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Abstract. Several significant new developments have been reported in many
branches of discrete geometry at the workshop. The area has strong connec-
tions to other fields of mathematics for instance topology, algebraic geometry,
combinatorics, and harmonic analysis. Discrete geometry is very active with
hundreds of open questions and many solutions. There was a large number
of young participants eager to work on these questions, and the future of
discrete geometry is very safe.
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Introduction by the Organisers

Discrete Geometry is a classic yet modern and rapidly developing field of mathe-
matics. It deals with the structure and complexity of discrete geometric objects
like finite point sets in the plane and intersection patterns of convex sets in high
dimensional spaces. Classical problems such as Kepler’s conjecture or Hilbert’s
third problem on decomposing polyhedra, as well as works by Minkowski, Steinitz,
Hadwiger, and Erdős form the heritage of this area. In the last decade several out-
standing problems have been solved. For instance, Erdős distinct distance problem
was solved by Guth and Katz using methods of algebraic geometry. The solution
gave impetus to the use of algebra in discrete geometry, and several lectures at
the workshop demonstrated this new phenomenon. Another example is the use of
algebraic (often equivariant) topology in discrete geometry and important devel-
opments in this area and in algorithmic aspects of topology have been reported
on the meeting. Also, topological generalization of the first selection lemma by
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Gromov has lead to further significant results in this direction. Moreover, semial-
gebraic relations and their use in discrete geometry form a new area of research
leading, for instance, to a powerful and surprising extension of Szemerédi’s famous
regularity lemma in discrete geometry. Connections to symplectic geometry and
Mahler’s conjecture and billiard trajectories have been reported.

Discrete geometry is an interdisciplinary area and has many relations to other
fields of mathematics like algebra, topology, combinatorics, computational geom-
etry, probability and discrepancy theory. It is also in the front line of applications
like geographic information systems, mathematical programming, coding theory,
solid modeling, computational structural biology, and crystallography.

The workshop had 52 participants. There was a series of eight survey talks giv-
ing an overview of some important developments in discrete geometry and related
areas:

● Karim Adiprasito: Some observations on the geometry and combinatorics
of simplicial polytopes

● Roman Karasev: Bang’s problem and symplectic invariants
● Nabil Mustafa: The use of geometric separators for combinatorial opti-

mization problems
● János Pach: Three cornerstones of extremal graph theory
● Marcus Schaefer: ∃R, or the real logic of drawing graphs
● Eric Sedgwick: Embeddability in R3 is decidable
● Joshua Zahl: Space curve arrangements with many incidences
● Günter M. Ziegler: Tight and non-tight topological Tverberg type theo-

rems

In addition, there were 23 shorter talks and a problem session on Tuesday
evening (chaired by Günter Rote). The collection of open problems resulting from
this session can be found in the report. The program left enough time for research
and discussions in the friendly and stimulating atmosphere of the Oberwolfach In-
stitute. In particular, there were several informal sessions, organized and attended
by smaller groups of the participants, on specific topics of common interest. On
Wednesday we had a very pleasant excursion up North in the valley.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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About an Erdős-Grünbaum conjecture concerning piercing of non bounded
convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2262



2238 Oberwolfach Report 40/2014

Nabil H. Mustafa (joint with Rajiv Raman, Saurabh Ray)
The Use of Geometric Separators for Combinatorial Optimization
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2262

János Pach
Three cornerstones of extremal graph theory . . . . . . . . . . . . . . . . . . . . . . . . . 2263

Igor Pak (joint with Karim Adiprasito)
Iterated bisections of simplices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2264

Dömötör Pálvölgyi (joint with János Pach)
Indecomposable coverings with unit discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2264
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Abstracts

Some observations on the geometry and combinatorics of simplicial
polytopes

Karim Adiprasito

Define the g-vector g(∆) = (g0(∆),⋯, gd(∆)) of a simplicial (d−1)-complex using

the relation gi(∆) = ∑i
k=0(−1)i−k(d+1−k

i−k
)fk−1(∆), where fi denotes the number

of i-dimensional elements (called faces) of a simplicial or polytopal complex.
The study of simplicial polytopes was revolutionized by the work of McMullen

Stanley and Billera–Lee, who completely characterized the face numbers of simpli-
cial polytopes by characterizing the numbers gi, i ≤ d

2
as the ranks of the graded

components of some commutative polynomial ring generated in degree 1. Never-
theless, this connection between combinatorics and algebra is mostly numeric, and
remains to be understood better.

In my talk, I expanded on this connection by providing a inequality between the
Betti numbers of induced subcomplexes of a simplicial polytope and the g-numbers.
As a corollary, we obtain a quantitative generalization of the celebrated generalized
lower bound theorem. In particular, I also present a proof of a conjecture of Gil
Kalai concerning the relation of g-numbers and the shape of a polytope, previously
established with J. Samper using different methods.

Elementary approach to closed billiard trajectories in asymmetric
normed spacess

Arseniy Akopyan

(joint work with Alexey Balitskiy, Roman Karasev, and Anastasia Sharipova)

We consider billiards in convex bodies and estimate the minimal length of a closed
billiard trajectory. This kind of estimates is rather useful in different practical
applications, see further references on this subject in [3].

In [1] Shiri Artstein-Avidan and Yaron Ostrover presented a unified symplectic
approach to handle billiards in a convex body K ∈ V (here V is a real vector space),
whose trajectory length (and therefore the reflection rule) is given by a norm with
unit ball T ○ (polar to a body T ∈ V ∗ containing the origin); throughout this paper
we use possibly non-standard notation for this norm ∥ ⋅ ∥T with T lying in the dual
space. We denote by ξT (K) the minimal ∥⋅∥T -length of a closed billiard trajectory
in K.

We emphasize that in this work the norm need not be symmetric, that is need
not satisfy ∥q∥ = ∥ − q∥. The other possible term is “Minkowski billiard”, but
Minkowski norms are sometimes assumed to be symmetric and we want to distin-
guish from this particular case.
We use elementary and efficient approach, developed by K. Bezdek and D. Bezdek
in [3] for the Euclidean norm. It turns out that this approach remains valid without
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change for possibly asymmetric norm, it allows to give elementary proofs of most
results of [1], worry less about the non-smoothness issues.

Consider an n-dimensional real vector space V , a smooth convex body K ⊂ V ,
and define

Pm(K) = {(q1, . . . , qm) ∶ {q1, . . . , qm} does not fit into αK+t with α ∈ (0,1), t ∈ V }.
Theorem 1. For smooth convex bodies K ∈ V and T ∈ V ∗, the length of the
shortest closed billiard trajectory in K with norm ∥ ⋅ ∥T equals

ξT (K) = min
m≥1

min
P ∈Pm(K)

ℓT (P ).

Moreover, the minimum is attained at m ≤ n + 1.

Here we mention several corollaries from this Theorem.

The monotonicity of the shortest billiard trajectory (Folklore).

ξT (K) ≤ ξT (L) when K ⊆ L

The Brunn–Minkowski-type inequality (S. Artstein-Avidan and Y. Ostrover,
2011). For any two convex smooth bodies K1,K2 ⊆ Rn, one has:

ξT (K1 +K2) ≥ ξT (K1) + ξT (K2).

Moreover, equality holds if and only if their exists a closed curve which, up to
homothety, is a length-minimizing billiard trajectory in both K1 and K2.

We will mention the theorem which motivate the authors for developing their
technique.

Theorem 2 (D. Bezdek and K. Bezdek, 2009). Let K be a convex body in Rn.
Then any of the shortest billiard trajectories in K is of period at most n + 1.

Here is the corollary of this theorem.

Corollary (A. Akopyan, B. Balitskiy, R. Karasev, A. Sharipova, 2013). Any
shortest billiard trajectory in the body of constant width 1 on the Euclidean plane
has period 2.

Open Question. Is the same true for bodies of constant width in higher dimen-
sions?

This technique also gives an elementary proof for the following theorem which
related with the Mahler conjecture [2].

Theorem 3 (S. Artstein-Avidan, R. Karasev, Y. Ostrover, 2013). If K and T

are centrally symmetric and polar to each other (T = K○) then K is 2-periodic
with respect to T and ξT (K) = 4. Moreover, a 2-bouncing billiard trajectory passes
through every point on ∂K.

In other words, the shortest billiard trajectory in the unit ball in the Minkowski
space has length 4.

For non-symmetric case we can prove the following.
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Theorem 4 (A. Akopyan, B. Balitskiy, R. Karasev, A. Sharipova, 2013). If K ⊂
Rn is a convex body containing the origin in its interior then

ξK○(K) ≥ 2 + 2/n,

and the bound is tight.

This approach can help to prove the existence of billiard trajectories in non-
smooth convex bodies.

Observation (A. Akopyan, B. Balitskiy, R. Karasev, A. Sharipova, 2013). Sup-
pose K is convex body in Rd with property that for any point q ∈ ∂K either ∂K is
smooth at q, or the cone of unit tangent vectors to K at q has diameter less than
π/2. Then K has a closed billiard trajectory.

Here we assume the “standard” definition of billiard, that is all bounces happens
in smooth points of the boundary.

Open Question. Is it possible to extend Bezdeks’ approach to the Hyperbolic or
Spherical geometry. Or Riemannian and Finsler manifolds?

References

[1] S. Artstein-Avidan, Y. Ostrover. Bounds for Minkowski billiard trajectories in convex bodies,

Intern. Math. Res. Not. 1 (2014), 165–193.
[2] S. Artstein-Avidan, R.N. Karasev, Y. Ostrover. From symplectic measurements to the

Mahler conjecture. Duke Math. J. 163:11 (2014), 2003–2022.
[3] D. Bezdek, K. Bezdek. Shortest billiard trajectories. Geometriae Dedicata 141 (2009), 197–

206.

Small subset sums

Gergely Ambrus

(joint work with Imre Bárány, Victor Grinberg)

Consider a finite dimensional, real normed space: that is, Rd endowed with a
symmetric norm ∥.∥, whose unit ball is B, a symmetric, convex body in Rd. Let
V be a set of n vectors of norm at most one, whose centroid is at the origin:
V = {v1, . . . , vn} ⊂ B, with ∑n

1 vi = 0. We are interested in finding a subset Vk

of V with a fixed cardinality k ∈ [n], so that the sum of the vectors in Vk has
small norm. Steinitz’s lemma [3, 2] guarantees that there exists an ordering of the
vectors, along with each partial sum has norm at most d – hence, we can choose
subsets of arbitrary cardinality for which the upper estimate d holds. The constant
d is optimal in the Steinitz lemma. However, for the present question, we are able
to prove a stronger, general estimate:

Theorem 1. Let ∥.∥ be a symmetric norm in Rd, and let V be a set of n vectors
of norm at most 1, which sum to 0. Then for every k ∈ [n], there exists a subset
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Vk ⊂ V consisting of k vectors, so thatXXXXXXXXXXX∑v∈Vk

v

XXXXXXXXXXX ≤ {
d/2 if d is even;(d + 1)/2 if d is odd.

The proof uses the method linear dependencies, like many of the related re-
sults [1]. The estimate is sharp in the general case. An example showing that is
the following: let v1, . . . , vd be the vectors of the standard orthonormal basis, and
take vd+1 = (−1, . . . ,−1). The vector set V consists of {v1, . . . , vd+1}. Define ∥.∥ to
be the norm whose unit ball is conv{±v1, . . . ,±vd+1}, and set k to be d/2 when d

is even, and (d + 1)/2 for d odd. It is straightforward to deduce that the sum of
any k vectors has norm at least k.

One expects that for more specific norms, a stronger estimate may be given.
We indeed manage to verify this in two instances; the estimate given below is
asymptotically sharp.

Theorem 2. Let ∥.∥ be the ℓ2 (Euclidean) or the ℓ∞ (maximum) norm in Rd.
There exists an absolute constant C, so that for any finite set V of vectors of norm
at most 1, summing to 0, and for every k which is not greater than the cardinality
of V , there exists a subset Vk ⊂ V consisting of k vectors, whose sum has norm at
most C

√
d.

References

[1] I. Bárány, On the power of linear depencies, Building Bridges. Bolyai Society Mathematical
Studies 19 (2008), 31–45.

[2] V. S. Grinberg, S. V. Sevastyanov, The value of the Steinitz constant, Funk. Anal. Prilozh.
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On the Grünbaum mass partition problem

Pavle V. M. Blagojević

(joint work with Florian Frick, Albert Haase, Günter M. Ziegler)

Let f ∶Rd
→ R be an integrable density function on Rd. A mass distribution on Rd

determined by f is a finite Borel measure µ(X) ∶= ∫X fdµ.

An affine hyperplane H = {x ∈ Rd ∶ ⟨x, v⟩ = a}, given by the vector v ∈ Rd and
constant a ∈ R, determines two open halfspaces

H0 = {x ∈ Rd ∶ ⟨x, v⟩ > a}, H1 = {x ∈ Rd ∶ ⟨x, v⟩ < a}.
Let H be an arrangement of k hyperplanes in Rd, and g = (i1, . . . , ik) ∈ (Z/2)k ={0,1}k. The orthant determined by H and g is the intersection of halfspaces

OHg =Hi1
1 ∩⋯∩H

ik
k
.
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An arrangement of hyperplanes H = {H1, . . . ,Hk} equiparts the collection of mass
distributionsM = {µ1, . . . , µj} in Rd if for every g ∈ (Z/2)k and every ℓ ∈ {1, . . . , j}

µℓ(OHg ) = 1
2k
µℓ(Rd).

