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Abstract. Statistical analysis of non-Euclidean data such as data on mani-
folds is an active and established topic of research, for instance, in the statisti-
cal analysis of shape. However, many types of data naturally reside in metric
spaces which are not smooth manifolds as a whole, rather they are unions
of manifold strata of varying dimensions. These spaces form a key general
family of geometric spaces for data analysis. Statistics in stratified spaces
has recently found great interest in applications and mathematical theory
building. While the fundamental theory is still in its beginnings, as a cen-
terpiece the derivation and investigation of statistics and their asymptotics
has materialized. Only a few basic results are known, but it is clear that
the geometric constraints imposed by stratified spaces lead to unexpected
asymptotic behavior of standard statistical properties, such as “stickiness” of
means, see [4]. It is the scope of the proposed workshop to better understand
fundamental relations between asymptotic behavior of statistical descriptors
and global as well as local geometric and topological structures. This in-
vestigation calls for an intense collaboration of the fields involved: statistics
& stochastics; geometry & topology; combinatorics, algorithms & numerics.
This workshop sought to bring together world-leading scientists and high-
potential early career researchers working in this field to collaborate on a
focused set of fundamental questions.
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Introduction by the Organisers

The mini-workshop Asymptotic Statistics on Stratified Spaces organized by Aasa
Feragen, Stephan Huckemann, J.S. Marron and Ezra Miller, had 17 participants,
10 of whom were junior participants.

Many statistical problems of high current interest deal with the analysis of data
sampled from spaces that are naturally non-Euclidean. For example, phylogenetic
trees in evolutionary biology as well as anatomical tree-like structures such as
the lung airway system or blood vessels can be viewed as sampled from stratified
spaces with discontinuous non-positive curvatures (cf. [3, 11]). Stratified spaces
appear naturally when data have varying topological structure but continuous
interpolation between different topological structures is meaningful, as is the case
with anatomical tree- or graph shapes or phylogenetic trees. Stratified spaces also
appear naturally as quotients under group actions in shape analysis, for instance
when data distances are to be invariant under symmetries such as translation,
rotation, scaling (cf. [6]).

When data reside in stratified spaces, fundamental statistical concepts, even
simple ones such as “mean” or “principal component”, have no canonical gen-
eralization. The non-differentiability (due to the stratification) combined with
non-positivity of curvature at lower-dimensional strata results in particular statis-
tical phenomena such as “stickiness of intrinsic means”, cf. [4] (intrinsic mean may
stick to lower dimensional strata under arbitrary small perturbations). Smooth
curvature may also exhibit unexpected limiting behaviors; already in directional
statistics on the circle, mass distributed around the antipodal of an intrinsic mean
can cause “smeariness” of intrinsic means, in some sense the effect opposite to
stickiness, cf. [5] (suitable mass near the antipodal may reduce asymptotic rates
arbitrarily).

Not only does geometry have an impact on defining statistical properties; it may
also be non-trivial to compute distances and thus statistical descriptors in strat-
ified spaces. Optimization near points of negative curvature faces combinatorical
challenges of computation at lower-dimensional strata adjacent to vast numbers of
higher-dimensional manifold strata, cf. [9,10]. While in the context of shape anal-
ysis curvature positive with respect to the top space ensures that intrinsic means
of distributions not restricted to singular strata are likewise not singular, cf. [7],
means may no longer be unique, but can be non-trivially set valued. In particular,
positive curvature may lead to non-uniqueness of shortest paths and ambiguity
which can lead to NP completeness, even for computing distances, cf. [2]. Un-
derstanding and solving computational problems often requires an interplay of
geometry, stochastics, combinatorics and optimization, cf. [1, 8–10].

To address these problems, the workshop brought together young and world-
leading specialists in the fields of statistics, geometry, topology, combinatorics, and
numerics currently grappling with related issues from their specific scientific view-
point. Due to the interdisciplinary nature of our research, the workshop started
out with five introductory lectures on current key problems:
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• Object oriented data analysis
• Dimension reduction on manifolds
• Geometric structure and statistical problems in tree spaces
• Diffusion in tree space
• Central limit theorem on T4

The introductory lectures were held on the first day and the first half of the
second day, with extremely engaged participation from the audience in the form
of extended discussions of the presented problems. The introductory lectures were
followed by response lectures from the remaining participants, who presented al-
ternative viewpoints and partial solutions to the proposed problems.

The size and informal structure of the workshop resulted in a week of lively dis-
cussion and collaboration, leading to new insights and results, some of which were
presented in the talks. This included the asymptotic confidence intervals on the
three-spider presented by Thomas Hotz and Huiling Le, as well as very insightful
discussions on topics such as diffusion on non-linear spaces, the embeddability of
nonlinear distance functions in linear spaces, and a realization that kernel PCA
can be viewed as slicing with varieties in higher dimensions thus potentially al-
lowing for backward principal nested subspace analysis. We have no doubt that
many of the new ideas generated at this workshop will spur new collaborations
and papers in the near future.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Fréchet Means in the Space of Phylogenetic Trees . . . . . . . . . . . . . . . . . . . . 2497
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Abstracts

Introduction to Object Oriented Data Analysis

J. S. Marron

Object Oriented Data Analysis is the statistical analysis of populations of com-
plex objects. In the special case of Functional Data Analysis, these data objects
are curves, where standard Euclidean approaches, such as principal components
analysis, have been very successful. Challenges in diverse applications, such as
image analysis and genetics have motivated the statistical analysis of populations
of more complex data objects which naturally lie in non-Euclidean spaces, such
as manifolds and manifold stratified spaces. These contexts for Object Oriented
Data Analysis create several potentially large new interfaces between mathematics
and statistics.

1. Discussion

The terminology Object Oriented Data Analysis (OODA) was coined in the sta-
tistics literature by Wang and Marron (2007) [8]. That paper was a direct con-
sequence of a meeting on machine learning and statistics, at Oberwolfach in No-
vember of 2004.

Good discussion of the current state of the art can be found in Marron and
Alonso (2014) [3]. The general concept can be understood through consideration
of the atom of a statistical analysis, often called the experimental unit. In elemen-
tary statistics courses, the focus is on numbers as experimental units, and the goal
is analysis of the population structure of a data set of numbers. In multivariate
analysis, vectors are the atoms, i.e. the data objects. A currently active research
area in statistics is functional data analysis, where the data objects are functions,
and the goal is to understand the variation in a set of curves. See Ramsay and
Silverman (2002, 2005) [4, 5] for good introduction to this area. The OODA con-
cept is to simply extend this progression to more general types of data objects.
For example, the data objects could be a data set of images, with each perhaps
represented as a matrix of pixel values representing gray levels or colors.

In many medical imaging applications, interest tends to focus on something
of interest in each data image, such as an organ, which can appear in different
parts of the images that comprise the data set. In such cases, a more reasonable
choice of data object is some sort of shape representation. The statistical analysis
of shapes as data objects presents special challenges, because the natural data
space in non-Euclidean, often most usefully understood as a curved manifold. One
example of this is the landmark based approach to shape analysis, see Dryden and
Mardia (1998) [2] for a particularly lucid explanation. The idea is to represent
landmark locations as point is Euclidean space, then to quotient out the group
actions of translation, rotation and often scaling. This results in data objects which
become equivalence classes, which are usefully viewed as lying in a curved data
space, often a high dimensional sphere. Another approach to shapes in images,
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which give generally better representations in contexts where there are no clearly
definable landmarks, which correspond well across data cases, is the medial and
skeletal representations of Siddiqi and Pizer (2008) [6]. Natural data spaces in
such cases are different, usually being high dimensional products of S2. Analogs
of Principal Component Analysis (PCA) in non-Euclidean spaces were an active
topic of discussion at this meeting.

Another type of data object comes from the task of analyzing populations of tree
structured objects. Early approaches to this challenge used purely combinatorial
methods, see Wang and Marron (2007) [8] and Aydin et al (2009) [1]. More recent
approaches, see Skwerer et al (2013) [7] have used the phylogenetic tree space ideas
of Billera, Holmes and Vogtmann (2001) , which results in statistical analysis of a
set of data objects lying on manifold stratified spaces. New ideas in this direction
were an active subject of discussion at this workshop.

2. A Deep Open Problem

During the course of the current workshop, both from the talk of Washington Mio,
and through informal discussion, it became apparent that there is a methodological
hole in the usual tool set used in OODA. This comes in terms of various types
of data summarization. The first idea about that terminology in most people’s
minds, are the population center point, often some version of the mean vector µ,
and some notion of spread such as the covariance matrix, Σ. Such summaries are
very high level in the sense that there are usually other aspects of interest of the
distribution, such as clusters or other types of non-Gaussian behavior. PCA, at
the level of full loadings and scores, can also be viewed as a data summary, but
because it still contains a large amount of data information, it can be viewed as a
low level summary of the data.

Aspects of Mio’s talk fit into this framework in a couple of ways. The local
covariance function and local mean function are in some sense even lower level
than PCA. However, the critical points of these functions determine interesting
summaries at a higher level. This type of summary, plus any related distributional
quantities, such as cluster centers as well as an indication of local variation in each
cluster, is available, but so far seems to have only been considered in an ad hoc
way.

The open problem proposed here is to develop a systematic and principled
approach to finding such data summaries, which fill the hole between the often
uninformatively high level summaries of µ and Σ, and the too detailed low level
summary of PCA.
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Dimension reduction for directions and 2D shapes

Sungkyu Jung

(joint work with Stephan Huckemann, J. S. Marron, and Thomas Hotz)

Principal Component Analysis (PCA) is an effective method of analyzing main
modes of variation in a dataset, which also gives a basis for dimension reduction.
There has been a growing need for PCA-like analysis of data that naturally lie
on a curved manifold. Examples of such data situations include directions in a
unit hypersphere Sd and landmark-based shapes in Kendall’s shape space Σk

m =
Sd/SO(m), d = mk−m− 1. Several extensions of PCA for manifold data [1–3,5]
have been proposed, and they provide submanifolds of any dimension 1 ≤ d0 ≤ d,
or a series of geodesics that “spans” the submanifolds. These geodesics take the
role of basis in vector space, and provide projection scores of data analogous
to principal component scores in PCA. Different methods have different fitting
strategies. In particular, Principal Nested Spheres (PNS [3]), applied to Sd, allows
the submanifolds to be non-geodesic, but only requires the submanifolds to be
self-similar. When the object to be fitted in PNS is resticted to be only geodesic
submanifolds, we call the sub-method and its result of analysis by Geodesic PNS.

There is a close relationship between Geodesic PNS and Horizontal Component
Analysis (HCA, [5]), when the data X = {x1, . . . , xn} are in Sd. To see this, denote
the k-dimensional geodesic submanifolds of Sd by Ak

∼= Sk, k ≤ d. Geodesic PNS
fits the nested structure Sd ⊃ Ad−1 ⊃ · · · ⊃ A1 to the data. The PNS fitting is a
backward successive fashion. That is, Ad−1 is first fitted to the data, by minimizing
the sum of squared residuals

∑n
i=1 ρ

2(xi, Ad−1), where ρ(x,A) = infy∈A ρ(x, y),

ρ(x, y) = arccos(|〈x, y〉|), x, y ∈ Sd ⊂ Rd+1. Then each data point xi is projected
onto Ad−1, leading to a projected data set on Ad−1. By the trivial identification of
Ad−1 with Sd−1, smaller-dimensional submanifolds are fitted successively. HCA,
on the other hand, is a forward generalization of PCA, where the first geodesic
γ1, a 1-dimensional submanifold, is fitted by minizing residual variance. The

family of second geodesics Γ2 = {γ(t)
2 , t ∈ R} is formed and fitted by parallel

transport of a geodesic γ
(0)
2 , which is orthogonal to γ1 at the intersection γ1(0).

