) orientation. We define the rotation number rot(C)
to be the sum of the orientation numbers of its components. We call a MOY
graph positive if all its non-empty cycles have positive rotation number. Finally
we define an intersection number 〈A,B〉 on C as follows. At a vertex v the three
adjacent edges by vl, vm and vr. Here vm is oriented opposite to the other two
and if we approach v from vm then vl is on the left. The intersection number is
defined as

〈A,B〉 = 1

4
(#{v ∈ V (Γ)|vl ∈ A, vr ∈ B} −#{v ∈ V (Γ)|vl ∈ B, vr ∈ A})

3. A new generalization of the binomial coeffient

Our new state sum is constructed from the following building blocks that are
generalizations of symmetric q-binomial coefficients that may be of independent
interest.

For a finite sequence r = (r1, . . . , rk) and a positive integer N we define the
generalized binomial as:

[
N
r

]
(q) =

∑

x1<...<xk

q
∑

jrjxj

Here the sum is to be taken over all xj ∈ {−N−1
2 ,−N−3

2 , . . . N−1
2 }

Lemma 1. There exists a unique element

[
∗
r

]
(a, q) ∈ Q(q

1
2 )Z[a±

1
2 ] such that

for all r,N [
∗
r

]
(qN , q) =

[
N
r

]
(q)
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Note that the case r = (1, 1, 1, 1, ...) corresponds to the symmetric q-binomial
coefficient. It would be interesting to identify these binomial coefficients in terms
of symmetric functions such as Schur functions or Macdonald polynomials.

4. State sum

With this preparation we can finally present our new state sum for MOY graph
evaluations. By expanding each crossing in terms of MOY graphs the same also
holds for the colored HOMFLY of any knot or link.

Theorem 1. For every positive MOY graph (Γ, γ) we have

〈Γ, γ〉(a, q) =
∑

{C=(C1,C2,...)∈C|γC=γ}

q
∑

i<j〈Ci,Cj〉

[
∗

rot C

]
(a, q)

Our state sum should also be compared with the generating series developed in
[GV].
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Coordinates for representations of 3-manifold groups

Christian Zickert

(joint work with Stavros Garoufalidis, Matthias Goerner, Dylan Thurston)

LetM be a compact 3-manifold andG a simple complex Lie group. It is well known
that the setR of representations of π1(M) in G is an algebraic variety. Often one is
only interested in the set of representations up to conjugation (i.e. flat connections),
but the natural quotient is not in general a variety. The character variety is
defined as Spec(OG

R), and captures much of the information about representations.
We define here a different approach which allows for effective computation of
representations in SL(n,C) and PGL(n,C).

Definition 1. Let H be a subgroup of G. A representation π1(M) → G is a
(G,H)-representation if each peripheral subgroup maps to a conjugate of H.

Important examples are (SL(n,C), N) and (PGL(n,C), B), where N and B are

unipotent upper triangular and upper triangular matrices, respectively. Let ̂̃
M be

the space obtained from the universal cover of M by collapsing each boundary

component to a point, and let V (̂̃M) be the set of ideal points.

Definition 2. A decoration of a (G,H)-representation ρ : π1(M) → G is a ρ-
equivariant map

D : V (̂̃M)→ G/H.
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Remark 1. If D is a decoration of ρ, then gD is a decoration of gρg−1, so we
shall only consider decorations up to left multiplication.

Note that if M has an ideal triangulation T , a decoration assigns in an equi-
variant fashion a coset gH to each vertex of each simplex of M . We say that a
decoration is generic if for each simplex, the cosets are in general position.

Theorem 1 (See [3, 2]). For each ideal triangulation of M the set of generi-
cally decorated (SL(n,C), N)-representations is a variety cut out by explicit ho-
mogeneous equations of degree 2. The forgetful map to the set of (SL(n,C), N)-
representations is given by explicit formulas.

The above theorem gives rise to a very efficient way of exact computation of
(SL(n,C), N)-representations. For a database see curve.unhyperbolic.org. The
coordinates are inspired by coordinates on higher Teichmüller spaces due to Fock
and Goncharov [1].
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