As a generalization of the Ham-Sandwich theorem, Grünbaum [3, Sec. 4.(v)]
suggested the following general mass partition problem.

Problem. Determine the function ∆ ∶ N2
→ N defined by

∆(j, k) = minimal dimension d such that for every collection of j mass

distributions M = {µ1, . . . , µj} in Rd there exists a hyperplane

arrangement H = {H1, . . . ,Hk} in Rd that equiparts M.

In this language the Ham-Sandwich theorem states that ∆(d,1) = d. A lower
bound for the function ∆, based on measures concentrated along a moment curve
in Rd, was given by Avis [1]:

2k−1
k

j ≤ ∆(j, k).
The best upper bound to date, based on a Fadell–Husseini index calculation, is
due to Mani-Levitska et al. [5, Thm. 39]:

∆(2e + r, k) ≤ 2e+k−1 + r.

In this talk we present two results from [2]. The first result is a degree based proof
of a slight generalization of a result of Hadwiger [4].

Theorem 1. ∆(2,2) = 3.

The second result is a correct and elementary proof for a claim announced by
Živaljević [6, Thm. 2.1].

Theorem 2. ∆(2t + 1,2) = 3 ⋅ 2t−1 + 2.

References
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Geometric Permutations of Non-Overlapping Unit Balls Revisited

Otfried Cheong

(joint work with Jae-Soon Ha, Xavier Goaoc, Jungwoo Yang)

Given four congruent balls A,B,C,D in Rd that have disjoint interior and admit
a line that intersects them in the order ABCD , we show that the distance between
the centers of consecutive balls is smaller than the distance between the centers
of A and D. This allows us to give a new short proof of the previously proven
result [1] that n interior-disjoint congruent balls admit at most three geometric
permutations, two if n ≥ 7. We also make a conjecture that would imply that
n ≥ 4 such balls admit at most two geometric permutations, and show that if the
conjecture is false, then there is a counter-example of a highly degenerate nature.

References

[1] O. Cheong, X. Goaoc, and H.-S. Na. Geometric permutations of disjoint unit spheres. Com-
putational Geometry: Theory & Applications, 30:253–270, 2005.

A point in a (nd)-polytope is the barycenter of n points in its d-faces

Michael Gene Dobbins

In this talk I show that for any positive integers n, d and any target point in a(nd)-dimensional convex polytope P , it is always possible to find n points in the
d-dimensional faces of P such that the center of mass of these points is the given
target point. Equivalently, the n-fold Minkowski sum of the d-skeleton of P is
a copy of P scaled by n. This verifies a conjecture by Takeshi Tokuyama, and
may be viewed as loosely analogous to Carathéodory’s Theorem. The proof uses
equivariant topology.

On a (p, q)-property for hypergraphs

Vladimir L. Dol’nikov

(joint work with Ilya I. Bogdanov)

In this talk we will tell about the chromatic and piercing number of an r-graphs
with a (p, q)-property.

The notion of a (p, q)-property was initially introduced by Hugo Hadwiger and
Hans Debrunner [1, 2] for families of convex subsets in Rd in a connection with an
investigation of Helly and Helly–Gallai numbers of these families.

Definition 1. Let p and q be integers such that p ≥ q ≥ 2. We say that a family of
sets F has a (p, q)-property and write F ∈ Πp,q provided F has at least p members,
and among every p members some q have a common point.
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By definition, put τ(F) = infA⋂X≠∅, A∈F ∣X ∣. The number τ(F) is called the
piercing number of a family F and

M(p, q, F) = sup
F0⊂F ,F0∈Πp,q

τ(F0),
where F is a certain family of convex sets in Rd.

By Helly’s Theorem, M(p, p, F) = 1, where p ≥ d + 1. If q ≤ d, d ≥ 2, then
M(p, q, F) =∞ for the family of all convex sets F in Rd.

Hadwiger and Debrunner proved [1] that M(p, q, F) = p − q + 1, if d + 1 ≤
q ≤ p < d

d−1
(q − 1). N.Alon and D.Kleitman [ 3 ] have solved Hadwiger-Debrunner

conjecture and proved that if d + 1 ≤ q ≤ p, then M(p, q, F) < ∞ for every
p, q, d ∈ N and for the family of all convex sets F in Rd.

Hadwiger and Debrunner considered [2] also other families of convex sets.
At first, with the abstract point of view this problems were considered in pa-

per [4].
Let us recall necessary definitions.

Definition 2. A hypergraph is a pair G = (V,E), where V is a set, and E ⊆ 2V .
The elements of V are called vertices of G, and the elements of E are called
its (hyper)edges. A hypergraph G = (V,E) is an r-graph) if all its edges have
cardinality r. Thus, 2-graphs are just usual simple graphs.

Let G = (V,E) be a hypergraph. A set of its vertices U is called independent,
if it contains no edges. Evidently, a set X = V ∖U , where U is a independent set,
is a transversal of the family of edges E. By definition, put τ(G) = τ(E).

A coloring (proper) of a hypergraph is a partition of the set V into several
disjoint independent parts: V = V1 ⊔ V2 ⊔ ⋅ ⋅ ⋅ ⊔Vt. The subsets V1, . . . , Vt are called
colors. The chromatic number χ(G) of a hypergraph G is the minimal number of
colors in its coloring.

Let G = (V,E) be a hypergraph, and p, q be integer numbers with p ≥ q ≥ 1.
We say that G satisfies a (p, q)-property if ∣V ∣ ≥ p, and every subset V ′ ⊆ V with∣V ′∣ ≥ p contains an independent subset with q elements.

If F is a family of convex sets in Rd, then we have such hypergraph G = (V,E).
The set of vertices V is the family F and a subfamily e ⊂ F forms the edge if and
only if 1 ≤ ∣e∣ ≤ d + 1 and ∩v∈ev = ∅.

Then a nonempty set of vertices (a subfamily) U ⊂ V = F is a independent set
iff the subfamily U has a nonempty intersection. The chromatic number χ(G) of
this hypergraph is equal to the piercing number τ(F) of the family F .

Theorem 3. Suppose r, p, q, p ≥ q ≥ r are positive integers.

(1) If p > r
r−1
(q− 1), then for every N there exists an r-graph G satisfying the(p, q)-property such that χ(G) > N .

(2) If p ≤ r
r−1
(q−1), then for every an r-graph G satisfying the (p, q)-property

we have

χ(G) ≤ ⌈p − q
r − 1

⌉ + 2.
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(3) If p ≤ r
r−1
(q − 1), then there exist r-graphs satisfying the (p, q)-property

such that

⌈p − q
r − 1

⌉ + 1 ≤ χ(G).
Remark 1. If r = 2 and the conditions of the theorem are fulfilled, then χ(G) ≤
p − q + 1. And it is not hard to show that there exist a simple graph with a (p, q)-
property, p ≤ 2q − 2, such that χ(G) = p − q + 1.

Essentially, this result for r = 2 (points 2,3) was proved Hadwiger and Debrun-
ner [1, 2] although they proved it for graphs of intersections of rectangles.

For arbitrary graphs this result follows from the paper of P. Erdös and T. Gal-
lai [5], where they proved that in this case τ(G) ≤ p − q.

Point 1 follows from a result of P. Erdös (1959).
First a nontrivial case is an estimate χ(G) for an r-graph with a (2r,2r − 1)-

property. By the theorem 1 we have 2 ≤ χ(G) ≤ 3.
Is it true that such an r-graph is bichromatic (bipartite)? We can prove that

such r-graph is bichromatic if r = 2,3,4,5.
For r = 2,3 this assertion follows from the paper P. Erdös and T. Gallai [5] .

For r = 4,5 this assertion follows from this theorem.

Theorem 4. Suppose G is a hypergraph such that ∣e1 ∩ e2∣ ≤ 1 for every e1, e2 ∈ E
and ∣e∣ ≥ 4 for every e ∈ E. Then χ(G) = 2.

Remark 2. The conditions ∣e∣ ≥ 4 is important. If G is the finite projective plane
of the order 2 and the edges are the lines, then χ(G) = 3.

Definition 5. By definition, put MH(p, q, , r) = supG τ(G), where G is an
r-graph with the (p, q)-property, p ≥ q ≥ r.

We can prove following theorems.

Theorem 6. If p > r
r−1
(q − 1), then MH(p, q, r) = ∞. If p ≤ r

r−1
(q − 1), then

MH(p, q, r) ≤ r(p − q).
Zs. Tuza [6] found best (asymptotically sharp) estimate for p(q), when

MH(p, q, , r) ≤ p − q, p ≤ p(q).
First a nontrivial estimate is an estimate MH(p, q, r) for p = 2r and q = 2r−1.

Theorem 4. If r = 2,3, then MH(2r, 2r − 1, r) = 1, and MH(2r, 2r − 1, r) = r

for r > 3 and there exist a finite projective plane of order r − 1.
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Toward the Hanani–Tutte Theorem for Clustered Graphs

Radoslav Fulek

The weak variant of Hanani–Tutte theorem says that a graph is planar, if it can
be drawn in the plane so that every pair of edges cross an even number of times.
Moreover, we can turn such a drawing into an embedding without changing the
order in which edges leave the vertices. We prove a generalization of the weak
Hanani–Tutte theorem that also easily implies the monotone variant of the weak
Hanani–Tutte theorem by Pach and Tóth [1]. Thus, our result can be thought of
as a common generalization of these two neat results. In other words, we prove the
weak Hanani-Tutte theorem for strip clustered graphs, whose clusters are linearly
ordered vertical strips in the plane and edges join only vertices in the same cluster
or in neighboring clusters with respect to this order. In order to prove our main
result we first obtain a forbidden substructure characterization of embedded strip
clustered planar graphs.

References

[1] Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1) (2004)
39–47 updated version: arXiv:1101.0967.

Expansion for Simplicial Complexes

Anna Gundert

Roughly speaking, a graph is an expander if it is sparse and at the same time well-
connected. Such graphs have found various applications, in theoretical computer
science as well as in pure mathematics. Expander graphs have, e.g., been used to
construct certain classes of error correcting codes, in a proof of the PCP Theorem,
a deep result in computational complexity theory, and in the theory of metric
embeddings. See, e.g., the surveys [10] and [14] for these and other applications.

In recent years, the combinatorial study of simplicial complexes - considering
them as a higher-dimensional generalization of graphs - has attracted increasing
attention and the profitability of the concept of expansion for graphs has inspired
the search for a corresponding higher-dimensional notion, see, e.g., [9, 15, 22, 24]

The expansion of a graph G can be measured by the Cheeger constant 1

h(G) ∶= min
A⊆V

0<∣A∣<∣V ∣

∣V ∣∣E(A,V ∖A)∣
∣A∣∣V ∖A∣ .

1Often the Cheeger constant is defined by φ(G) =minA⊆V,0<∣A∣≤∣V ∣/2
∣E(A,V ∖A)∣

∣A∣
. Since φ(G)≤

h(G)≤2φ(G), the two concepts are closely related. Both are also called (edge) expansion ratio.

http://arxiv.org/abs/1101.0967
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Here E(A,V ∖A) is the set of edges with one endpoint in A and the other in V ∖A.
A straightforward higher-dimensional analogue is the following Cheeger constant
of a k-dimensional simplicial complex X with complete (k − 1)-skeleton, studied
in [8, 22]:

h(X) ∶= min
V =∐k

i=0
Ai

Ai≠∅

∣V ∣∣F (A0,A1, . . . ,Ak)∣∣A0∣ ⋅ ∣A1∣ ⋅ . . . ⋅ ∣Ak ∣ .

Here F (A0,A1, . . . ,Ak) is the set of k-dimensional faces of X with exactly one
vertex in each set Ai.

For graphs, this combinatorial notion of expansion is connected to the spec-
tra of certain matrices associated with the graph: the adjacency matrix and the
Laplacian. This connection between combinatorial and spectral expansion proper-
ties of a graph is established, e.g., by the discrete Cheeger inequality [1, 2, 4, 25].
For a graph G with second smallest eigenvalue λ(G) of the Laplacian L(G) and
maximum degree dmax, it states that

λ(G) ≤ h(G) ≤√8dmaxλ(G).
A different approach to generalizing expansion is hence to consider higher-di-

mensional analogues of graph Laplacians. Higher-dimensional Laplacians were
first introduced by Eckmann [5] in the 1940s and have since then been used in
various contexts, see [12] for an example. For a recent exposition and systematic
development of the basic properties of combinatorial Laplacians, see also [11].

The Cheeger inequality for graphs has proven to be a useful tool. Computing
the Cheeger constant is difficult, from the standpoint of complexity theory [20, 3]
but often also for explicit examples. The lower bound – even though easy to prove
– hence gives a helpful, polynomially computable, lower bound on the Cheeger
constant. Parzanchevski, Rosenthal and Tessler [22] recently showed the following
analogue of this lower bound of the Cheeger inequality for k-dimensional simplicial
complexes with complete (k − 1)-skeleton. Denote by λ(X) the smallest non-
trivial eigenvalue of the higher-dimensional Laplacian. More precisely, λ(X) is
the smallest eigenvalue of the upper Laplacian L

up
k−1(X) on (Bk−1(X ;R))⊥, see,

e.g., [11] for the relevant definitions. For a k-dimensional simplicial complex X

with complete (k − 1)-skeleton the result in [22] states that

λ(X) ≤ h(X).
An extension to arbitrary complexes (k-complexes with non-complete (k − 1)-
skeleton) can be found in [8]. See [22] for a discussion of possible upper bounds.

