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Introduction by the Organisers

The workshop Komplexe Analysis, organised by Philippe Eyssidieux (Grenoble),
J.-M. Hwang (Seoul), S. Kebekus (Freiburg) and M. Păun (Seoul) was well at-
tended in number and quality, with close to 50 participants. We were particularly
glad to notice the presence of well-known experts from different backgrounds, who
shared generously their ideas, points of view and recent results with young re-
searchers.

The workshop was intended to be articulated on the interaction between global
aspects of several complex variables and algebraic geometry. As we will try to
highlight next, from this perspective it is beyond any reasonable doubt that our
meeting was a success.

A. Höring presented his joint work with F. Campana and T. Peternell in a very
precise and understandable manner. The topic was a fundamental problem in
algebraic geometry, the so-called abundance conjecture. The main result he has
discussed was a solution of this problem for Kähler 3-folds: it is the achievement
of their efforts extended over many years. The arguments that Andreas decided to
explain involved the classical proof for projective 3-folds (due to Y. Kawamata, Y.
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Miyaoka, . . . ), as well as purely transcendental techniques, specific to the Kähler
setting.

Let (X,L) be a smooth, projective manifold endowed with an ample bundle L.
The Yau-Tian-Donaldson conjecture predicts that the class c1(L) contains a metric
with constant scalar curvature iff the pair (X,L) is K-stable. Given the spectacular
progress in case of Fano manifolds, i.e. for L = −KX , there are many recent
works exploring the K-stability. In our meeting we had two beautiful accounts on
different aspects of this notion, by R. Berman (joint work with D. Witt-Nyström)
and S. Boucksom (joint with T. Hisamoto and M. Jonsson). The presentation of
S. Takayama concerned a closely related area: the degeneration of polarized Ricci-
flat Kähler manifolds. His main result answers an open question by V. Tosatti,
asking for the connection between the finiteness of the Weil-Petersson metric and
the singularities of the limits of families of manifolds with trivial canonical class.

From the algebraic geometry side, J. McKernan presented his joint work with
P. Cascini, concerning their version of some conjectures of V. Shokurov. It was
particularly nice, since abundantly commented and motivated by examples. L. Ein
presented the solution of the long-standing gonality conjecture the he has recently
obtained in a joint work with R. Lazarsfeld.

We had two talks concerning hyperkähler manifolds. E. Amerik explained us
her impressive work with M. Verbitsky about the Kawamata-Morrison conjecture
(which predicts that the automorphism group of X has only a finite number of
orbits on the set of faces of the Kähler cone). The arguments invoked in the par-
ticular cases they are treating involve many techniques from hyperbolic geometry,
ergodicity... and it gives strong support for the conjecture. The work that G.
Pacienza presented concerns the study of families of rational curves on projective
hyperkähler manifolds; it is based on his joint work with F. Charles. They equally
show the existence of uniruled divisors on an important family of hyperkähler
manifolds.

Given the increasing number of the problems in algebraic geometry which re-
quire deep techniques from the dynamics, we have asked N. Sibony to give an
overview lecture. Our goal was to offer the participants an introduction to these
techniques by one of the experts in the field.

The closing lecture of our meeting was given by Y.-T. Siu. With his usual
inspired energy, Siu discussed a possible approach for the deformation invariance
of the plurigenera in the Kähler setting. His idea is to build a Hodge decomposition
involving mKX as a summand, for m ≥ 2; he has explained the case of curves,
based on classical works of Bol and Schwarz, going back to the 19th century (AD).

We have asked young researchers to give a very concise presentation of their
work, during an informal evening session. This session has generated many dis-
cussions and questions between the participants. The overall experience was very
positive.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Abundance for Kähler threefolds

Andreas Höring

(joint work with Frédéric Campana and Thomas Peternell)

Since the 1990’s, the minimal model program for smooth projective threefolds
is complete: every such manifold X admits a birational model X ′, which is Q-
factorial with only terminal singularities such that X ′ either carries a Fano fibra-
tion, in particular is uniruled, or the canonical bundle KX′ is semi-ample, i.e.,
some positive multiple mKX′ is generated by global sections. There are basically
two parts in the program: first to establish the existence of a model X ′ which is
either a Mori fibre space or has nef canonical divisor, and then to show that nefness
implies semi-ampleness. This second part, known as “abundance”, is established
by [Miy87, Kaw92a, Kwc92].

The aim of the talk is to present a series of papers [HP13a, HP13b, CHP14]
which fully establish the minimal model program in the category of Kähler three-
folds. The first part of the program, i.e., the existence of a bimeromorphic model
X ′ which is a either Mori fibre space or has nef canonical divisor was carried out
in the papers [HP13a] and [HP13b]. The focus of this talk is on the final chapter
[CHP14]: nefness of the canonical divisor implies semi-ampleness, i.e. abundance
holds for Kähler threefolds:

Theorem 1. Let X be a normal Q-factorial compact Kähler threefold with at most
terminal singularities such that KX is nef. Then KX is semi-ample, that is some
positive multiple mKX is globally generated.

The paper [DP03] established the existence of some section in mKX for non-
algebraic minimal models, so the assumption above implies κ(X) ≥ 0. In [Pet01]
abundance was shown for non-algebraic minimal models, excluding however the
very challenging case when X has no non-constant meromorphic function. The
proof of Theorem 1 does not use any assumption on the structure of X and in-
cludes the earlier arguments for the projective case. As a corollary, we establish a
longstanding conjecture on Kähler threefolds:

Theorem 2. Let X be smooth compact Kähler threefold. Assume that X is simple,
i.e. there is no positive-dimensional proper subvariety through the very general
point of X. Then there exists a bimeromorphic morphism X → T/G where T is a
torus and G a finite group acting on T .

For the proof of an abundance statement it is not sufficient to work with va-
rieties, one has to consider the more general setting of pairs (X,B) where B is
an effective divisor on X that is not too singular. More precisely we want to run
a minimal model program for certain pairs (X,B) that are log-canonical. A cru-
cial point for the existence of a minimal model program is to construct (rational)
curves C ⊂ X such that (KX +B) · C < 0. While the details of the construction
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are quite technical, their existence becomes plausible using the following heuristic
argument: suppose that KX +B is pseudoeffective, but not nef. Then there exists
a Kähler class ω such that

α := KX +B + ω

is nef and big but not Kähler. By a theorem of Collins and Tosatti [CT13] this
implies the existence of a subvariety S ⊂ X such that α|S is nef but not big. For
simplicity’s sake suppose that S ⊂ X is a smooth surface, and consider the case
where α|S 6= 0 but (α|S)2 = 0. By the Hodge index theorem we obtain

(KX +B)|S · α|S = −ω|S · α|S < 0,

combining the last inequality with the Boucksom-Zariski decomposition [Bou04]
we deduce that

S|S · α|S < 0.

By the adjunction formula this shows that (KS + B|S) · α|S < 0, in particular
KS is not pseudoeffective. It now follows from the surface classification that S
is covered by rational curves (Ct)t∈T and one can refine the analysis to see that
these curve satisfy (KX +B) · Ct < 0.

This elementary computation suggest a two-step approach to producing rational
curves on compact Kähler manifolds of arbitrary dimension. First one should prove

Conjecture 3. Let X be a compact Kähler manifold. Then X is covered by
rational curves if and only if KX is not pseudoeffective.

This statement is known in the projective case by the seminal work [BDPP13],
but the Kähler case is only known in dimension at most three [Bru06]. Using the
study of adjoint classes KX + ω one can then try to go further:

Conjecture 4. Let X be a compact Kähler manifold such that KX is pseudoef-
fective. If KX is not nef, there exists a rational curve on X.
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Degenerations of polarized Ricci-flat Kähler manifolds

Shigeharu Takayama

We discuss relations among various geometric properties along degenerations of
smooth projective varieties with trivial canonical bundle, such as the finiteness of
the Weil-Petersson distance, the uniform boundedness of diameters with respect to
Ricci-flat Kähler metrics, the volume non-collapsing property, and that the limit
variety has canonical singularities at worst. Full details are explained in [Ta2].

Set-up 1. Let X be a normal complex space admitting f : X → C a projective
surjective holomorphic map with connected fibers, to a Riemann surface C with a
special point 0 ∈ C. Suppose that Xo := X \f−1(0) is smooth, f is smooth on Xo,
and that Xt := f−1(t) is of n-dimensional and has the trivial canonical bundle,
i.e. KXt

= OXt
for any t ∈ Co := C \ {0}. Let X0 := f∗(0) be the special/central

fiber, which may be non-reduced. The symbol t will also stand for a local coordinate
of C centered at 0.

Let L be a holomorphic line bundle on X which is f -ample, and denote by
Lt = L|Xt

for t ∈ Co. According to Yau, there exists a unique Ricci-flat Kähler
form ωt on Xt in the cohomology class c1(Lt) for t ∈ Co. �

Definition 2. There are fundamental geometric intrinsic objects/properties at-
tached to a family of varieties in 1. For our purpose here, we may suppose that C
is a disk in C or an open Riemann surface.

(1) We consider a smooth (1, 1)-form

ωWP :=

√
−1

2π
∂∂ log

(
ˆ

Xt

(−1)n
2/2Ωt ∧ Ωt

)

on Co, where Ω ∈ H0(X,KX/C) is a generator and Ωt = Ω|Xt
∈ H0(Xt,KXt

). By
Griffiths’ computation on the curvature of the Hodge (line) bundle f∗KXo/Co , ωWP

is a semi-positive (1, 1)-form on Co. This ωWP , or the corresponding (pseudo-
)metric tensor, is called the Weil-Petersson (pseudo-)metric on Co. Thus we can
discuss whether or not 0 is at finite distance from Co with respect to ωWP (from any
reference point q ∈ Co). We will refer as dWP (Co, 0) <∞ or dWP (Co, 0) = ∞.

(2) Let Bωt
(x, r) be the geodesic ball of radius r centered at x ∈ Xt and let

Volωt
Bωt

(x, r) be the volume with everything respect to ωt. Let also diam (Xt, ωt)
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be the diameter. We consider the following volume non-collapsing property (with
respect to L or ωt) [DS, (1.2)]: There exists a constant α > 0 such that, for any
t 6= 0, any x ∈ Xt, and any 0 < r ≤ diam (Xt, ωt), a uniform estimate

Volωt
Bωt

(x, r) ≥ αr2n

holds. This property is in fact equivalent to the following uniform diameter bound:
There exists a constant α > 0 such that

diam (Xt, ωt) ≤ α

holds for all t 6= 0. �

Wang [W1, 2.3] proved that, if X0 (is normal and) has canonical singularities
at worst and KX0 = OX0 , then 0 is at finite Weil-Petersson distance from Co;
dWP (Co, 0) < ∞. He conjectured a kind of converse [W1, 2.4]: the finiteness
dWP (Co, 0) <∞ implies X0 has canonical singularities at worst and KX0 = OX0 ,
possibly after a finite base change and a birational modification, and he proved
it under a sort of semi-stable relative minimal model conjecture holds [W2, 1.2].
Recently [To, 1.2] proves such a kind of converse using the semi-stable minimal
model theory from [Fu]. Our first result is to prove a more precise version of the
converse without using the semi-stable minimal model theory.

Theorem 3. Suppose in 1 that the morphism f : X → C is log-canonical, and that
KX/C = 0. Suppose further that 0 is at finite Weil-Petersson distance from Co;
dWP (Co, 0) <∞. Then X0 has canonical singularities at worst and KX0 = OX0 .

In our setting, f : X → C is log-canonical, if the pair (X,X0) has log-canonical
singularities, for example if X is smooth and X0 is reduced and (not necessarily
simple) normal crossing. If X is smooth with KX/C = OX and X0 is simple normal
crossing, 3 is a direct consequence of [W1, 2.1] together with an adjunction formula.
To obtain 3, we use, other than [W1, 2.1], (non-)uniruledness criteria of varieties
such as [HM] and [Ta1].

Tosatti [To] introduces a new perspective in the study of Wang, related to
the work of Donaldson-Sun [DS] on the stability problem in Kähler geometry
(Donaldson-Tian-Yau conjecture). He shows that if X0 has canonical singularities,
then the volume non-collapsing property holds, and he asks the converse. We
answer his question by proving 3 and the following

Theorem 4. Suppose in 1 (f : X → C may not be log-canonical and KX/C may
not be trivial) that the volume non-collapsing property with respect to L holds.
Then 0 is at finite Weil-Petersson distance from Co; dWP (Co, 0) <∞.

This together with 3 gives an algebro-geometric characterization of volume non-
collapsing property for families of Calabi-Yau type manifolds, which was mentioned
by Donaldson-Sun [DS, p. 2]. A theorem [DS, 1.2] says, at least in our setting 1,
that after embedding these Xt (t 6= 0) into PN and taking a projective transform
of Xt, there exists a limit X∞ as t → 0 in a Hilbert scheme of varieties in PN ,
moreover X∞ turns out to be a normal projective variety with log-terminal singu-
larities at worst ([DS, 4.15], which actually proves X∞ has canonical singularities
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at worst and KX∞
= OX∞

). The limit variety X∞ and our X0 may be different,
however we can compare the period maps of manifolds converging to these two
(one is our f : Xo → Co). For a family converging to X∞, we can apply [W1,
2.3] and obtain the finiteness of the Weil-Petersson distance. We then deduce the
finiteness dWP (Co, 0) <∞ for f : X → C.

Combining with other formerly known results due to [W1], [To], [RZ], we obtain

Corollary 5. In Set up 1, the followings are equivalent:
(1) 0 is at finite Weil-Petersson distance from Co; dWP (Co, 0) <∞.
(2) There is a constant α > 0 such that diam (Xt, ωt) ≤ α for all t 6= 0.
(2’) The volume non-collapsing property with respect to L holds.

If we suppose that the morphism f : X → C is log-canonical, and that KX/C = 0,
then the following condition is also equivalent to those stated above.

