
Mathematisches Forschungsinstitut Oberwolfach

Report No. 51/2014

DOI: 10.4171/OWR/2014/51

Combinatorial Optimization

Organised by
Gerard Cornuejols, Pittsburgh
Fritz Eisenbrand, Lausanne

Bruce Shepherd, Montreal

9 November – 15 November 2014

Abstract. Combinatorial Optimization is an area of mathematics that
thrives from a continual influx of new questions and problems from practice.
Attacking these problems has required the development and combination of
ideas and techniques from different mathematical areas including graph the-
ory, matroids and combinatorics, convex and nonlinear optimization, discrete
and convex geometry, algebraic and topological methods. We continued a
tradition of triannual Oberwolfach workshops, bringing together the best in-
ternational researchers with younger talent to discover new connections with
a particular emphasis on emerging breakthrough areas.
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Introduction by the Organisers

There has been a tradition of triannual Oberwolfach workshops in Combinatorial
Optimization and the 2014 edition was again a great success.

The Oberwolfach workshops have truly played a key role for our field, which
cannot be substituted by any other workshop or conference. This success is due to
Oberwolfach’s reputation for excellence, and its outstanding research conditions
as well as the unique format of the workshop.

As in the past, the program consisted of five one-hour focus lectures planned in
advance (one on each day of the workshop), and shorter presentations scheduled
during the workshop. As in the past, we made sure to leave sufficient time for
discussions and research in small groups. We also continued the last workshop’s
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successful micro-presentations (5 minutes, strictly timed) so that all participants
had an opportunity to present their hottest recent result or burning open question.

The focus lectures covered topics where recent progress has been most intense,
and future progress seems very promising:

Geometric Approach to Cutting Planes (Michele Conforti)
Semidefinite Extended Formulations (Rekha Thomas)
Algebraic Geometry (Jean Lasserre)
Lattice Algorithms (Damien Stehlé)
Complexity of the Union of Polyhedra (Juan Pablo Vielma)

During the workshop, we were excited to see great advances in several new di-
rections. The synergy between discrete and continuous models is emerging as a
thriving area of importance, and new techniques from pure mathematics continue
to transform combinatorial optimization, such as the use of tools from algebraic
geometry. This is the case for instance in the theory of integer programming, which
is under rapid development using techniques from several fields, such as lattice al-
gorithms and semidefinite (SDP) bounds. There was an exciting advance in this
area just prior to the workshop due to Lee-Raghavendra-Steurer: a first super-
polynomial lower bound on the complexity of SDP projections yielding certain
combinatorial polytopes (such as the travelling salesman polytope). The solution
was presented at the workshop by James Lee. Finally matroids and structural
graph theory have been at the heart of many important advances in combinatorial
optimization. We were fortunate to hear from Gyula Pap about one of two inde-
pendent (and distinct) solutions (the second due to Satoru Iwata) that has been
announced to the longstanding open problem of determining whether weighted
linear matroid matching is polytime solvable.

We would like to thank all participants for their carefully prepared contributions
and the many exciting discussions. Last but certainly not least, we thank the
Oberwolfach Research Institute and its members for providing the outstanding
meeting and working conditions and the unique inspiring Oberwolfach atmosphere.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

On the relationship between different types of cuts

Egon Balas

(joint work with Tamás Kis)

We discuss the relationship between standard intersection cuts (SIC’s), generalized
intersection cuts (GIC’s) and lift-and-project (L&P) cuts.

It is known that (L&P) cuts from split disjunctions are equivalent to (SIC’s)
and (GIC’s). We show that this equivalence does not hold for L&P cuts from
other types of disjunctions (multiple-term or non-split). Our main findings are as
follows.

GIC’s and L&P cuts. The family of GIC’s from a given lattice-free polyhedron
S is equivalent to the family of L&P cuts from a Cut Generating Linear Program
(CGLP) based on a disjunction whose terms are the weak complements of the
inequalities defining S.

The family of L&P cuts from a disjunction D with multiple inequalities per
term is equivalent to the family of GIC’s from the lattice-free polyhedra obtained
from the disjunction D by combining the inequalities of each term of D, and taking
the weak complements of the resulting inequalities to obtain the polyhedra.

SIC’s and L&P cuts from multiple-term or non-split disjunctions. Each
SIC is equivalent to a L&P cut from a CGLP solution with a certain property
P . The property P of the CGLP solution is necessary and sufficient for the re-
sulting L&P cut to be equivalent to a SIC. CGLP solutions with property P (and
associated L&P cuts) are called regular, those without the property are called
irregular.

If the CGLP solution that maximizes the depth of the L&P cut relative to the
LP optimum is irregular, then the associated L&P cut cuts off the LP optimum
by more than any intersection cut, and is not dominated by any intersection cut.

L&P cuts and corner polyhedra. It has recently been established that all the
facets of corner polyhedra are defined by SIC’s. We show that irregular L&P cuts
cut off integer points of corner polyhedra. Moreover, we give an example where the
L&P cut obtained from the irregular CGLP solution that maximizes the cut depth
relative to the LP optimum cuts off an integer point of every corner polyhedron
associated with the vertices adjacent to the LP optimum.

Irregular CGLP solutions are not exceptional, their frequency is comparable
with that of regular solutions, and increases with the number of terms in the
disjunction underlying the CGLP.
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Finding maximum independent sets in sparse graphs using hierarchies

Nikhil Bansal

(joint work with Anupam Gupta and Guru Guruganesh)

Given a graph G = (V,E), an independent set is a subset of vertices S such that
no two vertices in S are adjacent. In general graphs on n vertices, the problem
is notoriously hard to approximate and the best known algorithm achieves an

approximation ratio of Õ(n/ log3 n). On the hardness side, a result of H̊astad [7]
shows that no n1−ǫ approximation exists for any constant ǫ > 0, assuming NP 6⊆
ZPP.

Here we will consider bounded-degree graphs, with maximum degree d. Recall
that the näıve algorithm (that repeatedly picks an arbitrary vertex v and deletes its
neighborhood) produces an independent set of size at least n/(d+1), and hence is a

d+1-approximation. The best known result is an O(d log log d
log d )-approximation[1, 6]

based on rounding the natural SDP for the problem. On the negative side, Austrin,
Khot and Safra [2] showed an Ω(d/ log2 d) hardness of approximation, assuming

the Unique Games Conjecture. Assuming P 6= NP, a hardness of d/ log4 d was
recently shown by Chan [5].

We will describe several new results for the problem.

1) The O(log4 d)-level SA+ relaxation has an integrality gap of Õ(d/ log2 d), where

Õ(·) suppresses some log log d factors [4].

The main observation behind this result is that the SA+ relaxation specifies
a local distribution on independent sets, and if the relaxation has high objective
value then it must be that any polylog(d) size subset of vertices X most contain
a large independent subset. One can then use a result Alon [3], which is turn
in based on an elegant entropy-based approach of Shearer [9], to show that such
graphs have non-trivially large independents sets. However, this argument is non-
algorithmic. Next we give an algorithmic version at the expense of higher running
time.

2) There is an Õ(d/ log2 d)-approximation algorithm with running time poly(n) ·
2O(d), based on rounding a d-level SA+ semidefinite relaxation.

