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Abstract. Many processes of highest actuality in the real life are described
through systems of equations posed in complex domains. Of particular in-
terest is the situation when the domain is variable, undergoing deformations
that depend on the unknown quantities of the model. Such kind of problems
are encountered as mathematical models in the subsurface, or biological sys-
tems. Such models include various processes at different scales, and the key
issue is to integrate the domain deformation in the multi-scale context. Hav-
ing this as the background theme, this workshop focused on novel techniques
and ideas in the analysis, the numerical discretization and the upscaling of
such problems, as well as on applications of major societal relevance today.
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Introduction by the Organisers

The focus of this meeting was on mathematical models, the analysis and discretiza-
tion of flow and reactive transport models in deformable and complex (porous)
media. It aimed at identifying relevant mathematical challenges connected with
such issues and the underlying applications. This required the active participa-
tion of scientists with various expertise, willing to collaborate and exchange ideas
in a common mathematical language. Therefore the participants had a broad
and heterogeneous expertise, covering fields of mathematics (analysis, numerical
methods), (geo-)physics, and environmental engineering.

The workshop was attended by 48 scientists from 10 countries, including 5 young
scientists supported by the ”Oberwolfach Leibniz Graduate Students” Programme.
One of the participants, Prof. Todd Arbogast, was awarded the Simons Visiting



2410 Oberwolfach Report 43/2014

Professorship. This supported his visits to the universities in München (TU),
Bergen and Eindhoven.

The programme included 28 lectures on the mathematical analysis, upscaling,
numerical simulation and scientific computing of processes in complex (porous)
media, some of them having a survey character. The talks addressed the workshop
theme from various viewpoints:

• Mathematical methods, with subtopics in homogenization and multiscale
analysis;

• Discrete representations, including (mixed and conformal) finite elements
and finite volume methods, in a multi-scale context;

• Heterogeneous solvers, including domain decomposition methods and mul-
tilevel solvers;

• Advanced applications, dealing with subsurface processes and biological
systems.

The organizers would like to acknowledge the involvement of Florin Adrian
Radu (Bergen), who initiated the organisation of this workshop. The meeting
atmosphere was very inspiring and collegial, with many discussions and promising
initiatives. Needless to say, in achieving this the professional support offered kindly
by the MFO was invaluable. All participants have experienced the hospitality and
the wonderful conditions offered in Oberwolfach, and expressed the wish to come
back. Next to them, the organizers are expressing the gratitude for this fantastic
opportunity.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Todd Arbogast in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Modeling of reactive flow through deformable porous media using
homogenization

Andro Mikelić

Our goal is to derive the quasi-static Biot equations with Young moduli depending
on the concentration of the transported species. They are posed in a porous
medium Ω and read

− Div {AH(c01)e(u)− αp} = ρF,(1)

∂t

(
Mp+ div

(
αu

))
+ div {K

η
(ρfF−∇p)} = 0.(2)

We start from the first principles fluid/structure pore level interaction and use the
the Lagrange formulation for the solid skeleton and a particular ALE (Arbitrary
Lagrangian Eulerian) formulation for pore space filled by a fluid. Next, we concen-
trate to the characteristic times corresponding to a flow regime (contrary to the
vibrational regime of Biot-Allard equations from [1], [2], [3] and [12]) and suppose
small deformations, small fluid compressibility and small Reynolds numbers. It
allows linearization of the coupling conditions at the fluid/solid interface Γ and
the fluid-structure equations become linear in the reference configuration.

The fluid structure interaction is coupled with a reactive transport. A change
of the concentration c1 implies a change in the 4th order tensor A, containing the
elasticity coefficients of the solid skeleton. We suppose that A changes continuously
as a function of a Volterra integral operator in time applied to c1 (see [6] and [5]
for details).

It is supposed that there are two connected phases, a solid Ωs and a fluid Ωf

one. A representative example of such geometry is the periodic porous medium
with connected fluid and solid phases. After identifying the characteristic pore
size ε = ℓ/L (the ratio between two length scales) as the small parameter, the
technique of homogenization can be applied.

The rigorous homogenization of the fluid-structure problem in space and in
time variables was undertaken in [1], [2] and [3]. In these references the slow
and fast scales separation was performed, which allowed reducing the two-scale
homogenized equations to the Biot equations from [12]. In [3] and [1], Biot’s equa-
tions were justified using the two-scale convergence and the tensorial viscodynamic
operator, linked to the dynamic permeability (see [10]), was calculated.

Furthermore, the result depends on the choice of the time scale T . If it is
superior or equal to Terzaghi’s time Tc = η/(Λε2), where Λ is the characteristic
Young moduli and η the dynamic viscosity, then in [11] the quasistatic equations
(1)-(2) were derived.

Therefore the effective behavior is described by the effective solid phase dis-
placement u and the effective pressure p. They are defined at every point of Ω
and we do not distinguish the solid and fluid phases any more. In the case of a
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poroelastic medium with small thickness in one direction, these equations simplify
to the poroelastic plate model (see [7]).

Concerning the approximation, it is proved in [11] that

√
ρfχΩf

(uf − u0
f (x,

x

ε
, t)) +

√
ρs(us − u)χΩs

→ 0 in C([0, T ];L2(Ω)3),

as ε =
ℓ

L
→ 0.

We notice that for the geophysical applications, the ratio between the diffusion
time L2/D and Terzaghi time is large and the deformation would already finish,
before the diffusion starts. In the applications to the living tissue, these times
seem to be comparable (see [6] and [5] for details).

The link between the quasistatic Biot system and the pore scale fluid-structure
problem was also considered in [4].

The system (1)-(2) is solved using specific splitting methods and we refer to [9]
and [8] for more details.
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Upscaling flow and transport in an evolving porous medium with
general interaction potentials

Nadja Ray

(joint work with Peter Knabner)

Introduction. Recently, two aspects have attracted an increased interest in
upscaling flow and transport in porous media: the integration of electrostat-
ics [1, 2, 3, 6, 8, 9] and an evolving porous matrix [4, 5, 7, 10]. In this research,
we consider, similar to [7], a general interaction potential as transport mechanism,
account for the evolving solid-liquid interface, and carry out the models upscaling.

Pore-scale model. At the pore-scale, we consider Stokes’ equations for the fluid
velocity vε and pressure pε, a transport equation including a general potential Φε

(drift) for the concentration cε. The level set equation for the level set Lε character-
izes the evolving solid-liquid interface Γε of the saturated porous medium Ωε ⊂ Ω,
at which boundary conditions are derived from conservation laws taking into ac-
count surface reactions f [7, 10]. Due to the multi-scale framework, the scale
parameter ε is introduced; the parameter ρ denotes the constant density of the
solid and the parameter α, β refer to volume change.

−ε2∆vε +∇pε = −cε∇Φε in Ωε(t),

∇ · vε = 0 in Ωε(t),

vε = −εβαf(cε, ρ)νε on Γε(t),

∂tcε −∇ · (−vεcε +∇cε + cε∇Φε) = 0 in Ωε(t),

(−vεcε +∇cε + cε∇Φε) · νε = εαf(cε, ρ)(cε − ρ) on Γε(t),

∂tLε − εαf(cε, ρ)|∇Lε| = 0 in Ω.

Upscaled model. As a result of the averaging procedure by formal two-scale
asymptotic expansion in a level set framework [10], we maintain a fully coupled
two-scale model. In other words, we obtain a coupled system of partial differential
equations consisting of Darcy’s law and an upscaled transport equation defined
in (new) macroscopic variables v0 :=

∫
Yl
v0 dy, p̃0 := p0 − c0, u0 := eΦ0c0 (macro

level), and a level set equation in L0 (micro-macro level). Moreover, time- and
space-dependent coefficient functions are defined by supplementary, fully coupled
cell problems (micro level).

v0 = −K1(t, x)∇xp̃0 −K2(t, x)∇xu0 in Ω

∇x · v0 =

∫

Γ0(t,x)

βf(c0) doy in Ω

∂t (Au0) +∇x · (D1∇xp̃0 +D2∇xu0) = −
∫

Γ0(t,x)

f(e−Φ0u0, ρ) doy in Ω

∂tL0 − αf(e−Φ0u0, ρ)|∇yL0| = 0 in Y × Ω.
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with permeability tensors Ki defined by integrating the solutions wi
j , effective

porosity A :=
∫
Yl,0(t,x)

e−Φ0 dy, and diffusion tensors Di defined by the integrating

the fluxes of the corresponding cell problems in ζij for j = 1, 2, i = 1, 2:

−∆yw
1
j +∇yπ̃

1
j + e−Φ0∇yζ

1
j = −ej in Yl,0(t, x),

∇y · w1
j = 0 in Yl,0(t, x),

−∆yw
2
j +∇yπ̃

2
j + e−Φ0∇yζ

2
j = −e−Φ0ej in Yl,0(t, x),

∇y · w2
j = 0 in Yl,0(t, x),

wi
j = 0 on Γ0(t, x),

−∇y · (e−Φ0∇yζ
1
j ) = ∇y · (e−Φ0w1

ju0) in Yl,0(t, x),

(e−Φ0∇yζ
1
j ) · ν0 = −e−Φ0w1

ju0 · ν0 on Γ0(t, x),

−∇y · (e−Φ0∇yζ
2
j ) = ∇y · (e−Φ0w2

ju0 + e−Φ0ej) in Yl,0(t, x),

(e−Φ0∇yζ
2
j ) · ν0 = −(e−Φ0w2

ju0 + e−Φ0ej) · ν0 on Γ0(t, x),

wi
j , π̃

2
j , ζ

i
j periodic in y,

1

|Y |

∫

Yl,0

ζij dy = 0.

Outlook. Due to the micro-macro coupling and degenerating coefficients, the up-
scaled model’s analytical investigation is still an open question - even for simplified
(sub-)problems.
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A multi-scale model for mass transport in arteries and tissue

Tobias Köppl

(joint work with Barbara Wohlmuth)

Mathematical models have become more and more important in many applica-
tions from medicine and biology. Quite often the resulting system of equations
is complex, highly nonlinear and cannot be solved analytically. Thus stable and
robust numerical simulation methods play an important role in understanding phe-
nomena like the regulatory mechanisms of the heart or the balancing of metabolic
supply and demand in the Cerebral Blood Flow (CBF). By these non invasive
techniques, physiological processes in the human body can be examined and un-
derstood with less effort and less danger for a patient. As a consequence scientists
can get more insight into the inherent mechanisms and improve their diagnosis
techniques. Moreover quantitative prediction of the distribution of a chemical
compound in living tissues, which provide important contributions to the devel-
opment of new medical products [1], will be possible by the help of numerical
simulation. In addition to that the impact on organs suffering from a reduced
supply of oxygen can be predicted by the help of computational methods. A well
known problem in this field is, e.g., to estimate the risk of ischemia caused by a
stenosis [2]. Our aim is to give a reliable prediction of the distribution of certain
chemicals like oxygen, carbon dioxide or lactate during the transport in blood
vessels and human tissue.

Since blood flow within the network is fast compared to the flow within the
tissue, we apply a domain decomposition in such a way that we separate the
vessel network and the porous tissue and assign different models to them [1].
Blood flow and transport processes within the porous medium are governed by
Darcy’s equation and a convection diffusion equation in 3D. To model the network
flow and transport, 1D reduced models and 0D lumped parameter models are
used, which are given by transport equation systems or ODE-systems, respectively
[1, 2, 3, 5]. Quite often three-dimensional (3D) models for blood flow, based on the
incompressible Navier-Stokes equations are too expensive in order to simulate the
blood flow through a large network. The reduced 1D models presented in [1] are
derived from the Navier-Stokes equations, having the section area A and the mass
flux Q as primary variables [3]. Providing a computional complexity that is several
orders of magnitude lower than that of multidimensional models, these simplified
models give a good description of the pressure and velocity propagation in blood
vessels and allow the simulation of the whole circulatory system. Similar to the
Navier-Stokes equations the convection-diffusion equation which models the mass
transport can be simplified to a single transport equation having the averaged
concentration Γ as a primary variable [1]. By means of this model, which has A,
Q and Γ as primary variables, we are able to take into account at the same time
blood flow and the transport of chemicals (oxygen, carbon dioxide, lactate, etc.)
in blood. Up to now this model was only applied to a single artery. In this talk,
we focus on the modelling of mass transport at a bifurcation. To do so we use a
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domain decomposition approach, i.e., the branching vessel is split up into three
single vessels. On each vessel, we solve a hyperbolic PDE system. The global
solution is computed by coupling these PDE systems by an algebraic system of
nine unknowns. For the variables A and Q, we use the already existing equations
proposed in [1, 5]. The three remaining equations for the averaged concentration
Γ are added in such a way that the number of particles which are transported
through the bifurcation by the fluid is conserved [3].