(3) X0 has canonical singularities at worst and KX0 = OX0 .
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The Prym map revisited

Klaus Hulek

(joint work with Sebastian Casalaina-Martin, Sam Grushevsky, Radu Laza)

To every étale double cover π : C̃ → C one can associate a principally polarized
abelian variety (P,ΘP ) where P is the connected component of the kernel of the

norm map Nm : Jac0(C̃) → Jac0(C), Nm(
∑
niPi) =

∑
niπ(Pi) and where 2ΘP

is the restriction of the theta divisor of C̃ to P . If the genus of C is g + 1, then P
is of dimension g. This gives rise to a morphism of moduli spaces

Pg : Rg+1 → Ag
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from the moduli space Rg+1 of étale double covers of genus g + 1 curves to prin-
cipally polarized abelian varieties Ag of dimension g. It is natural to ask whether
this map extends as a morphism to suitable compactifications of these moduli
spaces. For this one has to specify the compctifications one wants to consider. In
the case of Rg+1 there is the natural compactification Rg+1 of admissible covers
of nodal curves, which is the analogue of the Deligne-Mumford compactification
Mg of the moduli space Mg of curves of genus g. For Ag there are several natural
choices. Apart from the Satake compactification ASat

g , which is “minimal”, one
has toroidal compactifications, which depend on the choice of an admissible cone
decomposition of the rational closure of the cone of positive definite symmetric
g × g matrices.Three such decompositions are known, which in turn lead to the
second Voronoi compactification AVor

g , the first Voronoi or perfect cone compact-

ifiation APerf
g and the central cone or Igusa compactification ACtr

g . The second
Voronoi compactification is distinguished by the fact that it has a modular inter-
pretation, i.e. represents a moduli functor, as the work of Alexeev and Olsson
shows. Shepherd-Barron has proved that APerf

g is a canonical model in the sense

of the minimal model program, and finally the central cone decomposition ACtr
g

can, by a result of Namikawa, be identified with the blow-up of the Satake com-
pactification which was constructed by Igusa. Clearly, the answer to the question
raised about the extendability of the Prym map Pg can (and will) depend on the
target space.

Our renewed interest in this problem has two sources. One is that Alexeev and
Brunyate have recently revisited the Torelli map tg : Mg → Ag, which associates
to a curve its Jacobian variety. It is a result due to Namikawa and Mumford from
the 1970’s that this map extends to a morphism tVor

g : Mg → AVor
g . Alexeev and

Brunyate [2] have shown that this also holds for the map tPerfg : Mg → APerf
g ,

whereas it fails for the central cone decomposition for g ≥ 9. They also noticed
that the image of the Torelli maps tVor

g and tPerfg are contained in the so called ma-

troidal locus Amatr
g , which is a partial toroidal compactification of Ag and which,

by a result of Melo and Viviani [5], is the biggest partial compactfication which is
common to AVor

g and APerf
g . Our second motivations stems from studying inter-

mediate Jacobians of cubic threefolds and their degenerations, which are closely
linked to the Prym map in genus 5.

The extension of the Prym map was first studied by Friedman and Smith. In
an unpublished version of [4] they showed that the Prym map does not extend
as a morphism to any “reasonable” toroidal compactification. Their example is
the following: let C̃ = C̃1 ∪ C̃2 be the union of two smooth curves intersecting
in 4 points C̃1 ∩ C̃2 = {P1, P2, Q1, Q2} and let ι be an involution on C̃ which

restricts to fixed point free involutions on the components C̃i interchanging the
points of intersection ι(Pi) = Qi, i = 1, 2. The quotient C = C̃/〈ι〉 is a nodal
curve C = C1 ∪ C2 with 2 nodes. We refer to an example of this type as an FS2

example. Natural generalizations of this are the so called FSn examples where
C̃1 and C̃2 intersect in 2n points. The extension of the Prym map to the second
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Voronoi compactification AVor
g was studied in detail by Alexeev, Birkenhake and

Hulek and by Vologodsky. Their result is the following

Theorem 1 ([1], [7]). An admissible cover π : C̃ → C is in the indeterminacy
locus of the map PVor

g : Rg+1 99K AVor
g if and only it is a degeneration of an (FS)n

example for n ≥ 2.

The approach we take in [3] differs from that in [1]. Using monodromy and
the Clemens-Schmid theorem we associate to each (singular) admissible cover π :

C̃ → C a monodromy cone σ(C̃/C) in the rational closure Sym2
rc(R

g) of the cone
Sym2

>0(Rg) of positive definite symmetric g × g matrices. The Picard-Lefschetz
theorem shows that this cone is generated by rank 1 forms. A toroidal compact-
ification AΣ

g is given by an (admissible) rational cone decomposition Σ = {σ} of

Sym2
rc(R

g). It then follows from a result due to Namikawa that the Prym map

PΣ
g : Rg+1 99K AΣ

g extends to a morphism near π : C̃ → C if and only if there is

a cone σ ∈ Σ with σ(C̃/C) ⊂ σ. This reduces the question of the extendability
of the Prym map to a question of whether the monodromy cones are contained in
cones of a given admissible decomposition Σ. It must, however, be stressed that
the latter question is anything but trivial. Indeed, there are criteria which deter-
mine whether cones spanned by rank 1 forms are contained in cones of the second
Voronoi, perfect cone or central cone decomposition, but applying these criteria is
highly non-trivial. In the case of the second Voronoi compactification this amounts
to checking that the monodromy matrix is matroidal, but in the other two cases
the criteria require the existence of a quadratic form with certain properties, which
is typically hard to find. These questions can be checked for small genus (at most
up to 9) by computer, but there are no general results available. Following this
approach we can prove

Theorem 2. The indeterminacy locus of the Prym map PPerf
g : Rg+1 99K APerf

g

satisfies

(1) FS2 ∪ FS3 ⊆ Ind(PPerf
g ) ⊆ FS2 ∪ FS3 ∪ ∂FS4 ∪ . . . ∪ ∂FSg

where ∂FSn = FSn − FSn. Moreover,

codimRg+1
Ind(PPerf

g ) \
(
FS2 ∪ FS3

)
≥ 6.

We are also able to recover the results of Theorem 1 with our methods. Moti-
vated by numerous examples we would like to ask the following

Question 3. Is it true that Ind(PPerf
g ) = FS2 ∪ FS3?

Finally, one can apply the same methods also to the central cone compactifica-
tion. This results is

Theorem 4 (Dutour Sikirić). For the extension of the Prym map PCtr
g : Rg+1 99K

ACtr
g to the central cone compactification the following holds:

(1) FS2 ∪ FS3 ⊆ Ind(PCtr
g ), and for n ≥ 4 the strata FSn are not contained

in Ind(PCtr
g ).
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(2) If g ≥ 9, the indeterminacy locus Ind(PCtr
g ) contains points that are not

contained in ∪n≥1FSn.

The last statement of the theorem should be compared to the result of Alexeev
and Brunyate which says that the Torelli map to the central cone compactification
has points of indeterminacy if g ≥ 9. Their examples can be readily adopted to
give points of indeterminacy for the Prym map.
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Kähler-Ricci solitons and K-stability

Robert J. Berman

(joint work with David Witt-Nyström)

We report on joint work with David Witt-Nyström [2]. Let X be a an n-dimension-
al Fano manifold, i.e. its anti-canonical line bundle −KX is ample. A Kähler
metric ω on X is said to be a Kähler-Ricci soliton if there exists a holomorphic
vector field V of type (1, 0) such that

(1) Ric ω = ω + LV ω,

where LV denotes the Lie derivative along V. In particular, ω is in the first Chern
class c1(X) and invariant under the flow of the imiginary part of V and Kähler-
Einstein precisely when V = 0. We will denote by T the real torus acting on X
whose orbits are the closure of the flow of the imaginart part of V. In case X is a
singular Fano variety (with log terminal singularities) the equation 1 is assumed
to hold on the regular locus Xreg of X and the volume of ω on Xreg is assumed
to coincide with c1(X)n/n! (see [1] for the Kähler-Einstein case).
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The pluripotential setup on polarized T−varities. Writing ω = ωφ := ddcφ,
where e−φ defines an Hermitian metric on −KX the equation 1 equivalently means
that

(2) (ddcφ)nefφ = e−φindz1 ∧ dz̄1 · · · ∧ dzn ∧ dz̄n
where fφ is the Hamiltonian function determined by (V, ωφ), which is defined in
terms of the first derivatives of φ. One of the main aims of the work [2] is to
give a weak meaning to the previous equation, i.e. valid for singular metrics φ on
−KX , and to explore the applications to Kähler-Ricci solitions, notably on singular
Fano varities. As it turns out the proper geometric setting is that of a polarized
T−variety (X,L), i.e. T is a real torus of rank m ≤ n acting on a polarized
variety (X,L). Given a smooth positively curved metric φ on L we denote by mφ

the moment map of the T−action on the symplectic manifold (X,ωφ) :

mφ : X → Lie(T )∗ ∼= Rm, 〈mφ, Jξ〉 :=
d

dt |t=0
exp(tJξ)∗φ

where the image P := mφ(X) is the moment polytope of the T−action. Now,
given a, say smooth, function g on P we define the corresponding g−Monge-
Ampère operator on the space of smooth T−invariant metrics φ on L with positive
curvature, by

(3) MAg(φ) := (ddcφ)ng(mφ)

In particular, this construction reproduces the left hand side in the Kähler-Ricci
soliton equation 1 when g(p) := e〈p,ξV 〉, where ξV is the element in the Lie algebra
of T corresponding to the vector field V.

Theorem 1. There exists a unique extension of the g−Monge-Ampère operator
MAg to the space of all T−invariant metrics φ on L with positive curvature current
with the following properties:

• MAg is continuous under decreasing sequences of bounded metrics
• The measure MAg(φ) does not charge pluripolar subsets of X
• The measure MAg(φ) is local with respect to the T−plurifine topology on
X

This result generalizes the two classical extreme case when T is trivial and T has
maximal rank, respectively. The first case is the pluripotential setting of Bedford-
Taylor generalized in [3] while the second case appears when (X,L) is toric, in
which case the g−Monge-Ampère measure may be identified with Alexandrov’s
real Monge-Ampère measure, defined in terms of the subgradient image of the
convex function on Rn corresponding to φ. However, the construction in the general
case requires completely new ideas. In a nut shell, the linearity of MAg(φ) wrt g
is used to reduce the situation to the case when g is a caracteristic function of a
half-space, i.e. g(p) = 1{p>λ}(p) for a given vector λ ∈ Rn. The point is that in
the latter case one can represent

MAg(φ) = MA(Pλφ),
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for a certain projection operator Pλ and thus reduce the definition of MAg and the
study of its properties to the setting of the ordinary (non-polar) complex Monge-
Ampère operator MA. The projection operator in question may be defined by the
following Legendre transform type formula:

(4) Pλφ := inf
t≥0

(φt − 〈t, λ〉) , φt := (et)∗φ

Applications to Kähler-Ricci solitons and K-stability. One application of
the pluripotential setting above is an extension of the Tian-Zhu uniqueness result
[6] to the setting of singular Fano varieties:

Theorem 2. (X,V ) admits at most one Kähler-Ricci soliton, modulo the action
of Aut(X,V )0.

Here Aut(X,V )0 denotes the connected component of the group of all auto-
morphisms of X commuting with the flow of V, i.e. with the corresponding torus
T. By the argument in [4] (concerning the Kähler-Einstein case when V = 0) the
previous uniqueness result implies a generalization of Matsushima’s obstruction:

Corollary 3. If (X,V ) admits a Kähler-Ricci soliton then the group Aut(X,V )0
is reductive.

To get more and (conjectureally even all) obstructions we propose in [2] a
modified form of K-polystability: we say that (X,V ) is K-polystable if Tian-
Zhu’s modified Futaki invariant F (X0, V0) of any C∗−equivariant deformation
(X ,V) = {(Xτ , Vτ )}τ∈C of (X,V ) is non-negative with equality if and only if
(X0, V0) is isomorphic to (X,V ) (see also [7] for an extended definition). The in-
variant F (X0, V0) was originally defined by Tian-Zhu [6] using a metric expression,
but it may in general be defined algebraically as

F (X0, V0) := − lim
k→∞

1

kn

Nk∑

l=1

exp(
v
(k)
l

k
)
w

(k)
l

k
,

where (v
(k)
l , w

(k)
l ) are the joint eigenvalues (weights) for the commuting action of

the real parts of the holomorphic vector fields V and the generator of the given
C∗−action on H0(X0,−kKX0), respectively (using the canonical lifts to −KX).

Theorem 4. If (X,V ) admits a Kähler-Ricci soliton then (X,V ) is K-polystable

The proof uses a generalization of the g−Monge-Ampère measure to the family
(X ,V). As a corollary one gets examples of Fano manifolds admitting non-trivial
holomorphic vector fields, but no Kähler-Ricci solitons (for example, X = Y × Z,
where Y is P2 blown up in one point and Z is Tian’s deformation of the Mukai
threefold). It seems natural to conjecture that the converse to the previous theo-
rem also holds, thus extending the seminal Yau-Tian-Donaldson (YTD) conjecture
to the case when V 6= 0. It should be stressed that V in Theorem 4 necessarily
coincides with the Tian-Zhu extremal vector field VTZ , which is uniquely deter-
mined modulo automorphisms [6]. Accordingly, we will say that a Fano variety X
is K-polystably in the modified sense if (X,VTZ) is K-polystable.
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Outlook on GIT stability and moduli spaces of Fano varities. First recall
that in the Kähler-Einstein setting (or more generally thet constant scalar curva-
ture setting) there is, as shown by Donaldson and Fujiki, an infinite dimensional
version of Geometric Invariant Theory (GIT) motivating the YTD-conjecture.
Briefly, fixing a Kähler form ω0 on the Fano manifold (X, J0) the space J of all
integrable complex structures can be naturally viewed as an infinite dimensional
Kähler manifold with Kähler metric Ω defined by

(5) Ω(δJ, δJ) :=

ˆ

X

‖δJ‖2ω0
ωn0 /n!,

where δJ is a given tangent vector at J ∈ J , identified with a smooth section
of T 1,0(X, J) ⊗ T ∗0,1(X, J). The group G of all symplectic diffeomorphisms of
(X,ω0) acts holomorphically and isometrically on (J ,Ω). We propose the following
generalization of this setup. Fix a torus action T on (X0, J0,Ω0) which is extremal
in the sense of Tian-Zhu. Let GT be the centralizer of T in G and define a two-form
ΩT on the complexified orbit GcT J0 in V by replacing ωn0 in formula 5 by efωn0 ,
where f is the Hamiltonian function determined by the T−action on (X0, J0,Ω).

