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Introduction by the Organisers

The asymptotic analysis of random discrete structures that are related to the
complexity of fundamental algorithms is an active field both in Mathematics and
in Computer Science. In this area various probabilistic and analytic techniques
have been developed in the last decades including methods based on martingales,
connections to branching random walks, the contraction method, techniques using
generating functions, and the method of moments. In Computer Science random
trees appear in the performance analysis of data structures, in the context of
coding schemes as well as connected to fundamental algorithms such as sorting,
searching and selecting. Moreover, in the last years also fascinating connections of
these random tree models to coalescent processes, fragmentation theory and other
combinatorial stochastic processes have been found. Also their random continuous
limits such as random real trees have led to a much refined understanding of these
structures and the related complexities. The aims of this workshop were advances
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and a deeper understanding in the probabilistic analysis of random discrete struc-
tures and their limiting objects and to discuss their connections beyond the realm
of models motivated from Computer Science.

The talks covered the following themes:

• Random binary search trees, random recursive trees, other search trees and
digital trees (Addario-Berry, Bubeck, Bertoin, Gnedin, Hwang, Janson,
Leckey, Neininger, Rösler, Kabluchko)

• Combinatorial tree structures (Duquesne, Gittenberger, Mailler, Sulzbach)
• Random graphs, geometric graphs and their limits (Bhamidi, Grübel,
Mitsche, Müller)

• Geometric probabilities (Marckert)
• The smoothing transform (Alsmeyer)
• Formal power series and probability (Fill)

We thank the director, the administration, and the staff of the MFO for their
hospitality and great support before and throughout the meeting.
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National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
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Abstracts

Asymptotics of Cut-trees

Jean Bertoin

Consider a finite tree T = (V,E), where as usual V denotes the set of vertices
and E the set of edges, and imagine that we destroy T by removing its edges
one after the other and in a uniform random order (other types of destruction,
random or deterministic, can also be considered). The Cut-tree Cut(T ) is a binary
rooted tree which encodes main aspects of the destruction of T . The vertex set of
Cut(T ) is formed by the set of blocks (connected components) that arise during
the destruction. The root of Cut(T ) consists of the initial block V , and each vertex
v ∈ V can be identified as a leaf {v} of Cut(T ). The basic structure is that each
time a block B is split into two sub-blocks B′ and B′′ (because an edge in B is
removed), then B,B′ and B′′ are nodes of Cut(T ) such that B′ and B′′ as the two
children of B.

Meir and Moon initiated the study of the number of steps required to isolate
a distinguished vertex, if at each time an edge is removed, the block which does
not contain the distinguished vertex is discarded forever (in other words, one only
takes into account the edge-removals occurring in the block of the distinguished
vertex). The number of edge-removals required to isolate a given vertex v in the
destruction of T corresponds precisely to the height of the leaf {v} in Cut(T ). More
generally, the number of cuts required to isolate k vertices v1, . . . , vk coincides with
the total length of the cut-tree reduced to its root and the k leaves {v1}, . . . , {vk},
where the length is measured as usual by the graph distance on Cut(T ).

The talk was intended as a survey of some recent developments in the study of
the limits of Cut-trees for certain families of large random trees, including Random
Recursive Trees, Galton-Watson Trees, and Birthday Trees, and their applications.
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Maximal clades in random binary search trees

Svante Janson

A phylogenetic tree, or a full binary tree is a tree where every node has outdegree
0 or 2; nodes with outdegree 0 are called external and nodes with outdegree 2
internal. By eliminating all external nodes, we get a binary tree, and this yields
a bijection between phylogenetic trees with n+ 1 external nodes and binary trees
with n nodes.

The clade of an external node v in a phylogenetic tree is the set of external
nodes that are descendants of the parent of v. (This is called a minimal clade by
[1] and [2].) Note that two clades are either nested or disjoint, and that the set of
maximal clades forms a partition of the set of external nodes. We let F (T ) denote
the number of maximal clades of a phylogenetic tree T . The maximal clades, and
the number of them, were introduced by [4], together with a biological motivation,
and further studied by [3].

Translated to the corresponding binary tree (i.e., the internal nodes), a clade is
thus a node having outdegree at most 1, and a maximal clade is a clade such that
all ancestors have outdegree 2.

We consider a random binary search tree Tn (which corresponds to the Yule–
Harding model of a random phylogenetic tree) and the number of maximal clades
Xn := F (Tn) in it. We consider asymptotics as n → ∞.

It was proved by [5] and [3] that

(1) EXn = EF (Tn) = αn+O(1),

where that the mean number of maximal clades EXn ∼ αn, where

(2) α =
1− e−2

4
.

Moreover, [3] found also corresponding results for the variance and higher central
moments:

E(Xn − EXn)
2 ∼ 4α2n logn,(3)

and for any fixed integer k ≥ 3,

E(Xn − EXn)
k ∼ (−1)k

2k

k − 2
αknk−1.(4)

As a consequence of (3)–(4), the limit distribution of F (Tn) (after centering and
normalization) cannot be found by the method of moments. Nevertheless, [3]
further proved asymptotic normality, where, unusually, the normalizing uses (the
square root of) half the variance:

(5)
Xn − EXn
√

2α2n logn

d−→ N(0, 1).

We use probabilistic methods to reprove these theorems, together with some
further results. In particular, we can explain the appearance of half the variance
in (5) as follows:



Probability, Trees and Algorithms 2831

Fix a sequence of numbers N = N(n), and say that a clade is small if it has
at most N + 1 elements, and large otherwise. Let XN

n be the number of maximal
small clades, i.e., the small clades that are not contained in any other small clade.
It turns out that a suitable choice of N is about

√
n; we have for example the

following.

Theorem 1. Let N :=
√
n. Then Var(XN

n ) ∼ 2α2n logn and

(6)
XN

n − EXN
n

√

VarXN
n

d−→ N(0, 1).

Furthermore, Xn − XN
n = op

(√

VarXN
n

)

and EXn − EXN
n = o

(√

VarXN
n

)

, so

we may replace XN
n by Xn in the numerator of (6). However,

(7) Var(Xn −XN
n ) ∼ Var(XN

n ) ∼ 2α2n logn.

The theorem thus shows that the large clades are rare, and do not contribute
to the asymptotic distribution; however, when they appear, the larges clades give
a large (actually negative) contribution to Xn, and as a result, half the variance of
Xn comes from the large clades. (When there is a large clade, there is less room
for other clades, so Xn tends to be smaller than usually.)

For higher moments, the large clades play a similar, but even more extreme,
role. Note that (for n ≥ 2) with probability 2/n, the root of Tn has outdegree 1,
and then it is the unique maximal clade, and thus Xn = 1. Since EXn = αn+O(1)
by (1), we thus have Xn − EXn = −αn + O(1) with probability 2/n, and this
single exceptional event gives a contribution ∼ (−1)k2αknk−1 to E(Xn − EXn)

k,
which explains a fraction (k− 2)/k of the moment (4); in particular, this explains
why the moment is of order nk−1.

For proofs and further details, see [6].
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On the Number of Unary-Binary Structures with Bounded Unary
Height

Bernhard Gittenberger

(joint work with Olivier Bodini, Danièle Gardy, Zbigniew Golȩbiewski)

We consider rooted tree-like structures which are composed of unary and binary
nodes. The unary height of a vertex is the number of unary nodes on the path
connecting it to the root. First we study the asymptotic number of Motzkin trees
(=unary-binary trees) with constraints on the number of unary nodes or with
bounded unary height. Then we perform the analogous investigation on a similar
structure, namely λ-terms with bounded number of nestings for the quantifyer λ.
The latter can be represented by a Motzkin tree (as their skeleton) where further
edges are added according to some restrictions.

The analysis is done by a generating function approach and singularity analysis.
The generating function for the number of Motzkin trees with unary height less
than k can be written as nested square-root with polynomial expressions under the
square-roots and k levels of nesting. Obviously, the function becomes singular if
one of the square-roots vanishes. We show that there is only one singularity at the
circle of convergence. At the singular point the outermost radical vanishes whereas
the other radicals do not. Thus, the dominant singularity ρk of the generating
function Tk(z) is of squareroot type, i.e. the Puiseux expansion of Tk(ρk) is a

power series in
√

1− z
ρk
, and using a transfer lemma of the Flajolet-Odlyzko type

[4] we can obtain the asymptotic number of Motzkin trees with n nodes and
bounded unary height:

[zn]Tk(z) ∼
√

1 + 4ρ2k
4ρn+1

k n
√
πn

.

Next we look at balanced Motzkin trees, i.e. Motzkin trees with the property
that all leaves have unary height k. Again the generating function Bk(z) hap-
pens to be a nested squareroot of polynomial expressions. This time there are
exactly two singularities on the circle of convergence, z = −1/2 and z = 1/2. At
the negative one, the innermost radical vanishes whereas the other do not. This
singularity is therefore again of squareroot type. At z = 1/2 all k + 1 radicals

vanish simultaneously. Hence we have a singularity of type
(

1− z
ρk

)1/2k+1

which

dominates the squareroot singularity at z = −1/2. We obtain

[zn]Bk(z) ∼ 2n+2−k−1 n−1−2−k−1

Γ(−2−k−1)
.

Whereas most recursively defined combinatorial structures exhibit a squareroot
type singularity, other types are possible and have been characterized in [2]. This
result offers an example for “unusual” singularity types.

Since λ-terms are built from skeleton which is a Motzkin tree, we similarly
obtain generating function of nested squareroot shape. For the class of λ-terms
with unary height bounded by k we get k + 1 levels of nesting. But this time we
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observe rather strange phenomena: For k = 0 we are faced with Catalan trees.
There is one level of nesting and this squareroot determines the singularity. For
k = 1 we have two levels of nesting and at the singularity both of them vanish
simultaneously, thus yielding a fourth root type singularity. For k = 2, 3, . . . , 7
only the second radicand (counted from inside out) vanishes at the singularity. So
we have a squareroot singularity in these cases. At k = 8 it is the second and
the third radical determine the singularity, and then for k = 9, 10, . . . it is the
third radical only. At k = 135 there are again 2 radicals involved, the 3rd and the
4th one. The sequence of special values where a phase transition occurs can be
identified as the doubly exponential sequence Ni = u2

i − ui + i with u0 = 0 and
ui+1 = u2

i + i+ 1.
We can show that, if Nj < k < Nj+1, k 6= Nj, then the singularity of Hk(z)

originates from the j-th radicand and is of square root type. Otherwise, the
singularity of Hk(z) originates from both the j-th and (j + 1)-th radicand and is

of 4th root type. Its value is then
−1+

√
1+4(Nj−j)

4(Nj−j) = 1
2uj

The first values of the sequence Nj are 1, 8, 135, 21760, 479982377, . . .
By means of the theory of doubly exponential sequences developped by Aho

and Sloane [1] we can represent it in the form

Nj = uj+1 − uj − 1, uj = ⌊χ2j , and χ = lim
j→∞

u
1/2j

j ≈ 1.36660956

By means of further analysis and transfer lemmas we obtain

(i) If Nj < k < Nj+1, then there exists a constant hk such that, with σ̃j,k the
unique real positive zero of Rj,k

[zn]Hk ∼ hkn
−3/2(σj,k)

−n.

