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Abstract. Locally compact groups are ubiquitous in the study of many
continuous or discrete structures across geometry, analysis and algebra. Every
locally compact group is an extension of a connected group by a totally
disconnected group. The connected case has been studied in depth, notably
using Lie theory, a culminating point being reached in the 1950s with the
solution to Hilbert’s 5th problem. The totally disconnected case, by contrast,
remains full of challenging questions. A series of new results has been obtained
in the last twenty years, and today the activity in this area is witnessing a
sharp increase. These texts report on the recent Arbeitsgemeinschaft on this
topic.
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Introduction by the Organisers

Locally compact groups arise as the symmetry groups of all sorts of structures
across many areas of mathematics. This includes Lie groups, p-adic and adélic
groups, isometry groups of general proper metric spaces. Even discrete struc-
tures such as locally finite graphs give rise to very interesting locally compact
automorphism groups. Besides the groups themselves, one of the most important
motivations to study locally compact groups is that they frequently appear as
the “envelope” in which abstract groups of interest appear as lattices. This is
notably the case for arithmetic groups and Kac–Moody groups. It has often hap-
pened that the most interesting theorems about those abstract groups are proved
by transfering the problem to the ambient locally compact group and solving it
there.
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In the study of locally compact groups, it is usually understood that the focus is
on non-discrete groups since otherwise it remains within “abstract” group theory.
The case of Lie groups has been extensively studied for well over a century and
largely classified in the early twentieth century. The next significant period of
research culminated in the 1950s with the solution to Hilbert’s Fifth Problem,
giving a satisfactory picture of the conected case.

Therefore, the main locus of modern research on locally compact groups is the
study of non-discrete totally disconnected locally compact groups, since a general
locally compact group decomposes as an extension of a connected group by a
totally disconnected group.

The revival of this topic can arguably be dated to the work of G. Willis starting
two decades ago. This gave a new impetus to the study of the local structure of
totally disconnected groups. More recently, there has been progress both on the
global and local structure. In addition, the compact case (i.e. profinite groups)
has also witnessed important recent progress on the algebraic side.

The goals of the Arbeitsgemeinschaft are: to learn the necessary prerequisites,
to study substantial parts of the recent developments and to reach the point where
open problems can be discussed.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Locally compact groups: around Van Dantzig’s theorem

Marc Burger

Given a locally compact group G and its connected component G0 of e, we obtain
an exact sequence

(e)→ G0 → G→ G/G0 → (e),

where G/G0 is a totally disconnected locally compact group; recall that a topo-
logical space is said totally disconnected if the connected subsets are reduced to
points.

In the first part of the lecture we establish a fundamental theorem (Van Dantzig)
which says that if G is locally compact and totally disconnected, every neighbor-
hood of e ∈ G contains a compact open subgroup. Since such groups are profinite,
it implies that the multiplication in a neighborhood of e can be approximated with
arbitrary accuracy by the multiplication in finite groups.

In the second part of the lecture we address the problem to which extent a
general locally compact group is a product of a Lie group and a totally disconnected
group, using the solution to Hilbert’s 5th problem.

We first show the existence of the amenable radical A(G) of a locally com-
pact group G: it is the unique largest closed amenable normal subgroup of G;
furthermore it is a radical in that A

(
G/A(G)

)
= (e).

We deduce that since A(G0) is a topologically characteristic subgroup of G0,
A(G0) is normal in G. Let L := G/A(G0) denote the quotient. Using the Gleason–
Yamabe structure theorem we show (compare with [1], Thm. 3.3.3):

Theorem: The group L0 is a direct product of adjoint connected, simple, non-
compact Lie groups. Its centraliser ZL(L0) is totally disconnected and the product

L0 · ZL(L0)

is a direct product which is an open subgroup of finite index in L.

Observe that ZL(L0) is locally isomorphic to G/G0; we can thus lift locally
G/G0 to G/A(G0).

References

[1] M. Buger, N. Monod, Continuous bounded cohomology and applications to rigidity theory,
Geom. Funct. Anal. 12(2) (2002), 219–280.
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Transformation groups and permutation actions

Andreas Thom

I talked about the general theory of automorphism groups of connected locally
finite graphs and explained why these groups are totally disconnected and locally
compact. Important examples are given by automorphism groups of so-called
Cayley–Abels graphs; references: e.g. §11 in [2] and §2 in [1]. Moreover, I ex-
plained the link between totally disconnected and locally compact groups and
abstract groups with commensurated subgroups and (relative) Schlichting com-
pletions. The relevant referene here was Section 3 in [3].

References

[1] P.-E. Caprace, Y. de Cornulier, N. Monod and R. Tessera, Amenable hyperbolic groups, to
appear in J. Eur. Math. Soc.

[2] N. Monod, Continuous bounded cohomology of locally compact groups, Lecture Notes in
Mathematics 1758, Springer-Verlag, Berlin, 2001.

[3] Y. Shalom and G. Willis, Commensurated subgroups of arithmetic groups, totally discon-
nected groups and adelic rigidity, Geom. Funct. Anal. 23 (2013), no. 5, 1631–1683.

Closed groups of tree automorphisms and Tits simplicity theorem.

Yair Glasner

Let T be a locally finite tree, Aut(T ) its automorphism group endowed with the
topology of pointwise convergence. Aut(T ) is a compactly generated t.d.l.c. group.
The maximal compact (profinite) subgroups are the vertex and edge stabilizers.
We have a standard classification of automorphisms into inversions, elliptic and
hyperbolic elements.

Aut(T ) = Inv⊔Ell⊔Hyp .

All three sets are open. For example an element g ∈ Aut(T ) being hyperbolic,
is characterized by the open condition that there exits an edge e = (x, y) that is
co-oriented with its image ge = (gx, gy). Two directed edges are co-oriented if
they both point in the same direction along the geodesic that connects them.

I discussed totally elliptic groups (consisting only of elliptic elements) and to-
tally hyperbolic groups. Tits’ lemma says that if g, h, gh are all elliptic then g, h
must have a common fixed point. Combining this with a Helly’s type argument
shows that every totally elliptic subgroup has a common fixed point either in the
tree or in its boundary. When the totally elliptic subgroup is finitely generated
then there must be a fixed vertex inside the tree. As for totally hyperbolic groups,
I showed that these are free groups acting freely on the tree. I showed how such
groups can be realized as fundamental groups of graphs, whose universal cover
is the given tree. I also discussed how such groups can be realized as Schotkey
groups satisfying the conditions of the ping-pong Lemma.
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Definition 1. Let C = xi, xi+1, xi+2, . . . , xj , i, j ∈ [−∞,∞] be a finite or
infinite geodesic and π : T → C the closest point projection. We denote by
Ti = π−1(xi). If G < Aut(T ) is a subgroup let GC be the pointwise stabilizer of
C, φi : GC → Aut(Ti) the natural restriction map and Gi = φi(G) the image of
this map.

We say that G satisfies Tits’ property (P) if for every such path C we have an
isomorphism

j∏

n=i

φn : G
∼
−→

j∏

n=i

Gi.

Definition 2. Say that a group G < Aut(T ) is geometrically dense if it is minimal
in the sense that it does not stabilize any proper subtree and in addition it does
not fix any point at infinity.

Theorem 3. (Tits’ simplicity theorem) Let G < Aut(T ) be a geometrically dense
subgroup satisfying Tits’ property (P). Let G+ be the subgroup generated by all
edge stabilizers. Then every nontrivial subgroup of G normalized by G+ contains
G+.

Proof. (sketch) Let N be such a group. Let (x, y) = e ∈ ET be an edge and Tx, Ty

the corresponding two half trees. By property (P) we may identify Gx with the
pointwise stabilizer of Ty and vice versa and with this identification G = Gx×Gy.
Since e, x, y are arbitrary it is enough to show that N > Gx.

Geometric density is essentially inherited by non-trivial normal subgroups. So,
after some work, it follows from geometric density that N contains a hyperbolic
element n. Furthermore, after replacing n by an appropriate conjugate one can
arrange for C = Axis(g) ⊂ Ty. Thus GC > Gx. So it would be enough to show
that N > GC . We show this by showing that the following map, whose image is
clearly contained in N , is surjective.

GC → GC

h 7→ [h, n] = hnh−1n−1

Indeed let us denote by m|i the restriction of an element m ∈ Aut(T ) to the subtree
Ti. With this notation we have (hnh−1n−1)|i = h|i◦n|i−ℓ◦h−1|i−ℓ◦n−1|i. Solving
for [h, n] = f where f ∈ GC is any given element we obtain

h|i := f |i ◦ n|i−ℓ ◦ h|i−ℓ ◦ n
−1|i.

Assuming we have arbitrarily fixed the values of h|0, h|1, . . . , h|ℓ−1 we can now solve
recursively for h|ℓ, h|ℓ+1, h|ℓ+2, · by substituting into the above formula. Solving for
h|i−ℓ and applying a similar argument will yield also all the values h|−1, h|−2, . . ..
Thus we end up with a complete set of values

h = (. . . , h|−1, h|0, h|1, h|2, . . .)

solving the desired equation [h, n] = f . �
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Simplicity of the Neretin group

 Lukasz Garncarek and Nir Lazarovich

The boundary ∂T of an infinite regular tree T can be identified with the set of
infinite rays in T with fixed initial vertex o. This allows to define a metric do on
∂T , called the visual metric with respect to o, in which two paths are close if they
have large overlap; more precisely, we define

do(ξ, η) = e−(ξ,η)o ,

where (ξ, η)o is the length of the common initial segment of ξ and η. A sphero-
morphism of ∂T can then be defined as a local similarity, i.e. a map φ : ∂T → ∂T
such that there is a finite partition of ∂T = B1 ∪ · · · ∪Bk into disjoint balls, such
that the restrictions φ|Bi

are similarities with respect to the visual metric.
The group of all spheromorphisms of a (n+1)-regular tree is denoted by Nn and

called the Neretin group. The automorphism group Aut(T ) of T embeds into the
Neretin group, which can be given a unique totally disconnected locally compact
group topology in which this embedding is open. This is not the compact-open
topology arising from the action of Nn on ∂T !

Another class of groups related to the story are the Higman–Thompson group
Gn,r. This time we consider a forest F of r rooted (n+ 1)-ary trees, endowed with
an additional structure comprised of a linear orders on the sets of children of each
vertex. Such orders induce linear orders on the boundaries of the trees in F . An
element of the group Gn,r is a local order-preserving similarity of the boundary of
F , which is just a disjoint union of the boundaries of trees in F .

Returning to the original tree T and the Neretin group, if we remove an edge
from T , we get a forest of two rooted (n + 1)-ary trees. If we put linear orders on
sets of children, we get an embedding of Gn,2 into Nn. Any two such embeddings
have conjugate images, and the conjugating element can be chosen from the image
of Aut+(T ), the group of type-preserving automorphisms of T , generated by the
stabilizers of edges in Aut(T ). An important observation is that Nn is generated
by the image of Aut+(T ), and any of the embedded copies of Gn,2.

In [2], Higman proved that the commutator group G′
n,r = [Gn,r, Gn,r] of the

Higman–Thompson group is simple. Moreover, it is of index 1 or 2 in Gn,r de-
pending respectively on whether n is even or odd.