Theorem 5. The two-form ΩT defines a Kähler form on the complexified orbit
GcT J0 in J and the GT−action on (GcT J0,ΩT ) admits a moment map which may
be identified with the modified scalar curvature map of the metric gJ := ω0(·, J ·)
(defined in [6]). Moreover, the GT−equivariant Kähler potential of ΩT may be
identified with the modified Mabuchi K-energy functional and its slope at infinity,
along a given one-parameter sub-group with limit point J∞ in J , coincides with
the modified Futaki invariant of (X, J∞, T ).

Hence the modified form of the YTD-conjecture proposed above corresponds to
the GIT stability defined wrt GT and ΩT . Let us finally discuss a generalization,
to the case V 6= 0, of a conjecture of Odaka [5] concerning moduli of K-polystable
Fano varieties. Consider the moduli functor of families π : X → B of Fano varieties
with log terminal singularities such that there exists a holomorphic vector field V
on X which is tangential to the fibers such that (Xt, Vt) is K-semistable.

Conjecture 6. There exists a proper course algebraic moduli space M for the
moduli functor above parametrizing Fano manifold X which are K-polystable in
the modified sense. Moreover, each connected component of M is Kähler.

Interestingly, any one-parameter group as in Theorem 5 or more generally any
equivariant degeneration (X ,V) gives rise to a family π : X → P1 in the moduli
functor with a sequence of R-lines bundle LT,k → P1 defined as

LT,kk−(n+1)
∑

v
(k)
i

ev
(k)
i
/k det(π∗Ei), where Ei is the eigenbundle corresponding to

v
(k)
i . Moreover, the limits of the degrees of LT,k is equal to F (X0, V0). We con-

jecture that the limit of LT,k as k → ∞ exists, say as a cohomology class, and
defines a Kähler class on M, or perhaps even an ample R−line bundle LT → M
(thus generalizing the CM-line bundle). Moreover, generalizing a conjecture of
Odaka [5] it seems natural to conjecture that “filling in” a family over a punctured
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curve C∗with a K-polystable (X0, V0) correponds to minimizing deg(LT ) over all
(possibly non K-semistable) Fano families over C.
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Bounded negativity of Shimura curves

Martin Möller

(joint work with Domingo Toledo)

The bounded negativity conjecture claims that for any smooth projective complex
surface X there is a constant b = b(X) ≥ 0, such that for any integral curve C ⊂ X
the self-intersection number C2 is bounded below by −b.

Over fields of positive characteristic this conjecture is obviously false, since
Frobenius pullbacks of any curve with negative self-intersection provide counterex-
amples. Guided by this example, the first attempt to construct counterexamples
was by using complex surfaces with endomorphisms that are not automorphisms.
However, it was shown in [2] that this approach does not work, using the clas-
sification of surfaces admitting such an endomorphisms. The next attempt was
to use correspondences rather than endomorphisms to construct a counterexam-
ple. It was shown in [2] that Picard modular surfaces (i.e. quotients of H2 by
an aritheoremetic lattice) do not produce counterexamples either. The proof is
rather ad hoc, using the logaritheoremic version of the Bogomolov-Miyaoka-Yau
inequalitiy. This method does not apply to the other type of Shimura surfaces,
that is, quotients of the 2-ball.

Our main result uniformly treats both cases and shows that Shimura curves on
Shimura curves do not violate the bounded negativity conjecture.

Theorem 1 ([1]). For any compact smooth Shimura surface X not isogeneous to
a product and for any real number M there are only finitely many Shimura curves
C on X with C2 < M .

The proof relies on Ratner’s results on orbits of groups generated by unipotent
elements, more precisely a version of equidistribution proved by Eskin-Mozes-Shah.
While being beyond of the scope of the original bounded negativity conjecture,
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the theorem holds, suitably interpreted, as well in the non-compact case and in
the presence of torsion elements.

We conclude by the remark that the bounded negativity conjecture is currently
not known for any surface of general type with Picard group of rank ≥ 3. The pre-
ceding theorem does not prove it for Shimura surfaces either, since there could be
non-Shimura curves with arbitrarily large negative self-intersection number. The
author is however not aware of a non-Shimura curve with negative self-intersection
number on a smooth compact Shimura surface.
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Analytic Serre duality on singular complex spaces

Jean Ruppenthal

Classical Serre duality can be formulated as follows: Let X be a complex n-
dimensional manifold, let V → X be a complex vector bundle, and let E0,q(X,V )
and En,qc (X,V ∗) be the spaces of global smooth (0, q)-form with values in V and
global smooth compactly supported (n, q)-forms with values in the dual bundle
V ∗ respectively. Then the following pairing is non-degenerate

(1) Hq
(
E0,•(X,V ), ∂̄

)
×Hn−q

(
En,•c (X,V ∗), ∂̄

)
→ C, ([ϕ]∂̄ , [ψ]∂̄) 7→

ˆ

X

ϕ ∧ ψ

provided that Hq
(
E0,•(X,V ), ∂̄

)
and Hq+1

(
E0,•(X,V ), ∂̄

)
are Hausdorff topolog-

ical spaces (e.g., finite dimensional).
If X is allowed to have singularities, then, traditionally, Serre duality takes a

more algebraic and much less explicit form (involving Grothendieck’s dualizing
sheaf in the Cohen-Macaulay case, or a dualizing complex if the space is not
Cohen-Macaulay). Here, we will explain two natural generalizations of the smooth
(0, q)- and (n, q)-forms to the singular setting so that Serre duality has an analytic
realization completely analogous to (1). All the following statements are valid for
forms with values in a hermitian vector bundle V and its dual V ∗, respectively,
but we will omit that for ease of notation.

The first approach is via L2-theory for the ∂-operator on singular spaces. Here,
we consider ∂-complexes of L2-forms on the regular part of a hermitian singular
complex space X of pure dimension n. In [PS], Pardon and Stern proved exactness
of the complex of fine sheaves of L2-forms (in the domain of ∂w)

(2) 0 → KX →֒ Cn,0 ∂w−→ Cn,1 ∂w−→ Cn,2 ∂w−→ ...

where ∂w is the ∂-operator in the sense of distributions and KX is the Grauert–
Riemenschneider canonical sheaf of square-integrable holomorphic n-forms (∂w
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stands for the ∂-operator in a weak sense). Hence,

(3) Hq(X,KX) ∼= Hq
(
Cn,•(X), ∂w

)
,

which has interesting consequences for the solvability of the L2-∂w-equation, par-
ticularly if X is for example q-complete or q-convex.

In [R1], we introduced another ∂-operator acting on L2-forms on singular com-

plex spaces, the so-called ∂s-operator which comes with a certain Dirichlet bound-
ary condition at the singular set (∂s stands for the ∂-operator in a ’strong’ sense).
This operator played a crucial role in the determination of certain L2-cohomology
groups on singular complex spaces and the proof of a conjecture of Pardon and
Stern (see [R1] and [OV]).

Let us consider now the ∂-complex

(4) 0 → OX →֒ F0,0 ∂s−→ F0,1 ∂s−→ F0,2 ∂s−→ ...

of fine sheaves of L2-forms in the domain of the ∂s-operator. Then (4) is not
necessarily exact on arbitrary singular complex spaces, but it was shown in [R2],
Theorem 1.4, that it is a dualizing Dolbeault complex for KX in the sense that
there is a non-degenerate topological pairing

(5) Hq
(
Cn,•(X), ∂̄w

)
×Hn−q

cpt

(
F0,•(X), ∂̄s

)
→ C, ([ϕ]∂̄w , [ψ]∂̄s) 7→

ˆ

X

ϕ ∧ ψ

provided that Hq(X,KX) ∼= Hq
(
Cn,•(X), ∂̄w

)
and Hq+1(X,KX) ∼=

Hq+1
(
Cn,•(X), ∂̄w

)
are Hausdorff. Analogously, there is another non-degenerate

topological pairing

(6) Hq
cpt

(
Cn,•(X), ∂̄w

)
×Hn−q

(
F0,•(X), ∂̄s

)
→ C, ([ϕ]∂̄w , [ψ]∂̄s) 7→

ˆ

X

ϕ ∧ ψ

under the corresponding Hausdorff condition. It is also shown in [R2], Theorem
1.5, that the cohomology spaces

Hq
(
Cn,•(X), ∂̄w

)
, Hq

cpt

(
Cn,•(X), ∂̄w

)

are Hausdorff for all q ≥ 0 if X is holomorphically convex.
Let us explain two interesting applications of (5) and (7). First, consider a

complex space X of pure dimension n ≥ 2 which is cohomologically (n − 1)-
complete (or just (n − 1)-complete in the sense of Grauert). Then (3) and (6)
yield that

(7) H1
cpt

(
F0,•(X), ∂s

) ∼= Hn−1
(
Cn,•(X), ∂w

) ∼= Hn−1(X,KX) = 0,

i.e., the ∂s-equation is solvable for (0, 1)-forms with compact support. Using this,
one can prove Hartogs’ extension theorem by the ∂-technique of Ehrenpreis in its
most general form easily on such a space X (see [R2], Theorem 1.7).

A second very interesting application is as follows. Let π : M → X be a resolu-
tion of singularities and Ω ⊂⊂ X holomorphically convex. Give M any hermitian
metric. Then pullback of L2-(n, q)-forms under π induces an isomorphism

(8) π∗ : Hq
cpt

(
Cn,•(Ω), ∂w

) ∼=−→ Hq
cpt

(
Cn,•(π−1(Ω)), ∂w

) ∼= Hq
cpt

(
π−1(Ω),KM

)
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for all 0 ≤ q ≤ n by use of Pardon–Stern [PS] and the Takegoshi vanishing theorem.
Now we can use the L2-Serre duality (6) and classical Serre duality on the smooth
manifold π−1(Ω) to deduce that push-forward of forms under π induces another
isomorphism

(9) π∗ : Hn−q
(
π−1(Ω),OM

) ∼=−→ Hn−q
(
F0,•(Ω), ∂s

)

for all 0 ≤ q ≤ n ([R2], Theorem 1.1). This shows that the obstructions to solving
the ∂s-equation locally for (0, q)-forms can be expressed in terms of a resolution of

singularities. For the cohomology sheaves of the complex (F0,•, ∂s), we see that
(
Hq

(
F0,•, ∂s

))
x
∼= (Rqπ∗OM )x

in any point x ∈ X for all q ≥ 0, i.e., the functions in the kernel of ∂s are precisely
the weakly holomorphic functions and the complex (4) is exact in a point x ∈ X
exactly if x is a rational point (see [R2], Theorem 1.3).

We conclude by mentioning another approach to analytic Serre duality on sin-
gular spaces which is based on the so-called A0,q-sheaves introduced by Andersson
and Samuelsson in [AS]. These are certain sheaves of (0, q)-currents on singular
complex spaces which are smooth on the regular part of the variety and such that
the ∂-complex

(10) 0 → OX →֒ A0,0
∂−→ A0,1

∂−→ A0,2 −→ ...

is a fine resolution of the structure sheaf. The A-sheaves are defined via Koppelman
integral formulas on singular complex spaces.

Analogously, in [RSW], we introduced a ∂-complex of fine sheaves of (n, q)-
currents (smooth on the regular part of the variety)

(11) 0 → ωX →֒ An,0
∂−→ An,1

∂−→ An,2 −→ ...

where X is of pure dimension n and ωX denotes the Grothendieck dualizing sheaf.
The complex (11) is exact only under some additional assumptions, e.g. if X is

Cohen-Macaulay. We call (An,•, ∂) a dualizing Dolbeault complex for OX because
we obtain a non-degenerate topological pairing

(12) Hq
(
A0,•(X), ∂̄

)
×Hn−q

cpt

(
An,•(X), ∂̄

)
→ C, ([ϕ]∂̄ , [ψ]∂̄) 7→

ˆ

X

ϕ ∧ ψ

provided that Hq(X,OX) ∼= Hq
(
A0,•(X), ∂̄

)
and Hq+1(X,OX) ∼=

Hq+1
(
A0,•(X), ∂̄

)
are Hausdorff topological spaces.
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Density of positive closed currents and dynamics of Hénon-type
automorphisms of Ck

Nessim Sibony

(joint work with Tien-Cuong)

The first aim is to introduce a new approach in order to get several equidistribution
properties in complex dynamics in higher dimension. The strategy that we will
describe in the case of Hénon-type automorphisms, requires developments of the
theory of positive closed currents which are of independent interest.

Let f : Ck → Ck be a polynomial automorphism. We extend it to a birational
self-map of the projective space Pk that we still denote by f . We assume that
f is not an automorphism of Pk; otherwise the associated dynamical system is
elementary. We say that f is regular or of Hénon-type if the indeterminacy sets I+
and I− of f and of its inverse f−1 satisfy I+∩I− = 0. In dimension 2, Hénon maps
satisfy this property and any dynamically interesting automorphism is conjugated
to a Hénon map. Consider a Hénon-type map f as above. There is an integer
1 ≤ p ≤ k − 1 such that dim I+ = k − p − 1 and dim I− = p − 1. Let d+ (resp.
d−) denote the algebraic degrees of f+ (resp. of f−), i.e. the maximal degrees of

its components which are polynomials in Ck. We have dp+ = dk−p− and we denote
this integer by d. On can construct for such a map an invariant measure µ with
compact support in Ck which turns out to be the unique measure of maximal
entropy log d.

The measure µ is called the Green measure or the equilibrium measure of f .
It is obtained as the intersection of the main Green current T+ of f and the one
associated to f−1. The authors have shown that T+ (resp. T−) is the unique
positive closed (p, p)-current (resp. (k − p, k − p)-current) of mass 1 supported
by the set K+ (resp. K−) of points of bounded orbit (resp. backward orbit) in
Ck. They are also unique currents having no mass at infinity which are invariant
under d−1f∗ (resp. d−1f∗). Let Pn denote the set of periodic points of period n
of f in Ck and SPn the set of saddle periodic points of period n in Ck. We have
the following result.

Theorem 1. Let f, d, µ, Pn and SPn be as above. Then the saddle periodic points
of f are asymptotically equidistributed with respect to µ. More precisely, if Qn
denotes Pn or SPn we have

d−n
∑

a∈Qn

δa → µ as n→ ∞,

where δa denotes the Dirac mass at a.
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We can replace Qn with other subsets of SPn which allow us to precise the
nature of typical periodic points. For example, given an ǫ > 0, we can take
only periodic points a of period n such that the differential Dfn at a admits p
eigenvalues of modulus larger than (δ − ǫ)n/2 and k − p eigenvalues of modulus
smaller than (δ − ǫ)−n/2 with δ := min(d+, d−).

