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Abstract. The Oberwolfach conference “Topologie” is one of only a few
opportunities for researchers from many different areas in algebraic and geo-
metric topology to meet and exchange ideas. The program covered new de-
velopments in fields such as automorphisms of manifolds, applications of alge-
braic topology to differential geometry, quantum field theories, combinatorial
methods in low-dimensional topology, abstract and applied homotopy theory
and applications of L2-cohomology. We heard about new results describ-
ing the cohomology of the automorphism spaces of some smooth manifolds,
progress on spaces of positive scalar curvature metrics, a variant of the Segal
conjecture without completion, advances in classifying topological quantum
field theories, and a new undecidability result in combinatorial group theory,
to mention some examples. As a special attraction, the conference featured
a series of three talks by Dani Wise on the combinatorics of CAT(0)-cube
complexes and applications to 3-manifold topology.
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Introduction by the Organisers

This conference was the third topology conference in Oberwolfach organized by
Thomas Schick, Peter Teichner, Nathalie Wahl and Michael Weiss. About 50
mathematicians participated, working in many different areas of algebraic and
geometric topology.
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The talks were of three types. There were 14 regular one-hour talks, 3 one-hour
talks by keynote speaker Dani Wise and a “gong show” where 12 young speak-
ers had the opportunity to present their research in 10 minutes each, including
question time.

The 15 regular talks of the conference covered a wide range of topics such as
spaces of automorphisms of highly connected manifolds, spaces of Riemannian
metrics with positive scalar curvature, new developments in abstract homotopy
theory, techniques for solving equations in groups, undecidability results in com-
binatorial group theory, algorithms in 3-manifold topology, a variant of the (af-
firmed) Segal conjecture which does away with the need for finite completion, and
new developments in topological and other quantum field theories. Speakers were
instructed to give talks that could be appreciated by an audience of topologists of
many different kinds, and they were generally very successful in doing so.

Keynote speaker Dani Wise spoke on CAT(0)-cube complexes, his work in the
theory and how it became an essential ingredient in the recent spectacular proof
of the virtual Haken conjecture by Ian Agol (Berkeley). He concentrated on the
combinatorial aspects, giving a very patient introduction to the geometric prop-
erties of CAT(0)-cube complexes in the first two talks and sketching applications
to 3-manifold topology in the last one. His vigorous delivery made these talks as
riveting as we could have wished.

The gong show with 12 speakers took place on Wednesday morning. In the opin-
ion of this writer, it is a hard training for the young, but there is no doubt at all
that the speakers rose to the occasion. Dieter Degrijse and Irakli Patchkoria both
talked on their joint work relating the virtual cohomological dimension of groups
G to the homotopy theory of what they call proper G-spectra. Lukasz Grabowski
spoke on his work in the theory of L2 invariants to disprove the conjecture of
Lott and Lück that the Novikov-Shubin invariants are always positive. Holger
Kammeyer reported on a proof of the Farrell-Jones conjecture in algebraic K-
and L-theory for arbitrary lattices in connected Lie groups. Christina Pagliantini
presented a new result on Gromov’s simplicial volume for hyperbolic 3-manifolds.
Daniel Kasprowski spoke on the Farrell-Jones conjecture in algebraic K-theory for
groups with finite decomposition complexity. Daniela Egas Santander offered a
comparison of various combinatorial models of moduli spaces of two-dimensional
cobordisms and some compactifications, relating for example the graph models of
Godin and Costello to Bödigheimer’s model designed along more classical lines.
Pedro Boavida de Brito talked about his work in functor calculus, spaces of smooth
embeddings and operad theory with applications to spaces of higher-dimensional
long knots. Both Daniel Tubbenhauer and Lukas Lewark spoke on developments
in the Khovanov homology of knots, Tubbenhauer more on relations with rep-
resentation theory and Lewark more on applications to genus-type invariants of
slice knots. Markus Upmeier spoke on a theorem of his establishing the existence
of a moment map for certain actions of symplectomorphism groups. Finally Nat
Stapleton reported on a new proof and generalization of a result of Strickland’s
regarding some generalized cohomology of symmetric groups.
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We now describe the themes of the regular 1-hour talks.
Oscar Randal-Williams talked about his joint work with Galatius (Stanford)

on the cohomology and related invariants of spaces of automorphisms of smooth
manifolds. One point of departure for this, years ago, was the affirmed Mumford
conjecture on the cohomologyH∗ of spaces of automorphisms of surfaces of genus g
where g ≫ ∗ . But the current level of generality allows for manifolds of dimension
2n, where n 6= 2, having the form of a connected sum of a fixed and rather arbitrary
smooth manifold with g copies of Sn × Sn.

Category theory teaches us, as soon as we have learned to reason with sets
and elements, that we should not reason quite so much with elements. In Emily
Riehl’s talk about formal category theory we learned the next lesson: do not rea-
son quite so much with objects and morphisms. To begin with she described ax-
ioms/conditions isolating key features of the category of categories as a 2-category.
More desirable features were added to the framework as the talk went on. In a sim-
ilar vein, Ieke Moerdijk talked about categories for homotopy theorists, specifically
about categories of functors from a small category A to spaces, and a comparison
of that, for homotopy theorists, with the category of spaces over the classifying
space BA.

Wolfgang Lück spoke on L2-torsion invariants and relations between these and
the Thurston norm on the first cohomology of irreducible 3-manifolds.

Johannes Ebert spoke about new results on spaces of positive scalar curvature
metrics. The proofs rely on the results of Randal-Williams and Galatius on auto-
morphisms of some smooth manifolds, but also on steady progress in the theory
of surgery on manifolds with a positive scalar curvature metric.

Both Owen Gwilliam and Chris Schommer-Priess talked on aspects of quantum
field theories. Schommer-Priess talked about progress related to the Stolz-Teichner
program, a conjectural parameterization of some elementary quantum field theo-
ries. Gwilliam’s talk was on the deformation quantization of a type of classical field
theory, emphasizing the cohomological meaning of existence and (non-)uniqueness
of such deformation quantizations and describing some associated computations.
The talk by Zsuzsanna Dancso appeared to have some intriguing connections with
the mathematics of quantum field theory though she did not say so. Her theme,
abstractly stated, was homomorphic expansions of planar algebras. She explained
how in the case of a particular planar algebra, obtained from a topological setup,
these homomorphic expansions are equivalent to solutions of an important equa-
tion in Lie theory, and how they can be constructed using the topological setup.

Andrew Putman spoke on homological stability phenomena with dimension shift
in the cohomology of SLnZ. His talk had strong connections to number theory.

Gerd Laures’ talk was a survey of recent computations of the generalized co-
homology (closely related to TMF) of important classifying spaces such as BSpin
and BString.

The Segal conjecture, affirmed in the mid 1980s, states that (a form of) the 0-th
stable cohomotopy group of the classifying space of a finite group G is isomorphic
to the Burnside ring of G completed at the augmentation ideal. It is one of the
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great triumphs of stable homotopy theory. In Jesper Grodal’s talk we heard about
a variant of the Segal conjecture which involves the uncompleted Burnside ring.

Quite a few talks were related to algorithms or solvability statements of use in
algebraic topology. Martin Bridson spoke on the non-decidability of the existence
of finite-index subgroups in finitely presented groups. Andreas Thom’s talk was
on methods for solving certain equations in countable groups. Saul Schleimer gave
a survey of algorithms and algorithmic problems in 3-manifold topology.

Once again the Oberwolfach staff, not least the kitchen staff, helped to make
this meeting pleasant and memorable. Our thanks go to the institute for creating
this atmosphere and making the conference possible.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Craig Westerland in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Equations over groups

Andreas Thom

(joint work with Anton Klyachko)

Let Γ be a countable group and let n ∈ N be a positive integer. Consider an
equation w ∈ Γ ∗ Fn and the associated word map w : Γn → Γ that is obtained
by evaluation. We say that w has a solution in Γ, if there exists g1, . . . , gn ∈ Γ
such that w(g1, . . . , gn) = e in Γ. Similarly, we say that w has a solution over
Γ if there exists some overgroup Λ ⊃ Γ, such that w has a solution in Λ. It is
well-known that not every equation with coefficients in Γ has a solution over Γ,
e.g., Γ = 〈a, b | a2, b3〉 and w(t) = tat−1b. The study of equations goes back to
work of Bernhard Neumann [6] and attracted much attention because of various
applications in low-dimensional topology.

We also consider the natural augmentation ε : Γ ∗ Fn → Fn and call w ∈ Γ ∗ Fn

non-singular, if ε(w) 6= e in Fn. There is no example of a singular equation that
cannot be solved in some overgroup.

Conjecture A: Every non-singular equation with coefficients in a group Γ can be
solved over Γ.

The case n = 1 is the classical Kervaire-Laudenbach Conjecture. Based on
results [3], it has been observed by Pestov [7] that the Conjecture A holds provided
that the group Γ is hyperlinear and n = 1 – see [7] for more information on the
class of hyperlinear groups. All sofic groups are hyperlinear (in particular all
amenable groups and all residually finite groups) and there is no group known to
be non-sofic.

Our main result is the following theorem.

Theorem: Conjecture A holds for w ∈ Γ ∗ F2 provided that Γ is hyperlinear and
ε(w) 6∈ [F2, [F2,F2]].

The proof is based on a detailed study of the effect of word maps on the coho-
mology of PU(p) with coefficients in Z/pZ. It uses computations of Baum-Browder
[1] that established that the co-product on cohomology is not co-commutative in
this case, and various other explicit computations of Hamanaka-Kishimoto-Kono
[4] and Kishimoto-Kono [5].

The strategy has potential to provide information about the following conjecture
by Larsen.

Conjecture B: For non-trivial w ∈ F2, there exists n0, such that for all n ≥ n0

the associated word map w : PU(n)× PU(n)→ PU(n) is surjective.

In [2], it was proved that Conjecture B holds for all w 6∈ [[F2,F2], [F2,F2]] and
infinitely many n. On the contrary, in [8] it was shown that for fixed n and any
neighborhood V of 1n ∈ U(n), there exist a non-trivial word w ∈ F2, such that
the image of the associated word map w : U(n)×U(n)→ U(n) lies in V .
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Stable moduli spaces of high dimensional manifolds

Oscar Randal-Williams

(joint work with Søren Galatius)

For a closed smooth manifold W , we consider the moduli space of manifolds of
type W to be the classifying space BDiff(W ) of the group of diffeomorphisms of
W . One justification for this name is that BDiff(W ) carries a smooth fibre bundle
with fibre W , and this is the universal example of such a bundle, i.e. any such
bundle π : E → B is obtained up to isomorphism by pulling back this universal
bundle along a unique homotopy class of map f : B → BDiff(W ). Hence the
cohomology ring H∗(BDiff(W )) is precisely the ring of characteristic classes of
smooth fibre bundles with fibre W .

Suppose that W has dimension 2n, and define the genus of W by

g(W ) := max{g ∈ N |#gSn × Sn is a connect-summand of W}.
When 2n = 2 and W is orientable, this coincides with the usual genus of a surface.
The tangent bundle of W is classified by a Gauss map τW : W → BO(2n), and
we may form the Moore–Postnikov n-stage of this map,

τW : W
ℓ−→ B

θ−→ BO(2n),

where θ is a fibration. Recall that this is a factorisation of τW having the property
that ℓ is n-connected and θ is n-co-connected. It is characterised up to homotopy
equivalence by these properties.

We may form the following two objects associated to the fibration θ. Firstly, let
MTθ be the Thom spectrum associated to the virtual vector bundle −θ∗γ2n over
B. Secondly, let hAut(θ) denote the grouplike topological monoid of self-homotopy

equivalences of B over BO(2n), i.e. homotopy equivalences f : B
∼→ B such that

θ ◦ f = θ. As the Thom spectrum construction is functorial, we obtain an action
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of hAut(θ) on the spectrum MTθ, and hence on its associated infinite loop space
Ω∞MTθ. The set of path components π0(Ω

∞MTθ) has a cobordism-theoretic
description—via the Pontrjagin–Thom construction—in terms of 2n-dimensional
manifolds equipped with a lift of their Gauss map along the fibration θ, and we
let Ω∞

[W ]MTθ be the union of those path components given by the hAut(θ)-orbit

of [W, ℓ] ∈ π0(Ω
∞MTθ).

With this preparation, our main theorem is as follows, which extends the
Madsen–Weiss theorem and related homological stability results when 2n = 2.

Theorem A. There is a map

αW : BDiff(W ) −→
(
Ω∞

[W ]MTθ
)
//hAut(θ),

which, if W is simply-connected and 2n ≥ 6, induces an isomorphism in integral

(co)homology in degrees ∗ ≤ g(W )−3
2 .

Many variations of this theorem also hold: there is a version for orientation-
preserving diffeomorphisms, where one replaces θ by a lift θ+ : B → BSO(2n)
to the classifying space for oriented 2n-dimensional vector bundles; there is a
version for manifolds W with non-empty boundary, where the target of αW is
again modified slightly.

As the target of the map αW is constructed in purely homotopy-theoretic terms,
it is amenable to calculation using the traditional tools of algebraic topology.
In particular, for various interesting manifolds (such as #gSn × Sn, or smooth
hypersurfaces in CP4) one can now compute the ring H∗(BDiff(W );Q) in this
stable range of degrees.

Theorem A is a consequence of a collection of more technical results, spread
throughout [1, 2, 3]. However, these more technical results are of independent
interest, and for theoretical rather than computational applications may be more
useful than Theorem A itself. (See J. Ebert’s report in this volume for an example.)