In [4], Tits described sufficient criteria for a group G of automorphisms of a
tree to have a simple or trivial type-preserving subgroup G+. As a corollary he
deduced that the group of all type-preserving automorphisms Aut+(T ) is simple.

Following [3] we combine the two theorems with some added tricks from [1] to
obtain that the Neretin group Nn is simple.

References

[1] D.B.A. Epstein, The simplicity of certain groups of homeomorphisms, Compos. Math., 22
(1970), 165-173.

[2] G. Higman, Finitely presented infinite simple groups, Notes on Pure Mathematics, Aus-
tralian National University, Canberra 8 (1974).
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[4] J. Tits, Sur le groupe des automorphismes d’un arbre, Essays on topology and related topics
(Mémoires dédiés à Georges de Rham), Springer, New York (1970), 188–211.

Locally compact groups as metric spaces

Romain Tessera

The aim of this talk is to give a short introduction to the large-scale geometry of
locally compact groups. The general idea is that one can attach to every σ-compact
locally compact group an essentially unique coarse metric structure. There is a
large literature on this topic, and we refer to the book [1] for references. Before
introducing more precise notions, let us briefly recall a few classical instances of
left-invariant metrics on groups. The first class of examples is that of connected
Lie groups, which can be endowed with a left-invariant Riemannian metric. In the
case of semi-simple Lie groups though, it is sometimes more fruitful to consider
their actions on their associated symmetric spaces, which in some sense reflect
better their large-scale geometry: for instance these spaces are simply connected,
and admit non-positively curved Riemannian metrics. On the other hand, Gromov
has popularized the study of the large-scale geometry of Cayley graphs of finitely
generated groups. One of the aims of this lecture is to introduce the notion of
Cayley–Abels graph, which is a natural generalization of Cayley graphs for totally
discontinuous, compactly generated, locally compact groups. Roughly speaking a
Cayley–Abels graph is a G-invariant locally finite graph structure on X = G/K,
where K is a compact open subgroup of G.

An admissible metric on a σ-compact locally compact group is a left-invariant
pseudo-distance d : G × G → [0,∞), which takes bounded values on compact
subsets of G ×G and such that balls are relatively compact. When the group G
is generated by a compact subset S, i.e. is compactly generated, then one checks
that the word metric dS is admissible. It is not hard to see every σ-compact
locally compact groups admit admissible metrics. Recall that a coarse equivalence
between two (pseudo)-metric spaces is a map F : X → Y such that there exists
proper functions ρ1, ρ2 : [0,∞) → [0,∞) and a constant C, satisfying for all
x, x′ ∈ X

ρ1(d(x, x′)) ≤ d(F (x), F (x′)) ≤ ρ2(d(x, x′),

and for all y ∈ Y , there exists x ∈ X such that d(y, f(x)) ≤ C. One checks that
being coarse equivalent defines an equivalence relation between (pseudo)-metric
spaces, and that two admissible metrics on a locally compact group are coarse
equivalent.

The main goal of this lecture is to characterize algebraically the property of a
group G to act properly cocompactly by isometries on a connected (resp. simply
connected) metric space. The strategy is first to show that this can be encoded
into coarse-equivalent properties: respectively, coarse connectedness, and coarse
simple-connectedness. For illustration, let us define the first of these two notions:
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a metric space X is coarsely connected if there exists C > 0 such that every pair
of points can be connected by a “discrete path” x = x1, . . . , xn = y such that
d(xi, xi+1) ≤ C. The interest of this notion is illustrated by the following easy
fact.

Proposition. A σ-compact locally compact group is compactly generated if and
only if it admits an admissible coarse connected (pseudo)-metric, if and only if it
acts properly cocompactly by isometries on a geodesic metric space.

A similar characterization holds for coarse simple connectedness, which involves
the notion of compact presentability, a direct generalization of finite presentability
for discrete groups. A group is compactly presentable if it admits a presentation
〈S;R〉, where S is a compact generating subset of G, and R is a set of word in S
of length bounded by some constant k. One has the following important fact.

Theorem. A σ-compact locally compact group is compactly presented if and only
if it admits an admissible coarse simply connected (pseudo)-metric, if and only if
it acts properly cocompactly by isometries on a geodesic simply connected metric
space.

References

[1] Yves de Cornulier and Pierre de la Harpe. Metric geometry of locally compact groups, Book
in progress.

Introduction to p-adic Lie groups

Yves Cornulier

This is an extended abstract for an introduction to p-adic Lie groups. The main
reference is Bourbaki [B2-3].

Let K be a non-discrete complete normed field, with norm written as | · |.

Power series and analytic manifolds. Write N = {0, 1, 2, . . .}. For n =
(n1, . . . , nd) ∈ Nd, write |n| =

∑
ni.

If (an)n∈Nd is a sequence in K, and if ρ = lim |an|−1/|n| ∈ [0,∞], then the series∑
anx

n is locally uniformly convergent on an open ball of radius < ρ centered at
0. The function x 7→

∑
anx

n is said to have a power series expansion at zero. A
function f from an open subset Ω of Kd and valued into a subset of K is called
analytic at 0 if 0 ∈ Ω and f coincides, in a neighborhood of 0, with a series as
above; f is called analytic if for every x0 ∈ Ω, the function x 7→ f(x + x0) defined
on Ω−x0 is analytic at zero. A function from Ω to a subset of Kℓ is called analytic
if all its ℓ coordinates are analytic, and a function between two open subsets of
Kd is called bianalytic if it is analytic, bijective, and its inverse is also analytic.
When necessary, we say K-analytic instead of analytic.

An analytic K-manifold is a Hausdorff topological space with an atlas into open
subsets of Kd (for various d), such that change of charts are bianalytic. If d is
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fixed beforehand, this is called an analytic K-manifold of pure dimension d. This
allows to define the notion of analytic function on an analytic manifold.

Exercise. Let p be prime and fix d ∈ Nr {0}. Show that there are exactly p− 1
nonempty compact analytic Qp-manifolds of pure dimension d up to bianalytic
transformation, namely Zd

p × {1, . . . , k} for 1 ≤ k ≤ p− 1.

An analytic K-Lie group is an analytic K-manifold endowed with a group law
such that both the law and the inversion map are analytic. For K = Qp, we say
“p-adic Lie group” rather than “Qp-Lie group”.

Instances of p-adic Lie groups are

• the additive group Qp itself, its open subgroup Zp, and their direct prod-
ucts such as Qk

p × Zℓ
p.

• the general linear group GLd(Qp), and the special linear group SLd(Qp).
• all discrete groups. Although these are trivial examples, it is good to keep

in mind, since any theorem about general p-adic Lie groups should include
all discrete groups.

Any K-analytic Lie group (G, ∗) has its law, given in a chart centered at the
unit element, given as x ∗ y = L(x) +L′(y) +B(x, y) +O(‖x‖3 + ‖y‖3), with L,L′

linear and B a quadratic polynomial in (x, y). Using only that 0 is the neutral
element, we obtain that L,L′ are identity and that B is actually bilinear in the
variables x and y.

A first consequence is that xp = px+O(‖x‖2). This implies, in the case K = Qp,
that the p-power map is conjugate around 0 to the contracting map x 7→ px. In
particular, we deduce that every p-adic Lie group G admits an open torsion-free
pro-p-subgroup.

For K arbitrary again, using associativity and a Taylor expansion of order 3,
we see that the alternating bilinear map (x, y) 7→ B(x, y) − B(y, x) satisfies the
Jacobi identity, and that the resulting Lie algebra g depends functorially on G (in
the category of K-adic Lie groups with analytic homomorphisms).

An exponential map is defined as an analytic map f from an open neighborhood
Ω of 0 in g, stable under multiplication by elements of the closed 1-ball K≤1 of K,
such that

• f(0) = 1 and the differential of f at 0 is Idg

• f(tx)f(t′x) = f((t + t′)x) for all x ∈ Ω and all t, t′ ∈ K such that |t|, |t|,
and |t + t′| all belong to K≤1.

In the case when K is a p-adic field (Qp and its finite extensions), we have a
good correspondence: let Sω

K
(G) be the set of closed K-analytic subgroups of G,

and SubK(g) the set of Lie K-subalgebras of g. Let ≃ be the equivalence relation
on the set of subgroups of G defined by: H ≃ H ′ if H and H ′ locally coincide:
there exists a compact open subgroup L of G such that H ∩G = H ′ ∩G.

Given a subgroup H of G, its Lie algebra is defined as the set of x ∈ g that
occur as gamma′(0), where gamma ranges over germs of analytic functions from
Kdim(G) to G valued in H ; this is indeed a Lie K-subalgebra. Of course, it only
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depends on H modulo ≃. If H is a closed analytic subgroup, then this is just the
tangent space of H at the neutral element.

Given a Lie subalgebra h of g, let h′ be a small enough open compact K≤1-
submodule of g, and define H as its exponential: this is a compact analytic sub-
group, uniquely defined in Sω

K
(G)/ ≃.

Then these two maps are inverse maps between Sω
K

(G)/ ≃ and SubK(g).
When K = Qp, we have two improvements, showing that the analytical struc-

ture is governed by the structure of topological group.

• Every continuous homomorphism between p-adic Lie groups is analytic; in
particular the analytical structure is uniquely determined by the underly-
ing topological group;
• Every closed subgroup is analytic.

Thus in a p-adic Lie group, there is a natural bijection between the poset of
closed subgroups modulo ≃ and the poset of Lie subalgebras of the Lie algebra.
Another consequence is that the quotient of a p-adic Lie group by any closed
subgroup is naturally a p-adic manifold with an analytic action, and the quotient
by a closed normal subgroup is naturally a p-adic Lie group.

This shows that there is a bound on the length of chains of non-open inclusions
of closed subgroups in p-adic Lie group. In particular, if G is a p-adic Lie group,
then the set of n such that Zn

p is a subquotient of G is bounded. Interestingly,
the converse holds, in the following form: if G is a locally compact group with an
open pro-p-subgroup P , and if there is a bound on the set of n such that Zn

p is a
subquotient of P (this clearly does not depend on the choice of P ), then G is a
p-adic Lie group [DDMS]. This is a characterization of p-adic Lie groups among
topological groups, not referring to p-adic manifolds.

References

[B2-3] N. Bourbaki. Groupes et algèbres de Lie. Chapitres 2 et 3. Hermann, Paris, 1972
(reprint: Springer, 2006). English version: Groups and Lie algebras, Chapters 1-3,
Springer 1998.

[DDMS] J. Dixon, M. du Sautoy, A. Mann, D. Segal. Analytic pro-p-groups. Cambridge Stud.
Adv. Math., 2003.

The scale function

Albrecht Brehm and Rafaela Rollin

The aim of our talk was to give a motivation around the notions arising in Willis’
Theory of the scale function and to prove some elemental properties of the scale.
All theorems and definitions are drawn from the papers which appear in the ref-
erences. In the sequel let G denote a totally disconnected locally compact group,
B the collection of compact open subgroups and α a continuous automorphism of
G. Furthermore let U be a compact open subgroup of G.
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At first we observe that the index |α(U) : α(U)∩U | is finite, because the cosets
of α(U)∩U form an open covering of α(U). Thus the scale function can be defined
as

s : Aut G→ N, α 7→ min
U∈B
|α(U) : α(U) ∩ U |.