As previously, we observe that if the d-level SA+ relaxation has objective value
at least n/ log2 d), then the neighborhood of every vertex graph is k-colorable for
k = s · polylog(d). However, instead of using [3] which relies on Shearer’s entropy
based approach, and is not known to be constructive, we use an ingenious and
remarkable (and stronger) unpublished result of Johansson [8], who shows that

the list chromatic number of such “locally-colorable” graphs is χℓ(G) = O(d log k
log d ).

3) On graphs with maximum degree d, the standard ϑ-function-based SDP formu-

lation for the independent set problem has an integrality gap of Õ(d/ log3/2 d).
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The proof of the above result is non-constructive and is based on the following
new Ramsey-type result about the existence of large independent sets in Kr-free
graphs.

4) For any r > 0, if G is a Kr-free graph with maximum degree d then

α(G) = Ω

(
n

d
·max

(
log d

r log log d
,

(
log d

log r

)1/2
))

.

Previously, the best known bound for Kr-free graphs was Ω(nd
log d

r log log d ) given by

Shearer [9]. However, this result does not give anything better than the trivial
n/d bound when we are only guaranteed to exclude very large cliques, e.g., when

r ≥ log d
log log d . It is in this range of r ≥ log d that the second term in the maximization

starts to perform better and give a non-trivial improvement.
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On the covering property of the lifting region

Amitabh Basu

(joint work with Gennadiy Averkov and Joseph Paat)

Cut-Generating Pairs. Cut-generating functions are a means to have “a pri-
ori” formulas for generating cutting planes for general mixed-integer optimization
problems. Let S be a closed subset of Rn with 0 6∈ S. Consider the following set,
parametrized by matrices R,P :

(1) XS(R,P ) :=
{
(s, y) ∈ Rk

+ × Zℓ
+ : Rs+ Py ∈ S

}
,

where k, ℓ ∈ Z+, n ∈ N, R ∈ Rn×k and P ∈ Rn×ℓ are matrices. Denote the
columns of matrices R and P by r1, . . . , rk and p1, . . . , pℓ, respectively. We allow
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the possibility that k = 0 or ℓ = 0 (but not both). This general model con-
tains as special cases classical optimization models such as mixed-integer linear
optimization and mixed-integer convex optimization.

Given n ∈ N and a closed subset S ⊆ Rn such that 0 6∈ S, a cut-generating pair
(ψ, π) for S is a pair of functions ψ, π : Rn → R such that

(2)

k∑

i=1

ψ(ri)si +

ℓ∑

j=1

π(pj)yj ≥ 1

is a valid inequality (also called a cut) for the set XS(R,P ) for every choice of
k, ℓ ∈ Z+ and for all matrices R ∈ Rn×k and P ∈ Rn×ℓ. Cut-generating pairs
thus provide cuts that separate 0 from the set XS(R,P ). We emphasize that cut-
generating pairs depend on n and S and do not depend on k, ℓ, R and P . There is
a natural partial order on the set of cut generating pairs; namely, (ψ′, π′) ≤ (ψ, π)
if and only if ψ′ ≤ ψ and π′ ≤ π. The minimal elements under this partial ordering
are called minimal cut-generating pairs.

Efficient procedures for cut-generating pairs. Several deep structural results
were obtained by Johnson [10] about minimal cut-generating functions for S when
S is a translated lattice, i.e., S = b + Zn for some b ∈ Rn \ Zn. However, a
major drawback is that the theory developed is abstract and difficult to use from
a computational perspective. A recent approach has been to restrict attention to a
specific class of minimal cut-generating pairs for which we can give computational
procedures to compute the values ψ(ri) and π(pj). We show how this is done when
S is a translated lattice intersected with a polyhedron, i.e., S = (b + Zn) ∩Q for
some vector b ∈ Rn \ Zn and some rational polyhedron Q.

Given such a set S ⊆ Rn, define WS := Zn ∩ lin(conv(S)). A convex set B
is called S-free if int(B) ∩ S = ∅. A maximal S-free set is an S-free convex set
that is inclusion wise maximal. It was shown in [8, 5] that any maximal S-free
polyhedron B containing the origin in its interior is given by

(3) B = {r ∈ Rn : ai · r ≤ 1 i ∈ I}.

Define the following pair of functions associated with B:

(4) ψB(r) = max
i∈I

ai · r, πB(r) = inf
w∈WS

ψ(r + w)

It can be checked that the above pair is a valid cut-generating pair and so for
every maximal S-free convex set B, (4) gives formulas to compute with the corre-
sponding cut-generating pair (ψB , πB). Moreover, the pair is “partially” minimal:
for every cut-generating pair (ψ, π) ≤ (ψB , πB), we must have ψ = ψB. However,
it may be the case that there exists a pair (ψ, π) with π ≤ πB and π(r) < πB(r)
for some r ∈ Rn. The main question of this talk is:

Question: Let S = (b+ Zn) ∩Q with b ∈ Rn \ Zn and a rational polyhedron Q.
Given a maximal S-free convex set B (3), decide if (ψB , πB) is minimal.
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This approach to obtaining cut-generating pairs was pioneered by Dey and
Wolsey in [9, 8] which is very much inspired by earlier work of Balas [2] and Balas
and Jeroslow [3].

Statement of Results. Let S be a translated lattice intersected by a polyhedron
Q, i.e., S = (b+Zn)∩Q. Let B be a maximal S-free convex set given by (3). For
each s ∈ B ∩ S, define the spindle R(s) in the following way. Let k ∈ I such that
ak ·s = 1. Define R(s) := {r ∈ Rn : (ai−ak)·r ≤ 0, (ai−ak)·(s−r) ≤ 0 ∀i ∈ I},
and

R(S,B) :=
⋃

s∈B∩S

R(s).

It was shown in [4] that (ψB, πB) is a minimal cut-generating pair if R(S,B) +
WS = Rn, in which case we say that B has the covering property.

(1) Our first result is

Theorem 1 (Translation Invariance Theorem [7]). R(S,B) +WS = Rn

if and only if R(S + t, B + t) +WS+t = Rn for all t ∈ Rn such that B + t
also contains the origin in its interior.

In other words, the covering property is preserved under translations.
This result was first proved for the case when S is a translated lattice and
B is a maximal S-free simplicial polytope [6], and later generalized to all
maximal S-free sets when S is a translated lattice in [1]. The proofs in [6]
and [1] are based on volume arguments, whereas the proof from [7] is based
on a completely different topological argument. Besides achieving greater
generality for S, the proof is cleaner, albeit at the expense of using more
sophisticated topological tools like the Invariance of Domain theorem.

(2) Given two polyhedra B1 and B2 of the form (3), we define the coproduct
B1 ⋄ B2 which is a new polytope that has nice properties in terms of the
covering property. More precisely, let n = n1 + n2. For i ∈ {1, 2}, let
Si = Qi ∩ (bi + Zni), where Qi ⊆ Rni is a rational polyhedron.

Theorem 2. For i ∈ {1, 2}, let Bi ⊆ Rnh be maximal Si-free polyhedra
with the covering property. Let µ ∈ (0, 1). Then B1

µ ⋄ B2

1−µ is a maximal

S1 × S2-free set with the covering property.

(3) We also show that if a sequence of maximal S-free sets all having the cover-
ing property, converges to a maximal S-free set (in a precise mathematical
sense), then the “limit” set also has the covering property.