Moduli spaces of θ-manifolds. Rather than constructing the fibration θ from
the manifold W , we may take a different point of view: fix an n-co-connected
fibration θ : B → BO(2n), and consider the space of all n-connected maps W → B
which are lifts of τW along the fibration θ (and are specified on ∂W ). Alternatively,
we may fix a bundle map ℓ∂ : TW |∂W → θ∗γ2n and consider the homotopy
equivalent space

Bunθn(W ) := {ℓ : TW → θ∗γ2n an n-connected bundle map extending ℓ∂}.
From this we may form the Borel construction

BDiffθ
∂(W ) := Bunθn(W )//Diff∂(W ),

a moduli space of θ-manifolds of type W . When ∂W = ∅ the monoid hAut(θ) can
be made to act on this space, and there is a homotopy equivalence

BDiffθ(W )//hAut(θ) ≃ BDiff(W ).

Hence Theorem A is a consequence of the following theorem, which we now for-
mulate for manifolds with boundary.
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Theorem B. There is a map

αθ
W : BDiffθ

∂(W ) −→ Ω∞
[W ]MTθ,

which, if W is simply-connected and 2n ≥ 6, induces an isomorphism in integral

(co)homology in degrees ∗ ≤ g(W )−3
2 .

Theorem A is obtained by taking Borel constructions of both sides by hAut(θ),
using the fact that αθ

W may be chosen to be hAut(θ)-equivariant.

Homology stability with respect to Sn × Sn. An immediate consequence of
Theorem B is the fact that BDiffθ(W ) and BDiffθ(W#Sn × Sn) have the same
homology in the stable range of degrees, as they both have the homology of a
collection of path components of Ω∞MTθ. When W has non-empty boundary
there is a stabilisation map

BDiffθ
∂(W ) −→ Diffθ

∂(W#Sn × Sn)

inducing this homology isomorphism, given by gluing on ([0, 1]× ∂W )#(Sn×Sn)
with some θ-structure. This is an independent ingredient of these theorems, and
holds in greater generality. The following theorem is proved in [2].

Theorem C. Let θ : B → BO(2n) be spherical (every θ-structure on D2n extends

to S2n), but not necessarily n-co-connected. Let BDiffθ
∂(W ) be defined as above,

but using all bundle maps, not just the n-connected ones. Then the stabilisation

map induces an isomorphism in integral (co)homology in degrees ∗ ≤ g(W )−3
2 as

long as W is simply-connected and 2n ≥ 6.

Homology stability with respect to higher handles. A further immediate
consequence of Theorem B is an analogous homological stability theorem for gluing
on to W a θ-cobordism K : ∂W  P such that (K, ∂W ) is (n − 1)-connected,
i.e. attaching to W handles of index n or higher. This is again an independent
ingredient; given Theorem C can be phrased as follows, which will appear in [3].

Theorem D. Let θ : B → BO(2n) be n-co-connected, partition ∂W = Q∪D2n−1,
and let K : Q Q′ be a θ-cobordism which is trivial on the boundary and such that
(K,Q) is (n−1)-connected. Let S : D2n−1

 D2n−1 be ([0, 1]×D2n−1)#(Sn×Sn).
Then the map

− ∪K : hocolim
k→∞

BDiffθ
∂(kS ∪W ) −→ hocolim

k→∞
BDiffθ

∂(kS ∪W ∪K)

induces an isomorphism on homology as long as 2n ≥ 4.

Stable homology. A further immediate consequence of Theorem B is that the
induced map after stabilising by S := ([0, 1]× ∂W )#(Sn × Sn),

hocolim
k→∞

BDiffθ
∂(kS ∪W ) −→ hocolim

k→∞
Ω∞

[kS∪W ]MTθ,

is a homology equivalence (as g(kS ∪W ) ≥ k + g(W ) diverges). This again holds
in much greater generality: θ can be just spherical rather than n-co-connected; W
need not be simply connected; we can take BDiffθ in the sense given in Theorem
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C (though in this generality we may need to stabilise by more than just S). A
statement of the general result is complicated, and we refer to [1] for a detailed
statement, and the proof.
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CAT(0) cube complexes

Dani Wise

In my talks I will attempt to give a flavor for the central role that CAT(0) cube
complexes are now playing in geometric group theory. A survey of this topic
together with references to the literature can be found in [1].

1. “Scheme” for understanding a group G. A strategy for understanding a
group G follows the following:

(1) Find sufficiently many codimension-1 {Hi} subgroups of G
(2) Cubulate to obtain action of G on X̃
(3) If codimension-1 subgroups are nice enough then G acts nicely

(4) Find finite index subgroup G′ such that G′\X̃ is very organized it is a
“special cube complex”

(5) Obtain an embedding G′ into a Right Angled Artin Group. RAAGs are
easy groups and we can conclude G has nice properties

There are discrete groups for which the above scheme cannot apply. Most
notably, infinite nonabelian amenable groups and infinite groups with property-
(T) cannot act properly on a CAT(0) cube complex.

Some prominent examples where this scheme has been successful are:

(1) Coxeter Groups (Niblo-Reeves + Haglund-W)
(2) One-relator Groups with Torsion (Magnus-Moldavananskii + W)
(3) Hyperbolic Free-by-Cyclic Groups (Hagen+W)
(4) Mixed 3-manifolds (Liu + Przytycki-W)
(5) Simple-Type Hyperbolic Arithmetic Lattices (Bergeron-Haglund-W)
(6) Hyperbolic 3-manifolds with boundary (W)
(7) Closed Hyperbolic 3-manifolds (Kahn-Markovic+Agol)
(8) C’(1/6) small-cancellation groups (W+Agol)

2. Cube complexes. An n-cube is a copy of [−1, 1]n, its subcubes correspond
to the subspaces obtained by restricting one or more coordinate to ±1. A cube
complex X is a obtained from a collection of cubes of various dimensions by gluing
them along subcubes. A flag complex is a simplicial complex where n+1 vertices
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span an n-simplex if and only if they are pairwise adjacent. The cube complex X
is nonpositively curved if the link of each 0-cube is a flag complex. The link of
0-cube v is the complex built with an n-simplex for each corner of each (n+1)-cube
at v.

Some examples of nonpositively curved cube complexes: Any graph is nonpos-
itively curved, that is a 1-dimensional cube complex. If dim(X) = 2 then X is
nonpositively curved if and only if link(v) has girth ≥ 4 for each v ∈ X0. Any
closed surface except S2 or P 2 is homeomorphic to a nonpositively curved cube
complex. If A and B are nonpositively curved cube complexes then so is A×B.

3. Right-Angled Artin Group (RAAG). Let Γ be a simplicial graph. The
Right-Angled Artin Group A(Γ) is presented by:

A(Γ) = 〈v ∈ Vertices(Γ) | uv = vu : (u, v)Edges(Γ)〉
Note: A(Γ) = π1R(Γ) with R(Γ) a nonpositively curved cube complex called a
Salvetti complex. For each n-clique of Γ, the cube complex R(Γ) has an n-cube
attached as an n-torus in the usual way.

A RAAG A is residually finite which means that for each a 6= 1A there is a
finite quotient A→ Ā such that ā 6= 1Ā.

Every finitely generated RAAG A is linear. Moreover, for some n = n(A) we
have an embedding A ⊂ SLn(Z).

4. CAT(0) Cube Complexes. A CAT(0) cube complex X̃ is a simply-con-

nected nonpositively curved cube complex. These are ”generalized trees” X̃ has
a geodesic metric with n-cubes isometric to [−1, 1]n ⊂ En. This geodesic metric

satisfies the CAT(0) inequality: Geodesic triangles in X̃ are at least as thin as
their comparison triangles in E2. Specifically, let ∆(a, b, c) be a geodesic triangle

in X̃ , and let ∆′(a′, b′, c′) be a triangle in E2 with the exact same side lengths.
For points p, q in ∆, we let p′, q′ denote the points in the same relative positions
in ∆′. Then the CAT(0) inequality requires that:

dX̃(p, q) ≤ dE2

5. Hyperplanes. A midcube in [−1, 1]n is a subspace restricting one coordinate

to 0. A Hyperplane is a connected subspace of X̃ intersecting each cube in either
∅ or in a single midcube.

• Every midcube in X̃ lies in a unique hyperplane.

• Each hyperplane separates X̃ into two parts.
• Each hyperplane is itself a CAT(0) cube complex.

Hyperplanes give a CAT(0) cube complex X̃ its personality, and generalize role of
edges in a tree.

6. Special Cube Complexes. The Immersed hyperplanes in a nonpositively

curved cube complex X look locally like hyperplanes in X̃ .

Definition 1. A nonpositively curved cube complex X is special if its immersed
hyperplanes satisfy:
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(1) No hyperplane V self-crosses: (It does not pass through two midcubes of
the same cube)

(2) No hyperplane V is 1-sided: (The cubical neighborhood N(V ) is isomor-
phic to V × [−1, 1].)

(3) No hyperplane self-osculates (V does not pass through two different 1-
cubes with the same initial vertex)

(4) No pair of hyperplanes U, V inter-osculate (If U, V pass through different
midcubes of the same cube, then they cannot pass through different 1-
cubes that do not form the sides of a 2-cube)

Ex: any subcomplex of the product of two graphs is special.

Theorem 2 (Haglund-W). X is special ⇔ There is a local-isometry X → R(Γ)
to the Salvetti complex of a RAAG.

G is special if G = π1X where X is special. Equivalently: G is special if G is a
subgroup of a RAAG. A special cube complex is a ”high-dimensional graph”. A
special group is a relaxed version of a free group.

The following generalizes Marshall Hall’s theorem for graphs as reexpressed by
Stallings. It plays a fundamental role in the theory of special cube complexes.

Theorem 3 (Canonical Completion and Retraction). Let X be a special cube
complex. f : Y → X be a local isometry with Y a compact cube complex. There

exists a finite cover ρ : X̂ → X and a lift f̂ : Y → X such that f̂ is an embedding,

and X̂ retracts to f̂(Y ).

7. Cayley Graphs and Hyperbolicity. Let G be a group with generators
{s1, s2, . . . , sr. Its Cayley graph has a vertex for each g ∈ G and has an edge
joining g, g′ whenever gsi = g′ for some generator si.

The Cayley graph has a path metric induced by regarding each edge as a unit
interval. G is hyperbolic if there exists δ ≥ 0 such that all geodesic triangles in
the Cayley graph are δ-thin in the sense that each side lies in the δ-neighborhood
of the union of the other two sides.

A subgroup H ⊂ G is quasiconvex if there exists κ > 0 such that for any
geodesic γ in Cayley(G), if the endpoints of γ lie in H then γ lies in Nκ(H).

8. Codimension-1 subgroups and Dual Cube Complexes. A codimension-1
subgroup H of G is a subgroup that ”cuts G in half”. More precisely, there exists
r > 0 such that Cayley(G) − Nr(H) has at least two H-orbits of components K
that are deep in the sense that K 6⊂ Ns(H) for any s > 0.

Examples include Zn ⊂ Zn+1 or more generally, π1M
n ⊂ π1M

n+1 where
Mn → Mn+1 is a π1-injective map between closed aspherical manifolds of those
dimensions.

A wallspace is a space S together with a locally finite system of walls {Wi}.
Each wall Wj decompose S into two halfspaces intersecting at Wj .

Construction 4 (Sageev). Inputs codim-1 subgroup H ⊂ G, and outputs action

of G on a CAT(0) cube complex X̃.
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• G acts cocompactly on X̃ when G is hyperbolic and H is quasiconvex.

• G acts freely on X̃ when the G-translates of H cut G sufficiently well.

A codimension-1 subgroup H yields a wall in the space S = Cayley(G). The
G-translates of W provides a wallspace with a G-action.

A notable application of Sageev’s construction is the following:

Theorem 5 (Wise). Let G be a C′(16 ) group. Then G acts properly and cocom-
pactly on a CAT(0) cube complex.

A C′(16 ) group has a presentation 〈x1, . . . , xr | R1, . . . Rs〉 with the property

that for each piece P in Ri, we have |P | < 1
6 |Ri|. A piece of a relator Ri is a

subword that occurs in some other way as a subword of one of the relators.

9. Surfaces in Closed Hyperbolic 3-manifolds and Cubulating from the
Boundary.

Theorem 6 (Kahn-Markovic). Let M be a closed hyperbolic 3-manifold. Then
there is a π1-injective quasifuchsian surface K → M . Moreover, for each circle

C ⊂ ∂M̃ , there exists K with ∂K̃ ∼ C.

Theorem 7. (Bergeron-W, Dufour) Let G be hyperbolic. Suppose each p, q ∈ ∂G
are cut by a quasiconvex subgroup H in sense that ∂H separates p, q. Then G acts
properly and cocompactly on a CAT(0) cube complex.

Corollary 8. Let M be closed hyperbolic 3-manifold. π1M acts freely and cocom-
pactly on CAT(0) cube complex.

10. Groups with a quasiconvex hierarchy. A group G has a hierarchy if G
can be built from trivial groups using finitely many amalgamated free products
A ∗C B and HNN extensions A∗Ct=C′

It is a quasiconvex hierarchy if amalgamated subgroups C are f.g. and C ⊂
A ∗C B and C ⊂ A∗Ct=C′ are quasi-isometric embeddings at all stages.

Theorem 9. If G is a hyperbolic group with a quasiconvex hierarchy then G is
virtually special. That is, G has a finite index subgroup G′ such that G′ is a
subgroup of a RAAG.

A relatively hyperbolic generalization of the above theorem yields:

Theorem 10. Let M be a hyperbolic 3-manifold with cusps. Then π1M is is
virtually special.

