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Introduction by the Organisers

The mini-workshop 1440b was organized by Christoph Böhm (University of
Münster, Germany), Jorge Lauret (Universidad Nacional de Córdoba, Argentina)
and McKenzie Wang (McMaster University, Canada).

The mini-workshop was attended by 15 participants, including four female
mathematicians. The wonderful academic environment in Oberwolfach but also,
maybe in particular, the seminar character of a mini-workshop, turned out to
create a very familiar atmosphere. Many more questions were asked during the
talks than usual. Also, due to more closely related topics, most participants were
familiar - in one way or another - with the subjects considered in most talks. As
a consequence, a much higher percentage of participants was able to interact with
each other and share ideas.
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In total, twenty talks were given by the participants: five survey talks on
Monday and 15 more talks in the rest of the weak. Major topics of the work-
shop were homogeneous Einstein metrics on solvable Lie groups, homogeneous
and cohomogeneity one Ricci solitons and compact homogeneous Einstein spaces.
Also talks on homogeneous Ricci and symplectic curvature flows, cohomogeneity
one metrics with special holonomy, conformally flat shrinking solitons, asymptoti-
cally Poincare-Einstein spaces and helicoidal submanifolds of Euclidean space were
given.

The Einstein condition for homogeneous metrics becomes a system of algebraic
equations for a homogeneous space. At present, classification of homogeneous
Einstein metrics seems to be out of reach, in particular in the compact case.
In the noncompact case, there is the Conjecture of Alekseevskii, saying that a
noncompact homogeneous Einstein space is diffeomorphic to a Euclidean space,
or in sharper form, such a space is isometric to an Einstein solvmanifold.

Using methods from Geometric Invariant Theory, M. Jablonski and C. Gordon
were able to show that the unique Einstein metric on a solvable Lie group has
maximal symmetry group. This is a quite remarkable result not true for compact
homogeneous spaces. They gave an example of a solvable Lie group not admitting
a Riemannian metric with maximal symmetry group. New examples of Einstein
solvmanifold were presented by M. Kerr. Y. Nikolayevsky presented new construc-
tions of solvmanifolds with negative Ricci curvature. R. Lafuente showed that the
Alekseevskii Conjecture holds true in dimensions less than or equal to ten, assum-
ing that the isometry group is not semisimple in dimensions six through ten. He
also indicated how a proof of the general Alekseevskii conjecture could be possibly
reduced to the semisimple case, which is considered to be most difficult.

In the semisimple case the deep results from GIT, very successfully applied in
the case of Einstein solvmanifold by Heber, Lauret and Jablonski and Gordon, do
not seem to be applicable. There is hope that one can understand this case by
using homogeneous Ricci flow methods. By recent results of C. Böhm, it is known
by now that any homogeneous Ricci flow develops either a Type I or a Type III
singularity only depending on whether the Ricci flow solution has finite extinction
time or is immortal. Moreover, for compact homogeneous spaces and for certain
homogeneous metrics on homogeneous spaces with semisimple isometry group, it
has been shown by R. Lafuente that the homogeneous Ricci flow always has finite
extinction time. If this result could be generalized, a proof of the Alekseevskii
Conjecture would follow.

Toward constructing new examples of shrinking Ricci solitons, A. Dancer gave
an overview showing why at present no new examples can be constructed by using
methods which have proved to be very succesful for constructing cohomogeneity
one Einstein metrics and steady Ricci solitons. W. Wylie reported on recent results
on shrinking Ricci solitons with certain curvature assumptions.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Survey on Ricci solitons

Andrew Dancer

A Ricci soliton is a pair (g,X), where g is a metric and X a vector field, satisfying
the equation

(1) Ric(g) +
1

2
LXg +

ǫ

2
g = 0

where ǫ is a constant. Such a pair defines a solution to Hamilton’s Ricci flow

∂gτ
∂τ

= −2Ric(gτ )

given by gτ = (1+ ǫτ)ψ∗
τ g, where ψτ is the 1-parameter group of diffeomorphisms

integrating the 1-parameter family of vector fields Yτ = (1+ ǫτ)−1X . Such a solu-
tion evolves by the natural symmetries of the Ricci flow, that is, diffeomorphisms
and homothetic rescalings, hence the soliton terminology. Ricci solitons are im-
portant in analysing singularities of the Ricci flow, as in Perelman’s celebrated
work (eg. [Pe]).

An important case (gradient solitons) is when X is the gradient of a scalar
function u, so the Lie derivative term becomes the Hessian of u.

A Ricci soliton is a generalisation of an Einstein metric in the sense that if
X = 0 (or more generally is Killing) then equation (1) reduces to the Einstein
equation (such solitons are called trivial). The trichotomy between steady (ǫ = 0),
expanding (ǫ > 0) and shrinking (ǫ < 0) solitons in some respects reflects that
betwen Ricci-flat metrics and Einstein metrics with negative and positive Einstein
constant. However this analogy should not be taken too literally–in particular
there do exist complete non-compact shrinkers.

In order to produce examples, it is natural to look at strategies which have been
successful in generating Einstein metrics. Two are:

(1) look for examples with extra geometric structure,
(2) look for examples with symmetries.
Many examples are known of Kähler Ricci solitons. The first examples produced

(eg. [Ko] and generalised by many authors) used ansätze of Calabi/Bérard Bergery
type to obtain explicit solutions via ODEs (the Hamilton cigar [Ha] is also of this
type). PDE methods have also been successful in cases where there is a toric
structure [WZ]

Question. Can we find Hermitian non-Kähler examples using these or related
techniques?

Question. Can PDE techniques yield existence on more general Fano varieties?

Other types of special holonomy imply the Einstein condition so do not yield
nontrivial solitons.

Question. Are there other special geometries that give rise to nontrivial solitons?
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Turning to strategy (2), Lauret [L] has found examples of homogeneous non-
gradient expanders on some solvable Lie groups. There are no compact non-trivial
homogeneous examples, however. This is an example of a ‘rigidity’ phenomenon
for solitons.

One may also consider cohomogeneity one methods, where the equations are
reduced to ODEs, for example by assuming a group action with generically hyper-
surface orbits. Kähler examples have been mentioned above. Non-Kähler steady
examples have been produced by Bryant and Ivey, and generalised by Dancer-
Wang. There are also expanding versions of these solitons (see eg [DW]). The
examples produced so far are warped products on multiple factors. There is
strong numerical evidence of examples with more complicated geometry but in
these latter cases an analytical proof is still lacking.

These examples are all non-compact. Nontrivial compact examples must be
shrinkers, and these have proved difficult to find.

Question. Can we produce compact non-Kähler shrinkers, or complete noncom-
pact non-Kähler shrinkers not of Gaussian type?
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Survey: Non-compact homogeneous Einstein spaces

Michael Jablonski

The study of Riemannian manifolds with special curvature and symmetry proper-
ties has been a central theme throughout the history of modern geometry. And an
interest in classifying spaces with a set of prescribed, nice properties is ever-present.
Here, we are interested in Riemannian manifolds which are homogeneous and si-
multaneously have constant Ricci curvature, i.e. homogeneous Einstein spaces.

Question 1. What are the non-compact, non-flat, homogeneous spaces G/K
which admit G-invariant Einstein metrics?

The first general result on such Einstein spaces appeared nearly 70 years ago.
Suppose G/K is Einstein and non-flat, then it has negative scalar curvature if and
only if it is non-compact; this is a consequence of Myers’s Theorem together with
a result of Bochner [Boc46]. In this case, G is non-compact. However, attention to
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this question waned and little else was known about the structure of G, in general,
until very recently.

There was a renewed interest in the problem in the 1970s and it was around
this time that D. Alekseevskii made the following conjecture.

Alekseevskii Conjecture: A non-compact, non-flat, homoge-
neous Einstein space G/K must be diffeomorphic to Rn. Equiva-
lently, K is a maximal compact subgroup of G.

The conjecture is known to be true up to dimension 5 [Nik05] and in dimension 6
if the group G is not semi-simple [AL13].

In the 1980s, Dotti, Leite, and Miatello produced a new collection of examples
showing that the conjecture could not hold in the more general setting of negative
Ricci curvature [LdM82, DM88]. In the late 1990s, Heber [Heb98] introduced a
new tool, Geometric Invariant Theory (GIT), to study the case when G is solvable
and so-called standard. Using GIT, Lauret [Lau10] was able to show that all
Einstein solvmanifolds are necessarily standard.

To date, all known examples of non-compact, non-flat, homogeneous Einstein
spaces are isometric to solvable Lie groups with left-invariant metrics and their
isometry groups are linear [Jab13]. We propose the following.

Strong Alekseevskii Conjecture: A non-compact, non-flat,
homogeneous Einstein space G/K must be isometric to a solv-
able Lie group with left-invariant metric. Equivalently, G is linear
and K is a maximal compact subgroup of G.

Very recently, an enormous amount of progress has been made by Lafuente and
Lauret in determining the structure of G [LL12]. Here we see the use of Geometric
Invariant Theory as an essential tool. We briefly recall a portion of their results
to help motivate future directions below.

Given the Lie group G, we may consider its Levi decomposition G = G1 ⋉G2,
where G1 is semi-simple and G2 is the solvable radical. If G/K admits an Einstein
metric, what can be said about G1 and G2? From [LL12], we now know

(1) G2 = AN , where N is the nilradical and A is abelian,
(2) N is equipped with a so-called Ricci soliton metric, and
(3) G1 and A commute, and K can be chosen to be a subgroup of U = G1A.