Let us call a compact open subgroup U minimizing for α iff

s(α) = |α(U) : α(U) ∩ U |,

i.e. iff the minimum is attained at U .
This leads to the question which properties minimizing subgroups necessarily

have? For a given arbitrary compact open U there are two possibilites to get
|α(U) : α(U) ∩ U | smaller without destroying the compact open property.

(1) “Cutting U down”, an operation which decreases the enumerator faster
than the denominator and

(2) “adding an α-invariant compact space to U”, an operation which increases
the denominator faster than the enumerator.

Therefore we conclude that a necessary condition for a compact open subgroup
to be minimizing is to be constant under both of the operations described above.
This motivates the following definitions:

Definition 1. Let

U+ :=
⋂

n≥0

αn(U), U++ :=
⋃

n≥0

αn(U+)

and
U− :=

⋂

n≤0

αn(U), U−− :=
⋃

n≤0

αn(U−).

A compact open subgroup U is said to be semi-tidy for α iff

|α(U+) : U+| = |α(U) : α(U) ∩ U |.

A compact open subgroup U is said to be tidy for α iff it is semi-tidy and L ⊆ U ,
where L := {x ∈ G : for all but finitely many n ∈ Z : αn(x) ∈ U}.

Remark 2.

(1) There is a nice trick of Rosendal which you can find in [2] to prove that L
is relatively compact.

(2) If you wonder why L is the right choice for the second procedure look at
the example given by Willis in [3] p. 344 (e).

(3) The ideas mentioned above give a guide how to prove the existence of
semi-tidy or tidy groups.

We give the most important characterisations of these notions:

Proposition 3. The following assertions are equivalent for a compact open sub-
group U :

(1) U = U+U−,
(2) U is semi-tidy,
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(3) U = U+

(
U ∩ α−1(U)

)
.

Furthermore U is tidy if and only if U is semi-tidy and U++ is closed.

All the notions we defined for automorphisms of G can also be used for el-
ements g ∈ G by replacing each α in the definitions above by the inner au-
tomorphism induced by g. This way the scale function for g ∈ G is given by
s : G→ N, g 7→ min

U∈B
|gUg−1 : gUg−1 ∩ U | and analogously one can define (semi-)

tidy subgroups for g. We use this interpretation in the following part.
As a first application of semi-tidy subgroups there is an elementary proof of the
next proposition and of the following theorem one can find in [2].

Proposition 4. If U is semi-tidy for g ∈ G, then (UgU)n = UgnU and (Ug−1U)n

= Ug−nU for every n ≥ 1.

Theorem 5. The set P1(G) := {g ∈ G : 〈g〉 is compact} of periodic elements is
closed.

The next theorem connects the scale function to the modular function ∆ for
the left invariant Haar measure on G. Proofs for this theorem and the following
basic properties of the scale function can be found in [1].

Theorem 6. The equality
s(g−1)

s(g)
= ∆(g) holds for every g ∈ G.

Corollary 7. For g ∈ G we have s(g) = |gUg−1 : gUg−1 ∩ U | if and only if
s(g−1) = |g−1Ug : g−1Ug ∩ U |.

Corollary 8. An element g ∈ G normalises some U ∈ B if and only if s(g) = 1 =
s(g−1).
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Tidy subgroups

Maxime Gheysens and Adrien Le Boudec

The aim of the talk is to give an account of Willis’ theory of tidy subgroups and
scale function of a totally disconnected locally compact group G.

The notion of compact open subgroup tidy for a given α ∈ Aut(G) was in-
troduced in [3]. One of its major interests comes from a result from [4], that
characterizes tidy subgroups as those compact open subgroups at which the value
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of the scale function of α is attained, revealing that the tidiness criteria can be
seen as structure results for minimizing subgroups for α.

In the first part of the talk we give a detailed exposition of the construction
of tidy subgroups, following [4] and [2]. The idea is to start with an arbitrary
compact open subgroup, and to follow a procedure that leads to a new compact
open subgroup satisfying the two tidiness criteria. The main ingredient is the
introduction of a compact subgroup that is normalized by the automorphism under
consideration.

This construction is then illustrated with two examples, namely the general
linear group GL(2,Qp) and the automorphism group of a regular locally finite
tree Aut(T ). In the first example, we explain why the compact open subgroup
SL(2,Zp) fails to be tidy for the element g = diag(p, 1), and how to obtain a tidy
subgroup and compute the scale function of g by following the aforementioned
procedure. In the case of the group Aut(T ), elliptic isometries have scale one, and
we explain how tidy subgroups for a hyperbolic isometry in some sense lie along
its axis.

Finally the end of the talk is devoted to show how a result of Willis on tidy
subgroups [3] yields a compelling proof of the following result: if a locally compact
totally disconnected group G admits an automorphism that is ergodic with respect
to a Haar measure on G, then G must be compact [1].
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Margulis’ normal subgroup theorem

Alex Furman

The goal of the talk was to discuss the following theorem of Margulis:

Theorem 1 (Margulis). Let G be a connected, semi-simple, real Lie group, with
finite center and of higher rank: rk(G) ≥ 2. Let Γ < G be an irreducible lattice.
Then any normal subgroup N ⊳ Γ is either of finite index in Γ, or N is finite and
central: N ⊂ Γ ∩ Z(G).

This theorem applies to any lattice in a simple Lie group of higher rank, such
as G = SL3(R), and to any irreducible lattice in semi-simple groups like G =
SL2(R)× SL2(R). It applies more generally to (irreducible) lattices in (products)
of groups of k-points for algebraic groups over local fields. The theorem does
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not apply to groups of rank one: uniform lattices in such groups are Gromov-
hyperbolic, and as such have (each) uncountably many normal subgroups. So this
is pure higher-rank phenomenon.

The proof can be split into two parts:

(i) Proving that if Γ/N is amenable, then Γ/N is finite.
(ii) Proving that if Γ/N is not amenable, then N ⊂ Γ ∩ Z(G).

If G has Kazhdan’s property (T) then Γ and Γ/N also have (T), and (i) follows.
This argument applies to many examples, but for irreducible lattices in (some)
products, such as G = SL2(R)× SL2(R), a more complicated argument is needed.

Remarkably, the proof of (ii) consists to the following purely measure-theoretic
theorem

Theorem 2 (Margulis). Let G be a connected, semi-simple, real Lie group, with
finite center and of higher rank: rk(G) ≥ 2. Let P < G be a minimal parabolic
subgroup, and Γ < G an irreducible lattice. Then the only Γ-invariant, complete,
sub-σ-algebras of the Lebesgue σ-algebra on G/P , are G-invariant ones, they are
pull-backs of the Lebesgue σ-algebras from G/P → G/Q where P < Q < G are
various parabolic subgroups (there are 2rk(G)-many such parabolics).

The proof of this result relies (in a very clever way) on a version of Lebesgue
differentiation theorem. Specifically Margulis shows that

Proposition 3. Let V be a locally compact second countable group, and φ ∈
Aut(V ) such that for any open neighborhood of identity 1 ∈ U ⊂ V and any
compact subset K ⊂ V , one has φn(K) ⊂ U for all n ≥ n(U,K). Then for any
Borel subset E ⊂ V for a.e. v ∈ V one has

lim
n→∞

φ−n(vE) = Ψ(v) ⊂ E

where Ψ(v) = V if v−1 ∈ E and Ψ(v) = ∅ if v−1 6= E, where the convergence is
”in measure on finite measure sets”.

In the proof one identifies (measure-theoretically) G/P with U — the unipotent
radical of the opposite parabolic, and the role of V is played by certain subgroups
of this nilpotent groups; contracting automorphisms φ ∈ Aut(V ) are conjugation
by some singular elements a ∈ a+ in the positive Weyl chamber that contract
V as above, while acting trivially on U/V . Howe–Moore’s theorem (with some
small additional argument) allows to mimic the action of any such a on G/P by
an appropriate sequence in Γ.
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Bader–Shalom Normal Subgroup Theorem

Światos law Gal

The theme of the talk is the following result of Uri Bader and Yehuda Shalom [1].

Theorem 1. Let G1 and G2 be locally compact, nondiscrete, compactly generated
groups, not both isomorphic to the group of real numbers. Let Γ < G1 × G2 be a
discrete cocompact irreducible subgroup. If both Gi’s are just noncompact, then Γ
is just infinite.

The proof consist of showing that if N is a proper normal subgroup of Γ then
Γ/N is both amenable and Kazhdan, thus finite. We discuss in further details
the amenable part. To do this we equip Gi’s with auxiliary finite measures and
study the dynamics of the actions on Poisson boundaries. The main ingredients
are Kaimanovich-Vershik-Rosenblatt characterisation of amenable groups, Zimmer
result of the amenability of an action of a group on its Poisson boundary, and the
Margulis Factor Theorem stating that every Γ-factor of the Poisson boundary of
G1 ×G2 is isomorphic to the product of Gi-factors of Poisson boundaries of Gi’s.
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L2-Betti numbers of locally compact groups

Roman Sauer

L2-Betti numbers of Riemannian manifolds were introduced by Atiyah in 1976.
Since then their range of definition has been extended several times: By Dodziuk
to finite simplicial complexes, by Cheeger-Gromov to arbitrary discrete groups, by
Lück [3] to arbitrary spaces with group actions, and, more recently, by Petersen [4]
to locally compact groups. In this talk we gave an overview of L2-Betti numbers
of (discrete and locally compact) groups.

The theory of L2-Betti numbers of measured equivalence relations, which
started with Gaboriau’s fundamental paper [1], implies for the L2-Betti numbers
of lattices Λ,Γ in the same locally compact group G that covol(Λ)−1βn(Λ) =
covol(Γ)−1βn(Γ). This equality was the main motivation to introduce a notion of
L2-Betti number of G, which is equal to covol(Γ)−1βn(Γ). In full generality, this
was achieved in [2].

The definitions for discrete and locally compact groups by Lück and Petersen,
respectively, are similar on a formal level but important differences are the lack
of a finite trace on the von Neumann algebra of a non-discrete group and the
technical difficulties involved in dealing with continuous cohomology.

In the talk we explained computations of L2-Betti numbers for SL3(Qp) and
free groups.
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Commensurated subgroups, after Shalom and Willis

László Márton Tóth and Samuel Mellick

The aim of this talk is to present a result of Shalom and Willis answering a
question of Margulis and Zimmer about the structure of commensurated subgroups
in arithmetic groups. To sidestep the need for technical background, we discuss
the specific case of SLn for n ≥ 3 – this particular example has the trappings of
the general proof. Enthused readers are invited to look at the original paper [1].

The Margulis–Zimmer problem. Let S = {p1, p2, . . . , ps} be a set of primes.
Consider the group SLn(Z[ 1

p1

, 1
p2

, . . . , 1
ps

]), denote it by SLn(Z[ 1S ]) for short. The

subgroups SLn(Z), SLn(Z[ 1
pi

]), SLn(Z[ 1
pi
, 1
pj

]), or generally SLn(Z[ 1
S′ ]) for any

S′ ⊆ S are all commensurated. These subgroups, and any subgroup commen-
surable with a subgroup of this form, are deemed standard commensurated

subgroups.