Another consequence resolves an old problem of Baumslag’s on one-relator
groups:

Theorem 11. Every one-relator group with torsion 〈a, b|Wn〉 is residually finite
when n ≥ 2.

11. Some Ingredients. A subgroup M ⊂ G is malnormal if Mg ∩ M = 1
whenever g /∈M .
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Theorem 12 (Specializing Amalgams (Haglund-W)). Let X be a compact non-
positively curved cube complex with π1X hyperbolic, and containing an embedded
hyperplane D with π1D malnormal. Suppose each component of X − N(D) is
virtually special. Then X is virtually special.

We use the notation N(D) for the union of all open cubes intersecting D.

Theorem 13 (Cubulating Amalgams: (Hsu-W)). Let G = A ∗C B or G =
A∗Ct=C′ be a hyperbolic group that splits over malnormal quasiconvex C. If A,B
are virtually compact special then G is π1 of a compact nonpositively curved cube
complex.

Ex: 〈a, b, c, d | ababb = cdc−1d−1〉 is π1 of a compact nonpositively curved cube
complex.

Theorem 14 (Special Quotient Theorem). Let G be hyperbolic and virtually com-
pact special. Let H ⊂ G be quasiconvex. Then H has finite index H ′ such that
G/ << H ′ >> is virtually compact special.

Ex: 〈a, b | (ababb)8〉 is virtually compact special. Here G = Free(a, b) and
H = 〈ababb〉 and H ′ = 〈(ababb)8〉.

A final ingredient is: Cubical Small-Cancellation Theory which is a high-di-
mensional generalization of classical small cancellation theory - joining theories of:
Gromov, Osin, Groves-Manning, Dahmani-Guirardel, and others.

An ordinary presentation 〈a, b, c | R1, R2, . . . , Rn〉 can be represented as: 〈X |
Y1, Y2, . . . , Yn〉 where X is a bouquet of circles and each Yi → X is an immersion of
a circle corresponding to the wordRi. The groupG of the presentation corresponds
to π1X/ << π1Y1 . . . π1Yn >>.

Likewise, we can let X be compact nonpositively curved cube and let each Yi →
X be a local isometry of cube complexes, and we obtain a “cubical presentation”.
The group this yields follows the same formula as above. The standard definitions
of small-cancellation theory have generalization to this framework, and when 〈X |
Y1, Y2, . . . , Yn〉 is C′( 1

12 ) one obtains very strong control of its properties as in
the classical small-cancellation theory. In particular, one is able to study walls
in the generalized Cayley graph of this group, and this theory becomes a very
convenient organizing tool, that played an important role in proofs of some of the
above theorems.

12. All closed hyperbolic 3-manifolds are virtually special. By applying
the special quotient theorem in an ingenious fashion, Ian Agol proved the following
result that completes the main goals of this research program:

Theorem 15 (Agol). Let X be a compact nonpositively curved cube complex.
Suppose π1X is hyperbolic. Then X is virtually special.

Given the cubulation from Kahn-Markovic we have the following:

Corollary 16. Every closed hyperbolic 3-manifold M is virtually Haken, virtually
fibered, has positive virtual first Betti number, lies in SL(m,Z), ...
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Given the cubulation of C’(1/6) small-cancellation groups we have:

Corollary 17. Let G be a C’(1/6) small-cancellation group. Then G is virtually
special.

We conclude that for fixed r, s, a random finitely presented group with r-
generators and s-relators almost certainly residually finite. This is a remarkable
consequence for combinatorial group theory.
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Toward the formal theory of (∞, n)-categories

Emily Riehl

(joint work with Dominic Verity)

“Formal category theory” refers to a commonly applicable framework (i) for defin-
ing standard categorical structures – monads, adjunctions, limits, the Yoneda
embedding, Kan extensions – and (ii) in which the classical proofs can be used to
establish the expected relationships between these notions: e.g. that right adjoints
preserve limits. One such framework is a 2-category equipped with a bicategory
of “modules.” (A module or profunctor from a category A to a category B is a
functor Aop ×B → Set, for instance hom: Aop ×A→ Set.)

In previous work, we show the basic category theory of quasi-categories can
be developed formally in a strict 2-category, the “homotopy 2-category” of quasi-
categories. A main point is that certain weak 2-limits present in this 2-category,
particularly comma objects, encode universal properties up to the appropriate no-
tion of equivalence for quasi-categories. An important feature of these “formal”
definitions and proofs is that they apply representably in other higher homotopi-
cal contexts, including Rezk objects (e.g., complete Segal spaces). In the quasi-
categorical context, we are reprising the foundational work pioneered by Joyal,
Lurie, and others. Our aim is to develop new tools to prove further theorems, but
an important side benefit is that this work applies equally to other models.

The aforementioned comma objects are precisely those modules that are rep-
resented by ordinary functors. In work in progress, we have developed a general
theory of modules between quasi-categories, which is robust enough to support a
complete formal category theory. (Modules appear under the guise of correspon-
dences in Lurie’s work, but our presentation, as two-sided discrete fibrations, is
different.) This allows us to prove, for instance, the familiar (co)limit formula for
pointwise Kan extensions.

At present, these new results do not immediately translate to other flavors
of (∞, 1)-categories, or to (∞, n)-categories, because there is one key technical
property (a “homotopy exponentiability” criterion for maps) that we prove in
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specific reference to the quasi-categorical model. In what follows, we explain some
of the basic ideas behind formal category theory and explore future vistas.

Basic formal category theory

The simplest framework for formal category theory is a strict 2-category. The
prototypical example might be the 2-category of categories, functors, and natural
transformations. Our particular interest will be in a 2-category whose objects are
(∞, n)-categories, whose morphisms are functors of such, and whose 2-cells are
homotopy classes of 1-simplices in appropriate hom-spaces.

There is a 2-categorical definition of an adjunction: an adjunction consists of
objects A, B; 1-cells u : A→ B, f : B → A; and 2-cells η : idB ⇒ uf , ǫ : fu⇒ idA

satisfying the triangle identities. The standard proofs demonstrate that (i) any
two left adjoints to a common 1-cell are isomorphic and (ii) adjunctions compose.

Now suppose the 2-category has some notion of “exponentiation,” indexed by
objects X in some other category. The object AX is thought of as the object of
X-shaped diagrams in A. A morphism X → Y should induce a map AY → AX .
In particular, assuming that exponentiation by the terminal object is the identity,
this gives rise to a “constant diagram map” const : A→ AX .

Declare that an object A in the 2-category has X-shaped limits if the 1-cell
const : A→ AX has a right adjoint lim: AX → A. As an immediate consequence
of propositions (i) and (ii) above, if A and B have X-shaped limits, any right
adjoint u : A→ B preserves them.

Further results are possible if the 2-category has comma objects. Given f : B →
A, we may define a pair of (weak) comma objects consisting of the data

f ↓ A
{{✇✇
✇✇

##●
●●

●
⇐

A ↓ f
{{✇✇
✇✇

##●
●●

●
⇐

A B
f

oo B
f

// A

and satisfying a weak universal property. A generalized element of f ↓ A, meaning
a morphism X → f ↓ A, corresponds to a generalized element a : X → A of A and
a generalized element b : X → B of B, together with a 2-cell fb⇒ a.

There is a formula for the adjunct morphism b⇒ ua to fb⇒ a in terms of the
unit and counit of the adjunction. By a 2-categorical encoding of precisely this
argument, the comma objects f ↓ A and B ↓ u are equivalent over A×B.

The homotopy 2-category

The strict 2-categories of interest arise as the homotopy 2-category of a quasi-
categorical context : a simplicially enriched category whose hom-spaces are quasi-
categories, satisfying the properties enjoyed by the fibrant objects in a model
category that is enriched over simplicial sets (with the Joyal model structure) and
in which all fibrant objects are cofibrant. A main point of this talk is that for
much of the formalism, the precise definition of quasi-category does not matter.

The prototypical example is given by the category of quasi-categories. Other
examples include complete Segal spaces or more general categories of Rezk objects :
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simplicial objects in a model category that are Reedy fibrant and satisfy the Segal
and completeness conditions. For instance, Barwick’s n-fold complete Segal space
model of (∞, n)-categories has this form. If K is a quasi-categorical context, so is
the slice category K/A over any object A.

The homotopy 2-category K2 of a quasi-categorical context K is the strict 2-
category defined by applying the homotopy category functor to each of the hom-
spaces. Its objects and 1-cells are the same as in K, and its 2-cells are homotopy
classes of 1-simplices in the hom-spaces. A quasi-categorical context admits expo-
nentials by arbitrary simplicial sets and comma objects constructed as homotopy
limits. This structure descends to the aforementioned structures on the homo-
topy 2-category. The content of the papers [1, 2, 3] is stated in the language of
quasi-categories but all of the results appearing there apply, essentially without
change, in any quasi-categorical context. This means that the definitions of the
basic categorical concepts can be interpreted there and the proofs, largely taking
place in the homotopy 2-category, are also unchanged.

Two-sided discrete fibrations

Missing from the basic framework of a 2-category with comma objects is the
Yoneda embedding (classically, the “hom” bifunctor Aop × A → Set) and its
generalizations (arbitrary functors Bop × A → Set). These go by a variety of
names: modules, profunctors, distributors, or correspondences. There are several
possible ways to encode modules in a 2-category. Given the structures that are
present in a homotopy 2-category, our preference will be to use comma objects.

For example, the Yoneda embedding for A is encoded by the comma object:

A ↓ A
cod

{{✈✈
✈✈

dom

##❍
❍❍

❍
⇐

A A

The generalized elements of A ↓ A encode 2-cells with codomain A. But A ↓ A has
additional universal properties relating to the pre- and post-composition actions

by arrows in A, which are expressed by saying that A
cod←−− A ↓ A

dom−−−→ A is a
two-sided discrete fibration in the homotopy 2-category.

To state this definition, we first need a notion of cartesian fibration. For quasi-
categories, this coincides exactly with the notion introduced by Lurie, but our
2-categorical definition can be interpreted in any homotopy 2-category. An isofi-
bration p : E → B is a cartesian fibration if

(i) Every X
e //

b   ❅
❅❅

❅❅
❅❅

❅ E
⇑α

p

��
B

admits a p-cartesian lift χ : ē ⇒ e along p. Here a 2-

cell χ is p-cartesian if it satisfies a weak form of the expected factorization
axiom and also has a 2-cell conservativity property: any endomorphism of
χ sitting over the identity on b is an isomorphism.

(ii) The p-cartesian 2-cells are stable under restriction along any functor.
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The domain projection dom: E ↓ E → E is a cartesian fibration. Reversing the
2-cells but not the 1-cells, we obtain the notion of a cocartesian fibration.

A cartesian fibration p : E → B is discrete if any 2-cell over p is an isomorphism.
If b : 1 → B is a point, then dom: B ↓ b → B is a discrete cartesian fibration. A

span A
q←− E

p−→ B is a two-sided discrete fibration if

(i) E → A×B is a discrete cartesian fibration in K2/A.
(ii) E → A×B is a discrete cocartesian fibration in K2/B.

The comma objects f ↓ A and A ↓ f are two-sided discrete fibrations.

The equipment for quasi-categories

With the notion of a two-sided discrete fibration to encode modules, we can es-
tablish a complete framework for formal category theory.

Theorem. There is a bicategory qMod2 of quasi-categories; modules, i.e., two-

sided discrete fibrations A
q←− E

p−→ B, written E : A 9 B; and isomorphism classes
of maps of spans. Moreover:

(i) qMod2 is biclosed: the functors E⊗B− and −⊗AE admit right biadjoints.
(ii) The identity-on-objects homomorphism qCat2 →֒ qMod2 that carries

f : A→ B to B ↓ f : A 9 B is locally fully faithful.
(iii) The covariant represented module B ↓ f : A 9 B is left adjoint to the

contravariant represented module f ↓ B : B 9 A.

In summary, qCat2 →֒ qMod2 is an equipment in the sense of Wood.

The proof of this result uses the Yoneda lemma for maps between modules.
Note that the proposition proven above asserts that if f ⊣ u, then the modules
f ↓ A and B ↓ u are isomorphic as 1-cells A 9 B.

At present, we must specialize to quasi-categories because we have yet to explore
how our conduché condition for homotopy exponentiability may be generalized to
other contexts. For the time being, we might note that the structures on qMod2

requiring this condition are convenient, but not strictly necessary.
With this theorem, we can now commence with the formal category theory. For

example, there is a standard definition of a right (Kan) extension diagram in any
2-category. In qCat2 this is too weak (failing, in general, to be “pointwise”), but
in qMod2 it gives the correct notion.

Definition. Consider a pair of functors f : A → B and g : A → C. The right
extension E

A
C↓g
| //

B↓f
|
❅❅
❅

  ❅
❅ ⇐

C

E
|⑦
⑦

~~
B

exists because qMod2 is closed. If the module E is covariantly representable, i.e.,
if E ∼= B ↓ r for some r : C → B, then r is the right extension of f along g.