A different higher-dimensional analogue of edge expansion, going by the name
of combinatorial or cohomological expansion, is based on concepts from algebraic
topology, more specifically on cohomological notions. It emerged in various con-
texts as a useful notion. Linial, Meshulam and Wallach [13, 21] used the combi-
natorial expansion of the complete complex, containing all possible simplices on a
fixed set of vertices, to study the cohomological properties of random complexes.
Gromov suggested this notion when examining more geometrical notions of ex-
pansion: Any expander graph possesses the following geometric overlap property.
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When mapped to the real line R, it exhibits a point in R that is covered by the
images of a lot of edges. The higher-dimensional analogue of this situation is cap-
tured by the overlap number of a simplicial complex. Gromov [7] showed that any
combinatorially expanding complex has a large overlap number. See also [19] for
a more combinatorial treatment of Gromov’s proof.

For a k-dimensional complex X with complete (k − 1)-skeleton, this notion can
be described2 by

min
f∈Ck−1(X,Z2)

∣V ∣ ⋅ ∣δXf ∣
∣δKk

n
f ∣ .

Here δX denotes the Z2-coboundary operator of a complex X , ∣ ⋅ ∣ denotes the
Hamming norm, and Kk

n is the complete k-dimensional complex on n vertices (the
k-skeleton of the (n − 1)-simplex). As this seems to be an important and useful
concept, one might wish for an analogue of the Cheeger inequality also for this
notion of expansion. It was, however, shown that an analogue of the lower bound
can not exist, see [9, 24], where infinite families of examples are presented whose
combinatorial expansion tends to zero while the spectral expansion is bounded
away from zero. [24] also contains a similar counterexample for an analogue of the
upper bound.
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Bang’s problem and symplectic invariants

Roman Karasev

(joint work with Arseniy Akopyan and Fedor Petrov)

1. Introduction

We start from recalling the classical problem attributed to Alfred Tarski and
Thøger Bang and the known results on this problem, in particular those of Keith
Ball, that give motivation to the whole discussion in this text.

The earliest version of this problem appeared when Tarski studied [21, 22]
certain degree of equivalence τ(x) of a unit square Q and a rectangle P of size
x × 1

x
, defined as the smallest number of parts one has to cut the rectangle into

to assemble the square from the parts. To solve a particular case of this problem
and show that τ(n) = n for natural numbers n, Henryk Moese [16] inscribed a
disk K into Q and noticed that this disk cannot be covered by less than n parts
Pi of P . The solution used the trick of projecting the sphere in R3 onto K and
counting the areas of the preimages of Pi on the sphere. By the way, this gave the
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solution of what was called later “the Bang problem” for the round disk K and
the Euclidean norm.

Bang had [9] a different (non-volumetric) solution of the more general problem:
If a convex body K ∈ Rn is covered by planks P1, . . . , Pm (a plank is a set bounded
by a pair of parallel hyperplanes) then the sum of Euclidean widths of the planks is
at least the Euclidean width of K. After that, Bang conjectured [9] that whenever
a convex body K is covered by planks P1, . . . , Pm, the sum of relative widths of
the planks is at least 1. Here the relative width is the width of Pi in the norm with
the unit ball K −K (the symmetrization of K), and this version would certainly
imply the original result of Bang.

The best to date result on Bang’s conjecture belongs to Ball [6], who established
it for all centrally symmetric convex bodies K. For non-symmetric bodies the
problem remains open.

There is essentially one general approach to Bang’s problem known so far,
designed by Bang himself. For any plank Pi we take an orthogonal (in a fixed
Euclidean metric) segment Ii such that ∣Ii∣ is slightly more than the width w(Pi).
The first easy step is to show that the Minkowski sum I1+⋅ ⋅ ⋅+Im can be translated
to fit into any given convex body of minimal width 1; and the main lemma of Bang
asserts that at least one point of this Minkowski sum I1 + ⋅ ⋅ ⋅ + Im is not covered
by Pi. The proof is given by optimizing a cleverly chosen quadratic function of m
variables. This lemma immediately proves the Euclidean case of Bang’s problem
and is also used in Ball’s proof of the general symmetric case. The same approach
was used by Vladimir Kadets [15] to show that any convex covering of the unit
Euclidean ball in Rn has the sum of inradii at least 1.

In contrast to the general case, the approach of Moese to the cases of dimension
2 and 3 is volumetric. The crucial observation is that for a plank Pi the area of
its intersection with the round two-sphere S2 ⊂ R3 is proportional to the plank
width. It is also known that the volumetric approach fails in larger dimensions.

In this paper we are going to propose another “quantitative” approach to the
Bang conjecture based on certain invariants of symplectic manifolds and Hamil-
tonian systems, introduced by Hofer and Zehnder (see their nice book [14]), with
first nontrivial examples given previously by M. Gromov [13]. This approach has
already proved to be useful in a series of works [4, 5, 3], and allows either to solve
a problem in convex geometry by symplectic methods or provides a good intuition
to pose the “right questions” in convex geometry.

Even for the known results by Ball [6, 8] such a new approach would be useful,
because Ball’s proofs are very long and technical. However, at the moment we are
only able to handle these results in a particular case of “almost parallel planks”,
the general case being dependent on some conjectured property of symplectic ca-
pacities.

Acknowledgments. The authors thank Yaron Ostrover for useful discussions
and numerous remarks, Leonid Polterovich for some useful observations, Wac law
Marzantowicz and Jakub Byszewski for scanning the old Polish papers [16, 21, 22]
for us.
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2. Symplectic invariants

Let us try to relate the Bang conjecture to some notions of symplectic geometry.
Denote by V the ambient vector space of the convex body K, and let V ∗ be its
dual. Consider some norm ∥ ⋅ ∥ on V . Let ∥ ⋅ ∥∗ be the dual norm on V ∗, with the
unit ball B○. In the Bang conjecture the natural choice of the norm ∥ ⋅∥ is the norm
with the unit ball K −K (the Minkowski sum of K with its centrally symmetric
image), but we do not restrict ourselves and allow arbitrary norms here.

We always assume that the norms ∥ ⋅ ∥ and ∥ ⋅ ∥∗ are sufficiently smooth. For
the Bang conjecture this is not a problem, since the conjecture allows going to
the limit. We also assume that K has sufficiently smooth boundary when this is
needed in the argument.

Our idea is to start from a covering of K by planks P1, . . . , Pm with widths
w1, . . . ,wm (measured in the norm ∥⋅∥) and show that a certain symplectic invariant
of a certain subset of V × V ∗ is bounded in terms of ∑iwi.

First of all, the space V × V ∗ is, in more general terms, the cotangent space
of the manifold V . The cotangent space always inherits the canonical symplectic
structure, which in this particular case is given by the formula

ω((q1, p1), (q2, p2)) = ⟨q1, p2⟩ − ⟨q2, p1⟩.
Now we are going to consider the set K × B○ ⊂ V × V ∗, which is a sort of

a unit disk bundle over K. Now we want to bound the displacement energy of
K×B○. The definition of the displacement energy operates with a time dependent
Hamiltonian H(q, p, t) on V ×V ∗× [T1, T2], whose total oscillation is defined to be

∥H∥ = ∫ T2

T1

sup
q,p

H(q, p, t) − inf
q,p

H(q, p, t) dt,
see [14, Ch. 5] or [19] for the detailed definitions. Sometimes the segment [T1, T2]
is normalized to be [0,1], but actually this and the following definitions do not
depend on this normalization. It is always possible to scale the time segment
by α and multiply the Hamiltonian by 1/α without changing the result of the
Hamiltonian flow.

The displacement energy of K×B○, denoted by e(K×B○), is, roughly speaking,
the minimal ∥H∥ such that the corresponding time dependent Hamiltonian flow
ϕt takes K ×B○ off itself, that is

(K ×B○) ∩ϕT2
(K ×B○) = ∅.

Again, more details can be found in [14, Ch. 5].
What we want to establish in order to attack the Tarski–Bang problem is the

following:

Conjecture 1. If K can be covered with a finite set of planks with the sum of
relative widths equal to w then e(K ×B○) ≤ 2w.

Bang’s conjecture would follow if we also estimate the value e(K × B○) from
below, in the particular case when B = K −K. This can indeed be done in some
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important cases, but the truth is that this does not work fully, see Section 3 for
more details.

We cannot prove this conjecture so far, but we sketch an argument for a par-
ticular case of it:

Theorem 2. The previous conjecture holds if the ∥ ⋅ ∥∗-unit normals ni ∈ V ∗ of
the planks can be chosen so that for every nonnegative coefficients ci, at least one
of which is 1 the inequality holds:

(1) ∥∑
i

cini∥
∗

≥ 1.

Let us call the assumption almost parallel planks. In the Euclidean case this is
guaranteed by a simpler assumption that (ni, nj) ≥ 0 for any pair of indices.

Proof. Let a plank Pi have width wi. Consider the Hamiltonian Hi(q, p, t) defined
for t ∈ [2i−2,2i] so that Hi is independent of t and y, equals zero for q on one side
of P , equals wi for q on the other side of Pi, and changes linearly in q inside Pi.
The effect of the corresponding (discontinuous!) flow is as follows: (q, p) ∈ V × V ∗
remains fixed if q is outside Pi and gets shifted by (0,2ni), where ni = dqHi is
the unit normal to Pi, for q inside Pi. From the definition it follows that the part(K ∩Pi) ×B○ gets shifted outside K ×B○, spending the total oscillation 2wi.

The idea is to shift this way everything outside K ×B○ in a sequence of such
steps for all planks Pi. The total oscillation of such a sequence of Hamiltonians
is therefore twice the sum of widths. To make this idea work we need some care.
First, the function Hi(q, p, t) is not smooth in q and therefore the Hamiltonian
flow is discontinuous. This could be remedied by a certain smoothening changing
the value of dH in a small neighborhood of ∂Pi × V ∗; but after that we have
to keep in mind that some parts near boundaries of planks are “incompletely
shifted”. A more serious problem, is that we have made several shifts and it
usually happens that something, previously shifted outside K ×B○, returns inside
K ×B○ on a subsequent shift. It is easy to check that nothing returns back under
the assumption (1); and in this case the proof passes. �

Remark 3. Here we observe a strange phenomenon. The classical method of
Bang works better when the planks are far from parallel, see [7] for an impressive
example. But the displacement energy approach presented above likes the opposite
situation, when the planks are almost parallel.

Remark 4. Yaron Ostrover has noted in the private communication that the
proof of the above theorem does not use the convexity of K. This may be useful,
though lower bounds for the symplectic invariants of K ×B○ seem less accessible
for non-convex K.

It is well known that the Hofer–Zehnder symplectic capacity cHZ(U) (see the
definition and discussion in [14]) gives a lower bound for the displacement energy
of U , where U is an open bounded set in V × V ∗. So the following version of the
conjecture would also be sufficient for many purposes:
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Conjecture 3. If K can be covered with a finite set of planks with the sum of
relative widths equal to w then cHZ(K ×B○) ≤ 2w.

The ultimate version of this conjecture would be the subadditivity property of
the Hofer–Zehnder (or similar) capacity:

Conjecture 4. If a convex body X ⊂ R2n in the standard symplectic space R2n is
covered by a finite set of convex bodies {Xi} then, for some symplectic capacity,

∑
i

c(Xi) ≥ c(X).
It is easy to give many examples when this property is violated when some of

Xi are non-convex, see the full version of this text. So here we expect a deep
fact that essentially ties the convex geometry and symplectic geometry. We do
not discuss the definitions of different capacities here, but in the next section we
interpret them in a rather elementary way.

Why do we believe this subadditivity might be true? One evidence is the result
of Keith Ball [8]: When the unit ball in Cn is covered by unitary cylinders Zi

of radii ri then ∑i r
2
i ≥ 1. Here Cn is endowed with some Hermitian metric and

a unitary cylinder of radius r is an r-neighborhood of a complex hyperplane. A
unitary cylinder is a particular case of a symplectic cylinder with any capacity
equal to πr2i , so this is indeed a particular case of Conjecture 4.

It is also checked by hand that the subadditivity holds if we partition the stan-
dard ball B2n ⊂ R2n in two convex parts.

3. Billiards and capacity

Assuming Conjecture 3, in order to solve the Bang problem it remains to prove
that cHZ(K ×B○) ≥ 2, where B○ is the polar to K −K. Fortunately, the paper [4]
provides a nice elementary description of this capacity (all the bodies are assumed
to be sufficiently smooth):

Theorem 5 (Artstein-Avidan, Ostrover, 2011). The Hofer–Zehnder capacity of
K×B○ is equal to the length of the shortest closed billiard trajectory in K, where the
length is measured in the norm ∥ ⋅ ∥ and the reflection rule reflects the momentum
coordinate from one point on ∂B○ to the other point on ∂B○ by combining it with
a multiple of the normal to ∂K at the hit point.

Remark 5. In [4] closed geodesics of ∂K were also considered as a particular
case of a billiard trajectory, with length measured with ∥ ⋅ ∥ norm. But in [2] it
was shown that such closed trajectories can never be shorter than the ordinary
bouncing trajectories.