(ii) If k = Nj ,

[zn]HNj
∼ hNj

n−5/4(2uj)
n,

where

hNj
=

γ
1
4

j

4
√
2Γ(3/4) ρ

1
4

j 2Nj−j

√

∏Nj−j
i=1 λi

,

The reason for this rather strange and unexpected behaviour seems to be the
following observation: In a typical large λ-term with bounded unary height k, the
leaves are concentrated in the last log log k “unary depth levels” of the tree. It
seems that in those levels, the number of leaves is normally distributed with mean
and variance µ ∼ cn, σ2 ∼ dn. In the lower levels the number of leaves is O(1).

For k = Nj, the next level w.r.t. unary depth enters. The number of leaves
in the newly coming level has expectation Θ(

√
n) A detailed analysis of this phe-

nomenon is ongoing research.
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Concerning the constants hk in the asymptotic main terms, we observe the
following numerical values:

h1 = 0.24261...;

h8 = 9.31888... · 10−5;

h135 = 8.56995... · 10−157.

It can be shown that hk is indeed a sequence of superexponential decay. Note
that therefore, for large k, the asymptotic main term is barely invisible in simu-
lations, since the actual asymptotic behaviour shows up no sooner than for very
large values of n.

Those phenomena are also one reason why Boltzmann samplers (see [3]) face
serious difficulties in generating random λ-terms of large size.
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High degrees in recursive trees

Louigi Addario-Berry

(joint work with Laura Eslava)

1. Statement of results

Let Tn be a random recursive tree (RRT) on n vertices. Let deg(i) denote the
in-degree of vertex i ∈ [n] in Tn

1. Devroye and Lu [1] showed that the maximum
degree ∆n of Tn satisfies ∆n/ log2 n → 1 a.s. The focus in this work is the
distribution of the vertices with degree near the maximum. For any d ∈ Z, let

Xn(d) = |{i ∈ [n] : deg(i) = ⌊log2 n⌋+ d}|.
We show that there exists a Poisson point process P , and suitable projections Pε

of P into Z approximate {Xn(d)}d∈Z when n is large. The limiting distribution of
the number of degrees of constant order, Yn = |{i ∈ [n] : deg(i) = d}|, d ≥ 0; was
first study in [7]. Subsequent studies can be found in [8] and [3].

Notation. Given a Poisson Point Process N on R and A ⊂ R, we write N(A) =
|N ∩ A|. Let εn = log2 n − ⌊log2 n⌋ for any n ∈ N . Let P be a Poisson point

1Write [n] = {1, 2, . . . , n}.
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process on R with intensity f(x) = ln 2 · 2−x. For any ε ∈ [0, 1], let Pε be a Point
process in Z obtained by setting Pε(d) = P [d− ε, d+ 1− ε) for all d ∈ Z.

Theorem 1. For n ∈ N let µn be the law of {Xn(d)}d∈Z and λε be the law of Pε.
Then

(1) dist(µn, λεn) → 0

in the sense of finite dimensional distributions.
Goh and Schmutz [2] first studied the limiting distribution of ∆n − log2 n, they
used singularity analysis of generating functions. Theorem 1 in [2] is, in fact, a
corollary of Theorem 1 above. The following strengthens that result.

Theorem 2. Uniformly on integers −∞ ≤ d ≤ 2 lnn,

(2) P(∆n ≥ ⌊log2 n⌋+ d) = (1 − exp{−2−d+εn})(1 + o(1)).

Finally, we also obtain asymptotic normality for Pn(d) when d tends to −∞ slowly

enough. Write σn =
√
2d+εn .

Theorem 3. Let d = d(n) → −∞ and d = o(lnn), then for any sequence nk with
εnk

→ ε ∈ [0, 1),

Pnk
(d)− 2d+εnk

σnk

→ N(0, 1).

The proofs are basically obtained using the method of moments for any finite
collection Xn(d1), . . . , Xn(dk) (see [6], section 6.1). In particular, we need to
understand

(3) P(deg(ij) = mj , j ∈ [k])

for all i1, . . . , ik ∈ [n] and mj − ⌊log2 n⌋ ∈ Z.
The standard model for RRT defines Tn so that every vertex i ∈ [n] attaches to

a uniformly chosen vertex k ∈ [i − 1]. In particular, deg(i) is a sum of Bernoulli
variables; deg(i) =

∑n
j=i+1 I{j→i}. For any fixed i = i(n), the exact distribution

of deg(i) is derived in [4], and its limiting distribution in [5]. However, results on
the joint distribution of {deg(i)}i∈[n], in particular in the regime i = θ(lnn), have
proved challenging; in part due to the lack of symmetry of the model. To make the
analysis of (3) easier, we use Kingman’s coalescent to generate trees whose degree
sequence is exchangeable and has the same joint distribution as {deg(i)}i∈[n].

2. The perspective of Kingman’s coalescent

Kingman’s n-coalescent consists of a sequence of forests F1, . . . , Fn defined as
follows. Independently for each 1 ≤ i ≤ n − 1 let (ai, bi) be a uniformly ran-
dom element of {(a, b); 1 ≤ a < b ≤ n + 1 − i} and let ξi be Bernoulli(1/2)-
distributed and independent of {ai, bi}. The forest Fi consists of n+ 1− i rooted

trees T
(i)
1 , . . . , T

(i)
n+1−i, we order the trees according to the smallest-labelled vertex,

so in particular 1 ∈ T
(i)
1 for all i ∈ [n].

Let F1 be the forests consisting of n isolated vertices 1, 2, . . . , n. Given Fi, we

construct Fi+1 by adding an edge ei between the roots of T
(i)
ai and T

(i)
bi

. If ξi = 1,
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direct ei towards T
(i)
ai ; otherwise ei is directed towards T

(i)
bi

. If ξi = 1 we say that

that ξi favours the vertices of T
(i)
ai , and otherwise that it favours the vertices of

T
(i)
bi

. The forest Fi+1 consists of the new tree and the remaining n−1−i unaltered
trees from Fi.

Let L = (Le, e ∈ E(T
(n)
1 )) denote the edge labels in T

(n)
1 . A counting argument

shows that (T
(n)
1 , L) is uniform over trees with vertices labelled 1, . . . , n and with

a decreasing edge labelling using 1, . . . , n− 1.

Fact.Viewed as rooted labelled trees, T
(n)
1 and Tn have the same law.

As a consequence, in studying degrees we may use T
(n)
1 in place of Tn; one

advantage of this is that degrees in T
(n)
1 are exchangeable.

3. Degrees in T
(n)
1

Abusing notation, let deg(i) be the in-degree of vertex i in T
(n)
1 . We will sketch

the proof that for any k ∈ N, and d = m− ⌊log2 n⌋ ∈ Z,

(4) P(deg(i) = m, i ∈ [k]) = P(deg(1) = m)k(1 + o(1)) = 2−k(m+1)(1 + o(1)).

This will imply that the law of Xn(d) is approximately Po(2−(d−εn)) as n → ∞.
Let S = {s ∈ [n − 1], 1 ∈ {as, bs}} be the times at which the tree containing

vertex 1 is chosen to be merged. It follows that, at step s ∈ S, vertex 1 increases
its degree only if for all i ∈ S ∩ [s], ξi favours 1. To the contrary, if at time s ∈ S,

vertex 1 is the root of T
(s)
1 and ξs does not favours 1, then vertex 1 is no longer

a root in T
(j)
1 , j > s; and its degree is fixed for the remainder of the process.

Therefore,

P(deg(1) = m) = 2−mP(|S| = m) + 2−(m+1)P(|S| > m)

= 2−(m+1)(2P(|S| = m) +P(|S| > m)).

It turns out that P(|S| > m) = 1 + o(1) for m ≤ 2 lnn, implying (4) for
k = 1. The proof of this follows from the observation that if S = {s1, s2, . . .}
(with s1 < s2 < . . .), then n−sj can be approximated by nB1 · · ·Bj , where Bi are
independent and distributed as Beta(1,2). This approach is similar to that in [9]
in which the study of the height of a binary search tree relies on approximating the
size of a subtree of a given node at depth j as nU1 · · ·Uj where Ui are independent
uniform variables in (0, 1).

For k ≥ 2, (4) says that the degrees of k vertices behave essentially indepen-
dently. The main obstacle for this to occur is the following. Suppose that at a
given time s, the degrees of vertices 1 are 2 are less than m and that the trees
selected to be merged are precisely those containing vertex 1 and 2 as their roots.
Then ξs can only favour one of the two vertices and consequently at least one of

them will not achieve the desired degree m in T
(n)
1 . The key to (4) is to prove that

such bad scenarios will not occur with high probability.
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Define τi,j = min{s ∈ [n − 1], as = i, bs = j}. And let τk = min{τi,j ∈
[n− 1], i, j ≤ k}. Then any possible collisions between vertices in [k] must occurs
after step τk. It is not difficult to see that τk = n−Op(1).

Now, let Di,s be the event that vertex i has degree exactly m in Fs. Then (4) is
obtained by showing that, for suitable s, with n−s → ∞, P(∩i∈[k]Di,s) = 1+o(1).
That means that with high probability, vertices in 1, . . . , k attain the desired degree
even before step τk.

References

[1] Devroye, Luc and Lu, Jiang The strong convergence of maximal degrees in uniform random
recursive trees and dags. In Random Structures Algorithms 7 (1995), pages 1–14.

[2] Goh, William and Schmutz, Eric Limit distribution for the maximum degree of a random
recursive tree. In J. Comput. Appl. Math. 142 (2002), pages 61–82.

[3] Janson, Svante Asymptotic degree distribution in random recursive trees. In Random Struc-
tures and Algorithms 26 (2005), pages 69–83.

[4] Javanian, Mehri and Vahidi-Asl, Mohammad Q. Note on the outdegree of a node in random
recursive tree. In Journal of Applied Mathematics and Computing 13 (2003), pages 99–103.

[5] Kuba, Markus and Panholzer, Alois On the degree distribution of the nodes in increasing
trees. In Journal of Combinatorial Theory, Series A 114(2007), pages 597–618 .