Theorem. A module C
q←− E

p−→ B is covariantly representable if and only if the
following equivalent conditions hold:
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(i) q has a right adjoint right inverse
(ii) each fiber of q has a terminal object

Condition (ii) can be used to establish the expected result: if B has limits
indexed by certain comma objects, then the right extension of f along g exists.
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The twisted L2-torsion function and its application to 3-manifolds

Wolfgang Lück

The talk is about an ongoing project joint with Stefan Friedl.
Let G be a group, G → X → X be a G-covering over a finite CW -complex

X and φ : G → Z be a group homomorphism. If G is residually finite and X is

L2-acyclic, i.e., all L2-Betti numbers b
(2)
n (X,N (G)) vanish, we can assign to it a

function

ρ(2)(X,N (G);φ) : (0,∞)→ R

which is essentially the L2-torsion of X twisted with the 1-dimensional real rep-
resentation R on which g ∈ G acts by multiplication with tφ(g). (Actually this
function is only well-defined up to adding k · ln(t) for some k ∈ Z). If G =

π1(X) and X is the universal covering X̃, then we abbreviate ρ(2)(X̃;φ) :=

ρ(2)(X̃,N (π1(X));φ). See [5, 4, 3]. For basics about L2-invariants we refer to [7].
We present some basic properties such as homotopy invariance, sum formula,

product formula or more generally a formula for fibrations with L2-acyclic fiber,
passage to finite covering, scaling φ, Poincaré duality, and compute it for S1-spaces
with appropriate S1-action and mapping tori Tf for φ the canonicial homomor-
phism π1(Tf )→ π1(S

1) = Z.
Then we pass to 3-manifolds and compute it for graphmanifolds and 3-manifolds

which fiber over S1. We show that for a knot K ⊆ S3 with knot complementX(K)

and φ ∈ H1(X(K);Z) ∼= Z a generator that ρ(2)(X̃(K), φ) detects the trivial knot,
see [1, 8].

A function ρ is asymptotically monomial if for some constants C0 and C∞ the
limits limt→0

(
ρ(t)− C0 · ln(t)

)
and limt→∞

(
ρ(t)− C∞ · ln(t)

)
exists. In this case

we define the degree deg(ρ) to be C∞−C0. Denote by xM (φ) the Thurston norm
of φ ∈ H1(X ;Z).

Our main the theorem is
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Theorem 1. Let M be a compact connected orientable irreducible 3-manifold
with infinite fundamental group π and empty or incompressible torus boundary.
Consider φ ∈ H1(X ;Z). Then

deg
(
ρ(2)(M̃ ;φ)

)
= −xM (φ).

We can actually generalize it to other coverings than the universal covering.

Theorem 2. Let M be a compact connected orientable irreducible 3-manifold with
infinite fundamental group π and empty or incompressible torus boundary which
is not a closed graph manifold.

Then there is a virtually finitely generated free abelian group Γ, and a factoriza-

tion π1(M)
α−→ Γ

β−→ H1(M)f := H1(M)/ tors(H1(M)) of the canonical projection
into epimorphisms, an element m ∈ H1(M)f , an integer k ≥ 1 such that the
following holds:

For any group homomorphism φ : H1(π)f := H1(π)/ tors(H1(π)) → Z and any

factorization of α : π → Γ into group homomorphisms π
µ−→ G

ν−→ Γ for a residually
finite group G, there exists real numbers constants D2 ≥ 0 and D4 ≥ 0 such that
for the G-covering M →M associated to µ we get

φ(m)

k
· ln(t)−D2 ≤ ρ(2)(M,N (G);φ ◦ β ◦ ν)(t) ≤ φ(m)

k
· ln(t) for t ≤ 1;

and
(
−xM (φ) +

φ(m)

k

)
· ln(t)−D4 ≤ ρ(2)(M,N (G);φ ◦ ν)(t)

≤
(
−xM (φ) +

φ(m)

k

)
· ln(t) for t ≥ 1.

In particular ρ(2)(M,N (G);φ ◦ ν) is asymptotically monomial and satisfies

deg
(
ρ(2)(M,N (G);φ ◦ ν)

)
= −xM (φ).

We use this to show for the higher order Alexander polynomial of Cochrane
and Harvey, see [2, 6], that their degree coincides with the Thurston norm in the
situation of the last theorem provided that G is torsionfree elementary amenable
and residually finite. Previously only an inequality was known.
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Infinite loop spaces and positive scalar curvature

Johannes Ebert

(joint work with Boris Botvinnik, Oscar Randal-Williams)

Definition 1. Let W be a compact d-dimensional manifold. By R+(W ), we
denote the space of all Riemann metrics on W that have positive scalar curvature.
If W has boundary M , we fix a collar M × [0, 1] ⊂ W and a point g ∈ R+(M).
By R+(W )g, we denote the space of all h ∈ R+(W ), such that on the collar, h is
of the form g + dt2.

If W d has a spin structure, then index theory provides a powerful tool for the
study of positive scalar curvature, namely the Atiyah-Singer Dirac operator /D on
the spinor bundle. The index of the operator /D is an element ind( /D) ∈ KO−d(∗).
The relevance to positive scalar curvature is given by the Schrödinger-Lichnerowicz
formula

/D
2
= ∇∗∇+

1

4
scal.

As a consequence, ind( /D) is trivial if scal > 0. For two psc metrics h0, h1, one
obtains a secondary invariant, the index difference inddiff(h0, h1) ∈ KO−d−1(∗)
(note the dimension shift). The construction of the index difference generalizes
well to the family situation and to compact manifolds with boundary, and this
yields a map (depending on a basepoint h)

inddiffh : R+(W )g → Ω∞+d+1ko.

At the time of writing, this map seems to be the only available tool to detect
homotopy information on R+(W )g.

To find nontrivial homotopy classes in R+(W )g, one needs to map well-under-
stood spaces to R+(W )g . Our construction uses Galatius’ and Randal-Williams’
theory of moduli spaces of high-dimensional manifolds [5]. Let Θ : BO(2n)〈n〉 →
BO(2n) be the n-connected cover and let MTΘ(2n) be the Thom spectrum of
the additive inverse to the vector bundle classified by Θ (this spectrum is one
of the Madsen-Tillmann-Weiss spectra). If n ≥ 2, the map Θ factors through
BSpin(2n) and so the spectrum MTΘ(2n) has an Atiyah-Bott-Shapiro Thom class
â : MTΘ(2n)→ Σ−2nko.

Theorem 1. ([1]) Let W be a compact spin manifold with boundary M , let g ∈
R+(M) and assume that h ∈ R+(W )g 6= ∅.



Topologie 2375

(1) If dim(W ) = 2n ≥ 6, there exists a map

Φh : Ω∞+1MTΘ(2n)→R+(W )g

such that the composition inddiffh ◦Φh is homotopic to the infinite loop
map induced by â.

(2) If dim(W ) = 2n+ 1 ≥ 7, there exists a map

Φh : Ω∞+2MTΘ(2n)→R+(W )g

such that the composition inddiffh ◦Φh is homotopic to the infinite loop
map induced by â.

This result has various computational consequences because the map â can be
studied by the traditional tools of algebraic topology. For example, the index dif-
ference map is surjective on rational homotopy groups (on π0, this was proven by
Gromov and Lawson [7], and if the dimension is large compared to the homotopical
degree, by Hanke-Steimle-Schick [8]). Moreover, all the Z/2-groups in the homo-
topy of ko are hit (in low degrees, this was shown by Hitchin [9] and for one half
of these groups in higher degrees by Crowley-Schick [3]). Using more advanced
computations in homotopy theory, one can refine these results considerably.

Theorem 1 is proven first for even-dimensional manifolds, and then the result
in odd dimensions is derived from that. For the even-dimensional case, we use
three main ingredients. The first is a result of Chernysh [2] and Walsh [10]: if
the d-manifold W ′ is obtained from W by a surgery of index 3 ≤ k ≤ d− 2, then
the spaces R+(W )g and R+(W ′)g are homotopy equivalent. It is a classical result
by Gromov and Lawson [6] that one of these spaces is nonempty iff the other
is, and the proof by Chernysh and Walsh is indeed an elaboration of Gromov-
Lawson’s proof. The second ingredient is the due to Galatius and Randal-Williams
[5]. Namely, let Wk := ♯k(Sn × Sn) \ D2n. They showed that the classifying
spaces BDiff∂(Wk) homologically approximate Ω∞MTΘ(2n) (here the assumption
n ≥ 3 comes into play). We use the Borel construction of the action of Diff∂(Wk)
on R+(Wk)ground and the Chernysh-Walsh theorem to construct a fibration with
fibre R+(D2n)ground over Ω∞

0 MTΘ(2n), which is the Quillen Plus construction of
hocolimkBDiff∂(Wk). The map Φ is the fibre transport of this fibration. Using
the Atiyah-Singer family index theorem, we then prove that the composition of
the fibre transport with the index difference is Ω∞+1â. This establishes Theorem
1 for W = D2n. The general even-dimensional case is proven by a simple cut-and
paste technique. To pass to odd-dimensional manifolds, we use a geometrically
constructed map ΩgR+(M) → R+(W )g (as before, ∂W = M and R+(W )g 6=
∅). On the index theoretic side, we use a different construction of inddiff and
the equality of both constructions proven by [4], which is a generalization of the
classical spectral-flow-index theorem.
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Tits buildings, class numbers, and the high-dimensional cohomology of
SLn(O)

Andrew Putman

(joint work with Thomas Church, Benson Farb)

LetO be the ring of integers in an algebraic number fieldK. In this talk, we discuss
a new structural result about the spherical Tits building attached to SLn(O). Ap-
plications include vanishing and nonvanishing theorems for the top degree rational
cohomology groups of SLn(O).
The Tits building and the Steinberg module One of the most fundamental
geometric objects attached to SLn(K) is its Tits building, denoted Tn(K). The
space Tn(K) is the simplicial complex whose (p− 1)-simplices are flags

0 ( V0 ( · · · ( Vp ( Kn.

The group SLn(K) acts on Tn(K) by simplicial automorphisms. As we will explain
in more detail below, Tn(K) plays an important role in the study of arithmetic
groups and their cohomology.

The Solomon–Tits Theorem says that Tn(K) is (n− 3)-connected, and thus is
homotopy equivalent to a wedge of (n − 2)-dimensional spheres. The Steinberg

module for SLn(K), denoted Stn(K), is H̃n−2(Tn(K);Z). This is an important
representation of SLn(K). The Solomon-Tits Theorem also gives a generating
set for Stn(K) in terms of apartments, which we now define. A frame for Kn is
an ordered set L = {L1, . . . , Ln} of lines in Kn such that Kn = L1 ⊕ · · · ⊕ Ln.
The apartment corresponding to L, denoted AL, is the (n − 2)-sphere in Tn(K)
obtained as follows. Let σ be the barycentric subdivision of an (n − 1)-simplex.
The vertices of σ can be identified with nonempty subsets of {1, . . . , n}, and the
vertices in the boundary ∂σ ∼= Sn−2 are identified with proper subsets. There is
then a map ∂σ → Tn(K) taking the vertex corresponding to ∅ ( I ( {1, . . . , n}
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to 〈Li | i ∈ I〉; the image is the apartment AL. Each apartment determines an
apartment class

[AL] ∈ H̃n−2(Tn(K);Z) = Stn(K).

The Solomon–Tits theorem says that Stn(K) is generated by the set of apartment
classes. Since SLn(K) acts transitively on apartments, this implies that Stn(K) is
a cyclic SLn(K)-module.

Integrality and non-integrality. While the action of SLn(K) on Tn(K) is
transitive, the action of SLn(O) is not always so, and indeed this action encodes
arithmetic information about O. For example, the number of orbits of the SL2(O)-
action on T2(O) is the class number of O. In this context one has the following
natural notion. A frame L = {L1, . . . , Ln} of Kn is integral if

On = (L1 ∩ On)⊕ · · · ⊕ (Ln ∩ On).

In this case we call AL an integral apartment. WheneverO = Z, and more generally
whenever O is Euclidean, Ash and Rudolph [1] proved that Stn(K) is generated by
integral apartments. To do this they give a beautiful generalization of the method
of continued fractions to higher dimensions. We prove the following generalization
of Ash–Rudolph’s theorem. Let cl(O) denote the class number of O.
Theorem 1 (Church–Farb–Putman [3]). Let O be the ring of integers in an alge-
braic number field K with cl(O) = 1. Assume either that O has a real embedding
or that O is Euclidean. Then Stn(K) is spanned by integral apartment classes.

Under these conditions SLn(O) acts transitively on integral apartments, so Theo-
rem 1 implies that Stn(K) is a cyclic SLn(O)-module.

Remark 2. Ash–Rudolph’s proof of Theorem 1 when O is Euclidean is based on
an algorithm to write a non-integral apartment class as a sum of integral apart-
ment classes. They use the Euclidean function on O to measure the “complexity”
of the non-integral apartment classes. Our proof is quite different: non-integral
apartments never actually show up, and our proof does not even make use of the
fact that Stn(K) is generated by apartment classes.

The assumption in Theorem 1 that cl(OS) = 1 obviously excludes many exam-
ples; however, this assumption is necessary in a very strong sense.

Theorem 3 (Church–Farb–Putman [3]). Let O be the ring of integers in an al-
gebraic number field K. If cl(O) > 1 and n ≥ 2, then Stn(K) is not generated by
integral apartment classes.

Bieri-Eckmann duality and the Steinberg module The above results are
closely connected to the high-dimensional cohomology groups of SLn(O). Recall
that for any virtually torsion-free group Γ, the virtual cohomological dimension is

vcd(Γ) := max{k | Hk(Γ;M ⊗Q) 6= 0 for some Γ-module M}.
Define νn = vcd(SLn(O)). While the group SLn(O) does not satisfy Poincaré
duality, Borel-Serre [2] proved that it does satisfy Bieri-Eckmann duality with
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rational dualizing module Stn(K). This means that for any SLn(O)-module V and
all i ≥ 0 we have

Hνn−i(SLn(O);V ⊗Q) ∼= Hi(SLn(O);V ⊗Q Stn(K)).