(4) We next characterize pyramids with the covering property.

Theorem 3. Let S = b + Zn for some b 6∈ Zn, and let B be a maximal
lattice-free pyramid in Rn (n ≥ 2) such that every facet of B contains
exactly one integer point in its relative interior. K has the covering prop-
erty if and only if B is the image of conv{0, ne1, . . . , nen} under an affine
unimodular transformation.
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The proof of this theorem uses deep results from geometry of numbers,
such as the Venkov-Alexandrov-McMullen theorem, McMullen’s character-
ization of zonotopes and the Minkowski-Hajós theorem.

The importance of these results in terms of cutting planes is the following.
Using 4) above, we can have a “base set” of maximal S-free sets with the covering
property. By iteratively applying the three operations stated in 1), 2) and 3)
above, we can then build a vast (infinite) list of maximal S-free sets (in arbitrarily
high dimensions) with the covering property, enlarging this “base set”. Not only
does this recover all the previously known sets with the covering property, it vastly
expands this list. This makes a contribution in the modern thrust on obtaining
efficiently computable formulas for computing cutting planes, by giving a much
wider class of provably minimal cut-generating pairs that can be computed via (4).
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A geometric approach to cutting planes

Michele Conforti

The cutting-plane approach to integer programming was initiated more that 40
years ago: Gomory introduced the corner polyhedron as a relaxation of a mixed
integer set in tableau form and Balas introduced intersection cuts for the corner
polyhedron. This line of research was left dormant for several decades and did not
have an impact in computations until relatively recently.
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A paper of Andersen, Louveaux, Weismantel and Wolsey [1] has generated a
renewed interest in the corner polyhedron and intersection cuts. Recent develop-
ments rely heavily on tools drawn from convex analysis, geometry, number theory,
and constitute an elegant bridge between these areas and integer programming.

1. The model

For fixed n ∈ N, let S be a closed subset of Rn that does not contain the origin 0.
We consider subsets of the following form:

CS(R) :=
{
s ∈ Rk

+ : Rs ∈ S
}
,

where k ≥ 1. We address the following

Separation problem: Find a closed half-space that contains XS(R,P ) but not
the origin.

The fact that S is closed and 0 /∈ S implies 0 is not in the closed convex hull of
CS(R) [4, Lemma 2.1]. Hence such a half-space always exists.

This problem arises typically when one wants to design a cutting-plane method
to optimize a (linear) function over CS(R) and has on hand a solution (the origin
0) to a relaxation of the problem.

We develop a theory that for fixed S addresses the separation problem inde-
pendently of R by introducing valid functions.

A function ψ : Rn → R is a valid function for S if
∑

ψ(r)sr ≥ 1

is an inequality separating 0 from CS(R) for every k and R. We use the convention
that the above sum is taken over the columns r of R.

There is a natural partial order on the set of valid functions, namely ψ′ ≤ ψ
if and only if ψ′(r) ≤ ψ(r) for every r ∈ Rn. Since {s :

∑
ψ′(r)sr ≥ 1, s ≥ 0} ⊆

{s :
∑
ψ(r)sr+ ≥ 1, s ≥ 0} whenever ψ′ ≤ ψ, all the cuts obtained from ψ are

dominated by those obtained from ψ′. The minimal elements under this partial
order are called minimal valid functions. An application of Zorn’s lemma shows
that every valid function is dominated by a minimal valid function. Thus one can
concentrate on the minimal valid functions.

2. Minimal valid functions and maximal S-free convex sets.

Given S ⊂ Rn, a closed, convex set K is S-free if int(F )∩Zn = ∅. An S-free set in
maximal if k is not properly contained in another S-free set. (

∫
(·) is the interior)

A function g : Rn → R is subadditive if g(r1) + g(r2) ≥ g(r1 + r2) for all
r1, r2 ∈ Rn. The function g is positively homogeneous if g(λr) = λg(r) for every
r ∈ Rn and every λ > 0. The function g is sublinear if it is both subadditive and
positively homogeneous.

Conforti, Cornuéjols, Daniilidis, Lemaréchal and Malick [4] studied the link
between minimal valid functions and maximal S-free convex sets.
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Theorem 1. Given a closed set S ⊆ Rn \ {0}, let ψ : Rn → R be a valid function
for S, and let ψ′ be defined as

ψ′(r̂) = inf
{∑

ψ(r)sr :
∑

rsr = r̂, sr ≥ 0
}

for every r̂ ∈ Rn.

Then ψ′ is a valid function Rn → R which is sublinear.

If ψ and ψ′ are as in Theorem 1, then ψ′ ≤ ψ by definition. Therefore to
characterize minimal valid functions, one can concentrate on sublinear functions.

Given a sublinear function ρ, let

Vρ :=
{
r ∈ Rn : ρ(r) 6 1

}
.

Then Vρ is a closed convex set and 0 ∈ int(Vρ). Conversely, given a closed convex
set V with 0 ∈ int(V ), a sublinear function ρ such that V = Vρ is a representation
of V .

Theorem 2. Let S ⊆ Rn \ {0} be a closed set, let ρ be a sublinear function, and
let Vρ be defined as above. Then ρ is a valid function for S if and only Vρ is S-free.

In view of Theorems 1 and 2, to characterize minimal valid functions for S one
has to study representations of S-free convex sets, which are in general not unique.
However, these representations satisfy the following:

Theorem 3. Let V ⊆ Rn be a closed convex set with 0 ∈ int(V ) and let ρ be a
representation of V . Then

ρ(r) ≤ 0 ⇐⇒ r ∈ rec(V ), and ρ(r) < 0 =⇒ r ∈ int(rec(V )).

Furthermore all representations of V coincide in V \ int(rec(V )). (rec(·) recession
cone).

The polar of a set V ⊆ Rn is the set V ◦ = {r ∈ Rn : rd ≤ 1 for all d ∈ V }.
A set G ⊆ Rn is a prepolar of V if G◦ = V . If V is a closed convex set and
0 ∈ int(V ), then V ◦ is a bounded set and (V ◦)◦ = V . Therefore in this case the
polar of V is itself a prepolar, but V may have other prepolars.

The support function of a set G ⊂ Rn is

(1) σG(r) := sup
d∈G

dr .

The support function is sublinear, and remains unchanged if G is replaced by its
closed convex hull: σG = σconv(G). Conversely, any sublinear function σ is the
support function of a closed convex set, defined by

Gρ :=
{
d ∈ Rn : dr 6 σ(r) for all r ∈ Rn

}
.

Theorem 4. Let V be a closed convex set with 0 ∈ int(V ). Then V admits an
inclusion-wise smallest prepolar. The smallest representation of V is the support
function of the smallest prepolar of V .

If V is a polyhedron K and 0 ∈ int(K), the support function of the smallest
prepolar of V can be computed as follows.
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Theorem 5. Let aix ≤ 1, i ∈ I be an irredundant representation of a polyhedron
K with 0 ∈ int(K). Then {ai, i ∈ I} is the smallest prepolar of K. Hence the
smallest representation of K is the function µK defined as

(2) µK(r) = max
i∈I

air.

So it is important to know when maximal S-free sets are polyhedra. In the next
section we show that when S = Zn, this is always the case.