[6] Janson, Luczak and Rucinski “Random Graphs”. Wiley Interscience series in Discrete Math-
ematics and Optimization (2000) 335pp.

[7] Na, Hwa Sung and Rapoport Anatol Distribution of nodes of a tree by degree. In Mathe-
matical Biosciences 6 (1970), pages 313–329.

[8] Mahmoud, Hosam M. and Smythe, R.T. Asymptotic joint normality of outdegrees of nodes
in random recursive trees. In Random Structures and Algorithms 6 (1992), pages 255–266.

[9] Reed, Bruce The height of a random binary search tree. In J. of the ACM 50 (2003), pages
306-332.

Hyperbolic Random Geometric Graphs

Tobias Müller

(joint work with Michel Bode, Erik Broman, Nikolaos Fountoulakis, Johan
Tykesson)

Continuum percolation goes back to the work of E.N. Gilbert [2] in 1961. In the
most simple set version of the model, we take a constant intensity Poisson process
on the plane, and obtain an infinite graph by joining pairs of points by an edge if
their distance is less than one.

The term random geometric graph usually refers to finite version of continuum
percolation. Such a finite version can for instance be obtained by discarding all
points outside of some large disk D. Equivalently, because of the scaling properties
of the Poisson process, we can also consider a Poisson process of larger intensity
on the unit disk and join two of its points by an edge if their distance is less than
some (small) number r > 0. Sometimes the variant is considered in which a fixed
number n of points is sampled from the unit disk and two points are joined if
their distance is less than r. Results are usually easily transferred between the
two settings.
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Studying finite random geometric graphs allows us to ask some questions, such
as “what is the probability that the graph is connected” or “what is the probability
that it has a Hamilton cycle”, that do not seem to make much sense, or have trivial
answers, in the infinite case. Hafner [3] was the first to study such (finite) random
geometric graphs. They have since become the focus of considerable research effort
and very precise answers are now known to many of the natural questions for this
model. Penrose’s monograph [5] contains a good overview of the results prior to
2003.

A natural question is what happens if we define this model not on the ordinary
euclidean plane but instead on the hyperbolic plane. For the infinite version of
the model, continuum percolation, this was already considered by Tykesson [6]
who showed that a strikingly different behaviour occurs. In euclidean continuum
percolation, there is a “critical intensity” λc > 0 such that if the intensity λ of
the underlying Poisson process is at most λc then all components of the graphs
are finite, while if λ > λc then there is a unique infinite component. As shown
by Tykesson, in hyperbolic continuum percolation there are two important special
values of the intensity: λc and λu with 0 < λc < λu < ∞. If λ < λc then all
components are finite, if λ > λu then there is a unique infinite component, but if
λc < λ < λu then there are infinitely many infinite components.

Figure 1. Computer simulation of continuum percolation on the
hyperbolic plane, shown in the Poincaré disk model, with intensity
parameter λ = 5.

In the talk I presented some recent work, and work in preparation, on (finite)
random geometric graphs in the hyperbolic plane. In the hyperbolic plane we
do not have the easy scaling relations at our disposal that exist in the euclidean
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setting and there are different, inequivalent ways in which one might define a finite
random geometric graphs on the hyperbolic plane.

In an ongoing joint work with Erik Broman and Johan Tykesson we consider
one possible and natural definition: We take a constant intensity Poisson process
on the hyperbolic plane, join two points by an edge if the distance is less than
one, and we discard all points outside of a disk of radius R. We then consider the
number of points in the largest component, for large R.

Another way to define a random geometric graph in the hyperbolic plane was
recently introduced by Krioukov et al. [4]. Here we randomly pick N points at
random from a disk of radius R on the hyperbolic plane, and we join them if their
distance is less than R (the radius of the disk the points live on). It turns out that if
the number of points N is proportional to the square root of the (hyperbolic) area
of the disk then one gets a model with constant average degree, a power-law degree
sequence and a positive clustering coefficent. In two joint works with Michel Bode
and Nikolaos Fountoulakis we studied the largest component and the connectivity
threshold in this model. The transition from a connected to a disconnected graph
exhibits behaviour that is very different from all other random graph models in
the literature as far as we are aware.
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Metric structure and universality of scaling limits: Maximal
components of critical random graphs

Shankar Bhamidi

(joint work with Nicolas Broutin, Sanchayan Sen, Xuan Wang)

Over the last few years a wide array of random graph models have been postulated,
including the configuration model, inhomogeneous random graph models and dy-
namic random graph processes such as bounded size rules. Most of these models
come with a parameter t (usually related to the edge density) and a (model depen-
dent) critical time tc which specifies when a giant component emerges. There is
evidence to support that under moment conditions, the nature of this emergence
is universal and look like the classical Erdős-Rényi random graph, in the sense of
the critical scaling window and (a) the sizes of the components in this window
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(all maximal component sizes scaling like n2/3) and (b) the structure of compo-
nents (rescaled by n1/3) converge to random fractals related to the continuum
random tree. Till date, (a) has been proven for a few models using different tech-
niques while (b) has been proven for only two models, the classical Erdős-Rényi
random graph and the rank-1 inhomogeneous random graph. The aim of this
paper is to develop a general program for proving such results. The program re-
quires three main ingredients: (i) in the critical scaling window, components merge
approximately like the multiplicative coalescent (ii) the scaling exponents of the
susceptibility functions are the same as the Erdős-Rényi random graph and (iii)
control on expected distances between random points for “large components” in
the barely subcritical regime. We show that these apply for a wide class of random
graph models including the configuration model and random r-regular graphs, in-
homogeneous random graphs modulated via a finite kernel κ and random graphs
created via bounded size rules. Thus these models all belong to the domain of
attraction of the classical Erdős-Rényi random graph. As a by product we also get
results for component sizes for a general class of inhomogeneous random graphs
in the barely subcritical and critical regime.

In order to prove the main universality result, the key heavy lifting is done via
an earlier work joint with Sanchayan Sen and Xuan Wang [1] where we studied
the special case of the rank one random graph. In this paper we established a
connection between this model and tilted versions of a famous class of random tree
models called p-trees; this class of random trees have earlier arisen in describing
the entrance boundary of the additive coalescent. In this paper assuming high
enough moments convergence of the maximal components viewed as metric spaces
was established in the stronger l4 metric as formulated by Addario-Berry, Broutin
and Goldschmidt.
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On rigidity, orientability and cores of random graphs with sliders

Dieter Mitsche

(joint work with Julien Barré, Marc Lelarge)

Consider a set of points, some of them allowed to move freely in the Euclidean
plane, and some constrained to move on fixed lines, called sliders. The free points
have two degrees of freedom, the points attached to sliders have only one. Now,
add bars between pairs of these points; a bar fixes the length between the two end-
points. The points and bars form a framework. A framework is said to be rigid if
it cannot be deformed (but can possibly be translated and rotated on the plane);
equivalently, it is rigid if the distance between any pair of points, connected by
a bar or not, is fixed. Characterizing the rigidity of a framework is very difficult
in general. In the absence of sliders, a celebrated theorem by Laman [2] ensures
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that for a generic framework, its rigidity properties only depend on its underlying
graph, where points are vertices and bars are edges: the geometry does not enter.
We will call vertices of type 1 (resp. type 2 ) if they are (resp. are not) connected
to a slider. Consider now a percolation setting: take a set of n vertices, a fraction
q of which are type 2, and add edges randomly. The questions are: When does a
giant (that is: including a finite fraction of the vertices) rigid structure emerge?
What is its size? When edges are added uniformly at random between pairs of
vertices, the resulting graph is an Erdös-Rényi random graph G(n, c/n). In this
case and for q = 1 (no slider), Kasiviswanathan et al. [1] showed that the threshold
for a giant rigid component is c ≃ 3.588, and that the transition is discontinuous:
above the threshold, the giant rigid component always includes a finite fraction of
all n vertices. We generalize this setup by allowing for sliders, and mention now
all results proved in the full paper.

1. Statements of Results

Let G be a graph (V,E) with |V | = n and |E| = m. Vertices are either of type 1
or of type 2, and for i ∈ {1, 2}, ni denotes the number of vertices of type i, so that
n = n1 + n2. Subgraphs are typically denoted by G′ with ni(G

′) vertices of type
i ∈ {1, 2}, n(G′) = n1(G

′) + n2(G
′) vertices in total and m(G′) edges. When the

context is clear, we use the notations: n′ = n(G′), n′
i = ni(G

′) and m′ = m(G′).
Let G be a graph with n = n1 + n2 vertices and m edges. G is sparse if for all

subgraph G′ ⊆ G on n′ = n′
1 + n′

2 ≥ 2 vertices and m′ edges, we have:

m′ ≤ 2n′
2 + n′

1 +min(0, n′
1 − 3) = 2n′ −max(n′

1, 3).

A graph is rigid if it contains a spanning subgraph which is minimally rigid.
A rigid block in G is defined to be a vertex-induced rigid subgraph. A rigid
component of G is an inclusion-wise maximal block. We show the following:

Theorem 1. The set of all minimally rigid graphs with n1 vertices of type 1, n2

vertices of type 2 forms the set of bases of a matroid, whose ground set is the set
of edges of the complete graph on n = n1 + n2 vertices.

Our goal from now on is to investigate rigidity, orientability and cores as a
function of q ∈ [0, 1]. Since q = 0 is closely related to the emergence of the giant
connected component, we are thus interested in situations interpolating between
standard connectivity percolation and rigidity percolation as studied in [1].

Consider in the following a random graph G ∈ G(n, c/n) with c > 0. Denote a

graph chosen in this way by G(n, c/n). Let Q(x, y) = e−x
∑

j≥y
xj

j! . Throughout

this note, for fixed q ∈ [0, 1], each vertex independently from all others gets type
1 with probability 1 − q and type 2 with probability q. We define the function
c∗(q) as follows: for q ≤ 1/2, we set c∗(q) = 1

1−q ; for q > 1/2, let ξ∗ = ξ∗(q) be

the unique positive solution to ξ (1−q)Q(ξ,1)+qQ(ξ,2)
(1−q)Q(ξ,2)+2qQ(ξ,3) = 2, and set in this case then

c∗(q) = ξ∗

(1−q)Q(ξ∗,1)+qQ(ξ∗,2) .
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Theorem 2. For G = G(n, c/n) as above, and let q ∈ [0, 1]. Let Rn(q, c) (resp.
RC

n (q, c)) be the number of vertices covered by the largest rigid component (resp.
largest connected rigid block) of G.

• For c > c∗(q), there is a giant rigid component in G, i.e., there exists

α = α(q, c) > 0 such that P
(

Rn(q,c)
n ≥ α

)

→ 1 as n → ∞.