On simulating the transport of oxygen in blood during one heart cycle, it can
be observed that the oxygen concentration has steep gradients. Therefore we are
interested in numerical schemes that provide approximations of transport problems
with high accuracy on the one hand and without non physical oscillations in the
vicinity of steep gradients or discontinuities on the other hand. To tackle these
problems, we use a stabilized discontinuous Galerkin method originally introduced
for a linear transport problem and generalize it to our transport equation systems
[6].

The coupling conditions between the porous medium and the reduced models
are not standard, since they involve the computation of average values and the
usage of Delta measures [1].To understand the basic coupling concepts between 1D
and 3D models we introduce them by taking the example of stationary diffusion-
reaction models, before we derive in the next step a model for the dynamics of
network flow and transport processes within a porous medium. The diffusion-
reaction models are given by elliptic PDE systems, where the single equations
depend on each other by some exchange terms. Such types of systems are much
simpler to analyze than the time dependent systems coupling 1D transport equa-
tions and dynamic 3D models. By this mean, one can obtain a better insight
into the mathematical and numerical difficulties associated with coupled 1D-3D
systems [4] [1][Chapter 6].
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Porosity and pressure evolution in the presence of discontinuous
reaction

Anna Scotti

(joint work with Abramo Agosti, Bianca Giovanardi)

Overpressures, i.e. pressures larger than hydrostatic, are usually found in sed-
imentary basins. Their prediction is crucial, for instance, for the simulation of
hydrocarbons generation and migration and for drilling safety. However, over-
pressures are not completely ascribable to mechanical compaction and their link
with diagenesis is still not clear. In this work we first analyze the coupled prob-
lem of compaction, flow and geochemical reactions by means of a simplified one-
dimensional model that is able to describe the deposition of different sedimentary
layers [1]. We then focus our attention on two diagenetic processes that can, com-
bined with mechanical compaction, affect the porosity: oil generation, and mineral
dissolution/precipitation. In the case of oil generation the solid organic matter,
called kerogen, reacts forming liquid or gaseous hydrocarbons. These fluids can be
partially retained, up to a certain threshold, by nanopores present in the source
rock. From the mathematical point of view this behavior results in a set of ODEs
with discontinuous right hand side, with a discountinuity that depends on the
solution itself. On the other hand if we consider the process of mineral dissolu-
tion/precipitation, the dissolution rate, suitably scaled, can be represented as a
Heaviside function of the concentration [2]. In both cases Filippov theory can be
applied to prove existence and to determine the solution behavior at the disconti-
nuities. From the numerical point of view, tailored numerical schemes are needed
to guarantee positivity, mass conservation and accuracy. In particular, we rely
on an event-driven approach such that, if the trajectory crosses a discontinuity,
the transition point is exactly localized and integration is restarted accordingly
[3]. This approach yields sharper results compared to the regularization of the
right hand side, and does not introduce artificial stiffness in the system. Another
relevant issue in the simulation of geochemical compaction is the nonlinear cou-
pling among the equations. We observed that a naive iterative splitting can fail to
converge for low permeabilities, while a full Newton approach is more robust but
unpractical in most cases.
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Homogenization of a variational inequality with nonlinear restriction
for the flux on the boundary of tiny holes

Maria Neuss-Radu

(joint work with Willi Jäger, Tatiana Shaposhnikova)

In this paper, we are considering variational inequalities arising e.g. in modeling
diffusion of substances in a domain with inclusions. It is assumed that nonlinear
adsorption is taking place at the boundary of these inclusions. Here, we are inter-
ested in the case of tiny holes, where the distribution of inclusions is periodic with
period ε, and the size of each inclusion is very small of order εα.

The problem considered in the present paper, a variational inequality for the
Laplace operator with nonlinear third type boundary conditions, is a generalization
of the problems treated in [2], and [3], where the corresponding equation with
nonlinear third type boundary condition was considered. Here, we use a similar
approach to [3], see also [4]. Especially, we further generalize the test functions
used in [3], in order to deal with nonlinear inequalities.

We are assuming balls as inclusions and we concentrate on developing methods
needed for the derivation of the effective model, and of corrector results. More
general shapes of inclusions are covered in a following investigation.

We consider a bounded domain Ω in R
n, n ≥ 3, with a smooth boundary ∂Ω.

We denote by G0 the ball of radius 1 with its center in the origin of coordinates,
and by Gj

ε = aεG0 + εj, j ∈ Z
n. Here, aε = C0ε

α, with α ∈ (1, n/(n− 2)], and C0

a positive constant. Then, the domain perforated by tiny holes is Ωε = Ω \⋃Gj
ε,

where just holes which do not touch the boundary ∂Ω are removed from Ω. The
boundary of the perforations is denoted by Sε.

In Ωε, we consider the following problem: Find uε ∈ Kε, such that the following
variational inequality is satisfied for all v ∈ Kε :

(1)

∫

Ωε

∇uε∇(v − uε)dx + ε−γ

∫

Sε

σ(x, uε)(v − uε)ds ≥
∫

Ωε

f(v − uε)dx.

Here, f ∈ L2(Ω), and the set Kε is defined by Kε = {g ∈ H1(Ωε, ∂Ω) : g ≥
0 a.e. on Sε}. Furthermore, we suppose that σ(x, u) is continuously differentiable,
monotone with respect to u, and σ(x, 0) = 0. Setting in (1) as test-function
v = 0, we get the estimate ‖uε‖H1(Ωε) ≤ C. Thus, for the H1(Ω)-extension ũε,
constructed e.g. in [1], there exists a subsequence, such that for ε→ 0, we have

(2) ũε ⇀ u weakly in H1
0 (Ω), and ũε → u strongly in L2(Ω).

Our aim now is to derive the problem satisfied by the limit function u, together
with corrector results. It turns out that we have to distinguish between the fol-
lowing two cases.

1. The case α ∈ (1, n/(n− 2)), γ = α(n − 1)− n. In this case, the nonlinearity
in the sink/source term has the same form as the nonlinearity in the boundary
condition of the ε-problem. We obtain the following results:
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Theorem 1. Let α ∈ (1, n/(n− 2)), and γ = α(n− 1)−n, n ≥ 3. Then the limit
function u given by (2) is a weak solution of the following problem: find u ∈ K0

such that the following variational inequality is satisfied for all v ∈ K0:

(3)

∫

Ω

∇u∇(v − u)dx+ Bn

∫

Ω

σ(x, u)(v − u)dx ≥
∫

Ω

f(v − u)dx,

where Bn = Cn−1
0 ωn, ωn is the area of the unit sphere in R

n, and the set K0 is
defined by K0 = {g ∈ H1

0 (Ω) : g ≥ 0 a.e. in Ω}. Furthermore, the following strong
convergence result for the approximation error holds:

lim
ε→0

‖u− uε‖H1(Ωε) = 0, lim
ε→0

ε−γ/2‖uε − u‖L2(Sε) = 0.

2. The case α = n
n−2 , γ = α(n − 1) − n = n

n−2 = α. This case is the more

interesting one, since the nonlinearity in the sink/source term appearing in the
effective equation has a different form from the nonlinearity in the ε-problem, and
has to be determined as a solution of a functional equation.

Theorem 2. Let α = n/(n− 2), n ≥ 3. Then the limit function u given by (2) is
a weak solution of the following problem

(4) −∆u+An

(
H(x, u+) + u−

)
= f, in Ω, u = 0, on ∂Ω,

where An = (n− 2)Cn−2
0 ωn, ωn is the area of the unit sphere in R

n, and for every
(x, τ) ∈ Ω× R, H(x, τ) is the solution of the functional equation

(5)
(n− 2)

C0
H = σ(x, τ −H).

If we assume that u has the additional regularity u ∈ W 1,∞(Ω), then for ε → 0,
we have the following corrector result:

‖uε − u+ +WεH(x, u+)− (1−Wε)u
−‖H1(Ωε) → 0,

and

ε−α/2‖uε − u+ +H(x, u+)‖L2(Sε) → 0.
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A Four-Species Diffuse-Interface Tumor-Growth Model of
Gradient-Flow Type

Kristoffer G. van der Zee

(joint work with Andrea Hawkins-Daarud, J. Tinsley Oden, Serge Prudhomme)

1. Introduction: Diffuse-interface tumor growth

In this contribution, we consider a Cahn–Hilliard reaction–diffusion system arising
in tumor-growth modeling. Let Ω ⊂ R

d (d = 1, 2, 3) denote a Lipschitz domain,
and [0, T ] the time interval of interest. The PDE system for the phase variables
u := (u1, u2) and chemical potentials µ := (µ1, µ2) is given by:

∂tu1 = div(m1∇µ1) + k(µ2 − µ1)

∂tu2 = div(m2∇µ2)− k(µ2 − µ1)

}
in (0, T ]× Ω ,(1a)

µ1 = ∂u1
f(u)− ε∆u1

µ2 = ∂u2
f(u)

}
in (0, T ]× Ω ,(1b)

where m1, m2, and k are nonnegative and may depend on u (suppressed for con-
venience), f is a sufficiently smooth nonconvex, double-well function with respect
to u1 and convex with respect to u2, and ε > 0. We subject system (1a)–(1b) to:

u = u0 on {t = 0} × Ω , ε ∂nu1 = 0 on [0, T ]× ∂Ω ,(1c)

m1 ∂nµ1 = m2 ∂nµ2 = 0 on [0, T ]× ∂Ω .(1d)

With u1 and u2 identified as the tumor and nutrient phase, respectively, the
above model represents a four-species mixture with two saturation constraints,
which captures the boundary of a nutrient-consuming evolving tumor as a diffuse
interface [5]. The sharp-interface limit ε ց 0 has recently been identified with
a suitable moving boundary problem [6], with the choice m1 = 1, m2 = δ, k =
ε−1δ p(u1) and f(u) = ε−1ϕ(u1)+u

2
2/(2δ). Diffuse-interface tumor-growth models

were originally proposed in [2].

2. Main result: Gradient-flow structure

Theorem 1 (Gradient-flow structure) The PDE system (1a)–(1d) is a gen-

eralized gradient flow: ∂tu = −Kµ and µ = ∇E(u) , for the driving func-

tional E : U → R given by (total free energy)

E(u) :=
∫

Ω

(
f(u) +

ε

2
|∇u1|2

)
dΩ ,(2)

and positive-definite operator K : H → H⋆ given by

K :=

[

− div
(

m1∇(·)
)

0
0 −div

(

m2∇(·)
)

]

+ k

[

1 −1
−1 1

]

,(3)

subject to initial conditions u(0) = u0 and, additionally, ε ∂nu1 = 0 on [0, T ]×∂Ω .
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If f has at most quadratic growth, m ≤ {m1,m2} ≤ M for m,M > 0, and
k ≥ 0, then suitable spaces are U = H1(Ω)×L2(Ω) and H = H1(Ω)×H1(Ω). �

Corollary 2 (Free-energy dissipation) Let the gradient-flow problem in The-
orem 1 be well-posed. Then, its solution satisfies:

d

dt
E(u)(t) = −D(µ) ≤ 0 a.e. t ∈ (0, T ] .

where D : H → R is the quadratic form given by (total dissipation)

D(µ) :=
〈
Kµ,µ

〉
H⋆,H

=

∫

Ω

(
m1|∇µ1|2|+m2|∇µ2|2 + k(µ1 − µ2)

2
)
.

In other words, the total free energy (sum of homogeneous free-energy and sur-
face energy) is dissipated by means of three mechanisms: phase separation of u1,
diffusion of u2, and reactions between u1 and u2 (tumor growth). �

The proof of Theorem 1 and Corollary 2 are stated in Section 4, following the
description of a suitable gradient-flow setting in Section 3.

We note that Corollary 2 was first obtained in [5] without resorting to a gradient
structure, but in the context of consistency with the second law of thermodynam-
ics. The gradient structure is fundamental in the recent study of well-posedness of
diffuse-interface tumor growth models [1, 3], as well as in the derivation of stable
numerical schemes [11]. Closely related to the above main result is the gradient
structure of other reaction–diffusion systems in [4, 8, 7]. The extension to general
N -species reactive Cahn–Hilliard systems is an open problem.

3. Abstract generalized gradient flows

While very general gradient flows have been studied before (see, e.g., [10, Ch. 23]),
we restrict ourselves to a gradient system {(U, E), (H,K)} in which:

• U is a Banach space, U ⊂ L ≡ L⋆ ⊂ U⋆ (dense, continuous embeddings),
L being a (pivot) Hilbert space, and U has the trace property [9, Ch. 6.7]
(i.e., a generalized Green’s formula holds with ∂U (·) and γU (·) denoting
the generalized Neumann and Dirichlet operator);

• E : U → R is a bounded differentiable functional, with derivative E ′(u)(v) =(
∇E(u),v

)
L
+

〈
∂Uu, γUv

〉
∂Ω

for all v ∈ U , u ∈ U and ∇E(u) ∈ L;
• H is a Banach space, H ⊂ L ≡ L⋆ ⊂ H⋆ (dense, continuous embeddings);
• K(u) : H → H⋆ is a positive-definite operator for all u ∈ U .