On Sd, there exists A2 such that A2 = s(Γ2) := {γ(s) ∈ Sd : γ ∈ Γ2, s ∈ R}.
This relation can be extended to the kth family of geodesics Γk (k = 1, . . . , d)
where s(Γk) ⊂ Sd is a geodesic submanifold of dimension k. Therefore, for Sd,
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the underlying structure of Geodesic PNS equals that of HCA. Moreover, given
the sequence Γk and Ak = s(Γk), k = 1, . . . , d, both methods provide the same
projection score for any point in Sd, modulo linear and circular translation.

Despite the resemblance, we emphasize that the estimation strategy of Geodesic

PNS differs from that of HCA. For a given dataset X , we expect that Âk 6= s(Γ̂k)
for all k ≤ d, d > 2. The difference is in whether the dimension of “principal”
submanifold is reduced (backward PCA and PNS) or increased (forward PCA and

HCA). In the exceptional case of S2, the unit sphere in R3, we have Âk = s(Γ̂k)
for k = 1, 2, and HCA becomes the same as Geodesic PNS in all aspects. In fact,
many methods coincide when they are applied to S2; See [4].

PNS is developed using two basic principles: i) self-similarity of (possibly non-
geodesic) submanifolds, and ii) the backward successive fitting strategy. For the
shape data, these principles are applied to develop a novel non-Euclidean intrinsic
version of PCA directly taking into account all of the data. Suppose data are
observed in Σd

2, the Kendall’s shape space for d-landmark planar shapes. Every
principal component (PC) represents the data in a lower dimensional space, that
is similar in curvature to the original data space. For a sequence of PCs of varying
dimensions we follow a nested backward fitting scheme as proposed in [3]. In
Σd

2, lower-dimensional shape spaces Σk
2 thus give PCs in the following sequence of

embedded spaces

(1) Σd
2 ⊃ Σd−1

2 ⊃ · · · ⊃ Σ3
2.

Given a dataset X = {x1, . . . , xn} ∈ Σd
2, the fitting of nested submanifolds mostly

depends on the means of projections onto Σd−1
2 . Different projections give different

shapes with d − 1 landmarks. Should the projection be data-dependent? What
would be the optimal projection? To answer the question of finding the data-
dependent optimal projection, we introduce a flexible framework of dimension
reduction, called reduction of object features (ROOF).

The ROOF is a general concept for dimension reduction of object data. While
it has a potential to describe various dimension reduction techiniques for other
types of object data, such as trees as data objects [6], let us focus on the shape
analysis. In shape analysis, we take the object as the outline that is given by
k landmarks, modulo translation, scaling and rotation. An object space (S, ρ)
with an appropriate metric ρ makes it possible compare a d-landmark shape in
Σd

2 and a k-landmark shape in Σk
2 , d 6= k. The shape spaces Tk = Σk

2 (k =
3, . . . , d) are understood as self-similar feature spaces of dimension k. The object
space and the feature spaces are linked by mappings Φk : Tk → S, which are
data-dependent. The goal of ROOF, given a dataset X , is then to find a set of
projections y1, . . . , yn ∈ Tk and a mapping Φk such that the new features Yk = {yi}
contain as much information as possible compared to the original features X ; It is
equivalent to solve the following least-squares problem.

(2) min
yi∈Tk,Φk

n∑

i=1

ρ2(Φd(xi),Φk(yi)).
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Successively solving (2), i.e., first by setting k = d− 1, then replacing (xi, d, k)
by (yi, d− 1, d− 2), and so forth, gives an estimate of the sequence of the lower-
dimension PCs (1). In many real and simulated examples, we found that the
lower-dimensional approximations Yk ⊂ Σk

2 efficiently reduce the dimension of
the feature space, while preserving large amount of variation contained in the
original data X . For example when the PNS is applied to Yk and X for k < d,
the major modes of variation in Yk are comparable in its interpretation to those
in X . The results of ROOF differs from those of other PCA extensions, such
as PNS [3], HCA [5] and Geodesic PCA [2]: The PCA extensions provides k-
dimensional approximation of X in Σd

2 as d-landmark shapes; The ROOF for
shape data provides reduction of number of landmarks, with k-landmark shapes
(Yk, k < d) as approximations of the original shapes.
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On tree-space PCA

Aasa Feragen

(joint work with Sean Cleary, Megan Owen, and Daniel Vargas)

BHV tree-space [1]1, or the space of trees on a fixed leaf label set, has proven useful
for statistical analysis of many different types of data including phylogenetic trees,
airway trees, blood vessel trees and dendrograms [2,5,8,9]. In this talk we discuss
some interesting properties of first principal components in BHV tree-space.

The 2-dimensional open book on 3 leaves, or T3×R, see Fig. 1, is a subspace of
any BHV tree-space Tn, n ≥ 4. It is also a subspace of the BHV space of 3 leaves
when the lengths of the root and pendant edges are included in the tree-space.
This makes the open book an excellent setting for producing simple examples of
tree-space phenomena.

1BHV is short for for Billera, Holmes, and Vogtmann, the authors of the paper [1] that first
defined the space of trees on a fixed leaf label set.
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Figure 1. Left: BHV tree-space on 3 leaves {a, b, c}. Right:
The open book with 3 sheets.

1. Definition of first principal component

Given a finite dataset X = {xi|i = 1, . . . , N} in the BHV tree-space on n leaves
Tn, the Fréchet mean of X is defined as the point minimizing the sum of squared
distances to the data points [6]:

x̂ = argminx∈Tn

N∑

i=1

d(xi, x)
2.

The first principal component of X , which we denote PC1(X), is defined [2] as
the geodesic segment γa0b0 minimizing the squared projection error ϕ(X, γab):

PC1(X) = γa0b0 , where a0, b0 = argmina,b∈Tn
ϕ(X, γab),

where ϕ(X, γab) is the squared error of projection onto the geodesic segment γab
connecting the points a, b ∈ Tn.

ϕ(X, γab) =

N∑

i=1

d(xi, prγab
(xi))

2.

This definition is analogous to the definition of first principal component on
manifolds due to Huckemann et al. [3] and Sommer et al. [4], except for the restric-
tion to geodesic segments, which is due to the problem of parametrizing geodesic
rays in tree-space [2, 5].

2. The first principal component is sticky

Just like the Fréchet mean [7], the principal component PC1(X) can be “sticky”,
defined as follows: The first principal component PC1(X) for a finite sample X ⊂
Tn sticks to a subset S ⊂ Tn if PC1(X) ⊂ S and sufficiently small permutations

X̃ of X lead to PC1(X̃) ⊂ S.
Stickiness of PC1(X) is shown by the example of Fig. 2 on the 2-dimensional

open book with 3 leaves. It is clear that PC1(X) ⊂ S where S is the spine of the
open book, and the same holds for small perturbations of X .

Stickiness of PC1(X) indicates that, just as for sticky means, first principal
components of a topologically diverse dataset will tend to be contained in the
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higher codimension strata of tree-space. It is not clear how parallel transport
along such principal components might be defined, which has consequences for
extending techniques from manifold statistics [4] to the open problem of defining
second principal components.

Figure 2. Left: The Fréchet mean (star-shaped point) of the
dataset in T3 is sticky [7]. Right: The first principal component
(the dotted line geodesic connecting two star-shaped endpoints)
of the dataset in the open book sticks to the spine of the book.

3. The first principal component does not always contain the

Fréchet mean

In Euclidean space, the Fréchet mean always lies on the first principal component.
On curved manifolds, this is known not to be the case [3]. In Fig. 3 we give
an example on the open book, where the Fréchet mean does not lie on the first
principal component, showing that this is also not the case in BHV tree-spaces.

This has consequences for the definition and interpretation of the fraction of
variance captured by a principal component, which is frequently used to measure
the success of dimensionality reduction via PCA in Euclidean space [10].

4. The first principal component does not vary continuously with

the data

In Euclidean space, the first principal component of a sample X varies continu-
ously with the sample, in the sense that small perturbations of X lead to small
perturbations of principal components. This, however, is not always the case in
BHV tree-space. We illustrate this with the example in Fig. 4, where we let
X = {x1, x2, x3}, with the tree x3 having interior branches of length a. For a = 0,
PC1(X) is clearly given by the option shown in (b), which leads to a projection
error of 0. For varying a > 0, the figures (b)-(e) illustrate all possible options for
PC1(X). The only way that PC1(X) can vary continuously away from (b) as a
moves from 0 is through option (c), which is never optimal.
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Figure 3. Let X consist of the circular points in the figure. The
Fréchet mean µ(X) is the quadratic point, which sits on the spine.
However, PC1(X) is not the dotted line segment along the spine,
as the solid line segment connecting two star-shaped points can
easily be shown to give a lower least squares error.

Figure 4. For a = 0 the geodesic segment shown in (b) is opti-
mal. As the lengths a increase, (b) remains a better option than
(c) until one of the solutions (d)-(f) takes over.

5. Summary

In this talk, we have reviewed some interesting properties of first principal compo-
nents in tree-space. In some cases, the observed behavior may, while mathemat-
ically interesting, seem practically counterproductive at a first glance. However,
we do not believe that they are. In datasets with moderate topological variation,
we do not expect stickiness to lead to uninformative statistics, as already observed
with Fréchet means of airway trees appearing in medical imaging [2]. Moreover,
several of the observed properties such as discontinuous dependency on the dataset,
or failure to contain the Fréchet mean, also happen on nonlinear manifolds, where
both means and principal components are still of great utility.
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Construction of distributions on tree-space via diffusion processes

Tom M. W. Nye

The set of rooted edge-weighted trees on a fixed set of leaves {1, 2, . . . , N} forms a
geodesic metric space known as BHV tree-space [1], denoted TN . Data consisting
of sets of points in tree-space arise in evolutionary biology and from various med-
ical imaging techniques. Construction of non-trivial probability distributions on
BHV tree-space for which the density function can be evaluated is a challenging
problem. For example, the volume of the unit radius ball around a point x0 ∈ TN
varies with x0 and is difficult to compute. It follows that the set of uniform dis-
tributions on each ball of radius r around any x0 does not form a tractable family
of probability distributions. Nonetheless, in order to develop probability models
on tree-space, it would be highly desirable to construct distributions representing
a cloud of dispersed density around a central point. One approach is to construct
distributions by fixing a ‘source’ point x0 ∈ TN and running Brownian motion
from x0 for a duration t0 of time. We denote the resulting distribution B(x0, t0).