Question 1 (Margulis, Zimmer). Are all commensurated subgroups of SLn(Z[ 1S ])
necessarily standard or finite?

Work of Venkataramana in [3] shows that the answer is yes for SLn(Z), and
more generally for the integral points of higher-rank Q-groups. Shalom and Willis
have provided a conceptually different proof with wider scope, and have explored
the connections of this problem with other deep properties of arithmetic groups.

The key new property elucidated by Shalom and Willis lets us answer the
Margulis–Zimmer question, and can be viewed as a kind of fixed point statement:

Definition 2. A group Γ has the outer commensurator-normalizer property

if for any group ∆ and any homomorphism ϕ : Γ → ∆, if a subgroup Λ ≤ ∆ is
commensurated by im(ϕ) then there is some Λ′ commensurable to Λ which is
normalized by im(ϕ).

To understand this an iota better, recall that for a subgroup H of G, commen-
suration means the indices [H : H ∩ gHg−1] are all finite, and commensuration by
another subgroup K ≤ G means g varies only over K (the indices [H : H∩kHk−1]
are all finite). One can retranslate this in terms of the action of H on the cosets
G/H . It just means the H-orbits of points kH are all finite.
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Theorem 3 (Bergman, Lenstra). Let G be a group, H ≤ G a subgroup. Then
H is uniformly commensurated in the sense that there is a bound C such that
[H : H ∩ gHg−1] ≤ C for all g ∈ G if and only if H is commensurable to a
normal subgroup of G. More generally, if K ≤ G is another subgroup then H is
uniformly commensurated by K in the sense that there is a bound C such that
[H : H ∩ kHk−1] ≤ C for all k ∈ K if and only if H is commensurable to a
subgroup normalized by K.

Through the lens of this theorem, one sees the outer commensurator-normalizer
property as a statement that commensuration can only happen uniformly.

An important point missed in the particular case we’re talking about is that the
outer commensurator-normalizer property is a commensurability invariant. This
is what is needed to make sense of the analogous question of our “every commen-
surated subgroup looks like one on this list” for more general algebraic groups.
More concretely, think about SL3(Z) – the theorem says that every commensu-
rated group is finite or finite-index. Is the same true for every finite-index subgroup
of SL3(Z)? This is a priori unclear, but turns out to be true.

Theorem 4 (Shalom, Willis). SLn(Z) has the outer commensurator-normalizer
property. Consequently, every commensurated subgroup of SLn(Z[ 1S ]) is standard
or finite.

One solves the Margulis–Zimmer question in terms of the outer commensurator-
normalizer property by invoking strong approximation results and the Margulis
normal subgroup theorem. Establishing the outer commensurator-normalizer prop-
erty itself involves looking at the “relative profinite completion” (also known as a
Schlichting completion) associated to a commensurated subgroup inside a group.
This is a totally disconnected locally compact group on which SLn(Z) acts by au-
tomorphisms. From here one combines structural results about arithmetic groups,
bounded generation theorems, Willis’ theory of flatness and scale (as expounded
in [4] and [5]), and the Bergman and Lenstra theorem.
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Minimal closed normal subgroups in certain compactly generated

locally compact groups

Thibaut Dumont and Dennis Gulko

In [2], P.-E. Caprace and N. Monod proved the existence of minimal non-trivial
closed normal subgroups in certain compactly generated locally compact groups
and discussed how many could there be. We present the last version of these
results to appear in the note [3] and we prove fractions of them. The totally
disconnected case is discussed in details and a similar result for non-necessarily
totally disconnected groups is stated.

Throughout this abstract the abbreviation t.d.l.c. stands for totally disconnected
locally compact. A subgroup H of a topological group G is called locally elliptic (or
topologically locally finite) if every finitely generated subgroup of H has compact
closure. For example, any compact subgroup of G is locally elliptic. Van Dantzig’s
theorem guaranties non-discrete t.d.l.c. groups to have numerous locally elliptic
subgroups. Any topological group G possesses a unique maximal normal locally el-
liptic subgroup denoted by RadLE(G). It is closed and topologically characteristic;
moreover RadLE(G/RadLE(G)) = 1.

The main result is the following.

Proposition (Proposition 2.6, [3]). Let G be a compactly generated t.d.l.c. group
without non-trivial compact or discrete normal subgroup. Then,

(i) Every non-trivial closed normal subgroup contains a minimal one.
(ii) LetM be the set of minimal closed normal subgroups andMna be the subset

of non-abelian ones. Then M might be infinite butMna is finite.
(iii) Each abelian M ∈ M is locally elliptic, hence contained in RadLE(G). In

particular, if RadLE(G) = 1, then M =Mna is finite.

(iv) For any proper E ⊂ M, the subgroup NE = 〈M |M ∈ E〉 is properly con-
tained in G.

Using the solution to Hilbert’s fifth problem and some more machinery, they
proved the following result for arbitrary compactly generated locally compact
groups.

Theorem (Theorem B, [3]). Let G be a compactly generated locally compact group.
Then one of the following holds.

(i) G has an infinite discrete normal subgroup.
(ii) G as a non-trivial closed normal subgroup which is {compact}-by-{soluble

connected}.
(iii) There exist non-trivial closed normal subgroups, of which only finitely many

are non-abelian.

The fact that a Hausdorff quotient of a compactly generated group is again
compactly generated seems to allow iterations of Theorem B. If G is Noetherian,
such a procedure will stop after finitely many steps. We refer to [2, Theorem
C] for more details. Another approach would be to consider the quotient by the
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locally elliptic radical. Then G/RadLE(G) could potentially satisfy the hypothesis
of Proposition 2.6, in which case it would have only finitely many minimal closed
normal subgroup by (i), all non-abelian. This motivates the next talk on the class
of elementary t.d.l.c. groups, see [4].

The following proposition was the starting point leading to Proposition 2.6 and
it is inspired by the work [1] of M. Burger and S. Mozes.

Proposition (Proposition 2.5, [2]). Let G be a compactly generated t.d.l.c. group
and V be an identity neighbourhood. Then there exists a compact normal subgroup
QV ⊂ V such that any filtering family of non-discrete closed normal subgroups of
G/QV has non-trivial intersection.

The idea behind Proposition 2.5 is that a compactly generated t.d.l.c. group
acting faithfully on one of its Cayley-Abels graphs has the non-trivial intersection
property for any filtering family of non-discrete closed normal subgroups. On the
one hand if G has no compact normal subgroup then the action is indeed faithful
since QV = {1}. On the other hand if every closed normal subgroup of G is non-
discrete then the filtering property holds for any filtering family of closed normal
subgroups. Those observations together prove (i) of Proposition 2.6.
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Elementary totally disconnected locally compact groups

Morgan Cesa and François Le Mâıtre

We presented the class of elementary tdlc (totally disconnected locally compact)
second-countable groups, which was introduced by Wesolek in [Wes14]. This class
E is defined as the smallest class of tdlc second-countable groups such that

• E contains all profinite second-countable groups and all countable discrete
groups.
• Whenever N ≤ G is a normal subgroup, if N ∈ E and G/N is profinite

metrizable or countable discrete, then G ∈ E .
• Whenever G may be written as a countable increasing union of open sub-

groups belonging to E , then G ∈ E .

Much like in the case of elementary amenable groups, the class of elementary
tdlc groups enjoys stronger closure properties: for instance, it is closed under group
extensions, taking closed subgroups, Hausdorff quotients, and inverse limits (for
more details, see [Wes14, Thms. 1.3 and 1.4]).
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Examples of elementary tdlc second-countable groups include solvable groups
and small invariant neighbourhood groups. A wealth of non-elementary tdlc groups
is provided by compactly generated topologically simple non-discrete non-profinite
groups [Wes14, Prop. 6.2]. In particular, for all n ≥ 3, neither the group of
automorphisms of the n-regular tree nor the projective linear group of dimension
n over Qp are elementary. It is not known whether every tdlc second-countable
amenable group is an elementary tdlc group.

We presented a very interesting feature of the class of elementary tdlc groups:
the existence of a maximal normal elementary closed subgroup inside every tdlc
second-countable group. Such a subgroup is unique, and is called the elementary
radical. It can be used to show that elementary tdlc groups and topologically
characteristically simple non-elementary tdlc groups may be seen as building blocks
for general tdlc second-countable groups. More precisely, we proved the following
theorem of Wesolek, using a result of Caprace and Monod [CM11].

Theorem 1 ([Wes14, Thm. 1.6]). Let G be a compactly generated tdlc second-
countable group. Then there exists a finite increasing sequence

H0 = {e} ≤ · · · ≤ Hn

of closed characteristic subgroups of G such that

(1) G/Hn is an elementary tdlc group and
(2) for all i = 0, ..., n − 1, the group (Hi+1/Hi)/RadE(Hi+1/Hi) is a finite

quasi-product of topologically characteristically simple non-elementary sub-
groups, where RadE(H) denotes the elementary radical of H.
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Invariant Random Subgroups in rank one and higher rank Lie groups

Tsachik Gelander

An Invariant Random Subgroups (IRS) in a locally compact group G is a conju-
gacy invariant probability measure on the space Sub(G) of closed subgroups of G.
Special examples are normal subgroups (Dirac mass) and finite volume homoge-
neous spaces (corresponding to lattices). The space IRS(G), of all IRS’s, equipped
with the weak-* topology is a compact space which one wishes to analyse, in par-
ticular, in order to understand better some of its special points (e.g. the lattices).
In recent years there has been a largely growing interest in studying IRS in vari-
ous groups. I will concentrate in the case that G is a simple Lie group. The first
part of the talk will be dedicated to basic definitions and properties, including the
analogy to Benjamini–Schramm topology. The second part will be devoted to the
higher rank case (following my joint work with Abert, Bergeron, Biringer, Nikolov,
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Raimbault and Samet). In particular I will explain Stuck–Zimmer rigidity theo-
rem, its application to the asymptotic shape of locally symmetric spaces, and some
further application concerning L2 invariants. The third part will be devoted to
rank one groups, where the lack of rigidity plays an important role and could be
used for instance to show that almost all hyperbolic manifolds are non-arithmetic
(in an appropriate sense).

Automorphism Groups of Trees: Prescribed Local Actions

Alejandra Garrido and Stephan Tornier

This talk split into two parts. First, the second author introduced basic prop-
erties of the universal group construction by Burger and Mozes, see Section 3.2
of [2]. Second, the first author described some variations of this construction by
Banks, Elder and Willis (see [1]) and explained how this construction can be used
to find infinitely many locally compact compactly generated non-discrete simple
subgroups of tree automorphisms.

Universal Groups. Let Td = (X,Y ) denote the d-regular tree (d ≥ 3) and let
l : Y → {1, . . . , d} be a legal labelling of Td. We adopt Serre’s conventions for
graph theory, see [4]. Given a vertex x ∈ X , every automorphism g ∈ Aut(Td)
induces a permutation at x given by c(g, x) := l|E(gx) ◦ g|E(x) ◦ l|

−1
E(x) ∈ Sd, where

E(x) := {y ∈ Y | o(y) = x}.

Definition 1. Let F ≤ Sd. Define U(F ) := {g ∈ Aut(Td) | ∀x ∈ X : c(g, x) ∈ F}.