Using their work, it can be deduced that the group G2 admits an Einstein metric.

Open Question 1. Equipping G2 with the geometry it picks up as a subspace of
G/K, is this an Einstein space?

This question is closely related to the question of how A and G1 fit together.
More precisely, at the point [e] ∈ G/K, are the orbits of A and G1 orthogonal?
Motivated by examples coming from Geometric Invariant Theory, we expect this
and more.

Open Question 2. Decompose G1 = H1 · · ·Hk as a product of simple subgroups.
Are the orbits of the Hi at [e] orthogonal to each other?
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Open Question 3. What is the nature of the U -action on Lie N? Is this action
‘self-adjoint’? i.e. is Ad(U)|Lie N closed under transpose?

In light of the structure results of Lafuente-Lauret, answering these questions
would go a long ways towards resolving the Strong Alekseevskii Conjecture. Very
recently, in joint work with Peter Petersen, we have used those structure results
to make partial progress on the Alekseevskii Conjecture, showing that G1 may
be assumed to contain no compact, simple subgroups [JP14]. Once again, GIT
appears as an essential tool.

At this point, we anticipate, or at least hope, that the program of using GIT
developed by Heber, Lauret, Nikolayevsky and many others will be used to reduce
the problem to the case when G is semi-simple. Aside from the work of Nikonorov
[Nik00] and a new result in [JP14], very little is known in this case and a new tool
will need to be introduced.
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Some open problems on compact homogeneous Einstein manifolds

Yusuke Sakane

On open problems of compact homogeneous Einstein manifolds, we first deal with
homogeneous Einstein metrics of generalized flag manifolds and Stiefel manifolds
VkR

n = SO(n)/SO(n−k) and we also discuss Einstein metrics on compact simple
Lie groups.
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For generalized flag manifolds, we have a unique Kähler Einstein metric if we
fix a complex structure. It is known that there are finitely many invariant com-
plex structures on a generalized flag manifold and these complex structures have
been classified (cf.[AlPe]). But we have more homogeneous Einstein metrics on
generalized flag manifolds as a real manifold if these are not hermitian symmetric
spaces.

Open problem: Find all homogeneous Einstein metrics on generalized flag
manifold G/K.

For a homogeneous space G/K with non-equvariant irreducible components, we
have an open problem whether the number of homogeneous Einstein metrics on
G/K is finite or not. Homogeneous Einstein metrics on generalized flag manifold
are a special case of this open problem. Recently we have classified Einstein
metrics on generalized flag manifolds with up to five irreducible components and
we have obtained partial results for the case of six irreducible components ([ACS1],
[ACS2]).

For Stiefel manifolds SO(n)/SO(n − k), as is well known, we have Jensen’s
homogeneous Einstein metrics.

Open problem: Find all homogeneous Einstein metrics on Stiefel manifolds
VkR

n = SO(n)/SO(n− k).

This problem may be hard to solve in general, because we have equivalent
irreducible components as Ad(SO(n − k))-modules, even we have one dimen-
sional components. We consider homogeneous Einstein metrics on Stiefel man-
ifolds Vk1+k2

Rn = SO(k1 + k2 + k3)/SO(k3) with n = k1 + k2 + k3. By con-
sidering Ad(SO(k1) × SO(k2) × SO(k3))-invariant metrics on Stiefel manifolds
SO(k1 + k2 + k3)/SO(k3), we obtain the decomposition of non-equvariant irre-
ducible components (number of irreducible components are at most six). Recently
we obtain that there exist homogeneous Einstein metrics on Stiefel manifolds
SO(n)/SO(n − 4) for n ≥ 6[ASS1], which are different from Jensen’s Einstein
metrics [Jen].

For compact semi-simple Lie groups we have

Open problem: Find all left invariant Einstein metrics on compact semi-simple
Lie groups. In particular, we can ask how many are there. Is it finitely many or
not?

Even for G = SU(3), or G = SU(2)× SU(2), we do not know all left-invariant
Einstein metrics on G. (For SU(2) × SU(2), see a result of Nikonorov and
Rodionov[NiRo].)

For a compact semi-simple Lie group G and a closed subgroup H , the group
G×H acts transitively on G by (g, h)y = gyh−1 ( (g, h) ∈ G×H, y ∈ G ) and
the Lie group G can be expressed as (G×H)/∆H , where ∆H = {(h, h) | h ∈ H}.
D’Atri and Ziller [DAZi] considered naturally reductive metrics on compact semi-
simple Lie groups and obtained a characterization of these metrics for compact
simple Lie groups. They also obtained many naturally reductive Einstein metrics
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on compact simple Lie groups G by using irreducible symmetric space G/H of
compact type and isotropy irreducible spaces.

D’Atri and Ziller asked a following question:

Is there non-naturally reductive left invariant Einstein metrics on a compact
Lie group?

Concerning this problem, Mori[Mo] has found non-naturally reductive Einstein
metrics on compact simple Lie groups SU(n) for n ≥ 6. By using generalized flag
manifold G/H with two irreducible components, we have obtained non-naturally
reductive Einstein metrics on compact simple Lie groupsG whereG is either SO(n)
(n ≥ 11), Sp(n) (n ≥ 3), E6, E7 or E8[ArMoSa]. We also can show there exit non-
naturally reductive Einstein metrics on compact simple Lie groups SO(n) n ≥ 7,
by using homogeneous spaces SO(k1+k2+k3)/(SO(k1)×SO(k2)×SO(k3))[ASS2].
Chen and Liang[ChL] has found non-naturally reductive Einstein metrics on the
compact simple Lie group F4.

Open problem: Find more non-naturally reductive Einstein metrics on compact
simple Lie groups G by using homogeneous spaces G/H .

Dickinson and Kerr[DiKe] obtained many homogeneous spaces G/H with ex-
actly two irreducible components in the isotropy representation and these spaces
include t generalized flag manifolds with two irreducible components. Thus we
may find more non-naturally reductive Einstein metrics on compact simple Lie
groups G.
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Three pearls of noncompact homogeneous Einstein geometry

Yuri Nikolayevsky

I will speak on three (not very new) results which in my opinion have shaped our
modern understanding of noncompact homogeneous Einstein manifolds.

1. Yurii Nikonorov and Alekseevsky Conjecture

Alekseevsky Conjecture: Einstein homogeneous spaces of negative scalar cur-
vature are solvmanifolds (more precisely, the isotropy subgroup is the maximal
compact subgroup).

“Discouraging” evidences:

• Leite, Dotti Miatello 1982: SL(n,R), n ≥ 3, admits a metric with Ric < 0
(more on that on Thursday).

• Leite, Dotti Miatello, Miatello 1984: a unimodular Lie group which admits
a metric with Ric < 0 is noncompact and semisimple. Constructed such a
metric on some complex semisimple Lie groups.

• In all the examples the metric was such that the Cartan decomposition
was orthogonal.

• Still don’t know whether an Einstein metric exists even on small groups,
e.g. SL(3,R).

Let M = G/H be a homogeneous space, with H ⊂ K, H 6= K, where K
is the maximal connected compact subgroup in G. Let g = p′ ⊕ k be a Cartan
decomposition and let k = p′′ ⊕ h, where k is the Lie algebra of K, h is the Lie
algebra of H and p′, p′′ are H-modules. Let p′ = p1⊕· · ·⊕pu, p

′′ = pu+1⊕· · ·⊕pv
be decompositions on irreducible H-modules, so that ToM = p′ ⊕ p′′ = p1 ⊕ · · · ⊕
pu ⊕ pu+1 ⊕ · · · ⊕ pv.

Definition 1. An inner product on ToM is called awesome, if pi ⊥ pj when i 6= j,
and for X,Y ∈ pi, we have 〈X,Y 〉 = xiεiB(X,Y ), where xi > 0, B is the Killing
form, and εi = 1 when pi ⊂ p′ and εi = −1 when pi ⊂ p′′. When all the xi are
ones, we denote the metric 〈·, · 1.

If H = {e}, so that M is a group, then irreducible modules are just arbitrary
one-dimensional subspaces in g. An inner product on g = k⊕p′ is awesome exactly
when k ⊥ p′.

Theorem 1 ([N]). If G is semisimple, no awesome inner product on ToM is
Einstein. In particular, no inner product on g for which a Cartan decomposition
is orthogonal is Einstein.

Some spaces: never.
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Corollary 2 ([N]). If p′ and p′′ have no isomorphic irreducible submodules, then
no inner product on ToM is Einstein.

Example: no left-invariant Einstein metric on the Stiefel manifold
SO(n, 2)/SO(n), or on the space SL(n+ 1)/SO(n).

Proof: elaborate and masterful work with the components of Ric.

2. Jorge Lauret and Standardness Conjecture

Let (g, 〈·, · ) be a metric solvable Lie algebra with the nilradical n.

J.Heber’s Standardness Conjecture, [H]: Any metric solvable Einstein Lie
algebra is standard, that is, a := n⊥ is abelian.

Theorem 3 ([L]). Yes.

Proof: Very difficult. Uses Geometric Invariant Theory; stratification of the
variety of Lie brackets under the action of GL(n).