It is possible to give the lower bounds for the lengths of closed billiard trajecto-
ries in a convex body K, measuring the lengths by a norm with unit ball B. This
was done in [5, 2] by relatively elementary methods. Here we cite the results:

Theorem 6 (Artstein-Avidan, Karasev, Ostrover, 2013). Let ∥ ⋅ ∥ be a smooth
norm and let its dual ∥ ⋅ ∥∗ be also smooth. Then any closed billiard trajectory in
the unit ball B, being measured with ∥ ⋅ ∥, has length at least 4.
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Evidently, the segment [q,−q] ∈ B, where ∥q∥ = 1, passed forth and back is a
closed billiard trajectory of length 4 in the norm associated with B. Theorem 6
asserts that this is the shortest one, and together with Conjecture 3 (or some other
similar conjecture) would imply Ball’s theorem from [6] about the Bang problem
for centrally symmetric case. Clearly, this result together with Theorem 2 already
gives a symplectic proof for the particular case of Ball’s theorem, when the “almost
parallel planks” assumption in (1) is imposed.

For possibly non-symmetric convex bodies a similar result was established in [2].
In this theorem we allow a norm to violate the reflexivity property ∥q∥ = ∥ − q∥,
that is we consider a Finsler norm:

Theorem 7 (Akopyan, Balitskiy, Karasev, Sharipova, 2014). Let ∥ ⋅∥ be a smooth
non-symmetric norm in Rn and let its dual ∥ ⋅ ∥∗ be also smooth. Then any closed
billiard trajectory in the unit ball K, measured with ∥ ⋅∥, has length at least 2+2/n.

See also [2] for the discussion of its relation to the non-symmetric case of
Mahler’s problem.

Now we prove one more estimate related to the non-symmetric case of Bang’s
problem. It resembles the previous one but does not seem to be equivalent.

Theorem 8. Let K be a smooth strictly convex body in Rn. Consider the norm
with the unit ball B = K −K, then any closed billiard trajectory in K with this
norm has length at least 1 + 1

n
.

Remark 6. This estimate is obviously tight for n = 1,2, and is actually tight for
n ≥ 3, as it was checked by Yoav Nir [17, Ch. 4]. In fact, a closed polygonal line
with vertices at the centers of facets of a simplex K is a closed billiard trajectory
in K with respect to the norm with unit ball K −K.

Remark 7. Assuming something like Conjecture 3 this theorem would imply a
weaker result than the Bang conjecture, that is the sum of relative widths of planks
would be proved to be at least n+1

2n
. This is not what was conjectured by Bang,

but would be a good step toward the Bang conjecture. Again, for “almost parallel
planks”, like in Theorem 2, this weaker Bang conjecture with sum n+1

2n
already

follows from Theorems 2 and 8.

In order to proceed we need a simple lemma:

Lemma 9. Let K be a convex body in Rn and ∥ ⋅ ∥ be the norm with unit ball
K −K. If C ∈ Rn is a connected graph with total ∥ ⋅ ∥-length h, then C can be
covered by a translate of the homothet hK.

Proof of the Lemma. We may assume that C has straight line segments as edges.
For an edge [a, b] the inequality

∥a − b∥ ≤ δ

just means that [a, b] can be covered with a translate of δK. So we cover all edges
of C (that is the whole C) by translates δ1K + t1, . . . , δmK + tm with

δ1 + δ2 + ⋅ ⋅ ⋅ + δm ≤ h.
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Then we observe that if two sets δiK+ti and δjK+tj intersect then they can be
covered by a single set (δi+δj)K + t′. Using the connectedness of C we can repeat
this step several times to cover the whole C with a translate of (δ1+⋅ ⋅ ⋅+δm)K. �

Proof of Theorem 8. By [2, Theorem 2.1] the shortest closed billiard trajectory in
K has at most n + 1 bounce points {qi}mi=1 and cannot be covered by a smaller
positive homothet of K. By Lemma 9 we have:

m

∑
i=2

∥qi − qi−1∥ ≥ 1.

If L is the length of the closed polygonal line q1, q2, . . . , qm, q1 then the above
inequality is a lower bound for L minus the length of the segment [qm, q1]. The
same argument applies to any other segment, and since some of them has length
at least L

n+1
(remember that m ≤ n + 1) then

(1 − 1

n + 1
)L ≥ 1,

that is L ≥ n+1
n

. �

As a more elementary example of this activity, we want to mention another
result, implicit in [10]:

Theorem 10 (D. Bezdek, K. Bezdek., 2009). For a convex body K of constant
width 1 in the plane with the Euclidean norm, any shortest closed billiard trajectory
has length 2 and must be a diameter of K passed twice.

As was noted by Alexey Balitskiy (private communication), the proof of [10,
Theorem 1.2] proves this assertion as well. Example 11 shows that it cannot be
generalized to arbitrary norm without additional assumptions. Also, the gener-
alization of Theorem 10 for the Euclidean norm in dimensions more than 2 is
open.

Returning to the Tarski–Bang problem we conclude that Conjecture 3 (or 1)
would imply the following claim: If for a smooth strictly convex body K there
are no closed billiard trajectories in K with ∥ ⋅ ∥-length less than 2 then the Bang
conjecture holds for K. It is easy to verify the assumption when K is the Euclidean
ball of unit diameter and ∥⋅∥ is the Euclidean norm. Theorem 6 gives an affirmative
answer for the case of symmetric K (Ball’s theorem), but the following example
is unpleasant in view of the general Bang conjecture:

Example 11. If K is the triangle in the plane, then the small triangle formed
by its midpoints of sides is a closed billiard trajectory and has relative length 3/2.
The triangle is not smooth, but it can be smoothened without increasing the number
3/2 too much. Thus the billiard approach is not sufficient to establish the Bang
conjecture already in this simple case.

Moreover, for the Euclidean norm, the triangle of unit width has a billiard
trajectory along the midpoints of length

√
3. So the billiard approach fails even for

the known case of the Bang theorem, which estimates the sum of Euclidean widths
of the covering planks by the minimal width of K.
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4. Two directions of planks

In this section we prove a particular case of Bang’s problem with elementary
methods. It is independent of the other parts of this paper, but we thought it
makes sense to confirm another particular case of the conjecture. One may check
that it does not follow from the result under the “almost parallel” assumption.

Theorem 12. Let a convex body K ⊂ Rn be covered by a family of planks
P1, . . . , Pm, whose normals have only two distinct directions. Then the sum of
widths of the planks in the norm with the unit ball K −K is at least 1, that is the
Bang conjecture holds in this case.

Proof. If all the planks are parallel to each other then the assertion is evidently
true. Assume there are two distinct normals n1, n2 ∈ V ∗ (we put V = Rn). Obvi-
ously, the projection

π ∶ V → R2, π(x) = (n1(x), n2(x))
reduces the problem to the following planar case: The projection (denote it by
K again) is inscribed in the unit square abcd (let a be the left bottom and b be
left top), that is K contains the points on every side of abcd. Let those points be
p, q, r, s (p ∈ ad, q ∈ ab, r ∈ bc, s ∈ cd), we allow some of the to coincide. Assume K

to be covered by a set of horizontal and vertical planks with sum of widths (now
widths can be considered Euclidean) less than 1. Also choose such a covering with
the minimal number of planks.

If there are only two planks then the result is well known, see [18] or [11,
Lemma 10.1.1]. So we assume that there are k vertical planks and at least k

horizontal planks (we interchange the axes if needed).
Consider the points of K not covered with the vertical planks, they split into

k + 1 convex sets M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mk+1 ordered from left to right, we allow some of
them to be empty. These sets have to be covered with horizontal planks and this
reduces to cover their projection to the 0y axis with a set of segments. Definitely,
one needs at most k + 1 segments to cover those projections, and we now that k

segments are really needed. Now consider the cases:

(1) The set M1 ∋ q is nonempty and its projection to 0y has no intersection
with the projections of other Mi’s. Then one horizontal plank is needed to
cover M1 separately from the other parts. But it makes sense to replace
this plank with a vertical one, indeed, the set M1 contains the triangle
qc1d1 homothetic to qcd, whose vertical and horizontal widths coincide.
Therefore the vertical width of M1 is at least its horizontal width. So
we replace the horizontal plank of M1 with a vertical one and merge this
vertical plank with the first vertical plank in the list. After that the sum
of widths does not increase and the number of planks does decrease.

(2) The case when the projection of Mk+1 ∋ s to 0y does not intersect the
other projections of Mi’s is considered similarly.
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(3) The set M1 is empty and Mk+1 is also empty. Then the projections of
Mi’s to 0y can be covered with k − 1 segments, but we have assumed that
the number of segments is at least k.

(4) M1 = ∅, Mk+1 is not empty and its projection to 0y intersects some of
the projections of other Mi’s. Again, in this case at most k − 1 horizontal
planks are sufficient.

(5) Similar to the previous case, when we interchange M1 and Mk+1.
(6) Both the projections of M1 ∋ q and Mk+1 ∋ s to 0y are nonempty and

both of them intersect other Mi’s. Again, we know that we really need at
least k horizontal planks to cover Mi’s. This may only happen when the
projections of M1 and Mk+1 do intersect and the projections of Mi’s with
2 ≤ i ≤ k are disjoint from them and are disjoint from each other. Therefore
a horizontal plank Ph cover both M1 and Mk+1. Hence Ph ∋ q, s. Other
sets M2, . . . ,Mk then have to be disjoint from Ph and the total number of
needed horizontal planks is precisely k.

Interchanging the vertical and horizontal direction we find a vertical
stripe Pv ∋ p, r. The segment qs intersects the boundary of Pv at q1, s1,
lying in their respective Mi, Mi+1. But then Mi and Mi+1 intersect Ph,
which is a contradiction.

�
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Steinhaus’ circle lattice point problem, revisited

Hiroshi Maehara

In 1957, H. Steinhaus posed the following problem in elementary mathematics
[2,3,4]. Is there a circle in the plane that contains in its interior exactly n lattice
points, for any given n? (A lattice point means a point whose coordinate are all
integers.) And Steinhaus himself proved that for every natural number n, there
exists a circle of area n which contains in its interior exactly n lattice points (see
Honsberger [1] p. 118). We prove the following.

Let X be a compact region of area n in the plane.

(1) If X is a strictly convex region (i.e., a convex region whose boundary curve
contains no line segment) or a region bounded by an irreducible algebraic
curve, then X can be translated to a position where it covers exactly n

lattice points.
(2) If X is a (possibly concave) polygon or a general convex region, then X

can be rotated and translated so that it covers exactly n lattice points.

Problem: Is there a planar region of area n such that no congruent copy of it can
contain exactly n lattice points?
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Upper and Lower Bounds of Long Dual-Paths in Line Arrangements

Tillmann Miltzow

(joint work with Udo Hoffmann, Linda Kleist)

Given a line arrangement A up to lower order terms we show that there exists
a path of length n2/3 in the dual graph of A formed by its faces. This is tight.
We also consider bichromatic line arrangements and define alternating paths as
paths that alternatingly cross red and blue lines. We describe an example of a
line arrangement with 3n blue and 2n red lines with no alternating path longer
than 14n. Further we show that a random coloring of any line arrangement has
an alternating path of length Ω(n2/ logn).
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About an Erdős-Grünbaum conjecture concerning piercing of non
bounded convex sets

Luis Montejano

(joint work with Amanda Montejano, Edgardo Roldán-Pensado, Pablo Soberón)

In this talk, we will discuss the number of compact sets needed in an infinite family
of convex sets with a local intersection structure to imply a bound on its piercing
number, answering a conjecture of Erdős and Grünbaum. Namely, if in an infinite
family of convex sets in Rd sets we know that out of every p there are q which
are intersecting, we determine if having some compact sets implies a bound on the
number of points needed to intersect the whole family. We also study variations
of this problem.

The Use of Geometric Separators for Combinatorial Optimization
Problems

Nabil H. Mustafa

(joint work with Rajiv Raman, Saurabh Ray)

Separators are by now a widely-used tool for designing efficient algorithms. The
planar graph separator theorem of Lipton and Tarjan (1977) has found many uses
in the design of exact and approximation algorithms for optimization problems.
In this talk I will survey some recent work on the construction of new separators
for geometric objects, as well as their use in algorithmic design for combinatorial
optimization problems. Specifically, this series of recent work was initiated by the
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interesting result of Adamaszek and Wiese (2013), who proved a new separator
theorem extending the separators of Fox and Pach (2009), which they then used
to design a QPTAS for the geometric independent-set problem. Their separa-
tor theorem was made optimal and generalized independently by several authors
(Har-Peled (2014), Mustafa, Raman and Ray (2014)). Further application of these
separators in the design of QPTAS for the geometric set-cover problem was sub-
sequently given by Mustafa, Raman and Ray (2014).

Three cornerstones of extremal graph theory

János Pach

By Ramsey’s theorem, any system of n segments in the plane has roughly logn
members that are either pairwise disjoint or pairwise intersecting. Analogously, by
Ramsey’s theorem on hypergraphs, any set of n points p(1), . . . , p(n) in the plane
has a subset of roughly log logn elements with the property that the orientation of
p(i)p(j)p(k) is the same for all triples from this subset with i < j < k. The elements
of such a subset form the vertex set of a convex polygon. However, in both cases
we know that there exist much larger ”homogeneous” subsystems satisfying the
above conditions.

By the Kővári-Sós-Turán (and Erdős) theorem, the incidence graph of n points

and n lines in the plane has at most n3/2 edges. The celebrated Szemerédi-Trotter
theorem states that a much stronger result is true: the maximum number of
incidences between n points and n lines in the plane is O(n4/3), and the order of
magnitude of this bound is tight.