• For c < c∗(q), there is no giant rigid component in G, i.e., ∀α > 0,

P

(

Rn(q,c)
n ≥ α

)

→ 0 as n → ∞.

The above results also hold true for RC
n (q, c). Moreover, for c > c∗(q), a.a.s., there

is one unique giant rigid component (resp. one unique giant connected rigid block).

We also show that the transition as c varies and q is held fixed is continuous
for q ≤ 1/2 and discontinuous if q > 1/2. More precisely, we have the following:

Theorem 3. Let G = G(n, c/n) as above.

• The transition is discontinuous for q > 1/2: let q > 1/2; there is α(q) =

α > 0 such that for any c > c∗(q), limn→∞ P

(

Rn(q,c)
n ≥ α

)

= 1.

• The transition is continuous for q ≤ 1/2: let q ≤ 1/2; for any α > 0,

c > 1
1−q but c → 1

1−q , limn→∞ P

(

Rn(q,c)
n ≥ α

)

= 0.

We also relate rigidity with orientability and cores. A graph is 1.5-orientable
if there exists an orientation of the edges such that type 1 vertices have in-degree
at most 1 and type 2 vertices have in-degree at most 2.

Theorem 4. Let G = G(n, c/n) be as above and let q ∈ [0, 1]. We have:

(a) if c < c∗(q), G is 1.5-orientable a.a.s.
(b) if c > c∗(q), G is not 1.5-orientable a.a.s.

For a graph with type 1 and type 2 vertices, the 2.5-core is the largest induced
subgraph with all type 1 vertices with degree at least 2 and all type 2 vertices with
degree at least 3. Note that this definition coincides with the 2-core (resp. 3-core)
if the graph contains only type 1 vertices (resp. type 2). In our probabilistic
setting, it turns out that for a fixed q, the 1.5-core appears at a value c̃(q) ≤ c∗(q).

Let Q(x, y) as before. Define c̃(q) = infξ>0
ξ

(1−q)Q(ξ,1)+qQ(ξ,2) , and let ξ̃(q, c) be

the largest solution to ξ = c(1− q)Q(ξ, 1) + cqQ(ξ, 2).

Theorem 5. Let G = G(n, c/n) be as above. Let Core be the 2.5-core of G,
n1(Core) (resp. n2(Core)) be the number of nodes of type 1 (resp. 2) in the core
and m(Core) be the number of edges in the core. Let q ∈ [0, 1]. We have

(a) if c < c̃(q) and q > 0, then a.a.s. the 2.5-core has op(n) vertices.
(b) if c > c̃(q), then a.a.s. the 2.5-core is not empty and n1(Core)/n →

(1− q)Q(ξ̃(q, c)), 2), n2(Core)/n → qQ(ξ̃(q, c)), 3),

and 2m(Core)/n → ξ̃(q, c)
(

(1 − q)Q(ξ̃(q, c)), 1) + qQ(ξ̃(q, c)), 2)
)

.

Starting from the 2.5-core, one constructs a larger subgraph as follows: add
recursively type 1 vertices which are linked by one edge with the current subgraph,
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and type 2 vertices which are linked by two edges with the current subgraph. The
resulting subgraph is called the 2.5+1.5-core. Note that this definition coincides
with the 2+1-core (resp. 3+2-core) if the graph contains only type 1 vertices (resp.
type 2).

Furthermore, we also compute the threshold and the size of the 2.5+1.5-core.
This proves a conjecture in [1] on the 3+2-core.

Theorem 6. Let G = G(n, c/n) as above. Let Core+ be the 2.5 + 1.5-core of
G(n, c/n), and n(Core+) the number of vertices inside the 2.5+ 1.5-core. Let q ∈
[0, 1] and let c > c̃(q). Then a.a.s., n(Core+)/n = (1 + o(1))

(

1− e−ξ̃ + qξ̃e−ξ̃
)

.
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About Sylvester’s question.

Jean-François Marckert

Place n points z1, ..., zn at random independently and under the uniform distribu-
tion in a compact convex set K of the plane (with non empty interior). Let PK

n

denote the probability that the zi’s are in a convex position, that is the vertices
of a convex polygon.

Bläschke proved in 1918 that, for any K, for n = 4,

PT
n ≤ PK

n ≤ P ◦
n

where T designates the triangle and ◦ the disk. It is worth mentioning that affine
transformations conserve both convex sets and uniform distributions so that the
particular position, shape, area of the triangle T or those of the disk do not matter.

Valtr [5] (1995) showed that if � is a square (or a non flat parallelogram) then,
for n ≥ 1,

P�

n =

(
(

2n−2
n−1

)

n!

)2

,

and in a second paper, [6] (1996) he proved that if T is a (non flat) triangle then,
for n ≥ 1,

PT
n =

2n(3n− 3)!

(n− 1)!3(2n)!
.

Buchta [3] goes further and gives an expression for P�
n,m and PT

n,m as a finite sum

of explicit terms where PK
n,m designates the probability that the convex hull has
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size m. Bárány (1999) [1] has shown that

lim
n→+∞

n2(Pn
K)1/n = e2A3(K)/4(1)

where A3(K) is the supremum of the affine perimeter of all convex sets S ⊂ K.
For the disk one gets

log(Pn
D) = −2n logn+ n log

(

2π2e2
)

+ o(n).

The first part of the talk was devoted to the computation of P ◦
n,m. This new

result can be found in [4]. The idea, consists in establishing a sort of decomposition
of the computation of P ◦

n,m. For this instead of P ◦
n,m, we compute the probability

Fn(θ) that n points are taken in the segment S(θ) with angle-θ (the intersection
of a disk and an half-plane) taken together with the two extreme points of the
special border of the segment, are in a convex position.

Then P ◦
n = limθ→2π− Fn(θ). The rest of the the computation consists in estab-

lishing a functional equation linking Fn(θ) with the (Fk(ν), k < n, ν ∈ (0, 2π)).
This is done by a decomposition of Fn(θ) relying on the smallest segment S(ν)
with special border the same as S(θ) containing all the points in S(ν). Now for
any n ≥ 0, θ ∈ (0, 2π) define

Ln,m(θ) =
Bn,m(θ)(θ − sin(θ))n sin(θ/2)

n!
(2)

Hence

L0(θ) = sin(θ/2), L1(θ) = sin(θ/2)(θ − sin(θ)).(3)

Theorem.

(i) For any n ≥ 1,

P ◦
n = lim

t→2π

t<2π

Bn−1(t).

(i′) For any n ≥ 2,

P ◦
n =

(n− 2)!

2n−2πn−1

∫ 2π

0

n−2
∑

k=0

Lk(φ)Ln−2−k(2π − φ)dφ

(ii) For any θ ∈ (0, 2π) and any n ≥ 1,

Ln(θ)

2
=

∫ θ

0

sin(θ/2)2n+1

sin(φ/2)2n+1

∫ φ

0

n−1
∑

k=0

Lk(η)Ln−1−k(φ− η)dηdφ.(4)

Analogous results can be obtained for P ◦
n,m:

(iii) For any θ ∈ (0, 2π) any k, and any l ≥ k + 1, Lk,l(θ) = 0. For any
θ ∈ (0, 2π), any n ≥ 1 and any 1 ≤ m ≤ n

Ln,m(θ)

2
=

∫ θ

0

∫ φ

0

sin(θ/2)2n+1

sin(φ/2)2n+1

∑

n1+n2+n3=n−1

m1+m2=m−1

(sin(η) + sin(φ− η)− sin(φ))n3

n3!

× Ln1,m1
(η)Ln2,m2

(φ− η)dηdφ
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An alternative form can be given using

sin(η) + sin(φ− η)− sin(φ) = 4 sin(
φ − η

2
) sin(φ/2) sin(η/2).

(iii′) For any n ≥ 2 and any 1 ≤ m ≤ n

P ◦
n,m =

(n− 2)!

2n−2πn−1

∫ 2π

0

∑

n1+n2=n−1

m1+m2=m−1

Ln1,m1
(φ)Ln2,m2

(2π − φ)dφ.

(iv) For any n ≥ 1,

P ◦
n,m = lim

t→2π

t<2π

Bn−1,m−1(t).

A second part of the talk has been devoted to the proof of the fact that for any
K, for n = 5,

PK
n ≤ P ◦

n .

Since the result has not been submitted for the moment, I prefer not discuss here
the main idea of this part.
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The Leading Root of a Formal Power Series

f(x, y) =
∞
∑

n=0

an(y)x
n,

with Connections to Probability

James Allen Fill

(joint work with Alan D. Sokal)

This abstract concerns the “leading root” (unique power-series root) x0(y) of a
formal power series f(x, y) =

∑∞
n=0 an(y)x

n, where the series an(y) have nonzero
constant terms for n = 0, 1 and for n ≥ 2 satisfy modest smallness conditions such
as an(y) = O(yα(n−1)) for some α > 0. Problems of this type arise frequently in
combinatorics, statistical mechanics, number theory, and analysis.
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A prominent example is the “deformed exponential function” (DE)

f(x, y) =

∞
∑

n=0

yn(n−1)/2

n!
xn.

For this example, let U(y) := −x0(y). Extensive numerical computations lead
to the conjecture that U(y) has all strictly positive coefficients; and, even more
strongly, that F (y) := 1 − [1/U(y)] has all strictly positive coefficients after the
vanishing constant term. This is just the proverbial tip of the iceberg, in that
similar positivity properties, both for the leading root and for approximations to
the leading root used for efficient computation of its coefficients, are conjectured
for wide families of examples that include DE.

There are almost no proofs available yet for these conjectures, but there are
exceptions. There are also several connections of these problems with probability.
Here are two obvious connections:

(i) Connection with Poisson distribution: If N ∼ Poi(u), then

f(−u, y) = eu E[(−1)NyN(N−1)/2].

(ii) Connection with log-normal distribution: Let W ∼ N(µ, σ2 = v),
where µ ∈ R and 0 < v < ∞, and consider the log-normal random
variable L := eW . Then L has the following moments:

ELn = exp

(

nµ+
1

2
vn2

)

.

The moment generating function φ of L is finite only at the origin, but
formally

φ(t) = E etL =

∞
∑

n=0

ELn tn

n!
= f(t exp(µ+ 1

2v), exp(
1
2v)).

We cite just a few of the many applications of the DE function:

• Statistical mechanics: partition function of single-site lattice gas [5]
• Combinatorics: generating function for Tutte polynomials onKn [6]; acyclic
digraphs [1]; inversions of trees [4]; hashing with linear probing [2]; . . .