This implies that Hk(SLn(O);Q) = 0 for k > νn, and

Hνn(SLn(O);Q) ∼= H0(SLn(O); Stn(K)⊗Q) ∼= (Stn(K)⊗Q)SLn(O).

Combining this with Theorem 1, we are able to prove the following theorem.

Theorem 4 (Church–Farb–Putman [3]). Let O be the ring of integers in an al-
gebraic number field K such that cl(O) = 1. Assume either that O has a real
embedding or that O is Euclidean. Then Hνn(SLn(OK);Q) = 0 for all n ≥ 2.

For O Euclidean, Theorem 4 was originally proved by Lee–Szczarba [4].

Remark 5. Some condition on K beyond the class number assumption cl(O) = 1
is necessary in Theorem 4. Indeed, for d < 0 squarefree let Od denote the ring of
integers in the quadratic imaginary field Kd = Q(

√
d). Those d < 0 such that Od

is non-Euclidean but cl(Od) = 1 are exactly d ∈ {−19,−43,−67,−163}. Although
H2(SL2(O−19);Q) = 0, we have

H2(SL2(O−42);Q) = Q, H2(SL2(O−67);Q) = Q2, H2(SL2(O−163);Q) = Q6.

For these calculations, see [5, 6]. Presumably similar things occur for SLn(O−d)
for n ≥ 3, but we could not find such calculations in the literature. It is likely that
imaginary quadratic fields provide the only such counterexamples to Theorem 4;
indeed, Weinberger [7] proved that the generalized Riemann hypothesis implies
that if K has class number 1 and OK has infinitely many units, then OK is
Euclidean.

Nonvanishing. In Theorem 4 we assumed the class number was 1. The follow-
ing theorem shows this assumption is necessary.

Theorem 6 (Church–Farb–Putman [3]). Let O be the ring of integers in an al-
gebraic number field K. Then for all n ≥ 2,

dimHνn(SLn(OK);Q) ≥ (cl(O) − 1)n−1.

The cohomology classes we construct in Theorem 6 were known classically when
n = 2. To illustrate this, consider a quadratic imaginary field Kd as in Remark
5. The Bianchi group SL2(Od) is a lattice in SL2 C = Isom(H3). The asso-
ciated locally symmetric space Xd = SL2(Od)\H3 is a noncompact arithmetic
3-dimensional hyperbolic orbifold of cohomological dimension 2. The cusps of
Xd are in bijection with the SL2(Od)-conjugacy classes of parabolic subgroups in
SL2(Od); one can show that there are cl(Od) such conjugacy classes. An embedded
path in Xd connecting one cusp to another defines an element of the locally finite
homology group Hlf

1 (Xd;Q), which is dual to H2(X ;Q) ∼= H2(SL2(Od);Q). Since
there are cl(Od) cusps, intersecting with such paths gives a (cl(Od)−1)-dimensional
projection of H2(X ;Q) ∼= H2(SL2(Od);Q). A similar procedure works for SL2(OK)
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for any number field K. However, the case n ≥ 3 is more complicated: the cusps
overlap in complicated ways, so this simple argument does not work.
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Session of 10 minute talks

Dieter Degrijse and Irakli Patchkoria: What is the geometric
meaning of the virtual cohomological dimension of a group?

In this talk we present a triangulated category of proper G-spectra where G is
an infinite discrete group with bounded torsion. The triangulated category is
generated by the orbits with finite isotropy and admits restriction functors to
genuine H-spectra for any finite subgroup H of G. We also indicate how a proper
G-spectrum gives rise to a Mackey functor for G. This is joint work with Lück
and Schwede. We will also discuss a second project, joint with Bárcenas, where
we apply this setup to define a notion of stable geometric dimension for proper
actions ofG. We are trying to show that this notion of dimension coincides with the
Mackey cohomological dimension of G. If G is virtually torsion free, the Mackey
cohomological dimension is known to equal the virtual cohomological dimension of
G. Hence, we would obtain a geometric interpretation of the virtual cohomological
dimension of G.

Lukasz Grabowski: Group ring elements with large spectrum near
zero

Motivated by the theory of l2-invariants of CW-complexes, Lott and Lück conjec-
tured that for every element T of the integral group ring of a group G there exists
c > 0 such that for sufficiently small x the proportion of the eigenvalues of T which
are in the interval [0, x] is at most xc. Subsequently Lück proved a much weaker
bound 1/| log(x)| for a large class of groups G. I’ll present a result which shows
that the Lück’s bound is not far away from optimal, in the sense that for every
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d > 1 there exists a group ring element with the proportion of the eigenvalues in
the interval [0, x] at least 1/| log(x)|d.

Holger Kammeyer: The Farrell–Jones conjecture for lattices in
virtually connected Lie groups

We reported on recent progress on the Farrell-Jones conjecture in algebraic K- and
L-theory which includes a proof for cocompact lattices in virtually connected Lie
groups by Bartels–Farrell–Lück. We then gave a rough outline of how we exploit
Weil’s local rigidity theorem in joint work with Lück and Rüping to extend this
result to all lattices in virtually connected Lie groups.

Cristina Pagliantini: Simplicial volume versus integral foliated
simplicial volume

The simplicial volume is a homotopy invariant of compact manifolds introduced
by Gromov. For a compact connected oriented manifold the simplicial volume is
the ℓ1-seminorm of the real fundamental class of the manifold itself. Even if the
simplicial volume depends only on the homotopy type of a manifold, it is deeply
related to the geometric structures that a manifold can carry.

Gromov conjectured that an aspherical oriented closed connected manifold with
vanishing simplicial volume has zero Euler characteristic. Gromov himself sug-
gested to use the integral foliated simplicial volume for which the corresponding
statement is true. In a joint work with C. Löh we proved that the simplicial volume
and the integral foliated simplicial volume are equal for hyperbolic 3-manifolds.

Daniel Kasprowski: On the K-theory of groups with finite
decomposition complexity

Decomposition complexity is a property of metric spaces generalizing the concept
of asymptotic dimension. It was first introduced by Guentner, Tessera and Yu.
By a result of Ramras, Tessera and Yu the K-theoretic assembly map

HG
n (EG;KR)→ Kn(R[G])

is split injective for every group G with finite decomposition complexity that ad-
mits a compact model for BG (and therefore is torsion-free) and for every ring R.
We give a generalization of this result, which in particular allows for groups with
torsion and show that the above assembly map is split injective for every subgroup
of a virtually connected Lie group, that admits a finite dimensional model for EG.

Daniela Egas Santander: Combinatorial models of Moduli space of
Riemann surfaces

We compare several combinatorial models of the Moduli space of two dimensional
cobordisms and their compactifications. More precisely, we construct direct con-
nections between the space of metric admissible fat graphs due to Godin, the chain
complex of black and white graphs due to Costello, and the space of radial slit con-
figurations due to Bödigheimer. In particular, these constructions show that the
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space of Sullivan diagrams, which is a quotient of the space of metric admissible
fat graphs, is homotopy equivalent to Bödigheimer’s Harmonic compactification
of Moduli space. Furthermore, we construct a PROP structure on admissible fat
graphs, which models the PROP of Moduli spaces of two dimensional cobordisms.
We use the connections above to give black and white graphs a PROP structure
with the same property.

Pedro Boavida: Spaces of smooth embeddings and the little discs
operad

We describe the homotopy theoretical obstructions to lifting a smooth immersion
into a smooth embedding in operadic terms and extend earlier work of Arone-
Turchin and Dwyer-Hess. This is joint work with Michael Weiss.

Daniel Tubbenhauer: Categorification and topology

The Jones polynomial is a celebrated invariant of links with connections reaching
from combinatorics over low-dimensional topology to mathematical physics.

Shortly after its discovery by Vaughan Jones in the mid 80ties a whole family
of “Jones like polynomials” was discovered. This is the “Jones revolution”: Before
his discovery there was a lack of link polynomials and after him there where too
many. A new question was to order them.

A representation theoretical “explanation” was found by Reshetikhin and Tu-
raev around 1990. They constructed the “Jones like polynomials” as intertwiners
of Uq(g) for any simple Lie algebra g. The Jones polynomial is the special case
g = sl2. Hence the name sl2-link polynomial.

The Jones polynomial also has a categorification called Khovanov homology, i.e.
a chain complex of graded vector spaces whose graded Euler characteristic gives
the sl2-link polynomials.

It was introduced by Mikhail Khovanov around 1999. History repeats itself:
Before Khovanov there was a lack of link homologies and after him there where
too many. Namely, all the sln-link polynomials have categorifications called the
Khovanov-Rozansky sln-link homologies.

In this talk I will sketch how one can obtain all of them using Khovanov-
Lauda’s categorification U(slm) of the quantum group U̇q(slm) using “categorified”

representation theory of U̇q(slm).
As an outcome, in addition to the fact that this “explains” their appearance,

we shortly sketch how rigidity of “categorified” representation theory of U̇q(slm)
says that, morally, “Khovanov like homologies” are “unique” homologies theories
one can associate to links.

Lukas Lewark: Khovanov-Rozansky homologies induce non-additive
four-ball genus bounds (joint with A. Lobb)

The classical knot signature is a lower bound to the four-ball genus of a knot,
i.e. the minimal genus of a surface in the four-ball bounding the knot. It is a
concordance homomorphism, in particular additive with respect to the connected
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sum; so is the Rasmussen invariant, a four-ball genus bound coming from a per-
turbed version of Khovanov homology, the categorification of the Jones polyno-
mial. We will see a large family of similar four-ball genus bounds that emerge from
the Khovanov-Rozansky homologies (categorifications of Reshetikhin and Turaev’s
sl(n)-polynomials). However, not all of these are concordance homomorphisms. A
possible application is to bound the four-ball genus of knots whose stable four-ball
genus vanishes, such as amphichiral knots.

Markus Upmeier: Extremal Metrics on Transverse Symplectic
Foliations (joint with M. Lejmi)

A transversely symplectic foliation of codimension 2q is the kernel of a closed
2-form ω with ωq never zero and ωq+1 identically zero. If non-empty, the corre-
sponding space of basic ω-compatible transverse almost complex structures AC(ω)
is contractible. Many of the familiar aspects of almost Kähler geometry, such as
the transverse Kähler identities, continue to hold for J ∈ AC(ω).

We show that a result of Fujiki [2], generalized by Donaldson [1] to the non-
integrable case, and proven by He [3] for Sasakian manifolds, holds in greater
generality: the action of the basic symplectomorphism group on the (infinite-
dimensional) Kähler manifold AC(ω) admits a moment map which is given by the
Hermitian transverse scalar curvature.
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Nat Stapleton: A transchromatic proof of Strickland’s theorem

Strickland showed that the Morava E-theory of the symmetric group (modulo
a transfer ideal) is the ring of functions on the scheme that classifies subgroup
schemes in the formal group associated to E. In joint work with Schlank we have
given a generalization of this result to p-divisible groups as well as a new proof of
Strickland’s result. The main technical tool is a character map from E-theory to
p-adic K-theory developed in joint work with Barthel.

Characteristic classes and families of Batalin-Vilkovisky field theories

Owen Gwilliam

Although the notion of a quantum field theory plays a central role in modern
physics, I think it is safe to say that this notion has not yet found a mathematical
formalization that captures the breadth of examples and the various flavors of
reasoning that appear in physics. There are, in fact, many different mathematical
objects inspired by quantum field theory that a priori look quite different. The
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focus of the talk is on an approach to quantum field theory that arose from the work
of Batalin and Vilkovisky, which is homological in nature. As a quick gloss, one
might say that the Batalin-Vilkovisky (BV) formalism is a version of deformation
quantization for field theory (by contrast to the usual meaning of “deformation
quantization,” which is aimed at mechanics).

In particular, there are two aspects to the BV formalism: first, one constructs
a classical BV theory, and second, one attempts to quantize, which is a defor-
mation procedure. For a given classical BV theory T , there may not exist a BV
quantization or there may exist many. It should come as no surprise that one can
formulate a cochain complex (DefT , ∂) in which

(1) the obstruction to the existence of a BV quantization is a cocycle ob, and
(2) if the obstruction is cohomologically trivial, [ob] = 0, then the set of allow-

able quantizations is given by trivializations def such that ∂(def) = ob.1

The goal of the talk is to sketch what DefT is and describe how one can compute
it. Before we can do that, however, we need to give a precise definition of a classical
and quantum BV theory! Throughout the talk, we work with the mathematical
machine developed by Kevin Costello in [2], who found a beautiful way to formalize
mathematically the BV approach (while also adding a lot too!).

The culmination of the talk is a description of recent works of Kevin Costello
[1], Si Li and Qin Li [4], and Ryan Grady and myself [3], in which the obstruction-
deformation complexes of several theories are computed. These theories are all
nonlinear σ-models, by which I will mean a theory whose fields consist of maps from
one manifold Σ to another manifold X . For the σ-models in the works mentioned
above, the obstructions to quantization are actually characteristic classes of Σ and
X , just as asserted in the physics literature.

Theorem 1 (Li-Li). Let X be a complex manifold. There is a classical BV theory
encoding the B-twisted topological σ-model of maps from Σ to X.

(1) The obstruction to the existence of a BV quantization is given by c1(Σ)⊗
c1(X). If either characteristic class vanishes, a quantization on Σ exists.

(2) If c1(X) = 0, each choice of holomorphic volume form on X determines a
unique quantization for every Riemann surface.

In short, the target X needs to be Calabi-Yau, just as one learns from physi-
cists, and the choice of a trivialization of the canonical bundle on X fixes the
quantization. (This amounts to a choice of string coupling constant.) See [6] for
a discussion of this system.