In dimension 2, the above Theorem and the uniqueness of the maximal entropy
measure were obtained by Bedford-Lyubich-Smillie and the uniqueness of T± were
obtained by Fornæss and the second author . In order to obtain the equidistribu-
tion of periodic points in dimension 2, Bedford-Lyubich-Smillie proved and used
that the Green currents T+, T− are laminated by Riemann surfaces whose inter-
sections give the measure µ. In the higher dimensional case, we will use another
method which also allows us to obtain as a consequence the laminar property
of T± and the product structure of µ. The approach, that we describe below,
has some advantages. It permits to show for example that if L+ and L− are
Zariski generic subvarieties of dimension k − p and p respectively, then the points
in f−n(L+) ∩ fn(L−) are also equidistributed with respect to µ. One can hope
that our approach will allow to estimate the speed of convergence in the above
equidistribution results.

Let ∆ denote the diagonal of Pk × Pk and Γn denote the compactification of
the graph of fn in Pk × Pk. The set Pn can be identified with the intersection of
Γn and ∆ in Ck×Ck. The dynamical system associated to the map F := (f, f−1)
on Pk × Pk is similar to the ones associated to Hénon-type maps on Pk. It was
used by the first author in in order to obtain the exponential mixing of µ on Ck.
Observe that Γn is the pull-back of ∆ or Γ1 by Fn/2 or F (n−1)/2. So a property
similar to the uniqueness of the main Green currents mentioned above implies that
the positive closed (k, k)-current d−n[Γn] converges to the main Green current of
F which is equal to T+ ⊗ T−. Therefore, Theorem 1 is equivalent to

lim
n→∞

[∆] ∧ d−n[Γn] = [∆] ∧ lim
n→∞

d−n[Γn]

on Ck × Ck since µ = T+ ∧ T− can be identified with [∆] ∧ (T+ ⊗ T−). So our
result requires the development of a good intersection theory in any dimension.

The typical difficulty here is illustrated in the following example. Consider ∆′

the unit disc in C× {0} ⊂ C2 and Γ′
n the graph of the function x 7→ xd

n

over ∆′.
The current d−n[Γ′

n] converges to a current on the boundary of the unit bidisc in
C2 while their intersection with [∆′] is the Dirac mass at 0. So we have

lim
n→∞

[∆′] ∧ d−n[Γ′
n] 6= [∆′] ∧ lim

n→∞
d−n[Γ′

n]

We see in this example that Γ′
n is tangent to ∆′ at 0 with maximal order. We can

perturb Γ′
n in order to get manifolds with intersect ∆′ transversally but the limit

of their intersections with ∆′ is still equal to the Dirac mass at 0. In fact, this
phenomenon is due to the property that some tangent lines to Γ′

n are too close to
tangent lines to ∆′.

It is not difficult to construct a map f such that Γn is tangent or almost tangent
to ∆ at some points for every n. In order to handle the main difficulty in our
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problem, the strategy is to show that the almost tangencies become negligible
when n tends to infinity. This property is translated in our study into the fact
that a suitable density for positive closed currents vanishes. We explain now the
notion of density of currents in the dynamical setting and then develop the theory
in the general setting of positive closed currents.

Let Grk(Pk × Pk) denote the Grassmannian bundle over Pk × Pk where each
point corresponds to a pair (x, [v]) of a point x ∈ Pk × Pk and of the direction [v]

of a k-vector v in the complex tangent space to Pk × Pk at x. Let Γ̂n denote the
lift of Γn to Grk(Pk ×Pk), i.e. the set of points (x, [v]) with x ∈ Γn and v tangent

to Γn at x. Let ∆̃ denote the set of points (x, [v]) in Grk(Pk×Pk) with x ∈ ∆ and

v non-transverse to ∆. The intersection Γ̂n ∩ ∆̃ corresponds to the non-transverse

points of intersection between Γn and ∆. Note that dim Γ̂n + dim ∆̃ is smaller
than the dimension of Grk(Pk×Pk) and in general the intersection of subvarieties
of such dimensions are often empty. Analogous construction can be done for the
manifolds Γ′

n and ∆′ given above.

We show that the current d−n[Γ̂n] converges to some positive closed current T̂

which is considered as the lift of T := T+ ⊗ T− to Grk(Pk × Pk). Using a theorem

due to de Thélin on the hyperbolicity of µ we show that the density between T̂ and

∆̃ vanishes. This property corresponds that almost tangencies is negligible when
n goes to infinity. The example with Γ′

n and ∆′ illustrates typically the opposite
situation.

Consider now the general situation on a Kähler manifold X of dimension k.
Assume for simplicity that X is compact. We want to introduce a notion of
density between two positive closed currents T1 and T2 on X of bidegree (p1, p1)
and (p2, p2) respectively. Consider first the case where T1 and T2 are given by
integration on submanifolds V1 and V2 such that dim V1 + dimV2 < k. For generic
submanifolds, we have V1 ∩ V2 = ∅. However, in general this intersection may
be non-empty and the classical theory of intersection of currents does not give a
meaning to this intersection for bi-degree reason.

On the other hand, when V2 is a point, denoted by a, there is a notion of
multiplicity of V1 at a. More generally, if T1 is a general positive closed current
there is a notion of Lelong number ν(T1, a) of T1 at a which represents the density
of T1 at a. Choose a local holomorphic coordinate system x near a such that a = 0
in these coordinates. The Lelong number of T1 at a is the limit of the normalized
mass of T1 on the ball B(0, r) of center 0 and of radius r when r tends to 0. More
precisely, we have

ν(T1, a) := lim
r→0

‖T1‖B(0,r)
(2π)k−p1r2k1−2p1

·

We can represent the Lelong number in another geometric point of view related
to Harvey’s results . Let Aλ : Ck → Ck be defined by Aλ(x) := λx with λ ∈ C∗.
When λ goes to infinity, the domain of definition of the current T1,λ := (Aλ)∗(T1)
converges to Ck. This family of currents is relatively compact and any limit
current, for λ → ∞, is invariant under the action of C∗, i.e. invariant under
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(Aλ)∗. If S is a limit current, we can extend it to Pk with zero mass on the
hyperplane at infinity. Thus, there is a positive closed current S∞ on Pk−1 such
that S = π∗

∞(S∞) where we identify the hyperplane at infinity with Pk−1 and
we denote by π∞ : Pk \ {0} → Pk−1 the canonical central projection (we do not
consider here the case where T1 is a measure, i.e. p1 = k). The class of S∞ (resp.
of S) in the de Rham cohomology of Pk−1 (resp. of Pk) is equal to ν(T1, a) times
the class of a linear subspace. So these cohomology classes do not depend on the
choice of S. Kiselman showed that in general the current S is not unique . We
consider now the situation where T1 is a general positive closed (p1, p1)-current
and T2 is given by a submanifold V2. For simplicity, we will write T, p, V instead
of T1, p1, V2 and denote by l the dimension of V . With respect to the above case,
the point a is replaced by the manifold V . We want to define a notion of tangent
current to T along V that corresponds to currents S above. Let E denote the
normal vector bundle to V in X and E its canonical compactification. Denote
by Aλ : E → E the map induced by the multiplication by λ on fibers of E with
λ ∈ C∗. We identify V with the zero section of E. The tangent currents to T
along V will be positive closed (p, p)-currents on E which are V -conic, i.e. invariant
under the action of Aλ. The first difficulty is that when V has positive dimension,
in general, no neighbourhood of V is X is biholomorphic to a neighbourhood of V
in E.

Let τ be a diffeomorphism between a neighbourhood of V in X and a neighbour-
hood of V in E whose restriction to V is identity. We assume that τ is admissible
in the sense that the endomorphism of E induced by the differential of τ is identity.
It is not difficult to show that such maps exist. Here is the main result in the first
part of this paper.

Theorem 2. Let X,V, T,E,E,Aλ and τ be as above. Then the family of currents
Tλ := (Aλ)∗τ∗(T ) is relatively compact and any limit current, for λ → ∞, is a
positive closed (p, p)-current on E which extends by 0 to a positive closed (p, p)-
current on E. Moreover, if S is such a current, it is V -conic, i.e. invariant under
(Aλ)∗, and its de Rham cohomology class in H2p(E,C) does not depend on the
choice of τ and of S.

We say that S is a tangent current to T along V . Its class in the de Rham
cohomology group is the total tangent class to T along V . Note that this notion
generalizes a notion of tangent cone in the algebraic setting where T is also given
by a manifold, see Fulton for details. The key point in the dynamical setting

considered above is that the tangent currents to T̂ along ∆̃ vanish.
The cohomology ring of E is generated by the cohomology ring of V and the

tautological (1, 1)-class on E. Therefore, we can decompose the class of S and
associate it to classes of different degrees on V . These classes represent different
parts of the tangent to T along V .

Consider now arbitrary positive closed currents T1, T2 on X and the tensor
product T1⊗T2 on X×X . Let ∆ denote the diagonal of X×X . We can consider
the tangent currents and the total tangent class to T1 ⊗ T2 along ∆. The normal
vector bundle to ∆ is canonically isomorphic to the tangent bundle of X if we
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identify ∆ with X . The tangent currents and the total tangent class in this case
induce the density currents and the total class of density associated to T1 and T2.

Assume that p1 + p2 ≤ k and there is a only one tangent current S to T1 ⊗ T2
along ∆. Assume also that for j > k − p1 − p2, the current S vanishes on the
pull-back of (j, j)-forms by the canonical projection onto X . Then we show that S
is the pull-back of a unique positive closed current Sh of bidegree (p1 +p2, p1 +p2)
on X . In this case, we call Sh the wedge-product of T1 and T2 and denote it by
T1fT2. The notion can be extended to a finite number of currents. So the density
of currents extends the theory of intersection.

Economical toroidal resolutions

James McKernan

(joint work with Paolo Cascini)

“Toric varieties are everywhere dense.”

We start with a little bit of background to motivate the main conjecture. In what
follows, ACC stands for the ascending chain condition and DCC stands for the
descending chain condition.

Conjecture 1. Fix a positive integer n, and two subsets I ⊂ [0, 1] and J ⊂ [0,∞)
satisfying the DCC.

Then there are two finite sets I0 and J0 with the following property:
Let (X,∆) be a log canonical pair, where X has dimension n, the coefficients

of ∆ belong to I and the log discrepancy of (X,∆) belongs to J .
Then the coefficients of ∆ belong to I0 and the log discrepancy of (X,∆) belongs

to J0.

This conjecture is an amalgam of two separate conjectures due to Shokurov:

Conjecture 2 (ACC for the log discrepancy). Fix a positive integer n, and two
subsets I ⊂ [0, 1] and J ⊂ [0,∞) satisfying the DCC.

Then there is a finite set J0 with the following property:
Let (X,∆) be a log canonical pair, where X has dimension n, the coefficients

of ∆ belong to I and the log discrepancy of (X,∆) belongs to J .
Then the log discrepancy of (X,∆) belongs to J0.

Conjecture 3 (ACC for the a-threshold). Fix a positive integer n, a subset I ⊂
[0, 1] satisfying the DCC and a real number a.

Then there is a finite set I0 with the following property:
Let (X,∆) be a log canonical pair, where X has dimension n, the coefficients

of ∆ belong to I and the log discrepancy of (X,∆) is a.
Then the coefficients of ∆ belong to I0.

We know some special cases of these conjectures. Conjecture 3 was recently
proved in the special case when a = 0:
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Theorem 4 (ACC for the log canonical threshold [3]). Fix a positive integer n
and a subset I ⊂ [0, 1] satisfying the DCC.

Then there is a finite set I0 with the following property:
Let (X,∆) be a log canonical pair, where X has dimension n, the coefficients

of ∆ belong to I and the log discrepancy of (X,∆) is zero.
Then the coefficients of ∆ belong to I0.

We also know some special cases of Conjecture 2:

Theorem 5 (Borisov [2], Lawrence [5]). Conjecture 2 holds if (X,∆) is toric.

Theorem 6 (Alexeev [1]). Conjecture 2 holds if X is a surface.

Finally we know a version of Conjecture 1 for threefolds:

Theorem 7 (Kawakita [4]). Conjecture 1 holds if X is a threefold and J ⊂ [1,∞).

Recall one further conjecture due to Ambro and Shokurov:

Conjecture 8 (Semi-continuity of the log discrepancy [6]). Let (X,∆) be a log
pair.

The minimal log discrepancy of (X,∆) is lower semi-continuous.

Theorem 9 ([6]). Assume Conjecture 2 and Conjecture 8.
If (X,∆) is a kawamata log terminal pair, where X is a Q-factorial projective

variety, then any sequence of flips terminates.

Note that the only version of Conjecture 2 which is known in all dimensions is
for toric pairs, cf. Theorem 5. One approach to prove Conjecture 2 would be to
try to reduce to this case.

Conjecture 10. Fix a positive integer n.
Then there is a positive integer s with the following property:
If (X,∆) is any log canonical pair, where X has dimension n, then there is pro-

jective birational morphism Y → X such that (Y,Γ) is toroidal, in a neighbourhood
of the generic point of every non kawamata log terminal centre of (Y,Γ), where

Γ = ∆̃ + E is the sum of the strict transform ∆̃ of ∆ and all of the exceptionals.
Moreover there are at most s exceptional divisors and every exceptional divisor has
log discrepancy zero.

Note that the economical part of the conjecture is the statement that there are
at most s exceptional divisors. Note also that the condition that (Y,Γ) is toroidal
at the generic point of every non kawamata log terminal centre is equivalent to
the condition that π is a qdlt modification, that is, (Y,Γ) has quotient divisorially
log terminal singularities.

It is interesting to consider what happens for surfaces. Alexeev and Kawamata
completely classified kawamata log terminal surface singularities. By considering
the canonical cover, Kawamata observed that a surface has kawamata log termi-
nal singularities if and only if it has quotient singularities. There are five types of
possible quotients, quotient by a cyclic group, quotient by a dihedral group and
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quotient by one of three exceptional groups. Alexeev derived Kawamata’s clas-
sification by direct calculation of the resolution graph of the minimal resolution.
Every exceptional curve is a copy of P1. The cyclic case corresponds to a chain,
the dihedral case to a chain with two vertices added at one end, corresponding to
two −2–curves. The exceptional cases all have one vertex of degree three and they
have at most eight vertices.