The gradient flow is then given by the evolution equation: ∂tu = −K(u)∇E(u)
in H⋆, for a.e. t ∈ (0, T ], with u a member of the evolution space

U :=
{
u ∈ L∞(0, T ;U) , ∇E(u) ∈ L2(0, T ;H) , ∂tu ∈ L2(0, T ;H⋆) ,

∂Uu = 0 on [0, T ]× ∂Ω , u(0) = u0

}
.

Granted well-posedness, it easily follows that for a.e. t,

d

dt
E(u)(t) =

〈
∂tu,∇E(u)

〉
H⋆,H

= −
〈
K(u)∇E(u),∇E(u)

〉
H⋆,H

≤ 0 .(4)
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4. Proof of main result

To proof Theorem 1, first note that, for E defined in (2),

E ′(u)(v) =

∫

Ω

(
(∂u1

f(u)− ε∆u1) v1 + ∂u2
f(u) v2

)
+
〈
ε ∂nu1, v1

〉
∂Ω
,

in other words, recalling (1b), ∇E(u) = (µ1, µ2). Under the assumption on f
stated in Theorem 1, this is justified for (u1, u2) ∈ U := H1(Ω) × L2(Ω) and
(µ1, µ2) ∈ L := L2(Ω)× L2(Ω), so that ε ∂nu1 ∈ H−1/2(∂Ω) and v1 ∈ H1/2(∂Ω).

Next, note that the equation ∂tu = −Kµ in H⋆ is equivalent to

〈
∂tu,v

〉
H⋆,H

= −
∫

Ω

(
m1∇µ1 · ∇v1 +m2∇µ2 · ∇v2 + k(µ1 − µ2)(v1 − v2)

)

for all v ∈ H , which is a weak form of (1a) and (1d). Under the assumptions onm1,
m2 and k stated in Theorem 1, this is justified for (µ1, µ2) ∈ H := H1(Ω)×H1(Ω).
In particular, 〈Kµ,µ〉H⋆,H ≥ 0 . This completes the proof of Theorem 1.

Finally, note that we have now fully specified a gradient system {(U, E), (H,K)}
as defined in Section 3, so Corollary 2 follows directly from (4).
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Modeling, analysis, and simulation of processes in evolving porous
media in applications to methane hydrate and biofilm modeling

Malgorzata Peszynska

(joint work with Ralph Showalter, Anna Trykozko)

In the talk we overview mathematical and computational challenges for two appli-
cations in evolving porescale geometries. The applications are i) methane hydrates
in subsurface, and ii) biofilm formation. Both involve clogging of pore space which
has to be coupled to hydrodynamics, and (eventually) to poromechanics. Our com-
putational models for both applications have been built with semismooth Newton
solvers implementing Nonlinear Complementarity Constraints, and are based on
finite volume discretizations; the time stepping ranges from fully implicit to se-
quential through semi-implicit formulations.

Modeling at porescale complements imaging techniques such as tomography
and SEM which can provide detailed information about processes at porescale but
are too expensive for real-time imaging. An alternative is to build mathematical
and computational models and use tomography-based porescale geometries [8].
This is especially useful for those substances which are difficult to image. In
particular, methane hydrates are unstable in standard conditions, while biofilms
are difficult to distinguish from the bulk liquid phase.

Methane hydrates are an ice-like substance present in deep subsea sediments
and arctic regions whenever pressure is high enough and the temperature is low
enough. They are a potential energy source but also pose substantial risk dur-
ing drilling. Dissociation of hydrates due to increased temperature is a potential
“smoking gun” that can be triggered during climate change. Methane hydrate
models at Darcy scale involve coupled systems of PDEs for methane and salt com-
ponents, coupled to pressure and energy equations and delicate phase behavior
[5, 6]. Hydrate evolution is a free boundary problem where a free boundary sep-
arates the region with hydrate and that without, similar to a precipitation front.
Our analysis of hydrates in [4] accounts for diffusive transport, and recent results
[7] extend these to advection fluxes. More work on well-posedness and numerical
analysis is underway.

At porescale, hydrate formation leads to decreased permeability and is associ-
ated with the change of other constitutive properties including the phase behavior
in an increasingly confined void space. We have considered several hydrate models
ranging from complex phase field formulations to simple “down-scaled” continuum
models which can be useful as surrogates of the former. Work is in progress on a
comprehensive model which involves fracture formation.

Biofilms are complex communities of microorganisms attached to surfaces or
associated with interfaces. Among other applications, researchers study the use of
biofilms as biocements to plug leaks and fractures and for use in green building.
The microbial cells growing in a biofilm region attached to rock are distinct from
planktonic cells of the same organism which are single-cells that may float or swim
in a fluid region. The biofilm cells are frequently embedded within a self-produced



2428 Oberwolfach Report 43/2014

matrix of extracellular polymeric substance (EPS) which offers protection and
strucural integrity to the cells, and the crux of biofilm modeling is in how to
account for the fluid and biofilm domains and their interface [10, 2, 1, 11, 3]. We
recently proposed and implemented a comprehensive and efficient model [9, 12]
that is coupled to hydrodynamics and improves on the degenerate and singular
diffusion-reaction model [1] using variational inequalities.

In summary, mathematical and computational challenges are in the con-
struction of the porescale models and in their scale-up. While homogenization and
other upscaling techniques have been well studied for linear or mildly nonlinear
stationary problems, significant challenges remain as concerns scale-up of nonlin-
ear coupled dynamical processes such as reactive transport and phase transitions
in evolving and deforming porous media.

Support for this research was partially available thanks to National Science
Foundation grant NSF-DMS 1115827 ”Hybrid modeling in porous media”.
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Perspectives of Granular Dynamics and Lattice Boltzmann Methods
in Porous Media Applications

Ulrich Rüde

(joint work with R. Ammer, D. Bartuschat, S. Bogner, E. Fattahi, C.
Godenschwager, S. Mohanty, K. Pickl, T. Preclik, F. Schornbaum, B. Wohlmuth)

The rapid growth of compute power makes it possible to use simulation methods
resolving all physically relevant scales without averaging or homogenization. For
example, such a direct numerical simulation of a representative sample of 1cm3

of a porous medium with pore sizes of 50µm will typically require a resolution
with grid cells of 10µm or smaller. This in turn results in the need to store
10003 = 109 mesh cells and to update them in each time step. While this is too
large for a personal computer, it is nowadays easily within reach provided that
efficient parallel algorithms and scalable data structures are used and that these
are implemented appropriately [6].

This work is focussed on using the Lattice Boltzmann method (LBM) since it
has been particularly successful as an alternative to Navier-Stokes-based solvers
for simulating the flow in complex geometries or around moving objects [1, 4].
The pore-scale-resolved simulations are realised within waLBerla [5], a software
framework enabling the massively parallel simulation of fluid flow.

Structurally, the LBM is similar to an explicit time stepping scheme that can
be parallelised with high efficiency even on many processors. The largest com-
putations to date have been performed with in excess of 1012 mesh cells for the
simulation of blood flow in a coronary artery tree [6]. On the Juqueen supercom-
puter, an update rate of more that 2× 1012 cells per second can be achieved.

For simulations involving the interaction of fluids and rigid bodies [7], waL-
Berla can be coupled with the pe physics engine [8, 9]. The pe computes the dy-
namics of particle-systems by integrating their equations of motion in a Lagrangian
framework. It incorporates efficient parallel algorithms for detecting collisions be-
tween particles and computing frictional collision responses. The collection of all
contact constraints forms a system of non-linear (non-smooth) equations that must
be solved in each time step. With the pe, the particles of a porous medium can be
represented as fully resolved geometric objects.

Beyond this simple use, the pe is also designed so that it can be coupled dynam-
ically to the LBM method in waLBerla and to enable the parallel simulation of
moving particles in the flow. This uses a compatible domain partitioning for the
two software frameworks, including mechanisms for migrating particles between
processors. In combination, the interaction between Eulerian flow and Lagrangian
particle dynamics uses a so-called four-way coupling, as developed in [7] based on
the momentum exchange method [10, 11].

The methodology outlined above can for example be used to study the flow over
porous media as illustrated in Fig. 1 to derive new closure relations in the form of
drag correlations of fluid-solid systems as in [2]. To this end, arrangements with
spheres that are embedded in the flow are generated randomly while the Reynolds
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Figure 1. Example porous structure generated with the pe and
vorticity in a vertical cut plane of a dilute porous medium as in a
computation used for [3]

Figure 2. Flow over a porous medium and normalized velocity for
various permeabilities

number and the volume fraction are varied systematically varied. In each such
scenario, a direct numerical simulation is used to compute the drag. The values
from several runs are then averaged and The collection of all simulation data can
finally be used to derive a new and improved drag correlation [3].

References

[1] C. K. Aidun, J. R. Clausen, Lattice-Boltzmann method for complex flows, Ann. Rev. Fluid
Mech. 42 (1) (2010) 439–472.

[2] R. Beetstra, M.A. Van der Hoef, , J.A.M. Kuipers, Drag force of intermediate Reynolds
number flow past mono- and bidisperse arrays of spheres. AIChE Journal, 53 (2) (2007),
489-501.
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High-performance Computing for Flows in Porous Media

Peter Bastian

Simulation of flow and transport processes in porous media provides a formi-
dable challenge and application field for high-performance computing. Relevant
continuum-scale models include partial differential equations of elliptic, parabolic
and hyperbolic type which are coupled through highly nonlinear coefficient func-
tions. The multi-scale character and uncertainties in the parameters constitute an
additional level of complexity but provide also opportunities for high-performance
computing.

This talk will focus on the efficient solution of single and two-phase flow with
discontinuous Galerkin methods. These schemes are comparable in efficiency (mea-
sured in accuracy per computation time) to simple cell-centered schemes but offer
the opportunity to increase arithmetic intensity substantially in the assemble as
well as the solve phase. For high-order schemes we exploit the tensor product
structure using sum factorization which renders the work per degree of freedom
almost independent of the polynomial degree. For the fast solution of the aris-
ing linear systems in the elliptic case a hybrid preconditioner based on subspace
correction in the conforming finite element subspace is employed. Scalability and
robustness of this preconditioner for the elliptic model problem and the full two-
phase problem is investigated on a moderate number of processors including the
Intel Phi architecture.

Gravity fingering effects in unsaturated porous media — play-type
and Prandtl-Ishlinskii hysteresis

Ben Schweizer

(joint work with A. Rätz)

We are interested in the flow of water in an unsaturated porous medium. Denoting
spatial variables by x ∈ Ω ⊂ R

n and time by t ∈ [0, T ), the evolution of the
system is usually described with a saturation s : Ω × [0, T ) → R and a pressure
p : Ω × [0, T ) → R. Darcy’s law imposes that the flux is proportional to the
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force −∇p + g, where g denotes external forces, usually only gravity. Denoting
the (saturation dependent) permeability factor by k = k(s), mass conservation
provides (after a normalization) the Richards equation

(1) ∂ts = ∇ · (k(s)[∇p− g]) .

While there is little doubt about the validity of this law, it is much less clear how
the system should be closed: We have to define a relation between saturation s
and pressure p. The simplest approach is to demand an algebraic relation between
the two quantities: For some characteristic function pc = pc(s) of the medium,
one demands p = pc(s). We note that in our notation (where s is the fluid content
and p is the fluid pressure), the law pc is monotonically increasing.

The algebraic capillary pressure relation does not take into account the well-
known hysteresis effects of porous media: the pc-law of an imbibition process
(∂ts > 0) is different from the pc-law of a drainage process (∂ts < 0). A model
that takes into account hysteresis (parameter γ > 0) and non-equilibrium effects
(parameter τ > 0) has been developed in [2, 4]. In its simplest form, it reads (for
some given monotonically increasing coefficient function pc):

(2) p ∈ pc(s) + γ sign(∂ts) + τ∂ts .

Here, the sign-function is multivalued: sign(ξ) = ±1 for ±ξ > 0 and sign(0) =
[−1, 1]. We therefore have to consider an inclusion in (2), even if the law pc is
single-valued.

Well-posedness and numerical schemes for system (1)–(2) (and its two-phase
flow variant) have been studied in a series of papers: [6] investigates non-degenerate
coefficient functions k and pc, [9] concerns non-degenerate k and degenerate pc,
[5] treats the non-degenerate two-phase flow system. While the standard Richards
system (with algebraic pressure-saturation relation) has no potential to describe
gravity fingering (compare [15]), the model with static hysteresis has the potential
to describe gravity fingering in dry media (compare [8]): the Richards equation
with static hysteresis has an instability mechanism which prevents it from defining
an L1-contraction.