• Functional-differential equation: F ′(x) = F (yx), where ′ = ∂/∂x [3]
• Complex analysis: Whittaker and Goncharov constants [8]

To touch on the connection with Tutte polynomials, we note (see [7] and [6]) for
example that with

Cn(v) :=
∑

m

cn,mvm,

where cn,m is the number of connected graphs with n (labeled) vertices and m
edges, we have

∞
∑

n=1

xn

n!
Cn(v) = log f(x, 1 + v).
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Generalizing (DE), consider the formal power series

f(x) = 1 + x+

∞
∑

n=2

anx
n

where a = (an)
∞
n=2 are indeterminates. Following a suggestion of David Wagner,

we call this the generic formal power series with leading term 1 + x. We now
think that this is the right way to approach the leading-root problem, i.e., treating
(an)

∞
n=2 as indeterminates; one can later specialize an → an(y) as one wishes.

This extended abstract focuses on one of several methods for computing (to any
specified number of terms) the leading root x0(y) of the generic formal power series
with leading term 1 + x, namely, by use of Waring polynomials. We define the
Waring polynomials Pn(a) of the first kind in (the first n of) the indeterminates
a = (ai)i≥1 as follows:

Pn(a) = (−1)n−1n [tn] log
(

1 +
∞
∑

i=1

ait
i
)

= n
∑

m:‖m‖=n

(−1)‖m‖−|m| (|m| − 1)!

m1! · · · mn!

n
∏

i=1

ami

i

= n
∑

m:‖m‖=n

(|m| − 1)!

m1! · · · mn!

n
∏

i=1

[(−1)i−1ai]
mi .

Here m = (m1,m2, . . . ,mn) and |m| :=∑imi and ‖m‖ :=
∑

i imi.
This formula, or rather its immediate implication expressing the nth power-sum

symmetric function in a collection of variables in terms of the elementary symmet-
ric functions, was found (and proved by induction) by the English mathematician
Edward Waring in the 1700s. His second formula goes the other way around, and
there are similar formulas involving the complete homogeneous symmetric func-
tions hn. The Waring formula is familiar to probabilists because it can be used to
express cumulants in terms of moments.

A general connection between the leading root x0(y) of the generic formal power
series and the Waring polynomials can be established. When specialized to (DE),
for example, this connection establishes that

(1) [yk]F (y) = [yk]Fn(y) whenever k < n,

where

(2) Fn(y) := 1− Pn

(

1,
y2(2−1)/2

2!
, . . . ,

yn(n−1)/2

n!

)1/n

.

So we can compute F by computing the Fn’s (or Pn’s). But how can we compute
the Pn’s efficiently? The answer is this: by establishing a polymer interpretation
and then a simple recurrence relation that follows from it; due to space limitations,
we omit further details. Not only does it appear to be true that F (y) has all strictly
positive coefficients after the vanishing constant term; it even appears that the
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same is true for each of the series Fn(y)! For n = 2 and n = 3, one can prove
that Fn is a probability generating function (pgf). We know a (non-probabilistic)
technique to prove that F4 and F5 (and perhaps Fn for other fairly small values
of n) have nonnegative coefficients. But what about general Fn? Is Fn the pgf of
some random variable one can describe (easily)?

Returning to the generic setting, specialize U(a) = −x0(a) to the alternating-
signs case by fixing an integer p ≥ 2 and setting a2 = . . . ap−1 = 0 and ai = (−1)ici
for i ≥ p. Then for β ≥ −(2p − 1), it is not hard to prove that the power series
[

ξ0(a)
β − 1

]/

β in the variables c has nonnegative coefficients. Even in this simple
alternating-signs case, analogous results for approximations devised using Waring
polynomials [as at (1)–(2) for (DE)] seem elusive. Recently we have made some
initial progress by obtaining such a result in the very special univariate case where
ci is set to zero for all i ≥ p + 1. The proof uses, among other things, rather
nontrivial interlacing-roots arguments.
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Decomposition of Lévy trees along their diameter.

Thomas Duquesne

(joint work with Minmin Wang)

We consider the diameter of Lévy trees that are random compact metric spaces
obtained as the scaling limits of Galton-Watson trees. Lévy trees have been intro-
duced by Le Gall and Le Jan [3] and they generalise Aldous’ Continuum Random
Tree [2] that corresponds to the Brownian case. We first characterize the law of the
diameter of Lévy trees and we prove that it is realized by a unique pair of points.
We prove that the law of Lévy trees conditioned to have a fixed diameter r∈(0,∞)
is obtained by glueing at their respective roots two independent size-biased Lévy
trees conditioned to have height r/2 and then by uniformly re-rooting the resulting
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tree; we also describe by a Poisson point measure the law of the subtrees that are
grafted on the diameter. This decomposition relies on a similar one for Lévy trees
along the geodesic realizing their height that has been obtained by Abraham &
Delmas [1] As an application of this decomposition of Lévy trees according to their
diameter, we characterize the joint law of the height and the diameter of stable
Lévy trees conditioned by their total mass; we also provide asymptotic expansions
of the law of the height and of the diameter of such normalized stable trees, which
generalizes the identity due to Szekeres [4] in the Brownian case.
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On random recursive triangulations of the disk

Henning Sulzbach

(joint work with Nicolas Broutin)

The study of random triangulations of polygons and the disk in the plane was
initiated by Aldous [4, 5] in the context of his seminal works [1, 2, 3] on the
continuum random tree arising as scaling limits for various classes of trees of
height of order

√
n. In this talk, I presented results on related objects, namely

random recursive laminations and triangulations of the disk and their dual trees
as introduced by Curien and Le Gall [8]. Here, on the unit circle (considered as
the unit interval identifying s = 0 and s = 1), in each step, one chooses two points
uniformly at random and connects them by a chord provided the latter does not
intersect any chord already present. For a simulation of the process, see Figure 1.
Curien and Le Gall mainly studied the lamination Ln as a subset of the unit disk.
Exploiting the theory of fragmentation processes, compare, e.g. Bertoin’s book [6],
among other results, they prove the following theorem.

Theorem 1 (Curien, Le Gall). There exists a random continuous function Z on

[0, 1], such that
⋃

n≥1 Ln is a triangulation of the disk encoded by the function
Z. In other words, points 0 ≤ s ≤ t ≤ 1 are connected by a chord if and only
if Z(t) = Z(s) = inf{Z(u) : u ∈ [s, t]}. For a simulation of Z, see Figure 2.
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Figure 2. The limit Z

1. Main results

In the talk, I discussed the following strengthening of the theorem above concerning
the tree Tn which is dual to the lamination Ln rooted at the node assigned to the
fragment covering s = 0. For the theory of real trees encoded by continuous
functions and the Gromov-Hausdorff topology on the space of compact metric
spaces, we refer to [9] and [11].

Theorem 2 (Broutin, Sulzbach [7]). For the contour process Dn(s), s ∈ [0, 1], of
the tree Tn, where Dn(s) denotes the depth of the node covering s, we have, almost
surely and uniformly in s ∈ [0, 1]

n−β/2Dn(s) → Z(s), β =

√
17− 3

2
.

Almost surely, with respect to the Gromov-Hausdorff distance we have, n−β/2Tn →
TZ where TZ the real tree encoded by Z.

The proof of the theorem relies on a recursive decomposition of the quantity
Dn(s). The result follows from an application of the contraction method worked
out in the space of regular functions, compare [12] for an elaborate approach to this
matter. The process Z can be characterized by a stochastic fixed-point equation
on the space of continuous functions reflecting the distributional recursivity.

2. A homogeneous model

In a related model, in each step, a fragment in the lamination of the disk is chosen
uniformly at random and split by a chord again inserted uniformly at random. In
contrast to the first model, this lamination process is not biased towards producing
small fragments, see Figure 3 for an illustration. Denoting Lh

n the lamination
process, T h

n its dual tree and Dh
n(s) its contour process, we have the following

result.
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Theorem 3 (Broutin, Sulzbach [7]). Almost surely,

n−1/3Dh
n(s) → H(s), n−1/3T h

n → TH
where the first convergence is uniform in s ∈ [0, 1] and the second with respect to
the Gromov-Hausdorff distance. The process H is continuous, see Figure 4 for a
simulation.

Figure 3. Lh
2000
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Figure 4. The limit H

3. Fractal dimensions

The fractal dimension offers further insight to the structure of fractal objects
often arising in the context of an underlying recursive construction. We focus on
Hausdorff and Minkowski dimension. For a comprehensive account to this matter,
we refer to Falconer’s book [10]. For the continuum Random tree Te, it is well-
known that, both for Hausdorff and Minkowski dimension, we have, almost surely,

dim(Te) = 2.

This result is a consequence of the fact that standard Brownian Motion (and
Brownian excursion) has Hölder continuous paths with exponent 1/2 − ε for any
ε > 0. We can prove a similar result here: almost surely,

dim(TZ) = β−1 = 1.78 . . . , dim(TH) = 3.

Curien and Le Gall [8] proved that the Hausdorff dimension of limiting triangula-

tion
⋃

n≥1 Ln in both models equals 1 + β.
We conclude that in comparison to the limiting triangulations, the dual trees

TZ and TH are arguably the more interesting objects incorporating the geometry
of their discrete counterparts.
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The smoothing transform in random environment

Gerold Alsmeyer

Given an infinite vector (C, T1, T2, ...) of random variables taking values in R ×
R≥×R≥×..., the classical smoothing transform is a map S that maps a distribution
Q on R to

SQ = L





∑

k≥1

TkXk + C



 ,

where X1, X2, ... are iid with common law Q and independent of (C, T1, ...) and
L(X) means the law of a random variable X . Q is a fixed point of S if SQ = Q,
thus

X
d
=
∑

k≥1

TkXk + C

if X is a copy of the Xn and
d
= denotes equality in distribution. The homogeneous

case occurs if C = 0. There are many examples of random recursions related to
branching processes, random trees and algorithms which feature the fixed point
of a smoothing transform as a limiting distribution. Here are two well-known
examples:

• IfW denotes the a.s. limit of a simple supercritical Galton-Watson process
(Zn)n≥0 with Z0 = 1 and offspring mean m, thus W = limn→∞ m−nZn,

then W
d
=
∑Z1

k=1 m
−1Wk =

∑

k≥1 m
−11{Z1≥k}Wk, where W,W1, ... are iid

and independent of Z1.
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• If X denotes the distributional limit of the normalized number of key
comparisons the algorithm Quicksort needs to sort a list of n items, then

it satisfies the fixed-point equation X
d
= UX1 + (1− U)X2 + g(U), where

U has a uniform law on (0, 1), g(U) = 1 + 2U logU + 2(1− U) log(1− U)
and X,X1, X2 are iid and independent of U , see [5]

Many articles have dealt with the problem of describing all fixed points of S under
varying assumptions on (C, T1, ...), see [4, 1, 2, 3] and the references therein.