In terms of Conjecture 10 note that the cyclic case is toric. We may take π to
be the identity and so s = 0 in this case. In the dihedral case, there is only one
vertex of degree three. This corresponds to a curve on the minimal resolution. If
we let π : T → S be the birational morphism we get by contracting every curve on
the minimal resolution apart from this curve, then π has one exceptional divisor
E and (T,E) is toroidal, since there are three chain singularities along E. Thus
s = 1 works in the dihedral case. There is a similar analysis for the exceptional
singularities. Thus s = 1 works for surfaces.

We sketch part of a possible argument for threefolds. We work locally about
x ∈ X . If x is not a non kawamata log terminal centre we are done by induction
on the dimension. For simplicity, we assume that X is Q-factorial.

Write ∆ = S + B where ⌊∆⌋ = S and {∆} = B. Let m be the number of
components of S. Then m ≤ 3 and if m = 3 then B = 0 and (X,∆) is toric. Our
aim is to reduce to this case. We proceed by induction on m. At each step we
try to increase m by going to a higher model. In fact there are at also most three
curves which are non kawamata log terminal centres and so it suffices to increase
the number of non kawamata log terminal centres containing x. We sketch the
first two steps of the argument and part of the third step.

If m = 0 then we may construct a birational projective morphism π : Y → X
with one exceptional divisor E of log discrepancy zero such that π(E) = x. Since
X is Q-factorial, E has Picard number one. It follows that there are at most three
points on E which are non kawamata log terminal centres for (Y,Γ = ∆̃ + E).
Thus we may divide and conquer and treat each point separately.

Replacing (X,∆) by (Y,Γ) we may assume that m ≥ 1. This completes the
first step. Suppose that m = 1. For simplicity we assume that B = 0. We reduce
to the case when there is a non kawamata log terminal centre which is a curve
passing through x. As before we may construct a birational projective morphism
π : Y → X with one exceptional divisor E of log discrepancy zero such that
π(E) = x. Let T be the strict transform of S. If y is a non kawamata log terminal
centre which belongs to T then it belongs to two components of coefficient one of
Γ, E and T . Thus we may assume that there is a non kawamata log terminal centre
y on E not on T . By connectedness there is a curve D on E, a non kawamata log
terminal centre, connecting the non kawamata log terminal centre y to the non
kawamata log terminal centre T ∩ E.

Replacing (X,∆) by (Y,Γ) we may assume that m = 1 and that there is a non
kawamata log terminal centre which is a curve C. This completes the second step.
We reduce to the case when S is not normal along C. Cutting by a hyperplane,
and using the classification of kawamata log terminal surfaces, we know that if S
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is normal along C then the index of KX + S is two along C, that is, KX + S is
not Cartier but 2(KX + S) is Cartier in a neighbourhood of the generic point of
C. It follows that there is a Z2-cover of X ′ → X such that the inverse image of S
is not normal along the inverse image of C.

If we can find a birational morphism Y ′ → X ′ such that every non kawamata
log terminal centre which is a point is contained in three components of coefficient
one, then we can take the Z2-quotient to get a birational morphism Y → X with
m ≥ 2.

Replacing (X,∆) by (X ′,∆′) we may assume that either m = 2 or S is not
normal along C. The rest of the argument proceeds in a similar way.
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Uniruled divisors and Chow groups on projective hyperKähler
manifolds

Gianluca Pacienza

(joint work with Francois Charles)

I report on a joint on-going project with Francois Charles, in which we study
families of rational curves on projective hyperKähler manifolds with applications
to the study of their Chow groups of 0-cycles. In particular we prove that a
projective hyperKähler manifold X of K3[n]-type contains uniruled divisors and
that the subgroup that those uniruled divisors determine inside CH0(X) is always
the same.

1. Introduction

The starting point of our project are two “classical” results on complex projective
K3 surfaces.

Theorem 1 (Bogomolov-Mumford, Mori-Mukai, cf. [MoMu]). Any ample linear
system on a complex projective K3 surface contains a divisor whose components
are rational curves.

The above result has been used by Beauville and Voisin to obtain, in a rather
easy way, a surprising property of Chow groups of complex projective K3 surfaces.
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Theorem 2 (Beauville-Voisin, cf. [BV]). Let S be a complex projective K3 sur-
face.

(i) Any point on any rational curve on S determines the same class cS in
CH0(S);

(ii) The image of the intersection product

Pic(S) ⊗ Pic(S) → CH0(S), L1 ⊗ L2 7→ L1 · L2

lies in Z · cS .
The Beauville-Voisin result is somehow unexpected, since, by Mumford’s the-

orem on 0-cycles on surfaces with pg 6= 0 (cf. [V1]), we know that CH0(S) is
“huge”, in the sense that it cannot be parametrized in any reasonable way by any
quasi-projective variety of any dimension. Together with a third result (saying
that c2(S) = 24cS) it led the authors to a conjectural generalization which we will
discuss in further details below.

I will report here on a joint on-going project with François Charles, in which we
investigate to which extent the above theorems can be generalized to the higher-
dimensional setting. Some of our results are contained in the preprint [CP].

Before stating our results, it is useful to recall the ideas underlying the proofs of
the above theorems, with the hope of clarifying the approach we will follow. As for
the existence of an ample divisor which is sum of rational curves, the proof relies
on the one hand on the fact that “special” K3 surfaces (namely Kummer surfaces)
are known to have such a property, and, on the other hand, on some deformation
theory allowing to propagate that property from a special point in the moduli
space of (polarized) K3 surfaces to a general one. Concerning the Chow groups,
Beauville and Voisin observe that if two rational curves on a K3 do not intersect
(otherwise we are done), then they can be (rationally) connected using the ample
divisor which is sum of rational curves given by Theorem 1. The second item of
Theorem 2 follows from the first, by noticing that, again thanks to Theorem 1, the
Picard group of a projective K3 surface is generated by classes of rational curves.

Our main results are the following.

Theorem 3. Let X be a projective hyperKähler manifold which is deformation
equivalent to (K3)[n]. Any ample linear system on X contains a divisor whose
components are uniruled.

Theorem 4. Let X be a projective hyperKähler manifold which is deformation
equivalent to (K3)[n].

(i) Any two uniruled divisors D1, D2 on X determine the same subgroup in
CH0(X)Q, i.e.

Im
(
CH0(D1)Q → CH0(X)Q

)
= Im

(
CH0(D2)Q → CH0(X)Q

)
=: S1CH0(X).

(ii) The image of the intersection product

Pic(S) ⊗ CH1(X)Q → CH0(X)Q, L⊗ Z 7→ L · Z
lies in S1CH0(X).
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It is to be noted that hyperKähler manifolds are not hyperbolic. This has been
recently proved by Verbitsky, cf. [Ver], using among other things his global Torelli
theorem [Ver09]. Nevertheless, no general results on the existence of rational
curves on hyperKähler manifolds seemed to be known before our work.

The proof of Theorem 3 goes as follows. First, using Markman’s theory of
monodromy invariants, cf. [Mar] for a survey, one proves that any primitively
polarized hyperKähler manifold (X,h), with X ∼def (K3)[n] can be deformed

together with its polarization to (S[n], Li), where S is a K3 surface and L1, . . . , Ln
are explicit classes in Pic(S[n]). The next step is to show, using classical Brill-
Noether theory, that all the linear systems |Li| contain uniruled divisors. The
final ingredient is provided by a geometric deformation-theoretic criterion, for
which we need to introduce some notation. Let π : X → B be a smooth projective
morphism of projective hyperKähler manifolds of relative dimension 2n, and let
α be a global section of the local system R4n−2π∗Z. Let b0 be a point of B such
that Xb0 = X .

Proposition 5. Let f : P1 → X a non-constant map such that αb0 = f∗[P1]. Let
M be an irreducible component of the Kontsevich moduli stack of genus zero stable
curves M0(X, f∗[P1]) containing [f ]. Let Y be the subscheme of X covered by the
deformations of f parametrized by M. If Y is a divisor in X, then:

(1) the map f : P1 → X deforms over a finite cover of B;
(2) for any point b of B, the fiber Xb contains a uniruled divisor.

As for Theorem 4 the key role is played by the Beauville-Bogomolov quadratic
form qX (cf. [B1]). If D1 and D2 are two uniruled divisors such that qX(D1, D2) 6=
0, then one has that Σ := D1 ∩D2 is not empty and, for i = 1, 2 we have

Im
(
CH0(Di)Q → CH0(X)Q

)
= Im

(
CH0(Σ)Q → CH0(X)Q

)
=: S1CH0(X).

If qX(D1, D2) = 0, then one uses an primitive ample uniruled divisor D given by
Theorem 3. Hence qX(D,Di) 6= 0 and the previous case allows to conclude. The
proof of item (ii) of Theorem 4 uses similar arguments.

So far we have seen a rational curve on a K3 surface as a uniruled divisor on a
projective hyperKähler manifold. It can of course equally be regarded, in higher
dimension, as a Lagrangian subvariety of maximal dimension which is rationally
connected. This leads to the following questions.

Question 6. Let X be a projective hyperKähler manifold of dimension 2n.

(i) Does there exist a rationally connected subscheme Y of X of pure dimen-
sion n?

(ii) Do any two points on any two rationally connected n-dimensional sub-
schemes of X determine the same class cX ∈ CH0(X)?

We can answer positively to the first question in dimension 4:

Theorem 7. Let X be a projective holomorphic symplectic fourfold of K3[2]-type.
Then X contains a rational Lagrangian surface.
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To put the item (ii) of the question into perspective recall that, inspired by
their result, Beauville has stated in [B2] a conjecture, further refined by Voisin in
[V2], saying that for a projective hyperKähler manifold X the natural cycle map,
from cohomology to the Chow group, is injective when restricted to the subalgebra
generated by the 1st Chern classes of line bundles and the Chern classes of X . This
conjecture predicts in particular the existence of a canonical 0-cycle cX ∈ CH0(X)
of degree 1 such that

L1 · . . . ·Lr · c2(X)e2 · . . . · c2n(X)e2n = deg(L1 · . . . ·Lr · c2(X)e2 · . . . · c2n(X)e2n) · cX ,
for all Li ∈ Pic(X) and r, e2i such that r +

∑
2i · e2i = 2n. Our approach tries

to realize geometrically such a 0-cycle as a point on a half-dimensional rationally
connected subvariety of X .
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Representing Analytic Cohomology Groups of Complex Manifolds

László Lempert

Consider a holomorphic vector bundle L → X . Its cohomology groups Hq(X,L)
are often represented in terms of open covers U = {Ua : a ∈ A} of X and the
associated Čech complex C•(U, L), whose elements are collections (fa0...aq )aj∈A,
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with each fa0...aq ∈ Γ(
⋂q
j=1 Uaj , L) a holomorphic section of L. If each Ua is Stein,

by Cartan’s Theorem B and by Leray’s theorem Hq(X,L) ≈ Hq(C•(U, L)).
The notion of Čech cochains (fa0...aq ) is very natural if the cover U is indexed by

a set A without any structure. However, as Gindikin noted in the 1990s, if A has
some structure, then it makes sense to consider cochains that, in their dependence
on aj , reflect this structure. For example, if A is a differential or complex manifold,
or a measure space, one can work with the subspaces C•

smooth(U, L), C•
hol(U, L),

or C•
meas(U, L) of cochains (fa0...aq ) that depend smoothly, holomorphically, or

measurably on a0, . . . , aq. The main result described in my talk was that under

a certain condition the holomorphic Čech complex C•
hol(U, L) and C•(U, L) have

isomorphic cohomology groups:

Theorem 1. Let X,A be complex manifolds, L→ X a holomorphic vector bundle,
and U = {Ua : a ∈ A} an open cover of X. If the graph

S = {(x, a) ∈ X ×A : x ∈ Ua} ⊂ X ×A

of the cover is a Stein open subset, then inclusion C•
hol

(U, L) ⊂ C•(U, L) induces
an isomorphism of cohomology groups.

Covers parametrized by complex manifolds occur in many situations. A natural
Stein cover of projective space P is by complements of hyperplanes. This cover is
parametrized by the hyperplanes, i.e., by points of the dual projective space P∗.
By restriction, we also obtain a Stein cover of any projective manifold X ⊂ P,
parametrized by P∗. These covers satisfy the assumptions of Theorem 1.1.

The theorem is related to a theorem of Eastwood, Gindikin, and H. Wong, who
additionally assume that the sets {a ∈ A : x ∈ Ua} are contractible. Their conclu-
sion is that Hq(U, L), or Hq(X,L), is isomorphic to a certain relative holomorphic
De Rham cohomology group.

So far I have been vague about the sort of complex manifolds and vector bundles
covered by Theorem 1.1. In fact, while the theorem is new even for finite dimen-
sional L, it holds for a large class of Banach manifolds X,A and Banach bundles
L→ X ; and the isomorphism in the theorem is that of topological vector spaces.
Establishing a very special case of this theorem was the first step, in joint work
with N. Zhang, of the computation of the first cohomology group of various loop
spaces LP1 of the Riemann sphere (in guise of the Dolbeault group H0,1(LP1)).

The idea of the proof of Theorem 1.1 is, perhaps predictably, to embed the two
complexes C•

hol(U, L) and C•(U, L) in a double complex, and show that all rows
and columns of this double complex, except for the two above, are exact.

In the talk I mentioned an application to holomorphic group actions. Suppose
a complex Lie group G acts holomorphically on the vector bundle L→ X . When
X and L are finite dimensional, it is known that the induced action of G on the
cohomology groups Hq(X,L) is holomorphic, and the same is expected in infinite
dimensions. However, the import of such a statement is dubious, even in finite
dimensions. The point is that to talk about holomorphy the topology of cohomol-
ogy groups must be brought in. This topology in general will not be Hausdorff,
and holomorphic (or even differentiable) maps between non–Hausdorff spaces are
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strange creatures, for example their derivatives are not uniquely determined. Two
holomorphic functions may have the same derivatives everywhere, but the differ-
ence of the two functions may not be constant.