Physically, in a system without static hysteresis, a finger will always smear out
with time: The saturation is higher in the finger than in the lateral neighborhood
(this defines the finger). If the higher saturation is necessarily connected to a
higher pressure, then the pressure gradient induces lateral flow, which leads to an
increasing finger width. In this sense, it is clear that static hysteresis (γ > 0) is
essential for fingering effects. The connection to the non-equilibrium term (τ > 0)
was made clear in [7]: The τ -term induces a saturation maximum in the finger-tip
of a travelling finger (compare [3, 13, 14]) and, as a result, a drainage process
occurs behind the finger tip; the static hysteresis effect becomes important and
allows a lower pressure (during imbibition, it had to be close to pc(s) + γ, now it
can be as low as pc(s)− γ).

The papers [5, 6, 7] contain numerical results of A. Rätz. The results show
the fingering effect in two space dimensions for single-phase (unsaturated) and for



Reactive Flows in Deformable, Complex Media 2433

two-phase flow. They prove that the simple hysteresis law (2) can explain the
fingering instability.

An extension to Prandtl-Ishlinskii hysteresis
There is no doubt that hysteresis is important in the description of porous media.
At the same time, it is not clear which hysteresis model should be used (for a
Preisach model see [1]). We favor the play-type hysteresis model of (2) as a starting
point. Our physical argument is essentially based on the well-known bottle-neck
effect, the corresponding reasoning was mathematically developed in [10, 12]: The
pressure for imbibition and drainage are different and, for constant saturation
(∂ts = 0), every pressure between the two extremal values can be attained. These
facts are modeled with the sign-function in (2).

On the other hand, measurements of secondary imbibition or drainage curves do
not provide vertical scanning curves in the s-p-diagram. This fact can be regarded
as an argument against (2). Our answer to this critisism is based on the analysis of
[11]. In that paper we studied, using homogenization theory, a medium with play-
type hysteresis, but now the parameter γ takes different values in different points
x of the domain. We assumed a periodic distribution and derived the averaged
hysteresis law. We find that the play-type hysteresis law is replaced by a Prandtl-
Ishlinskii hysteresis law. The latter does not have vertical scanning curves. We
can therefore argue as follows: Locally, play-type hysteresis describes a porous
material. But, since different parameters appear in natural media, experiments on
macroscopic domains show the averaged behavior — which is of Prandtl-Ishlinskii
type.

We conclude with a description of this averaged model in a simple case (we
remark that the homogenization process was made precise only for a linear law
s 7→ pc(s) and that, from its derivation, w was originally a pressure variable). We
use a new independent variable y ∈ [0, 1]. We can imagine that, e.g. y = 0.231
indicates that we are interested in those parts of the porous medium, where the
value of γ happens to be 0.231. The saturation variable is enriched: We use,
as a new unknown of the system, a function w : Ω × [0, 1] × [0, T ]. The value
w(x, 0.231, t) stands for the saturation in the material part with the label y =
0.231.

The unknowns of the system are p(x, t) and w(x, y, t). The saturation s is
reconstructed by averaging as

(3) s(x, t) =

∫ 1

0

w(x, y, t) dy

for every (x, t). The saturation s must satisfy the Richards equation (1). The
evolution of w is given by the local play-type laws

p(x, t) ∈ pc(w(x, y, t)) + y sign(∂tw(x, y, t))(4)

for every (x, y, t). The system must be complemented with a boundary condition
for p and with an initial condition for w. We mention that, of course, several
variants are be of interest: (i) the interval [0, 1] for the y-variable can be replaced
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by a larger interval. (ii) different pc-laws can be used for different y-values. (iii)

a weight function ψ(y) with
∫ 1

0
ψ(y) dy = 1 could be included in (3) in order to

account for different volume fractions of the different materials. (iv) the τ -term
can be included in (4).

Almost nothing is known for the Prandtl-Ishlinskii-Richards model given by (1),
(3), and (4). We emphasize that the underlying partial differential equation has
not been changed by introducing w: no derivatives of w are used. Instead, w acts
only pointwise and moderates the law between s(x, .) and p(x, .). The function
w(x, ., t) records essential informations about the wetting history in the point x up
to time t. Nevertheless, no analysis has been performed yet: No results on well-
posedness are known and no numerical results are available. A central question is:
Does the Prandtl-Ishlinskii-Richards model also show the fingering effect?
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Approximation of transport using Eulerian-Lagrangian techniques

Todd Arbogast

(joint work with Chieh-Sen Huang, Jianxian Qiu, Chen-Hui Hung, Jamie Pool,
Wenhao Wang)

As computers become bigger but not faster, numerical modelers should perhaps
use algorithms that emphasize many local operations with few data transfers. Ex-
plicit and high order methods may be preferred, as well as methods for transient
problems that avoid any artificial CFL time step stability constraint. We wish
to simulate transport processes over very long time periods, which requires algo-
rithms that are also locally mass conservative, produce no or minimal numerical
diffusion, no over/under-shoots, and obtain accuracy on coarse meshes. Our ap-
proach is to use Eulerian-Lagrangian methods, because they have these desired
properties. However, the caveat is that we need to be able to implement these
ideas appropriately in a practical setting.

Specifically, we consider the advection-diffusion-reaction governing equation

(1)
∂(φc)

∂t
+∇ · (cu−D∇c) = qc(c) +R(c),

where c is the unknown tracer concentration(s), φ is the porosity (although we take
φ = 1 for simplicity), u is the bulk fluid (Darcy) velocity, D is diffusion/dispersion
tensor, qc is the source/sink of c, and Rmodels the reactions. If diffusion is small, it
is natural to operator split the diffusion from the advection and reactions. Then an
appropriate method can be used to approximate the diffusion part of the equation.
Moreover, if one follows the advection in Lagrangian coordinates, then reactions
occur along the trace-lines, and so can be solved independently of the advection
using an appropriate ordinary differential equation solver. We are left to solve

∂(φc)

∂t
+∇ · (cu) = qc(c).

In Lagrangian coordinates, the trace-lines are defined by tracing a particle at
(x, tn+1) as it evolves backward in time within a velocity field v to the trace-back
point (x̌, tn). The velocity v may be the particle velocity u(c) or the characteristic
velocity ∂[cu(c)]/∂c. Starting from a fixed (Eulerian) mesh element E, particles
sweep out a space-time region E which has a top side E at time t = tn+1, a bottom
Ě at t = tn, and space-time sides S. Application of the divergence theorem over E
provides the basis of the approximation scheme. Assuming that c is approximated
as a constant in each element E, one has that

(2) cn+1
E |E| =

∫

Ě

R(cnh) dx+

∫∫

E

qcn
h
dx dt −A

(∫

S

cnh(u, 1) · ν dσ
)
,

wherein R is a reconstruction operator and some approximation A of the side
normal flux must be computed.

In the linear case u is independent of c and we can take v = u, and then no
side flux correction is needed. In multiple dimensions, Ě must be approximated
by a polygonal or other simple shape, leading to a local volume error. A simple
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and accurate volume correction was proposed in [1], and proofs of stability and
accuracy were given in [2, 3]. Numerical tests show good results on relatively
coarse meshes for highly complex, heterogeneous velocity fields. Solutions are
locally mass conservative, produce little numerical diffusion, have no over/under-
shoots on, and use time steps well above the CFL limit (10-20 times greater).

The volume correction is difficult to code and computationally expensive, so we
turned to a combination of simple Strang splitting by space dimension compen-
sated by high order WENO reconstructions for the operator R. The linear scheme
describing the computation of the mass integral over Ě is given in [4]. Formal fifth
order accuracy is achieved for smooth problems using long time steps.

For nonlinear problems, u(c) is unknown for tracing, and so some approximation
v ≈ u(c) is required, and the flux correction integral over S in (2) must be treated.
We use the decomposition

(3)
∂c

∂t
+

∂

∂x
(vc) +

∂

∂x

(
u(c)c− vc

)
= 0,

and treat the first two terms as in the linear case. The flux integral applies to
the remaining terms, which are handled adapting Eulerian ideas [6] to Lagrangian
coordinates. The key advance is to be able to perform WENO reconstruction
at an arbitrary trace-back point, which we accomplish by using a re-averaging
technique [5]. Numerical results again show good qualitative and convergence
properties for the scheme. Applications include two-phase flow in porous media
and the system of Euler equations in gas dynamics.

Open problems include handling multi-dimensional problems without Strang
splitting, better handling of systems, and the choice of the trace velocity v.
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Multiscale domain decomposition methods for flow and mechanics
problems

Ivan Yotov

This research project focuses on the development of a computational framework
for modeling multiphysics systems of coupled flow and mechanics problems with
multiscale input parameters. The research approach is based on a multiblock
domain decomposition methodology. The simulation domain is decomposed into
a union of subdomains, each one associated with a physical, mathematical, and
numerical model. Physically meaningful interface conditions are imposed on the
discrete level via mortar finite elements or Nitsche’s coupling. The formulation
provides great flexibility for multiphysics and multinumerics couplings. Further-
more, this domain decomposition approach, combined with coarse scale mortar
elements, provides a multiscale approximation and an efficient way to solve the
coarse grid problem in parallel. Topics of interest include 1) Mathematically rig-
orous and physically meaningful multiphysics models; 2) Robust, accurate and
efficient multiscale discretization techniques; 3) Efficient multiscale parallel do-
main decomposition solvers and preconditioners.

We study variational formulations of systems of partial differential equations
coupling free and porous media fluid flows with deformations of the porous solids.
These formulations couple through physically meaningful interface conditions free
fluid models such as Stokes, Brinkman, or Navier-Stokes equations with single
phase or multiphase Darcy flow. In regions involving deformable porous media
the Darcy flow is coupled with elasticity and modeled by the Biot system of
poroelasticity. We study well posedness of the variational formulations [4] and
develop stable and accurate multiscale mortar discretization methods for these
multiphysics variational formulations [3, 4, 5, 6, 8, 10, 11, 12, 13, 14]. We em-
ploy suitable mixed finite element, finite volume, and continuous or discontinuous
Galerkin finite element methods for the discretization of the subdomain equations
on a fine scale. A mortar finite element space is utilized to impose interface con-
ditions on a coarse scale. We carry out a priori multiscale error analysis for these
methods. We also develop efficient parallel non-overlapping domain decomposition
algorithms for the solution of the resulting algebraic systems by reducing the cou-
pled global multiscale problem to a coarse scale interface problem. We analyze the
condition number of the interface operator and develop efficient preconditioners
for speeding up the interface iteration [7, 9].

We also consider Nitsche’s coupling formulations for Stokes/Brinkman flows
coupled with the Biot system of poroelasticity [1]. We study stability and ac-
curacy of the spatial discretizations and loosely coupled non-iterative time split
formulations. We investigate the use of the loosely coupled scheme as a precon-
ditioner for the monolithic scheme and establish a spectral equivalence of the two
formulations.