2.0.1. Maximal lattice-free convex sets. In this subsection we give a characteriza-
tion of the maximal Zn-free convex sets in Rn. A lattice of dimension t is a set
of the type {x ∈ Rn : x = λ1a1 + · · · + λtat; λ1, . . . , λt ∈ Z}, where a1, . . . , at
are linearly independent vectors in Rn. It follows from this definition that Zn is a
lattice. We call a Zn-free convex set lattice-free.

Theorem 6. A set K ⊆ Rn is a maximal lattice-free convex set if and only if it
satisfies one of the following conditions:

(a) K = a+ L, where a ∈ Rn and L is a subspace of dimension n− 1 that is not
a lattice subspace.

(b) K is an n-dimensional polyhedron of the form K = Q+L, where L is a lattice
subspace of dimension r (0 ≤ r < n), Q is a polytope of dimension n− r, and
the relative interior of every facet of K contains an integer point.
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Approximations of polytopes using sparse inequalities

Santanu S. Dey

(joint work with Andres Iroume, Marco Molinaro and Qianyi Wang)

We study how well one can approximate arbitrary polytopes using sparse inequal-
ities. Our motivation comes from the use of sparse cutting-planes in mixed-integer
programing (MIP) solvers, since they help in solving the linear programs encoun-
tered during branch-and-bound more efficiently. However, how well can we approx-
imate the integer hull by just using sparse cutting-planes? In order to understand
this question better, given a polyope P (e.g. the integer hull of a MIP), let P k be
its best approximation using valid inequalities for P that have at most k non-zero
coefficients. We consider d(P, P k) = maxx∈Pk (miny∈P ‖x− y‖) as a measure of
the quality of sparse cuts. We note here that d(P, P k) may be considered as the
worst-case additive error between optimizing over P and P k. In particular, let

gapkP (c) = maxx∈Pkcx−max
x∈P

cx.

Then it is straighforward to verify that: For every polytope P ⊆ Rn,

d(P, P k) = maxc:||c||=1gap
k
P (c).

Observe also that for polytopes in the [0, 1]n hypercube d(P, P k) ≤ √
n.

In our first result, we present general upper bounds on d(P, P k) which depend
on the number of vertices in the polytope.

Theorem 1 ([1]). Let n be a natural number greater than 1. Let P ⊆ [0, 1]n be
the convex hull of points {p1, . . . , pt}. Then

(1) d(P, P k) ≤ 4max
{

n1/4
√
k

√
8maxi∈[t] ‖pi‖

√
log 4tn, 8

√
n

3k log 4tn
}

(2) d(P, P k) ≤ 2
√
n
(
n
k − 1

)
.

These upper bounds imply that if P has polynomially many vertices, then using
constant factor sparsity already approximates it very well.

We present a lower bound on d(P, P k) for random polytopes that show that the
upper bounds are quite tight.

Theorem 2 ([1]). Let k, t, n ∈ Z++ satisfying 64 ≤ k ≤ n and (0.5k2 logn +
2k+1)2 ≤ t ≤ en. Let X1, X2, . . . , Xt be independent uniformly random points in
{0, 1}n and let P = conv(X1, X2, . . . , Xt). Then with probability at least 1/4 we
have that

d(P, P k) ≥ min

{√
n√
k

√
log t

110
√
logn

,

√
n

8

}(
1

2
− 1

k3/2

)
− 3
√
log t.

We are able to establish that for a class of hard packing IPs, sparse cutting-
planes do not approximate the integer hull well, that is d(P, P k) is large for such
instances unless k is very close to n. Formally, given parameters n,m,M ∈ Z++,
the convex hull of the packing IP is given by

P = conv

(
{x ∈ {0, 1}n : Ajx ≤

∑n
i=1 A

j
i

2
, ∀j ∈ {1, ...,m}}

)
,
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where the Aj
i ’s are chosen independently and uniformly in the set {0, 1, . . . ,M}.

Let (n,m,M)-PIP denote the distribution over the generated P ’s.

Theorem 3 ([1]). Consider n,m,M ∈ Z++ such that n ≥ 50 and 8 log 8n ≤ m ≤
n. Let P be sampled from the distribution (n,m,M)-PIP. Then with probability

at least 1/2, d(P, P k) ≥
√
n
2

(
2

max{α,1} (1− ǫ)2 − (1 + ǫ′)
)
, where c = k/n and

1

α
=

M

2(M + 1)

[
n− 2

√
n log 8m

c((2− c)n+ 1) + 2
√
10cnm

]
, ǫ =

24
√
log 4n2m√
n

,

ǫ′ =
4
√
log 8n√

m− 2
√
log 8n

.

Next we study the effect of rotation of polytopes on d(P, P k). We are able to
establish a negative result.

Theorem 4 (D., Iroume, Molinaro). Let n ∈ Z++. There exists a family of
polytopes Qn ∈ [−1, 1]n such that for every rotation R : Rn → Rn we have

d(R[Qn], (R[Qn])
k) = Ω(

√
n),

where k =
√
n

100 .

All the results up till now consider the measure d(P, P k). We now consider the
measure gapkP (c). Can this measure be bad in all directions? We present a family
of polytopes where such a negative result holds.

Theorem 5 (D., Iroume, Molinaro). Let n ∈ Z++. There exists a family of
polytopes Qn ∈ [−1, 1]n such that (for sufficiently large n): If C ∈ Rn is a
random direction uniform on the unit sphere, then for k = n

10 ,

Pr

(
gapkQn

(C) ≥
√
n

20

)
≥ 1− 4

n
.

Next we consider the following question: Suppose we allow a few dense inequal-
ities in the approximation of the polytope. In particular, we are interested in
knowing if adding a polynomial number of dense inequalities can significantly im-
prove over the quality of approximation of P k. We are able to establish a negative
result.

Theorem 6 (D., Iroume, Molinaro). Let n ∈ Z++. There exists a family of
polytopes Qn ∈ [−1, 1]n such that (for sufficiently large n): For k = n

100 , c > 1
and c ≤ exp (k), we have that:

d(Qn, (Qn)
k intersected with any c valid inequalities for Qn) ≥

1

6

√
n.

Finally, we show that using sparse inequalities in extended formulations is at
least as good as using them in the original polyhedron, and give an example where
the former is actually much better.
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Theorem 7 ([1]). Let n ∈ Z++. Consider a polyhedron P ⊆ Rn and an extension
Q ⊆ Rn × Rm for it. Then projx(Q

k) ⊆ (projx(Q))k = P k.
Moreover, assume n is a power of 2. Then there is a polytope Pn ⊆ [0, 1]n such

that:

(1) d(Pn, P
k
n ) =

√
n/2 for all k ≤ n/2.

(2) There is an extension Qn ⊆ Rn ×R2n−1 of Pn such that projx(Q
3
n) = Pn.

References

[1] S.S. Dey, M. Molinaro, Q. Wang, How Good Are Sparse Cutting-Planes?, IPCO 17 (2014),
261–272.

Recent applications of supermodular functions

András Frank

(joint work with Kristóf Bérczi)

In this talk three apparently independent problems are considered.