3. Jens Heber and the structure of Einstein solvmanifolds

Theorem 4 ([H]). Every Einstein solvmanifold is isometric to a one of Iwasawa
type.

A metric Lie algebra is called an algebra of Iwasawa type when adY , Y ∈ a, are
symmetric and commute and adH is positive.

The Ricci curvature for Iwasawa type algebras has the form

Ric(Y1, Y2) = −Tr adY1
adY2

, Ric(Y,X) = 0,

Ric(X1, X2) = −〈adH X1, X2〉+Ricn(X1, X2),

where X,X1, X2 ∈ n, Y, Y1, Y2 ∈ a and Ricn is the Ricci curvature of (n, 〈·, · ).
From this we immediately get the following result.

Theorem 5 (Rank one reduction; [H]). Let (g, 〈·, · ) be a solvable Einstein metric
Lie algebra of Iwasawa type. Then (RH ⊕ n, 〈·, · ) is again a solvable Einstein
metric Lie algebra of Iwasawa type, but with the nilradical of codimension one.
This construction is invertible.

So to understand Einstein solvmanifolds we need to “only” look at one-dimen-
sional positive symmetric extensions of nilpotent algebras.

Theorem 6 ([H]). Let (g, 〈·, ·) be a solvable Einstein metric Lie algebra of Iwasawa
type of rank one. Then up to scaling the eigenvalues of adH are natural numbers.
So n admits a gradation.

Proof: Decomposition on eigenspaces and the relations between the eigenvalues.
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A survey on homogeneous Ricci flow

Ramiro Lafuente

The aim of this talk is to survey the current state of the art of homogeneous Ricci
flow, with a special focus on techniques and open questions.

Hamilton’s Ricci flow is the following well-known evolution equation for a curve
of Riemannian metrics g(t) on a differentiable manifold:

∂

∂t
g(t) = −2Ric(g(t)).

A natural symmetry assumption to consider when studying this flow is that of
homogeneity. Indeed, when (M, g0) is a homogeneous manifold, then the unique
complete and of bounded curvature Ricci flow solution g(t) with g(0) = g0 is
homogeneous for all t, thus reducing the above PDE to an ODE.

The first articles in the subject deal with the behavior of the flow in low-
dimensional homogeneous manifolds (mostly in dimensions 3 and 4). In [IJ92] the
authors study the volume-normalized Ricci flow of locally homogeneous geometries
on closed 3-manifolds, taking advantage of Milnor frames ([M76]) to diagonalize
the metrics simultaneously in the Lie group case. They continue their study in
[IJL06] with a large family of 4-dimensional homogeneous metrics. After these
works, the long-time behavior of immortal solutions (those defined for t ∈ [0,∞))
was studied in [Lt07], where by using the more geometric point of view of pointed
(or Cheeger-Gromov) topology in the space of Riemannian manifolds, convergence
to expanding solitons was obtained. The long-time behavior of 3-dimensional
solutions was also studied in [KMcL01, CSC09]. Also, in [GP10] a global picture
of the flow behavior in this case was obtained by considering the approach of
varying Lie brackets instead of inner products.

This approach of varying Lie brackets instead of metrics was first used, with very
satisfactory results, in the study of the Ricci flow of simply connected nilmanifolds
in [L11], where the author showed -among other things- that the solution is always
immortal and of Type-III (i.e. ‖Riem(g(t))‖ ≤ C/t for some constant C), and that
under a very natural normalization it converges to a Ricci soliton which is also
invariant under a (possibly differente) nilpotent group. Using the same methods,
similar results were obtained in [Arr13] for the Ricci flow of left-invariant metrics
on solvable Lie groups with a codimension-one abelian ideal. The Ricci flow of
nilmanifolds was also studied in [Gz07, P10, LW11].

Recently, the above mentioned method was extended for the general homo-
geneous case in [L13] under the name of bracket flow, which is indeed an ODE
evolution equation for a curve of Lie brackets that is equivalent in a very precise
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sense to homogeneous Ricci flow. As a direct application of this tool, it was proved
in [Lf14] that the scalar curvature of a homogeneous Ricci flow solution must blow
up in presence of a finite-time singularity.

However, unlike the case of nilmanifolds, in the general homogeneous case many
important questions remain open:

Question 1 For a general solvable Lie group, does the bracket flow converge (after
a suitable normalization) to a soliton? Is this limit unique? When is it non-flat?

Question 2 Is it possible to use the bracket flow apporach to study the rather
unexplored (noncompact) semisimple case?

The Ricci flow of compact homogeneous manifolds was studied in [GM09, AC11,
Bu13], in some particular cases such as flag manifolds, and specially under the
assumption that the isotropy representation has only few irreducile summands
(namely, 2 or 3). The authors prove that the solutions always develop finite-time
singularities which are of Type-I, and that the normalized flow converges to a
soliton whose algebraic structure is closely related to the algebraic structure of
the homogeneous solution. This results were very recently shown to hold in the
general compact homogeneous case in [B14].

Moreover, in [B14] the author proves that any homogeneous Ricci flow solution
with finite exctintion time develops a Type-I singularity, and that any immortal
solution develops a Type-III singularity.

We conclude this survey with an important open question. Recall that by [Lf14]
any homogeneous Ricci flow solution on a homogeneous space that doesn’t admit
homogeneous metrics of positive scalar curvature must be necessarily immortal.
On the other hand, by [B14] a non-flat homogeneous Ricci flow solution on a
compact space must develop a finite-time singularity (thus the scalar curvature
must become positive before the singularity). It is intriguing to know how far can
this dichotomy be pushed:

Question 3 If a homogeneous space admits homogeneous metrics with positive
scalar curvature, is it true then that the scalar curvature of any homogeneous Ricci
flow solution on that space must eventually become positive?

An affirmative answer to the above question would imply in particular as an
immediate corollary the Alekseevskii conjecture.
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Symplectic curvature flow

Cynthia Will

(joint work with Jorge Lauret)

Let (M,ω, g, J) be an almost-Kähler manifold of dimension 2n, i.e. an almost-
hermitian manifold such that dω = 0. With Kähler-Ricci flow as a motivation,
it is natural to evolve the symplectic structure ω in the direction of the Chern-
Ricci form p but, since in general p 6= p1,1, one is forced to flow the metric g
as well in order to preserve compatibility. The following evolution equation for
a one-parameter family (ω(t), g(t)) of almost-Kähler structures has recently been
introduced by Streets-Tian in [ST] and is called the symplectic curvature flow (or
SCF for short): 





∂
∂tω = −2p,

∂
∂tg = −2p1,1(·, J ·)− 2Rc2,0+0,2,

where p is the Chern-Ricci form of (ω, g) and Rc is the Ricci tensor of g.
In the case of invariant structures on a quotientM = G/Γ, where Γ is a cocom-

pact discrete subgroup of a Lie group G (e.g. solvmanifolds and nilmanifolds), all
the tensors involved are determined by their value at the identity of the group and
therefore the SCF becomes an ODE system. Short-time existence (forward and
backward) and uniqueness of the solutions are hence, always guaranteed.
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In [LW], we study different aspects of this flow in the locally homogeneous case,
including long-time existence, solitons, regularity and convergence (see also [L]).
We develop in detail two classes of Lie groups, which are relatively simple from a
structural point of view but yet geometrically rich and exotic: solvable Lie groups
with a codimension one abelian normal subgroup, called almost-abelian Lie groups,
and a construction attached to each left symmetric algebra (see [AS]).

It is easy to see that any 2n-dimensional almost-abelian Lie algebra g is deter-
mined by a (2n − 1) × (2n − 1) matrix, so we can denote the corresponding Lie
group by GA, where A ∈ R(2n−1)×(2n−1). After giving some criteria for the equiv-
alence between these structures, we compute their Chern-Ricci and Ricci tensors
in terms of A. We then study the existence, uniqueness and structure of solitons
among this class, which turn out to be all expanding if nonflat. We obtained that
for a large subfamily of matrices, the Lie group GA admits a soliton if and only
A is either semisimple or nilpotent, and the soliton condition is given by A nor-
mal or [A, [A,At]] = −

(
|[A,At]|2/|A|2

)
A, respectively. Furthermore, the SCF is

equivalent to the ODE for A = A(t) given by

A′ = −
1

2
((trA)2 + trS(A)2)A+

1

2
[A, [A,At]]− trA

2 [A,At].

This allowed us, by following the lines in [A], to show that any solution is immor-
tal since |A| is non-increasing (and type-III if trA2

0 ≥ 0) and that the quantity
|[A,At]|2/|A|4 is strictly decreasing along the flow, unless it is a soliton.