The following proposition collects several basic properties of U(F ). Also, it
exemplifies the principle that properties of U(F ) should correspond to properties
of the finite permutation group F , which is part of the beauty of the construction.

Proposition 2. Let F ≤ Sd. Then the following statements hold.

(i) U(F ) is closed in Aut(Td).
(ii) U(F ) is locally permutation isomorphic to F .

(iii) U(F ) is vertex-transitive.
(iv) U(F ) is edge-transitive if and only if F is transitive.
(v) Given legal labellings l and l′ of Td, the groups U(l)(F ) and U(l′)(F ) are

conjugate in Aut(Td).

Furthermore, it is immediate from Definition 1 that U(F ) satisfies Tits’ Inde-
pendence Property. More precisely, we have the following.

Proposition 3. Let F ≤ Sd. Then U(F )+ is either trivial or simple. If F is
transitive and generated by its point stabilizers, then U(F )+ = U(F ) ∩ Aut(Td)+

and hence U(F )+ ≤ U(F ) is of index two.

Here, U(F )+ := 〈{g ∈ U(F ) | ∃y ∈ Y : gy = y}〉 is the subgroup of U(F )
generated by edge-stabilizers. It is edge-transitive if and only if F is transitive
and generated by its point stabilizers.

Finally, the term “universal” is justified by the following result.
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Proposition 4. Let G ≤ Aut(Td) be vertex-transitive and locally permutation iso-
morphic to a transitive permutation group F ≤ Sd. Then there is a legal labelling
l of Td such that G ≤ U(l)(F ).

Universal groups have come up in the theory of lattices in products of two trees,
see [3], but constitute interesting objects of study in themselves, too.

k-closures and Property Pk. Let T denote an infinite and locally finite tree
(not necessarily regular) and B(x, n) the ball of radius n centred at vertex x of T .

Definition 5. Let G ≤ Aut(T ) and k ∈ N. The k-closure of G is

G(k) := {h ∈ Aut(T ) | ∀x ∈ X : ∃g ∈ G : h|B(x,k) = g|B(x,k)}.

That is, the automorphisms of T that agree on each ball of radius k with some
element of G.

In this setting, G is the analogue of F in the definition of U(F ), providing a list
of “allowed” actions. Notice also that G(k) is in some sense a “thicker” version of
U(F ) in that it has a prescribed local action on bigger balls (when k > 1).

Proposition 6. The k-closure of G has the following basic properties.

(i) G(k) is a closed subgroup of Aut(T ).
(ii) For every k, l ∈ N with l > k we have G ≤ G(l) ≤ G(k).

(iii)
⋂

k∈N
G(k) = G (the topological closure of G in Aut(T )).

Just as U(F ) satisfies Tits’ Independence Property (or Property P ), the k-
closure of G satisfies a “thicker” version of this property.

Definition 7. For any finite or (bi-)infinite path C in T and any n ∈ N let Cn be
the subtree of T spanned by all vertices at distance at most n from C.

Let G ≤ Aut(T ), k ∈ N and C be a finite or infinite path in T . Then, for
each vertex x of C, the point-wise stabilizer FixG(Ck−1) of Ck−1 in G acts on the
“subtree rooted at x” (the subtree of T whose vertices are closer to x than to any
other vertex of C) and we denote by Fx the permutation group induced by this
action. We therefore have a map Φ : FixG(Ck−1)→

∏
x∈C Fx which is clearly an

injective homomorphism.
We say that G satisfies Property Pk if for every finite or infinite path C the map

Φ is an isomorphism.

Notice that when k = 1 we recover the original Property P defined by Tits ([5]).

Proposition 8. Let G ≤ Aut(T ) and k ∈ N, then G(k) satisfies Property Pk.

It is almost immediate that this holds when C is an edge, whence it can easily
be extended to finite paths. That it holds for (bi-)infinite paths follows from a
limiting argument and the fact that G(k) is a closed subgroup of Aut(T ).

Satisfying Property Pk characterizes when the process of taking k-closures sta-
bilizes.

Theorem 9. The group G ≤ Aut(T ) satisfies Property Pk for some k if and only
if G(k) = G.
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More importantly, we deduce the following which will be used when finding
infinitely many distinct simple subgroups.

Corollary 10. There are infinitely many distinct k-closures of G if and only if G
does not satisfy Property Pk for any k.

To find simple subgroups we will use an analogous result to Tits’ theorem ([5,
Théorème 4.5]), with a similar proof. Let G+k := 〈FixG(ek−1) | e ∈ Y 〉 denote the
subgroup of G generated by pointwise stabilizers of “(k − 1)-thick” edges.

Theorem 11. Suppose G ≤ Aut(T ) does not stabilize a proper non-empty subtree
or an end of T , and satisfies Property Pk. Then G+k is simple (or trivial).

We have the following recipe to find simple subgroups of Aut(T): start off
with some G ≤ Aut(T ) which does not stabilize a proper subtree of T , form its
k-closures (they all satisfy Property Pk), use Theorem 11 to obtain the simple
subgroups (G(k))+k . We still need to ensure that the latter subgroups are non-
discrete and different from each other, which will follow from the results below.

Lemma 12. If G ≤ Aut(T ) does not stabilize a proper subtree of T we have

(i) (G(k))+k is an open subgroup of G(k).
(ii) (G(k))+k is non-discrete if and only if G(k) is non-discrete.

(iii) (G(k))+k satisfies Property Pk.

Theorem 13. Suppose that G ≤ Aut(T ) does not stabilize a proper subtree of T .
Then (G(r))+r ≤ (G(k))+k for every r ≥ k, with equality if and only if G(r) = G(k).

Thus, in order to construct infinitely many distinct t.d.l.c. simple non-discrete
subgroups of Aut(T ) it suffices to find examples with infinitely many distinct k-
closures. By Corollary 10, this amounts to finding examples which do not satisfy
Property Pk for any k.

Example 14. The following groups do not satisfy Property Pk for any k.

(i) PSL(2,Qp) acting on its Bruhat–Tits tree (which is isomorphic to Tp+1).
(ii) BS(m,n) := 〈a, t | t−1amt = an〉 (Baumslag–Solitar group) for coprime

m,n acting on its Bass–Serre tree (which is isomorphic to Tm+n).

We note that this method finds infinitely many t.d.l.c. simple non-discrete
groups which are pairwise distinct as subgroups of Aut(T ). It would be desirable
to know whether these subgroups are pairwise non-isomorphic. This is stated as
work in progress in [1]. Using different methods, Simon Smith has found uncount-
ably many t.d.l.c. simple non-discrete groups which are pairwise non-isomorphic.
This was discussed in the talk by C. Reid and G. Willis.
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Simple totally disconnected groups, after Smith

Colin Reid and George Willis

We presented a recent construction ([6]) by Simon M. Smith of a product of per-
mutation groups, which is a modification of the “universal group” construction of
Marc Burger and Shahar Mozes ([1]). As with the Burger–Mozes construction,
the product is defined as a group of automorphisms of a tree, and under some
mild assumptions, the product (or a large subgroup of it) is a simple group, as it
satisfies a criterion of Tits ([7]) for simplicity of groups acting on trees. However,
the Smith construction is more flexible in that it takes as input two (possibly
infinite) permutation groups instead of one, and the resulting product may be
locally compact even if one of the input groups was an infinite discrete group.
This can be used to produce a large class of examples of simple groups that are
totally disconnected, locally compact and non-discrete. In particular, Smith ob-
tains a continuum of non-isomorphic simple groups that are totally disconnected,
locally compact, compactly generated and non-discrete. Prior to this work, only
countably many examples of groups of this kind were known (see for instance [2]).

By Ol’shanskii ([3],[4]), for each prime p > 1075, there are a continuum of non-
isomorphic infinite simple groups T (known as Tarski–Ol’shanskii monsters) such
that every proper non-trivial subgroup of T has order p. One combines T (in its
action on the left cosets of one of its non-trivial finite subgroups) with a transi-
tive finite permutation group S generated by point stabilisers (for example, the
symmetric group of degree 3), to produce a topological group T ⊠ S that is to-
tally disconnected, locally compact, compactly generated and non-discrete. Using
Serre’s property (FA) (see [5]), it is shown that if T and T ′ are non-isomorphic
Tarski–Ol’shanskii monsters, then T⊠S and T ′⊠S are non-isomorphic as abstract
groups. Interestingly, T ⊠ S has an open compact subgroup that depends only on
p and S, not on the choice of T , so the given examples fall into only countably
many local isomorphism classes. In particular, we see that in contrast to the situ-
ation in Lie groups, the structure of a totally disconnected, locally compact simple
group in a neighbourhood of the identity is very far from determining the global
structure.
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Burger-Mozes’ simple lattices

Laurent Bartholdi

The purpose of my talk is to present a complete proof (modulo some computer
calculations) of the following

Theorem (Burger-Mozes, [BM]). There exist groups Γ that are

(1) finitely presented;
(2) simple;
(3) torsion-free;
(4) biautomatic;
(5) fundamental groups of non-positively curved 2-dimensional complexes;

hence of cohomological dimension 2;
(6) presentable as amalgams F ∗EF for finitely generated free groups E,F and

finite-index inclusions of E in F .

These groups Γ will appear as lattices in a product of “universal groups” U(Fv)×
U(Fh), for finite permutation groups Fv, Fh; see the talk by Stefan Tornier and
Alejandra Garrido, page 2641, in the Arbeitsgemeinschaft.

The main ingredient is a variant of Margulis’ “normal subgroup theorem”,
proven by Burger-Mozes, and which is a special case of the Bader-Shalom “normal
subgroup theorem” explained in the talk by Światos law Gal, page 2635:

Theorem 1 (Burger-Mozes, [BM, Corollary 5.1]). Let dv, dh ≥ 3 be integers,
let Fv, Fh respectively be 2-transitive subgroups of Sym(dv), Sym(dh), and let Γ ≤

U(Fv) × U(Fh) be a cocompact lattice with dense projections: prv(Γ) ⊇ U(Fv)+

and prh(Γ) ⊆ U(Fh)+.
Then Γ is just infinite; i.e. all non-trivial normal subgroups of Γ have finite

index.

It follows that, if Γ is not residually finite, then
⋂

16=N⊳Γ N is simple: it is again
a lattice to which Theorem 1 applies, and has no non-trivial normal subgroup.

The second ingredient is a step-by-step construction of a non residually finite
lattice. This can be done by pure thought, as in the original article; but I have
rather explained tricks from combinatorial group theory when they were simple,
and relied on Rattaggi’s method of computer calculation, when they were not.
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1. Lattices in products of trees

Consider two regular trees Tv, Th of degree dv, dh respectively, and a group Γ acting
freely and transitively on Tv × Th.

On the one hand, Γ may then be described as the fundamental group of the
geometric object Γ\(Tv × Th). This is a 2-complex consisting of a single vertex; a
collection of “vertical” and “horizontal” oriented loops at that vertex, respectively
written Sv, Sh, and in bijection with the Γ-orbits of edges in Tv, Th; and a collection
of “squares” whose perimeter reads a vertical, horizontal, vertical, horizontal edge
in sequence. The squares’ labels are such that, for every (sv, sh) ∈ S±1

v × S±1
h ,

there exists a single corner of a square two-cell at which the two incident edges
carry the labels sv, sh with correct orientation. In particular, there is a single
zero-cell, (dv +dh)/2 geometric one-cells, and dvdh/4 two-cells. Algebraically, this
amounts to a presentation

(1) Γ = 〈Sv ⊔ Sh | relations svshs
′
vs

′
h〉.