For N = 3 and N = 4 analytic solutions for the density function of B(x0, t0)
have been obtained previously [3]. For N = 3, tree-space is particularly simple:
it consists of three copies of the positive real line [0,∞) glued together at the
origin. This space is often called the 3-spider. Brownian motion the 3-spider is
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the same as a regular Brownian motion on each arm, but at the origin the diffusing
particle moves onto each arm with equal probability. The heat equation can be
easily solved on T3 by folding the two arms which do not contain x0 together,
and applying the reflection principle for Brownian motion on the real line. The
solution consists of a linear combination of Gaussians on each arm of the spider.
The graph below shows the solution for increasing t0.

0.
0

0.
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0.
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0.
3

0.
4

x

f(
x)

2x0 x0 0 x0 2x0 3x0

Arms 2 & 3 Arm 1

It is interesting to note from the graph that there are three possible summary
statistics for the location of the distribution: the source x0, the mode, and the
Fréchet mean. The dotted line shows the behaviour of the mode with increasing
t0. It approaches 2x0 on the arm containing the source as t0 → ∞. On the other
hand, the Fréchet mean moves to the origin at some finite value of t0, and then
sticks there as t0 increases further. In some situations, ‘stickiness’ of the Fréchet
mean [2] might be undesirable, so modelling data as being drawn from B(x0, t0)
and using the source x0 or the mode as a summary of location offers an interesting
alternative.

For N > 4 obtaining an analytic solution to the heat equation on TN becomes
very difficult. Instead the author has developed an alternative approach based on
simulation. An appropriate random walk on tree-space from x0 can be defined,
and the distribution of points after m steps of the walk is denoted W (x0, t0;m).
It can be shown that W (x0, t0;m) → B(x0, t0) in distribution as m → ∞. Given a
data set on TN , parameter inference for x0, t0 can then be performed by forward-
simulating random walks. The details of this approach will be published elsewhere.
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Fréchet Means in the Space of Phylogenetic Trees

Huiling Le

(joint work with Dennis Barden and Megan Owen)

The concept of Fréchet means of random variables on a metric space is a general-
isation of the least mean-square characterisation of Euclidean means: a point is a
Fréchet mean of a probability measure µ on a metric space (M , d) if it minimises
the Fréchet function for µ defined by

x 7→ 1

2

∫

M

d(x, x′)2dµ(x′).

Among other applications, this has recently been used in the statistical analysis
of phylogenetic trees, as motivated by [3] and [4]. The space Tm of phylogenetic
trees with m leaves was first introduced in [3]. For each fixed m, the space is
a topologically stratified space and also a CAT (0) space. Thomas Hotz’s notes,
produced during the SAMSI 2010-11 Program on ‘Analysis of Object Data’, on
the behaviour of Fréchet means on a ‘spider’, as well as the ensuring work of [5]
and [1], demonstrates that the results on the limiting behaviour of sample Fréchet
means in Riemannian manifolds can not be directly generalised to stratified spaces.
In particular, when a population mean there lies in a stratum of positive co-
dimension, the sample Fréchet means exhibit a range of non-standard behaviour.
See also [2].

To be able to analyse this further in the case of Tm, we recall that the main
tool used in [5] for obtaining the limiting distribution for sample Fréchet means in
open books is the so-called folding map. These folding maps connect the asymptotic
behaviour on the open books with those of certain sequences of means of Euclidean
random variables. Thus, they link the limiting distribution of sample Fréchet
means on the open books with the limiting distributions of the sample means of
the related Euclidean random variables.

Analogous to the folding maps for open books, the crucial step for studying
the limiting behaviour of sample Fréchet means in Tm, the space of phylogenetic
trees with m leaves, is the log map, or equivalently the translated log map. By
the log map, we mean a generalisation of the inverse of the exponential map on a
Riemannian manifold. In particular, the log map at each tree T ∗ is a map from
Tm to the tangent cone at T ∗ and is expressed in terms of the lengths and initial
tangent vectors of the geodesics starting from T ∗. The translated log map is a
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composition of the log map with parallel transport, so that the images of the log
maps at all trees in a given stratum are transported to a common Euclidean cone.
However, the translated log maps depend also on the base tree T ∗. Contrasting
with the case for Riemannian manifolds, the log map at each tree in Tm is neither a
diffeomorphism, nor second order differentiable. In particular, a new phenomenon
in Tm is that a single unit vector in the tangent cone at T ∗ usually results in
infinitely many geodesics, inherited from the structure of the space. For analysis
of the properties of the log map required for our study of asymptotic behaviour of
sample Fréchet mean, we use the geometric structure of geodesics in Tm obtained
in [6] and [7], which enables us to express the log map on Tm in a form usable for
our investigation.

Using the results on the log map, we first characterise the conditions for a tree
in Tm to be the Fréchet mean of a given probability measure µ on Tm. The
characterisation obtained varies with the dimension of the stratum on which the
Fréchet mean lies. It is expressed, in the directions orthogonal to the stratum
where the Fréchet mean lie, in terms of directional derivatives while, on the sub-
space tangent to the stratum, it is expressed in terms of the projection of the
translated log map.

By taking advantage of the special structure of tree space in the neighbourhood
of any given stratum, we demonstrate the non-classical behaviour of sample Fréchet
means arising from the global topological structure of the space. In particular, we
show that, despite the log map being neither a diffeomorphism nor second order
differentiable, when the Fréchet mean of µ lies on a top-dimensional stratum the
sample Fréchet means behaves in a similar way to those in Riemannian manifolds.
Under suitable conditions, we establish a central limit theorem for iid random
variables having probability measure µ that has its Fréchet mean lying in a top-
dimensional stratum, where the role of the global topological structure of the space
is played through the covariance structure of the limiting distribution. When the
Fréchet mean of µ lies on a stratum of co-dimension one, under certain conditions
the limiting distribution of sample Fréchet means can take one of three possible
forms, distinguished by the nature of its support. This support may be either
the (m − 1)-dimensional Euclidean space containing the stratum of co-dimension
one where the Fréchet mean lies, or a half Euclidean space of dimension m whose
boundary contains that stratum of co-dimension one, or the union of two such
half spaces. In contrast, when a Fréchet mean lies in a stratum of co-dimension
at least two, the support of the limiting distribution can take various different
forms. Nevertheless, in all these cases, the limiting distributions are linked closely
with Gaussian distributions in Euclidean spaces. In particular, these results also
improve our results, obtained in [1], on the limiting behaviour of sample Fréchet
means when m = 4 and the Fréchet mean of µ is at the cone point.
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Algebraic Combinatorial Methods in Statistics and Machine Learning

Franz J. Király

(joint work with Duncan A.J. Blythe, Martin Kreuzer, Louis Theran, Ryota
Tomioka)

A common generative sparsity assumption for data is to lie in some sub-manifold
or sub-variety of n-space, that is, observations corresponding to a data matrix
X ∈ RN×n where the rows are vectors in M ⊆ Rn, potentially distorted by sta-
tistical noise. Often M is unknown, in which case the central question arising is
estimating M, given the data matrix X and possible knowledge on X . Closely
related to it is denoising X . For example, ifM is known to be a r-dimensional sub-
vector space of Rn, and the noise on X is i.i.d. Gaussian, a least-squares estimator
is given by the span of the first r principal, or right singular vectors associated to
X . A denoising of a row of X is given by orthogonal projection.

In the talk, two more general cases were discussed: (a) the case where M is
a r-dimensional sub-vector space of Rn, but some entries of X are missing, and
(b) the case where M is a sub-manifold, or an algebraic sub-variety of Rn. As
presented, both cases are amenable to estimation using certain ideas from algebra
and combinatorics, as will be briefly discussed below.

(a) Algebraic-Combinatorial Low-Rank Matrix Completion
If M is linear and some entries of X are missing, the problem is known as

low-rank matrix completion - as X will be an incomplete matrix of rank r. Both
an estimation of M or of one of the missing entries of X is in general hard, and
similarly is a further denoising of an observed entry. Existing literature is mostly
focused on optimization-based estimation of M; in the talk, the first systematic
theory and methodology for imputing single entries of X and obtaining entry-wise
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error estimates was presented, see [1]. The theory is centered around objects and
results of the following algebraic combinatorial kind:

Definition: Let C ⊆ [m]× [n] a set of indices. C is called dependent if the map
Ω : MN → C

#C , X 7→ (Xij , (ij) ∈ C) is not surjective. C is called circuit (of rank
r) if it is minimally dependent (intuitively, all but one entries of a circuits leave
no degree of freedom for the remaining one).

Theorem: Assume the rows of X are in (very) general position. Assume the
entry Xkℓ can be completed from the Xij , (ij) ∈ E. Then (kℓ) ∈ E, or there is a
circuit C such that (kℓ) ∈ C and C ∈ E ∪ (kℓ).

Theorem: Assume the rows of X are in (very) general position. Let C ⊆ [m]× [n]
be a circuit (of rank r). Then there is an up-to-scaling-unique polynomial θC , such
that θC(Xij , (ij) ∈ C) = 0 if and only if the Xij , (ij) ∈ E can be completed to a
rank r matrix X .

For theoretical purposes, the circuit polynomials generalize the determinants as
certifying functions for low-rankness for the case of incomplete matrices. For prac-
tical purposes, they can be used to fill in the missing entries, by finding circuits
which are supported on observed entries except one, and similarly to denoise ob-
served ones by finding circuits with support in the observed entries. Algorithms for
this and error estimation are described in [1] and the follow-up papers. I conclude
with two open questions:

Open problem: Characterize circuits and circuit polynomials in rank r = 2.

Open problem: If N = n, and the observed positions E are the edges of a
uniformly random 2r-regular graph: are all entries of X completable with high
probability, i.e., for the asymptotics n = N → ∞?

(b) Low-Rank Approximation with Cross-Kernel Matrices
If M is non-linear, e.g. an algebraic manifold, kernel methods offers a variety

of well-scaling algorithms to obtain information from the data matrix X . Most of

these involve the so-called kernel matrix K(X,X) = (k(xi, xj))ij ∈ RN×N , where

xi is the i-th row of X , and k : Rn × R
n → R is a positive semi-definite kernel

function, e.g., the degree d inhomogenous polynomial kernel k(x, y) =
(
x⊤y + 1

)d
.

For example, a possible estimate forM which can be readily deduced from existing
literature is the vanishing locus of the kernel PCA projection residual, which is
the positive semi-definite polynomial ρ(x) = k(x, x)−κ(x)⊤(PK(X,X)P )−1κ(x),
where κ(x) = (k(x, xi))i ∈ RN , where P denotes projection on the principal
eigenvalues ofK(X,X), and (PK(X,X)P )−1 the pseudo-inverse of the projection.

The computational bottleneck of evaluating ρ(x), similarly to most kernel based
algorithms, consists in tasks related to the eigenvalue decomposition of K(X,X),
whose computational cost is Θ(N3). An idea presented in the talk is to use an

approximation based on the cross-kernel matrix K(X,Z) = (k(xi, zj))ij ∈ RN×M ,

where zj are rows of some matrix Z ∈ RM×n, see [2]. The approximation takes the
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form of K(X,X) ≈ K ·K⊤, where K = K(X,Z)·K(Z,Z)−1/2. Computation ofK
costs only Θ(M2N +M3), and the singular value decomposition of K can be used
to approximate the eigenvalue decomposition of K(X,X). For the polynomial
kernel, one can show the following exact asymptotics in M :

Theorem: Assume the rows of Z are in (very) general position (this holds for
example when the entries are i.i.d. Gaussian). Then, there is some M0 such that
if M ≥ M0, then K(X,X) = K ·K⊤.