Similarly, Costello showed that for the curved βγ system on an elliptic curve,
the obstruction depends only on the target. It is the first Pontryagin class p1(X) in
H4(X,C). It must vanish for a quantization to exist, and each choice of trivializing
3-form leads to a distinct quantization. For comparison with the physics literature,
see [7] or [5] for the theory constructed by Costello.

1To anticipate the more precise description given in the talk, let me add that DefT describes
deformations to first order in the deformation parameter, which is usually called ~. That is,
DefT will describe ways of quantizing T modulo ~2.
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Flying rings and the Kashiwara–Vergne problem

Zsuzsanna Dancso

(joint work with Dror Bar-Natan)

This talk gave an outline of a topological context for the Kashiwara–Vergne prob-
lem in Lie theory [WKO2], and some hints to a topological proof [WKO3]. To
do this we use a “machine” whose input is a topological structure (usually some
space of knotted objects), and whose output is a set of equations in a graded space.
In this abstract we first introduce the Kashiwara–Vergne problem, then describe
the topological input to the aforementioned machine, followed by a general de-
scription of the machine itself. Finally, we’ll explain why the machine outputs the
Kashiwara–Vergne equations in this specific case, and how we can to use this to
obtain a topological proof that solutions exist.

1. The Kashiwara–Vergne problem

The Kashiwara–Vergne (abbreviated KV from now on) problem, put forth in 1978
[KV], is a set of equations involving the Baker–Campbell–Hausdorff (BCH) series
which has strong consequences in Lie theory and harmonic analysis. Solutions
were first proven to exist in 2006 by Alekseev and Meinrenken [AM]. In 2008
Alekseev and Torossian [AT] re-phreased and proved the conjecture in a more
algebraic setting and related it to Drinfel’d associators, and shortly thereafter
Alekseev, Enriquez and Torossian [AET] provided a formula for solutions in terms
of Drinfel’d associators. We are going to partially state the Alekseev–Torossian
formulation here.

To do this we need to set up some notation. Recall that the BCH series is the
infinite Lie series given by log(exey), where x and y are non-commuting variables.
Let lie2 denote the degree-completed free Lie algebra on two generators x and y,
and let der2 denote the set of derivations of lie2 (that is, maps D : lie2 → lie2
satisfying the Leibnitz rule). Let tder2 stand for the set of “tangential deriva-
tions”, i.e. derivations D with the additional property that D(x) = [x, ax] and
D(y) = [y, ay] for some ax, ay ∈ lie2. Finally, let TAut2 := exp(tder2) denote the
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group of tangential automorphisms. The KV conjecture states that there exists
F ∈ TAut2 for which the main KV equation

(1) F (x+ y) = log(exey)

holds, as well as another equation which we omit here for brevity (but which
admits a similar topological interpretation).

2. Topology

Recall that Bn, the ordinary braid group on n strands, can be thought of as the
“group of crawling ants”: the fundamental group of the configuration space of n
distinct points in R2. However, the braid group also has a “Reidemeister presenta-
tion” in terms of generators {σi | i = 1, . . . , n− 1}, where σi represents a crossing
between strands i and i+1, and modulo relations R3 and LS (Reidemeister 3 and
Locality in Space).

We define the group of w-braids wBn (here w stands for “welded” or “weakly
virtual”) analogously as the “group of flying rings” in R3; that is, the fundamental
group of the configuration space of n disjoint geometric circles in R3, all of which
are parallel to the xy-plane. Alternatively, wBn has a Reidemeister presentation,
where “virtual crossings” si are added as generators: the topological meaning of
σi now is that ring number i switches places with ring (i+ 1) by flying through it,
while si represents the two rings switching places with no interaction, as shown
below:

σi =si =

i i+ 1 i i+ 1

The set of relations is correspondingly larger, in particular, notice that s2i = 0,
and that the “Overcrossings Commute”, or OC relation σ−1

i si+1σi = σi+1siσ
−1
i+1

holds.
The topological structure required to gain insight into the KV equations is

slightly richer than wBn, called w-Tangled Foams, or wTF . Instead of a group, it
is a finitely presented planar algebra: an algebraic structure whose elements are
pictures and whose operations are given by planar connections of said pictures. In
addition to crossings and virtual crossings, the generators include singular vertices:
these can be thought of as a flying ring doubling itself to produce an inner and
an outer ring, followed by the inner ring flying out and starting its own life. The
relations include all of the wBn relations as well as several additional ones, most
importantly the Reidemeister 4 relation which describes the interaction of crossings
and vertices:

R4 :

For a detailed definition of wTF see [WKO2], the space there is called wTF o.
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3. The Machine

The “machine” as described here can be applied to planar algebras or groups,
and in fact makes sense in a much more general setting (described in [WKO2]).
We start with a planar algebra (or group) K given by a finite presentation in
terms of generators and relations. We allow formal Q-linear combinations (only
of elements with the same “skeleton”; this can be ignored at the present level of
detail). The augmentation ideal I consists of elements of QK whose coefficients
sum to zero. Powers of the augmentation ideal provide a decreasing filtration of
QK. Let A := ⊕∞

n=0In/In+1 be the associated graded space, usually a space
with a diagrammatic description: “chord diagrams” for classical braids, “arrow
diagrams” in the case of wTF . An expansion (also called universal finite type
invariant) is a map Z : QK → A, with the non-degeneracy property that the
associated graded map gr Z : A → A is the identity. Z is homomorphic if it is
well-behaved with respect to all operations (e.g. planar algebra composition, as
well as other operations defined on K but not mentioned here).

Does a (homomorphic) expansion exist? To find one, it is enough to determine
the Z-images of the generators in A. These values are subject to a number of
equations arising from the relations of K (and homomorphicity), hence the problem
of finding Z amounts to solving a system of equations in A. Often this set of
equations turns out to be interesting and hard, as in the case of wTF discussed
below.

4. wTF and the KV Equations

When looking for a (homomorphic) expansion Z for wTF , the main difficulty lies
in finding the Z-value of the vertex; let us denote it by V . One finds that V lies
in a subalgebra of A which can be identified as the universal enveloping algebra
of “tder2 ⋊(something easier)”. Hence, finding V can largely be translated to a
problem in tder2, and the main equation induced by the R4 relation is the KV
equation (1). This leads to the following theorem (rough formulation, see [WKO2]
for details):

Theorem. [WKO2] There is a bijection between homomorphic expansions for
wTF and solutions of the KV problem.

Finally, in order to use this insight to provide a topological proof of the KV
conjecture, we need to construct such a homomorphic expansion by topological
means. This is possible using the classical analogue of the space wTF : knotted
trivalent graphs (or KTGs). It has long been known (works of Murakami, Ohtsuki,
Cheptea, Le, Bar-Natan, and the speaker) that homomorphic expansions of KTGs
are determined by Drinfel’d associators, and there is a map from KTGs to wTF ,
known as Satoh’s “tubing map”. This relationship can be exploited to construct a
homomorphic expansion for wTF out of one for KTGs, which provides a formula
for solutions of the KV equations in terms of associators, recovering that of [AET].
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Characteristic Classes in TMF with level structures

Gerd Laures

(joint work with Martin Olbermann)

Characteristic numbers play an important role in the determination of the struc-
ture of cobordism rings. For unoriented, oriented and Spin manifolds the cobor-
dism rings were calculated in the 50s and 60s with the help of Stiefel-Whitney, HZ-
and KO-Pontryagin classes. However, it is known that for manifolds with lifts of
the tangential structure to the 7-connective cover String of BO these numbers do
not determine the bordism classes.

Locally at the prime 2, the Thom spectrum MSpin splits into summands of
connective covers of KO and an Eilenberg-MacLane part. A similar splitting
is conjectured for MString where KO is replaced by suitable versions of the
spectrum TMF : the Witten orientation provides a surjection of the string bordism
ring to the ring of topological modular forms and there is evidence that another
summand of MString is provided by the 16 connective cover of TMF0(3). In
order to provide maps to this possible summand one has to study TMF0(3)-
characteristic classes for string manifolds.

There is a much easier theory TMF1(3) which is complex orientable. Its formal
group is the completion of the universal elliptic curve with Γ1(3) structures. Its
relation to TMF0(3) is analogous to the relation between complex and Real K-
theory: a Γ1(3)-structure is a choice of point of exact order 3 on an elliptic curve.
A Γ0(3)-structure is the choice of subgroup scheme of the form Z/3 of the points
of order 3. Given such a subgroup scheme there are exactly two choices of points
of exact order 3 and they differ by a sign. Hence the corresponding cohomology
theory TMF0(3) is the ‘Real’ version of the complex theory TMF1(3). It can be
obtained by taking homotopy fixed points under the action which changes the sign
of the 3 division point.
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In [Lau] the TMF1(3) cohomology rings of BSpin and BString were computed.
It was shown that the diagram

TMF1(3)
∗BSpin

λ //

��

K∗
TateBSpin

ch

��
H∗(BSpin, TMF1(3)

∗
Q)

// H∗(BSpin,KTate
∗
Q)

is a pullback. The horizontal map is Miller’s elliptic character which corresponds
to the evaluation at the Tate curve on the moduli stack of elliptic curves. On
coefficients this map is just the traditional q-expansion map for modular forms.
The theory KTate is the power series ring K[1/3]((q)) of K-theories. The right
vertical map is the Chern character and the left vertical map is the Dold character,
that is, the map to rational cohomology induced by the exponential of the formal
group law. The theorem determines the ring of TMF1(3)-characteristic classes for
spin bundles as follows. An element of K∗

TateBSpin is a KTate-characteristic class
for spin bundles, that is, a formal series of virtual vector bundles which is naturally
defined for spin bundles. If its Chern character is invariant under the appropriate
Möbius transformations then it gives rise to a unique TMF1(3)-characteristic class.
This property allows the construction of many natural classes such as Pontryagin
classes.

Theorem 1. (1) There are unique classes pi ∈ TMF1(3)
4iBSpin with the

following property: the formal series p(t) = 1 + p1t+ p2t
2 . . . is given by

m∏

i=1

(1 + tρ∗(xixi))

when restricted to the classifying space of each maximal torus of Spin(2m).
Here, ρ is the map to the maximal torus of SO(2m) and the xi (and xi)
are the first TMF1(3)-Chern classes of the canonical line bundles Li (resp.
Li) over the classifying spaces of the tori.

(2) The classes pi freely generate the TMF1(3)-cohomology of BSpin, that is,

TMF1(3)
∗BSpin ∼= TMF1(3)

∗[[p1, p2, . . .]].

(3) Let T̂MF1(3) be the K(2)-localization of TMF1(3) at the prime 2. Then
there is an isomorphism of algebras

T̂MF 1(3)
∗BString ∼= T̂MF1(3)

∗[[r, p1, p2, . . .]]

where p1, p2, . . . are the Pontryagin classes coming from BSpin and r re-
stricts to a topological generator of degree 6 in the K(2)-cohomology of
K(Z, 3).

It is useful to consider TMF1(3) as a Real theory in the sense of Atiyah, which
means that there is a Z/2-equivariant spectrum (“the Real theory”) whose non-
equivariant restriction (“the complex theory”) is TMF1(3) and whose fixed point
spectrum (“the Real theory”) is TMF0(3). This allows a lift of the Pontryagin
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classes to TMF0(3) for spin bundles. For string bundles one has to provide a more
geometric construction of the class r described above. Here, the theory of cubical
structures on elliptic curves comes in which also played a role in the construction of
the Witten orientation. It turns out that a convenient choice of a generator r is the
defect class which compares the Witten orientation with the complex orientation.

Theorem 2. (1) There are classes πi ∈ TMF0(3)
−32iBSpin which lift the

products v6i2 pi for the TMF1(3) Pontryagin classes pi. Moreover, we have

TMF0(3)
∗BSpin ∼= TMF0(3)

∗[[π1, π2, . . .]]

(2) For String bundles ξ over X there is a natural stable class

r(ξ) ∈ TMF0(3)
0X

and an isomorphism

̂TMF0(3)
∗
[[r, π1, π2, . . .]] −→ ̂TMF0(3)

∗
BString.

In terms of the Chern character of its elliptic character it is given by the
formula

ch(λ(r(ξ))) =
∏

i

Φ(τ, xi − ω)

Φ(τ,−ω)
where the xi are the formal Chern roots of ξ ⊗C, ω = 2πi/3 and Φ is the
theta function

Φ(τ, x) = (ex/2 − e−x/2)
∞∏

n=1

(1 − qnex)(1 − qne−x)

(1− qn)2

= x exp(−
∞∑

k=1

2

(2k)!
G2k(τ)x

2k).

As a consequence we give a proof of the stable version of a conjecture by Brylin-
ski. For sufficiently large n divisible by 3, there is a group homomorphism

ϕ : (Pm)Γ(n) −→ TMF (n)∗BString

from a stable group of positive energy representations V of the free loop group
LSpin to the TMF -cohomology with level n-structure. Here, the congruence
group is larger than the one considered before since the character of the represen-
tation is only known to be invariant under the action of Γ(n) by a theorem of Kac,
Peterson and Wakimoto.