The computational framework has been applied to geoscience and biomedical
problems, including coupled surface and groundwater flows [4, 5, 7, 8], flows in
fractured deformable reservoirs [1], and arterial flows [1, 2].
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This work has been done in collaboration with Pu Song and ChangQing Wang
(University of Pittsburgh), Vivette Girault (Paris VI) and Danail Vassilev (Cob-
ham), Martina Bukac, Rana Zakerzadeh, and Paolo Zunino (University of Pitts-
burgh), Mary F. Wheeler (University of Texas at Austin), Guangri Xue (Shell),
Ruijie Liu (British Petroleum), and Ilona Ambartsumyan and Eldar Khattatov
(University of Pittsburgh).
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A Two-Scale Approach to Precipitation and Dissolution in Porous
Media using Phase-Field Modelling

Christian Rohde

(joint work with Iuliu Sorin Pop, Magnus Redeker)

We consider a porous medium with a pore space that is completely filled by three
different species: (1) an incompressible fluid (e.g. water) which can contain a
dissolved solid (e.g. salt), (2) a crystalline solid phase, and (3) another immiscible,
incompressible fluid that does not support solid dissolution (e.g. oil). For this
setting we consider the physical process of dissolution of solids into the water
fluid from the crystalline phase, and vice versa the attachment to this phase by
precipitation. The ultimate goal of the study is a mathematical model that allows
the efficient numerical simulation of the solid concentration on a homogenized
Darcy scale.
The standard approach on the pore scale consists of a sharp interface model, where
the domains occupied by the three species are separated by sharp hypersurfaces.
It is however not clear how to perform the upscaling for the corresponding free
boundary value problem with discontinuous concentration fields (but see [4] for a
recent contribution). Therefore we develop a phase field approach that accounts
for the time-dependent –and then smooth– spatial distribution of the three species
and the overall concentration of the solid particles.
For the sake of brevity we present here a simplified version. Let the open set
P ⊂ R

d be the pore domain. For final time T > 0 we search for the concentration
u : (0, T ) × P → [0, 1] and the phase-field vector Φ = (φ1, φ2, φ3) : (0, T )× P →
[0, 1]3 (one component for corresponding species) such that

(∗)
∂t((φ1 + δ)u)−D∇ · ((φ1 + δ)∇u)− g(Φ)∂tφ1 = 0,

αξ2∂tφi − ξ2∆φi +
∑

j 6=i(Wφi
(Φ)−Wφj

(Φ)) = −fi(Φ, u)

hold in (0, T )×P for i = 1, 2, 3. Initial and boundary conditions have to be added.
In (∗) we denote by α > 0 a relaxation parameter, by ξ > 0 the phase field pa-
rameter which controls the interfacial width, and by D > 0 the diffusion constant.
Finally, δ > 0 is a threshold parameter which suppresses the degeneration of the
system for small phase field values of φ1. Furthermore

W (Φ) =
∑

i=1,2,3

φ2i (1− φi)
2, f1(Φ, u) = αξh(Φ)f(u), f2(Φ, u) = 0

and f3(Φ, u) = −f1(Φ, u). The function f controls the precipitation rate at the
interface and g, h are interpolation functions for switching on/off precipitation.
Note that the concentration of u is supposed to be driven solely by diffusion and
that the evolution of the three phase domains are governed via the phase field
functions by Allen-Cahn dynamics. This model can be seen as generalization of
the models in [1, 3, 2], for details see [6]. Note that previous models were restricted
to the two-phase case.
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By homogenization (using formal asymptotics for some standard periodicity as-
sumptions and appropriate order relations between pore size and the parameters
for (∗)2) we deduce for a domain Ω ⊂ R

d the following new two-scale model which
uses the advantages of the diffuse interface approach to couple the Darcy scale
solid concentration with phase field type equations on the pore scale.

Find (skipping again the initial/boundary conditions) the macroscopic concen-
tration u : (0, T )× Ω → [0, 1] satisfying

∂t

(
φ1+δ

P
u
)
−D∇x · (K∇xu)− g(Φ)∂tφ1

P
= 0 in (0, T )× Ω,

HereK = K[φ1, w1, . . . , wd] ∈ R
d×d is an effective diffusion matrix and zP denotes

integration of a pore-scale quantity z = z(t, x, y) with respect to y ∈ P . The pore
space phase fields φi = φi(t, x, y) and the functions w1(t, x, y), . . . , wd(t, x, y) are
determined for every x ∈ Ω by

αξ2∂tφi − ξ2∆yφi +
∑

j 6=i(Wφi
(Φ)−Wφj

(Φ)) = −fi(Φ, u),
−D∇y · ((φ1 + δ)∇ywj) = D∇yφ1 · ej

in (0, T )× P , i = 1, 2, 3, j = 1, . . . , d.
This approach allows the construction of an efficient numerical scheme on the basis
of the multiscale adaptive algorithm in [5].
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Multipoint Flux Mixed Finite Element Methods for Coupling
Multiphase Flow, Reactive Transport, and Geomechanics in Porous

Media on General Hexahedral Mesh

Mary Wheeler

(joint work with C. Yuan, M. Delshad, K. Kumar, G. Pencheva, and G. Singh)

In this work we discuss the Multipoint Flux Mixed Finite Element (MFMFE) al-
gorithms for modeling two important porous media applications that involve the
coupling of flow, reactive transport and geomechanics in porous media on general
hexahedral meshes: The specific problems we address include two phase chemi-
cal enhanced oil recovery (EOR) and an equation of state (EOS) compositional
flow model. The accurate simulation of chemical EOR including polymer flood-
ing and alkaline/surfactant/polymer flooding (ASP) is vital for reliable recovery
predictions of hydrocarbons. This tertiary recovery technique targets remaining
oil after employing conventional recovery methods. These EOR techniques reduce
the water mobility and the interfacial tension (IFT) of water/oil interface. An
efficient numerical scheme for obtaining simulations in complex geometry is essen-
tial to obtain a reliable predictive model. Important challenges arise in resolving
the complicated processes taking place in complex reservoir geometries. We have
developed a MFMFE method in combination with an operator splitting based
algorithm that provides a) computational efficiency of using general hexahedral
geometry giving a high fidelity to the complex reservoir geometry, b) local mass
conservation and accurate pressures and fluxes inside the element and on faces
on general grids, and c) reliable numerical schemes to solve the resulting system
of reactive transport model. This is particularly important in the case of natural
and induced fractures that are non-planar, intersecting and may have bifurca-
tions. The MFMFE deals with full tensorial permeability and allows for complex
geometry including non-planar fractures, barriers, faults and pinch-outs A com-
prehensive framework for chemical EOR processes has been implemented in our
in-house research simulator IPARS. In particular, we have developed a parallel
chemical flooding module, using bricks as a mesh grid, including extensive rhe-
ological models for viscoelastic polymers, simplified two-phase surfactant phase
behavior, relative permeability as a function of trapping number, generation of
soap by the reactions of alkaline with acidic crude oil, ion exchange and other
aqueous chemical reactions. Our novel surfactant model captures the low IFT of
Type III phase behavior without introducing a third middle micro-emulsion phase
for computational efficiency without sacrificing the accuracy. Our numerical sim-
ulations have been validated using UTCHEM for simple geometries. Moreover, we
have conducted several tests including field studies and scenario studies for assess-
ing the efficacy of these processes. These results have been extended to hexahedral
grids using MFMFE for flow and transport. We have considered different complex
geometries with non-planar layered reservoirs, faults and barriers with the grids
conforming to these complexities. Compositional flow modeling has been used
for simulating oil recovery processes using gas injection, CO2 sequestration and
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contaminant plume migration studies. We present an iteratively coupled reser-
voir fracture flow model using MFMFE. The general hexahedral elements capture
complex reservoir geometries and features without requiring substantial adjust-
ment of associated petrophysical properties. An iteratively coupled, implicit pres-
sure explicit concentration (IMPEC) formulation is used for solving component
conservation equations. This solution algorithmic approach allows for di fferent
time-step sizes in the reservoir and fracture domain This reduces computational
costs associated with taking smaller time-steps over then entire domain while pre-
serving accuracy. A Peng-Robinson equation of state (PR-EOS) is used to model
hydrocarbon phases along with slightly compressible water phase. A number of
numerical experiments including a field case are presented to validate and demon-
strate the capabilities of the approach presented here. The MFMFE approach can
be considered a mimetic method and is equivalent to the O method introduced by
I. Aavatsmark.

Adaptive inexact Newton methods and their application to
multi-phase flows

Martin Vohraĺık

(joint work with Clément Cancès, Daniele A. Di Pietro, Alexandre Ern, Eric
Flauraud, Iuliu Sorin Pop, Mary F. Wheeler, Soleiman Yousef)

We present novel adaptive algorithms for the solution of large systems of nonlin-
ear algebraic equations and show their application to real-life multi-phase (multi-
component) porous media flows.

We first describe the adaptive inexact Newton method of [3]. Herein, to solve
a nonlinear algebraic system arising from a numerical discretization of a steady
nonlinear partial differential equation, we consider an iterative linearization (for
example the Newton or the fixed-point ones), and, on its each step, an iterative
algebraic solver (for example the conjugate gradients or GMRes). We derive adap-
tive stopping criteria for both these iterative solvers. Our criteria are based on
an a posteriori error estimate which distinguishes the different error components,
namely the discretization error, the linearization error, and the algebraic error.
We stop the iterations whenever the corresponding error does no longer affect the
overall error significantly. Our estimates hinge on equilibrated flux reconstruc-
tions. They yield a guaranteed upper bound on the overall error measured by
the dual norm of the residual augmented by a jump nonconformity term. Our
estimates are valid at each step of the nonlinear and linear solvers. Importantly,
we prove their (local) efficiency and robustness with respect to the size of the
nonlinearity.

We then apply this methodology to challenging porous media problems. We
develop, following [4, 1, 2] a general abstract framework for a posteriori estimates
for (im)miscible (in)compressible multi-phase (multi-component) flows in porous
media, described by systems of strongly coupled unsteady nonlinear partial differ-
ential and algebraic equations. We always measure the error by the dual norm of
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the residual. For nonconforming discretizations, the possible departure of the ap-
proximate solution from the correct functional space is additionally evaluated via a
proper nonconformity error measure. In the immiscible incompressible two-phase
case, the concept of global and complementary pressures is used to characterize
in a mathematically proper way the unique weak solution. In this case, and for
conforming discretizations, we also prove that the dual norm of the residual is
an upper bound on the L2((0, T );H−1(Ω)) difference between the exact and ap-
proximate saturations, the L2((0, T );H1

0 (Ω)) error in the global pressure, and the
L2(Ω×(0, T )) error in the Kirchhoff transform of the nonwetting phase saturation,
see [1]. Even in the considered complex setting, we can derive a guaranteed upper
bound on our error measure and estimate separately the different error compo-
nents, namely the spatial discretization error, the temporal discretization error,
the linearization or the iterative coupling error, and the algebraic solver error.
We then design a fully adaptive algorithm with tailored stopping and balancing
criteria. The framework covers fully implicit, implicit pressure–explicit satura-
tion, or iterative coupling formulations; conforming spatial discretization schemes
such as the vertex-centered finite volume method or the finite element method,
and nonconforming spatial discretization schemes such as the cell-centered finite
volume method, the mixed finite element method, or the discontinuous Galerkin
method; linearizations such as the Newton or the fixed-point one; and general
linear solvers. Important computational savings (speed-ups by a factor between
10 and 20 in terms of the number of total linear solver iterations already on fixed
meshes) are illustrated on numerical experiments from [4, 2] for vertex- and cell-
centered finite volume discretizations.
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Robust Numerical Upscaling at High Contrast

Robert Scheichl

(joint work with Daniel Peterseim)

Diffusion processes in heterogeneous porous media are notoriously difficult to ap-
proximate accurately if the permeability α(x) of the medium varies over many
orders of magnitude and on multiple scales, particularly if the medium undergoes
deformations. Modern areas of interest such as hydraulic fracturing, enhanced oil
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recovery or uncertainty quantification help to compound this problem. Classical
homogenisation only works when there is some scale separation, periodicity or
ergodicity which rarely is the case in applications. Accurate predictions of flow
through such media (with standard discretisation techniques) require the resolu-
tion of all major small-scale features. Alternatively, sub grid-scale features need to
be taken into account in more costly multiscale schemes. Whether the former or
the latter approach is chosen depends on how many simulations need to be carried
out through the same medium or through a possibly slightly deformed/modified
one (e.g. in a time-dependent multi-phase flow simulation or an optimisation loop).

However, both approaches need robust and efficient coarsening strategies. In
the former case, they are needed as the coarse component in multilevel precondi-
tioners that are essential for any scalable and efficient solution of the large-scale
linear algebra problems that arise when all features are resolved by the grid. In the
latter case, they are needed because standard FE methods will not converge unless
the mesh size h is larger than the frequency ε at which the coefficient oscillates.
The methodologies that have been developed and analysed are similar, but the
difficulties are not entirely the same. Nevertheless, the two research areas have
seen a fruitful interaction in recent years with the emergence of new multilevel
preconditioners with multiscale coarse spaces lifted from the upscaling literature
(e.g. [2]) and novel numerical upscaling techniques based on coarsening strate-
gies from multilevel preconditioners (e.g. [5, 1]). There have even been two very
successful Oberwolfach mini-workshops (#0910a and #1307a) on this interaction.

In this talk we consider a promising new numerical upscaling technique, the
localisable orthogonal decomposition (LOD) method [4], applied to

(1) a(u, v) :=

∫

Ω

α∇u · ∇vdx =

∫

Ω

gvdx =: G(v), for all v ∈ H1
0 (Ω),

with arbitrary heterogeneous coefficient αmin ≤ α(x) ≤ αmax, without any pe-
riodicity or scale separation assumptions. It is a variational multiscale method
[3] that uses a selectable quasi-interpolation operator to decompose the solution
into a low-dimensional coarse space and a high-dimensional remainder space. The
coarse space is spanned by computable basis functions with local support. The
localisation is rigorously justified in [4] due to the exponential decay of the “cor-
rectors” w.r.t. the standard hat functions. This avoids any artifical localisation
boundary conditions, typical for other multiscale methods. For moderate contrast
and arbitrary oscillatory coefficients this methodology yields approximations that
converge to the true solution at the optimal rate (with respect to the coarse mesh
size) without any pre-asymptotic effects.