Note that the statement above does not depend on X , only on Z which can
be prescribed by the statistician. Unfortunately, M0 can be quite big and grow
exponentially in d. Though ifM is an algebraic variety, a better bound is available.

Theorem: Assume both the rows of X and Z are in M, with the rows of Z in
(very) general position under this constraint. If M ≥

(
n+d+1

d

)
−dim I(M)≤d, then

K(X,X) = K ·K⊤.

Here I(M)≤d denotes the (degree-bounded part of the) so-called ideal of M,
the vector space of all polynomials in n variables vanishing on M. Heuristically,
the smaller dimension M has and the less complex it is, the closer its dimension
will be to

(
n+d+1

d

)
, allowing to choose smaller M .

Numerical experiments (see [2]) show that the approximation, while not any-
more exact, is still quite good for even much smaller for i.i.d. random Z when M
is small, and for other kernels which are not polynomial. As currently no related
proven statement is known to me, I would like to formulate these as open problems:

Open problem: Prove the following asymptotic conjecture inspired by results
from compressed sensing, or a suitably modified variant for the polynomial kernels.
Consider an algebraic manifold M ⊆ Rn of dimension D, and the polynomial
kernel k of degree d. Let x, y ∈ M arbitrary but fixed. Let z1, . . . , zM with
i.i.d. standard normal entries. Assume M ≥ λDd log n, with λ ≥ 1. Then, with
global C, c,

P
(
‖k(x, y)−K(x, Z) ·K(Z,Z)−1 ·K(Z, y)‖ ≥ ε

)
≤ Cε−cλ.

Open problem: For the Gaussian kernel k(x, y) = exp{‖x− y‖2/2σ2}, prove an
approximation result of the type K(X,X) ≈ K(X,Z) · K(Z,Z)−1 · K(Z,X), in
terms of M, X and Z, asymptotic in M .

References
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On Geometry Underlying Borel Measures on Euclidean Space

Washington Mio

(joint work with Diego Diaz Martinez and Facundo Mémoli)

We discuss the notion of multiscale covariance tensor fields associated with a Borel
probability measure α on Euclidean space Rd, as introduced in [1]. Scale depen-
dence is controlled by a kernel function K(x, y, σ) > 0, where x, y ∈ Rd and σ > 0
is the scale parameter. The idea is that, at scale σ, the kernel delimits the horizon
of an observer positioned at x by attributing weight K(x, y, σ) to the point y.
Covariation of the weighted data is measured relative to every point x ∈ Rd, not
just relative to the mean as is common practice, thus giving rise to a multiscale
covariance field. We prove stability and consistency theorems for covariance fields
and investigate geometric properties of α that are contained in these fields.

We define the multiscale tensor field associated with a Borel measure α as the
mapping Σα : R

d × (0,∞) → Rd ⊗ Rd given by

(1) Σα(x, σ) =

∫

Rd

(y − x)⊗ (y − x)K(x, y, σ) dµ(y) ,

provided that the integral is convergent. For any (x, σ), the 2-tensor Σα(x, σ)
yields a non-negative bilinear form. If α is a probability measure, Σα may be
interpreted as a multiscale covariance field. If y1, . . . , yn are Rd-valued random
variables sampled from α, the empirical covariance tensor field is the covariance
field associated with the empirical measure α̂n = 1

n

∑n
i=1 δyi

, which is given by

(2) Σα̂n
(x, σ) =

1

n

n∑

i=1

(yi − x)⊗ (yi − x)K(x, yi, σ) .

In this note, we focus on the isotropic Gaussian kernel

G(x, y, σ) =
1

(2πσ2)d/2
exp

(‖y − x‖2
2σ2

)

and the truncation kernel

T (x, y, σ) = χ(x,σ)(y) ,

where χ(x,σ) is the characteristic function of the ball of radius σ centered at x ∈ Rd.
To state the stability and consistency results, we introduce some notation. We

let mp(α) be the pth moment of α and

Ψσ(c) = c

(
4c8

σ8
+

2c6

σ6
+

13c4

σ4
+

12c2

σ2
+ 18

)1/2

.

Theorem 1 (Stability). Let α and β be Borel probability measures on Rd, Σα(x, σ)
and Σβ(x, σ) the multiscale covariance fields of α and β associated with the Gauss-
ian kernel, and c > 0. If mp(α) < c and mp(β) < c, 1 6 p 6 10, then

sup
x∈Rd

∥∥Σα(x, σ) − Σβ(x, σ)
∥∥ ≤ 2Ψσ(c)

(2πσ2)d/2
dW (α, β),

for all σ > 0, where dW denotes Wasserstein 2-distance.
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Theorem 2 (Consistency). Let α be a Borel probability measure on R
d and

y1, . . . , yn be i.i.d. random variables sampled from the probability measure α. If α
has sufficiently many finite moments, then for each σ > 0 and ε > 0,

Probα⊗n

(
sup
x∈Rd

∥∥Σα̂n
(x, σ) − Σα(x, σ)

∥∥ ≥ ε

)
n↑∞−→ 0.

The next results illustrate the fact that many geometric properties of subman-
ifolds of Rd can be recovered from Σα at small scales. Let C ⊂ R

2 be a smooth
simple closed curve. We consider the singular measure α on R2 supported on C
induced by arc length. For x0 ∈ C, the arc-length parametrization of C near x0

may be written as X(s) = s− κ2s3

6 +O(s4) and Y (s) = κs2

2 + κss
3

6 +O(s4), where
X(s) and Y (s) are coordinates along the tangent and normal directions to C at
x0, respectively.

Proposition 3. Let σ > 0 be small. For any x0 ∈ C, in the coordinates specified
above, the multiscale covariance matrix for the truncation kernel is given by

(3) Σα(x0, σ) =

(
2σ3

3 − κ2σ5

20 +O(σ6) κsσ
5

15 +O(σ6)
κsσ

5

15 +O(σ6) κ2σ5

10 +O(σ6)

)
,

In particular, the curvature of C may be recovered from Σα.

Now we consider a compact surface S ⊂ R3. Given a non-umbilic point x0 ∈ S,
choose a Cartesian coordinate system centered at x0 so that the x-axis and y-
axis are in the directions of maximal and minimal sectional curvatures at x0,
respectively, and the z-axis is normal to the surface at x0.

Proposition 4. Let σ > 0 be small, x0 ∈ S be non-umbilic, and let α be the
surface area measure on S. Then, in the coordinate system described above, the
multiscale covariance matrix for the truncation kernel is given by

Σα(x0, σ) =




A1 O(σ7) O(σ8)
O(σ7) A2 O(σ8)
O(σ8) O(σ8) An


 ,

where A1 = πσ4

4 + π
192 (−3κ2

1−6κ1κ2+κ2
2)σ

6+O(σ7), A2 = πσ4

4 + π
192 (κ

2
1−6κ1κ2−

3κ2
2)σ

6 +O(σ7), An =
3κ2

1+2κ1κ2+3κ2
2

96 σ6 +O(σ7), and κ1 and κ2 are the principal
curvatures of S at x0.

Remark. It follows from the proposition that the determinant of the covariance is(
3κ2

1 + 2κ1κ2 + 3κ2
2

)
π3

1536σ
14+O(σ15) and the trace is π

2σ
4+ π

48 (κ1−κ2)
2σ6+O(σ7).

Thus, κ1 and κ2 can be recovered from the spectrum of Σα(x0, σ) as a function of
σ. Indeed, from the Taylor expansions of these two functions one can extract the
values of (κ1 − κ2)

2 and 3κ2
1 + 2κ1κ2 + 3κ2

2, which in turn determine κ1 and κ2.

We conclude with some simple illustrations of applications of multiscale covari-
ance fields (for the Gaussian kernel) to learning arrangements of submanifolds of
Rd from data. Let p1, . . . , pn be points representing a subspace of Rd that is a
finite union of connected submanifolds in general position. The goal is to cluster
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the points so that each component of the arrangement is represented as a clus-
ter. For a fixed scale σ, we represent the ith data point by the covariance tensor
Σα̂n

(pi, σ)) and cluster these tensors using a single linkage scheme based on the
Euclidean metric d(Σ1,Σ2) = ‖Σ1−Σ2‖. Figure 1 shows two examples of data rep-

Figure 1. Single linkage clusterings using covariance tensors and
the corresponding dendrograms.

resenting arrangements of curves in the plane and the corresponding single linkage
dendrograms, which show the hierarchy of cluster fusions. The clusters displayed
correspond to a fixed level in the dendrogram. Note that the method is able to
separate the various components of the arrangement, as well as find neighborhoods
of their intersection points. Figure 2 shows a similar example involving lines and

Figure 2. Clustering two planes and two lines.

planes in R3.
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Frölicher spaces as a setting for tree spaces and stratified spaces

Peter W. Michor

(joint work with Thomas Hotz and Andreas Kriegl)

Frölicher spaces were introduced under the name ‘espaces lisses’ (smooth spaces)
in [4] and [5]; they were called Frölicher spaces in [7, section 23]. They furnish a
very simple vehicle for extending the notion of smooth mappings from manifolds
to singular spaces and they give a cartesian closed category.

Frölicher spaces. A Frölicher space, also called a smooth space or a space with
smooth structure, is a triple (X, CX ,FX) consisting of a set X , a subset CX of the
set of all mappings R → X , and a subset FX of the set of all functions X → R,
with the following two properties:

• A function f : X → R belongs to FX if and only if f ◦ c ∈ C∞(R,R) for
all c ∈ CX .

• A curve c : R → X belongs to CX if and only if f ◦ c ∈ C∞(R,R) for all
f ∈ FX .

Note that a set X together with any subset F of the set of functions X → R

generates a unique Frölicher space (X, CX ,FX), where we put in turn:

CX := {c : R → X : f ◦ c ∈ C∞(R,R) for all f ∈ F},
FX := {f : X → R : f ◦ c ∈ C∞(R,R) for all c ∈ CX},

so that F ⊆ FX . The set F will be called a generating set of functions for the
Frölicher space.

Likewise, a set X together with any subset C of the set of curves R → X
generates a unique Frölicher space (X, CX ,FX), where we put in turn:

FX := {f : X → R : f ◦ c ∈ C∞(R,R) for all c ∈ C},
CX := {c : R → X : f ◦ c ∈ C∞(R,R) for all f ∈ FX},

so that C ⊆ CX . The set C will be called a generating set of curves for the Frölicher
space.

Smooth mappings. A mapping φ : X → Y between two Frölicher spaces is
called smooth if one of the following three equivalent conditions hold:

• For each c ∈ CX the composite φ ◦ c is in CY .
• For each f ∈ FY the composite f ◦ φ is in FX .
• For each c ∈ CX and for each f ∈ FY the composite f ◦φ◦c is in C∞(R,R).

Note that FY can be replaced by any generating set, as well as CX . The set of
all smooth mappings from X to Y will be denoted by C∞(X,Y ). Then we have
C∞(R, X) = CX and C∞(X,R) = FX . Obviously, Frölicher spaces and smooth
mappings form a category.