In order to search for solitons beyond the solvable case, we considered a con-
struction attaching to each n-dimensional left-symmetric algebra (LSA for short)
an almost-Kähler structure on a 2n-dimensional Lie group. More precisely, from
a Lie algebra g endowed with an LSA structure, one obtains an almost-Kähler
Lie algebra ((g ⋉θ R

n), ω, g), where θ is determined by the left-multiplication of
the LSA product and n = dim g. This construction provides many examples with
unexpected behavior. For example, if we consider on g = u(2) the LSA structure
obtained by identifying g with the quaternion numbers H, we found a family of
ancient solutions which develop a finite time singularity. Moreover, neither their
Chern scalar nor their scalar curvature are monotone along the flow and they con-
verge in the pointed sense to a (non-Kähler) shrinking soliton solution on the same
Lie group. Note that all this is in clear contrast with the Ricci flow behavior.
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A method for parametrizing varieties of nilpotent Lie algebras

Tracy Payne

Let Λ ⊆ Θn = {(i, j, k) : 1 ≤ i < j < k ≤ n}. Let LΛ denote the set of Lie algebras
whose Lie brackets relative to a basis {xi}

n
i=1 have structure constants indexed up

to skew symmetry by Λ; that is, Lie brackets are of form [xi, xj ] = αk
ijxk where

αk
ij 6= 0 and i < j if and only if (i, j, k) ∈ Λ. We consider the question: What are

the isomorphism classes in LΛ?
This problem arises in the classication of special families of nilpotent Lie alge-

bras. The study of geometric structures on nilpotent Lie algebras can also involve
this question. See, for example, [Ver66], [Mil04], [Bur06], [Arr11]. We needed a
result of this type for a project in which we have classified the soliton and non-
soliton nilpotent Lie algebras in dimensions 7 and 8 for which the Nikolayevsky
(or pre-Einstein) derivation has distinct positive eigenvalues ([KP13], [Pay14a],
[Pay14b], [Pay14c],[Pay]).

Our strategy is as follows. We first consider the set SΛ of all n-dimensional
anticommutative nonassociative algebras such that the product has structure con-
stants indexed by Λ. We find a compact, semi-algebraic set SΛ so that each iso-
morphism class in SΛ is represented by precisely one algebra in SΛ. This requires
finding a transversal to the natural GLn(R) action on the space of algebras. We
use Hadamard’s Global Inverse Function Theorem to show that this transversal
meets each orbit exactly once. Second, we parametrize the set of algebras in SΛ

satisfying the Jacobi Identity. This requires parametrizing the set SΛ so that non-
trivial terms of the polynomials encoding the Jacobi Identity relate in a simple
way to tangential directions to SΛ. This nice parametrization is related to a set of
integer quadruples (s, t, u, v) associated to the set Λ.

We illustrate the strategy with the simplest non-elementary example, find-
ing SΛ and solutions to the Jacobi Identity for the set Λ = {(1, 2, 4), (1, 3, 5),
(1, 5, 6), (2, 4, 6), (2, 5, 7), (3, 4, 7)}.Here, the quadruple associated to Λ is (1, 6, 2, 4),
arising from the pairs {(1, 2, 4), (3, 4, 7)} and {(1, 3, 5), (2, 5, 7)}. Correspondingly,
the single nonvanishing equation in the Jacobi Identity is α4

12α
7
34−α

5
13α

7
25 = 0 and

the set SΛ is parallel to the vector x1 + x6 − x2 − x7.
We must impose two hypotheses. First, isomorphism classes in SΛ should be

orbits of the diagonal subgroup in GLn(R). Second, the set SΛ should be null space
spanning: the tangent space should be described by vectors defined combinatorially
in terms of Λ. The first condition holds for all 8-dimensional nilpotent Lie algebras
with simple Nikolayevsky derivation, and the second holds for almost all such Lie
algebras.

Using these methods we may prove the following.

Theorem 1 ([Pay14c]). Let Λ ⊆ Θn be null space spanning, and suppose that

isomorphism classes L̃Λ in SΛ are orbits of the diagonal subgroup in GLn(R).

(1) If Λ has one quadruple of multiplicity two, then L̃Λ is finite.

(2) If Λ has two quadruples of multiplicity two, then L̃Λ is finite.

(3) If Λ has one quadruple of multiplicity three, then L̃Λ is one-dimensional.
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(4) If Λ has one quadruple of multiplicity three and one quadruple of multi-

plicity two, and these overlap, then L̃Λ is one-dimensional.

Furthermore, we describe in terms the combinatorics of Λ how to parametrize
SΛ in each case.

More work must be done to understand the sets L̃Λ in the cases when the two
hypotheses do not hold. In addition, the connections to Lie algebra cohomology
should be developed.

References

[Arr11] Romina M. Arroyo. Filiform nilsolitons of dimension 8. Rocky Mountain J. Math,
41(4):1025–1044, 2011.

[Bur06] Dietrich Burde. Characteristically nilpotent Lie algebras and symplectic structures.
Forum Math., 18(5):769–787, 2006.
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Some properties of the Ricci flow on generalized Wallach spaces

Yurii Nikonorov

The study of the normalized Ricci flow equation for a 1-parameter family of Rie-
mannian metrics g(t) in a Riemannian manifold Mn was originally used by R.
Hamilton in [8] and since then it has attracted the interest of many mathemati-
cians (cf. [6]). Recently, there is an increasing interest towards the study of the
Ricci flow (normalized or not) on homogeneous spaces and under various perspec-
tives ([4], [5], [7], [9], [10], [15] and references therein).

In this talk, we discuss some properties of the normalized Ricci flow on gener-
alized Wallach spaces. The study of the Ricci flow on these spaces was initiated
in the papers [1, 2, 3].

Recall that generalized Wallach spaces are compact homogeneous spaces G/H
(with semisimple compact Lie group G) whose isotropy representation decomposes
into a direct sum p = p1 ⊕ p2 ⊕ p3 of three Ad(H)-invariant irreducible modules
satisfying [pi, pi] ⊂ h (i ∈ {1, 2, 3}) ([12], [13], [14]). For a fixed bi-invariant inner
product 〈·, ·〉 on the Lie algebra g of the Lie group G, any G-invariant Riemannian
metric g on G/H is determined by an Ad(H)-invariant inner product

(1) (·, ·) = x1〈·, ·〉|p1
+ x2〈·, ·〉|p2

+ x3〈·, ·〉|p3
,
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where x1, x2, x3 are positive real numbers (we may suppose w.l.o.g. that p is a
〈·, ·〉-orthogonal complement to h in g). Since G is compact and semisimple, we
may suppose that 〈·, ·〉 is the minus Killing form of the Lie algebra g.

By using expressions for the Ricci tensor and the scalar curvature in [14] the
normalized Ricci flow equation reduces to a system of ODE’s of the form

(2)
dx1
dt

= f(x1, x2, x3),
dx2
dt

= g(x1, x2, x3),
dx3
dt

= h(x1, x2, x3),

where xi = xi(t) > 0 (i = 1, 2, 3), are parameters of the invariant metric (1) and

f(x1, x2, x3) = −1−
A

d1
x1

(
x1
x2x3

−
x2
x1x3

−
x3
x1x2

)
+ 2x1

Sg

n
,

g(x1, x2, x3) = −1−
A

d2
x2

(
x2
x1x3

−
x3
x1x2

−
x1
x2x3

)
+ 2x2

Sg

n
,

h(x1, x2, x3) = −1−
A

d3
x3

(
x3
x1x2

−
x1
x2x3

−
x2
x1x3

)
+ 2x3

Sg

n
,

Sg =
1

2

(
d1
x1

+
d2
x2

+
d3
x3

−A

(
x1
x2x3

+
x2
x1x3

+
x3
x1x2

))
.

Here di, i = 1, 2, 3, are the dimensions of the corresponding irreducible modules
pi, n = d1 + d2 + d3 and A is some special nonnegative number (see details in
[12, 1, 2]). If A = 0, then the space under consideration is (at least locally) a
direct product of three compact symmetric irreducible spaces [14]. If A 6= 0, then
by denoting ai := A/di > 0, i = 1, 2, 3, the functions f, g, h can be expressed in a
more convenient form (independent of A and di) as

f(x1, x2, x3) = −1− a1x1

(
x1
x2x3

−
x2
x1x3

−
x3
x1x2

)
+ x1B,

g(x1, x2, x3) = −1− a2x2

(
x2
x1x3

−
x3
x1x2

−
x1
x2x3

)
+ x2B,

h(x1, x2, x3) = −1− a3x3

(
x3
x1x2

−
x1
x2x3

−
x2
x1x3

)
+ x3B,

where

B :=

(
1

a1x1
+

1

a2x2
+

1

a3x3
−

(
x1
x2x3

+
x2
x1x3

+
x3
x1x2

))(
1

a1
+

1

a2
+

1

a3

)−1

.

Since the volume V = x
1/a1

1 x
1/a2

2 x
1/a3

3 is a first integral of the system (2), on
the surface

(3) V ≡ 1

we can reduce (2) to the system of two differential equations of the type

(4)
dx1
dt

= f̃(x1, x2),
dx2
dt

= g̃(x1, x2),
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where

f̃(x1, x2) ≡ f(x1, x2, ϕ(x1, x2)),

g̃(x1, x2) ≡ g(x1, x2, ϕ(x1, x2)),

ϕ(x1, x2) = x
−

a3

a1

1 x
−

a3

a2

2 .

It is known ([14]) that every generalized Wallach space admits at least one
invariant Einstein metric. Later in [11, 12] a detailed study of invariant Einstein
metrics was developed for all generalized Wallach spaces. In particular, it was
shown that there are at most four invariant Einstein metrics (up to homothety)
for every such space. It should be noted that invariant Einstein metrics with V = 1
correspond to singular points of (4), therefore, (x01, x

0
2, x

0
3) is a singular point of

the system (2), (3) if and only if (x01, x
0
2) is a singular point of (4).