1. A classic result of Edmonds states that in a digraph D = (V,A) with a
specified root-node r0, there are k disjoint spanning arborescences of root r0 if
and only if the digraph is rooted k-edge-connected, that is, the in-degree ̺(X) of
every non-empty subset X of V − r0 is at least k. Here we provide a necessary
and sufficient condition for the existence of k such arborescences when the i′ ar-
borescence, in addition, is required to have ci root-edges, where c1, c2, . . . , ck are
specified positive integers. (A root-edge is an edge with tail r0).

2. Ryser proved a min-max formula for the maximum term-rank of a (0, 1)-
matrix with specified row-sums and column-sums. The term-rank of a matrix is
the maximum number of independent 1-s. Suppose that there is a matroid on the
set of columns and there is a matroid on the set of rows. By the matroidal term-
rank of a matrix, we mean the maximum number of independent 1-s for which the
set of columns containing such an entry is independent in the first matroid and
the set of rows containing such an entry is independent in the second matroid. (A
theorem of Kőnig characterizes the term-rank of a given matrix, while a theorem of
Brualdi characterizes the matroidal term-rank of a given matrix.) As an extension
of Ryser’s theorem, we developed a min-max formula for the maximum matroidal
term-rank of a (0, 1)-matrix with specified row-sums and column-sums.

3. We describe a necessary and sufficient condition for two specified sequences
{mo(v1), . . . ,mo(vn)} and {mi(v1), . . . ,mi(vn)} to admit a simple k-connected
digraph on node-set {v1, . . . , vn} for which ̺(vj) = mi(vj) and δ(vj) = mo(vj)
for j = 1, . . . , n, where ̺(v) and δ(v), respectively, denotes the in-degree and the
out-degree of node v.

Each of the three results is derived with the help of a theorem of Frank and
Jordán on covering a supermodular function by a minimum number of directed
edges.
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Polynomiality for bin packing with a fixed number of item types

Michel X. Goemans

(joint work with Thomas Rothvoß)

In the bin packing problem, we are given a set of items, each with a certain size,
and the goal is to assign them to the smallest possible number of bins such that
the total size of the items assigned to any bin is at most 1. We consider here
the 1-dimensional cutting stock version of the problem, in which there might be
several items of the same size. We assume we are given d item types, and type
i (for i = 1, · · · , d) has a given size si ∈ [0, 1] and a given multiplicity ai ∈ Z≥0.
All these numbers are given in binary encoding. The study of the cutting stock
problem goes back to the classical paper of Gilmore and Gomory [3]. We can
represent the set of feasible patterns (or item type multiplicities) that fit a single
bin by P := {x ∈ Zd

≥0 | sTx ≤ 1}. The smallest number of bins is therefore given
by

(1) min
{∑

x∈P
λx |

∑

x∈P
λx · x = a; λ ∈ ZP

≥0

}
.

For general d (and even unit multiplicities), the problem is known to be strongly
NP-hard [4]. Observe that with multiplicities given in binary, the smallest number
of bins can be exponential in the input size, and therefore one needs to consider
compact encoding of the output bins, such as by providing λx for a polynomial
number of patterns x ∈ P . Eisenbrand and Shmonin [1] have shown that such a
compact encoding exists, thereby showing that bin packing is in NP.

In this work, we present a polynomial-time algorithm for the bin packing prob-
lem when d is constant. This was an open problem for d ≥ 3, see [6, 1, 2]. Our
algorithm actually solves a more general problem in polynomial-time for constant
d: given two d-dimensional polytopes P ⊆ Rd and Q ⊆ Rd , find the smallest
number of integer points in P whose sum lies in Q. This result allows us to
tackle a host of other combinatorial optimization problems, such as high multiplic-
ity scheduling problems in which the number of copies of each job type is given
in binary encoding and each type comes with certain parameters such as release
dates, processing times and deadlines. We show that a variety of high multiplicity
scheduling problems can be solved in polynomial time if the number of job types
is constant.

Our key ingredient is the following. For any polytope P in Rd, consider the set
of its integral conic combinations

C = {
∑

x∈P∩Zd

λxx|λx ∈ Z≥0 ∀x}.

We prove that we can (efficiently) find a set X ⊆ P ∩ Zn of polynomial size (for
constant d) such that for any a ∈ C, we can express a as

∑
x∈P∩Zd λxx with

• λx ∈ {0, 1} for all x ∈ (P ∩ Zd) \X ,
• λx ∈ Z for all x ∈ X ,
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• | supp(λ) ∩X | ≤ 22d and
• | supp(λ) \X | ≤ 22d.

Once we have proved this structure theorem, the algorithm follows fairly easily
by guessing the (constant number of) points in supp(λ) ∩ X and using Lenstra’s
result [5] for integer linear programming in fixed dimension.
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Generalized power diagrams, balanced k-means, and the

representation of polycrystals

Peter Gritzmann

Based on a discrete convex maximization model we give an efficient algorithm
for computing feasible generalized power diagams with near-optimal separation
properties.

Further, we show how this approach can be used to generalize the classical
k-means algorithms from data analysis so that it becomes capable of handling
prescribed lower and upper bounds on the cluster sizes for weighted point sets.
(This part is, generally, based on [2] and [3], and reports on recent joint work with
S. Borgwardt and A. Brieden, [1].)

Also we indicate how to handle the discrete inverse problem from material
science to compute grain maps i.e., representations of polycrystals, based only
on measured data on the volume, center and, possibly, moments of their grains.
(This part is ongoing joint work with A. Alpers, A. Brieden, A. Lyckegaard and
H. Poulsen, [4].)
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Packing odd T -joins with at most two terminals

Bertrand Guenin

(joint work with Ahmad Abdi)

1. The result

A signed graph is a pair (G,Σ) where G is a graph and Σ ⊆ E(G). A subset S
of the edges is odd (resp. even) if |S ∩ Σ| is odd (resp. even). A graft is a pair
(G, T ) where G is a graph, T ⊆ V (G) and |T | is even. Vertices in T are terminal
vertices. A T -join is an edge subset that induces a subgraph of G with the odd
degree vertices equal to T . A signed graft is a triple (G,Σ, T ) where (G,Σ) is a
signed graph and (G, T ) is a graft. Thus an odd T -join of (G,Σ, T ) is a T -join of
G that contains an odd number of edges of Σ. When T = ∅ an (inclusion-wise)
minimal odd T -join, is an odd circuit. When T = {s, t} a minimal odd T -join is
either an odd st-path, or it is the union of an even st-path P and an odd circuit
C where P and C share at most one vertex.

The maximum number of pairwise (edge) disjoint odd T -joins in (G,Σ, T ) is
denoted ν(G,Σ, T ). The minimum number of edges needed to intersect all odd
T -joins is denoted τ(G,Σ, T ). A signed graft packs if τ(G,Σ, T ) = ν(G,Σ, T ). Our
result will give sufficient conditions for a signed graft with at most two terminals
to pack. We denote by odd-K5 the signed graft (K5, E(K5), ∅). Since odd T -joins
in that case are odd circuits we have τ = 4 > ν = 2, thus it does not pack. We
denote by L7 the signed graft obtained as follows:

(a) start with a circuit with four even edges;
(b) for three of these edges add a parallel edge that is odd;
(c) choose the terminals to be equal to the endpoints of the even edge that

is not parallel to an odd edge. In can be readily checked in this case
that the odd T -joins correspond to the lines of the Fano matroid. Hence,
τ = 3 > ν = 1 in that case.