The Szemerédi regularity lemma and its far reaching extensions belong to the
most applicable tools of modern combinatorics. It follows that, for every ε > 0,
the vertex set of any sufficiently large graph can be partitioned into a bounded
number of almost equal parts such that the bipartite graphs induced by all but
an at most ε fraction of all pairs of parts behave like random graphs (with an
error of at most ε). However, for intersection graphs of segments, a much stronger
partition theorem was proved by Pach and Solymosi: the bipartite graphs induced
by all but an at most ε fraction of all pairs of parts are either complete or empty!

What is behind this favorable behavior? One of the common features of the
above problems is that the underlying graphs and triple-systems are semi-algebraic,
that is, they can be defined by a small number of polynomial equations and in-
equalities in terms of the coordinates of the segments, points, and lines. It turns
out that (1) Ramsey’s theorem, (2) the Kővári-Sós-Turán theorem, and (3) Sze-
merédi’s regularity lemma, as well as a number of other related results in extremal
combinatorics, can be substantially strengthened for semi-algebraic graphs and
hypergraphs.
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Iterated bisections of simplices

Igor Pak

(joint work with Karim Adiprasito)

We survey known results in Numerical Analysis on the (Rivara) iterated bisection
of simplices. The main problems on periodicity and degeneration are completely
resolved in 2 dimensions, but until now remained open in higher dimensions. We
report on the progress in 3 dimensions. Joint work with Karim Adiprasito.

Indecomposable coverings with unit discs

Dömötör Pálvölgyi

(joint work with János Pach)

Let C be a family of sets in Rd, and let P ⊆ Rd. We say that C is an m-fold covering
of P if every point of P belongs to at least m members of C. A 1-fold covering is
simply called a covering.

Definition. A subset C ⊆ Rd is said to be cover-decomposable if there exists a
positive integer m = m(C) such that every m-fold covering of Rd with translates
of C can be decomposed into two coverings.

The problem of characterizing cover-decomposable sets was proposed by Pach [4]
in 1980. In [4], the following conjecture was made.

Conjecture (Pach). Every planar convex set C is cover-decomposable.

Winkler [9] even suggested that for the unit disc m(C) = 4.
We disprove this conjecture by showing it does not hold even for the unit disk.1

Theorem 1. The unit disk is not cover-decomposable.

Our construction generalizes to most planar convex sets C.

Theorem 2. Let C be an open plane convex set with a smooth boundary, which
has two parallel supporting lines with positive curvature at the points of tangencies.
Then C is not cover-decomposable.

1In a 30 years old, unpublished manuscript [3], the opposite was claimed.
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It easily follows from Theorem 1 that the unit ball in Rd is not cover-decompos-
able in any dimension d ≥ 3. This weaker statement was first proved in [6].

On the positive side, it was shown in [5] that every centrally symmetric convex
polygon (i.e., open polygonal region) is cover-decomposable. It took almost 25
years to generalize this statement to all convex polygons [8], [7]. One may first
believe that there exists an absolute constant m′ such that every m′-fold covering
of the plane with translates of any convex polygon Q splits into two coverings.
Since the unit disk can be approximated by convex n-gons with n tending to
infinity, this would imply by compactness that every m′-fold covering of the plane
with unit disks also splits into two coverings, contradicting Theorem 1. Therefore,
we have the following.

Corollary. Given a convex polygon Q, let m(Q) denote the smallest positive in-
teger m such that every m-fold covering of the plane with translates of Q can be
decomposed into two coverings. Then supm(Q) =∞, where the sup is taken over
all convex polygons Q.

The answer to the following question may still be positive.

Problem. Does there exist for any n > 3 an integer m(n) such that every convex
n-gon Q satisfies m(Q) ≤m(n)?

For any triangle T , there is an affine transformation of the plane that takes it
to an equilateral triangle T0, we have m(T ) = m(T0) and, hence, m(3) is finite.
We have been unable to answer this question even for n = 4.

The fact that every open triangle is cover-decomposable was generalized by
Keszegh and Pálvölgyi [1] in the following way: There is an absolute constant
m′ such that every m′-fold covering of the plane with homothetic copies of a
triangle can be decomposed into two coverings.2 Using the idea of the proof of
our Theorem 1, Kovács [2] showed that the last statement cannot be extended to
convex polygons with more than 3 sides. More precisely, for every such polygon
Q and for every positive integer m, there is an m-fold covering of the plane with
homothetic copies of Q that cannot be split into two coverings.

We end this report by giving an inductive proof by picture for the following
asymmetric finite “dual” form of the above questions.

Lemma 3. For any positive integers k, l and for any ε > 0, there is a finite point
set P and a finite family of open unit disks C = CR⊍CB with the following properties.

(1) Any disk C ∈ CR (resp. CB) contains precisely k (resp. l) points of P ;
(2) For any coloring of P with red and blue, there is a disk in CR such that all

of its points are red or a disk in CB such that all of its point are blue.
(3) Any two points of P are at a distance less than ε from each other.
(4) For any two disks C,C′ ∈ CR or C,C′ ∈ CB, we have d(C,C′) < ε.
(5) For any two disks C ∈ CR and C′ ∈ CB, we have 2 − ε < d(C,C′) < 2.

2A homothetic copy of a set is a translate of a dilated copy of it, where the coefficient of the
dilation is positive. Consequently, any set and any homothetic copy or, in short, homothet of it
are in “parallel position.”
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CR(k, 1)

CB(k, 1)

(a) Starting step: C(k,1)

CR(2, 2)

CB(2, 2)

(b) C(2,2) magnified

p

P (k − 1, l)

P (k, l − 1)

CR(k − 1, l)

CR(k, l − 1)

CB(k − 1, l)

CB(k, l − 1)

(c) Induction step

Figure 1. The construction.
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Curves in Rd intersecting every hyperplane at most d + 1 times

Attila Pór

(joint work with I. Bárány and J. Matoušek )

A curve γ in Rd is a continuous mapping of a closed interval. We call γ (≤ k)-
crossing if it intersects every hyperplane at most k times. There are no (≤ (d−1))-
crossing curves in Rd since any d points are on a hyperplane. The (≤ d)-crossing
curves are often called convex curves like the moment curve {(t, t2, . . . , td) ∣ t ∈[0,1]}.
Theorem 1. For all d ≥ 2 there exists M(d) such that every (≤ d + 1)- crossing
curve in Rd can be subdivided into at most M(d) convex curves.

This result implies a tight lower bound for order type homogenous subsequences
of points based on previous work of Eliáš, Roldán, Safernová and Matoušek.
For a sequence P = (p1, . . . , pn) we say it is order type homogeneous if every (d+1)-
tuple has the same sign (orientation). A sequence P = (p1, . . . , pn) in Rd is strong
order type homogeneous if for every 1 ≤ k ≤ d the projection of P onto the k-
dimensional space spanned by the first k coordinates is order type homogeneous.
By Ramsey theory there exists a least integer N = OTd(n) such that every se-
quence of points P = (p1, . . . , pN) in general position has an order type homgeneous
subsequence of length at least n.

Theorem 2. (Suk)
OTd(n) ≤ twrd(O(n))
where twrd(a) is the tower function of hight d.

Similarly by Ramsey theory there exists a least integer N = OT∗d(n) such that
every sequence of points P = (p1, . . . , pN) in general position has a strong order
type homgeneous subsequence of length at least n.
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Theorem 3. (Eliáš, Roldán, Safernová and Matoušek)
OT∗d(n) ≥ twrd(n − d)

Our result implies that

Theorem 4. OTd(n) ≥ OT∗d(Ω(n))
and establishes a tight lower bound for OTd(n).
Polynomials vanishing on Cartesian products: The Elekes-Szabó

Theorem revisited

Orit E. Raz

(joint work with Micha Sharir, Frank De Zeeuw)

Let F ∈ C[x, y, z] be a polynomial of degree d, and let A,B,C ⊂ C with ∣A∣ = ∣B∣ =∣C ∣ = n. In a recent work, we show that either F vanishes on at most O(n11/6)
points of the Cartesian product A×B×C, or F locally has a special group-related
form. This improves a theorem of Elekes and Szabó [1], and generalizes the result
of Raz et al. in [2]. We prove the same statement over R, and extend it to the case
where A,B,C have different sizes. This result provides a unified tool for improving
bounds in various Erdős-type problems in geometry. In the talk I will present the
main ideas of the proof, and will mention several applications. This is a joint work
with Micha Sharir and Frank de Zeeuw
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Points with distinct circumradii and anti-Ramsey

Edgardo Roldán-Pensado

(joint work with Leonardo Mart́ınez, Miguel Raggi)

In 1975, inspired by the observations from Esther Szekeres and his results with
George Szekeres, Paul Erdős posed the following problem:

“Is it true that for every k there is an nk such that if there are given nk points
in the plane in general position (i.e. no three on a line no four on a circle) one

can always find k of them so that all the (k
3
) triples determine circles of distinct

radii?”
This problem is similar to the Erdős-Szekeres Theorems. As is the case with

these theorems, the existence of nk can be established using Ramsey Theory if
the existence of n6 can be verified. However, establishing the existence of n6 is
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not completely trivial and the bound obtained from this method is an exponential
tower.

Three years later, in 1978, Erdős published a paper where he claimed a positive
answer to the question with nk ≤ 2(k−1

2
)(k−1

3
) + k. However, he inadvertently left

out a non-trivial case for which his method does not work. It seems that Erdős
remained unaware of this and even restated the result in 1985.

We address this issue and give a polynomial bound for nk.

Theorem 1 (Mart́ınez, R.). There is a constant C such that for any Ck9 points
in the plane in general position (i.e. no four on a line or circle) there are k of
them so that all their triples determine circles with distinct radii.

The proof of this Theorem is based on Erdős’ argument but is slightly more
involved. It uses Bézout’s Theorem from algebraic geometry.

In the proof we need bounds for the first values of nk. Using almost completely
combinatorial methods we obtain the bounds n4 ≤ 9 and n5 ≤ 37. The only
geometrical fact we use is that through a pair of points there are at most two
circles of a given radius.

Then we tried to obtain a more combinatorial result that could be applied in
more general settings. Let H = (V,E) be the complete k-uniform hypergraph on
N vertices. A (k − 1)-sunflower is a set S ⊂ E of edges such that #(⋂S) = k − 1.

Theorem 2 (Mart́ınez, Raggi, R.). Assume that the edges of H are coloured so
that no monochromatic (k − 1)-sunflower has more than λ edges. If N is large
enough then there exists V ′ ⊂ V with n vertices such that hypergraph induced by
V ′ is heterochromatic.

From this we obtain the following results.

Corollary. Let X ⊂ Rd be set of N points with no d+2 on a hyperplane or sphere.
If N is large enough, there is a set Y ⊂X with n points such that no two different
simplexes with vertices in Y have the same circumradius.

Corollary. Let X ⊂ Rd be a set of N points with no d + 1 on a hyperplane. If
N is large enough, there is a set Y ⊂ X with n points such that no two different
simplexes with vertices in Y have the same volume.

Corollary. Let X ⊂ Rd be a set of N points with no d + 1 on a hyperplane. If
N is large enough, there is a set Y ⊂ X with n points such that no two different
simplexes with vertices in Y are similar.

On Kinetic Delaunay Triangulations

Natan Rubin

Let P be a collection of n points in the plane, each moving along some straight line
at unit speed. We obtain an almost tight upper bound of O(n2+ε), for any ε > 0, on
the maximum number of discrete changes that the Delaunay triangulation DT(P )
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of P experiences during this motion. Our analysis is cast in a purely topological
setting, where we only assume that (i) any four points can be co-circular at most
three times, and (ii) no triple of points can be collinear more than twice; these
assumptions hold for unit speed motions.

We discuss this work in connection with other classical results on the combina-
torial complexity of geometric structures.

Many triangulated odd-spheres

Francisco Santos

(joint work with Eran Nevo, Stedman Wilson)

For d ≥ 3 fixed and n large, Kalai [5] constructed 2Ω(n
⌊d/2⌋) combinatorially dis-

tinct n-vertex triangulations of the d-sphere (the squeezed spheres) and concluded
from Stanley’s upper bound theorem for simplicial spheres an upper bound of

2O(n
⌈d/2⌉ logn) for the number of such triangulations. That is, if we define

sd(n) ∶= number of n-vertex simplicial spheres of dimension d,

Kalai proved

Ω(n⌊d/2⌋) ≤ log sd(n) ≤ O(n⌈d/2⌉ logn).
For even d the difference between the upper and lower bound is only a logn (in

the exponent, though), but in odd dimension d = 2k − 1 the gap is much bigger,

from 2Ω(n
k−1) to 2O(n

k logn). Most strikingly, for d = 3 the gap is from 2Ω(n)

to 2O(n
2 logn). Pfeifle and Ziegler [8] reduced this gap by constructing 2Ω(n

5/4)

combinatorially different n-vertex triangulations of the 3-sphere. We here improve
both constructions, to obtain:

Theorem 1. log sd(n) ≥ Ω(n⌈d/2⌉).
Although Kalai does not mention this, his spheres are geodesic, that is, they

can be realized geodesically in the standard sphere. The number gd(n) of geodesic
spheres can be bounded by noticing that a geodesic sphere is determined by the
order type of the set of its vertices (considered as a (d + 1)-dimensional vector
configuration) together with its ⌈d/2⌉-skeleton. This was shown by Dey [2] for
straight-line triangulations of polytopes in Rd+1, but the proof carries over to the
geodesic sphere case. Since the number of different order types is “small” [3, 1],
the number of geodesic spheres is bounded by the possible ⌈d/2⌉-skeleta. In even
dimension this does not improve on the upper bound obtained from the UBT, but
in odd dimension it gets rid off the logn factor. That is, putting together Kalai’s
construction and Dey’s result one gets:

Ω(nk−1) ≤ log g2k−1(n) ≤ O(nk).
The spheres we construct in Theorem 1 are not (as far as we know) geodesic, but

a variation of our construction still gives more geodesic spheres than constructed
by Kalai:
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Theorem 2.

log g2k−1(n) ≥ Ω(nk−1+1/k).
For example, for the first open case of d = 3 we construct 2Ω(n

2) spheres in

total and 2Ω(n
3/2) geodesic ones, while Kalai’s construction in this case gives only

2Ω(n) and the best previous construction (by Pfeifle and Ziegler [8]) gave 2Ω(n
5/4)

spheres, which were not (guaranteed to be) geodesic.
Our Theorem 1 follows from constructing a polyhedral 3-sphere with Ω(n2)

combinatorial bipyramids (or their natural generalization to higher dimension)
among its facets. A bipyramid is the unique simplicial 3-polytope with 5 vertices.