Theorem. [7, 23.2] The category of Frölicher spaces and smooth mappings has
the following properties:
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• Complete, i.e., arbitrary limits exist. The underlying set is formed as in
the category of sets as a certain subset of the cartesian product, and the
smooth structure is generated by the smooth functions on the factors.

• Cocomplete, i.e., arbitrary colimits exist. The underlying set is formed as
in the category of sets as a certain quotient of the disjoint union, and the
smooth functions are exactly those which induce smooth functions on the
cofactors.

• Cartesian closedness, which means: The set C∞(X,Y ) carries a canonical
smooth structure generated by all functions of the form

C∞(X,Y )−C∞(c,f)→ C∞(R,R)−λ→ R

where c ∈ C∞(R, X) and f ∈ C∞(Y,R), or in a generating sets, and
where λ ∈ C∞(R,R)′. With this structure the exponential law holds:

C∞(X × Y, Z) ∼= C∞(X,C∞(Y, Z)).

Corollary. Canonical mappings are smooth, for Frölicher spaces X,Y, Z:

ev : C∞(X,Y )×X → Y, ev(f, x) = f(x)

ins : X → C∞(Y,X × Y ), ins(x)(y) = (x, y)

( )∧ : C∞(X,C∞(Y, Z)) → C∞(X × Y, Z)

( )∨ : C∞(X × Y, Z) → C∞(X,C∞(Y, Z))

comp : C∞(Y, Z)× C∞(X,Y ) → C∞(X,Z)

C∞( , ) : C∞(Y, Y1)× C∞(X1, X) →
→ C∞(C∞(X,Y ), C∞(X1, Y1))

(f, g) 7→ (h 7→ f ◦ h ◦ g)

Natural topologies on Frölicher spaces. [3, section 1] On a Frölicher space
(X, CX ,FX) we consider the following two topologies:

• The final topology with respect to all smooth curves in CX ; it is denoted
by τC .

• The inital topology with respect to all smooth functions in FX ; we denote
it by τF

The identity mapping (X, τC) → (X, τF ) is obviously continuous. A Frölicher
space is called balanced if these two topologies coincide and are Hausdorff.

Related concepts.

• Holomorphic Frölicher spaces. As curves one has to take mappings from
the complex unit disk D, and complex valued functions such that each com-
position is holomorphic D → C. Stein manifolds are holomophic Frölicher
spaces whereas compact complex manifolds are not. See [7, 23.5].

• Sikosrki spaces. Here one specifies an algebra of ‘smooth’ functions with
certain properties. One can also specify sheafs of ‘smooth’ functions.
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• Diffeological spaces. Here one specifies mappings from open sets in all Rn’s
with appropriate conditions. These were introduces by Sourieau, see the
recent book [6].

There are natural functors from the categories of Sikorski spaces and of diffeological
spaces into the category of Frölicher spaces, which are right and left adjoints.
See [9] for a comparison.

Theorem. Tree spaces in the sense of [1] are balanced Frölicher spaces.

This follows from the fact that a tree space T is always a closed subspace of
RN , where different quadrants always meet at non-trivial angles. As generating
set of functions one can take the restrictions of linear functions on RN . This is
called the standard Frölicher structure.

The following two examples are fundamental to understanding tree spaces, see
e.g. [8].

Example of a treespace: the 3-spider.

A generating set of functions consists of all linear func-
tions on R2 or on R3. Smooth curves in CX then have to
stop in all derivatives when they change sheets. Functions
f ∈ FX are then smooth on each closed sheet.

The open book as part of tree space.

A generating set of functions consists again of all
linear functions on Rn. Smooth curves in CX can
meet the spine S only tangentially; more pre-
cisely, the first non-vanishing derivative of the
normal component has to be of even order. Func-
tions f ∈ FX are smooth on each closed sheet.

Example of a non-Hausdorff orbit space: adjoint action of SL(2,R).

The adjoint action of SL(2,R) on its Lie al-
gebra sl(2,R) has as orbits the connected
components of the ‘spheres’ with respect to
the Killing form, which is isomorphic to
Minkowski space R1,2. The orbits are as fol-
lows. The double light cone decomposes in
three orbits: the future light cone, the past
one (these two are not closed orbits), and 0.

The other orbits are: The two parts of each two-sheeted hyperboloid, and the one
sheeted hyperboloids. The orbit space X can be visualized as a vertical line, a
horizontal half-line, and two further points (corresponding to the open light cones)
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which cannot be separated in the quotient topology from the intersection point
depicting the equivalence class of 0.

The structure of a Frölicher space on X is generated by the set C of projections
to X of all smooth curves in R1,2. A smooth curve can go from the vertical half-
line through one of the nonclosed orbits to the horizontal half-line, but through
0 it can only go infinitely flat (in R1,2). The functions f ∈ FX are those such
that f ◦ π is in C∞(R1,2,R). The topology τF is strictly coarser then the quotient
topology: The closure of each non-closed point contains all 3 points. We get curves
in CX which are not in C, namely, a curve in CX can now also go smoothly with
nontrivial speed through 0 from vertical to horizontal. The final topology τC is
finer: the two non-closed points become closed, too; so τC is T1 but still not T2.
The space X is not balanced.

The geodesic Frölicher structure on tree spaces. Then we can put the
following Frölicher structure on X : Let us take as generating set C the union of
the space CX of smooth curves for the standard Frölicher structure on X with the
set of all curves γ : R → X such that s 7→ γ(tan(s)) = γ̃(s) is a geodesic between
the points γ̃(−π/2) and γ̃(π/2) which is parameterized proportional to arclength.
That means, we put:

Fgeo
X = {f : X → R : f ◦ γ ∈ C∞(R,R)∀γ ∈ C},
Cgeo
X = {c : R → X : f ◦ c ∈ C∞(R,R)∀f ∈ Fgeo

X }.

Then (X, Cgeo
X ,Fgeo

X ) is a Frölicher space by the general construction.
We define T i

xX as the quotient of {c ∈ Cgeo
X : c(0) = x} by the equivalence

relation c1 ∼ c2 ⇐⇒ (f ◦ c1)′(0) = (f ◦ c2)′(0) ∀ f ∈ Fgeo
X , and call this the inner

tangent space at x ∈ X . For a tree-space T i
xX is the tangent space at x of the

stratum containing x in its interior.
We may define T c

xX as the quotient of the set of all geodesics γ : [0, 1] → X
with γ(0) = x, parameterized proportional to arclength, modulo the equivalence
relation γ1 ∼ γ2 ⇐⇒ γ1 = γ2 near 0. We call T c

xX the conical tangent space. It
contains all vectors pointing from x into higher strata which are bounded by the
stratum of x.

Geodesic Frölicher structures on certain metric spaces. Let X be a ge-
odesic metric space, i.e., between any two points there exists a unique geodesic
realizing the distance (see e.g. [2]).

If we generate a Frölicher structure only by the set C of geodesics, even in Rn

we do not get the usual structure. Besides C∞-function we also get homogeneous
rational functions in FX , and more.

Let us take as generating set F of functions squares of geodesic distances x 7→
d(yi, x)

2, where yi runs through a subset of points in X . If X = Rn and yi are
n + 1 generic points, the resulting Frölicher structure is the usual one. If X is a
tree-space, the resulting Frölicher structure seems to be the (Cgeo

X ,Fgeo
X ) structure.
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Diffusion Processes and PCA on Manifolds

Stefan Sommer

Approaching dimensionality reduction on differentiable manifolds with affine con-
nection from a probabilistic viewpoint, we develop a generalization of Principal
Component Analysis (PCA) that does not rely on parametric representations of
principal submanifolds. The method fits a class of diffusions processes arising as
horizontal stochastic flows in the frame bundle to observed data by maximum like-
lihood. The probabilistic interpretation removes the reliance of previous methods
on explicitly constructed submanifolds that are not totally geodesic. In addition,
projections to dense geodesics are avoided thus giving a well-defined construction
on tori where projections do not exist.

1. Background

Conventional PCA uses the inner product structure of Euclidean space, a fact
that makes generalization of the procedure to differentiable manifolds and strati-
fied spaces difficult. Existing non-Euclidean extensions of PCA include Principal
Geodesic Analysis (PGA, [1]) that parametrizes low-dimensional principal com-
ponents with geodesic sprays from a Frechét mean; Geodesic PCA (GPCA, [2])
that finds principal geodesic curves minimizing residual errors; Principal Nested
Spheres (PNS, [3]) that finds low-dimensional spheres; and Horizontal Compo-
nent Analysis (HCA, [4]) that uses development of curves in the frame bundle
of the manifold to construct horizontal subspaces that project to the manifold.
These approaches capture different properties of Euclidean PCA but they are all
limited by the fact that totally geodesic submanifolds do not exist in general in
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non-Euclidean spaces. This is in contrast to the Euclidean case where linear sub-
spaces are totally geodesic. In addition, subspaces maximizing captured variance
are not equivalent to subspaces minimizing residual errors. Even for distributions
with local support, recurring and dense geodesics can make projections minimizing
residual errors undefined [5].

2. Diffusion PCA

The principal subspaces that in Euclidean PCA maximize variance of orthogonally
projected data samples can be found by eigendecomposing the sample covariance
matrix C. The principal axes are given by unit eigenvectors uj of C, and with
U = (u1, . . . , ud), the principal components xn = UT (yn − µ) are projections of
the centered data to the span of the principal axes. Conventionally, uj are ordered
according to decreasing eigenvalues.

In [6], a probabilistic formulation of PCA was developed as a maximum likeli-
hood estimate (MLE) of the matrix W in the latent variable model

y = Wx+ µ+ ǫ .

The latent variables x are assumed normally distributed N (0, I), and, in contrast
to factor analysis, the noise ǫ is isotropic ǫ ∼ N (0, σ2I). The marginal distribution
of the observed data is then again Gaussian N (µ,Cσ), Cσ = WWT + σ2I. The
MLE for W is up to rotation given by WML = U(Λ−σ2I)1/2, Λ = diag(λ1, . . . , λd)
with the usual PCA solution recovered as σ2 → 0. The principal components xn

are defined as the mean of x conditional on the sample yn and given by E[xn|yn] =
(WTW + σ2I)−1WT

ML(yn − µ). This definition again approaches the orthogonal
projections used in PCA as σ2 → 0.

Importantly for our purpose, the probabilistic formulation makes no reference
to linear subspaces. Thus a generalization to nonlinear manifolds can be obtained
without constructing submanifolds that in general cannot be totally geodesic. The
main difficulty in generalizing the method instead lies in the latent variable model
being additive and using normal distributions, neither which are directly transfer-
able to manifolds.