The promising numerical results in [4] for high-contrast model coefficients are
not reflected by the theoretical results for localized bases in that reference, because
the physical contrast αmax/αmin enters the error analysis via norm equivalences
between energy norm and H1-seminorm. These equivalences are heavily used to
connect variational techniques such as Galerkin orthogonality with approximation
properties of standard (coefficient-independent) quasi-interpolation operators. In
an upcoming paper [6], we circumvent the critical norm equivalences by using
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coefficient-dependent quasi-interpolation operators, similar to those in [8], which
enjoy optimal approximation properties in α-weighted Sobolev spaces.

Definition. Let IH : Vh → VH be a linear, continuous interpolation operator
from a fine to a coarse piecewise linear FE space, with h < H , such that

(QI1) the restriction of IH to VH is an isomorphism,

(QI2) there exists a generic constant C2, such that for all vh ∈ Vh and all T ∈ TH ,

H−1‖α1/2(vh − IHvh)‖L2(T ) + ‖α1/2∇(vh − IHvh)‖L2(T ) ≤ C2‖α1/2∇vh‖L2(ωT )

with ωT := int
(⋃{K ∈ TH |K ∩ T 6= ∅}

)
.

(QI3) there exists a generic constant C3, such that for all vH ∈ VH there exists
vh ∈ Vh with the properties

IHvh = vH , supp vh ⊂ supp vH and ‖α1/2∇vh‖L2(Ω) ≤ C3‖α1/2∇vH‖L2(Ω).

This operator gives rise to the L2-orthogonal decomposition Vh = VH ⊕ V fs

where V fs := kerIH . The key idea to a better approximation is to a-orthogonalise
this decomposition. Consider the a-orthogonal projection Pcs : Vh → V fs that
maps v ∈ Vh to the unique solution of

(2) a(Pcsv, w) = a(v, w), for all w ∈ V fs,

and define V cs := (1− Pcs)VH . Then Vh = V cs ⊕ V fs and a(V cs, V fs) = 0.
In practice, we solve localised approximations of the corrector problems (2) for

the basis functions Φz of VH , restricting the calculation to nodal patches ωz,k ⊂ Ω,
centred at the corresponding coarse grid vertex z ∈ NH and 2k layers of coarse
grid elements wide (see [4, 6] for details). This leads to an approximate multiscale
coarse space V cs

k ≈ V cs with dim(V cs
k ) = dim(VH) and to the upscaled equation

(3) a(ucsk , v) = G(v), for all v ∈ V cs
k .

Main Theorem. If (QI1)–(QI3) are satisfied with constants C2 = O(1) = C3

independent of α, and provided k & log
(

αmax

H αmin

)
and h is sufficiently small, then

(4) ‖α1/2∇(u− ucsk )‖L2(Ω) . α
−1/2
min ‖g‖L2(Ω)H.

This result does not require any periodicity or scale separation assumptions on the
coefficients, and the hidden constants are independent of the contrast αmax/αmin.

An example of a quasi-interpolation operator that satisfies assumptions (QI1)–
(QI3) with constants C2 = O(1) = C3 independent of αmax/αmin for a special
class of coefficients that are quasi-monotone on the coarse mesh scale is the quasi-
interpolation operator analysed in [8] (or rather a slightly modified version of it.
See [8] for a more precise discussion of the type of coefficients that is covered. The
constants C2 and C3 in our analysis do unfortunately depend on H/ε, but this
dependence is not evident in the numerical experiments (see [6]).

In our future work we expect to extend this work to wider classes of coefficients,
using different initial coarse spaces, instead of the piecewise linear space VH , such
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as those proposed in [1, 7] that enjoy optimal approximation properties in α-
weighted Sobolev spaces for arbitrary positive coefficients. The associated quasi-
interpolation operators satisfy an assumption similar to (QI2), but it remains to
be seen if the whole theory can readily be extended.
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Convergence of iterative schemes for coupled flow and geomechanics
in a fractured reservoir

Kundan Kumar

(joint work with Vivette Girault, Tameem Almani, Mary Wheeler)

Coupling of geomechanics and flow in a poroelastic porous media has several ap-
plications including subsidence events, ground water remediation, hydrocarbon
production, enhanced geothermal systems, solid waste disposal, hydraulic fractur-
ing, biomedical modeling and geological carbon sequestration. The geomechanical
effects account for the influence of deformations in the porous media caused due
to the pore pressure whereas the changes in the pore structure due to mechani-
cal stresses affect the flow field. The fact that the fractures in the porous media
have strong influence on the flow profiles and the deformations are particularly
significant in such reservoirs motivates studying the coupled geomechanics and
flow problems in fractured reservoirs.

There are broadly two categories of schemes for coupling geomechanics and flow
in a poroelastic medium: fully implicit and fully explicit. The fully implicit scheme
allows one to take larger time steps and provides more stability but the coupled
linear system is difficult to solve; in particular for multiphase flows there are differ-
ent operators involved for geomechanics and flow problems. Also, the flexibilities
are lost to an extent, as for example, the time steps for geomechanical response
may be larger compared to the flow time steps; three, for practical reasons, the
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implementation is much easier by considering these equations separately. On the
other hand, an explicit coupling approach is simpler, however a naive explicit de-
coupling gives at best conditionally stable schemes! An elegant way to combine
the advantages of two broad approaches is to consider an iterative scheme. The
design of an appropriate iterative scheme demands careful considerations. We re-
port here some of the developments in developing suitable iterative schemes and
their analysis for fractured porous media.

Our work is inspired from the previous work of Mikelić and Wheeler [1] and
extends their results for the fractured medium. The fractures are treated as an
interface and our iterative scheme is an adaptation of classical fixed stress-splitting
scheme. The analysis of these schemes relies on studying the equations satisfied by
the difference of iterates and using Banach contraction argument to prove that the
scheme is a contraction. Concerning the limitations, we assume linear equations
for flow and mechanics and the nonlinear extensions remain open even though
numerically we see that the scheme works well. Moreover, in our proof, we control
the time derivative of fracture width (which provides the mechanical response
of the fracture on the flow) by the time derivative of symmetrized gradients of
displacement in the bulk domain (using Korn and trace inequalities) and only
under an assumption of Lamé parameters and the compressibilities of the fluids
are we able to obtain the contraction.

The model equation consists of flow equations (F):

∂

∂t

(
(
1

M
+ cfφ0)p+ α∇ · u

)
−∇ ·

(
1

µf
K(∇p− ρf,rg∇η)

)
= q̃, in Ω \ C,

cfc
∂pc
∂t

+
∂w

∂t
− ∇̄ ·

(
Kc

µf
(∇̄pc − ρf,rg∇η)

)
= q̃W − q̃L,

[
1

µf
K(∇p− ρf,rg∇η)]C · n+ = q̃L, on C,

and the geomechanics equations (M)

−∇ · σpor(u, p) = f in Ω \ C,
σpor(u, p) = σ(u)− αpI, in Ω \ C,

σ(u) = λ(∇ · u)I + 2Gε(u)

σpor∗n∗ = −pcn∗, ∗ = +,− on C.
The reservoir domain is Ω, the fracture surface is C and the unknowns are reservoir
pressure p, fracture pressure pc, and displacement u. The fractures are modeled
as a lower dimensional geometric object. The above system is simply a Biot’s
equation coupled to a flow model on the fracture and a separate flow equation
allows us to explicitly resolve the fracture flow.

The iterative scheme follows the fixed stress splitting algorithm and adds a sta-
bilization term (γ(∂tp

n+1−∂tpn), γc(∂tpn+1
c −∂tpnc )) for the mass balance equations

in the flow equations (F). The question is to determine suitable coefficients γ, γc
for which the scheme has geometric convergence. We obtain the following results:
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(1) The iterative scheme is a contraction in an appropriate norm and the con-
verged solution is a unique weak solution of the coupled problem. An ap-

propriate choice for the regularization terms are γ = α2

λ and γc =
Mcfα

2

λ+Mcfφ0

.

Moreover, the contraction coefficient is:

max

{
1/λ2

(
1

Mα2 +
cf
α2ϕ0 +

1
λ

)2 ,
γc

(cfc + γc) λ
(

1
Mα2 +

cf
α2ϕ0 +

1
λ

)
}
.

(2) The contraction argument is extended to the fully discrete case for both
flow and geomechanics. For the flow, we have taken mixed fem spaces and
conformal Galerkin for the displacement. Moreover, a multi rate strategy
is adopted where finer time steps are used for the flow and coarser time
steps for the geomechanics. We find that the contraction coefficient is
independent of discretization parameters. For the multirate formulation,
contraction is obtained under mild assumption on the fluxes.
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Greenhouse Gases: Engineering Solution (CO2) and Source
Characterization (CH4)

Mike Celia

If the relentless increase in anthropogenic greenhouse gas emissions is to be mit-
igated, engineered solutions must be deployed on a very large scale. The two
most important anthropogenic greenhouse gases are carbon dioxide and methane.
For CO2 emissions, the only currently available technology that allows continued
use of fossil fuels while reducing atmospheric emissions is Carbon Capture and
Storage, or CCS. The idea is to capture the CO2 at large stationary sources like
power plants, and to inject the captured CO2 into deep geological formations. For
this to be a feasible solution, the long-term fate of the injected fluid needs to be
understood, and the behavior of the overall subsurface system must be simulated.
This includes estimates of the amount of fluid likely to leak upward into shallow
drinking-water zones or ultimately back to the atmosphere. In places like North
America, where more than a century of oil and gas drilling has left millions of
abandoned wells, leakage along old wells is an important concern, and the associ-
ated risk of leakage needs to be quantified. The mathematical description of this
system involves extreme spatial and temporal scales, with the relevant physical and
chemical processes leading to a potentially large set of coupled nonlinear partial
differential equations. In order to provide tractable solutions, we have developed a
series of simplified models that capture the dominant physics of the system while
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being extremely efficient. This allows for large numbers of Monte Carlo simu-
lations, which are necessary because of the high uncertainty in the properties of
leaky wells. When coupled with experiments to estimate the statistics of the prop-
erties of potentially leaky old wells, a quantitative risk assessment for leakage can
be achieved. For an application in Alberta, Canada, the results show a low risk of
significant leakage over 50 years of CO2 injection.

Old wells can also play a role in methane emissions to the atmosphere, consti-
tuting a here-to-fore unrecognized source of anthropogenic methane. A series of
first-of-a-kind measurements of methane leakage rates for a set of old wells in the
state of Pennsylvania, USA, allows for initial estimates of the amount of methane
leaking from old wells. Our current results indicate that the methane leaking from
old wells is on the order of 10% of the currently estimated total anthropogenic
emissions for the state of Pennsylvania. This indicates that methane leakage from
old wells is significant enough to include in methane emission inventories.

These two problems, coupled with related problems associated with hydraulic
fracturing and the production of shale gas, offer many opportunities for math-
ematical model development that requires advanced computational tools. Such
problem are computationally challenging while addressing grand challenge prob-
lems in energy and environment.

Modeling of colloid transport during transient two-phase flow in
porous media

Majid Hassanizadeh

(joint work with Qiulan Zhang)

This research regards the study of transport of colloids during transient flow of
two immiscible fluids in porous media. We present results of experiments carried
out in a micro-model made of PDMS (a hydrophobic polymer) and the immisci-
ble fluids were water and fluorinert-FC43. The micro-model had a pore network
covered an area of 1mm–10mm. It contained around 90 pore bodies and 200 pore
throats, with mean pore size of 30 microns, and porosity of 40%. Given that the
micro-model was hydrophobic, fluorinert was the wetting phase and water was the
non-wetting phase. We used hydrophilic fluorescent microspheres (dispersed in
water) with mean diameter of 300nm. We directly observed colloid movement and
fluids distribution within pores of the micro-model using a confocal laser scanning
microscope. We also obtained concentration breakthrough curves by measuring
the fluorescence intensity in the outlet of the micro-model. Zhang et al. (2013),
performed colloid transport experiments during two-phase flow in a micro-model.
Spikes in colloid concentration breakthrough curves were found each time the flow
rate was changed, causing a change in saturation. In these experiments, during
stage 1, steady-state flow of a non-wetting fluid phase was established while the
saturation was kept constant; the non-wetting phase saturation were 100%, 60%,
and 40% in experiments 1, 2, and 3, respectively. Then, for a finite duration, col-
loids were added to non-wetting phase flowing into the micro-model. The colloid
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Figure 1. Influence of transient flow rate on colloid mobilization
(upper set of data points is for 100%, middle set for 60%, lower set for

40%)

Figure 2. Comparison of simulation results (red lines) with exper-
imental data (blue dots)

breakthrough curves were measured at the outlet until a long tail was established
(see Stage 2 shown in Figure 1). Stage 3 of experiment started by stopping the
flow of non-wetting phase and injecting the wetting phase, thereby causing the
imbibition and reducing the non-wetting phase saturation to 20%, 15%, and 20%
in experiments 1, 2, and 3, respectively. The saturation change was accompanied
by a spike in colloid breakthrough concentration (see Stage 3 in Figure 1).
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Generally, these remobilization effects have been attributed to the dynamics of
fluid-fluid interfaces present in two-phase flow and the interplay of colloids with
those interfaces (see e.g. [1, 2]. In this study, we developed a numerical model
of coupled two-phase flow and colloid transport, wherein the variation of fluid-
fluid interfacial area as a function of saturation was included. In this model, the
detachment of adsorbed colloids was modelled as a function of the rate of change
of saturation. We were able to simulate breakthrough curves successfully. Results
are shown in Figure 2.
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Interfacial phenomena in porous media fracture, swelling,
diffusiophoresis and diffusio-osmosis

Jacques Huyghe

(joint work with Kamyar Malakpoor, Sami Musa)

Because of the high interfacial area between constituents in a porous medium,
interfacial effects are paramount in porous media. The usual concept of porous
media researchers is that these effect are well understood on the pore scale. Un-
derstanding the porous medium on the macroscale amounts to upscaling the pore
events to a macroscopic description of the medium. This report illustrates that
even at the pore scale many questions remain open, while the upscaling to macro-
scopic level remains a challenging task, particularly in cases where localisation
and ionisation play a primordial role. Particularly swelling and fracture are pin-
pointed as focal areas in the upscaling and diffusio-osmosis, and diffusiophoresis
are pointed as important phenomena at the pore scale.