The idea of the construction (in dimension three for simplicity) is as follows.
Consider a certain simplicial 3-ball K with n vertices and Θ(n2) tetrahedra. Then:

● Find particular Θ(n) simplicial 3-balls contained in K, with disjoint inte-
riors and with Θ(n) tetrahedra each.

● On the boundary of each such 3-ball find particular Θ(n) pairs of adjacent
triangles (each pair forms a square), such that these squares have disjoint
interiors.

● Replace the interior of each such 3-ball with the cone from a new vertex
over each boundary square (forming a bipyramid) and over each remaining
boundary triangle (forming a tetrahedron).

● Show that the particular 3-balls and squares chosen have the property that
the above construction results in a polyhedral 3-ball. Adding a cone over
the boundary results in a polyhedral 3-sphere.

In higher dimension the idea is the same, replacing “squares” and “bipyramids”
to “k-polytopes with k + 2-vertices”. Such polytopes are free-sums of two lower
dimensional simplices, and have two minimal non-faces and two triangulations.
With this, we prove the following:

Lemma 3. There are (2k − 1)-spheres with n vertices and with Ω(nk) facets that
are not simplices. Each such facet has k + 2 vertices and their minimal non-faces
(two in each facet) are all distinct.

Each of the facets in the above lemma can then be triangulated in two ways to
obtain a triangulation of the 2k−1-sphere. The fact that all minimal non-faces are

distinct implies that all these 2Ω(n
k) triangulations are valid simplicial complexes,

which gives Theorem 1.
We have two specific constructions providing Lemma 3, one based in the join

of k paths and one based in the boundary complex of the cyclic 2k-polytope.
The latter gives a better constant inside the Θ(⋅) notation (4n2/25, versus 2n2/25
bipyramids in the former, for the case k = 2) but the former is somehow simpler
to describe. Details can be found in the full version of this report [7].

In order to get Theorem 2 we use the same strategy except the 3-ball K needs
to be “straight” (to be precise, a geometric triangulation of a polytope) and the
balls we retriangulate need to be star-convex. The first condition is satisfied in our
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original construction already, but to get the second condition we have to reduce
the number of non-simplicial facets as follows, which implies Theorem 4:

Lemma 4. There are geodesic 2k−1-spheres with n vertices and with Ω(nk−1+1/k)
facets that are not simplices.

Let us now discuss some by-products of our construction:

● Erickson conjectured that there are no 4-polytopes or 3-spheres on n ver-
tices with Ω(n2) non-simplicial facets. Lemma 3 refutes this for 3-spheres,
but we leave the question open for 4-polytopes. For them we can only prove
the following, which is the first construction of 4-polytopes with more than
O(n1+ǫ) non-simplicial facets (a construction of cubical 4-polytopes with
Θ(n log(n)) non-simplicial facets is due to Joswig and Ziegler [4]):

Theorem 5. There are 4-dimensional polytopes with n vertices and with
Θ(n3/2) facets that are bipyramids.

● Triangulating these bipyramids appropriately we also get:

Theorem 6. There are 4-dimensional simplicial polytopes with n vertices
and with Θ(n3/2) edges of degree three.

The dual to the polytopes in this theorem have n facets and Θ(n3/2)
triangles, which answers the following question of Ziegler: Can a simple
4-polytope with n facets have more than O(n) non-quadrilateral 2-faces?

● The sphere of Theorem 5 can be triangulated in 2Θ(n
3/2) ways. These

triangulations cannot be all polytopal, simply because they are too many.
But we can prove 2Ω(n logn) of them to be polytopal, which gives a new
construction of as many 4-polytopes as the Goodman-Pollack bound allows
(a previous construction was given by Shemer [9]).

A variation of this idea shows that there is a point configuration of n

points in R3 having 2Θ(n
2) triangulations, 2Θ(n logn) of them regular.

All our constructions are done in the PL-category. (All simplicial 3-spheres are
PL [6], but non-PL simplicial spheres exist in any dimension ≥ 5.)

To finish with an open question, we would ask whether limn→∞ log gd(n)/ log sd(n)
is, for fixed d, zero or positive. Observe that individual non-geodesic spheres are
easy to construct; for example, a 3-sphere containing a trefoil knot on five edges
or less cannot be geodesic.

Acknowledgement. My travel to Oberwolfach was supported by the MICINN-
ESF EUROCORES programme EuroGIGA–ComPoSe–IP04 (Project EUI-EURC-
2011-4306).
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∃R, or the Real Logic of Drawing Graphs

Marcus Schaefer

We reported on ∃R, a complexity class introduced recently to capture the com-
plexity of problems involving real numbers and geometry.

Let us consider the rectilinear crossing number problem: does a given graph G

have a straight-line drawing with at most k crossings? This problem is easily seen
to be NP-hard, but does it lie in NP.1 In a way, an answer to that question has
been known since 1991, when Bienstock [3] showed that the rectilinear crossing
number problem is not only NP-hard, but encodes what appears to be a much
larger theory: the existential theory of the real numbers.

Definition 1. The existential theory of the real numbers, ETR, is the set of true
sentences of the form (∃x1, . . . , xn)[ ϕ(x1, . . . , xn)],
where ϕ is a quantifier-free (∨,∧,¬)-Boolean formula over the signature (0,1,+,∗,<
,≤,=) interpreted over the universe of real numbers.

ETR is a very expressive language, for example, it in turn effectively encodes
the rectilinear crossing number problem, so that it can be said that from a com-
putational complexity point of view the two problems have the same decision
complexity. So when asking whether the rectilinear crossing number problem is
in NP, we are really asking whether a rather powerful and expressive theory can
be decided in NP. While that is not impossible (and some people believe it to
be true), tools for such a proof would probably have to come from real algebraic
geometry and logic, not graph theory. One small case in point: SSQRT, the sum
of square roots problem—deciding which of two sums of square roots is larger—at
this point has only been located in the counting hierarchy [2], which is signifi-
cantly beyond NP. However, compared to the power of ETR, it appears to be a
tiny special case.

So we think it worthwhile to consider the problems which have the same com-
putational complexity as ETR as its own separate complexity class, we call it ∃R.

1A question asked explicitly, for example, in [5].
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Definition 2. We say a decision problem L ⊆ {0,1}∗ is ∃R-hard, if there is a
polynomial-time reduction from any problem in ETRto L; L is ∃R-complete if it is
∃R-hard, and reduces to ETR.

In terms of classical complexity theory, ∃R is located between NP (it is easy
to see that it encodes Boolean satisfiability) and PSPACE (a far from obvious
result due to Canny [6].

1. Complete Problems

The definition of ETR is closely related to (multivariate) polynomials, so it is
not surprising that it is easy to find problems about polynomials which are ∃R-
complete. Polynomials can be described in various ways, ranging from very suc-
cinct descriptions, such as straight-line programs, to explicit representations, as
sums of monomials. We assume that polynomials are explicitly represented, e.g.
f(x, y) = 3xy + y + 6x + 2, rather than f(x, y) = (3x + 1)(y + 2).

The following problems are ∃R-complete:

4-Feasibility: given a multivariate polynomial f ∶ Rn
→ R of total degree at

most 4, does it have a root? (A detailed proof can be found in Schaefer,
Štefankovič [17]; in the real computation model of Blum-Shub-Smale, a
similar result is true, see [4, Section 5.4].

Hilbert’s Homogenous Nullstellensatz: does a family fi ∶ Rn
→ R of

homogenous multivariate have a non-trivial root (zero being the trivial
root). See Schaefer [16].

Brouwer Fixed Point: Does a family of polynomials fi ∶ Bn(0,1) →
Bn(0,1) have a fixed point in B(0,1/2)? See Schaefer, Štefankovič [17].

And one can imagine natural variations of these problems; however, our main
interest lies in applications to graph realization problems. In that area, the original
∃R-complete problem is due to Mnëv [12] and his universality theorem, which has
been reproved in various ways and strengthened several times (e.g. Shor [18],
and Richter-Gebert [14]). Call a pseudoline arrangement stretchable if there is an
equivalent straight-line arrangement.

Theorem 3 (Mnëv [12]). Stretchability is ∃R-complete.

For a nice recent exposition of Mnëv’s result, from the computational complexity
point of view, see Matoušek [10]. There have been many other ∃R-hardness results
over the years. Some recent and relevant results include:

Intersection graphs: of segments (Kratochv́ıl, Matoušek [8]), unit disks or
disks (McDiarmid, Müller [11, 7]), ellipses or convex sets (Schaefer [15]).

Non-rigidity of a linkage: Due to Schaefer [16], using Abbott’s [1] reduc-
tion from Hilbert’s Homogenous Nullstellensatz.

Straight-line realizability: of a complete graph with a prescribed set of
pairs of edges that have to cross. Due to Kyncl [9].

Most hardness results start with a known ∃R-complete problem such as stretch-
ability, or segment intersection graphs; these are to ∃R-hardness as the clique or
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independent set problem are to NP-hardness. Occasionally, however, one has to
go back all the way to ETR: a small modification of Mnëv’s proof shows that the
collinearity problem (given a set of points, and for each triple of points the infor-
mation whether they are collinear or not) is ∃R-complete, answering a question
by Scott Aaronson.

Theorem 4. Deciding collinearity logic is ∃R-complete.

We have not been able to show this more easily via a reduction from segment
intersection graphs, or stretchability, say.

There are many problems in discrete geometry and graph drawing which make
good candidates for ∃R-completeness. To mention a few: Lombardi planarity,
RAC graphs, bounding the number of guards in an art gallery, packing puzzles,
matchstick graphs, Gabriel graphs, and visibility graphs (only recently shown NP-
hard).

There are also some problems which, although requiring some real computation,
don’t appear to be as hard as ∃R. Minimum Weight Triangulation (only recently
shown NP-hard by Mulzer and Rote [13]) and the Euclidean Traveling Salesperson

problem lie in the class NPSSQRT, which is NP, with a SSQRT oracle, that is,
we can ask questions of the type

√
3 +√7 +√10 < √4 +√12. We suspect that

NPSSQRT is a separate complexity class, smaller than ∃R, but there have been
no relativized separations (we do not even know whether NP ⊊ ∃R ⊊ PSPACE
is possible in a relativized world). A starting point would be to find complete

problems for NPSSQRT, and Minimum Weight Triangulation and the Euclidean
Traveling Salesperson seem to be good starting points.

2. Universality Phenomena

We should mention that Mnëv [12] proved a much stronger result than ∃R-complete-
ness: he proved that stretchability is universal for semi-algebraic sets, that is every
semi-algebraic set is homotopy equivalent to a realization space of a pseudo-line
arrangement. Universality theorems show that a problem is algebraically hard,
whereas ∃R-completeness shows that the problem is computationally hard. In
Mnëv’s proof, the two coincide, but that is not always the case, since homotopy
equivalence may be witnessed by highly inefficient reductions which do not yield
hardness results (and such examples are known). So it would be interesting to
have a new notion of efficient homotopy or stable equivalence which captures both
the algebraic and the computational aspect.

The typical reductions encountered in ∃R-hardness proofs are geometric in the
sense that an algebraic solution to one problem can be obtained from the other
by simple projection of coordinates. E.g. Bienstock [3] reduces Stretchability to a
rectilinear crossing number problem rcr(G) ≤ k. From the coordinates of a drawing
realizing rcr(G) ≤ k, he can read off the equations of a straight-line arrangement
realizing the given pseudo-line arrangement.

This immediately implies that what could be called weak universality phe-
nomena: we know that ETR may require exponential precision in a realization:
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x1 = 1/2, x2 = x2
1, . . . , xn = x2

n−1; by Mnëv’s universality theorem, so does stretcha-
bility, and then by Bienstock’s reduction, so does the rectilinear crossing number
problem. Problems which “encode” equality, e.g. linkage rigidity, show a similar
behavior, in that they encode all algebraic numbers.
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Embeddability in R3 is decidable

Eric Sedgwick

(joint work with Jǐŕı Matoušek, Martin Tancer, Uli Wagner)

The Problem. Given a 2-dimensional complex K, a collection of triangular faces
along with identifications of their edges and/or vertices, does the complex K embed
in R3?

Figure 1. Does this 2-complex embed in R3?