Fix a basepoint (ov, oh) ∈ Tv × Th, and consider

Γv =
{
γ ∈ Γ : γ(Tv × {oh}) = Tv × {oh}

}
,

the stabilizer of oh in the action of Γ on Th. On the one hand, Γv is a group
acting freely on Tv, and therefore is a free group. In fact, it is the subgroup of Γ
generated by Sv, of rank dv/2, and Tv may be identified with the Cayley graph of
Γv. On the other hand, Γv acts on Th fixing the basepoint oh. This action may
be described quite concretely, in terms of the presentation of Γ, as follows. Given
γ ∈ Γv and x ∈ Th, consider the paths from ov to γov in Tv and from oh to x in
Th; these are the left and bottom edges of a unique rectangle in Tv × Th:

(ov, oh)

γ(ov, x) ∈ Tv × (γ · x)

(ov, x)

(γov, oh)

By the “corner” condition on the complex Γ\(Tv × Th), there is a single way of
filling in this rectangle with labeled squares, and the top label gives the image of x
under γ. Naturally the same considerations lead to a subgroup Γh = 〈Sh〉 acting
on the rooted tree (Tv, ov).

It is in general difficult to check whether a lattice, given e.g. by its presenta-
tion (1), has dense projections. However, the actions on rooted trees of Γv,Γh are
computable, and this leads to a computable, sufficient condition:
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Lemma 2 ([BM, Proposition 5.2]). Assume in the notation of Theorem 1 that the
groups Fv, Fh are primitive, with simple, non-abelian point stabilizers ∼= Lv, Lh

respectively. Consider the action of Γv on the ball of radius 2 around oh; choose
an edge e at oh and let Kh denote the fixator of the ball of radius 1 around e. Define
similarly Kv. Then either (Kv,Kh) = (1, 1), or (Kv,Kh) ∼= (Ldv−1

v , Ldh−1
h ) and

the projections of Γ to U(Fv)+, U(Fh)+ are both dense.

The proof of this lemma is difficult (for the speaker), and is essentially a variant
of the Thompson-Wielandt theorem (asserting that, if a group acts transitively on
a graph with finite vertex stabilizers, then the fixator of a ball of radius 1 must be
a p-group).

2. A nonseparable lattice

We now construct explicitly some lattices. The first step is to produce a lattice Γ′

that is not “subgroup separable”, namely there exist a subgroup ∆ and g ∈ Γ′ \∆
such that, in every finite quotient of Γ′, the image of g belongs to the image of ∆.
The lattice is given by S′

v = {a, b, c}±1, S′
h = {x, y}±1, and squares

x

b

x

a

x

c

y

b

x

a

y

c

y

b

y

a

y

a

x

b

y

c

x

c

We first claim that the element c ∈ Γ′
v acts transitively on {x, y}n ⊂ Th for all

n ∈ N. This is proven by induction, using the following criterion: the action of c
on {x, y}n must have odd signature for all n ≥ 1. Indeed then, since {x, y}n−1 is
a single 〈c〉-orbit, there exists w ∈ {x, y}n−1 such that c ·wx = wy so that {x, y}n

is a single orbit. For γ ∈ Γ′
v, let σn(γ) denote the signature of the action of γ on

{x, y}n. Now the squares above give the relations

σn(a) = σn−1(b)2 = 1, σn(b) = σn(c) = σn−1(c)σn−1(a), σ1(c) = −1

from which σn(c) = −1 for all n ≥ 1.

We then claim that, for all m ≥ 1, the elememt x−1y belongs to Γv〈cm〉Γ
′

.
Indeed, since c acts transitively on {x, y}m for all m, it has infinite order; so there
exists w ∈ {x, y}∗ such that cm · wx = wy. Consider the corresponding rectangle
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in Tv × Th:

w x

∈ Γ′
v

yw

cm

It gives in Γ′ the relation (cm)wxx−1y ∈ Γ′
v, as desired.

Lemma 3 (Wise, [Wis, Corollary 6.4]). For every homomorphism π : Γ′ → Q to
a finite group, π(x−1y) ∈ π(Γ′

v).

Proof. Since Q is finite, there exists m ≥ 1 such that π(cm) = 1; then π(x−1y) ∈

π(Γv〈cm〉Γ
′

) = π(Γv). �

3. A non residually finite lattice

We next construct a lattice that is not residually finite. It has presentation

Γ′′ = 〈S′
v ⊔ S′

h ⊔ S′
h | two copies of the squares from Γ′〉.

Note the following automorphism of Γ′′: it fixes S′
v, and exchanges the two copies

S′
h, S

′
h by x↔ x, y ↔ y. Its fixed point set is precisely Γ′′

v . The claim follows from

Lemma 4 (Long-Niblo [LN]). Let G be a residually finite group, and let θ be an
automorphism of G. Then Fix(θ) is separable in G.

Proof. Choose g ∈ G \ Fix(θ); so g−1θ(g) 6= 1. Thus there exists π : G → Q with
Q finite and π(g−1θ(g)) 6= 1. Define φ : G→ Q×Q by φ(g) = (π(g), π(θg)). Note
then that Fix(θ) maps to the diagonal of Q×Q, while g does not. �

In fact, we obtain a bit more than non-residual finiteness: there is a specific
element y−1xx−1y ∈ Γ′′

h that belongs to every finite-index subgroup of Γ′′.

4. A simple lattice

We finally imbed Γ′′ in a larger complex Γ of degrees (dv, dh) = (10, 10), imbedding
in U(A10) × U(A10). Many examples are possible, but we content ourselves with
a single one, constructed by Rattaggi [Rat]. Set Sv = S′

v ⊔ {d, e} and Sh =



Arbeitsgemeinschaft: Totally Disconnected Groups 2649

S′
h ⊔ S′

h ⊔ {z}; the first two rows of squares are those of Γ′′:

x

b

x

a

x

c

y

b

x

a

y

c

y

b

y

a

y

a

x

b

y

c

x

c

x

b

x

a

x

c

y

b

x

a

y

c

y

b

y

a

y

a

x

b

y

c

x

c

y

d

x−1

e−1

y

e

z

d−1

x

d

x

e−1

x

e−1

z

d

y

e−1

y−1

d

x

e

x−1

d

y

d

x−1

e

x

d

y−1

e

y

e

y−1

d

z

a

z

c−1

z

b

z

e

z

c

z

a

z

d

z

b

It is easy for a computer to check that Γv,Γh act by A10 on 1-balls, and that the
finite groups Kv,Kh defined in Lemma 2 are non-trivial; so that both projections of
Γ in U(A10) have dense image in U(A10)+, so that Γ is just infinite by Theorem 1.

The group Γ cannot be simple: there is always a homomorphism

σ : Γ→ {±1} × {±1}, Sv 7→ (−1, 1), Sh 7→ (1,−1).

Set Γ0 = ker(σ).

Proof of the main theorem. Set Γ1 =
⋂

16=N⊳Γ N . Then Γ1 is non-trivial, because

it contains w = y−1xx−1y, so it is simple and has finite index in Γ. A computer
algebra program such as GAP can compute the normal closure of w in Γ, and check
that it has index 4 in Γ, whence coincides with Γ0. Therefore Γ0 = Γ1 = 〈w〉Γ so
Γ0 is simple.

To see that Γ0 is torsion-free, it suffices to note that it is the fundamental group
of a complex with contractible universal cover Tv × Th.

The decomposition of Γ0 as amalgam comes from its action on Th with funda-
mental domain an edge. The group F is in fact Γv, and E is the stabilizer of an
edge touching oh in Th. �
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The structure lattice, part I

John Wilson

The structure lattice LN (G) of a totally disconnected locally compact group G
is the quotient of the family LN(G) of compact subgroups with open normalizer
modulo the equivalence relation of commensurability. It is an analogue of the
structure lattice of a just infinite group; however the latter lattice is automatically
Boolean, because centralizers are plentiful and supply complements in the lattice.
Basic properties of LN (G) were discussed, together with conditions ensuring that
a certain subset LC(G) of LN (G) is a Boolean lattice; the elements of LC(G) are
those containing subgroups CU (H) with H ∈ LN (G) and with U compact and
open. The proof was sketched that if G is compactly generated and topologically
simple then LN (G) contains no non-trivial abelian subgroups and G has no non-
trivial elements with open subgroups. It was also explained why that the only
compactly generated and topologically characteristically simple groups for which
these two properties do not hold are the obvious ones.
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Abstract quotients of profinite groups, after Nikolov and Segal, part I

Benjamin Klopsch

In my talk I presented and discussed results of Nikolay Nikolov and Dan Segal
on abstract quotients of compact Hausdorff topological groups, paying special
attention to the class of finitely generated profinite groups.

In [5], Nikolov and Segal streamline and generalise their earlier results [3, 4]
which led to the solution of a problem raised by Jean-Pierre Serre [7, I.§4.2].

Theorem 1 (Nikolov, Segal [3]). Let G be a finitely generated profinite group.
Then every abstract finite-index subgroup H of G is necessarily open in G.



Arbeitsgemeinschaft: Totally Disconnected Groups 2651

Serre proved this assertion in the special case, where G is a finitely generated
pro-p group for some prime p, by a neat and essentially self-contained argument.
The proof of the general theorem is considerably more involved and makes use, for
instance, of the Classification of Finite Simple Groups; the same is true for several
of the results stated below. We refer to the survey article [8] for a discussion of the
background to Serre’s problem and further information on finite-index subgroups
and verbal subgroups in profinite groups.

The key theorem in [5] concerns normal subgroups in finite groups. For a finite
group Γ, let d(Γ) denote the minimal number of generators of Γ, write Γ′ for the
derived subgroup of Γ and set

Γ0 =
⋂
{T E Γ | Γ/T almost-simple}

=
⋂
{CG(M) |M a non-abelian simple chief factor},

where H is almost-simple if S E H ≤ Aut(S) for some non-abelian finite simple
group S. For X ⊆ Γ and f ∈ N we write X∗f = {x1 · · ·xf | x1, . . . , xf ∈ X}.

Theorem 2 (Nikolov, Segal [5]). Let Γ be a finite group and {y1, . . . , yr} ⊆ Γ a
symmetric subset, i.e. a subset that is closed under taking inverses. Let H E Γ.

(1) If H ⊆ Γ0 and H〈y1, . . . , yr〉 = Γ′〈y1, . . . , yr〉 = Γ then

〈[h, g] | h ∈ H, g ∈ Γ〉 = {[h1, y1] · · · [hr, yr] | h1, . . . , hr ∈ H}∗f ,

where f = f(r, d(Γ)) = O(r6d(Γ)6).
(2) If Γ = 〈y1, . . . , yr〉 then the conclusion in (1) holds without assuming H ⊆ Γ0

and with better bounds on f .