We will describe the map ϕ in terms of its elliptic character. Suppose P is a
String-principal bundle over X . Let L̃Spin be the universal central extension of
LSpin. Then LX carries a L̃Spin-principal bundle L̃P whose associated LSpin-
bundle is LP . In particular, this holds for the universal String-bundle EString
over BString. The elliptic character of ϕ gives the bundle

λϕ(V ) = (L̃ESpin×L̃Spin V )|BString

(when V is suitably normalized with a character of the rotation circle). In this
formula, the right hand side is considered as a formal power series of virtual
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bundles by decomposing the bundle as a representation of the circle group which
reparameterizes the loops. The evaluation of this class on the fundamental class of
a string manifold is the formal index of the Dirac operator on LM with coefficient
in the bundle associated to the representation V .
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Finite-sheeted coverings and undecidability

Martin R. Bridson

(joint work with Henry Wilton)

In the middle of the twentieth century, most of the basic decision problems for
finitely presented groups were proved to be undecidable and attention shifted to-
wards more refined questions concerning the existence of algorithms within spe-
cific classes of groups, and to connections with geometry and topology. However,
certain basic decision problems about general finitely presented groups were not
covered by the techniques developed at that time and did not succumb to the
geometric techniques developed in the 1990s. The most obvious of these is settled
by the following theorem from [3], which is at the heart of the project reported on
here.

Theorem 1. There is no algorithm that can determine if a finitely presented group
has a non-trivial finite quotient.

This talk focusses mainly on applications of this theorem, emphasising how
different refinements (of a geometric and topological nature) are needed for each.
The first refinement shows that the existence of finite-index subgroups remains
unsolvable among the fundamental groups of compact, non-positively curved cube
complexes, even in dimension 2. This should be contrasted with Agol’s Theorem [1]
(explained by Wise at this meeting), from which it follows that if the fundamental
group of the complex is hyperbolic, then it is residually finite.

Theorem 2. There is no algorithm that can determine if a compact square com-
plex of non-positive curvature has a non-trivial, connected, finite-sheeted covering.

The technical meaning of this theorem is that there is a recursive sequence
of finite squared 2-complexes Kn such that the set of n where there is a proper
subgroup of finite index Hn < π1Kn is recursively enumerable but not recursive.

To pass from Theorem 1 to Theorem 2 we use an idea that arises in the Kan-
Thurston construction. Roughly speaking, the idea is to replace the discs in a cell
complex by spaces which are “trivial” in a sense that one wants to control but
are complicated enough to allow one to stay in a desirable category of objects.
In the Kan-Thurston construction, one replaces discs by more complicated acyclic
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spaces; in our setting, we replace 2-cells in presentation 2-complexes by other non-
positively curved spaces with fundamental groups that have no finite quotients;
the desirable category of objects that we strive to stay in is that of compact non-
positively curved squared complexes.

Theorem 2 is more striking than Theorem 1 because, whereas one is used to
the idea that arbitrary finite group presentations encode unlimited pathology, one
expects much more controlled behaviour in the presence of non-positive curvature.

1. Permutoids and rigid pseudogroups. Across many contexts in mathe-
matics one encounters extension problems of the following sort: given a set S of
partially-defined automorphisms of an object X , one seeks an object Y ⊃ X and a
set of automorphisms S̃ of Y such that each s ∈ S has an extension s̃ ∈ S̃. In the
category of finite sets, this problem is trivial because any partial permutation of
a set can be extended to a permutation of that set. But if one requires extensions
to respect (partially defined) compositions in S, such existence problems become
more subtle. In 2004 Peter Cameron conjectured that there does not exist an
algorithm that can solve the following extension problem.

Problem 1. Given partial permutations p1, ..., pm of a finite set X (that is,
bijections between subsets of X) such that

(1) p1 = idX , and
(2) for all i, j with dom(pi)∩ ran(Pj) 6= ∅, there is at most one k such that pk

extends pi · pj
decide whether or not there exists a finite set Y containing X, and permutations
fi of Y extending pi for i = 1, ...,m, such that if pk extends pi ·pj then fi ◦fj = fk.

In [5] we prove that this problem is indeed algorithmically unsolvable by con-
sidering the partial permutations defined by left-multiplication on balls of finite
radius in Cayley graphs; we use the Cayley graphs of the groups constructed in
the proof of Theorem 2. The existence of a uniform solution to the word problem
in this class of groups plays a crucial role, as does the formalism of permutoids
that we develop. A similar result is proved for rigid pseudogroups.

2. Profinite Isomorphism. The profinite completion of a group Γ is the inverse

limit of the directed system of finite quotients of Γ; it is denoted Γ̂. The natural

map Γ→ Γ̂ is injective if and only if Γ is residually finite. A Grothendieck pair is a
monomorphism u : P →֒ Γ of finitely presented, residually finite groups such that

û : P̂ → Γ̂ is an isomorphism but P is not isomorphic to Γ. In 1970 Grothendieck
asked if such pairs exist; in 2004 Bridson and Grunewald [2] proved that they do,
raising the problem: is there an algorithm that, given a monomorphism of finitely
presented, residually finite groups u : P →֒ Γ, can determine whether or not û is
an isomorphism? In [4] we prove that no such algorithm exists.

Theorem 3. There are recursive sequences of finite presentations for residually
finite groups Pn = 〈An | Rn〉 and Γn = 〈Bn | Sn〉 together with explicit monomor-
phisms un : Pn →֒ Γn, such that:
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(1) P̂n
∼= Γ̂n if and only if the induced map of profinite completions ûn is an

isomorphism;
(2) ûn is an isomorphism if and only if ûn is surjective; and

(3) the set {n ∈ N | P̂n 6∼= Γ̂n} is recursively enumerable but not recursive.

The groups Γn that we construct are of the form Hn × Hn where Hn is a
residually finite hyperbolic group with a 2-dimensional classifying space. This
construction is based on the original template for Grothendieck pairs from [2],
but this requires as input super-perfect groups whose classifying spaces have finite
3-skeletons. To obtain such input, we need the following extension of Theorem 1.

Theorem 4. There is a recursive sequence of finite combinatorial CW-complexes
Kn so that

(1) each Kn is aspherical;
(2) H1(Kn,Z) ∼= H2(Kn,Z) ∼= 0 for all n ∈ N; and
(3) the set n ∈ N | π̂1Kn 6∼= 1} is not recursive.

3. Homology Spheres. A further application of Theorem 4 is the following.

Theorem 5. If d ≥ 5, then there is no algorithm that will determine, given a
closed homology d-sphere Σ, whether or not Σ has a finite-sheeted covering.

The precise meaning of this theorem is that there is a recursive sequence (Σn) of
finite simplicial complexes, the geometric realisation of each being homeomorphic
to a closed orientable d-manifold with the integral homology of a sphere, such that
the set of n such that Σn has no finite-sheeted cover is not recursive.

Kervaire [6] proved that for d ≥ 5, a finitely presented group G is the funda-
mental group of a closed homology d-sphere if H1(G,Z) = H2(G,Z) = 0. One can
use this to deduce Theorem 5 from Theorem 4, arranging that π1Σn = π1Kn.

4. Hyperbolic groups. Most decision problems for hyperbolic groups can be
solved efficiently. Even the isomorphism problem is solvable in this class of groups.
But it is unknown whether or not there exists a non-trivial hyperbolic group with
no finite quotients. If there were such a group, then a variation on our arguments
would prove that there is no algorithm that can determine whether or not a given
hyperbolic group has a non-trivial finite quotient. Without knowing this, we can
already prove, for example, that there is no algorithm that given a hyperbolic group
can determine whether or not it has a finite-dimensional linear representation with
infinite image. Also, in contrast to Agol’s virtual fibering theorem, we prove:

Theorem 6. There does not exist an algorithm that, given a finite presentation
of a hyperbolic group Γ, can determine whether or not Γ has a subgroup of finite
index Γ0 < Γ with dimH1(Γ0,Q) ≥ 1.

5. On the proof of Theorem 1. The (non)existence of a finite quotient for a
finitely presented group can be expressed as a sentence in the first order theory of
finite groups. For example, in all finite groups, ∀a, b, c, d :

(bab−1 6= a2) ∨ (cbc−1 6= b2) ∨ (dcd−1 6= c2) ∨ (ada−1 6= d2) ∨ (a = b = c = d = 1)
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because 〈a, b, c, d | bab−1a−2, cbc−1b−2, dcd−1c−2, ada−1d−2〉 has no non-trivial fi-
nite quotients.

The initial seed of undecidability for Theorem 1 comes from work of Solbodskoi
[7], which provides a finitely presented group G such that there is no algorithm
that, given a word w in the generators of G can determine whether or not w = 1 in
Ĝ. The meat of the proof is topological in nature, in the spirit of John Stallings’s
work on the topology of graphs (as developed by Scott, Wise and others), wherein
the profinite topology of a group is studied via the geometry and topology of finite
covers.
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[7] A. M. Slobodskŏı. Undecidability of the universal theory of finite groups. Algebra i Logika,

20(2):207–230, 251, 1981.

Rational Homotopy Theory via Quantum Field Theory

Chris Schommer-Pries

(joint work with Nathaniel Stapleton)

Cohomology theories such as real cohomology, K-theory, and cobordism theories
have the distinct advantage of a geometric description. They are built out of
geometric cochains such as differential forms, vector bundles, or cobordism classes
of manifolds. This significantly aids our ability to compute with these theories
while also allowing methods from algebraic topology to be used to solve geometric
problems.

Chromatic homotopy theory organizes cohomology theories according to their
height, which is a measure of the complexity of the theory. Real cohomology and
K-theory are at heights 0 and 1, respectively. The theory of topological modular
forms TMF introduced by Hopkins and Miller is of height 2, while there are
numerous theories, such as Morava En-theory and K(n)-theory, which exist for
arbitrary heights n.

In contrast to real cohomology and K-theory, there are no known geometric
descriptions of these latter theories. In fact, aside from bordism theories (which are
manifestly geometric), to our knowledge the only known geometric construction of
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a cohomology theory of complexity greater than K-theory is via the Baas-Dundas-
Richter-Rognes theory of ‘2-vector bundles’ [1, 2]; it produces K(ku), the algebraic
K-theory of topological K-theory, a theory of telescopic complexity two.

Nevertheless, several years ago the enticing idea was put forward that quantum
field theories could provide some of the best candidates for geometric cochains
for higher height cohomology theories. This idea was pioneered by Graeme Segal
[9] who proposed to use 2-dimensional conformal field theories to give geometric
cocycles for elliptic cohomology.

This idea has been further developed in the work of Stolz-Teichner [11, 12], and
has been quite successful in low heights. Namely they have shown that supersym-
metric Euclidean field theories of dimensions 1|1 and 0|1 correspond, respectively,
to K-theory and periodic de Rham cohomology; see [5] for the latter case.

Quantum field theories of different dimensions can be related by the process of
dimensional reduction. For example a 1-dimensional topological field theory gives
rise to a 0-dimensional theory by precomposing with the “cross with a circle”
map between bordism categories. In the presence of geometric structures and
supersymmetry the situation is more complicated, nevertheless it has been shown
that dimensional reduction does give a quantum field theoretic interpretation of
the (Bismut) Chern character map [4].

bCh : K∗(X)→ HP ∗
S1(LX)∧(u−1)

This map goes from the K-theory of a manifold X to the negatively completed
periodic S1-equivariant cohomology of the free loop space LX [3].

Higher analogs of the Chern character have also been an important tool for
studying cohomology theories of higher height [6, 10]. This theory provides a
generalized character map that approximates high height cohomology theories by
a form of rational cohomology. The form of rational cohomology has coefficients
that are a ring extension of the rationalization of the coefficients of the high height
cohomology theory. These rings are often algebras over the p-adic rationals.

Many features of these character maps are reminiscent of the dimensional re-
duction maps between field theories. For example the target of such character
maps is (a form of) the p-adic rational cohomology of a p-adic analog of the iter-
ated free loop space. Periodic de Rham cohomology cannot be a suitable target
for the higher height character maps that take place at a prime p. This is essen-
tially because there is no (interesting) map from the real numbers R to the p-adic
rationals Qp. For example the p-adic Chern character may be obtained as the
completion of the ordinary Chern character, but only once it is factored through
periodic rational cohomology.

In this talk, based on [7], we introduce a new notion of space which mixes ideas
from supermanifolds, schemes from algberaic geometry, and simplicial sets. We
call this notion superalgebraic Cartesian sets. This theory of spaces is flexible
and is defined, functorially, over any base ring R. Moreover it retains enough of
the structure to allow us to define and compute the collection of 0|1-dimensional
supersymmetric topological field theories over a simplicial set X . Following [8]
we introduce twisted field theories. We show that when R is a Q-algebra (for
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example R = Qp), then concordance classes of topological field theories, twisted
by a natural choice of degree n twist, are in bijection with Hn(X ;R). Moreover
we provide a family of more exotic twists which allow one to recover not just the
cohomology of X , but the entire rational homotopy type.
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Homotopy colimits and left fibrations

Ieke Moerdijk

(joint work with Gijs Heuts)

For a small category A, I consider the category sSetsA of diagrams of simplicial
sets (‘spaces’) parametrized by A. The usual homotopy colimit functor construc-
tion can be consider as a functor

h! : sSets
A −→ sSets/NA,

where NA is the nerve of A. It is well known that this functor gives an equivalence
of homotopy categories when A is a group (viewed as a category with one object).
I will show that h! always gives an equivalence of homotopy categories, in the
following precise way: one equips sSetsA with the projective model structure and
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sSets/NA with the covariant model structure. The fibrant objects X → NA in
the latter model category are characterized by the lifting property

Λn
k

//

��

X

��
∆n //

==③
③

③
③

③

NA,

for all n > 0 and 0 ≤ k < n. This makes the functor h! into (the left part of)
a Quillen equivalence. The proof makes use of another left Quillen equivalence
r! : sSets/NA → sSetsA in the opposite direction and is completely elementary.
The talk is based on joint work with Gijs Heuts [HM] and simplifies the treatment
in Lurie’s Higher Topos Theory.
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Low-dimensional algorithmic topology

Saul Schleimer

(joint work with Ben Burton, Marc Lackenby)

Our goal in this note is to show that many three-manifold recognition problems
lie in the complexity class NP.