We say that a signed graft is Eulerian if every non-terminal vertex has even
degree and either: every terminal has odd degree and the signature has an odd
number of edges; or every terminal has even degree and the signature has an even
number of edges.

We can now state our main result which is a special case of Seymour’s Cycling
conjecture [8] (see also [7]),

Theorem 1. [1, 2] If an Eulerian signed graft has at most two terminals and it
does not contain odd-K5 and does not contain L7 then it packs.

It remains to describe what we mean by “contain” in this setting.
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Consider a signed graft (G,Σ, T ). (G,Γ, T ) is obtained by resigning (G,Σ, T ) if
Γ = Σ△δ(U) for some cut δ(U) where |T ∩ U | is even. For e ∈ E(G), we say that
(G \ e,Σ− {e}, T ) is obtained by deleting e. For e = uv ∈ E(G)− Σ, we say that
(G/e,Σ, T ′) is obtained by contracting e where T ′ = T − {u, v} if both or none of
u, v are in T and T ′ = T −{u, v}∪{w} if exactly one of u, v is in T where w is the
vertex obtained from e by contracting e. A signed graft is a minor of (G,Σ, T ) if
it is obtained by sequentially deleting/contracting edges and resigning.

2. Some corollaries

We say that a graph H is an odd-minor of a graph G if H is obtained from G by
first deleting edges and then contracting all edges on a cut. Theorem 1 for the
case where we have no terminals implies,

Corollary 1 (Geelen and Guenin [4]). Let G be a graph that does not contain
K5 as an odd minor and where every vertex has even degree. Then the minimum
number of edges needed to intersect all odd circuits is equal to the maximum
number of pairwise disjoint odd circuits.

In the next proposition we indicate a number of classes of signed grafts that do
not contain odd-K5 and do not contain L7. In particular, for each of these classes,
as long as the Eulerian condition holds, the minimum number of edges needed to
intersect all odd T -joins is equal to the maximum number of pairwise disjoint odd
T -joins. A blocking vertex (resp. blocking pair) of a signed graph is a vertex (resp.
pair of vertices) that intersects every odd circuit.

Proposition 1. Let (G,Σ, T ) be a signed graft where T = {s, t}. If any of (1)-(6)
hold then (G,Σ, T ) does not contain as a minor odd-K5 or L7,

(1) There exists a blocking vertex,
(2) s, t is a blocking pair,
(3) Every inclusion-wise minimal odd T -join is connected,
(4) G is a plane graph with at most two odd faces,
(5) G is a plane graph with a blocking pair u, v where s, u, t, v appear on a

facial cycle in this order,
(6) G has an embedding on the projective plane where every face is even and

s, t are connected by an odd edge.

As a corollary of Theorem 1 and Proposition 1(1) we obtain,

Corollary 2. Let (H,T ) be a graft with |T | ≤ 4. Suppose that every vertex of H
not in T has even degree and that all the vertices in T have degrees of the same
parity. Then the maximum number of pairwise disjoint T -joins is equal to the
minimum size of a T -cut.

In fact this result holds as long as |T | ≤ 8 [3].
As a corollary of Theorem 1 and Proposition 1(2) we obtain,

Corollary 3 (Hu [5], Rothschild and Whinston [6]). Let H be a graph with
vertices s1, s2, t1, t2 where s1 6= t1, s2 6= t2, all of s1, t1, s2, t2 have the same parity,
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and all the other vertices have even degree. Then the maximum number of pairwise
disjoint paths that are between si and ti for some i = 1, 2, is equal to the minimum
size of an edge subset whose deletion removes all s1t1- and s2t2-paths.

Consider G obtained as follows:

(⋆) start from a plane graph with exactly two faces of odd length and distinct
vertices s and t, and identify s and t.

As a corollary of Theorem 1 and Proposition 1(3) we obtain,

Corollary 4. Let H be a graph as in (⋆) and suppose that the length of the
shortest odd circuit is k. Then there exists cuts B1, . . . , Bk such that every edge
e is in at least k − 1 of B1, . . . , Bk.
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Greedy algorithms for Steiner Forest

Anupam Gupta

(joint work with Amit Kumar)

In the Steiner forest problem, given a metric space and a set of source-sink pairs
{si, ti}Ki=1, a feasible solution is a forest such that each source-sink pair lies in
the same tree in this forest. The goal is to minimize the cost, i.e., the total
length of edges in the forest. This problem is a generalization of the Steiner tree
problem, and hence APX-hard. The constant-factor approximation algorithms
currently known for it are all based on linear programming techniques. The first
such result was an influential primal-dual 2-approximation due to Agrawal, Klein,
and Ravi [AKR95]; this was simplified by Goemans and Williamson [GW95] and
extended to many “constrained forest” network design problems. The primal-dual
analysis also bounds integrality gap of the the natural LP relaxation (based on
covering cuts) by a factor of 2. Other approximation algorithms for Steiner forest
based on the same LP, and achieving the same factor of 2, are obtained using
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the iterative rounding technique of Jain, or the integer decomposition techniques
of Chekuri and Shepherd [CS09]. A stronger LP relaxation was proposed by
Könemann, Leonardi, and Schäfer, but it also has an integrality gap of 2.

However, it has remained an interesting open problem whether constant-factor
approximations are known based on “purely combinatorial” techniques. For the
special case of Steiner tree, where all the sources si are co-located (at some point
s, say), we have long known that the minimum spanning tree (MST) heuristic
gives a factor-2 approximation; hence running Prim’s or Kruskal’s algorithm on
the terminals (ignoring the non-terminal, or Steiner vertices) would give a tree
whose cost is within a factor 2 of the optimal Steiner tree.

Some natural algorithms have been proposed, but these have defied analysis for
the most part. The simplest is the paired greedy algorithm that repeatedly connects
the yet-unconnected si-ti pair at minimum mutual distance; this can be viewed
as an analog of Prim’s algorithm in the Steiner forest setting. Unfortunately, it is
known by now that this is no better than an Ω(logn)-factor approximation (see
Chen et al.). Even greedier is the so-called gluttonous algorithm that connects
the closest two yet-unsatisfied terminals regardless of whether they were “mates”;
this can be viewed as the extension of Kruskal’s algorithm for Steiner forests. The
performance of this algorithm has been a long-standing open question. The main
result of this talk settles this question in the affirmative: The gluttonous algorithm
is a constant-factor approximation for Steiner Forest.