While the proof of the key theorem is rather involved, the basic underlying idea
is simple to sketch. Suppose that Γ = 〈g1, . . . , gr〉 is a finite group and M a non-
central chief factor. Then the set [M, gi] = {[m, gi] | m ∈ M} must be ‘relatively
large’ for at least one generator gi. Hence

∏r
i=1[M, gi] is ‘relatively large’. In order

to transform this observation into a rigorous proof of Theorem 2 one employs a
combinatorial result, discovered by Timothy Gowers, which – informally speaking
– comes down to the following: to show that a finite group is equal to a product
of some of its subsets, it suffices to know that the cardinalities of these subsets are
‘sufficiently large’. For a precise statement see [1, Corollary 2.6].

By standard compactness arguments, Theorem 2 yields a corresponding re-
sult for normal subgroups of finitely generated profinite groups. For a profinite
group G, let d(G) denote the minimal number of topological generators of G, write
G′ for the abstract derived subgroup of G and set

G0 =
⋂
{T E G | T open in G and G/T almost-simple}.

For X ⊆ G and f ∈ N we write X∗f = {x1 · · ·xf | x1, . . . , xf ∈ X} as before. The

topological closure of X in G is denoted by X.

Theorem 3 (Nikolov, Segal [5]). Let G be a profinite group and {y1, . . . , yr} ⊆ G
a symmetric subset. Let H E G be a closed normal subgroup.
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(1) If H ⊆ G0 and H〈y1, . . . , yr〉 = G′〈y1, . . . , yr〉 = G then

〈[h, g] | h ∈ H, g ∈ G〉 = {[h1, y1] · · · [hr, yr] | h1, . . . , hr ∈ H}∗f ,

where f = f(r, d(G)) = O(r6d(G)6).
(2) If y1, . . . , yr topologically generate G then the conclusion in (1) holds without

assuming H ⊆ G0 and better bounds on f .

In particular, the theorem shows that, if G is a finitely generated profinite group
and H E G a closed normal subgroup, then the group [H,G] = 〈[h, g] | h ∈ H, g ∈
G〉 is closed. Thus G′ and more generally all terms γi(G) of the abstract lower
central series of G are closed; these consequences were already established in [3].

Furthermore, one obtains the following tool for studying abstract normal sub-
groups of a finitely generated profinite group G, reducing certain problems more
or less to the abelian profinite group G/G′ or the profinite group G/G0 which is
semisimple-by-(soluble of bounded derived length).

Corollary 4 (Nikolov, Segal [5]). Let G be a finitely generated profinite group and
N E G an abstract normal subgroup. If NG′ = NG0 = G then N = G.

Using Corollary 4 and features of products of powers in non-abelian finite simple
groups (cf. [2, 6]), it is not difficult to derive Theorem 1. Moreover, the methods
developed in [5] lead to new consequences for abstract quotients of finitely gener-
ated profinite groups and, more generally, compact Hausdorff topological groups.

Every compact Hausdorff topological group G is an extension of a compact
connected group G◦, its identity component, by a profinite group G/G◦. By the
Levi–Mal’cev Theorem, the connected component G◦ is essentially a product of
compact Lie groups and thus relatively tractable.

We conclude by stating two results whose proof requires the new machinery
developed in [5], as they were not covered by the methods used in [3, 4].

Theorem 5 (Nikolov, Segal [5]). Let G be a compact Hausdorff topological group.
Then every finitely generated abstract quotient of G is finite.

Theorem 6 (Nikolov, Segal [5]). Let G be a compact Hausdorff topological group
such that G/G◦ is topologically finitely generated. Then G has a countably infi-
nite abstract quotient if and only if G has an infinite virtually-abelian continuous
quotient.

A basic example, illustrating these theorems is the additive group (Zp,+) of
p-adic integers: as an abstract group it does not map onto (Z,+) but onto (Q,+).
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Contraction groups and the scale

Phillip Wesolek

The primary resource for this talk is the work of U. Baumgartner and G. Willis
[1]. Our discussion closely follows their paper. We cover the basic properties of
contraction groups, the relation with the scale function, the closure of the con-
traction group, and an application. In the following discussion G always denotes a
totally disconnected locally compact (t.d.l.c.) group and Aut(G) the collection of
topological group isomorphisms. (We always assume our groups are Hausdorff.)

We begin by defining the contraction subgroup.

Definition 1. Let α ∈ Aut(G). The contraction group associated to α is
defined to be

con(α) := {x ∈ G | αn(x)→ e as n→∞}.

It is easy to see con(α) is a subgroup; it is, however, not in general closed.
Taking U ≤ G a compact open subgroup and α ∈ Aut(G), we put

Us :=
⋂

i∈Z

αi(U).

We then obtain the following:

Theorem 2. If U is a compact open subgroup of G tidy for α, then U−− =
con(α)Us.

From Theorem 2, we derive the following interesting relationship between the
contraction group and the scale function.

Theorem 3. Let α ∈ Aut(G). Then con(α) is relatively compact if and only if
sG(α−1) = 1.

It is enlightening to note a consequence of the above: Suppose α ∈ Aut(G)
is non-unimodular. Say ∆(α) > 1. It follows s(α−1) 6= 1, hence con(α) is not
relatively compact.

We next show the closure of the contraction group again has a nice structure.

Definition 4. Let G be a t.d.l.c. group and α ∈ Aut(G). The nub group is
defined to be

nub(α) :=
⋂
{V | V is tidy for α}.
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Theorem 5. con(α) = con(α) nub(α).

We conclude by presenting an application of contraction groups. This applica-
tion is due to P-E. Caprace, C. Reid, and Willis [2].

Definition 6. Let G be a t.d.l.c. group. The Tits core of G is defined to be

G† := 〈con(g) | g ∈ G〉.

It turns out Aut+(Tn) for Tn the n-regular tree and G+(k) for G a simple
isotropic k-algebraic group with k a non-archimedean field are exactly the respec-
tive Tits cores.

We then note two interesting properties of the Tits core.

Theorem 7. Let G be a t.d.l.c. group and D a dense subgroup. If G† normalizes
D, then G† ≤ D.

Corollary 8. Let G be a t.d.l.c. group. If G is topologically simple, then G† is
abstractly simple.

We lastly note two open questions.

Question 9. Does every compactly generated t.d.l.c. group that is topologically
simple and non-discrete have at least one non-trivial contraction group?

A positive answer to the following question would imply a negative answer to
the above. Recall g ∈ G is periodic if 〈g〉 is relatively compact; this is the
topological analogue of torsion.

Question 10. Is there a compactly generated t.d.l.c. group that is topologically
simple, non-discrete, and periodic? That is to ask, do topological Tarski monster
groups exist?
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The centraliser lattice

David Hume and Thierry Stulemeijer

1. Introduction

In this talk, we review the definition of the centraliser lattice LC(G) of a totally
disconnected locally compact (t.d.l.c.) group, and explain why it is a Boolean
algebra. We then study the action of G on Ω, the associated Stone space of
LC(G) , and prove that under certain hypotheses on G, it is continuous, minimal,
strongly proximal and weakly branch. Moreover, Ω satisfies a universal property
in the category of profinite G-spaces that are weakly branch.
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2. The centraliser lattice as a Boolean algebra

The centraliser lattice is a subset of the structure lattice LN (G) defined in a
previous talk. We first recall the definition of LN (G) .

Definition 1.

(1) A subgroup K ≤ G is called locally normal if it is compact and nor-
malised by an open subgroup of G.

(2) Two subgroups H,K of G are locally equivalent if there exists a compact
open subgroup U of G such that H ∩U = K ∩U , or equivalently if H ∩K
has finite index in both H and K.

(3) The set of all local equivalence classes having a locally normal representa-
tive is called the structure lattice of G, and is denoted by LN (G).

So, informally, LN (G) is the lattice of subgroups that are compact and normal
in an open subgroup, everything happening ’up to finite index’. As explained in
a previous talk, this is a lattice in a natural way. Before defining the centraliser
lattice, it will be more intuitive to first define local decomposition lattices.

Definition 2.

(1) Given a topological group H and a subgroup K, say K is an almost

direct factor of H if there is a closed subgroup L of H of finite index
such that K is a direct factor of L.

(2) Let α ∈ LN (G), say α = [H ], where H is locally normal. We define the
local decomposition lattice LD(G;H) of G at H to be the subset of
LN (G) consisting of elements [K] where K is locally normal in G and K
is an almost direct factor of H .

Note that a natural candidate for the complement of a locally normal subgroup
is to take its centraliser. Lemma 4 shows that this map is well defined ’up to finite
index’, whenever H is C-stable.

Definition 3. Let G be a topological group, and H ≤ G be a subgroup.

(1) We define the quasi-centraliser of H in G, denoted by QCG(H), to be
the subgroup of G consisting of those elements that centralise an open
subgroup of H .

(2) H is called C-stable if QCG(H)∩QCG(CG(H))∩U is trivial, for all open
compact subgroup U of G.

Lemma 4. Let G be a t.d.l.c. group and let K be a locally normal subgroup which
is C-stable. Then for all open compact subgroups U of G, we have

[CU (K ∩ U)] = [QCG(K)]

Note that the C-stability condition can now be rephrased in the following more
intuitive way :

H⊥ ∧ (H⊥)⊥ = 0

Using this complementation, we obtain the following result.
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Lemma 5. Let G be a t.d.l.c. group and let α ∈ LN (G) have a C-stable rep-
resentative. Then LD(G;α) is a sublattice of LN (G) and every β ∈ LD(G;α)
has a locally normal C-stable representative. Furthermore, LD(G;α) is inter-
nally a Boolean algebra (relative to the maximum α), with complementation map
⊥: [K]→ [QCG(K)] ∧ α.

We finally arrive at the definition of the centraliser lattice, which is a Boolean
algebra whenever G is locally C-stable.

Definition 6. A t.d.l.c. group G is called locally C-stable if QCG(G) = {1} and
if all locally normal subgroup are C-stable. Or equivalently, if QCG(G) = {1} and
the only abelian locally normal subgroup is the trivial one.

Definition 7. Let G be a locally C-stable t.d.l.c. group. As above, define the
map ⊥: LN (G) → LN (G) : α → [QCG(α)]. This is well-defined by Lemma 4.
The centraliser lattice LC(G) is defined to be the set {α⊥|α ∈ LN (G)} together
with the map ⊥ restricted to LC(G), the partial order inherited from LN (G) and
the binary operations ∧c and ∨c given by:

α ∧c β = α ∧ β

α ∨c β = (α⊥ ∧ β⊥)⊥

Theorem 8. Let G be a locally C-stable t.d.l.c. group. The poset LC(G) is a
Boolean algebra and ⊥2: LN (G)→ LC(G) is a surjective lattice homomorphism.

3. Topological dynamics

In this section we concentrate on the dynamics of the action of a group G in
the class S — compactly generated, topologically simple, non-discrete, totally
disconnected locally compact groups — on the Stone space Ω of its centraliser
lattice LC(G).

We recall that the Stone representation theorem assigns a profinite space Ω(B)
to any Boolean algebra B where elements of B are in 1−1 correspondence with
clopen subsets of Ω(B).