We now define diffusion PCA (DPCA) that rephrases the latent variable model
using stochastic paths and diffusions processes. This formulation naturally extends
to differentiable manifolds with affine connection. Let Wt be a Wiener process in
R

d and let Xt be given by the R
n valued stochastic differential equation (SDE)

dXt = σ ◦ Wt with source X0 = δ(0,...,0). Here the n × d matrix σ is stationary

so that Xt is a driftless diffusion with infinitesimal generator σσT . Through the
process of stochastic development [7], the process maps to a stochastic process Ut

in the frame bundle FM of a manifold Mn with affine connection: If H1, . . . , Hn

are the horizontal vector fields on FM , Ut satisfies dUt = Hi(Ut)σ
i
j ◦dW j

t , and the
source is a point (p, u) ∈ FM , p ∈ M . Trough the bundle projection π : FM → M ,
Ut projects to a manifold valued diffusion π(Ut) which is unique given its generator
L and initial distribution [7].
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(a) sample paths,
elliptic hyperboloid,
−2x2 + y2 = −z2

(b) sample paths,
cylinder,
x2 + 0y2 = −z2

(c) sample paths,
sphere,
x2 + y2 = −z2
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(d) R2 ∼= TpM , mean
path (red/dark grey) and
density from (a)
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(e) R2 ∼= TpM , mean
path (red/dark grey) and
density from (b)
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(f) R2 ∼= TpM , mean
path (red/dark grey) and
density from (c)

Figure 1. Anisotropic diffusion on quadratic hypersurfaces,
source p = (0, 0, 1); var. major axis: 4; minor axis: 1.2.
(a),(b),(c): sample paths ending near x = Exppx, x ∈ TpM
(green/light grey dot). (d),(e),(f): mean sample path anti-
development x̂i(t) (red/dark grey) with path densities (back-
ground) and shortest path from source (0, 0) to x (dashed line).
The paths all reach x through different anti-developments in R2.
Negative curvature (a),(d): mean path deviates from shortest
path by moving along minor diffusion axis before major axis.
Zero curvature (b),(e): mean path and shortest path align. Posi-
tive curvature (c),(f): mean path aligns with major diffusion axis
before moving along minor axis. This case resembles the HCA
construction, see text.

Consider the map Diff. : FM → Dens(M) that maps (p, u) to π(U1) where
the FM diffusion dUt = Hi(Ut) ◦ dW i

t is started at (p, u) and Wt ∈ Rn. We let
Γ ⊂ Dens(M) be the image Diff.(FM), i.e. the set of densities resulting from
point-sourced diffusions in FM stopped at time t = 1. In diffusion PCA, the
observed data is assumed to be distributed according to µ ∈ Γ so that y ∼ π(U1)
for a diffusion U1 ∈ FM .

Let µ0 be a fixed measure on M (e.g. a Riemannian volume form) and for
µ = pµ0 ∈ Γ define the log-likelihood

lnL(µ) =
N∑

i=1

ln p(yi)
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for a set of samples y1, . . . , yN ∈ M . Now let (p, u) ∈ FM be a maximum for
lnL(Diff.(p, u)). Then (p, u) is an MLE of yi generalizing the probabilistic PCA
formulation to the non-Euclidean case. We denote (p, u) a diffusion PCA. Note
that Diff. is not injective as multiple frames at p may lead to the same diffusion
process. The MLE is hence not unique though a different formulation of Diff. can
correct this (see open questions below).

3. The Principal Components

In probabilistic PCA, the mean of the latent variables conditional on the observed
data E[xn|yn] converges to the principal components as σ2 → 0. With non-zero
curvature, single vectors cannot summarize the observations in this way because
of the path dependences of the diffusion, see Figure 1. Instead, the mean sample
paths reaching yi x̂i(t) = E[x(t)|x(1) = yi] take the role of the latent variables in
probabilistic PCA. Note that given the source (p, u) ∈ FM , the sample paths can
be equivalently viewed as paths onM or as paths in Rn trough (anti-)development.
Examples of mean paths are illustrated in Figure 1. In R

n, the data can be
further summarized by integrating out the time dependence from x̂i giving x̃i =∫ 1

0
d
dt x̂i(t)dt = x̂i(1).
If M is Riemannian, let u0 ∈ OM be an orthonormal frame at p such that

the matrix of uuT in the u0 basis is diagonal with decreasing diagonal. Anti-
developing x̂i with base (p, u0) gives Rn valued paths with the major variation
residing in the low coordinates. The vectors x̃i here provide a Euclideanization
of the data similar to those provided by PGA, GPCA, and HCA. In general, the
linearization will differ from the linearizations provided by the existing methods.

In effect, the complicated geometric problems arising when defining parametric
subspaces of non-linear manifolds and projecting data are removed with the prob-
abilistic approach. In particular, recurring and dense geodesics on tori prevent a
well-defined notion of projection as closest point on a geodesic as required by exist-
ing methods. With diffusion PCA, the mean path x̂i is defined without projecting
to a submanifold. Note in Figure 1 (f) that x̂i resembles the axis-aligned curves
of HCA [4] indicating a new characterization of HCA as approximating diffusion
processes in positively curved spaces.

4. The Geometry of Γ

The set Dens(M) = {µ ∈ Ωn(M) :
∫
M µ = 1, µ > 0} is an infinite dimensional

manifold in the Fréchet topology of smooth functions [8], and it can be equipped

with the Fisher-Rao metric GFR
µ (α, β) =

∫
M

α
µ

β
µµ [9]. In information geometry,

finite dimensional submanifolds of Dens(M) are called statistical manifolds. In
coordinates, the matrix form of the metric is the Fisher Information Matrix. If
Γ locally has the structure of a statistical manifold, the MLE in diffusion PCA
can be found by a gradient flow with respect to the gradient inherited from the
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Fisher-Rao metric, i.e.

(1) θ̇s = −∇θ

(
N∑

i=1

ln pθ(yi)

)

where θ is a local chart for Γ and pθ is the distribution for a given value of θ.

5. Open Questions

At the workshop, we identified a number of questions related to the diffusion PCA
construction that are open for further research. These include finding the precise
topological and geometric structure of Γ as a subset of Dens(M). We conjecture
that Γ in the Riemannian case can be parametrized by the bundle of symmetric
positive-definite covariant tensors of order 2. Conditions for the convergence of
the gradient flow (1) to the MLE estimate needs to be identified. In addition, a
scaled Brownian motion can be added to the diffusion PCA model similarly to the
isotropic error ǫ in probabilistic PCA. The exact form of this construction and the
convergence as σ2 → 0 remains to be explored.
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Multiple Principal Components Analysis in Tree Space

Megan Owen

(joint work with Sean Cleary, Aasa Feragen, Daniel Vargas)

Tree-shaped data arise in a number of applications, including images of anatomical
trees in medical imaging, and phylogenetic (evolutionary) trees in evolutionary
biology. One question associated with this data is how to understand the resulting
distributions. Through the use of the Billera-Holmes-Vogtmann (BHV) treespace
[2] as a geometric framework for statistical analysis of tree-shaped data, the mean,
variance, and first principal component have been defined, and algorithms given
for their computations [1, 3, 5–7]. Here we present a method for defining and
computing multiple principal components.

The tree data objects we consider are leaf-labelled trees, with no interior ver-
tices of degree 2, and with an m-dimensional vector associated with each edge,
containing information about the length, shape, or other properties of the edge.
The BHV treespace Tn contains all such trees with a fixed leaf-label set of size
n. It is a right-angled polyhedral complex, in which the points in each orthant
correspond to all trees with the same topology, or branching order, but different
edge lengths. See Figure 1. The metric is that induced by the Euclidean metric
on each orthant. The BHV treespace is a globally non-positively curved space
(CAT(0) space) [2], and so has unique geodesics.
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Figure 1. Five of the 15 right-angled orthants in the treespace
T5, with a 1-dimensional vector associated with each edge of each
tree, representing the length of the edge. The trees T1 and T ′

1,
and also T2 and T ′

2, have the same topologies, but different branch
lengths, resulting in different geodesics between the pairs (T1, T2)
and (T ′

1, T
′
2) .

We consider a set of pointsX = {x1, ..., xr} in Tn. The first principal component
of X in Tn has been previously defined as the geodesic γ minimizing the sum of
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squared distances between xi and the projection of xi onto γ, denoted by Prγ(xi)
[3, 7]. That is, define the first principal component of X , PC1(X) as

PC1(X) = argminγ

r∑

i=1

d(xi, P rγ(xi))
2(1)

This follows a similar definition of the first principal component on manifolds [4,8].
In practice, this optimization is done over geodesic segments, parametrized by their
end points, instead of infinite lines.

In Euclidean space, we can compute the second principal component by project-
ing all data points onto a hyperplane orthogonal to the first principal component,
and then computing the first principal component in this lower dimensional space.
In the BHV treespace, however, we can not extend the hyperplane into all the nec-
essary orthants in an consistent fashion. Because of this and other effects of the
stratification of the space, we choose to instead define multiple second principal
components.

1. Second principal components

To compute the second principal components, we wish to ignore, as much as
possible, the variation in the direction of the first principal component. We thus
group the data points X by where they project onto the first principal component
(Figure 2). For each group j, or bin, we compute use the algorithm GeoPhytter [7]
to compute the first principal component of just these data points. This becomes
the jth second principal component. This algorithm can be repeated for each
second principal component to generate third principal components, and so on, if
desired.

PC 1

PC 2

PC 2

PC 2

Figure 2. A cartoon of the binning process. The red, blue, and
green circles represent the data points. They are grouped into bins
according to where they project on the first principal component.
The second principal components for each bin are represented by
lines of the same colour as the bin’s data points.

The specifics of how the points are grouped is as follows. The data points Xi

are projected onto the first principal component, which is equivalent to projecting
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them onto a line in the Euclidean case. We then use the 1-dimensional clustering
method of smoothing the projected points using kernel density estimation (KDE).
The minima of the smoothed function are chosen to delineate the bins. Any bins
containing too few points are merged with neighboring bins.
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Asymptotic confidence sets for the Fréchet mean on the 3-spider

Thomas Hotz

(joint work with Huiling Le)

Using previously obtained results for the asymptotic distribution of the Fréchet
mean [2], we derive corresponding asymptotic confidence regions. In order to
allow for a generalisation to other stratified spaces such as the tree spaces in [1],
we describe the general construction – which is commonly used in statistics – in
detail.

Constructing asymptotic confidence regions as acceptance regions of as-
ymptotic tests. We consider the following abstract framework: let P be a family
of probability distributions on a measure space (Ω,A). We are interested in some
parameter θ ∈ Θ depending on the unknown distribution P ∈ P via some parame-
ter function L : P → Θ, L(P) = θ, where Θ denotes the parameter set. For n ∈ N,
our observations are modelled by some random variable X(n) : Ω → X(n) taking
values in some measure space (X(n),B(n)); typically, when assuming independent
and identically distributed (i.i.d.) data, n is the number of observations and X(n)

is an n-fold product space. We aim to construct an asymptotic (1−α)-confidence
region for θ, where 1− α ∈ (0, 1) is the fixed, prespecified confidence level.
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Now assume that for each Q ∈ P we are given a (measurable) test statistic
TQ
n : X(n) → TQ, taking values in some measure space (TQ, CQ), whose asymptotic

distribution under Q when n tends to infinity is known, i.e. TQ
n = TQ

n (X(n))

converges under Q in distribution to some random variable TQ
∗ . Then, picking

sets MQ with Q(TQ
∗ ∈ MQ) ≥ 1− α, we get

Q(TQ
n ∈ MQ) → Q(TQ

∗ ∈ MQ) ≥ 1− α.

One therefore may reject the hypothesis P = Q if TQ
n 6∈ MQ, resulting in the

probability of falsely rejecting the hypothesis converging to a value ≤ α, i.e. one
thereby obtains an asymptotic test of significance level α.