1. Decision problems. Recall that a decision problem Q is a collection of
instances {ω} together with a uniform question. The answer Q(ω) is required to
be yes or no. Some care is needed to give a uniform encoding of ω, in binary. We
define |ω|2 to be the length of this binary encoding.

As a simple example: given a two-dimensional triangulation T the problem
connected surface asks if the underlying topological space S = |T | is a con-
nected surface.

A decision problem Q lies in P, that is, is solvable in polynomial time, if there
is a Turing machine A and a polynomial q so that A(ω) computes Q(ω) and halts,
all in time at most q(|ω|2). The above example, connected surface, lies in P.

A decision problem Q lies in NP if there is an algorithm A and a polynomial q
with the following property. For every instance ω we have Q(ω) = yes if and only
if there is a binary string α so that A(ω, α) prints yes and halts in time at most
q(|ω|2).

In what follows we concentrate on decision problems in three-dimensional topol-
ogy, stated in terms of triangulated manifolds. There is a similarly rich, and older,
family of problems concerning knot diagrams. However, in the interest of space
we will content ourselves with a single reference [6].

2. Results past. We begin with a previous result from [10]. See also [5]. Given
a three-dimensional triangulation T , the problem three-sphere recognition
asks if the underlying topological space M = |T | is homeomorphic to S3.
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Theorem 1. [Schleimer, Ivanov] Three-sphere recognition lies in NP.

Here is a sketch of the proof. We begin with a bit of useful preprocessing; in
polynomial time we can decide if M = |T | is a three-manifold and if M has the
same homology as the three-sphere. This done, the instance ω = T has, as its
certificate, a sequence α = {(Ti, Si)}Ni=0 of triangulations and (almost) normal
spheres as follows:

• T0 = T ,
• Ti+1 is obtained by crushing Ti along Si, and
• TN = ∅.

That the certificate α exists, and that it can be verified in polynomial time, relies
crucially on the ideas of [8, 12, 2].

Theorem 1 is foundational; most three-manifold recognition problem (in NP)
require it as a subroutine. Here are several applications.

Corollary 2. The recognition problems for the following manifolds lie in NP: B3,
P 3, S2 × S1, D2 × S1, P 3 # P 3, T 2 × I, and K2 ∼× I.

We provide very brief sketches of the proofs to give a sense of the necessary
techniques. Let M = |T | be the underlying space. In all cases we begin with the
usual preprocessing of T . We then check that ∂M is the correct surface.

To recognize B3, we apply Alexander’s theorem [1]; thus M is homeomorphic
to B3 if and only if its double D(M) is homeomorphic to the three-sphere. To
recognize P 3 we apply Livesay’s theorem [7]; thus M is homeomorphic to P 3 if
and only if it has a double cover M ′ which is homeomorphic to the three-sphere.

The certificate for S2 × S1 begins with a non-separating normal two-sphere
S ⊂M .

After crushing T along S we certify that the resulting manifolds are three-
spheres. To recognize D2×S1 it suffices to double M and recognize that D(M) ∼=
S2×S1. To recognize P 3 # P 3, the certificate provides a normal separating sphere
which we crush. The resulting manifolds are all copies of S3 and P 3, which are
certified as discussed above.

To recognize T 2 × I we apply the cyclic surgery theorem. Suppse that T is a
torus. Four slopes {αi}3i=0 in T form a Farey square if

∆(αi, αj) =

{
2 if i = 0 and j = 2

1 otherwise.

We check that M has ∂M = S ⊔T , both tori. If M(αi) is a solid torus for all four
slopes in a Farey square then M ∼= T 2 × I, essentially by [3, Theorem 2.4.4]

To recognize K2 ∼× I we first check that M has ∂M homeomorphic to a single
torus. The certificate for M provides a double cover M ′ → M together with a
certificate that M ′ ∼= T 2 × I. An elementary version of topological rigidity (using
vertical annuli) now implies M is homeomorphic to K2 ∼× I.

3. Results present. We may now discuss our current work. A three-manifold
M is called elliptic if M is a quotient of S3 by a freely acting subgroup Γ < SO(4).
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Theorem 3. [Lackenby-Schleimer] The problem of recognizing elliptic manifolds
lies in NP.

In fact more is true – the name of the elliptic manifold can also be certified.
The proof here uses standard notions from the theory of Seifert fibered spaces,
the covering space ideas mentioned above, and our recognition theorem for lens
spaces [11].

Suppose that K ⊂ S3 is a knot and n(K) is a small regular neighborhood.
Define XK = S3 − n(K) to be the associated knot complement.

Theorem 4. [Burton-Schleimer] The problem of recognizing knot complements
lies in NP.

This is proven by extending the crushing operation from spheres to planar
surfaces; the result of crushing a planar surface is that of first filling the boundary
slope with a layered solid torus and then crushing along the resulting normal
sphere.

Theorem 5. The problem of recognizing torus knot complements lies in NP.

In fact more is true – the name of the torus knot can also be certified. This
is proved by crushing the essential annulus and obtaining a pair of lens spaces.
That this is a certificate relies on a partial solution to the cabling conjecture due
to Greene [4].

Given a triangulated three-manifold (M, T ) and a one-cocycle α ∈ Z1(M), the
problem fibered class asks if there is a surface bundle structure F →M → S1

so that [F ] ∈ H2(M,∂M) is Poincaré dual to [α] ∈ H1(M).

Theorem 6. [Burton-Schleimer] The problem of recognizing fibered classes lies in
NP.

The heart of the proof relies is a polynomial bound on the bit-complexity of
normal representatives of the fibers and on the technique of dicing surface bundles
discussed in [9].

Theorem 7. [Burton-Schleimer] The problem of recognizing E3, Nil, or Sol man-
ifolds lies in NP.

This is essentially a special case of Theorem 6; detecting the Thurston geome-
tries of a torus bundle relies on the fact that homology of cyclic covers can be
computed in polynomial time. In similar fashion we may deduce the following.

Theorem 8. The problem of recognizing XK, for K the figure-eight knot, lies in
NP.
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[9] Saul Schleimer. Almost normal Heegaard splittings. PhD thesis, U.C. Berkeley, 2001.
http://warwick.ac.uk/∼masgar/Maths/thesis.pdf.

[10] Saul Schleimer. Sphere recognition lies in NP. In Low-dimensional and symplectic topology,
volume 82 of Proc. Sympos. Pure Math., pages 183–213. Amer. Math. Soc., Providence, RI,
2011, arXiv:math/0407047.

[11] Saul Schleimer. Lens space recognition is in NP. In Oberwolfach Report, volume 24, pages
1421–1425, 2012.

[12] Abigail Thompson. Thin position and the recognition problem for S3. Math. Res. Lett.,
1(5):613–630, 1994.

The Segal conjecture, uncompleted

Jesper Grodal

In my talk I identified the Grothendieck group of maps between p–completed
classifying spaces Gr([BGp̂,

∐
n BΣnp̂]), for G an arbitrary finite group, as the

Burnside ring A(Fp(G)) of the p–fusion system Fp(G) of G. In fact I gave a
calculation of the whole mapping space ΩBmap(BG,

∐
n(BΣn)p̂) as described

below.
Let S be a Sylow p–subgroup of G. A finite S–set X is said to be G–stable

if for all subgroups Q ≤ S and all g ∈ G such that gQg−1 ≤ S, the Q–set
obtained by restricting the S–action on X to Q is isomorphic, as a Q–set, to the
Q–set obtained by restricting the S-action to gQg−1, and then viewing X as a
Q–set via the conjugation map cg. The Burnside ring A(Fp(G)) is defined as the
Grothendieck group of the monoid of G–stable finite S–sets, under disjoint union
— this is easily seen only to depend on the p–fusion system Fp(G) of G, explaining
the notation. Our first main theorem can now be stated as follows:

Theorem 1. Let G be a finite group with Sylow p-subgroup S, and let A(Fp(G))
be the Burnside ring of G–stable finite S–sets, as defined above. Then

Gr([BGp̂,
∐

n

(BΣn)p̂])
∼=−→ A(Fp(G))

It is easy to see that A(Fp(G)) is a free abelian group of rank the number
of conjugacy classes of p-subgroups in G, and it is naturally as a subring of the
ordinary Burnside ring A(S) of the Sylow p–subgroup S. The algebraic properties
of A(Fp(G)) has been studied by several authors, see e.g., [3, 8]. It was proven
in [2] that the map in Theorem 1 had finite kernel and cokernel, by observing

http://arxiv.org/abs/1009.1130
http://warwick.ac.uk/~masgar/Maths/thesis.pdf
http://arxiv.org/abs/math/0407047
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that the relevant obstructions took values in finite groups; we here show that the
obstruction groups in fact vanish.

Applying Theorem 1 for the different primes p dividing the order of G, one
obtains an ‘integral’ version, where the p–completion is replaced by Bousfield–Kan
Z–completion (−)Ẑ. (By general localization theoretic facts, Z–completion can
here also be replaced by Quillen’s plus construction or Z–homology localization.)

Corollary 1. The following diagram is a pull-back of rings

Gr([BG,
∐

n(BΣn)Ẑ]) //

aug

��

∏
p||G|A(Fp(G))

aug

��
Z

diag
//
∏

p||G|Z

Said differently, Gr([BG,
∐

n(BΣn)Ẑ]) is the product of the A(Fp(G)), for
p | |G|, in the category of Z–augmented rings.

Theorem 1 can be viewed as an ‘uncompleted’ version of the Segal conjecture
as shown by the following commutative diagram

(1) Gr([BGp̂,
∐

n(BΣn)p̂])
∼= //

��

A(Fp(G))

(−)Î

��
[BGp̂,Ω

∞S∞
p̂]

∼= // A(Fp(G))Î

where I is the augmentation ideal. Here the top isomorphism is Theorem 1 and
bottom isomorphism is the Segal conjecture, in Ragnarsson’s version [6, 3].

We now give our result for the whole mapping space.

Theorem 2 (The Burnside space of BGp̂). Let p be a prime and G a finite group.
Then

ΩB
∐

n

map(BG, (BΣn)p̂) ≃
∏

[Q]

(Ω∞Σ∞(BWG(Q)+))p̂

where the product runs over G–conjugacy classes [Q] of p–subgroups Q in G, and
the plus denotes disjoint basepoint.

In particular

πi(ΩB
∐

n

map(BG, (BΣn)p̂)) ∼=
{

A(Fp(G)) for i = 0

limG/Q∈Op(G) π
Q
i (Ω∞S∞)(p) for i > 0

where Op(G) is the p-orbit category of G and πQ denotes Q-equivariant homotopy
groups.

Assembling the information at the different primes, we also get an integral
version of Theorem 2.

Corollary 2 (The Burnside space of BGẐ). Let G be a finite group then
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ΩB(
∐

n

map(BG, (BΣn)Ẑ))
∼−→ Ω∞Σ∞(BG+)×

∏

p||G|,1<[Q]

(Ω∞Σ∞(BWG(Q)+))p̂

where the product is taken over G-conjugacy classes [Q] of non-trivial p-subgroups
Q of G for all primes p dividing the order of G.

This result fits as the middle line in the following commutative diagram:

(2)

ΩB(
∐

n map(BG,BΣn))

��

∼ // Ω∞Σ∞(BG+)×
∏

1<[H]

Ω∞Σ∞(BWG(H)+)

��
ΩB(

∐
n map(BG, (BΣn)Ẑ))

��

∼ // Ω∞Σ∞(BG+)×
∏

p||G|,1<[Q]

(Ω∞Σ∞(BWG(Q)+))p̂

��
map(BG,Z× (BΣ∞)Ẑ)

∼ // Ω∞Σ∞(BG+)×
∏

p||G|,1<[Q]

Ω∞((Σ∞(BWG(Q)+))p̂)

The top product is taken over G–conjugacy classes [H ] of non-trivial subgroups
H of G, whereas the two latter sums are taken over G–conjugacy classes [Q] of
non-trivial p-subgroups Q of G for all primes p dividing |G|. The top horizontal
homotopy equivalences is the equivariant Barrett–Priddy–Quillen theorem and the
Segal–tomDieck splitting; this essentially goes back to Segal’s 1970 ICM address [9,
Prop. 7]. The middle homotopy equivalence is Theorem 2. The bottom homotopy
equivalences is Carlsson’s strong form of the Segal conjecture [1], in the p–primary
version obtained by Ragnarsson [7, Thm. D].

Notice that on π0 Diagram 2 from top to bottom gives the factorization

A(G) −→
aug∏

p

A(Fp(G)) −→
aug∏

p

A(Fp(G))Î ∼= A(G)Î

from Diagram 1, where superscript aug means that the product is taken in the
category of Z–augmented rings. It is the placement of the p–completion in the
right-hand column of Diagram 2 which accounts for the p–completion on compo-
nents or lack thereof.

The proofs of the above results evolve around showing that certain obstruc-
tion groups vanish. Our approach mirrors that used in an celebrated result of
Jackowski–Oliver on vector bundles over classifying spaces [5]. To make this ap-
proach work we have to replace their use of equivariant K–theory by a link to
the equivariant sphere spectrum. This in turn requires us to revisit various con-
structions in equivariant stable homotopy theory, such as group completions and
homological stability, and modify and assemble them for our purpose. The results
described here will appear in [4].
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