This question belongs to two lines of inquiry. First, this problem is an important
special case, EMBED2→3, of the more general question EMBEDk→d: given a k-
dimensional simplicial complex K, does K embed in Rd. Of course, EMBED1→2

is graph planarity, which is decidable in linear time. EMBEDk→d, for d ≥ 4, was
shown to be decidable in polynomial time when k < (2d−2)/3 in a series of papers
by Čadek, Krčál, Matoušek, Sergaerert, Vokř́ınek and Wagner [2, 3, 4, 9]; and was
shown by Matuošek, Tancer and Wagner to be NP-hard when k < (2d − 2)/3 and
even undecidable when k ≥ d − 1 ≥ 4 [11].

Our main result is that EMBED2→3 is decidable [12]. That is, there is an
algorithm that, when given a 2-dimensional complex K, decides whether K embeds
in R3. It is not hard to see that a 2-dimensional complex K embeds in R3 if and
only one of a finite number of thickenings of K is a 3-manifold X that embeds in
R3 (or equivalently, embeds in S3).

We show EMBED2→3 is decidable by demonstrating that this last question
is decidable; namely there is an algorithm that, when given a triangulated 3-
manifold X , decides whether X embeds into the 3-sphere S3. This approach
makes available decision procedures and tools from the second line of inquiry, 3-
manifold topology. Well known decision algorithms include: Haken’s algorithm
to recognize the unknot [6], Rubinstein [14] and Thompson’s [15] algorithm to
recognize S3, and Jaco and Sedgwick’s algorithm to determine whether a knot
manifold embeds in S3 [8].

Embedding a 3-manifold. One complicating factor is that a given 3-manifold
X may embed in S3 in many, even an infinite number, of ways. A result of Fox
[5] partially simplifies matters by guaranteeing that if X embeds in S3, then X

admits an embedding into S3 so that its complement is a thickened (and likely
knotted and linked) graph, see the following figure. Given X , the goal is then to
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determine whether S3 can be obtained by attaching some thickened graph to the
boundary of X . The Rubinstein/Thompson algorithm can then be used determine
whether the obtained manifold is S3 .

Figure 2. A Fox embedding: the 3-manifold X is the comple-
ment of a graph in S3 (equivalently, R3).

Spherical boundary components (thickened isolated vertices, the ball in the
figure) are easy to handle. There is but one, up to homeomorphism, 3-manifold
that can be obtained by attaching a ball to a spherical boundary component X .
Unfortunately, for each non-spherical boundary component there are an infinite
number of ways of attaching a thickened graph and in general we expect to obtain
an infinite number of manifolds in this manner. In essence, the figure could be
misleading. The edges of the boundary triangulation are pictured to be short and
straight. If this were the case, the number of tetrahedra required to fill in the
thickened graph would be quite reasonable. But, a priori, it is quite possible that
boundary edges wrap around the boundary in an unbounded fashion. Since the
number of tetrahedra required to fill in the missing thickened graph depends on
the degree of this wrapping, it suffices to show that the degree of wrapping is
bounded.

Our main technical result is the short meridian theorem. Roughly speaking, it
states that, after applying known simplifications to the topology and triangulation
of X , there is an embedding for which the degree of wrapping is bounded by a
function of the number of tetrahedra in X . In turn, this bounds the number
of thickened graph attachments that needs to be considered and thus obtain the
desired result.

The proof uses and extends normal surface theory, the principal tool for the
aforementioned 3-manifold algorithms, to account for the presence of annuli. We
also utilize Li’s result on thin position for graphs in S3 [10], Bachman, Derby-
Talbot, and Sedgwick’s result on almost normal surfaces with boundary [1], Jaco
and Rubinstein’s 0-efficient triangulations [7], and our recent result demonstrating
how to untangle systems of curves in a surface[13].
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Mass partitions using hyperplanes with fixed directions

Pablo Soberón

(joint work with Roman Karasev and Edgardo Roldán-Pensado)

During the talk we discussed properties of partitions induced by nested hyperplane
cuts with fixed directions. Moreover, we add the restriction that each hyperplane
has also prescribed the region it’s going to be cutting. We showed that using these
partitions one can generalise Alon’s classic necklace splitting theorem [1] and its
high-dimensional versions [2]. Our main result is that for any t measures in Rd,
there is a partition as described above using t(k − 1) cuts so that the resulting
parts may be distributed among k sets A1,A2, . . . ,Ak that have the same size in
each measure. We also described how these partitions imply a result regarding
fixed-direction paths in the plane. For any t measures in the plane, there is a path
using only vertical and horizontal segments and at most t−1 turns so that it splits
each measure by half.
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The number of double-normal pairs in a set of n points

Konrad Swanepoel

(joint work with János Pach)

A double-normal pair of a finite set S of points from Rd is a pair of points {p,q}
from S such that S lies in the closed strip bounded by the hyperplanes through
p and q perpendicular to pq. A double-normal pair pq is strict if S ∖ {p,q} lies
in the open strip. We answer some questions of Martini and Soltan [1] by proving
the following.

(1) A set of n ≥ 3 points in the plane has at most 3⌊n/2⌋ double-normal pairs.
This bound is sharp for each such n.

(2) A set of n ≥ 8 points on the 2-sphere has at most 17n/4− 6 double-normal
pairs (as a subset of R3). This bound is sharp for infinitely many values of
n. There exist n-element point sets on the 2-sphere with at least 17n/4 −
O(√n) double-normal pairs.

(3) A set of n ≥ 4 points on the 2-sphere has at most 2n−2 strict double-normal
pairs. This bound is sharp.

(4) For d ≥ 3, the maximum number of double-normal pairs [strict double-
normal pairs] in a set of n points in Rd is asymptotically 1

2
(1 − 1

k(d)
)n2 +

o(n2) [resp. 1
2
(1 − 1

k′(d)
)n2 + o(n2)], where k(d) and k′(d) satisfy ⌈d/2⌉ ≤

k′(d) ≤ k(d) ≤ d − 1 and asymptotically k(d) ≥ k′(d) ≥ d − O(log d). In
particular, the maximum number of double-normal pairs (or strict double-
normal pairs) in R3 is 1

4
n2 + o(n2).

This work will appear in [2] and [3].
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Alg. Geom., to appear. arXiv:1404.2624.

[3] J. Pach and K. J. Swanepoel, Double-normal pairs in space, Mathematika, to appear.
arXiv:1404.0419.



Discrete Geometry 2281

Van Kampen–Flores type non-embeddability result for 2k-dimensional
manifolds

Martin Tancer

(joint work with Xavier Goaoc, Isaac Mabillard, Pavel Paták, Zuzana Safernová,
Uli Wagner)

The classical question of topological graph theory is to determine the (orientable
or non-orientable) genus of the complete graph with n vertices, that is the mini-
mum genus of an (orientable or non-orientable) 2-manifold into which that graph
embeds. This question was answered by Ringel and Youngs (see [3] for a detailed

discussion); the orientable genus of the complete graph on n equals ⌈ (n−3)(n−4)
12

⌉
whereas the non-orientable genus equals ⌈ (n−3)(n−4)

6
⌉ for n ≠ 7 (and equals 3 for

n = 7).
This question naturally generalizes to higher dimension, where one may wonder

what is the minimum topological complexity of a manifold into which ∆
(k)
n , the

k-dimensional skeleton of the n-dimensional simplex, embeds. This line of enquiry

started in the 1930’s when Van Kampen [4] and Flores [1] showed that ∆
(k)
2k+2 does

not embed into R2k (the case k = 1 corresponding to the non-planarity of the
complete graph on five vertices). Perhaps surprisingly, little else seems known and
the following conjecture of Kühnel [2, Conjecture B] remains essentially untouched:

Conjecture 1. Let k,n, b be integers. If ∆
(k)
n embeds in a compact, (k − 1)-

connected 2k-manifold with kth Betti number b then (n−k−1
k+1
) ≤ (2k+1

k+1
)b.

(In Conjecture 1 we work with homology and Betti numbers with Z2 coeffi-
cients.)

We prove a result of similar spirit, with weaker bound, but also with weaker
assumptions. One of the relaxations of the assumptions is to replace embeddings
with so called almost embeddings. This relaxation actually helps with setting up
the right proof method.

We define almost-embedding of a simplicial complex K, with geometric realiza-
tion ∣K ∣, into a topological space X as a continuous map f ∶ ∣K ∣ → X such that
any disjoint simplices σ, τ ∈K have disjoint images f(σ), f(τ).

Our main result is the following.

Theorem 2. Let k,n, b be integers. If ∆
(k)
n almost embeds into a compact 2k-

manifold with kth Betti number b, then n ≤ 2b(2k+2
k
) + 2k + 5.
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Saturated simple and k-simple topological graphs

Géza Tóth

(joint work with Jan Kynčl, János Pach, Radoš Radoičić)

A simple topological graph G is a graph drawn in the plane so that any pair of
edges have at most one point in common, which is either an endpoint or a proper
crossing. G is called saturated if no further edge can be added without violating this
condition. We construct saturated simple topological graphs with n vertices and
O(n) edges. For every k > 1, we give similar constructions for k-simple topological
graphs, that is, for graphs drawn in the plane so that any two edges have at most k
points in common. We also show that in any k-simple topological graph, any two
independent vertices can be connected by a curve that crosses each of the original
edges at most 2k times. Another construction shows that the bound 2k cannot be
improved. Several other related problems are also considered.
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On permutations induced by projection between lines with individual
centers

Pavel Valtr

(joint work with Martin Balko, Alfredo Garćıa, Ferran Hurtado, Javier Tejel)

Let α,β be two horizontal lines and let S = {s1, . . . , sn} be a set of n points
between these two lines in the plane. We project n points a1, . . . , an ∈ α to points
b1, . . . , bn ∈ β in such a way that aisibi are collinear for each i = 1, . . . , n. Suppose
the points a1, . . . , an lie in this left-to-right order on α. We may obtain different
permutations of b1, . . . , bn on β for different instances of A = {a1, . . . , an}. For
fixed S = {s1, . . . , sn}, let p(S) be the number of distinct permutations of B ={b1, . . . , bn} obtained in the above way. Obviously, 1 ≤ p(S) ≤ n!. Both bounds

can be attained. In the talk it was shown that p(S) ≥ 2Ω(n), provided S has
Ω(n) distinct y-coordinates. Also, it was outlined how to prove that Ep(S) ≤
cn log logn holds for a certain constant c and for a certain randomly chosen set
S = {s1, . . . , sn}.

Space Curve Arrangements with Many Incidences

Joshua Zahl

(joint work with Larry Guth)

In 2010, Guth and Katz proved that if a collection of N lines in R3 contained more
than N3/2 2–rich points, then many of these lines must lie on planes or reguli. I
will discuss some generalizations of this result to space curves in R3. This is joint
work with Larry Guth.
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Tight and non-tight topological Tverberg type theorems

Günter M. Ziegler

(joint work with Pavle V. M. Blagojević, Benjamin Matschke, and Florian Frick)

A short history of (tight) Tverberg theorems. The history of “Tverberg
type” multiple intersection theorems (after the classical convexity results of Helly
and Radon, and the non-embeddability results of van Kampen and Flores, etc.)
starts with Birch’s 1959 paper “On 3N points in a plane” [5], which contained the
following three achievements.

Theorem 1: Any 3N points in the plane can be partitioned into N triangles that
have a point in common.

Theorem 1*: Any 3N − 2 points in the plane can be partitioned into N subsets
whose convex hulls have a point in common.

Conjecture: Any (r − 1)(d+ 1)+ 1 points in Rd can be partitioned into r subsets
whose convex hulls have a point in common.

We note that Birch’s Theorem 1*, as well as his conjecture, which was proved in
full by Helge Tverberg in 1964, fifty years ago (see [17]), and thus is now known
as Tverberg’s theorem [13], are tight : This is not only evident from concrete
configurations, but also from a general position argument: If (r − 1)(d+ 1) points
in Rd in general position are partitioned into r subsets, then not even their affine
hulls intersect, as one sees from a codimension count. (See Kalai [9] for far-reaching
conjectured extensions of this.)

The tightness of the results also means that for a generic point configuration
the number of intersection points, known as Tverberg points, is finite. With this
finiteness it is also very natural to ask for the minimal number of Tverberg r-
partitions, which according to Sierksma’s conjecture should be (r − 1)!d; only a
much weaker result is proven [15]; see [10].

In a modern version (from a point of view pioneered in [1]), Tverberg’s theorem
says that for d ≥ 1, r ≥ 2, N ∶= (r−1)(d+1), and any affine map f ∶ ∆N → Rd, the
N -dimensional simplex ∆N contains r points x1, . . . , xr that lie in r vertex-disjoint
faces σ1, . . . , σr of ∆N but whose images coincide: f(x1) = ⋅ ⋅ ⋅ = f(xr).