For this reason one is lead to consider the induced action of G on cochains,
rather than cohomology classes. What one gains by this is that the locally con-
vex topological vector spaces Cq(U, L) of cochains are Hausdorff (and sequentially
compact). One needs to be careful, though: G will not act on Cq(U, L) unless U is
G–invariant, and even if U is G–invariant, the action is not going to be holomor-
phic or even continuous. But, if instead of Cq(U, L) one works with Cqhol(U, L),
under natural conditions the G–action on this latter will be holomorphic. As a
result, for the action of a complex reductive group G one can prove an isotypical
decomposition theorem for Cqhol(U, L) and, ultimately, for Hq(X,L).

Application of Pluricanonical Periods to Problem of Schottky-Jung
and Differential Equations

Yum-Tong Siu

The motivation is to understand the phenomenon of the deformational invariance
of plurigenera in terms of some Hodge decomposition in the pluricanonical setting.
The m-genus dimCH

0(X,mKX) of a compact Kähler manifold X is conjectured
to remain unchanged when X is holomorphically deformed. The conjecture was
proved for the case of projective algebraic X by Siu in 2002. For m = 1 such a
deformational invariance of dimCH

0(X,KX) for a compact Kähler manifold X is
just a direct consequence of the Hodge decomposition. The question is whether
the deformational invariance of m-genus for m ≥ 2 can also be understood in the
context of some form of Hodge decomposition with H0(X,mKX) as a summand.
We discuss in this talk the results and the developments in the study of this
problem by starting with the simplest case of compact Riemann surfaces and the
work of Bol in 1949, Eichler in 1957, Shimura in 1959, and Gunning in 1960.

For a compact Riemann surface X of genus g ≥ 2, the global coordinate z of
the open unit 1-disk ∆ as its universal cover can serve as local coordinates of
X , giving X a projective structure in the sense that the coordinate transforma-
tions are Möbius transformations. Differentiating (2m − 1)-times an element of
OX((1−m)KX) with respect to the global coordinate z of ∆ yields an element of
OX(mKX). The exact sequence

0 → Ker d2m−1 → OX((1 −m)KX)
d2m−1

−→ OX(mKX) → 0

yields the exact sequence

(∗) 0 → H0 (X,OX(mKX))
Θm
−→ H1

(

X,Ker d2m−1
)

→ H1 (X,OX((1 −m)KX )) → 0,

where Ker d2m−1, consisting of P (z)(dz)1−m with P (z) being a polynomial of
degree ≤ 2m − 2, is a flat C-vector bundle over M of rank 2m − 1 when the
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coefficients of P (z) are used as fiber coordinates. The (2m− 1)-vector with com-
ponents zk(dz)1−m for 0 ≤ k ≤ 2m − 2 defines a holomorphic section σm−1 of(
Ker d2m−1

)∗ ⊗ ((1 −m)KX) over X , where
(
Ker d2m−1

)∗
is the dual bundle of

Ker d2m−1. Since H1 (X,OX((1 −m)KX)) is dual to H0 (X,OX(mKX)), from
(∗) we have the pluricanonical Hodge decomposition

(†) H1
(
X,Kerd2m−1

)
= H0 (X,OX(mKX)) ⊕H1 (X,OX((1 −m)KX))

≈ H0 (X,OX(mKX)) ⊕H0 (X,OX(mKX)),

which becomes the usual Hodge decomposition when m = 1 with Ker d2m−1 re-
duced to the trivial C-line bundle. The map Θm is the m-canonical period map.

The transpose Ξm : H0 (X,OX(mKX)) → H1
(
X,

(
Ker d2m−1

)∗)
of the surjec-

tive map of (∗) is the dual m-canonical period map and can be described by the

integration of the
(
Ker d2m−1

)∗
-valued 1-form σm−1f over the loops of X for

f ∈ H0 (X,OX(mKX)). From the second line of (†) the map

H0 (X,OX(mKX)) ×H0 (X,OX(m′KX)) → H0 (X,OX((m+m′)KX))

given by mulitplication yields a multiplication formula which produces (m+m′)-
canonical periods from m-canonical periods and m′-canonical periods. This multi-
plication depends algebraically on X as X varies in the moduli space of all compact
Riemann surfaces of genus g ≥ 2. Since the m-canonical periods satisfy a Riemann
relation in the same way as the usual periods (where m = 1), the multiplication
formula applied m times to the usual periods can be applied to provide new alge-
braic relations for the usual periods in the Schottky-Jung problem. At this point
explicit expressions for the multiplication formula are not yet known.

Schwarz in 1873 used (equivariant) periods of certain compact Riemann surfaces
as integral representations for solutions of the Gauss hypergeometric differential
equation. Another application of the m-canonical Hodge decomposition is to anal-
ogously use (equivariant) m-canonical periods as some generalized form of integral
representations for solutions of a wider class of differential equations.

When X is replaced by an n-dimensional compact complex manifold with pro-
jective structure, we can replace Ker d2m−1 by a flat bundle Fm−1 consisting of

P (z1, · · · , zn) (dz1 ∧ · · · ∧ dzn)
1−m

with P (z1, · · · , zn) being a polynomial of de-
gree ≤ (n+1)(m−1) in the local coordinates z1, · · · , zn of the projective structure
of X . The analogue of the dual m-canonical period map Ξm−1 can be defined, but
no analogue of the m-canonical Hodge decomposition (∗) and (†) is known. The
decomposition

Hn
(
X,F∗

m−1

)
=

⊕

p+q=n

Hq
(
X,OX

(
F∗
m−1 ⊗ ∧pT ∗

X

))

does not hold even in the case of m ≥ 2 and n = 1, because for any nonzero
element f ∈ H0 (X,OX ((m− 1)KX)) its exterior differential d (fσm−1) repre-
sents a nonzero element of H0

(
X,OX

(
F∗
m−1

)
⊗KX

)
which is mapped to 0 in

H1
(
X,F∗

m−1

)
. The reason for this phenomenon is that the flat bundle F∗

m−1 is



2212 Oberwolfach Report 39/2014

not unitarily flat in the sense that it cannot carry a positive definite Hermitian
metric which is flat in the flat structure of F∗

m−1.
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[Schwarz1873] K. Schwarz, Über diejenige Fälle in welchen die Gaussische hypergeometrische
Reihe eine algebraische Function ihres viertes elementes darstellt, Crelle’s J. 75
(1873), 292–335.

[Siu1998] Yum-Tong Siu, Invariance of plurigenera. Invent. Math. 134 (1998), no. 3, 661–
673.

[Siu2002] Yum-Tong Siu, Extension of twisted pluricanonical sections with plurisubhar-
monic weight and invariance of semipositively twisted plurigenera for manifolds
not necessarily of general type. Complex geometry (Göttingen, 2000), 223–277,
Springer, Berlin, 2002.

Deformation of twisted harmonic mappings and the Morse function

Marco Spinaci

Twisted harmonic mappings have proved to be a very useful tool in the study
of global aspects of Kaehler manifolds. They represent some “preferred” metrics
on flat vector bundles, and, as such, are used to study the moduli space of rep-
resentations of the fundamental group. In this talk we consider the problem of
computing the deformations of such mappings with respect to a variation of the
representation, and discuss some consequences to the study of the Morse function
on the aforementioned moduli space.

In the following, (X, g) will denote a Riemannian manifold, Γ = π1(X, x0)

its fundamental group, X̃ → X its universal cover, G < GL(r,C) is a linear
group and ρ : Γ → G a representation. A twisted (or: ρ-equivariant) map is

an h : X̃ → Y ∼= G/K, where K < G is a maximal compact subgroup, such
that h(γx̃) = ρ(γ)h(x̃). Such a map is harmonic if it minimizes Energy(h) =
1
2

´

X ‖dh′‖2dVolX among all ρ-equivariant maps h′. Remark that ρ-equivariant

maps are metrics on E(ρ) = X̃ ×Γ Cr, so the harmonic ones are some “preferred”
metrics. By Donaldson–Corlette’s theorem [4], such harmonic maps exist if and
only if ρ is semisimple. They are unique up to multiplication by an element of the
centralizer ZG(ρ(γ)).

The representations of the fundamental group admit a moduli space, the G-
character variety, which is the GIT quotient M = Hom(Γ, G)//G, which explicitly
is the geometric quotient of the subset of semisimple representations by G (acting
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by conjugation). On this moduli space, the energy functional gives a “Morse–
Bott” function (on the smooth points) f : M → R, by associating to ρ the energy
of any harmonic ρ-equivariant map. Our analysis of the derivatives of a harmonic
ρ-equivariant h with respect to a variation in ρ will give informations on the
derivatives of f .

A first order deformation of a representation ρ : Γ → G is a 1-cocycle c : Γ → g =
Lie(G), i.e. c(γη) = c(γ)+Adρ(γ)c(η). If we have a smooth family ρt : Γ → G, then

c(γ) = ∂ρt(γ)
∂t

∣∣
t=0

ρ0(γ)−1. By Hodge theory, fixing a metric h, to its cohomology
class we can associate a harmonic 1-form with values in the adjoint local system
ω ∈ H1(X,Ad(ρ)). The first result is then that every first order deformation
v ∈ C∞(h∗TY ) of h that behaves as the first derivative of a family of ρt-equivariant
harmonic maps (morally: v = ∂ht

∂t

∣∣
t=0

) is obtained by integrating ω (via an explicit

formula). This gives a formula for computing the first derivative of f :

(0.1)
∂f(ρt)

∂t

∣∣∣
t=0

=

ˆ

X

〈ω, dh〉dVolX .

Here we are slightly abusing notation, since ω takes values (locally) in g, while dh
in the bundle h∗TY ; however, it is standard practice to see the latter bundle as a
subset of Y × g, via the right trivialization. A consequence of (0.1) is that we can
compute critical points of the Morse function. Here we actually define a critical
point as a point where the expression in (0.1) vanishes for all (possibly obstructed)
ω, in order to take singular points into account as well. It turns out that the critical
points are exactly the representations underlying a complex variation of Hodge
structure (see for example [8] for the definition), and that considering obstructed
directions is in fact unnecessary, since being a critical point is equivalent to the
vanishing of the derivative along the C∗ action only.

The same problem can be asked for second order deformations. Second order
deformations of maps are morally the covariant derivative of ∂ht

∂t , and second
order deformations of a pair (ρ, c) consist of a cocycle for the adjoint action of
ρ + tc on g ⊗ R[t]/(t2). However, in this case there are obstructions: Given a
family of representations ρt : Γ → G and a harmonic ρ0-equivariant map h, there
needs not exist a second order deformation of this map (along any second order
deformation of (ρ, c)). This happens essentially when ρt points toward a non-
semisimple direction, or when the dimension of the centralizer of ρt(Γ) jumps down
and we have chosen the “wrong” harmonic map h. Indeed, one can prove that the
absence of obstructions along both (ρ0, c) and (ρ0, ic) is equivalent to the existence
of a Ad(ρ0)-invariant 1-form θ such that d∗θ = −∑

j,k g
jk[ω( ∂

∂xj
)∗, ω( ∂

∂xk
)], where

ω∗ is the adjoint of ω. This is in turn equivalent to ω being a minimum for ‖·‖L2 in
its Ad(ZG(ρ0(Γ)))-orbit, and it is true that every ρ0-equivariant harmonic map h
is non-obstructed in this sense if and only if H0(X,Ad(ρ0 + tc)) is a flat R[t]/(t2)-
module (i.e. “the centralizers do not jump”).

This analysis to the second order can be used again to compute the second
derivatives of the Morse function. Indeed, we can pick a θ as above such that
furthermore dθ = −[ω, ω] (that this cohomology class should vanish is a necessary,
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and for X Kaehler also sufficient, condition for the existence of ρt, see [6]). Then:

(0.2)
∂2f(ρt)

∂t2

∣∣∣
t=0

=

ˆ

X

(〈
θ, dh

〉
+
∥∥∥ω + ω∗

2

∥∥∥
2
)

dVol.

As an immediate application of (0.2), one can prove that the Morse function is
strictly plurisubharmonic (and actually, that it is a Kaehler potential). Also,
supposing X to be Kaehler, at a critical point (that is, a complex variation of
Hodge structure), one can compute the Morse indices: It turns out that the weights
of the complex variation of Hodge structure, or more precisely the weights of the
Deligne-Hodge structure induced on H1(X,Ad(ρ0)), correspond to the eigenvalues
of the Hessian of f via the formula:

(0.3)
∂2f(ρt)

∂t2

∣∣∣
t=0

=

ˆ

X

∑

even P

2P
∥∥∥ω(P,Q)

∥∥∥
2

dVol.

Here, ω(P,Q) is the (P,Q)-term in the Deligne-Hodge decomposition, so that P +
Q = 1. Furthermore, the version of (0.3) stated here is actually accurate only
when ρ is Zariski-dense, but there is exists a similar, more involuted, formula for
the general case.

We have also discussed possible applications of these results. Suppose that
(Y, ωY ) is itself Kaehler, for example G = SU(p, q) or G = SO∗(2n). Then one can
define the Toledo invariant of ρ by:

τ(ρ) =
1

n!

ˆ

X

h∗ωY ∧ ωn−1
X ,

where here h is actually any continuous ρ-equivariant map, but from now on we
will suppose that ρ is semisimple and h is harmonic. One sees readily that f(ρ) ≥
n|τ(ρ)|, with equality if and only if h is (anti)-holomorphic. If X is uniformized
by the unit complex ball, there is a Milnor–Wood type inequality (due to Domic–
Toledo [5] and Clerc–Orsted [3] in dimension 1 and to Burger–Iozzi [1] in higher
dimension): |τ(ρ)| ≤ rk(G)Vol(X). Representations satisfying the equality are
called maximal. It is conjectured that if n > 1, maximal representations are very
rigid, essentially reducing to the standard diagonal embedding U(n, 1) →֒ U(nq, q).

When X is a Riemann surface, it is a result by Bradlow, Garca-Prada and
Gothen (see [2] and the references therein) states that local minima for f always
satisfy the equality f(ρ) = |τ(ρ)| (with few explicit exceptions). Their proof
makes use of the analogous equation to (0.3) in dimension 1, which is due to
Hitchin [7]. One can prove that a similar result to theirs in higher dimension
would imply the above conjecture (see [10]), but unfortunately their proof does
not immediately generalize (and indeed, there are counterexamples to the naively
generalized statement).