We discuss some qualitative results on singular points of the normalized Ricci
flow on generalized Wallach spaces from the papers [1, 2, 3] and some recent results
on the maximal interval of existence for a solution of the normalized Ricci flow on
the same spaces.
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The evolution of APEs

Eric Woolgar

APEs are Asymptotically Poincaré-Einsteinmanifolds. They are conformally com-
pactifiable and asymptotically hyperbolic, so that the sectional curvatures ap-
proach −1 on asymptotic ends. They admit a notion of conformal boundary-
at-infinity. The conformal metric has a polyhomogeneous expansion in Gaussian
normal coordinates on a neighbourhood of that boundary, for which the radial
normal coordinate is called a special defining function x. Furthermore, for an n-
dimensional APE, the Einstein equations for the (not conformally rescaled) metric
hold up to, but not including, order xn−2. Up to this order, the leading terms in
the Gaussian normal coordinate expansion of the metric are universal, depending
only on the conformal class of the metric induced on the boundary-at-infinity. All
odd powers of x less than order xn−2 vanish. This is called a (partially) even
Fefferman-Graham expansion [5]. APEs have several invariants, including the
renormalized volume, the conformal anomaly (which vanishes if n is even), and,
for certain conformal infinities, the mass. APEs can also have a so-called ambient
obstruction tensor, which vanishes for n even and also for many commonly-studied
conformal infinities when n is odd. For purposes of this talk we consider only un-
obstructed APEs and, in what is somewhat a departure from convention, we use
n to denote the bulk dimension.

APEs are of interest in gravitational physics, where they describe asymptotically
AdS (anti-de Sitter) black holes. The thermodynamics of these black holes was
studied long ago by SW Hawking and DN Page [7], who used the idea that thermal
properties of metrics can be studied by Wick-rotating a static Lorentzian-signature
black hole metric to obtain a Riemannian metric with a circle action whose period
is the inverse temperature. The Wick-rotated Kottler, or AdS-Schwarzschild, black
holes are Poincaré-Einstein metrics (and hence APEs) with boundary-at-infinity
S2 × S1, where the S2 carries the canonical round metric with unit sectional
curvature. The conformal class of the boundary metric is then determined by the
length L of the S1 factor. There is an open interval I such that, for any L ∈ I,
there are 3 distinct Poincaré-Einstein metrics that induce the same conformal
class on the boundary-at-infinity. Two of these are Kottler black holes, called the
small and the large black hole, having topology S2 × R2. The third has topology
R3×S1, constructed from standard hyperbolic space by identifying points under a
hyperbolic translation. This is called thermal hyperbolic space. Hawking and Page
defined a renormalized volume for these metrics, known to them as the regularized
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action and interpreted as a thermodynamic variable related to Helmholtz free
energy. At high temperatures, the large black hole minimizes the regularized
action, while at low temperatures thermal hyperbolic space is the minimizer. This
shows that the system exhibits a phase transition. The transition is mediated by
the small black hole, which always has greatest regularized action, representing an
energy barrier for the phase transition which must be overcome.

The Hawking-Page regularized action is not defined in the same way as the
renormalized volume [8, 6] used for APEs. Nonetheless, these definitions cor-
respond for 4-dimensional AdS-Schwarzschild black holes and for Kottler met-
rics with toroidal infinity in all dimensions, though not for 5-dimensional AdS-
Schwarzschild black holes.

In this talk, I will consider the flow of APE metrics under the normalized Ricci
flow of Bahuaud [1]. We first define several APE invariants such as renormalized
volume (in the sense of [8, 6]), the conformal anomaly, and mass. We then recall
short-time and long-time existence results for normalized Ricci flow of APE data,
including a new long-time existence and convergence result for rotationally sym-
metric APE flow [3]. We then give formulas for the flow of APE invariants [2, 4].
Finally, we discuss an application of APE flows to the Hawking-Page phase transi-
tion, and consider the possible interpretation of renormalized volume as Helmholtz
free energy for the Kottler static black hole in a radiation bath described by the
canonical ensemble. This is based on joint work [4, 2, 3].

I finish by posing an open problem. Find a complete, conformally compactifiable
Poincaré-Einstein manifold whose boundary-at-infinity is a compact connected
manifold of constant sectional curvature−1, or show that there is no such Poincaré-
Einstein manifold.
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Einstein solvmanifolds are maximally symmetric

Carolyn Gordon

(joint work with Michael Jablonski)

Many relationships exist between the geometry of a left-invariant Riemannian
metric on a Lie group G and the Lie group structure of G. For example, if G
admits a metric of negative sectional curvature, then G must be solvable. A
natural question is whether there exists a “best” metric on a given Lie group and,
if so, how does its geometry relate to the Lie group structure? We define a left-
invariant Riemannian metric g on a Lie group G to be maximally symmetric if the
isometry group of any other left-invariant metric h on G is contained in that of g
(or, more precisely, that of Φ∗g for some automorphism Φ of G). We prove the
following:

Theorem. If a solvable Lie group admits a left-invariant Einstein metric g of
negative Ricci curvature, then g is maximally symmetric.

The longstanding Alekseevskii conjecture asks whether every homogeneous Ein-
stein manifold M of nonpositive Ricci curvature is diffeomorphic to Rn; a slightly
strengthened version asks whether every such M can be realized as a simply-
connected solvable Lie group with a left-invariant Riemannian metric. The the-
orem lends philosophical support to the Alekseevskii conjecture, since any coun-
terexample to the Alekseevskii conjecture would not be maximally symmetric. In
fact M. Jablonski and P. Petersen proved that any counterexample with semisimple
isometry group would essentially be minimally symmetric!

The proof is a blend of Lie group structure theory and geometric invariant
theory and relies on the foundational work of Jens Heber [1] on “standard” Einstein
solvmanifolds, Jorge Lauret’s result [2] establishing that all Einstein solvmanifolds
of negative Ricci curvature are standard, and a technique of Yury Nikolayevsky
[3] for identifying the nilradicals of Einstein solvmanifolds.
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Boundary behaviour of Hitchin and hypo flows with left-invariant

initial data

Vicente Cortés

This talk is based on joint work with Florin Belgun, Marco Freibert and Oliver
Goertsches [1]. Hypo and Hitchin flows constitute a system of first order pdes
for the construction of Ricci-flat Riemannian manifolds of dimensions 6, 7 and 8
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with holonomy group in SU(3), G2 and Spin(7), respectively. The initial data for
these flows are hypo SU(2)-structures, half-flat SU(3)-structures and cocalibrated
G2-structures on manifolds of dimension 5, 6 and 7, respectively [2, 3, 4, 5]. Given
a left-invariant such structure on a Lie group G, the flow equations can be solved
on a maximal interval I, defining a Ricci-flat metric g of cohomogeneity 1 on
U = G × I with holonomy group in SU(3), G2 and Spin(7), respectively. We
would like to understand when (U, g) can be realized as a dense open subset in a
complete Riemannian manifold with a parallel SU(3)-, G2- or Spin(7)-structure.
In the case of non-Abelian split-solvable Lie groups G we show that this is never
the case if dimG = 5. Similar results for split-solvable groups of dimensions 6 or
7 are obtained, under additional assumptions. For a different proof in the special
case of 5-dimensional nilpotent groups see [6].

On the other hand, there are examples of compact semi-simple Lie groups G
such that for certain left-invariant initial data the Ricci-flat manifold (U, g) can be
completed in the desired way. In fact, the first example of a complete Riemannian
manifold with holonomy G2, discovered by Bryant and Salamon, is of this type
with G = SU(2)× SU(2), see [7, 2]. As an example of a noncompact semi-simple
group we consider G = SL(2,C). In this case we classify all maximally symmetric
left-invariant half-flat SU(3)-structures and determine the maximal solution of
the Hitchin flow for all such initial data. We find that the domain of definition is
always a bounded interval I = (a, b). We determine the cases when (U = G× I, g)
can be extended by inserting a singular G-orbit over one of the boundary points
of the interval I = (a, b). This yields a family of metrics with holonomy G2, which
turn out to be all homothetic to an incomplete metric on the spinor bundle over
hyperbolic 3-space found by Bryant and Salamon [7].
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Twistor-like curvature conditions on Riemannian manifolds

Tillmann Jentsch

Let Mm be a Riemannian manifold with Levi Civita connection ∇ and curvature
tensor R . It was shown in [5] that the condition ∇(k)R = 0 already implies that
M is locally symmetric. Therefore, we consider the symmetrized k-th covariant
derivative of the curvature tensor (cf. [4, p.1162]))

Y (k+2,2)
x3,...,xk+2

R(x1, ya, yb, x2) :=
1 2 ... k + 2
a b

∇(k)
x3,...,xk+2

R(x1, ya, yb, x2) .(1)

Definition 1. Suppose there exists some k ≥ 0 and certain real numbers
ck−1, ck−3, . . . such that

Y (k+3,2)
x3,...,xk+3

R(x1, ya, yb, x2) =(2)

ck−1
1 2 ... k + 3
a b

∇(k−1)
x3,...,xk+1

R(x1, ya, yb, x2) 〈xk+2, xk+3〉(3)

+ck−3
1 2 ... k + 3
a b

∇(k−3)
x3,...,xk−1

R(x1, ya, yb, x2) 〈xk, xk+1〉〈xk+2, xk+3〉+ ... .