As soon as the centraliser lattice is non-trivial this action is faithful. Moreover,
the action of G on Ω shares many dynamical characteristics with the action of
Aut(T )+ on the boundary of the regular tree T . In particular, the boundary of T
is naturally homeomorphic to the Stone space of the centraliser lattice of Aut(T )+.
The purpose of the talk was to highlight those similarities in order to illuminate
the following theorem.

Theorem 9. [2, Theorem F]

(1) The G-action on Ω is continuous, minimal, strongly proximal and weakly
branch; moreover, Ω contains a compressible clopen subset.

(2) Given a profinite space X with a continuous G-action, the G-action on X
is weakly branch if and only if there is a continuous G-equivariant surjec-
tive map Ω→ X. In particular, every weakly branch G-action is minimal
and strongly proximal.
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Let v be a vertex in T and let T ′ be a component of T \ v. The boundary of T ′

is a clopen subset V ⊂ ∂∞T and the subgroup H of Aut(T )+ which fixes ∂∞T \V
pointwise represents a class in LD(Aut(T )+). Let g ∈ Aut(T )+ be a hyperbolic
isometry such that the repelling fixed point η− of g in ∂∞T lies in V . Notice that
for each n, [g−nHgn] defines a strictly smaller element of the centraliser lattice
and in the Stone space these clopen subsets converge in the weak-∗ topology to
the singleton {η−} (V is compressible and the action is strongly proximal).

Using the above we can also deduce that the action is minimal — all orbits are
dense — and weakly branch — the pointwise stabiliser of any proper clopen subset
is non-trivial.

The first part of the above theorem states that these phenomena hold whenever
G ∈ S, while the second part states that any weakly branch action is a ‘quotient’
of the action of G on Ω.

One important distinction between what is currently known about the dynamics
of Aut(T )+ and a general G ∈ S is highlighted by the following corollary.

Corollary 10. [2, Corollary H] Let G ∈ S and suppose LC(G) 6= {0,∞}. Then
G contains a non-Abelian discrete free subsemigroup.

While Aut(T )+ has North-South dynamics — hyperbolic isometries have at-
tracting and repelling fixed points — so a standard ping-pong argument finds
non-Abelian free subgroups, for a general G ∈ S it is currently only possible
to find isometries which are attracting, hence we obtain free subsemigroups. It is
therefore appropriate — as mentioned after the talk by Rémi Coulon — to say that
the topological dynamics of such groups may resemble the action of a Baumslag–
Solitar group more closely than the action of Aut(T )+. However, by [2, Corollary
G] a group G ∈ S with non-trivial centraliser lattice cannot be amenable.
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Abstract quotients of profinite groups and applications, after Nikolov

and Segal, part II

Jakub Gismatullin

My talk was devoted to explaining recent results of Nikolay Nikolov and Dan
Segal. I also described how their results might be applied to some problems in
group theory.

Let us start with some definitions. An arbitrary group G (not necessarily profi-
nite) can be regarded as a topological group with the profinite topology, that is,
a topology having as a basis of open subsets all cosets of normal subgroups of
finite index. G with the profinite topology may not be compact. This topology is
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Hausdorff if and only if G is residually finite. The profinite completion Ĝ of G is

the completion of G with respect to this topology. That is, Ĝ is the inverse limit

Ĝ = lim
←−

(G/P )

of the system {(G/P,G/P → G/Q) : P,Q ⊳ G,P < Q, [G : P ], [G : Q] <

∞}. Another way of constructing Ĝ is to consider the closure î(G) of i(G) in∏
P⊳G,[G:P ]<∞G/P , where i is the diagonal map.

Let G be a profinite group. What happens if we construct the profinite com-

pletion Ĝ of G itself? When the inclusion map from G to Ĝ is bijective? Could Ĝ
be strictly bigger that G? According to Serre [8], this question has the following
reformulation: when all subgroups of finite index in G are open? There are exam-

ples of profinite groups, with non-open finite index subgroups (e.g. Z/2Z
ℵ0 has

ℵ0 open subgroups, but 22
ℵ0

subgroups of index 2). Such examples are not topo-
logically finitely generated. Therefore, we assume that G is topologically finitely
generated. Serre himself proved [8] that the answer is positive when G is a topo-
logically finitely generated pro-p-finite group. In 2003 N. Nikolov and D. Segal
answered [5] Serre’s question in the positive: In every finitely generated profinite
group G, every finite index subgroup is open.

Here is another translation of their result: A finitely generated profinite group G
has no strange finite quotients (by a strange quotient of G we mean G/P , for non-
closed P ⊳G). As a consequence one can prove that: A residually finite image of
a finitely generated profinite group G is either finite or uncountable. Notice that a
finitely generated profinite group can have a countable infinite image (for example
Q is the image of Z2). Therefore, it is natural to consider the following question
(from Blaubeuren Conference in 2007):

(A) Is it possible for a topologically finitely generated profinite group to have
a finitely generated infinite homomorphic image?

In addition to the question (A), I would like to propose the following questions
(B) and (C) (see below for the relationship of (C) with the class of (weak) sofic
groups).

(B) What are possible homomorphic images of (topologically finitely gener-
ated) profinite groups?

(C) Is it possible to embed every finitely generated group as a subgroup of a
quotient of a topologically finitely generated profinite group?

Let us stress the following fact. If a finitely generated group H is a subgroup
of a quotient of some profinite group, then one can prove [2] that H is also a
subgroup of a quotient of topologically finitely generated profinite group. Hence,
without loss of generality the assumption that a profinite group is topologically
finitely generated can be removed from (C).

The following results from [6, 7] give the answer to (A).

(1) Let G be a compact Hausdorff group, N ⊳ G and suppose that G/N is
finitely generated. Then G/N is finite. [6, 1.13]

(2) Let G be a topologically finitely generated profinite group.
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(a) If N ⊳ G and G/N is countably infinite, then G/N has an infinite
virtually abelian quotient.

(b) G has countably infinite quotient iff some open subgroup of G has
infinite abelianization.

The key to proving the above results are some theorems on finite groups. Then,
using some standard transfer arguments, one can obtain versions for profinite
groups. As an example we state the following achievement from [6].

We need some notation. For a group G, elements a, b ∈ G and A,B ⊆ G
we use the following notation: A · B = {ab : a ∈ A, b ∈ B}, ab = b−1ab, AB =⋃

a∈A,b∈B ab, An = A · . . . · A︸ ︷︷ ︸
n times

and [a, b] = a−1b−1ab. By [H, a] we denote a−1H ·a =

{[h, a] : h ∈ H}. Recall that [H,G] is the subgroup of G generated by {[h, g] : h ∈
H, g ∈ G}.

Theorem 1. [6, Theorems 1.2 and 1.6] Let G be a finite (profinite) group and
{a1, . . . an} be a symmetric generating set (topological generating set resp.) for
G. Then for some constant M = M(n) ∈ N, for every normal subgroup (closed
normal subgroup resp.) H of G,

[H,G] =

(
n∏

r=1

[H, ar]

)M

,

where M = M(n) is O(n3).

Let us sketch some applications of Theorem 1. This theorem can be general-
ized to arbitrary group G with the profinite topology (assuming topological finite
generation) in the following way. For S ⊆ G we denote by S the closure of S in G
in the profinite topology.

Theorem 2. [2] Suppose G is an arbitrary group and {a1, . . . an} ⊆ G is a sym-
metric subset which generates a dense subgroup of G with respect to the profinite
topology. Then for every normal subgroup H ⊳G

[H,G] =

(
n∏

r=1

[H, ar]

)M

=

(
n∏

r=1

a−1
r

H
· arH

)M

,

where M = M(n) is the constant from Theorem 1 (the second equality is because

of [H, a][H, a−1] = a−1GaaGa−1 = a−1G · aG).

As a corollary of 2 one can prove the following fact related to Stallings Conjec-
ture from [9]. It is well known that every conjugacy class in a finitely generated
free group is closed in the profinite topologies. Stalings, Glebsky and Rivera [4]
asked whether in a free group Fn, any product of finitely many conjugacy classes is
closed in the profinite topology. Using machinery from [1] we obtain the following
negative answer not only for free groups.

Corollary 3. [3] Suppose G is a group from the following list of groups: free
groups, torsion free hyperbolic groups, right angled Artin groups, pure braid groups,
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commutator subgroups in a right angled Coxeter groups. Let b = {b1, . . . , bm} ⊆ G
and G1 = 〈b1, . . . , bm〉. Take H ⊳ G such that [H ∩G1, G1] is nontrivial. Then(∏m

r=1 b
−1
r

H
· br

H
)M(m)

is not closed the profinite topology on G (where M(m) is

from 1).

Another application comes from the theory of (weak) sofic groups. There is
notion of a sofic group. Several important conjectures in group theory are true
for sofic groups. It is an open problem if every group is sofic. In [4, 4.1] the
notion of a w-sofic group was introduced, and proved that every sofic group is
w-sofic. Hence every non-w-sofic group is not sofic. One can prove [2] that G is
w-sofic if and only if G can be embedded into a quotient of a profinite group. Thus
the problem whether all groups are weak-sofic is just Question (C). Using Baire
category theorem we have the following criterion for w-soficity of simple finitely
generated groups, which is closely related to Theorems 1, 2 for free groups.

Theorem 4. Suppose G = Fm/H is a finitely generated non-abelian simple group
(where H ⊳ Fm). Then G is not w-sofic if and only if there are h1, . . . , hn ∈ H

such that [Fm,Fm] =
∏n

r=1 [Fm, hr].
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Université de Lorraine
P.O. Box 239
54506 Vandoeuvre-les-Nancy
FRANCE

Thibaut Dumont

E.P.F.L.
SB MATHGEOM EGG
MA B3 515, Station 8
1015 Lausanne
SWITZERLAND

Prof. Dr. Gerd Faltings

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
GERMANY

Prof. Dr. Alex Furman

Dept. of Mathematics, Statistics
and Computer Science, M/C 249
University of Illinois at Chicago
851 S. Morgan Street
Chicago, IL 60607-7045
UNITED STATES

Dr. Swiatoslaw R. Gal

Institute of Mathematics
Wroclaw University
pl. Grunwaldzki 2/4
50-384 Wroclaw
POLAND

Lukasz Garncarek

Instytut Matematyczny PAN
ul. Sniadeckich 8
00-656 Warszawa
POLAND

Alejandra Garrido

Mathematical Institute
Andrew Wiles Bldg.
Radcliffe Observatory Quarter
Woodstock Rd.
Oxford OX2 6GG
UNITED KINGDOM

Prof. Dr. Tsachik Gelander

Chemical Physics Department
The Weizmann Institute of Science
Rehovot 76 100
ISRAEL

Maxime Gheysens

E.P.F.L.
SB MATHGEOM EGG
MA B3 515, Station 8
1015 Lausanne
SWITZERLAND

Dr. Jakub Gismatullin

Institute of Mathematics
Wroclaw University
pl. Grunwaldzki 2/4
50-384 Wroclaw
POLAND

Dr. Yair Glasner

Department of Mathematics
Ben-Gurion University of the Negev
Beer Sheva 84 105
ISRAEL

Gil Goffer

36 Kabirim Street
Haifa 34 385
ISRAEL

Dr. Matthias Grüninger
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Institut de Mathématique Pure et Appl.
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Département de Mathématiques
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