The first part of this talk is based on the author’s Ph.D. thesis, see [9].
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Complex Monge-Ampère equations on quasi-projective manifolds

Eleonora Di Nezza

(joint work with Chinh Hoang Lu)

Let X be an n-dimensional compact Kähler manifold and fix ω an arbitrary Kähler
form. If we write locally

ω =
i

π

∑
ωαβdzα ∧ dz̄β,

then the Ricci form of ω is (locally)

Ric(ω) := − i

π

∑ ∂2 log(detωpq)

∂zα∂z̄β
dzα ∧ dz̄β .

Observe that Ric(ω) is a closed positive (1, 1)-form on X such that for any other
Kähler form ω′ on X the following holds globally:

Ric(ω′) = Ric(ω) − ddc log
ω′n

ωn
.

Here d = ∂ + ∂̄ and dc = 1
2iπ (∂̄ − ∂) are both real operators. In particular Ric(ω′)

and Ric(ω) represent the same cohomology class, which turns out to be c1(X).
Conversely, given η a closed differential form representing c1(X), Calabi asked in
[1] whether one can find a Kähler form ω such that

Ric(ω) = η.

He showed that if the answer is positive, then the solution is unique and he pro-
posed a continuity method to prove the existence. This problem, known as the
Calabi conjecture, remained open for two decades and it was finally solved by Yau
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in [9]. This result is now known as the Calabi-Yau theorem.

The Calabi conjecture reduces to solving a complex Monge-Ampère equation
as we can see here below. Fix α ∈ H1,1(X,R) a Kähler class, ω a Kähler form in
α and η ∈ c1(X) a smooth form. Since Ric(ω) represents c1(X), it follows from
the ∂∂̄-lemma that there exists h ∈ C∞(X,R) such that

Ric(ω) = η + ddch.

We now seek for ωϕ := ω + ddcϕ a new Kähler form in α such that Ric(ωϕ) = η.
Since

Ric(ωϕ) = Ric(ω) − ddc log

(
ωϕ

n

ωn

)
,

the equation Ric(ωϕ) = η is equivalent to

ddc
{
h− log

(
ωϕ

n

ωn

)}
= 0

The function inside the brackets is pluriharmonic, hence constant since X is com-
pact. Shifting initially h by a constant, our problem is equivalent to solving the
complex Monge-Ampère equation

(CY) (ω + ddcϕ)n = ehωn.

Note that h necessarily satisfies the normalizing condition
ˆ

X

ehωn =

ˆ

X

ωn = V.

Theorem 1 (Yau78). The equation (CY) admits a unique (up to constant) solu-
tion ϕ ∈ C∞(X,R) such that ωϕ is a Kähler form.

Yau’s proof relies on the continuity method, a classical tool to solve non linear
PDE’s: it consists in deforming the PDE of interest into a simpler one for which we
already know the existence of a solution. The goal is to establish various a priori
estimates : in particular it suffices to prove C0 and C2-estimates. Indeed, thanks
to Evans-Krylov theory we can deduce an estimate of type C2,α and this suffices
to apply Schauder’s theorem and a bootstrap argument in order to conclude. The
most difficult step are the C0-estimates and Yau’s approach uses Moser’s iterative
process. After the celebrated paper of Yau [9], Ko lodziej [6] generalized the C0

a priori estimates using pluripotential tools. His uniform estimate can indeed be
applied to complex Monge-Ampère equations of the type

(ω + ddcϕ) = fdV

where 0 ≤ f ∈ Lp(dV ) for some p > 1. Ko lodziej’s idea is to show that the Monge-
Ampère capacity of sublevel sets (ϕ < −t) vanishes if t > 0 is large enough, by
a clever use of the comparison principle. Hence, he proves that the solution ϕ is
bounded on X .

Consider now a complex Monge-Ampère equation of the type

(0.1) (ω + ddcϕ)n = fωn,
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where f ∈ L1(X) is such that
´

X fω
n =

´

X ω
n. It is very natural for various

geometric reasons to look at the case when f is merely smooth and positive on the
complement of a divisor D, e.g. when studying Calabi’s conjecture on quasipro-
jective manifolds (see e.g. [7, 8]). Note that such degenerate equations naturally
appear when dealing with the problem of the existence of singular Kähler-Einstein
metrics on varieties with mild singularities.
We recall that the existence and the uniqueness of a weak solution (ϕ ∈ E(X,ω))
of the above equations were proved in the last years by Guedj and Zeriahi [5] and
Dinew [2], respectively. Thus the relevant question was about the regularity of the
solution ϕ and its asymptotic behavior near D.

In [3] and [4] Chinh H. Lu and I study such a problem. In this wilder set-
ting classical PDE’s methods break down, and we found another approach using
pluripotential theory. The first very general result that we were able to prove is
the following:

Theorem 2 (Di Nezza - Lu 2014). Assume that f . e−φ, for some quasi-
plurisubharmonic (qpsh for short) function φ. Let ϕ ∈ E(X,ω) be the unique
normalised solution of (0.1). Then, for any a > 0 small enough (i.e. a is such
that aφ ∈ PSH(X,ω/2)) there exists A > 0 depending only on

´

X e
2ϕ/aωn such

that

(0.2) ϕ ≥ aφ−A.

Here, we want to stress that
´

X
e2ϕ/aωn is finite thanks to Skoda’s theorem since

any qpsh funtion belonging to the class E has zero Lelong number at each point.
The proof of the above theorem deeply relies on pluripotential methods: we follow
Ko lodziej approach with various novelties. We should emphasise that in our case
the solution is not bounded and therefore a natural idea is to bound the solution
from below by a “model” quasi-plurisubharmonic function that can be also very
singular. This is the reason why we introduce a new tool in pluripotential theory,
the generalized Monge-Ampère capacities, defined as

Capψ(E) := sup

{
ˆ

E

(ω + ddcu)n | u ∈ PSH(X,ω) ψ − 1 ≤ u ≤ ψ

}
, ∀E ⊂ X,

where ψ is a ω/2-psh function.
The idea to prove the above generalized C0-estimate in (0.2) is then to show that
the generalized capacity of sublevel sets (ϕ < ψ − t) vanishes when t > 0 is large
enough. The lower bound in Theorem 2 is the key step that allows us to prove the
following regularity result:

Theorem 3 (Di Nezza - Lu 2014). Assume that 0 < f ∈ C∞(X \ D) where
D is a closed subset of X. Moreover, assume that f can be written of the form

f = eψ
+−ψ−

, where ψ± are qpsh funtions on X and ψ− ∈ L∞
loc(X \ D). Let

ϕ ∈ E(X,ω) be the solution of (0.1) normalized such that supX ϕ = 0. Then ϕ is
smooth outside D.
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Remark 4. We are also able to prove the same regularity result when working with
degenerate complex Monge-Ampère equations, namely when the reference form is
merely semipositive(θ ≥ 0) and big (

´

X θ
n > 0) rather than Kähler.

The idea of the proof goes as follows:
Step 1. We use Demailly’s regularization theorem to obtain quasi-decreasing se-

quences of smooth qpsh functions ψ±
ε converging to ψ±. Then we let ϕε ∈ C∞(X)

be the normalized (supX ϕε = 0) soltution of the Monge-Ampère equation

(ω + ddcϕε)
n = cεe

ψ+
ε−ψ

−

ε

where cε is a normalization constant. Observe that here we use Yau’s theorem!
Step 2. The goal is to establish a priori estimates for the sequence of smooth

ω-psh functions (ϕε). As it is well-known by experts, it suffices to establish C0

and C2 estimates since one these are in hands Evans-Krylov theory, Schauder’s
theorem and bootstrap arguments can be applied to get higher order estimates.
Step 3. (C0-estimates) We use Theorem 2 with φ = ψ− to obtain generalized C0-
estimates.
Step 4. (C2-estimates) Thanks to step 3 (the crucial step!) we are able to prove
laplacian estimates of type

∆ωϕε ≤ Ce−ψ
−

.

In the special case when D is a divisor and the density f has some divisorial
singularities we can say more about the asymptotic behavior of the solution near
D.

Let s be a holomorphic section of the line bundle LD defined by D and assume
that f is such that

f =
h

|s|2(− log |s|)1+α ,

where h is smooth and positive on X and α > 0. Note that such densities can

be written of the form eψ
+−ψ−

with ψ+ = log h− (1 + α) log(− log |s|) and ψ− =
2 log |s|. Thus Theorem 3 applies to these cases. Moreover, using pluripotential
methods and the comparison principle, we were able to give precise bounds for the
soltution ϕ. Precisely, we prove the followings:

(i) when α > 1, the solution ϕ is bounded on X .
(ii) when 0 < α < 1, for any p ∈ (0, 1 − α) and

q ∈ (1 − α, 1),

−a1(− log |s|)q −A1 ≤ ϕ ≤ −a2(− log |s|)q +A2

where a1, A1 depends on α, q and a2, A2 depends on α, p.
(iii) when α = 1 (Poincaré case), for any p ∈ (0, 1)

−B1 log(− log |s| +B2) −B ≤ ϕ ≤ −c2(− log(− log |s|))p + C2

where B1, B2 are suitable positive constants and c2, C2 depends on p.
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The Gonality Conjecture on Syzygies of Alegebraic Curves of Large
Degree

Lawrence Ein

(joint work with Robert Lazarsfeld)

In this note, we give a report on some of my recent joint work with Rob Lazarsfeld
on the gonality conjecture on syzygies of algebraic curves of large degree. In the
80’s Green and Lazarsfeld began a systematic study of the syzygies of smooth
projective curves. On of the main driving problems in this area is the important
conjecture of Green which predicts that the behavior of the syzygies of a canonical
curve is determined by the Clifford index of the curve. See [5] and [7] for more
details. A few years ago, Voisin made an important breakthrough [9] and [10] by
proving that Green’s conjecture is true for a generic curve of genus g. Combined
with the result of Texidor Bigas [8], they show that Green’s conjecture is true
generic k−gonal curves. In 1985, Green and Lazarsfeld made another conjecture
asserting the following [7]. Suppose a curve C is embedded into projective space
by the complete linear system of a sufficiently large degree line bundle L. Then
the shape of the minimal resolution of the coordinate ring is determined by the
gonality of the curve.

Let C be a smooth projective curve of genus g ≥ 2 and L be a very ample line
bundle of degree d on C defining an embedding

C ⊂ PH0(L) = Pr.
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Write S = SymH0(L) for the coordinate ring of Pr and denote by

R = R(L) =
⊕

m

H0(mL)

the graded S− module associated to L. Consider the minimal graded free resolu-
tion E• = E(L)• of R over S:

0,−→ Er−1 −→ . . . −→ E1 −→ E0 −→ R −→ 0.

Using the Koszul cohomology of Green, we can write

Ep =
⊕

q

Kp,q(C,L) ⊗C S(−p− q).

It is elementary that if H1(L) = 0, then Kp,q(C,L) = 0 if q ≥ 3. Moreover work
of Green [5] and others show that if d = degL >> 0, then r = d− g and

Kp,0(C,L) 6= 0 ↔ p = 0

Kp,2(C,L) 6= 0 ↔ r − g ≤ p ≤ r − 1.

It follows that

Kp.1(C,L) 6= 0 for 1 ≤ p ≤ r − 1 − g.

These results leave the question when Kp,1(C,L) 6= 0 for r − g ≤ p ≤ r − 1. Let
gon(C) be the least degree of a branched cover of C −→ P1. Using the techniques
introduced by Voisin [9] and [10], we study the syzygies using the geometry of
the Hilbert schemes of the curves. As predicted by the conjecture of Green and
Lazarsfeld, we show the following.

Theorem 1. [4] If degL >> 0, then

Kp,1(C,L) 6= 0 ↔ 1 ≤ p ≤ r − gon(C).

Thus one can read off the gonality of a curve from the shape of the minimal
resolution of the coordinate ring of R(C,L). More generally, if B is a line bundle
on C, we consider the S−module

M((C,L);B) =
⊕

m

H0(B +mL).

recall that we say that the line bundle B is p−very ample, if for every closed
subscheme Z of length p of C, the restriction map

H0(B) −→ H0(B|Z)

is surjective. One sees that gon(C) > p if and only if KC is p−very ample. Denote
Kp,q(M((C,L);B)) by Kp,q((C,L);B). By Serre’s duality, one sees that the above
theorem is equivalent to

Kp,1((C,L);KC) = 0

if and only KC is p− very ample.
More generally we prove the following.
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Theorem 2. [4] Fix a line bundle B and assume that degL >> 0. Then

Kp,1((C,L);B) = 0

if and only if B is p−very ample.
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Rationality and growth conditions

Jörg Winkelmann

With Frederic Camapana we proved:

Theorem 1. Let X be a compact complex Kähler manifold. Let f : Cn → X be
a differentiably non-degenerate meromorphic map. If the order function (in the
sense of Nevanlinna theory) fulfills ρ < 2, then X is rationally connected.

This improves earlier results of Campana-Paun and Noguchi-Winkelmann.
An example of Noguchi and Winkelmann shows that the Kähler assumption is

necessary.
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Dynamical degrees of birational transformations of projective surfaces

Jérémy Blanc

(joint work with Serge Cantat)

Introduction. The dynamical degree λ(f) of a birational transformation f mea-
sures the exponential growth rate of the degree of the formulae that define the
n-th iterate of f , and also measures the complexity of the dynamics of f . For
instance, over the field of complex numbers, log(λ(f)) provides an upper bound
for the topological entropy of f : X(C) 99K X(C) and is equal to it under natural
assumptions (see [1, 5]).

The goal of this talk was to describe the structure of the set of all dynamical
degrees λ(f), when f runs over the group of all birational transformations Bir(X)
and X over the collection of all projective surfaces. An important feature of our
results may be summarised by the following slogan: Precise knowledge on λ(f)
provides useful information on the conjugacy class of f .

Let f be a birational transformation of X defined over an algebraically closed
field k. Then f determines an endomorphism f∗ : NS(X) → NS(X) of NS(X).
The dynamical degree λ(f) of f is defined as the spectral radius of the sequence
of endomorphisms (fn)∗, as n goes to +∞. More precisely, once a norm ‖ · ‖ has
been chosen on the real vector space End(NSR(X)), one defines

λ(f) = lim
n→∞

‖ (fn)∗ ‖1/n ;

this limit exists, and does not depend on the choice of the norm. Moreover, for
every ample divisor D ⊂ X

λ(f) = lim
n→∞

(D · (fn)∗D)
1/n

,

where C · D denotes the intersection number between divisors or divisor classes.
For instance, when X = P2, we have λ(f) = limn→∞(deg(fn))1/n, where deg is
the degree of the polynomials (without common factors) that define a birational
map of P2.