(4)

The smallest k with this property will be denoted by ko (if no such k exists then
ko := ∞) .

Because of the jet isomorphism theorem of Riemannian geometry (see [3, The-
orem 2.6]), the property ko < ∞ coincides with the notion of constant Jacobi

osculating rank (see [1]). Further, let Y
(k+2,2)
0 R denote the completely traceless

part of Y (k+2,2)R (for k = 0 this is a multiple of the Weyl curvature tensor and

hence the vanishing of Y
(2,2)
0 R means conformal flatness of M .)

Definition 2. Consider the condition

(5) Y
(k+3,2)
0 R = 0 .

The smallest k ≥ 0 for which (5) holds will be denoted by kt (if no such k exists
then kt := ∞) .

Remark 1. Let ρ be some irreducible representation of the orthogonal group O(m)
and E → M be the corresponding vector bundle associated to the bundle of or-
thonormal frames of M . For example, the dual T ∗M of the tangent bundle comes
from the standard representation Id . Further, there is a decomposition of E⊗T ∗M
into parallel subbundles corresponding to a decomposition of ρ⊗ Id into irreducible
summands. Among these there is a distinguished one called the Cartan summand.
Let us call a section s of E a twistor section if the projection of ∇s onto the Cartan
subbundle vanishes (see [2]). In order to understand Equation 5 in this context,
suppose for simplicity that m ≥ 5 and consider the representation of the orthog-
onal group O(m) usually denoted by [k + 2, 2] (see [4, Ch. 5.2]). It is irreducible

for our choices of m . Furthermore, we can view Y
(k+2,2)
0 R as a section of the

corresponding vector bundle over M . Then our condition (5) holds if and only if
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s := Y
(k+2,2)
0 R is a twistor section (hence kt = 0 means that the Weyl curvature

tensor is a twistor section of the vector bundle defined by [2, 2].)

It is straightforward that

(6) kt ≤ ko .

The proof of the following theorem will be published in a forthcoming paper.

Theorem 1. Let M be a homogeneous Riemannian space with Singer invariant
kS (cf. [6]).

(1) We have

(7) kS ≤ ko .

(2) Suppose that M is Einstein. Then

(8) kS ≤ kt .

Further, suppose additionally that kt = 1 . Then ko = 1 if and only if there
exists λ 6= 0 such that R is a λ-eigenvector of the rough Laplacian, i.e.

(9) ∇∗∇R = λR .

Examples. The following homogeneous spaces have ko <∞ (see [1]):

(1) The seven-dimensional Berger manifold V1 = Sp(2)/SU(2) is a normal
homogeneous Einstein space with ko = 2 and kS = 0 .

(2) The seven-dimensional Wilking manifold V3 := SO(3)×SU(3)/U•(2) (with
the standard metric) is a normal homogeneous Einstein space with ko = 2
and kS = 0 .

(3) The complex flag-manifold M6 := SU(3)/T2 is a normal homogeneous
(strict) nearly Kähler space (in particular, Einstein) with ko = 4 and
kS = 1 .

(4) Kaplans example of a six-dimensional g.o.-space which is not naturally
reductive is a nilmanifold of H-type (in particular, non-Einstein) with ko =
4 and kS = 1 .

Some open problems.

• What is the value of kt for the examples given above?
• One should examine other spaces for ko , kt or kS , say the thirteen-
dimensional Berger manifold V2 = SU(5)/Sp(2) × S1 or the remaining
six-dimensional homogeneous (strict) nearly Kähler manifolds.

• Does every (naturally reductive, g.o. or general) homogeneous Riemannian
space satisfy kt <∞? Is the converse true, i.e. is a (complete) Riemannian
manifold with kt <∞ a homogeneous space?

• Does every homogeneous Einstein manifold have ko <∞?
• When does equality hold in (6), (7) or (8), respectively? (clearly it does
for symmetric spaces.)
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• It would be interesting to know whether ko is always an even number (if it
is finite). Suppose for example that kt = 1 . What can one say about (9)?

• How do Equation (5) and the invariants kt , ko and kS evolve under the
Ricci flow?
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Helical submanifolds of RN

Jens Heber

(joint work with Martin Scheffel)

An embedded compact submanifold M of Euclidean space is called helical, if the
following equivalent properties are satisfied:

(1) The Riemannian distance on M is a function of the Euclidean distance.
(2) All geodesics of M have the same constant Frenet curvatures.
(3) All geodesics are pairwise congruent and are closed orbits of one-parameter

subgroups of isometries of ambient Euclidean space (”helical”).
(4) All geodesics are normal sections of M (defined as in classical surface

theory).

Helical submanifolds are known to be Blaschke manifolds, that is, their injectivity
radius and diameter coincide. The Blaschke conjecture asserts that any Blaschke
manifold is isometric to a compact rank-one-symmetric space (”CROSS”), see
e. g. [ShSpW]. The conjecture has been proved in dimension 2 [G], for Blaschke
manifolds diffeomorphic to spheres (M. Berger and J. Kazdan, cf. [Be]) and for
Riemannian harmonic Blaschke manifolds [Sz]. It appears to be widely open in
the general case.

The geometry of helical submanifolds (including the equivalence of 1–4) has
been investigated by B.-Y. Chen, Y. Nikolayevsky, K. Sakamoto, Z. Szabó,
K. Tzukada, P. Verheyen [CV, N, Sa82, Sa85, Sa86a, Sa86b, Sz, Tz, V] and other
authors, mostly by using methods from classical submanifold geometry (that is,
based on Gauss-, Codazzi- and Ricci equations). Another approach is followed in
[Sch], based on the study of Lagrange tensors along closed geodesics (i. e. endo-
morphism valued Lagrangian solutions to the Jacobi equation). Our joint work
builds upon these methods.
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The only known examples of helical submanifolds are “nice embeddings” of
Riemannian harmonic manifolds into eigenspaces of their Laplacian ∆ on functions
(as introduced by A. Besse [Be]). Those have been shown to be CROSSes by
Z. Szabó [Sz]. Conversely, any helical submanifold of Euclidean space which is
isometric to a CROSS, can be realized as a nice embedding into a product of ∆-
eigenspaces [Tz]. Combining [Sa82] and [Sz], any helical minimal submanifold of
a sphere is a (nicely embedded) CROSS.

For a general helical submanifold M , we reduce the degrees of freedom by ex-
hibiting structural properties of generic Lagrange tensors in terms of their Fourier
expansions. We prove thatM is a (nicely embedded) CROSS, provided that along
every geodesic in M, parallel tangent vector fields have finite Fourier expansions.
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Non-Kähler Ricci solitons

Andrew Dancer

(joint work with Maria Buzano, Michael Gallaugher and Mckenzie Wang)

The Ricci soliton equation

(1) Ric(g) +
1

2
LXg +

ǫ

2
g = 0

for a metric g and vector field X , is a generalisation of the Einstein equation. The
soliton is called steady, expanding or shrinking depending on whether the constant
ǫ is zero, positive or negative.



Einstein Metrics, Ricci Solitons and Ricci Flow 2557

It is an interesting problem to try and generalise methods of finding Einstein
metrics to the soliton case. However, sometimes the soliton problem shows greater
rigidity. For example, compact homogeneous Ricci solitons must in fact be Ein-
stein.

Examples of complete Kähler Ricci solitons are known of all possible types, ie.
noncompact steady, noncompact expanding, noncompact shrinking and compact
shrinking. Many of these examples use the Calabi/Bérard Bergery ansatz which
has been fruitful in the Einstein case. Other constructions use toric geometry and
PDE methods.

It has proved harder to find non-Kähler examples. In [DW1], [DW2] noncom-
pact steady and expanding examples were found using cohomogeneity one type
methods, where the equations are reduced to a nonlinear dynamical system. These
examples generalise earlier examples due to Bryant, Ivey, and Gastel-Kronz. The
analysis is greatly aided by the existence of a Lyapunov function in the steady
case (and analogous techniques using a pair of functions in the expanding case).
Moreover, because the examples are multiple warped products on positive Einstein
factors, the Lyapunov is, up to an additive constant, a positive definite quadratic
form, so yields coercive estimates.

In [BDW], [BDGW] we showed that one may also obtain solitons if we replace
one of the Einstein factors by a Ricci-flat space. In particular, taking this factor
to be a circle, this yields steady and expanding solitons on R2 ×M where M is a
positive Einstein space. In the steady case the asymptotics are a mixture of cigar
behaviour and the parabolic behaviour found in the Bryant soliton. Taking M to
be a Kervaire sphere, with the Einstein metric found by Boyer-Galicki-Kollar, we
obtain solitons on manifolds with exotic smooth structures in dimension 4m+2 for
all but finitely many m. Note that the earlier construction of [DW1],[DW2] would
not yield such exotic smooth structures, as once n ≥ 3, taking the product with
Rn destroys the exotic nature of the smooth structure on the Kervaire sphere.
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Geometric invariant theory meets Riemannian geometry

Michael Jablonski

As a tool for studying homogeneous Riemannian manifolds, Geometric Invariant
Theory (GIT) has emerged as a means to help in identifying which Lie groups and
homogenous spaces admit special geometries, such as Einstein metrics.

In its classical form, GIT is the study of representations of reductive groups and
determining the set of invariant polynomials. The invariant polynomials define a
categorical quotient which can be realized geometrically as a usual quotient, but
of the set of points with closed orbits, not the quotient of the whole space under
the group action.