The purpose of this talk is to give a brief introduction of how to define the
smoothing transform in the presence of a (here iid) random environment. As
an instructive example, consider the above supercritical Galton-Watson process
(Zn)n≥0, but now in iid random environment. More precisely, let e = (en)n≥0

be a sequence of iid random offspring distributions with random offspring means
m(en). Supercriticality mandates that E logm(e0) > 0. Given e = ξ = (ξn)n≥0,
ξn then denotes the common offspring distribution of all individuals in generation
n. Put mn(e) := m(e0 · ... ·m(en−1) for n ≥ 1. Then mn(e)

−1Zn, n ≥ 0, is again
a nonnegative martingale and thus a.s. convergent to a limit W = W (e). The
recursive structure being the same as in the case of a constant environment, it is
not surprising that W still satisfies the distributional equation stated above, viz.

W
d
=
∑Z1

k=1 m
−1Wk. However, due to the environment, the Wk on the right-hand

side are no longer independent, but conditionally independent given e = ξ with
common distribution given by the law of W ([ξ]1), where [ξ]n = (ξn, ξn, ...) for
n ≥ 1.

We proceed to a general definition of the smoothing transform in iid random
environment and confine to the homogeneous case. Let E be the set of distributions
on [0,∞)∞ endowed with the Borel σ-field E generated by the total variation norm.
Further let e = (en)n≥0 be a sequence of iid random elements taking values in
(E, E) and let P(E∞, [0,∞)) denote the set of stochastic kernels from (E∞, E∞)
to [0,∞) endowed with the Borel σ-field. Finally, let T = (Tn)n≥1 be a sequence
of nonnegative random variables such that the conditional law of T given e = ξ
equals ξ0. Then the (homogeneous) smoothing transform ST associated with T is
defined as the mapping which sends a kernel P ∈ P(E∞, [0,∞)) to the conditional
law of

∑

k≥1 TkXk given e, when X1, X2, ... are conditionally iid given e = ξ with

common law P ([ξ]1, ·). In other words,

STP (ξ, ·) = P





∑

k≥1

TkXk ∈ ·
∣

∣

∣

∣

e = ξ



 .

If STP = P , then P is a fixed point of ST .
After these settings it is easily seen that the conditional law of W as defined

above for the Galton-Watson process in random environment constitutes a fixed
point of ST with Tn = 1{Z1≥n}m(e0)

−1 for n ≥ 1. As another example, where
such fixed points occur, we will briefly discuss the limits of normalized weighted
branching processes in iid random environment which have been studied in some
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detail by Kuhlbusch [6]. In particular, conditions are given there for these limits
to be nondegenerate.
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1991.

[6] D. Kuhlbusch. On weighted branching processes in random environment. Stochastic Process.
Appl., 109(1):113–144, 2004.

Radix Sort on Markov Sources

Kevin Leckey

(joint work with Ralph Neininger, Henning Sulzbach, Wojciech Szpankowski)

Radix sort is one of the most famous non-comparative integer sorting algorithms.
The are several variants of this algorithm including sorting algorithms for numbers
in the unit interval and words (in lexicographical order). Both tasks are covered
by an algorithm that sorts strings (sequences of symbols drawn from some finite,
ordered alphabet Σ) in lexicographical order. In the case of numbers in the unit
interval, the corresponding strings are determined by the b-ary expansions of the
numbers for some base b ≥ 2.

The variant of radix sort considered in this talk distributes a list of strings
into b sublists according to their first symbol in the underlying alphabet Σ =
{σ1, . . . , σb}. The algorithm continues recursively in each sublist that contains
more than one element by splitting the sublist according to the next symbol in
each string.

In order to get an idea how radix sort typically performs on strings, it takes a
reasonable model for the input. Normally, such an input is considered to be random
and, more precisely, the input strings are i.i.d. copies of some string Ξ = (ξi)i≥1.

Under a fairly simple model, known as the Bernoulli source model, (ξi)i≥1 is
a sequence of i.i.d. Bernoulli distributed random variables. If Bn denotes the
number of bucket operations performed by radix sort on n strings in the Bernoulli
source model (where a bucket operations includes reading a symbol from a string
and placing the string into a sublist), then, even in this simple model, several
interesting asymptotic features of Bn occur. In particular, it is known that as
n → ∞, depending on p = P(ξi = 1),

E[Bn] =
1

H
n logn+ nωp(logn) + o(n),(1)
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where H = −p log p − (1 − p) log(1 − p) is the source entropy and ωp : R → R

might be either a continuous, periodic function or constant depending on whether
log(p)/ log(1− p) is rational or not. It is also known that

V ar(Bn) ∼
{

nω(logn), if p = 1/2,

σ2n logn, if p 6= 1/2
(2)

where ω is a continuous, periodic function and σ2 > 0 is a constant depending on
p. Finally, there is a normal limit after rescaling:

Bn − E[Bn]
√

V ar(Bn)

d−→ N (0, 1).(3)

The main topic of the (first part of the) talk is to check if (1) - (3) also holds for
a more general input model.

In fact, it turns out that under the assumption that each string is distributed
as Ξ = (ξi)i≥1 for some Markov chain (ξi)i≥1 on {0, 1} (called the Markov source
model), (1)-(3) also holds for suitably generalized constants H and σ2:

If P = (pij)i,j∈{0,1} denotes the transition matrix of the underlying Markov
chain and (π0, π1) denotes the weights of its stationary distribution, the constants
in (1) and (2) become for Markov Sources

H = π0H0 + π1H1, Hi = −pi0 log(pi0)− pi1 log(pi1),

σ2 =
π0p00p01

H3

(

log

(

p00
p01

)

+
H1 −H0

p01 + p10

)2

+
π1p10p11

H3

(

log

(

p10
p11

)

+
H1 −H0

p01 + p10

)2

.

In particular, the first case in (2) only occurs for pij = 1/2, i, j ∈ {0, 1}.
The analysis is based on the following distributional recursion: If Bµ

n denotes
the number of Bucket operations for n strings with initial distribution µ (the
transition matrix is fixed), then Bµ

n satisfies for n ≥ 2

Bµ
n

d
= Bp00δ0+p01δ1

Kn
+Bp10δ0+p11δ1

n−Kn
+ n(4)

with (Bp00δ0+p01δ1
k )k≥0, (B

p10δ0+p11δ1
k )k≥0, Kn independent and Kn ∼ B(n, µ(0)).

It turns out that the expansion (1) is not sufficient to derive a limit law with
the method used in this talk (which is the contraction method) since it usually

requires an asymptotic expansion of E[Bn] up to the order of o(
√

V ar(Bn)). This
problem is solved by showing that

E[Bn] =
1

H
n logn+ f(n), f Lipschitz continuous,

which leads to the necessary asymptotic of the toll term after rescaling (4).

The second part of the talk considers the radix select algorithm. In this one sided
version of radix sort, the algorithm returns the element of rank ℓ by recursively
splitting the sublist that contains the element of rank ℓ (which is determined by
the sizes of the sublists).
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Some results derived for Markov sources are:

• The first order asymptotic of the expected number of bucket operations
when selecting rank ℓ = ⌊tn⌋+ 1, t ∈ [0, 1).

• The first order asymptotic of all moments and a law of large numbers
for the maximal number of bucket operations (maximized over all ℓ ∈
{1, . . . , n}).

• A limit law for the number of bucket operations when selecting a rank
that is uniformly distributed on {1, . . . , n} and independent of the strings
(grand averages model).

Moreover, if Yn(ℓ) denotes the number of bucket operations when selecting the
string of rank ℓ among n i.i.d. string generated by a Bernoulli source, then, in the
Skorokhod topology, as n → ∞,

(

Yn(⌊tn⌋+ 1)−m(t)n√
n

)

t∈[0,1]

d−→ G

whereG is a centered Gaussian process andm is a affine linear function determined
by the source. This convergence does not hold for Markov sources due to a lack of
continuity in the first order asymptotic of the mean. However, it is still an open
problem to check if the marginals of the rescaled process converge for Markov
sources.
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Dependence and phase changes of random m-ary search trees

Hsien-Kuei Hwang, Ralph Neininger

Them-ary search tree is a class of data structures introduced by Muntz and Uzgalis
[9] in 1971 in computer algorithms to support efficient searching and sorting of
data. When constructed from a random permutation of n elements, the space
requirement of such a random m-ary search tree (m ≥ 2) can be defined in the
following self-contained way

Sn
d
=











0, if n = 0

1, if 1 ≤ n < m

S
[1]
I1

+ · · ·+ S
[m]
Im

+ 1, if n ≥ m

where

P(I1 = i1, . . . , Im = im) =
1

(

n
m−1

) ,
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when i1, . . . , im ≥ 0 and i1+ · · ·+ im = n−m+1. Except for m = 2 (in that case
Sn = n), the Sn’s are for m ≥ 3 and general n non-degenerate random variables.
It is known that Sn exhibits a phase change phenomenon: its distribution tends to
Gaussian for large n when the branching factor m satisfies 3 ≤ m ≤ 26 but does
not approach a fixed law when m ≥ 27; see [8, 7, 2, 1] and the references therein.
More precise approximation results are also known; see [5, 3].

On the other hand, we prove that the total node path length Tn, defined as the
sum of the distances between the root to each node of the tree, or, in terms of Sn,

Tn
d
=

{

0, if n = 0 ≤ n < m

T
[1]
I1

+ · · ·+ T
[m]
Im

+ S
[1]
I1

+ · · ·+ S
[m]
Im

, if n ≥ m,

converges, after properly centered and normalized, to a limit law for all m ≥ 2,
with mean of order n logn and variance of order n2.

Our next question was “to which extent does Tn depend on Sn”? To our
surprise, the random variables Tn, despite the strong dependence of its definition
on Sn, turn out to be asymptotically independent of Sn when 3 ≤ m ≤ 26, and
dependent when m ≥ 27. More precise statement of the results are given below.

We prove first that the covariance undergoes another phase change at m = 13

Cov(Sn, Tn) ∼
{

CRn, if 3 ≤ m ≤ 13;

Fc(β logn)nα, if m ≥ 14;

where CR is a suitable constant and Fc(z) is a 1-periodic function which can be
explicitly computed. Here α− 1 + βi (β > 0) denotes the second largest zero (in
real part) of the equation

z(z + 1) · · · (z +m− 2)−m! = 0,

This implies the following asymptotic estimates for the correlation coefficient

ρ(Sn, Tn) ∼
{

0, if 3 ≤ m ≤ 26;

Fρ(β logn), if m ≥ 27,

where Fρ is another 1-periodic function; see Figure 1 for graphical rendering of
the periodic function for a few selected m.