Swelling and fracture of living tissues has been mentioned as a key element in
diagnostics of disease since antiquity. Concomitantly, geotechnical engineers see
swelling and fracture in geomaterials as their prime enemies. In diapers, female
pads and tampons swelling strain exceeds 1000 %. The challenges to simulate the
swelling numerically are considerable. And so is the experimental challenge to
measure the 3D swelling and associated fracture propagation. Surface instabili-
ties typically occur as soon as the swelling strain is substantial. Exclusion zones
developing around gels and tissues pushing away colloids hundred microns away
from the surface are explained by means of diffusio-osmosis and diffusio-phoresis.
The finite swelling of an electrically charged is described as a superimposition of
four continua, one for the solid subject to finite deformation, one for the fluid, one
for the counter-ions and one for the co-ions [4]. Conservation laws are formulated
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for the four constituents and for the mixture as a whole. The second law of ther-
modynamics is used to obtain constitutive restrictions for the material laws. The
constitutive restrictions require that the stress in the solid is the derivative of the
free energy of the mixture as a whole per unit initial mixture volume with respect
to the strain. Unlike a regular solid, this free energy depends on the local counter
ion and co-ion concentration. This dependence is experimentally demonstrated
[7] for cartilage and for hydrogel [13] and is referred to as chemical stress. The
resulting set of partial differential equations are solved using a mixed hybrid finite
element model [8, 12]. A Raviart-Thomas quadrilateral element is used. In 2D,
for example, a quadrilateral element with displacement degrees of freedom of the
corner nodes and fluid and ion fluxes across the sides. Lagrange multipliers, physi-
cally representing the electrochemical potential of the fluid and ions are introduced
to enforce local mass conservation across the element interfaces. An analytical so-
lution of 1D swelling and consolidation are compared to the numerical solutions
to make sure the code actually solves the equation they are supposed to solve
[11]. For complex 3D simulations a simplified version of the code in implemented
into ABAQUS [9, 15] and used for predicting the mechanics of cartilage [16] the
native intervertebral disc [14]. Detailed experimental verification for this model
is needed. Three dimensional deformations are measured using optical tracking
[5]. Radiotracer techniques measure ion concentrations in hydrogels [10]. Many
of the swelling materials exhibit fracturing because of external mechanical load
and internal stresses associated with gradients of osmolarity. Fractures are exper-
imentally observed to open and close depending on the osmotic environment [17].
Fractures are simulated using xfem techniques [6]. At the interface between the
gel and the fluid in the fracture exclusion zones are observed in which colloids are
moving away from the surface of the gel. The mechanism of this phenomenon has
been identified as diffusiophoresis and diffusio-osmosis [3]. Given these insights de-
veloped during this numerical-experimental analysis of swelling materials, design
of an artificial intervertebral disc [1] has been worked out based on the insights
of osmotic prestressing of the native intervertebral disc. The functioning of the
prosthesis can be computed in a (swelling) finite element model of the gel-jacket-
end-plate design [2].
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Reaction fronts in porous media

Marc A. Hesse

(joint work with Valentina Prigiobbe, Ashwin Venkatraman, Colin McNeece)

The theory of systems of hyperbolic partial differential equations (PDEs) provides
a framework to understand multi-component reactive transport in porous media.
Under the assumption of local chemical equilibrium and in the limit of negligible
hydrodynamic dispersion, one-dimensional reactive transport is governed by the
following system of n quasi-linear PDEs

(c+ z(c))t + cx = 0,

where z(c) is the equilibrium constraint between the total concentrations of the
components in the fluid, c, and the total concentrations of the components in the
solid, z. In classical chromatography the equilibrium constraint is convex and the
system is genuinely non-linear, which implies one reaction front per conservation
equation, [1].

This analysis can be extended to the case of pH-dependent surface complexation
reactions. These reactions involve the adsorption of protons and the consideration
of electrostatic forces at the solid-liquid interface [2]. The proton conservation
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equation must account for the dissociation of water so that the conserved variable,
c, becomes the total acidity of the aqueous phase, given by

c = c′ − k/c′,

where c′ is the proton concentration and k the dissociation constant of water. This
added nonlinearity changes the nature of the reactive transport and introduces a
non-convex equilibrium constraint, z′′(c) = 0. This leads to the occurrence of
composite shock-rarefaction waves in the non-genuinely non-linear characteristic
field. This explains the composite waves that are observed in the elution profiles
of column flood experiments with glass beads subjected to a change in the inflow
pH [3].
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Reaction–diffusion systems on evolving domains: The fishy story of
Turing patterns

Omar Lakkis

(joint work with A. Madzvamuse, A. Muntean, C. Venkataraman)

Introduction. In his seminal work [2], Alan Turing argued that certain devel-
opment biology systems that under “noisy” perturbations experience instabilities
that drive them to pattern creation. In mathematical parlance these systems
are governed by time-dependent parabolic reaction–diffusion systems of equations
(RDS) whereof the “patterns” are the stable steady states. Turing analyzes linear
systems of equation by writing out explicit solutions on simple domains such as
rectangles or spheres, but concludes his paper by advocating nonlinear equations
as more accurate models and the use of “a digital computer”. Thus, mathemati-
cal and computational biology were born and since then the literature on pattern
formation in biology the subject has exploded as witnessed in [3]. One aspect that
has remained until quite recently relatively unstudied is the effect of domain evo-
lution, that is when the domain upon which the RDS is defined undergoes change
with respect to the time variable and this is the object of our study. This objec-
tive is both exciting and challenging as the concept of steady state stops making
sense, since, in contrast to Turing’s equations, the PDE is not autonomous. Since
pattern formation is most important in applications such as understanding the
coloring patterns on an animal’s skin our study is closely related to [4] which we
will use for illustration as it answers an important question raised (and partially
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answered) in [5]: what are the models that take into account the movement of pat-
terns as the animal grows? The answer, as we shall see is that domain growth and
curvature evolution, in addition to the classical Turing instability, are the main
drivers in such pattern formation.

Reaction–diffusion systems on moving domains. Suppose Ωt, t ∈ [0, T )
with 0 < T ≤ ∞, is a parametric family of open subsets of Rd, consider a vector of
chemical concentrations u(x, t) = (u1(x, t), . . . , um(x, t)) satisfying the following
system of evolution PDE’s

∂tui(t)−Di∆ui(t) +∇ · [a(t)ui(t)] = fi(u(t)), in Ωt,

n · ∇ui(t) = 0, on ∂Ωt
(1)

for each t ∈ (0, T ) with the initial condition ui = u0i on Ω0, where f accounts
for nonlinear chemical reactions, a arises from the movement of Ωt. This model
was introduced by [5], from a phenomenological view-point, and first studied com-
putationally by [6]. It was further studied in various situations by others cited
in [7], where we gave a definitive analytic treatment by showing the problem is
well-posed for isotropic evolution. The behavior of these systems with respect to
various choices of f , modeling biologically relevant systems, was studied compu-
tationally in [8, 9].

PDE and numerical analysis. Our strategy for a thorough analytic and numer-
ical study of the RDS (1) is Lagrangian, i.e., we pull-back the equations onto a ref-
erence domain Ω via a time-dependent family of C1-diffeomorphisms At : Ω → Ωt

to obtain the RDS with space-time-dependent coefficients for û:

(2)

∂tûi −
Di

J
∇ · (B∇ûi) + ûi∇ · â = fi (û) , on Ω× (0, T ],

n̂ ·B∇ûi = 0, on ∂Ω× (0, T ],

ûi(ξ, 0) = û0i (ξ), ξ ∈ Ω.

Surprisingly the first studies of this type of equations on fixed domains dates back
to [1] where structural assumptions are posed on f by postulating the existence
of a Lyapunov function that guarantee global stability bounds. We extended this
work to the moving domain framework in [7] and analyzed a Galerkin method in
[8] where precise L∞(Ω)-bounds play a crucial role.

Fishy patterns. As mentioned, an application of (1) and our studies to devel-
opmental biology is the study of pattern formation and pattern migration on fish
skin, such as the Amago trout studied in [4]. It was found there that evolu-
tion does produce patterns that could not be observed, nor even predicted by a
Turing-instability type of analysis since, in our case, the bifurcation diagram is
time-dependent, so to speak.
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Outlook and open problems. Further effects observed in this study related
to the curvature when we break-free from the flat-domain assumption. Although
numerical analysis is still open, computations are feasible and show an interesting
relationship between Gaussian curvature and the type of patterns observed: e.g.,
stripes versus spots, that could explain such variability in fishes. It is also inter-
esting to understand the onset of patterns in multiscale settings when competing
species coexist at the macroscopic level, also in non-biological systems such as
corrosion [10, 11, 12, e.g.].
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Numerical techniques for differential equations with multiple scales in
space or time

Assyr Abdulle

In this report we discuss recently developed numerical methods for multiscale
problems in time (a numerical integrator for stiff advection-diffusion-reaction equa-
tions with or without noise) and multiscale problems in space (a numerical homo-
genization algorithm that combines different physics at different scales).

Numerical methods for stiff advection-diffusion-reaction equations with
or without noise. Consider a system of (stochastic) ordinary differential equa-
tions originating from space discretized partial differential equations (PDEs)

(1) ẏ = F (y) = FD(y) + FA(y) + FR(y) +

m∑

j=1

F j
G(y)ξ̇j , y(0) = y0,

where FD(y), FA(y), FR(y), F
j
G ∈ R

n and ξj , j = 1, . . . ,m are independent one-
dimensional Wiener processes. Here FD(y) represent a diffusion term with eigen-
values close to the negative real axis, FA(y) advection terms with eigenvalues close

to the imaginary axis, FR(y) stiff (reaction) terms and F j
G (stiff) noise terms, re-

spectively. Classical numerical methods usually face the following issues

• a step size restriction for explicit methods due to the FD term (“CFL-type”
restriction), FR term (multiple reaction rates that can vary over order of

magnitudes) and F j
G term (“stiff” mean-square stable problems) [2],[8];

• large nonlinear systems at each time steps when using implicit methods
that can become quite involved, particularly for systems involving compli-
cated nonlinear structure [9].

In [6] we present a new partitioned implicit-explicit orthogonal Runge-Kutta
(RK) method (PIROCK) for the time integration of (1). Due to the use of a
stabilized explicit second order orthogonal RK Chebyshev method (ROCK2) [1] for
the FD term, the severe restriction of the CFL condition for explicit schemes can
be relaxed. A second order singly diagonally implicit RK that is unconditionally
stable is used for the FR term and a third order explicit method (stable on a portion
of the imaginary axis) is taken for the FA term. Finally an explicit stabilized

method is also used for the F j
G terms following the methods developed in [2],[5].

Other implicit-explicit or partitioned method have been proposed for (1)1, and
we mention the implicit-explicit Runge-Kutta-Chebyshev method (IRKC) derived
in [10] and the fully explicit partitioned Runge-Kutta-Chebyshev method (PRKC)
proposed in [11] (see [10],[11],[6]) for a more comprehensive literature review. For
problems with stiff reactions, the PIROCK method is more efficient than the
IRKC method as the number of function evaluations of the reaction terms FR

(solved implicitly) is independent of the (possibly high) stage number used in the
stabilized explicit method for the diffusion terms FD (it has also a better behavior
for advection dominated problems than IRKC). Compared to the PRKC method

1However, none of them have been developed for equations including (stiff) noise terms.
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(that can only handle non stiff reaction terms) the PIROCK method has larger
stability domains on both the real and the imaginary parts. PIROCK implemented
in a single black-box FOTRAN code available at http://anmc.epfl.ch, is fully
adaptive, provides a posteriori error estimators, and requires from the user solely
the right-hand side of the differential equation.