In this version, the “topological version” for continuous maps f is natural. This
is a breakthrough result by Bárány, Shlosman & Szűcs [4] from 1981, extended

from primes r to prime powers by Özaydin [12] in 1987 — which, however, remains
a conjecture for the case when r is not a prime power and d ≥ 2:

The topological Tverberg theorem/conjecture [4] [12]: Let d ≥ 1 and r ≥ 2,
and N ∶= (r − 1)(d + 1). For any continuous map f ∶∆N → Rd the N -dimensional
simplex ∆N contains r points x1, . . . , xr that lie in r vertex-disjoint faces σ1, . . . , σr

of ∆N whose images coincide: f(x1) = ⋅ ⋅ ⋅ = f(xr).
Again this result is “tight”: It fails for all general-position maps f if N is replaced
by a smaller number.
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Colored versions of Tverberg type theorems. In an influential 1989 Com-
putational Geometry paper, Bárány, Füredi, and Lovász observed: “we need a
colored version of Tverberg’s theorem.” For their purposes they needed only a
very small special case: Let A,B,C be sets of t points in the plane, then one can
find r = 3 disjoint triples consisting of one point of each of the three sets such that
the convex hulls of the triples have a point in common. (Here the points in A,B,

and C are interpreted as having three different colors.) Bárány et al. proved this
for t = 7, asserted they also had a proof for t = 4, but also noted that they had no
counterexample even for t = 3. So, in particular, their result was not tight.

The call for a colored version of Tverberg’s theorem was seen as a challenge,
and attacked immediately. The first answer, by Imre Bárány and David Larman
1990, treated the case of 3r points in the plane, with three different colors. In
particular, they suggested the following.

The Bárány–Larman colored Tverberg conjecture [3]: Let d ≥ 1, r ≥ 2, and
N ≥ N(r, d) sufficiently large. Assume that f ∶ ∆N Ð→ Rd is affine (or at least
continuous), where the N +1 vertices of ∆N carry d+1 different colors, and every
color class has size at least r. Then ∆N has r disjoint rainbow faces whose images
under f intersect.

Here a rainbow face refers to a d-dimensional face of the simplex ∆N whose d + 1
vertices carry the d + 1 different colors. In the case d = 2 thus we have at least 3r
points in the plane, which carry the three different colors. In this situation there
should be r rainbow triangles that have a point in common. For d = 2 Bárány
and Larman proved this, and thus obtained a “sharp” colored version of Birch’s
Theorem 1. However, for d > 2 they did not obtain a finiteness result for N(r, d).

In a “Note added in proof,” Bárány and Larman announced that Živaljević and
Vrećica had proven the finiteness of N(r, d) — but indeed, they haven’t. In their
celebrated 1992 paper [16] (see [10]) they established the following result.

Živaljević and Vrećica’s colored Tverberg theorem [16]: Let d ≥ 1 and r a
prime. Assume that f ∶∆N Ð→ Rd is continuous, where the N + 1 vertices of ∆N

carry d+1 different colors, and every color class has size at least 2r−1. Then ∆N

has r disjoint rainbow faces whose images under f intersect.

Via Bertrand’s postulate, the condition that r is prime may be dropped if we make
the color classes bigger, e.g. of size at least 4r−1. However, even if in the Bárány–
Larman conjecture N(r, d) is taken to be very large, then this still does not imply
that all color classes get large, say larger than 2r−1. Thus Živaljević and Vrećica’s
colored Tverberg theorem does establish the colored Tverberg result suggested by
Bárány–Füredi–Lovász, but it does not even yield finiteness of N(r, d) in the
Bárány–Larman problem.

Furthermore, neither the Bárány–Larman result for d = 2 nor the Živaljević–
Vrećica version is tight: A tight version should generalize Birch’s Theorem 1*, and
thus not use more than 3r − 2 points in the plane!

A first sharp version, with a proof of N(r, d) = r(d + 1) in the case that r + 1
is prime, was obtained only very recently, as a (not quite direct) consequence of
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the “tight colored Tverberg theorem” below (announced in 2009, to be published
2014, see [7]). For this, a substantial change in the concepts of colored and rainbow
was needed: We allow for more than d+1 colors, and a rainbow face does not need
to use all the different colors, and instead of requiring that all color classes have
size at least r, they now are required to have less than r elements (so, indeed, no
color is used in all the blocks of a partition into r subsets). Here it is:

Tight colored Tverberg theorem [7]: Let d ≥ 1, r prime, N ≥ (r − 1)(d + 1),
and f ∶ ∆N Ð→ Rd continuous, where the N + 1 vertices of ∆N are colored and
each color class Ci has size ∣Ci∣ ≤ r − 1 (so there are at least d+ 2 different colors).
Then ∆N has r disjoint rainbow faces whose images under f intersect.

This is also the first colored Tverberg theorem that has (the r prime case of)
the topological Tverberg theorem as a special case. Our original proof for this
in [7] used equivariant obstruction theory. (A part of the proof was rephrased in
terms of degrees by Vrećica and Živaljević [14], with an error in the value given for
the degree; it was also elaborated on by Matoušek, Tancer, and Wagner [11].) A
substantially different proof via Fadell–Husseini index, with further applications,
such as the finiteness of N(r, d) for prime r, was provided in [8].

Colored versions via constraints. If one is content with a non-tight result,
then indeed one can get a colored topological Tverberg theorem “nearly for free”
from the original topological Tverberg theorem, by allowing for extra points but
adding constraints, as follows. (See [6] for details.)

Lemma (A Tverberg unavoidable subcomplex). Let d ≥ 1, let r be a prime power,
and N ≥ (r − 1)(d + 1). If f ∶ ∆N → Rd is continuous, then for any set C of at
most 2r − 1 vertices of ∆N , every Tverberg r-partition for f has a block that has
at most one vertex in C.

Indeed, in this setting Tverberg r-partitions exist, and by the pigeonhole prin-
ciple not all r blocks of a Tverberg r-partition can have at least two vertices in C.

Weak colored Tverberg theorem [6]: Let d ≥ 1, let r be a prime power,
and N ≥ 2(r − 1)(d + 1). Let f ∶ ∆N → Rd be continuous. If the vertices of
∆N are colored by d + 1 colors, where each color class Ci has cardinality at most
2r − 1, then there are r pairwise disjoint rainbow faces σ1, . . . , σr of ∆N such that
f(σ1) ∩ ⋅ ⋅ ⋅ ∩ f(σr) ≠ ∅.
Proof. For 0 ≤ i ≤ d, let gi ∶ ∆N → R be the Euclidean distance from the sub-
complex of ∆N formed by the faces that have at most one vertex in the color
class Ci. Now consider the continuous map F ∶= (f, g0, . . . , gd) ∶ ∆N Ð→ R2d+1.
According to the topological Tverberg theorem, this map F has a Tverberg
r-partition into r vertex-disjoint faces σ1, . . . , σr , such that f(x1) = ⋅ ⋅ ⋅ = f(xr)
for points xk ∈ σk in disjoint faces σk ⊂ ∆N , and such that gi(x1) = ⋅ ⋅ ⋅ = gi(xr) for
0 ≤ i ≤ d. However, by the lemma for each color i one of the faces σk has only one
vertex in Ci, that is, gi(xk) = 0, and this implies that all faces σk have only one
vertex in Ci. �
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This “weak colored Tverberg theorem” is stronger than the one by Živaljević
and Vrećica [16].
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Open Problems in Discrete Geometry

Collected by Tillmann Miltzow

Problem 1 (Tillmann Miltzow). Given n red, n blue and n green lines in the
plane in general position. These lines form a line arrangement. Does there always
exist an alternating path of length Θ(n2) in the dual of the line arrangement?

A path in the dual is said to be alternating if it does not cross over two edges
of the same color consecutively.
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Problem 2 (Hiroshi Maehara). Let ABC be a spherical triangle with fixed arc-
lengths a, b, c on a sphere of (variable) radius r > (a+ b+ c)/(2π). By the spherical
cosine law, we have

cos∢A = cos(a/r) − cos(b/r) cos(c/r)
sin(b/r) sin(c/r) .

Find an elementary proof of the fact that cos∢A is monotone increasing function
of r.
Remark. It follows from the Alexandrov-Toponogov comparison theorem that ∢A
is a monotone decreasing function of r, and hence cos∢A is monotone increasing
function of r, see e.g. [1, Theorem 3.91, p. 189]. (Arseniy Akopyan informed me
on this theorem.)
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Problem 3 (Michael Gene Dobbins). What is the minimum volume among all
convex sets in Rd that have width at least 1 in all directions? This is one variation
of a question posed by Kakeya in 1917 [1], who additionally required that a unit
length segment can be continuously rotated inside the set. Pál showed that the
answer is given by an equilateral triangle of area 1/√3 [2]. Further insight may be
gained from the proof of a recent generalization of Pál’s result [3].
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Problem 4 (Michael Gene Dobbins). We say an arrangement of convex sets
is in convex position when the sets are indexed by 1, . . . , n and for every triple{Ki,Kj,Kk}, i < j < k: each set intersects the boundary of the convex hull of the
triple in a single connected component, these components are pairwise disjoint,
and the sets appear counter-clockwise around the boundary in order according to
their indices (⋯i, j, k⋯). We define a metric on pairs of arrangements by taking
the maximum of the Hausdorff distance among pairs of sets with the same index.
By k-gon we mean a convex polygon with at most k vertices.

Is the space of n k-gons in convex position modulo affine transformations con-
tractible? Difficulties may arise when the sets intersect, as seen in the figure
below.

Four triangles in convex position.

This question arose from research with Andreas Holmsen and Alfredo Hubard
generalizing the Erdős-Szekeres Theorem to arrangements of convex sets [1]. In a
forthcoming paper, we show in particular that this space is contractible if the sets
are not required to be k-gons.
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Problem 5 (Dömötör Pálvölgyi). The Voronoi game is a game played on a com-
pact metric space with a probability measure by two players. The players alternate
in placing a facility on a single point in the space. The game lasts for a fixed num-
ber of rounds. At the end of the game, the space is divided between the two
players: each player receives the area which is closer to his or her facilities, or
in other words, the sum of the areas of the corresponding regions in the Voronoi
diagram.

A very interesting special case is the one-round game, where the first player
claims t vertices, then the second player claims one. Denote by VRt∶1(G,1) the
fraction that the first player gets after an optimal play on G and the minimum
over all G for such a game by VRt∶1 = infGVRt∶1(G,1).
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We know very little about VRt∶1, it is even possible that VRt∶1 = 0 for every t or
maybe already VR2∶1 > 0. Recently it was shown by David Speyer that VR2∶1 ≤ 10

21

and then by Sam Zbarsky that VRt∶1 ≤ t−1
t+1

. Is this bound sharp?
See http://mathoverflow.net/questions/148466 for discussions and related

results.
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Problem 6 (Pablo Soberón). What is the minimum number n = n(t, d, k) such
that for any t probability measures in Rd, there is a partition of Rd into n convex
pieces so that its parts can be distributed into k sets A1,A2, . . . ,Ak satisfying

µj(Ai) = 1

k

for all i, j.

Problem 7 (Boris Bukh). Let P ⊂ R2 be a set of n points, and let f ∶S → {−1,+1}
be a two-coloring. The discrepancy of a line l is defined as

D(l) =
RRRRRRRRRRRRRRRR

∑
p∈P

p left of l

f(p) − ∑
p∈P

p right of l

f(p)
RRRRRRRRRRRRRRRR
.

Is it true that for every α > 0 there exists β < α with the following property:
whenever P and f are such that D(l) ≤ αn for every line l, there exists a point
q ∈ R2 such that D(l) ≤ βn for all lines l passing through q?

Problem 8 (Luis Montejano). Let X be a collection of n points in general position
in R3.

● If ∣X ∣ = 12, then X does not admit a transversal line to the convex hull of
all 6-sets of X .

● If ∣X ∣ = 9, then X admits a transversal line to the convex hull of all 6-sets
of X .

● The cyclic polytope with 11 points does not admit a transversal line to
the convex hull of all its 6-sets, and there is a collection X of 11 points
in general position that admits a transversal line to the convex hull of all
6-sets of X .

Problem: Give a collection of 10 points in general position in R3 without a transver-
sal line to the convex hull of all its 6-sets.

Problem 9 (Roman Karasev). For an acute triangle T , denote by ξ(T ) the
perimeter of its orthic triangle, i.e., the triangle formed by the bases of T ’s al-
titudes. Is it true that whenever T is covered by a set S1, . . . , SN of other acute
triangles, then

ξ(T ) ≤ N

∑
i=1

ξ(Si)?
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Problem 10 (Emo Welzl, with Alexander Pilz). Crossing-Maximal Order Types
Given two finite equal-size point sets P and Q in general position in the plane,

a bijection P →Q, p ↦ p′, is called crossing-preserving if whenever the segment pq
crosses the segment rs (for four distinct points p, q, r and s in P ) then p′q′ crosses
r′s′. If such a mapping exists, we say that Q crossing-dominates P , in symbols
P ≤x Q. And if P ≤x Q and, moreover, there is no such mapping from Q to P we
say that Q strictly crossing-dominates P , in symbols P <x Q.

Points sets P , P ′, and P
′′ on five points. The mappings p↦ p

′ and p
′
↦ p

′′ are
crossing-preserving, therefore P ≤x P

′
≤x P

′′; in fact,P <x P
′
<x P

′′.

A point set P is crossing-maximal if there is no point set Q with P <x Q. Point
sets in convex position are crossing-maximal, but other examples exist – we would
like to know how many.

Our question is how the ratio of the number of order-types of crossing-maximal
point sets on n points versus the number of all order-types of point sets with n

points behaves, as n grows. We know that for each n up to 5, there is a unique
maximal order-type (convex position), 3 out of the 16 order-types for 6 points
(18%) constitute a maximal type, 17/135 (13%) is the ratio for 7, 489/3′315 for
8 (15%) points, and 28′103/155′517 (18%) for 9. (Note here that point sets of
distinct order-type can be equivalent in the ≤x relation.)
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