From this, one immediately constructs an asymptotic confidence region for θ as
the acceptance region of the tests, viz. all Q corresponding to hypotheses which
do not get rejected given the data at hand. More precisely, setting

Cn = {L(Q) : TQ
n ∈ MQ},

one gets

P(θ ∈ Cn) ≥ P(TP
n ∈ MP) → P(TP

∗ ∈ MP) ≥ 1− α,

i.e. the probability of Cn covering the true parameter θ will in the limit be at least
1− α, in other words Cn is indeed an asymptotic (1− α)-confidence region.

The Fréchet mean on the 3-spider. The 3-spider is the metric graph obtained
by glueing three real half-lines together at their end-points. More formally, it is
the set

S = {0} ∪
(
{1, 2, 3} × (0,∞)

)

with the metric specified by

d
(
(j, x), 0

)
= x and d

(
(j, x), (k, y)

)
=

{
|x− y| if j = k,

x+ y else.

The point 0 is called the singular point, S \ {0} which comprises the three open
half-lines contains the regular points.

We consider i.i.d. random elements X1, . . . , Xn on S which are square-inte-
grable, i.e. for which EPd(X1, 0)

2 =
∫
S d(x, s)2 dPX1(x) is finite. We are inter-

ested in constructing an asymptotic confidence region for the (population) Fréchet
mean

θ = argmins∈SE
Pd(X1, s)

2.

Since S is a CAT(0) space, θ exists and is unique; we will give a direct proof below.

Folding and stickiness of the Fréchet mean. The behaviour of Fréchet means
on S is best studied using the folding maps F j : S → R for j = 1, 2, 3 that identify
the “other” two half-lines with the negative real axis. More precisely, F j(0) = 0,
F j
(
(j, x)

)
= x, and F j

(
(k, x)

)
= −x for k 6= j. This gives rise to the “folded

data” Y j
i = F j(Xi) which are real-valued, square-integrable random variables.
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There are now several cases possible:

(i) EP Y j
1 > 0 for some j. This is equivalent to θ = (j,EP Y j

1 ), i.e. to θ being
a regular point on the jth open half-line {j}×(0,∞); it implies EP Y k

1 < 0
for k 6= j. In all other cases θ = 0.

(ii) EP Y j
1 < 0 for all j = 1, 2, 3. Then θ is called sticky since θ remains at 0

under all sufficiently small perturbations of PX1 where “small” is defined
via the Wasserstein metric, say.

(iii) EP Y j
1 = 0 for some j and EP Y k

1 < 0 for k 6= j. Then θ is called half-sticky
since it may move to the jth open half-line under small perturbations but
not to the others.

(iv) EP Y j
1 = EP Y k

1 = 0 for some j 6= k. Then θ is called non-sticky since it
may move between the jth and kth half-lines under small perturbations.
However, this case can only occur if the other open half-line, the lth with
j 6= l 6= k, say, is a PX1 -null set, in particular EP Y l

1 < 0 then.

Note that these observations prove existence and uniqueness of θ.

Asymptotics on the 3-spider. If we fix j then the Y j
i , i ∈ N form a sequence of

i.i.d. square-integrable random variables. They thus fulfill a central limit theorem
if PX1 is not concentrated on a single point, i.e. if it is not the Dirac measure
at θ; to be more precise, under this condition the distribution of the renormalised
partial sums

Zj
n =

√
n

σ̂j
n

(Ȳ j
i −EP Y j

1 )

converges weakly to the standard normal distribution N (0, 1) when n tends to in-

finity where Ȳ j
n = 1

n

∑n
i=1 Y

j
i is the sample mean and σ̂j

n =
√

1
n−1

∑n
i=1(Y

j
i − Ȳ j

1 )
2

is the sample standard deviation of Y j
1 , . . . , Y

j
n . This will be the essential ingredi-

ent to obtain the required test statistics.
In the singular case, EP Y j

1 < 0 implies that P(Ȳ j
n ≥ 0) converges to zero,

meaning that the probability of finding the sample Fréchet mean, i.e. the Fréchet
mean with respect to the empirical distribution of X1, . . . , Xn, on the jth open
half-line converges to zero. In particular if the mean is sticky the probability of the
sample Fréchet mean not being identical to the population Fréchet mean converges
to zero! This is a phenomenon which does not occur in Euclidean spaces; it is due
to the “infinite curvature” at the singular point.

Constructing the confidence region. The situation at hand may be cast in
the framework described at the beginning by choosing Ω to be the sequence space
SN with A the corresponding product σ-algebra when S is endowed with its Borel
σ-algebra B(1). X(n) : Ω → X(n) = Sn is the projection onto the first n entries,
i.e. X(n) = (X1, . . . , Xn), with B(n) the Borel σ-algebra on Sn. The probability
distributions on Ω under consideration are then

P =
{⊗

i∈N
µ : µ probability measure on (S,B(1)) with

∫
S d(x, 0)2 dµ(x) < ∞

}
.
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For Q ∈ P , we let L(Q) = argmins∈SE
Q d(X1, s)

2, i.e. the Fréchet mean with
respect to µ if Q = ⊗i∈N µ.

We now have to specify a test statistic TQ
n and a set MQ for every Q ∈ P ; all

test statistics will take values in TQ = (−∞,∞] with its Borel σ-algebra. We will
treat each of the cases above separately.

(i) In the regular case L(Q) ∈ {j}× (0,∞) we are essentially in the situation
of a classical one-sample test for the mean; we thus choose TQ

n = Zj
n with

the expectation of course taken under the hypothesis, i.e. with respect to
Q, and MQ = (−q1−α

2
, q1−α

2
) where q1−α

2
denotes the (1− α

2 )-quantile of

the standard normal distribution N (0, 1). Q will then be rejected if Ȳ j
n

deviates too much from EQ Y j
1 .

(ii) In the sticky case, we choose TQ
n = 1 if Ȳ j

n ≥ 0 for some j = 1, 2, 3 and
0 otherwise; MQ

n = {0} will then ensure that Q is rejected if the sample
Fréchet mean is unequal to 0.

(iii) For half-sticky L(Q) with EQ Y j
1 = 0 we set TQ

n = ∞ if Ȳ k
n ≥ 0 for some

k 6= j and TQ
n = Zj

n else; choosing MQ = (−q1−α

2
, q1−α

2
) then results in

rejecting Q if the sample Fréchet mean is on another (kth) half-line or if
Ȳ j
n deviates too much from 0.

(iv) In the non-sticky case with EQ Y j
1 = EQ Y k

1 = 0 for j 6= k and j 6= l 6= k,
we set TQ

n = ∞ if Y l
i > 0 for some i and again TQ

n = Zj
n else, so that once

more choosing MQ = (−q1−α

2
, q1−α

2
) ensures rejection of Q if the sample

Fréchet mean deviates too much from 0 or if we observe a point on the lth
open half-line.

With this choice, the general framework laid out in the beginning applies and we
obtain the desired asymptotic (1−α)-confidence region for the population Fréchet
mean.

Discussion. As proposed, we constructed asymptotic confidence regions for the
(population) Fréchet mean. In general, depending on the observations, these may
differ qualitatively by being either (a) a proper subset, namely a “subinterval”,
of one of the open half-lines, or (b) comprising only the singular point, or (c)
comprising an entire connected neighbourhood of the singular point, or a neigh-
bourhood of the singular point excluding (d) one or (e) even two half-lines. From
these different scenarios one may also infer some properties of the Fréchet mean,
namely one may reject the hypothesis of it being at the origin in case (a) or it
being regular in case (b). For the other cases, one may resort to observing that
if Ȳ j

n is negative and far enough from the origin for all j = 1, 2, 3, one may reject
the hypothesis of a half-sticky Fréchet mean, and similar for non-stickiness.

Algorithmically, the computation of these confidence regions essentially requires
only the computation of the “classical” confidence regions for EP Y j

1 based on the

sample mean and sample standard deviation of Y j
1 , . . . , Y

j
n for all j = 1, 2, 3; this

can of course be done efficiently. Note also that the latter confidence regions are
(in a certain asymptotic sense) optimal, so that we expect the confidence regions
above to be optimal (in a similar sense) as well; observe, for instance, that having a



2520 Oberwolfach Report 44/2014

sticky Fréchet mean implies that the probability of the confidence region containing
any other point than 0 converges to zero, similarly for half-sticky Fréchet means.
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Stickiness and Smeariness

Stephan F. Huckemann

(joint work with Benjamin Eltzner)

Let Q be a Whitney-stratified space with connected top manifold stratum Q∗ and
singular part Q0 = Q \Q∗. Further, consider a distance ρ : Q ×Q → [0,∞). For

random variables X1, . . . , Xn
i.i.d.∼ X on Q we have then the Frechét population

and sample means

Eρ(X) = argmin
q∈Q

E
[
ρ(q,X)2

]
, Ê(n)

ρ = argmin
q∈Q

n∑

j=1

ρ(q,Xj)
2 .

We say that (Q, ρ) is manifold stable if for all random variables X on Q

P{X ∈ Q∗} > 0 ⇒ Eρ(X) ⊂ Q∗ .

Obviously, BHV-spaces with the intrinsic distance are not manifold stable and one
can show [2] that

(1) spaces arising as the quotient of a Riemannian manifold modulo a proper
isometric Lie group action, with the canonical metric are manifold stable,

(2) Kendall’s shape spaces Σk
m with the full Procrustes metric are not manifold

stable for m ≥ 3.

Let (Q, ρ) be manifold stable with d = dim(Q∗). A random variable X on Q
with Eρ(X) = {µ} and P{X ∈ Q∗} > 0 is k-th order smeary (k ≥ 0) if for all

X1, . . . , Xn
i.i.d.∼ X , every measurable section µ̂n ∈ E

(n)
ρ and local chart φ : U → Rd

near µ = φ−1(0), µ ∈ U ⊂ Q∗ we have that

n
1

2(k+1) φ(µ̂n) has a non-trivial limiting distribution .

While every X on a Euclidean space is 0-th order smeary, on S1 for every order
k ∈ N a k-th order smeary X can be found, cf. [1].

Now, consider illustrating examples on Q, the circle S1 = [−π, π) with the ob-
vious topology joined with T = [0,∞) attached orthogonally at the center point 0
of S1 (a circle with a vertical stick at the north pole) with the canonical intrinsic
distance ρ. For 0 < a < π/2 consider a random variable Xd with measure com-
prising the uniform distribution on S1 along [−π,−π + a] ∪ [π − a, π] and a point
mass at height d ≥ 0 on T of mass 1− a/π. We then have that Eρ(X0) = [−a, a]
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while Eρ(Xd) = {0} is fully sticky for 0 < d < π−a/2
π−a . If the point mass splits into

three point masses of equal weight, one at −d/2 one at height d/2 on T and one
at d then Eρ(Xd) = [0, a] is half sticky for small d > 0. If the uniform mass on
the interval collapses to a point and the other point moves up in T , then there is
no stickiness any more. The same phenomenon (removing stickiness) is obtained
when the sphere is replaced by a surface of revolution with a cusp at the base
point of T : there is a tangent space at the origin.

Underlying these examples and the discussion, the following questions have been
posed:

(1) On a non-positive curvature manifold, is there only non-positive k-smeari-
ness?