An adaptive numerical homogenization method for a Stokes problem.
Consider the Stokes problem in heterogeneous media with pore sizes ε that can
be several orders of magnitude smaller than the macroscopic size of the compu-
tational domain of interest Ω. Then, a full Stokes solver over Ω is often too ex-
pensive. For such problems we propose in [7] an adaptive multiscale micro-macro
homogenization method, using the framework of the finite element heterogeneous
multiscale method (FE-HMM) [4] with an adaptive strategy [3]. The new method
relies on adaptive mesh refinement on macro and micro problems and on rigorous
residual-based a posteriori error estimates derived in [7]. We propose a strategy to
adequately couple macro and micro error indicators (a challenging issue) in order
to achieve a desired accuracy with minimal computational cost on both the macro
and the micro scales.
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Formal Asymptotic Limit of a Diffuse-Interface Tumor-Growth Model

Danielle Hilhorst

(joint work with J. Kampmann, T.N. Nguyen & K.G. van der Zee)

We consider a diffuse-interface tumor-growth model which has the form of a phase-
field system. We characterize the singular limit of this problem. More precisely,
we formally prove that as the coefficient of the reaction term tends to infinity, the
solution converges to the solution of a novel free boundary problem. We present nu-
merical simulations which illustrate the convergence of the diffuse-interface model
to the identified sharp-interface limit.

Diffuse-interface tumor-growth models have been studied recently in several
articles. The basic model is composed of a fourth order parabolic equation for the
tumor cell phase u : Ω → R coupled to an elliptic equation for the nutrient phase
σ : Ω → R:

ut = ∆(−ε−1f(u)− ε∆u) + ε−1p0σu(1a)

0 = ∆σ − ε−1p0σu,(1b)

where ε2 is the diffusivity corresponding to the surface energy, the positive constant
p0 is a proliferation growth parameter, and f is a bistable function.

Introducing the chemical potential µ : Ω → R, given by

µ := −ε−1f(u)− ε∆u,

(1a)-(1b) becomes

ut = ∆µ+ ε−1p0σu,(2a)

µ = −ε−1f(u)− ε∆u,(2b)

0 = ∆σ − ε−1p0σu.(2c)

The above system models the evolution of the first stage of a growing tumor. In
this stage a tumor grows because of the consumption of nutrients that diffuse
through the surrounding tissue. This stage is referred to as avascular growth, as
the tumor has not yet acquired its own blood supply to nurture itself. Consump-
tion of nutrients is modeled in (2a) and (2c) via the reactive terms. To describe
the evolution of the tumor boundary a diffuse-interface description is employed.
This is classically modeled in (2a) with a diffusion via the chemical potential µ
which depends in a nonlinear manner on u and contains the higher-order regular-
ization ε∆u, see (2b).

Diffuse-interface tumor-growth models fall within the broader class of multicon-
stituent tumor-growth models based on continuum mixture theory. The derivation
of diffuse-interface models within continuum mixture theory requires the set up
of balance laws for each constituent as well as the specification of constraints on
the constitutive choices imposed by the second law of thermodynamics. Typically,
only the cellular and fluidic constituents of a tumor are modeled as parts of a
mixture, while nutrients are considered separately. Recently however, a diffuse-
interface tumor growth model has been proposed that incorporates all constituents
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within the mixture and is proven to be thermodynamically consistent. The model
proposed by Hawkins-Daarub van der Zee and Oden, which turns out to be a
gradient flow, is a modification of (2). It is given by:

ut = ∆µ+ ε−1p(u)(σ − δµ)(3a)

µ = −ε−1f(u)− ε∆u(3b)

σt = ∆σ − ε−1p(u)(σ − δµ)(3c)

where δ > 0 is a small regularization parameter, and the growth function p(u) is
defined by

p(u) :=

{
2p0

√
W (u) u ∈ [−1, 1]

0 elsewhere.
(4)

Here W (u) := −
∫ u

−1
f(s) ds is the classical Cahn–Hilliard double well free-energy

density. We assume that the bistable function f(u) has two stable roots ±1,
an unstable root 0 and zero mean. The above model has the following multi-
constituent interpretation: a tumorous phase u ≈ 1, a healthy cell phase u ≈ −1,
and nutrient-rich extracellular water phase σ ≥ 0.

Note that, compared to (2a)-(2c), the reactive terms have been modified to be
thermodynamically consistent. They include a regularization part δµ and they
have been localized to the interface (since p(u) is nonzero if u ∈ (−1, 1)).

In this work, we formally study the singular limit ε ↓ 0 of (3a)-(3c). We
furthermore perform numerical simulations which validate the identified singular
limit.

Modelling and Simulation of Gas Production from Methane-Hydrate
Reservoirs

Shubhangi Gupta

(joint work with Barbara Wohlmuth, Rainer Helmig)

A methane hydrate formation is a fairly complex sub-surface system characterized
by a large number of highly interdependent physical phenomena. The typical
physical processes occuring in a stimulated hydrate reservoir include, for instance,
hydrate dissociation/reformation; non-isothermal multi-phase, multi-component
flow; and, mechanical deformation of the sediment; change in hydraulic as well as
mechanical properties of the sediment, etc.

Phenomenological modeling and numerical simulation of these systems is vital
for conducting studies and making predictions for mitigating bore-hole, local and
regional slope stability hazards; for optimizing recovery techniques for extracting
methane from hydrate bearing sediments; for sequestering carbon-dioxide in gas
hydrate; and for evaluating role of gas hydrate in the global carbon cycle, etc.

In this talk a mathematical model was presented describing the various pro-
cesses occuring in hydrate reservoirs. Special focus was laid on extending the
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poroelasticity concept and the consolidation theory to hydrate systems. The val-
idation of reaction kinetics model against experimental data from Yuhu B. et al
[7], and Tang et al [5] was also presented. The hydro-mechanical coupling was
verified using the Terzaghi 1-D consolidation problem [4], and the selected results
were presented.

The mathematical model describing processes in hydrate reservoirs is highly
coupled, complex and non-linear. This system can, in principle, be solved ’fully-
coupled’, the direct advantage being a more accurate and consistent feedback of
deformation on flow processes. However, this fully coupled solution technique is
very expensive in terms of computation time.

An alternative solution strategy is to reformulate the system of equations into
equation-subsets which have weak interdependencies. This allows ’decoupling’ of
the complete system into smaller sub-models which can be solved separately. Be-
sides decreasing the computational costs, the decoupled formulations also allow
application of different discretization schemes for the different sub-models which
lead to an increase in efficiency. The disadvantage is, however, a loss in interde-
pendency of the physical system inherited from the decoupling process.

Another focus of this talk was to present a possible strategy for decoupling and
solving a non isothermal hydro-geomechanical system in the context of sub-oceanic
hydrate reservoirs. In this strategy, sub-models are defined based on the three
major controlling ’physical’ processes occuring in a typical hydrate reservoir under
an external stimulus, viz. dissociation of hydrate; non-isothermal flow through
porous sediment; and geo-mechanical deformation of the sediment. The discussion
included the ideology and advantages of such a decoupling scheme and it’s effects
on the computation efficiency and coupling errors.
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Mixed hybrid finite element schemes for advection-diffusion-reaction
problems

Fabian Brunner

(joint work with F.A. Radu, J. Fischer, M. Bause and P. Knabner)

We study approximations of the mixed advection-diffusion-reaction problem

∂tc+∇ · q +Rc = f , q = −D∇c+Qc(1)

using the Raviart-Thomas and the Brezzi-Douglas-Marini mixed finite elements of
lowest order on a domain Ω ⊂ R

2, where D denotes a symmetric and uniformly-
positive diffusion tensor, Q represents a given velocity field and R denotes a linear
reaction rate.

When advection strongly dominates diffusion, the standard mixed method [1]
typically fails to resolve steep gradients in the analytical solution and produces
approximations that are polluted by spurious oscillations. To overcome this, we
incorporate upwinding into the method by extending the classical scheme to obtain
a new family of mixed hybrid schemes based on an Euler-implicit discretization
in time and a hybrid mixed discretization in space. It relies on the fact that
the Lagrange multipliers represent approximations of the scalar unknown on the
interelement boundaries and uses them in the approximation of the advective
fluxes.

1. Approximations with the RT0 element

In the fully discrete mixed hybrid formulation of (1), on each time level t = tn we

seek (qn
h , c

n
h, λ

n
h) ∈ Ṽ h ×Wh × Λh such that

(D−1qn
h ,vh)− (∇ · vh, c

n
h)− (D−1B(λnh, cnh),vh) = −

∑

K∈Th

〈λnh ,vh · n〉∂K ,(2)

1

∆tn
(cnh − cn−1

h , wh) + (∇ · qn
h, wh) + (Rcnh, wh) = (fn, wh) ,(3)
∑

K∈Th

〈µh, q
n
h · n〉∂K = 0(4)

for all (vh, wh, µh) ∈ Ṽ h ×Wh × Λh, where the space Wh consists of piecewise

polynomials on the triangular grid Th, Ṽ h is the space of piecewise RT0 functions
on Th and Λh represents the space of piecewise constant functions on the set of
edges of Th. The operator B is defined elementwise by

B(λnh, cnh) =
∑

K∈Th

∑

E⊂∂K

Qn
KEBKE(λ

n
E , c

n
K)vKE ,

where vKE represents the basis function of the Raviart-Thomas space of lowest
order associated with edge E on the triangle K ∈ Th, and the coefficients Qn

KE

represent the projection of Qn in the space of Raviart-Thomas elements of lowest
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order. The weights BKE have to be specified to obtain one particular scheme. To
obtain a full upwind-mixed hybrid scheme, for example, we define

BKE(λ
n
E , c

n
K) =

{
cnK if Qn

KE ≥ 0 ,

λnE otherwise .

The convergence analysis carried out in [3] shows that the method converges with
first order in space and time if the condition

|BKE(λ
n
E , c

n
K)− cnK | ≤ C|λnE − cnK |

is satisfied for a constant C > 0. Since the definition of the weights BKE involve
only data from the element K, the equations (2) are fully local. Consequently, the
number of global unknowns can be reduced by eliminating the flux and the scalar
unknowns from the system, which is not possible if an upwind-mixed scheme is
employed that involves information from neighbour elements in the definition of
the upwind weights. Our numerical results indicate that the errors of the classical
and our hybrid upwind-mixed schemes are of the same order of magnitude, while
the CPU time was 50% lower for the hybrid method.

2. Approximation with the BDM1 element

If the mixed problem (1) is approximated using the Brezzi-Douglas-Marini ele-
ment, suboptimal first order of convergence for the flux variable occurs [2]. This
may happen when the finite element spaces employed have a higher order for the
flux variable than for the scalar variable. By using the Lagrange multipliers of
the mixed-hybrid formulation it is possible to reestablish optimal second order
convergence in space. More precisely, we use the operator

B =
∑

K∈Th

∑

E⊂∂K

2∑

i=1

BKEi
(λnE1

, λnE2
, cnK)

together with the weights

BKEi
(λnE1

, λnE2
, cnK) = Qn

KEi

λnE1
+ λnE2

+ λnEi

3
vKEi

, i = 1, 2

in the discretization of the advective term. Numerical results for this scheme are
contained in [4], the error analysis is ongoing work.
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Zentrum Mathematik
TU München
Boltzmannstr. 3
85748 Garching b. München
GERMANY

Dr. Kundan Kumar

Center for Subsurface Modeling
Institute for Computational Eng. &
Sciences
The University of Texas at Austin
201 E 24th St
P.O. Box 5.340
Austin, TX 78712
UNITED STATES



Reactive Flows in Deformable, Complex Media 2467

Dr. Omar Lakkis

Department of Mathematics
University of Sussex
Falmer
Brighton BN1 9QH
UNITED KINGDOM

Prof. Dr. Andro Mikelic
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Université Claude Bernard Lyon I
43, Bd. du 11 Novembre 1918
69622 Villeurbanne Cedex
FRANCE

Dr. Adrian Muntean

Dept. of Mathematics & Computer
Science
Eindhoven University of Technology
5600 MB Eindhoven
NETHERLANDS

Dr. Maria Neuss-Radu

Department Mathematik
Universität Erlangen-Nürnberg
Cauerstr. 11
91058 Erlangen
GERMANY

Prof. Dr. Insa Neuweiler

Institut für Strömungsmechanik und
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