For this reason, closed orbits of reductive algebraic groups G are of historical
interest. However, understanding when a given orbit G · p is closed is of interest
in and of itself, and so in the late 1970s a new perspective emerged with the work
of Kempf and Ness [KN78]. In their work, it was shown that an orbit is closed
if and only if it contains a so-called minimal point, i.e. a point closest to the
origin. Furthermore, choosing an inner product 〈·, ·〉 on the representation space
compatible with the reducitive group action, the set of minimal points lies on a
single orbit of a maximal compact subgroup K = G ∩O(〈·, ·〉).

In the right setting (i.e. the setting of a change of basis action of GL(n,R) acting
on the space of Lie structures), minimal points correspond to either Einstein or
Ricci soliton metrics on solvable and nilpotent Lie groups. Then the fact that
minimal points all lie on the same K-orbit can be interpreted as giving uniqueness
of Einstein and Ricci soliton metrics on a given solvable or nilpotent Lie group.
These ideas have been developed in [Heb98, Lau01, Nik11] and references therein.

Question 1. What other tools from Geometric Invariant Theory can be applied
to glean new information on the geometry of homogeneous spaces?

In the talk, we illustrate how one can use various tools from GIT to determine
when the orbit of a reductive group is closed. These tools are then applied to the
‘Key Lemma’ described in Carolyn Gordon’s talk. That is, we use them to prove
the following.

Lemma 1. Let S be a solvable Lie group admitting an Einstein metric. Assume
S = S1 ⋉ S2, where S1 is the Iwasawa subgroup of a (non-compact) semi-simple
group G1 and that the action of S1 on S2 extends to an action of G1 ⊂ Aut(S2).
Then S2 admits an Einstein metric.

This is the key technical lemma used in proving that Einstein metrics on solv-
able Lie groups have the largest possible isometry group [GJ14], a result which is
joint work with Carolyn Gordon. Similar results hold for Ricci soliton metrics on
nilpotent and unimodular solvable Lie groups [Jab11], but it is unknown to what
extent such results can hold in general for solvable Lie groups which admit Ricci
soliton metrics.
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A method of computing Ricci tensor of generalized flag manifolds

Yusuke Sakane

We discuss a method of computing Ricci tensor of generalized flag manifolds. Let
G be a compact semi-simple Lie group and K a connected closed subgroup of G.
Let m be the orthogonal complement of k in g with respect to B (= − Killing
form of g ). Then we have g = k⊕ m, [ k, m ] ⊂ m and a decomposition of m into
irreducible Ad(K)-modules: m = m1 ⊕ · · · ⊕mq. We assume that Ad(K)-modules
mj (j = 1, · · · , q) are mutually non-equivalent. Then a G-invariant metric on G/K
can be written as

< , >= x1B|m1
+ · · ·+ xqB|mq

(1)

for positive real numbers x1, · · · , xq. Using notations
[
k
ij

]
≥ 0 (where

[
k
ij

]
=[

k
ji

]
=

[
j
ki

]
) introduced by Wang and Ziller [WaZi], we have (where dk = dimmk)

Lemma 1. The components r1, · · · , rq of Ricci tensor r of the metric (1) on G/K
are given by

(2) rk =
1

2xk
+

1

4dk

∑

j,i

xk
xjxi

[
k

ji

]
−

1

2dk

∑

j,i

xj
xkxi

[
j

ki

]
(k = 1, · · · , q)

where the sum is taken over i, j = 1, · · · , q.

Let G be a compact semi-simple Lie group and K, L two closed subgroups of
G with K ⊂ L. Then we have a natural fibration π : G/K → G/L with fiber
L/K. With respect to B (- Killing form of g), put p = l⊥ in g: the orthogonal
complement of l in g and put n = k⊥ in l : the orthogonal complement of k

in l. Then we have g = l ⊕ p = k ⊕ n ⊕ p. Denote a G-invariant metric ǧ on
G/L defined by an AdG(L)-invariant scalar product on p, an L-invariant metric
ĝ on L/K defined by an AdL(K)-invariant scalar product on n and consider a G-
invariant metric g on G/K defined by the orthogonal direct sum for these scalar
products on n ⊕ p. Then we see that the map π is a Riemannian submersion
from (G/K, g) to (G/L, ǧ) with totally geodesic fibers isometric to (L/K, ĝ). We
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consider a decomposition of p into irreducible Ad(L)-modules: p = p1 ⊕ · · · ⊕ pℓ
and a decomposition of n into irreducible Ad(K)-modules: n = n1⊕· · ·⊕ns. Note
that each irreducible component pj ( as Ad(L)-module ) can be decomposed into
irreducible Ad(K)-modules. We consider a G-invariant metric on G/K defined by
a Riemannian submersion π : (G/K, g) → (G/L, ǧ) of the form

g = y1B|p
1
+ · · ·+ yℓB|pℓ + z1B|n1

+ · · ·+ zsB|ns
(3)

for positive real numbers y1, · · · , yℓ, z1, · · · , zs. We decompose each irreducible
component pj into irreducible Ad(K)-modules:

pj = mj,1 ⊕ · · · ⊕mj, kj
.

We assume that Ad(K)-modules mj,t (j = 1, · · · , ℓ, t = 1, · · · , kj) are mutually
non-equivalent. Note that the metric of the form (3) can be written as

g = y1

k1∑

t=1

B|m1,t
+ · · ·+ yℓ

kℓ∑

t=1

B|mℓ,t
+ z1B|n1

+ · · ·+ zsB|ns
(4)

and this metric is a special case of the metric of the form (1).

Lemma 2. Let dj,t = dimmj,t. The components r(j, t) (j = 1, · · · , ℓ, t =
1, · · · , kj) of Ricci tensor r for the metric (4) on G/K are given by

(5) r(j, t) = řj −
1

2dj, t

∑

i

∑

j′, t′

zi
yjyj′

[
i

(j, t) (j′, t′)

]
,

where řj are the components of Ricci tensor ř for the metric ǧ on G/L.

Consider a generalized flag manifold G/K with r = b2(G/K) = 2 and a
generalized flag manifold G/L with b2(G/L) = 1 with K ⊂ L. Using Kähler-
Einstein metrics on generalized flag manifolds and applying Lemma 2 to a fibration
π : G/K → G/L with fiber L/K, we can determine Ricci tensor of generalized flag
manifolds with r = b2(G/K) = 2 and q ≤ 6. (For details, see [ACS1] and [ACS1].)

Open problem: Does this method work for any generalized flag manifolds?
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Eclectic thoughts on the curvature of solvable and nilpotent Lie groups

Yuri Nikolayevsky

(joint work with Yurii Nikonorov)

1. Solvable groups of negative Ricci curvature (joint ongoing
project with Yurii Nikonorov)

1.1. Background. Which homogeneous manifolds (in particular, which Lie
groups) admit a left-invariant metric with the given sign of the curvature?

Sectional curvature is well understood: K > 0 [Wallach 1972, Bérard Bergery
1976], K < 0 [Heintze 1974, Alekseevsky 1975, Azencott, Wilson 1976], K = 0
[Alekseevsky 1975, Bérard Bergery 1976].

Ricci curvature: Ric > 0 [Milnor 1976, Berestovski 1995], Ric = 0 [Alekseevsky,
Kimel’fel’d 1975].

Negative: wide open; [Leite, Dotti Miatello 1982]: SL(n,R), n ≥ 3, admits
a metric with Ric < 0; [Leite, Dotti Miatello, Miatello 1984]: a unimodular Lie
group which admits a metric with Ric < 0 is noncompact semisimple. Constructed
such a metric on a some complex semisimple Lie groups; particular case: Einstein.

Main question: Which (nonunimodular) solvable Lie groups admit a left-invariant
metric with Ric < 0?

1.2. Results. Main result: necessary and sufficient conditions for solvable Lie
algebras whose nilradical is either abelian or Heisenberg or filiform to admit an
inner product with Ric < 0. All of them have the same flavour: “there exists
Y ∈ g such that real parts of the restriction of adY to the nilradical n satisfy
certain linear inequalities (which depend on the particular n)” [NN, CLN]

Proof: degeneration; Richardson’s Theorem; “real” Lie Theorem; possibly the
moment map (as discussed with J.Lauret).

1.3. Open question. Is the following true? “A solvable Lie algebra g with the
nilradical n admits an inner product of negative Ricci curvature if and only if there
exists a vectorX ∈ g\n such that the real parts of the eigenvalues of the restriction
of adX to n satisfy certain linear inequalities determined solely by the structure of
n (or, in other words, the restriction of adX to n (or at least, its semisimple part)
belongs to the open convex hull of something in the derivation algebra of n).”

2. Curvature of nilpotent groups (joint ongoing project with
Grant Cairns, Ana Hinić Galić and Marcel Nicolau)

2.1. Motivation. Milnor, 1976:

(1) for all X in the centre z of g, the sectional curvatures are K(X,Y ) ≥
0, ∀Y ∈ g,

(2) Ric(X) ≤ 0 for all X orthogonal to the derived algebra g′ = [g, g].
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The impression one obtains is that the positive curvature is typically concen-
trated “near the center”, while the negative curvature is found at the “upper levels
of the algebra”. Another motivation: [Nikonorov, 2014]: Apart from the two cases,
when a metric solvable Lie algebra is flat or almost flat, Ric always has at least
two negative eigenvalues.