(2) On a non Hausdorff Lie group quotient, how do manifold stability and
stickiness relate?

(3) Are there cases where strict inequality holds in Ziezold’s strong consistency
[3]

∞⋂

n=1

∞⋃

k=n

Ê
(k)
ρ ⊂ Eρ ?

(4) Find descriptors for the degree of (full) stickiness, e.g by a (Wasserstein)
radius of a largest ball of sticky measures.

(5) Can (all) stickiness be “removed” by changing the geometry? Are there
classes of stickiness where this is not possible?

(6) Can only subsets of Q0 be sticky?
(7) Under which conditions (on the tangent cone, say) is stickiness possible?
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Topological definition of stickiness for means in arbitrary metric spaces

Ezra Miller

(joint work with Stephan F. Huckemann, Jonathan C. Mattingly, and James
Nolen)

The following notion is [1, Definiton 7.10] verbatim. Its details, merits, implica-
tions, and relations to previous concepts of stickiness formed the basis for a lively
discussion. Nothing else was written on the board during the discussion.
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Definition 1. Let M be a set of measures on a metric space X . Assume M has
a given topology. A mean is a continuous assignment M → {closed subsets of X}.
A measure µ sticks to a closed subset C ⊆ X if every neighborhood of µ in M
contains an open subset consisting of measures whose mean sets are contained in C.

Continuity implies that the mean set is contained in C if µ sticks to C.
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Optimization in Phylogenetic Treespace

Sean Skwerer

(joint work with J. S. Marron and Scott Provan)

In the first half of the talk BHV Treespace [2] is introduced, the structure of
treespace geodesics [4] is discussed, and the subdivision of treespace into regions
where the form of geodesics to a fixed point is constant, i.e. the vistal subdivi-
sion of treespace from [3], is described briefly. The second half of the talk focuses
on the elements of finding improvements and demonstrating optimality in con-
vex optimization. This half of the talk draws from the PhD dissertation of the
author [5].

Optimization problems on BHV treespace are challenging because the geometry
of treespace creates difficult in two essential parts of optimization (1) making
progress towards optimality and (2) verifying optimality. In treespace a metrically
small neighborhood can actually be quite large in a certain sense. In constructing
the space, the topological identification of the shared faces of orthants may create
points in the closure of many orthants. In terms of trees, the neighborhood around
a tree, X , is comprised not only of trees with the same topology as X but also
trees for which it is possible to obtain the topology of X by contracting some
edges. However, the list of tree topologies in a neighborhood can be quite large.
For example, if X has no interior edges, then X can be obtained from any tree.

There is a broad class of algorithms, known as proximal point algorithms, with
variants for non-positively curved metric space introduced in [1], which have been
proven to converge to an optimal point for convex problems on such spaces. The
general proximal point algorithm does not overcome the complexity of neighbor-
hoods around degenerate trees mentioned previously. However, for certain classes
of optimization problems, such as the Fréchet mean problem, there are practical
versions of proximal point algorithms. Rather than focus on these types of algo-
rithms, this talk focuses on studying the differential properties, i.e. the rates of
change of functions on treespace. In particular the focus is on directional deriva-
tives i.e. rates of change along geodesics from a point to points in its neighborhood.
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This analysis facilitates more precise specification optimality conditions and an ef-
ficient algorithm for verifying that a point on a lower dimensional face of an orthant
O is the minimizer of the Fréchet function within O.

Directional Derivatives and Convex Functions
Let Tr denote the phylogenetic treespace with leaf indexes {0, 1, ..., r}. A treespace
geodesic is denoted by a continuous function from the unit interval to treespace,
γ : [0, 1] → Tr. A function F (X) is (strictly) convex [6], that is F ◦ γ : [0, 1] → R

is (strictly) convex for every geodesic γ(λ) in Tr.

Definition 1. The directional derivative from X to Y is

F ′(X,Y ) = lim
α→0

F (Γ(X,Y ;α))− F (X)

α
(1)

When both X and Y are in the relative interior of the same maximal orthant
of treespace, where the gradient at X is well defined in O(Y ), the directional
derivative can be expressed in terms of the gradient at X inside O(Y ). However
when O(X) ⊂ O(Y ), the gradient at X is not well defined in O(Y ). Analysis of
the directional derivative in the later situation, is the main focus here.

The following lemma is used in the proof of Lem. 3, which states that the
directional derivative of a convex function on BHV Treespace is also a convex
function.

Lemma 2. [5, Lem. 2.4.10] Let Y 0 and Y 1 be a points in Tr such that O(X) ⊆
O(Y 0) and O(X) ⊆ O(Y 1). Let Y t = Γ(Y 0, Y 1; t) be the point which is proportion
t along the geodesic from Y 0 to Y 1. The point which is α proportion along the
geodesic from X to Y t is t proportion along the geodesic between the point ΓX,Y 0(α)
and the point ΓX,Y 1(α), that is Γ(X,Y t;α) = Γ(Γ(X,Y 0;α),Γ(X,Y 1;α); t).

Lemma 3. [5, Lem. 2.4.11] The directional derivative F ′(X,Y ) is a convex
function of Y over the set of Y such that O(X) ⊆ O(Y ) and X and Y share a
vistal facet.

Proof. Let Y 0 and Y 1 be a points in Tr such that O(X) ⊆ O(Y 0) and O(X) ⊆
O(Y 1). Let Y t be the point which is proportion t along the geodesic from Y 0 to
Y 1. Let ΓXY t(α) : [0, 1] → Tr be a function which parameterizes the geodesic
from X to Y t. Using Lem. 2 and the strict convexity of F together yields

F (ΓXY t(α)) < F (ΓXY 0(α))(1 − t) + F (ΓXY 1(α))t(2)

The directional derivative from X in the direction of ΓXY t(α) is

F ′(X,Y t) = lim
α→0

F (ΓXY t(α)) − F (X)

α
(3)

Substituting for F (ΓXY t(α)) using the inequality on line (2) yields,

F ′(X,Y t) ≤ lim
α→0

F (ΓXY 0(α))(1 − t) + F (ΓXY 1(α))t − F (X)

α
(4)
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Note that strict inequality may not hold even though the Fréchet function is convex
because in the limit the value may approach an infimum. Simplifying by separating
the fraction and limit reveals that the directional derivative is convex in Y ,

F ′(X,Y t) ≤ (1− t) lim
α→0

F (ΓXY 0(α)) − F (X)

α
+ t lim

α→0

F (ΓXY 1(α)) − F (X)

α
(5)

= (1− t)F ′(X,Y 0) + tF ′(X,Y 1)(6)

�

Fréchet Function Minimiziation
For a given data set of n phylogenetic trees in Tr, T 1, T 2, . . . , T n, the (sam-
ple) Fréchet function is the sum of squares of geodesic distances from the data
trees to a variable tree X . A geodesic γ : [0, 1] → Tr is the shortest path be-
tween its endpoints. The geodesic from X to T i is characterized by a geodesic
support, (Ai,Bi) =

(
(Ai

1, B
i
1), . . . , (A

i
ki , Bi

ki)
)
[4]. Given the geodesic supports

(A1,B1), . . . , (An,Bn) the Fréchet function is

(7) F (X) =

n∑

i=1

d(X,T i)2 =

n∑

i=1




ki∑

l=1

(‖xAi

l

‖+ ‖Bi
l‖)2 +

∑

e∈Ci

(|e|T − |e|T i)2




Theorem 4. [5, Thm. 2.4.17] (Decomposition Theorem for Fréchet Function
Directional Derivatives) Let X,Y ∈ Tn, with O(X) ⊆ O(Y ) and with X and Y in
a common multi-vistal cell, VXY , let YX be the projection of Y onto O(X), and
let Y⊥ be the projection of Y onto O⊥(X) at X. Then,

F ′(X,Y ) = F ′(X,YX) + F ′(X,Y⊥)(8)

The optimality condition for a point on a lower dimensional face of treespace
can be expressed in terms of directional derivatives. In that case the optimality
condition is

F ′(X,Y ) ≥ 0 for all Y such that O(X) ⊆ O(Y )(9)

By using Thm. 4 to separate the directional derivative into the contribution from
the component of Y in O(X), and the component of Y which is perpendicular to
O(X) the optimality condition becomes

[∇F (X)]e = 0 for all e : |e|X > 0(10)

F ′(X,Y ) ≥ 0 for all Y such that the component of Y in O(X) is 0(11)

Recursively applying a similar decomposition to the directional derivative yields a
nested optimality condition.

Theorem 5. Consider trees Y 0, . . . , Y k such that (i) O(Y 0) ⊂ . . . ⊂ O(Y k) =
O(E), and (ii) Y i+1−Y i ⊥ O(Y i) for i = 0, . . . , k−1. Let Ei be the set of positive
edges in Y i for i = 0, . . . , k. Define a set of edge length difference vectors P i for
i = 1, ..., k with the component for edge e having value pie = |e|Y i −|e|Y i−1 . Denote
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the unit simplex in the orthant O(Ei \Ei−1) by ∆i = {P ∈ O(Ei \Ei−1)|∑ pie =
1}. The minimizer of F (X) in O(E) is Y 0 if and only if

∇F (Y 0) = 0(12)

F ′(Y i−1, Y i) ≥ 0 for i = 1, . . . , k(13)

∇F ′(Y i−1, Y i) ⊥ ∆i for i = 1, . . . , k.(14)

The optimality condition in Thm. 5 can be used as the logical basis for an
algorithm which finds the minimizer of the Fréchet function F (X) in the closure
of a fixed orthant.
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Department of Statistical Science

University College London

Gower Street

London WC1E 6BT

UNITED KINGDOM

Prof. Dr. Huiling Le

School of Mathematical Sciences

The University of Nottingham

University Park

Nottingham NG7 2RD

UNITED KINGDOM

Prof. Dr. James Stephen Marron

Department of Statistics and

Operations Research

University of North Carolina

Chapel Hill, NC 27599-3260

UNITED STATES

Prof. Dr. Peter W. Michor

Fakultät für Mathematik

Universität Wien

Nordbergstr. 15

1090 Wien

AUSTRIA

Prof. Dr. Ezra Miller

Department of Mathematics

Duke University

P.O.Box 90320

Durham, NC 27708-0320

UNITED STATES

Prof. Dr. Washington Mio

Department of Mathematics

Florida State University

Tallahassee, FL 32306-4510

UNITED STATES



Mini-Workshop: Asymptotic Statistics on Stratified Spaces 2527

Dr. Tom Nye

School of Mathematics and Statistics

Newcastle University

Newcastle upon Tyne NE1 7RU

UNITED KINGDOM

Dr. Megan Owen

Department of Mathematics &

Computer Sc.

Lehman College

The City University of New York

Bedford Park Blvd. West

Bronx, NY 10468-1589

UNITED STATES

Dr. Sean Skwerer

Collaborative Center f. Statistics in

Science

Yale University, Biostatistics

300 George St.

New Haven CT 06511

UNITED STATES

Dr. Stefan Sommer

The Image Section

Department of Computer Science

Universitetsparken 1

2100 Copenhagen

DENMARK

Max Sommerfeld

Institut für Mathematische Stochastik

Georg-August-Universität Göttingen

Goldschmidtstr. 7

37077 Göttingen

GERMANY