We use this result to obtain a simple combinatorial approximation algorithm
for the two-stage stochastic version of the Steiner forest problem. In this problem,
we are given a probability distribution π defined over subsets of demands. In
the first stage, we can buy some set E1 of edges. Then in the second stage, the
demand set is revealed (drawn from π), and we can extend the set E1 to a feasible
solution for this demand set. However, these edges now cost σ > 1 times more
than in the first stage. The goal is to minimize the total expected cost. It suffices
to specify the set E1—once the actual demands are known, we can augment using
our favorite approximation algorithm for Steiner forest. Our simple algorithm is
the following: sample ⌈σ⌉ times from the distribution π, and let E1 be the Steiner
forest constructed by (a slight variant of) the gluttonous algorithm on union of
these ⌈σ⌉ demand sets sampled from π. The properties of the gluttonous algorithm
for Steiner forest can be used to give certain “strict” cost shares that show that
this random-sampling algorithm is a constant-factor approximation algorithm for
the stochastic Steiner forest problem.
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A quadratic upper bound on the extension complexities of the

independence polytopes of regular matroids

Volker Kaibel

(joint work with Jon Lee, Matthias Walter and Stefan Weltge)

The extension complexity of a polytope P is the smallest number of facets of any
polytope Q whose image under a linear map is P . Independence polytopes of
graphic (and cographic) matroids have extension complexities that are bounded
from above by O(|V |·|E|) if G = (V,E) is the underlying graph (due to Martin [1]);
if G is planar, the bound can even be improved to O(|V |) (due to Williams [4]).
On the other hand, Rothvoss [2] showed that it is not true that the extension
complexities of the independence polytopes of all matroids can be bounded by a
polynomial in the sizes of their ground sets.

In this talk, we prove that when one restricts to the class of regular matroids,
then the corresponding extension complexities can be bounded quadratically in
the sizes of the ground sets. The proof relies on Seymour’s decomposition the-
orem [3] for regular matroids using 1-, 2-, and 3-sums in order to construct all
regular matroids from graphic and cographic matroids as well one particular spe-
cial regular matroid. By analyzing the sum-operations in terms of matrices over
the field with two elements, we derive characterizations of the indepent sets of
such sums of two matroids that allow us to construct extended formulations of the
indepence polytopes of the resulting matroids from independence polytopes of the
summands. In case all graphs arising in the decomposition are planar, the bound
on the extension complexity of the independence polytope of the regular matroid
is even linear.
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Optimization on polyhedra defined by submodular functions on

diamonds

Tamás Király

(joint work with Satoru Fujishige, Kazuhisa Makino, Kenjiro Takazawa and
Shin-ichi Tanigawa)

A set function f : 2V → Z is submodular if f(X)+f(Y ) ≥ f(X ∪Y )+f(X ∩Y )
for every X,Y ⊆ V . In the submodular function minimization problem, given an
evaluation oracle for a submodular function f , we are asked to find a minimizer of
f . For this problem, our goal is to find an algorithm with running time polynomial
in |V | and logmaxX⊆V {|f(X)|} that returns X ∈ argmin(f), assuming that the
algorithm has access to an oracle that for any given X outputs f(X).

It follows from the work of Grötschel, Lovász and Schrijver [4] on the equivalence
of separation and optimization that such an algorithm can be obtained by using
the ellipsoid method. Combinatorial strongly polynomial algorithms have only
been obtained much later, independently by Schrijver [13] and by Iwata, Fleischer
and Fujishige [6].

The generalization that we consider in this talk concerns submodular functions
on lattices. Given a finite lattice L, a function f : L→ Z is submodular on L if
f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) for every x, y ∈ L. For modular lattices, such
functions naturally arise when extending the Dulmage-Mendelsohn decompositions
of generic matrices to generic partitioned matrices [8], and it was posed as an open
problem in [6] to give a polynomial-time algorithm for minimizing submodular
functions on modular lattices.

As observed in [6, 13], one can reduce the problem to the standard submod-
ular function minimization if the underlying lattice is distributive. Krokhin and
Larose [9] showed that certain lattice operations preserve the tractability of the
corresponding minimization problem in the value oracle model, and as a corollary
they showed that the submodular function minimization on the product of the
copies of the pentagon, a smallest non-distributive lattice, can be reduced to the
standard submodular function minimization.

In this talk we consider the submodular function minimization problem on the
product of diamonds, which is the remaining smallest non-distributive case and
has an application to the Dulmage-Mendelsohn type decompositions of generic
partitioned matrices consisting of two-by-two blocks [7]. A diamond is a lattice
consisting of a minimal element, a maximal element, and an arbitrary finite num-
ber of pairwise incomparable middle elements: the meet (resp. join) of any two
middle elements is the minimal (resp. maximal) element. A submodular function
on the direct product of given diamonds U1, . . . , Un is called a submodular func-

tion on diamonds. Note that if the diamonds have no middle elements, then
we have a standard submodular set function. If the diamonds have at most two
middle elements, then the lattice is distributive, thus we can use the standard sub-
modular function minimization algorithm in this case too. However, a diamond
with more than two middle elements is modular but not distributive, and hence
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we cannot directly apply the standard algorithms. A pseudo-polynomial algorithm
for the minimization of submodular functions on diamonds was given by Kuivinen
[10]. Our main result is the first polynomial-time algorithm.

Theorem. Let f be a submodular function on the direct product of a finite number
of diamonds U1, . . . , Un. A minimizer of f can be computed in a polynomial number
of arithmetic steps and function evaluations in m and logM , where m =

∑n
i=1 |Ui|

and M is the maximum absolute function value.

Let U =
⋃n

i=1 Ui, and call T ⊆ U a transversal if |T ∩ Ui| = 1 for every
i ∈ [n], where [n] denotes the set of integers {1, . . . , n}. We denote by T the
set of transversals and by T0 the transversal consisting of the minimal elements.
There is a natural one-to-one correspondence between transversals and elements
of the direct product lattice, which also defines operations ∧ and ∨ on pairs of
transversals. We assume f(T0) = 0.

For a transversal T ∈ T , let a(T )i ∈ {0, 1, 2} denote the rank of the unique
element T ∩ Ui in the lattice Ui. We consider the optimization problem

(1) max{cx : x ∈ Rn, a(T )x ≤ f(T ) ∀T ∈ T }.
We give a combinatorial algorithm with polynomial running time for this prob-
lem. By the results of Grötschel, Lovász and Schrijver [4], this implies that the
minimization of submodular functions on diamonds can be solved in polynomial
time using the ellipsoid method.

When f is derived from a matroid rank function, the polytope describing
(1) coincides with the fractional matroid matching polytope introduced by
Vande Vate [14], and the corresponding optimization problem (1) is known as the
weighted fractional matroid matching problem, which was solved by Gi-
jswijt and Pap [3]. The main restriction compared to our generalized problem is
that the lattice function corresponding to fractional matroid matching is derived
from a matroid rank function, and hence it is monotone nondecreasing and has
maximum value at most 2n. Nevertheless, our algorithm makes use of several ideas
from the Gijswijt-Pap paper.

A different extension of standard submodular minimization is the minimization
of bisubmodular functions by Qi [12], Fujishige and Iwata [1], and Fujishige and
McCormick [11]. Min-max theorems (without polynomial algorithms) were also
given for the minimization of k-submodular functions, which is a common general-
ization of bisubmodular functions and multimatroid rank functions, by Huber and
Kolmogorov [5], and for the more general class of transversal submodular func-
tions by Fujishige and Tanigawa [2]. One of the exciting open problems is whether
k-submodular functions can be minimized in polynomial time.
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The Gomory–Johnson infinite group problem: A 42-year update

Matthias Köppe

(joint work with Amitabh Basu, Robert Hildebrand, Reuben La Haye, Quentin
Louveaux, Marco Molinaro and Yuan Zhou)

The infinite group problem was introduced 42 years ago by Ralph Gomory and Ellis
Johnson in their groundbreaking papers titled Some continuous functions related
to corner polyhedra I, II [7, 8]. The technique, investigating strong relaxations
of integer linear programs by embedding them in an infinite-dimensional master
problem (and thus by convexity in a function space), has at times been dismissed
as “esoteric.”