2.2. Results. We classify the subsets of a nilpotent Lie algebra g, such that for
any choice of the inner product on g, the Ricci curvature Ric(X) has a particular
sign; and similarly, the subsets of the Grassmannian G(2, g) such that for any
choice of the inner product on g, the sectional curvature K(X,Y ) has a particular
sign [CHGNN].

We also consider so called Ricci-maximal and Ricci-minimal subsets in the pro-
jectivisation Pg of a nilpotent Lie algebra g and prove that the closure of Ricci-
minimal subset is always Pg, and the closure of Ricci-maximal subset is Pg, except
in the following cases: if g is two-step nilpotent, then that closure is Pg′, and if
g has a codimension one abelian ideal a and is not two-step nilpotent, then that
closure is Pa [CHGNN].
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On the classification of shrinking gradient Ricci solitons

William Wylie

In this talk we survey results about the classification of shrinking gradient Ricci
solitons, including discussing in more detail a new result which is recent joint work
with Jia-Yong Wu of Shanghai and Peng Wu of Ithaca [12] as well an older joint
result with Peter Petersen of Los Angeles [11].

A gradient shrinking Ricci soliton is a triple (M, g, f) where (M, g) is a Rie-
mannian metric and f is a smooth function onM which satisfies Ric+Hessf = λg
from some λ ∈ R. The gradient Ricci soliton is called shrinking, steady, or ex-
panding, if λ > 0, λ = 0, or λ < 0, respectively.

There are many results about steady or expanding Ricci solitons, for the pur-
poses of this abstract and due to space constraints we focus only on the results for
gradient shrinking Ricci solitons which are essential to explain our results. We are
interested in understanding the conditions in dimension ≥ 4 when we can classify
gradient shrinking Ricci solitons. Any locally conformal flat gradient shrinking
Ricci soliton is a finite quotient of Sn, Sn−1 ×R, or Rn as follows from the works
[4, 2, 8, 13, 10, 6]. Recall that a Riemannian manifold is locally conformally flat
if the Weyl tensor vanishes (W = 0). The works [5, 6] also give a classification of
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gradient shrinking Ricci solitons under the weaker assumption of harmonic Weyl
curvature (δW = 0), showing that any such metric is either Einstein, or a finite
quotient of Nk × Rn−k for 0 ≤ k ≤ n, where Nk is a k-dimensional Einstein
manifold of positive scalar curvature.

In dimension 4 it is natural to consider self dual or anti-self dual part of Weyl
curvatureW± commonly called the half Weyl curvature. X. Chen and Y. Wang [3]
proved that a half conformally flat (W± = 0) four-dimensional gradient shrinking
Ricci soliton is a finite quotient of S4, CP 2, S3 × R, or R4. In joint work with
Wu and Wu, we classify four-dimensional gradient shrinking Ricci solitons with
harmonic half Weyl curvature,

Theorem 1. A compact four-dimensional gradient shrinking Ricci soliton with
δW± = 0 is Einstein. A noncompact four-dimensional gradient shrinking Ricci
soliton with δW± = 0 is a finite quotient of S3 × R, S2 × R2, or R4.

Instead of studying Ricci solitons via their Weyl curvature, another approach
is to study the classification problem under positivity of curvature assumptions.
Naber has classified 4-dimensional gradient Ricci solitons with bounded, nonneg-
ative curvature operator [7]. The compact case is also well understood as, by the
work of Böhm-Wilking [1], any compact Ricci soliton with positive curvature oper-
ator is a round sphere. In higher dimensions this indicates the following conjecture
in the noncompact case.

Conjecture 2. A gradient shrinking Ricci soliton with bounded positive curvature
operator is compact.

In dimension 3 the conjectire is also true by a result is of Perelman [9] and
it follows from Naber’s classification in dimension 4. The only partial result the
author knows of in higher dimensions is the following earlier result with Petersen.

Theorem 1. [11] A complete, non-compact, cohomogeneity-one shrinking gradient
soliton with bounded nonnegative sectional curvature is the product of an Einstein
and Euclidean space.

We note that the proof of Theorem 1 comes from considering an equation along
geodesics that can be derived from the equation δRm(·, ·, ·) = 2Rm(∇f, ·, ··), which
is true for any gradient Ricci soliton. Since the appearance of the divergence is also
key in the results mentioned above about Weyl curvature, it would be interesting if
the techniques used to classify spaces under assumptions on their Weyl curvature
can be combined with the techniques used to prove Theorem 1 to shed light on
Conjecture 2.
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[1] C. Böhm and B. Wilking, Manifolds with positive curvature operators are space forms Ann.
of Math. (2) , 167(2008), no. 3, 1079–1097.

[2] X. Cao, B. Wang, Z. Zhang, On locally conformally flat gradient Ricci solitons, Comm.
Contemp. Math. 13 (2010), 269–282.

[3] X. Chen, X., Y. Wang, On four-dimensional anti-self-dual gradient Ricci solitons, J. Geom.
Anal. DOI 10.1007/s12220-014-9471-8.



2564 Oberwolfach Report 45/2014

[4] M. Eminenti, G. La Nave, C. Mantegazza, Ricci solitons: the equation point of view,
Manuscripta Math. 127 (2008), 345–367.
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New examples of Einstein solvmanifolds

Megan Kerr

We describe new examples of non-symmetric Einstein solvmanifolds obtained by
combining two techniques. In [T2], H. Tamaru constructs new attached solvman-
ifolds, which are submanifolds of the solvmanifolds corresponding to noncompact
symmetric spaces, endowed with a natural metric. Extending this construction,
we apply it to associated solvmanifolds, described in [GK], obtained by modifying
the algebraic structure of the solvable Lie algebras corresponding to noncompact
symmetric spaces. Our new examples are Einstein solvmanifolds with nilradicals
of high nilpotency, which are geometrically distinct from noncompact symmetric
spaces and their submanifolds.

Our spaces provide many explicit new examples of homogeneous Einstein man-
ifolds that are neither the solvmanifolds corresponding to noncompact symmetric
spaces, nor their submanifolds. We obtain our examples by extending the method
of H. Tamaru in [T2], in which, via parabolic subalgebras of semisimple Lie alge-
bras, he builds solvable subalgebras by choosing a subset Λ′ of the set Λ of simple
roots. Tamaru proves that the solvable subalgebra of the restricted root system,
sΛ′ , given a natural inner product, called an attached solvmanifold, is in fact an
Einstein solvmanifold. We combine this with a method introduced by C. S. Gordon
and the author in [GK] to construct Einstein solvmanifolds which are associated
(but not isometric) to the Einstein solvable Lie groups corresponding to higher
rank, irreducible symmetric spaces of noncompact type.

Tamaru’s construction yields solvmanifolds which are naturally homogeneous
submanifolds of symmetric spaces of noncompact type; however, they generally are
not totally geodesic subalgebras. When Tamaru’s method is extended to construct
the Einstein solvmanifolds here, which are attached to associated solvmanifolds,
we get completely new examples. We show, by isometry groups, that they cannot
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be submanifolds of symmetric spaces. Furthermore, we show that while our exam-
ples have negative Einstein constant, they admit two-planes of positive sectional
curvature, quite different from the geometry of symmetric spaces.

This work recently appeared [K].
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The Alekseevskii conjecture in low dimensions

Ramiro Lafuente

(joint work with Romina Arroyo)

The Alekseevskii conjecture, which states that a connected homogeneous Einstein
space of negative scalar curvature must be diffeomorphic to a Euclidean space, is
an open problem since the early 80’s, and until last year it was only known to be
true up to dimension 5 (a result which follows from a complete classification, see
[Je69] and [Nik05] for the cases of dimension 4 and 5, respectively).

In [AL14a], which is a joint work with R. Arroyo, we have proved that the
conjecture (and also its generalized version for algebraic solitons) also holds in
dimension 6, provided the transitive group is not semisimple. The proof of this
result is mainly based in the structure theorems for homogeneous Einstein spaces
given in [LL13].

More recently, there have been new developments in the above mentioned struc-
ture theory of homogeneous Einstein spaces, see [JP14]. These refinements allowed
us to investigate the conjecture in higher dimensions, and indeed as part of an on-
going project with R. Arroyo ([AL14b]) we have proved that under the additional
hypothesis that the transitive group is not semisimple, the Alekseevskii conjecture
also holds up to dimension 10.

Furthermore, in the semisimple case, we could establish the validity of the
conjecture up to dimension 8, excluding the cases of left-invariant metrics on the
simple Lie groups SL2(R) × SL2(R), SL2(C), SL3(R) and SU(2, 1). This is based
on a case-by-case analysis, where we study every homogeneous space G/K of
dimension up to 8 with G semisimple. The non-existence of Einstein metrics in
each case can be proved by using [Nik00] in some cases, and some new case-specific
analysis of the Ricci curvature in the other cases.

Finally, with regards to the rather unpleasant exceptions of simple Lie groups,
we remark that the Einstein equation for left-invariant metrics on the Lie group
SU(2) × SU(2) is still not completely solved, even though the compact case has
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been much more investigated in the literature. Therefore, we believe that there is
a strong need for new tools in order to attack these most difficult cases.
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