While one might ascribe this counter-intuitive result to the possibly nonlinear
correlation between Tn and Sn, we enhance such an asymptotically uncorrelated
phenomenon by a stronger joint limit law, which again puts an accent on the
asymptotic independence between Tn and Sn when 3 ≤ m ≤ 26. For larger m,
they are asymptotically dependent and we have a precise characterization of the
joint limit law.

Moreover, replacing the total node path length by total key path length (sum-
ming over all keys instead of over all nodes) does not change the major phenomena.
Indeed, the same types of results hold in a more general setting where Sn satisfies

Sn
d
= S

[1]
I1

+ · · ·+ S
[m]
Im

+

{

c+ o(n−ε), if 2 ≤ m ≤ 13;

o(nα−1), if m ≥ 14
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Figure 1. Periodic fluctuations of the limiting correlation coef-
ficient of space requirement and total key path length for n up
to 20, 000 and m = 30, . . . , 175 (left), and n ≤ 200, 000 and
m = 27, 60, 120, 175 (right).

and Tn are either of the following two forms

• Tn
d
= T

[1]
I1

+ · · ·+ T
[m]
Im

+ n+ hn with hn = o(n) and
∣

∣

∑

n hnn
−2
∣

∣ < ∞,

• Tn
d
= T

[1]
I1

+ · · ·+ T
[m]
Im

+ S
[1]
I1

+ · · ·+ S
[m]
Im

.

Finally, the consideration of random m-ary search trees can be extended to
other random trees of logarithmic height such as quadtrees, fringe-balanced binary
search trees, etc., and the same phenomena hold. Details of all these results will be
contained in a forthcoming paper jointly written with Hua-Huai Chern, Michael
Fuchs and the two authors of this abstract, see arXiv:1501.05135.
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Random permutation structures

Alexander Gnedin

Symmetric groups Sn (n = 1, 2, . . . ) can be endowed in many ways by a system
of n-to-1 projections πn : Sn → Sn−1, which enable one to consider the uniform
distributions on Sn’s as marginal distributions of a random permutation growth
process, representable by a path in an infinite ‘permutation tree’. Permutation
structures are more general growth processes with marginal distributions condi-
tionally uniform given the value of a permutation statistic.

For s a general permutation statistic (numerical, multivariate or ‘infinite-dimen-
sional’ like integer partition), we say that s is compatible with given projections
if #{σ ∈ Sn : πn(σ) = σ′, s(σ) = s} depends on σ′ ∈ Sn−1 through s(σ′).
Probability law of a permutation structure is defined by a sequence of probability
distributions Pn on Sn which are consistent (i.e. πn(Pn) = Pn−1) and satisfy
the sufficiency condition: Pn(σ) depends only on s(σ) for every n and σ ∈ Sn.
The conditions define a class of infinite transient Markov chains with common
backward transition probabilities.

Many classic statistics are compatible with one of the following plausible pro-
jections: deleting n from the cycle notation of σ (type I), deleting n from the
one-row notation of σ (type II), and deleting σ(n) from the one-row notation of σ
then ranking σ(1), . . . , σ(n− 1) by increasing bijection with [n− 1] (type III).

For specified projections and statistic s, the boundary problem asks one to iden-
tify the set of extreme elements (the boundary) within the convex set of permu-
tation structures. From a viewpoint, the problem belongs to the circle of ques-
tions around de Finetti’s theorem, random symmetries and sufficiency [8], and is
intrinsically related to path-counting in the graded graph constructed from the
permutation tree by gluing vertices of level n with the same value of s. We shall
sketch a few instances to illustrate what kind of solution may appear.

For s the number of cycles (and πn’s of type I) the extremes are given by the
familiar Ewens’ distributions

(1) Pn(σ) = cn(θ)θ
s(σ), σ ∈ Sn,

where θ ∈ [0,∞] and cn is a normalisation constant [9]. A permutation structure of
this kind can be encoded in a sequence of independent random variables r1, r2, . . .
with rj taking values in {1, . . . , k}, and in this coordinate system the number
of cycles is representable as a sum

∑n
j=1 ϕj(rj). The additive representation also

holds for s the number of records or the number of inversions, with the consequence
that the associated extreme permutation structures are still of the form (1). In
contrast to that, the number of descents is not an additive statistic – the boundary
in this case is only countable, with the extreme permutation structures related to
random permutations knows as ‘a-shuffles’ (or inverse riffle-shuffles) [4].

When s is the integer partition derived from factoring permutation in cy-
cles (and if projections are of type I), a permutation structure can be associ-
ated with an exchangeable partition of N. By Kingman’s ‘paintbox’ representa-
tion the extremes are parameterised by points of the infinite-dimensional simplex
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∆ = {(x1, x2, . . . ) : x1 ≥ x2 ≥ · · · ≥ 0,
∑

j xj ≤ 1}. A distinguished permuta-

tion structure generalising (1) has two parameters [10] and can be simulated by a
simple Markov chain.

When s is the set of descents and projections are of type II, a permutation
structure corresponds to a random order on N with the property that every in-
finite suborder has the same distribution (spreadability) [7, 8]. The boundary is
parameterised by partitions of [0, 1] in oriented intervals [5].

The statistic ‘the set of records in permutation’ is compatible with projections
of both types II and III. For type III, the boundary is parameterised by points of
an infinite-dimensional simplex [1], in line with Pitman’s [10] theory of partially
exchangeable partitions. For type II, a typical permutation structure has a record
in almost every position, with relatively rare exceptions [2]. In the latter setting the
topology of the boundary is that of a cone with uncountable totally disconnected
base. For some unknown reason the boundary is of the same kind as for another
graded graph (Young-Fibonacci lattice [6]) related to permutations only indirectly
via a solitaire game introduced in [3].
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And/or trees: A local limit point of view

Cécile Mailler

(joint work with Nicolas Broutin)

Random Boolean trees, and in particular and/or trees have been thoroughly stud-
ied in the literature - mainly by Analaytic Combinatorics methods. We present a
new approach of such problems based on local limit properties of the considered



Probability, Trees and Algorithms 2861

random trees. With this approach, we intend to be more universal than the Ana-
lytic Combinatorics approach, and thus become able to study random tree models
that cannot directly be studied by Analytic Combinatorics.

Literature

Let us first briefly review the literature concerning and/or trees. We focus here on
two models: the Catalan tree and the binary search tree (BST). We will end this
short overview by two open problems, being our motivations for this work.

An and/or tree (cf. Figure 1) is a plane rooted tree (with no node having
exactly one child) whose internal nodes are labelled from the set {∧,∨} and the
leaves from the set {x1, x̄1, . . . , xk, x̄k}, with k an integer. This labelled tree is
thus equivalent to a Boolean expression, where ∧ is the logical connective and, ∨
is the logical connective or, and x̄i is the negation of xi. This Boolean tree thus
calculates a Boolean function from {0, 1}k onto {0, 1}.

∨

∧

∨

x2 x1 x̄1
x2

∨

x1 x3

x1 x̄3

Figure 1. An and/or tree of size 8 calculating the Boolean func-
tion (xi)i≥1 7→ x1.

The following models propose different ways to pick up at random an and/or
tree, being interested in the induced distribution on the set of Boolean functions.

The Catalan tree model. The first random and/or model was introduced by
Paris et al. [5] and later studied by Lefmann and Savický [4] and Chauvin et al. [1]
– the latter article is the seminal Analytic Combinatorics approach of the question.
They pick up a tree uniformly on the set of binary and/or trees having n leaves
(and labelled with k variables), and denote by Pn,k the law of the random Boolean
function it calculates. They then prove that Pn,k converges to an asymptotic
probability distribution Pk when the size of the tree n tends to infinity. With
an interesting Analytic Combinatorics approach, Kozik later proved the following
result: for all Boolean function f , asymptotically when k tends to infinity,

Pk(f) := lim
n→+∞

Pn,k(f) = Θ

(

1

kL(f)+1

)

,

where L(f), called the complexity of the Boolean function f is defined as the size
(number of leaves) of the smallest trees calculating f , except for the two constant
functions true and false, whose complexity is defined to be 0.
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The BST model. The random binary search tree of size n is the unlabelled
binary search tree obtained from n i.i.d. random variables (uniformly distributed
on (0, 1)). Label this random binary tree uniformly at random – meaning that
each internal node chooses uniformly at random a label in {∧,∨}, and each leaf
chooses a label uniformly at random in the set {x1, x̄1, . . . , xk, x̄k}, independently
from each other. Denote by pn,k the distribution of the random Boolean function
it calculates. Chauvin et al. [2] have proven that

pn,k(true) = pn,k(false) →
1

2
,

when the size n of the BST tends to infinity. A behaviour completely distinct from
the one of the Catalan tree model!

What property of the underlying random trees is the cause
of the difference of behaviour in the Catalan and the BST model?

An intuitive explanation is that the Catalan tree has leaves at finite distance
from the root whereas the smallest distance between the root and a leaf in the
random BST tends to infinity when the size of the BST tends to infinity: this is a
local limit property.

The Ford tree model. The Ford tree (or α-model) – studied by Chen et al [3] –
is quite a natural random tree, since it interpolates between the Catalan and the
BST random trees thanks to a parameter. Our idea is to take the Ford tree of
size n, label it at random to get a random and/or tree and study the law of the
random Boolean function it calculates. To our knowledge, this and/or tree model
cannot be tackled by Analytic Combinatorics methods.

What is the behaviour of the Ford tree model?

Set up and results

For all (deterministic) tree t, we denote by t̂ its uniform random labelling: t̂ is thus
a random and/or tree and calculates a random Boolean function denoted by f [t̂].
Our idea is to consider a sequence of random trees (Tn)n≥1 and study the sequence

of random Boolean functions f [T̂n]: does it converge in distribution when n tends
to infinity? under which condition is the asymptotic distribution degenerate? can
we say more about this asymptotic distribution when it is not degenerate?

Convergence to an asymptotic distribution. We say that a sequence of trees
(tn)n≥1 converges locally to a tree t∞ if, and only if, for any integer h, for large
enough n, the trees tn and t∞ are identical up to height h.

The following result is a generalisation of the BST model described above, and
answers our first motivation:

Assume that the sequence of trees (tn)n≥1 converges locally to an infinite
tree without leaves. Then, asymptotically when n tends to infinity,

P(f [t̂n] = true) = P(f [t̂n] = false) → 1

2
.
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We can also prove convergence to an asymptotic distribution in the following case,

Assume that the sequence of trees (tn)n≥1 converges locally to an infinite
tree t∞ having finitely many ends. Then, for all Boolean function f ,
asymptotically when n tends to infinity, P(f [t̂n] = f) → P(f [t̂∞] = f).