The dynamical spectrum of X is defined as the set

Λ(X) = {λ(f) | f ∈ Bir(X)}.

Diller and Favre proved in [4] that every birational transformation of a projective
surface X is conjugate by a birational morphism π : Y → X to an algebraically
stable transformation g = π−1 ◦ f ◦ π (i.e. to a map g such that (gn)∗ = (g∗)n

for each n ≥ 1) . From this fact and the Hodge index theorem, they obtained the
following result.

Theorem 1 (Diller and Favre). Let k be a field and let f be a birational trans-
formation of a projective surface defined over k. If λ(f) is different from 1, then
λ(f) is a Salem or a Pisot number.
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By definition, a Pisot number is an algebraic integer λ ∈ ]1,∞[ whose other
Galois conjugates lie in the open unit disk; Pisot numbers include integers d ≥ 2
as well as reciprocal quadratic integers λ > 1. A Salem number is an algebraic
integer λ ∈ ]1,∞[ whose other Galois conjugates are in the closed unit disk, with
at least one on the boundary; hence, the minimal polynomial of λ has at least two
complex conjugate roots on the unit circle, and the degree of λ is at least 4.

Relation between dynamical degree and conjugation to an automor-
phism. The dynamical degree of an automorphism, if different from 1, is either
a quadratic number or a Salem number (see [4]). Here we prove a converse state-
ment.

Theorem 2. Let k be an algebraically closed field. Let f be a birational trans-
formation of a projective surface X, defined over k. If λ(f) is a Salem number,
there exists a projective surface Y and a birational mapping ϕ : Y 99K X such that
ϕ−1 ◦ f ◦ ϕ is an automorphism of Y .

Thus, one can decide whether a birational transformation is conjugate to an
automorphism by looking at its dynamical degree, except when this degree is
1 or a quadratic integer. There are quadratic integers which are simultaneously
realised as dynamical degrees of automorphisms, and of birational transformations
that cannot be conjugate to an automorphism.

Once Theorem 2 is proved, three corollaries can be deduced from results of
McMullen and the second author (see [6] and [3]). The first corollary is a spectral
gap property for dynamical degrees: There is no dynamical degree in the interval

]1, λL[. The second corollary does not seem to be related to values of dynamical
degrees, but the simple proof given here makes use of the spectral gap. It asserts
that the quotient of the centraliser, in the group Bir(X), of a loxodromic element

f by the group 〈f〉 is finite. The third consequence is an effective and explicit
bound for the optimal degree of a conjugacy.

Non-rational surfaces. Non rational surfaces are easily handled with.

Theorem 3. Let k be an algebraically closed field. Let X be a projective surface
defined over k. If X is not rational, then

(1) Λ(X) = {1} if X is not birationally equivalent to an abelian surface, a K3
surface, or an Enriques surface;

(2) Λ(X) \ {1} is made of quadratic integers and of Salem numbers of degree
at most 6 (resp. 22, resp. 10) if X is an abelian surface (resp. a K3
surface, resp. an Enriques surface).

The union of all dynamical spectra Λ(X) where X runs over the set of non-rational
projective surfaces defined over k, and k runs over the set of all fields, is a closed
discrete subset of the real line.

This result shows that the most interesting case is provided by rational surfaces.
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Rational surfaces: the dynamical spectrum Λ(P2). In order to describe
the dynamical spectrum of P2, we need to understand the relation between the
mininimal degree, up to conjugation, and the dynamical degree.

Given an element f of Bir(P2
k
), define the minimal degree of f in its conjugacy

class as the positive integer

mcdeg(f) = min deg(g ◦ f ◦ g−1)

where g describes Bir(P2
k
). The function mcdeg is constant on conjugacy classes,

and

λ(f) ≤ mcdeg(f) ≤ deg(f)

for all birational transformations of the plane. One of our main goals is to provide
the following reverse inequality. This is obtained in the following result.

Theorem 4. Let k be an algebraically closed field. Let f be a birational transfor-
mation of the plane P2

k
.

(1) If λ(f) ≥ 106 then mcdeg(f) ≤ 4700λ(f)5.
(2) If λ(f) > 1, then mcdeg(f) ≤ cosh(110 + 345 log(λ(f))).

On the other hand, there are sequences of elements fn ∈ Bir(P2
k
) such that

mcdeg(fn) goes to +∞ with n while λ1(fn) = 1 for all n.
The set Λ(P2

k
) is a subset of R>0 and, as such, is totally ordered. The following

statement, which follows from Theorem 4, asserts that Λ(P2
k
) is well ordered:

Every non-empty subset of Λ(P2
k
) has a minimum; equivalently, it satisfies the

descending chain condition (if (fn)n≥0 is a sequence of birational transformations
of P2

k
and the dynamical degrees λ(fn) decrease with n, then λ(fn) becomes even-

tually constant).

Theorem 5. Let k be an algebraically closed field. The dynamical spectrum
Λ(P2

k
) ⊂ R is well ordered, and it is closed if k is uncountable.

The results described in this report can be found in [2].
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The Kähler cone of hyperkähler manifolds

Ekaterina Amerik

(joint work with Misha Verbitsky)

Consider an irreducible holomorphic symplectic (also known as hyperkähler) man-
ifold X , that is, a simply-connected compact Kähler manifold with H2,0(X) gen-
erated by a nowhere degenerate (that is, symplectic) form σ. By the results of
Beauville, Bogomolov and Fujiki, H2(X,Z) carries an integral non-degenerate qua-
dratic form q, the Beauville-Bogomolov form, which can be given by an explicit
formula involving integration, but which is of topological origin: q(z)n = cz2n,
where dim(X) = 2n and c = c(X) is a positive constant. This form is of signature

(3, b2 − 3) on H2(X,R) and of signature (1, b2 − 3) on H1,1
R (X). The positive cone

P(X) ⊂ H1,1
R (X) is, by definition, the connected component of the set of classes

with positive Beauville-Bogomolov square which contains the Kähler cone K(X).
The Beauville-Bogomolov form allows us to view the cohomology classes of

curves on X as (rational rather then integral, since q is in general not unimodular)
(1, 1)-classes, which we shall do throughout this report.

Huybrechts and Boucksom gave the following description of K(X) inside P(X).

Theorem: A class z ∈ P(X) is Kähler if and only if z · [C] > 0 for the classes of
rational curves C ⊂ X.

In particular, for X very general one has K(X) = P(X) (as there are no curves
on X at all).

In [1], we have proposed the following refinement of their result. Following
Markman, define the monodromy group as a subgroup of O(H2(X,Z)) generated
by parallel transports in families, and the Hodge monodromy group as its part
preserving the Hodge decomposition. If z is a Beauville-Bogomolov negative in-
tegral (1, 1)-class on X , call z an MBM (Monodromy Birationally Minimal) class
if for some γ belonging to the Hodge monodromy group ΓHdg, the hyperplane
γ(z)⊥ ⊂ H1,1

R (X) supports a face of the Kähler cone of some birational model of
X (note that a face is, by definition, of maximal dimension h1,1(X) − 1).

Theorem:

(1) The property of being MBM is deformation-invariant as soon as z stays of
type (1, 1).

(2) The Kähler cone is a connected component of the complement to the union
of the orthogonals to all MBM classes in P(X).

In other words, one can define a purely topological invariant M ⊂ H2(M,Z),
where M is a differential manifold underlying X , and characterize the Kähler cone
as the complement in P(X) to the union of the orthogonals to those elements of
M which happen to be of type (1, 1) on X .

The class of an extremal rational curve is obviously MBM; conversely, an MBM
class z is the class of an extremal rational curve on a deformation ofX (for instance,
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on such a deformation X ′ that z generates the space of rational (1, 1)-classes on
X ′).

The following conjecture is a version of the Kawamata-Morrison cone conjecture
formulated in a more general Calabi-Yau setting, but only for projective manifolds:

Conjecture: For X as above, the group Aut(X) has only finitely many orbits on
the set of faces of K(X).

Remark: The cone considered by Kawamata and Morrison is actually not K(X)
but the so-called “ample effective cone”, see [8], which apriori may have “more”
faces than K(X). In the hyperkähler case, new faces do not appear and the
classical cone conjecture is easily deduced from our version, but we cannot enter
into details here.

The conjecture is known for K3 surfaces (already since mid-eighties, [7]). The
following recent results relate Aut(X) to the monodromy and show that the mon-
odromy group is large, thus indicating a way towards the proof of the conjecture
in higher dimension:

Theorem (Markman) Let γ be an element of the Hodge monodromy group of
X. If γ takes some Kähler class on X into a Kähler class, then there exists an
f ∈ Aut(X) such that γ = f∗.

Theorem (Verbitsky) The monodromy group is of finite index in O(H2(X,Z)).

From Markman’s theorem, one deduces (with some work) that it is sufficient to
answer the following question in the affirmative:

Question: Does the Hodge monodromy group act with finitely many orbits on the
set of primitive MBM classes in H1,1(X)?

Consider the following

Boundedness assumption: Primitive MBM classes on X have bounded square.

From general results on quadratic forms such as presented in Kneser’s book [3],
one deduces the affirmative answer to the Question under this assumption. In
particular, it is true for manifolds of K3 type or generalized Kummer varieties ([1],
[5]). Moreover, the following consequence of boundedness is given by Markman
and Yoshioka.

Proposition: Under the boundedness assumption, the number of hyperkähler bi-
rational models of X is finite.

The main point of the recent paper [2] is the unconditional proof of the cone
conjecture with the help of ergodic theory (Ratner and Mozes-Shah theorems).
Technically, what we prove is as follows.

Main Theorem: Let L be a lattice of signature (1, k), k ≥ 3, and Σ a Γ-invariant
union of hyperplanes of the form z⊥ in L ⊗ R, where z ∈ L, z2 < 0 and Γ is of
finite index in O(L). Then either Σ is a finite union up to Γ-action, or Σ is dense
in the positive cone.
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Corollary: Assume X projective, with Picard number at least 4. Then the Cone
conjecture holds for X.

The Boundedness assumption is thus true for X projective with ρ(X) ≥ 4. Using
the deformation invariance of MBM property and an easy fact that any (irreducible
hyperkähler) X can be deformed to a projective X ′ with Picard number at least
4, in such a way that the (1, 1)-classes on X remain of type (1, 1) of X ′, we obtain:

Corollary: The Boundedness assumption holds for any irreducible holomorphic
symplectic manifold. In particular, the Cone conjecture is true and the number of
hyperkähler birational models is finite.

Let us give a sketch of the proof of the Main Theorem. By Borel – Harish-
Chandra theorem, Γ is a lattice (that is, a discrete subgroup of finite covolume) in
G = SO+(1, k). Consider a Γ-invariant union Σ of hyperplanes and let Hi, i ∈ I
be the images of these in the projectivization PV + of the positive cone. We claim
that there is a subgroup H ⊂ G, isomorphic to SO+(1, k − 1), such that certain
H-orbits Li in G project onto the Hi. It is sufficient to prove that the images of
Li in G/Γ are finitely many or dense.

From the rationality of the hyperplanes of Σ (and Borel – Harish-Chandra the-
orem) one deduces that those images are of finite volume with respect to the Haar
measure on H , and therefore one obtains probability measures µi supported on the
images of Li in G/Γ. These are the algebraic measures of Ratner theory, ergodic
with respect to the action of a subgroup H generated by unipotents. It follows
from a theorem by Mozes and Shah [4] (with some arguments from hyperbolic
geometry used to exclude the case when µi tends to infinity) that if the µi form an
infinite family, there must be a converging subsequence and the limiting measure
is also ergodic. By Ratner theory [6], this measure is of the same type, supported
on an orbit of a closed subgroup containing H . But there are no such subgroups
except H and G. In fact the first case means that there are only finitely many µi,
and the second case means that Li are dense in G.
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Uniform K-stability

Sébastien Boucksom

(joint work with Tomoyuki Hisamoto, Mattias Jonsson)

Let (X,L) be a smooth projective complex variety endowed with an ample line
bundle. Assuming for simplicity that the automorphism group of (X,L) is finite,
the Yau-Tian-Donaldson predicts that the first c1(L) contains a constant scalar
curvature Kähler (cscK for short) metric iff (X,L) is K-stable.

Here K-stability is defined as the positivity of the Donaldson-Futaki invariant
DF(X ,L) of every non-trivial test configuration (X ,L), where the latter are C∗-
equivariant 1-parameter degenerations of (X,L) (see [Don02]).

In the Kähler-Einstein case, i.e. when c1(X) = λc1(L) for some λ ∈ R, any cscK
metric ω ∈ c1(L) is automatically Kähler-Einstein, i.e. satisfies Ric(ω) = λω. Due
to the work of Aubin and Yau, a unique Kähler-Einstein metric has been known
always to exist in the case λ ≤ 0. In contrast, in the Fano case, where λ > 0, the
YTD conjecture has been proved only recently, by Chen-Donaldson-Sun on the
one hand and Tian on the other hand.

In the general case of an arbitrary polarization, K-stability is known to follow
from the existence of a cscK metric, thanks to work of Donaldson and Stoppa
[Don01, Sto09]. However, it is not quite clear that K-stability should really suf-
fice, and the stronger notion of uniform K-stability was therefore introduced by
Szekelyhidi [Sze06] in order to modify the formulation of the conjecture.

Uniform K-stability involves the norm of a test configuration ‖(X ,L)‖, a non-
negative number which is meant to measure ’how non-trivial’ a test configuration
is. Indeed, our first main result is as follows.

Theorem 1. Let (X,L) be a polarized manifold and let (X ,L) be a test configura-
tion with X normal. Then ‖(X ,L)‖ = 0 iff (X ,L) is the trivial test configuration.

Building upon techniques introduced in [PRS08, Berm12], we then prove:

Theorem 2. Let (X,L) be a polarized manifold whose K-energy functional is
coercive. Then X is uniformly K-stable, i.e. there exists δ > 0 such that

DF(X ,L) ≥ δ‖(X ,L)‖.
for every test configuration (X ,L).

Thanks to a deep result of Tian [Tia97, PSSW08], this implies:

Corollary 3. Uniform K-stability holds in the Kähler-Einstein case.
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