This result can then be applied to sequences of random trees that converge lo-
cally in distribution to infinite tree with finitelay many ends: among them critical
Galton-Watson trees conditioned on their size, or the Ford tree. Can we say more
about the distribution of f [t̂∞] in this last case?

More information in the non-satured case. In the case when Tn converges
locally to an infinite tree T∞ having one unique end, under some additional as-
sumptions, among them self-similarity down the spine and a control of the size of
the trees attached to the spine of the limit tree, we are able to obtain that, for all
Boolean function f ,

P(f [T̂n] = f) → P(f [T̂∞] = f) = Θ

(

1

kL(f)+1

)

.

This result is very satisfying because of its universality. However, one can regret
that its hypothesis are not trivial to check in practise. We are able to apply our
theorem to any critical Galton-Watson tree conditioned on its size as well as to
the Ford model, giving an answer to our second motivation.
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A functional central limit theorem for branching random walks, and
applications to random trees

Zakhar Kabluchko

(joint work with Rudolf Grübel)

Consider a branching random walk in discrete or continuous time. Denote by πt

the point process recording the positions of particles at time t. For β ∈ C let

m(β) := E

∑

z∈π1

eβz
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be the Laplace transform of the intensity of π1. Under suitable conditions, Uchi-
yama [1] and Biggins [2] proved a martingale convergence of the form

Wt(β) :=
1

m(β)t

∑

z∈πt

eβz
a.s.−→
t→∞

W∞(β).

Moreover, for sufficiently small ε > 0, the convergence is a.s. uniform and the limit
W∞(β) is a random analytic function on the disk {|β| ≤ ε}. In this talk we will
present a functional central limit theorem which states that the random analytic
function

Dt(u) := m(0)
1
2
t

(

W∞

(

u√
t

)

−Wt

(

u√
t

))

converges to certain Gaussian analytic function, weakly on the space of analytic
functions on any disk {|u| < R}.

We will give several applications of this result to random trees. Let EPLn be
the external path length of a binary search tree with n vertices. From the work of
Régnier [3] on the analysis of the Quicksort algorithm it is known that there is
a martingale convergence of the form

EPLn − 2n logn

n

a.s.−→
n→∞

EPL∞.

Neininger [4] proved a central limit theorem of the form
√

n

2 logn

(

EPL∞ − EPLn − 2n logn

n

)

d−→
n→∞

N(0, 1).

Using an embedding of binary search trees into a branching random walk we
recover Neininger’s result by essentially taking the derivative at 0 in our functional
central limit theorem. Moreover, we prove that the convergence in Neininger’s
central limit theorem is mixing and establish similar results for uniform random
recursive trees and, more generally, Pittel trees.

Finally, we discuss some other examples of tail martingale central limit theorems
of the above type including the Pólya urn and the central limit theorem for Galton–
Watson processes.
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Limits of randomly growing graphs: Theory and examples

Rudolf Grübel

We write G[n] for the set of simple graphs with node set [n] := {1, 2, . . . , n},
G :=

⋃∞
n=1 G[n]. Our two central questions are: First, what does (or could)

convergence of a sequence (Gn)n∈N ⊂ G mean? Secondly, what are the possible
limits? Of course, these questions are of interest in the context of other combina-
torial structure too that are built on [n], such as the permutations S[n] of [n].

We first discuss three different notions of convergence. The first of these is
standard, the second is heavily used and discussed in detail in [3], and for more
on the third we refer to [4].

The set G may be endowed with the structure of a rooted tree: The single
element of G[1] is the root, and two graphs G ∈ G[n], H ∈ G[n+ 1] form an edge
(G,H) directed away from the root if we obtain G from H by deleting the node
n+ 1 and its incident edges. We then say that (Gn)n∈N converges projectively if,
from some n0 onwards, all Gn’s stay on the same ray. This is, of course, the ends
compactification of the tree G.

Let Inj(k, n) be the set of one-to-one functions f : [k] → [n]. Each such f
defines a function from G[n] to G[k] via

G =
(

[n], E) 7→ Gf :=
(

[k],
{

{i, j} : {f(i), f(j)} ∈ E
})

.

Let µG
k be the push-forward of the uniform distribution on Inj(k, n) under the

mapping f → Gf . Say that (Gn)n∈N converges in the subgraph sampling topology

if (µGn

k )n∈N converges for all k ∈ N.
For our third notion we start with a Markov chainX = (Xn)n∈N that is adapted

to the graded state space G in the sense that P (Xn ∈ G[n]) = 1 for all n ∈ N.
We say that (Gn)n∈N converges in the Doob-Martin topology (associated with X)
if the conditional distributions L

(

(X1, . . . , Xk)
∣

∣Xn = Gn

)

converge for all k ∈ N

(here we assume for simplicity that Gn ∈ G[n] for all n ∈ N). It is known that,
in this topology, Xn → X∞ ∈ ∂G almost surely, and that the limit X∞ generates
the tail σ-field of X up to null sets. Also, if the chain is of perfect memory
type, meaning that Xn−1 is a function of Xn for all n ∈ N, then Doob-Martin
convergence coincides with projective convergence.

We note in passing that all three topologies can be seen as variants of the Stone-
Čech procedure: Given a countable family F of bounded functions f : G → R, we
embed G into the compact space RF via G 7→

(

f 7→ f(G)
)

.
We now compare these topologies in the context of one of the most famous

graph models, going back to Erdős and Rényi. For this, we consider the Markov
chain X starting at the single element of G[1], where in the move from n to n+ 1
the edges {i, n+ 1}, i ∈ [n], are added with probability θ, independently of each
other. Clearly, X is of perfect memory type, so that the Doob-Martin topology
leads to the projective limit.

Now let Πn be uniformly distributed on S[n], with the Πn’s being independent
of each other and of X . We can then, with some abuse of notation, define the
randomly relabelled chain Y = (Yn)n∈N by Yn := Πn ◦Xn.
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Theorem 1. [1] For the randomly relabelled Erdős-Rényi chain, the Doob-Martin
topology is the same as the subgraph sampling topology.

As another, much more demanding example, we consider a tree growth model,
the Rémy chain. (The material below is based on joint work with Steve Evans
and Anton Wakolbinger).

We need some more notation. By a full binary tree we mean a subset x of the
set {0, 1}⋆ of all finite 0-1 sequences with the properties that (u1, . . . , ul) ∈ x with
l 6= 0 implies that (u1, . . . , ul−1) and (u1, . . . , ul−1, 1 − ul) are also elements of x
(i.e. nodes of the tree); leaves are nodes without descendants. We write Bn for
the set of binary trees with n leaves and B[n] for the set of labelled such trees,
with the leaves labelled by the elements of [n]. We may now describe the Rémy
algorithm as generating a Markov chain adapted to B[n], with the transition from
n to n+1 proceeding in three steps: First, we choose one of the 2n− 1 nodes v of
Xn uniformly at random. Then we insert a ‘cherry’ (the single element of B2) at
v. Finally, we append the subtree of v in Xn to a randomly chosen twin; the other
one, a leaf, receives the label n+ 1. We note that B[n] = Bn × S[n], and that Xn

is uniformly distributed on B[n]. Again, X is of perfect memory type. Let Y be
the chain that results if we remove the labels; clearly, Yn is uniformly distributed
on Bn.

Trees are graphs, but it is easy to see that a direct application of subgraph
sampling does not give interesting limits. This naturally leads to the question of
what the proper substructures are if we want to adapt the sampling idea. Here it
turns out that sampling from the leaves is the right notion: With a subset of the
leaves of Yn we associate the minimal binary tree that contains these leaves. As
in the general graph case, this leads to functions from Bn to Bk and associated
distributions µy

k. We obtain the following analogue of Theorem 1.

Theorem 2 [2] For the unlabelled Rémy chain, the Doob-Martin topology is the
same as the leaves sampling topology.

These results provide some answers for the first of the introductory questions.
For the description of the limits in the context of Theorem 1 (by graphons) we
refer the reader to [3]. In [2] the Doob-Martin boundary of the Rémy chain is
described in detail: It turns out that the boundary points can be represented by
real trees, together with a diffuse probability measure and a kernel that represents
the left-right structure.

References
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Almost sure convergence to the Quicksort Process

Uwe Roesler

The underlying algorithmic challenge is to find the first l-smallest elements in order
of an input of n-reals. By a suggestion of Conrado Martinez via Quickselsort (see
Wikipedia or Partial Quicksort) we use a variant of Quicksort for sorting.

Input: The input is an iid sequence of random numbers with a continuous distri-
bution.

Algorithm: Use (deterministic) Quicksort with pivot always the first element of
the list and continue with the leftmost list needing further treatment.

Output: The l smallest elements in order published at time of identification.
Let (Ui)i be a sequence of iid rvs with a uniform distribution on the unit interval.

Let X(n, l) be the number of comparisons in order to find all l-smallest elements
using the input (U1, U2, . . . , Un) and the above algorithm. Notice, if we interrupt
at the time obtaining the l-th smallest, then we made all necessary comparisons
for that goal and no one more.

We have a recursion of the X(n, .). Interpret now l as time and consider the
normalized rvs

Yn(
l

n
) =

X(n, l)− EX(n, l)

n

for l = 1, 2, . . . , n. They satisfy again some recursion. Extend Yn to a rv with
values in the space of cadlag functions. (Actually we use left continuous functions
with existing right limits.) Then the main statement of the talk is:

Theorem. Yn converges almost surely in Skorodhod metric on D to the Quicksort
Y process.

The existence of the Quicksort process Y was established in Ragab-Roesler
2014 via an infinite sum. The Quicksort process satisfies a stochastic fixed point
equation

Y
d
= (UY 1(1 ∧ t

U
) + (1 − U)Y 2(

t− U

1− U
∨ 0) + C(U, t))t

Here C is a know function, Y 1, Y 2, U are independent, U is uniformly distributed
and Y 1, Y 2, Y have all the same distribution. (Y (0) = 0 by definition.) There is
only one distribution on D satisfying this if we require EY (t) = 0 for all t and
finite second moment of Y (t) for one and then for all t.

The convergence of finite dimensional distributions of Yn to Y was shown in
Ragab-Roesler. The convergence of Yn(1) to the Quicksort distribution in Roesler
1991 using the contraction method and earlier Yn(1) → Y (1) a.s. by Régnier
using a martingale argument. For our purposes we construct a specific process
Y satisfying the above recursion also a.e. using a weighted branching process
connected to the input (Ui)i.
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Winterthurerstr. 190
8057 Zürich
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