The valid inequalities for the master problems, after a standard normalization,
are described by real-valued functions, called valid functions. The valid functions
that are not pointwise dominated by other valid functions are calledminimal. By a
theorem of Gomory–Johnson, they are classified as subadditive periodic functions
that satisfy a certain normalization condition. The goal is to study the strongest
minimal inequalities for the master problem, which are the analogues to facet-
defining inequalities in the finite-dimensional case. They are described by extreme
functions.

The interest in Gomory–Johnson’s work was renewed in the 2000s by various
authors. Highlights included:
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• New families of extreme functions from various constructions.
• A systematic investigation of limits of extreme functions, leading to the
definition of families of discontinuous piecewise linear extreme functions.

• First constructions of extreme functions for multi-row infinite group prob-
lems, in particular by the sequential-merge procedure.

• Various computational experiments, including the so-called shooting ex-
periments.

An excellent survey by Richard and Dey [10] reports on these developments.
Due to this work, combined with the recent interest in the more general frame-

work of cut generating functions [6], we now recognize the infinite group problem
as a technique which may be a key to solving today’s pressing need for stronger,
multi-row cutting plane approaches.

I present a new comprehensive survey, titled Light on the infinite group problem
(with A. Basu, R. Hildebrand) [4], which reports on the latest developments since
2010. The highlights regarding the single-row relaxations include:

• The construction of non–piecewise linear continuous extreme functions [1].
• New insights on the question of non-negativity of coefficients of valid in-
equalities.

• A discussion of cases in which the notions of extreme functions, facets, and
weak facets (all of which are analogues of facets in the finite-dimensional
case) coincide.

• A systematic study of the space of perturbations of a minimal valid func-
tion, which leads to the first algorithms for testing extremality in
[2]. These algorithms have pseudo-polynomial running time, and it is an
open question whether this is best possible.

• The completion of Gomory–Johnson’s program regarding the rela-
tion of the infinite group problem and embedded finite group problems in
the single-row case [2].

Theorem. Let m ∈ Z≥3 be fixed. Let π be a continuous piecewise linear
minimal valid function for the single-row infinite group problem Rf (R,Z)
with breakpoints in 1

qZ and suppose that the right-hand side value f also

lies in 1
qZ. The following are equivalent:

(1) π is a facet for Rf (R,Z),
(2) π is extreme for Rf (R,Z),
(3) The restriction π| 1

mqZ
using the oversampling factor of m is extreme

for the finite group problem Rf (
1
mqZ,Z).

• The discovery of a new extremality principle based on the density of infinite
restricted orbits generated by numbers that are linearly independent over
the rationals [2].

• New insights and conjectures on analytic-topological questions regarding
the set of extreme functions.
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Proposition. There exists a sequence of continuous extreme functions
(of type bhk_irrational) that converges uniformly to a continuous non-
extreme function of the same type.

The survey also reports on the significant progress that has been made regarding
multi-row relaxations (with k rows), including:

• A systematic study of locally finite, periodic polyhedral complexes under-
lying piecewise linear minimal valid functions.

• A k-dimensional generalization of Gomory–Johnson’s so-called Interval
Lemma, in other words, a theorem on the regular solutions to Cauchy’s
additive functional equation in the bounded case [3].

Theorem. Let π̄ : Rk → R be a bounded function. Let F ⊆ Rk × Rk

be a convex set such that π̄(u) + π̄(v) = π̄(u + v) for all (u,v) ∈ F .
Let L be a linear subspace of Rk such that (L × L) + F ⊆ aff(F ). Let
(u0,v0) ∈ relint(F ). Then π̄ is affine-linear with the same gradient over:

– intL((u
0 + L) ∩ p1(F )),

– intL((v
0 + L) ∩ p2(F )),

– intL((u
0 + v0 + L) ∩ p3(F )).

(Here intL(U) denotes the interior of U in the relative topology of L+u.)

• The (k+1)-slope theorem [5], a sufficient condition for extremality in the
case of k rows, which generalizes Gomory–Johnson’s celebrated 2-slope
theorem.

• First results regarding the relation of the infinite group problem and em-
bedded finite group problems in the two-row case [3].

An interactive companion program [9] allows experimentation with valid functions
for the single-row infinite group problem and provides an updated compendium of
known extreme functions.

I also present ongoing work (with R. Hildebrand, R. La Haye, Q. Louveaux,
Y. Zhou) to complete the algorithmic problem of testing extremality for piecewise
linear minimal functions with irrational algebraic data.
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The moment-LP and moment-SOS approaches in polynomial

optimization

Jean B. Lasserre

We discuss the optimization problem P : inf {f(x) : x ∈ K } where f is a polyno-
mial and K ⊂ Rn is the basic closed semi-algebraic set (assumed to be compact)

K := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m }
for some polynomial gj, j = 1, . . . ,m. When one focuses on the global minimum
f∗ (as opposed to a local optimum), problem P can be written as:

f∗ = sup {λ : f(x)− λ ≥ 0, ∀x ∈ K }.
When f is a polynomial and K is a compact basic semi-algebraic set, powerful
positivity certificates of Real Algebraic Geometry allow to express the difficult
positivity constraint “f(x) ≥ 0 for all x ∈ K” in a way that can be exploited for
efficient numerical computation. Indeed one may then define a hierarchy of convex
relaxations (Pk), k ∈ N, of P which provides a monotone sequence of upper bounds
(f∗

k ≥ f∗) such that f∗
k → f∗ as k → ∞. When using a positivity certificate due

Krivine, Handelman and Vasilescu one ends up with solving a hierarchy of LP-
relaxations whereas if one uses a positivity certificate due to Schmüdgen (and
later refined by Putinar) one ends up with solving a hierarchy of SDP-relaxations
(or semidefinite relaxations). In both cases the resulting convex relaxation Pk

becomes more and more difficult to solve as its size increases with k.
We then discuss the relative merits and drawbacks of both hierarchies of re-

laxations and their impact not only in optimization (and particularly combina-
torial optimization) but also in many areas for solving instances of the so-called
Generalized Problem of Moments (GMP) with polynomial data (of which Global
Polynomial Optimization is in fact the simplest instance).
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Finally, we also introduce another characterization of nonnegativity on a closed
set K ⊂ Rn which can be also exploited to now define a monotone non increasing
sequence of upper bounds (f∗

k ), k ∈ N, that converges to the global minimum f∗

of P as k → ∞. Computing each upper bound f∗
k now boils down to solving

a generalized eigenvalue problem associated with some pair of real symmetric
matrices whose size increases with k.
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Lower bounds on spectrahedral lifts and semidefinite relaxations

James Lee

(joint work with Prasad Raghavendra and David Steurer)

We introduce a method for proving lower bounds on the efficacy of SDP relaxations
for combinatorial problems. In particular, we show that the cut, TSP, and stable
set polytopes on n-vertex graphs are not the linear image of the feasible region of
any SDP (i.e., any spectrahedron) of dimension less than 2n

c

for some c > 0. The
results follow from a general technique for proving lower bounds on the positive
semidefinite rank of a matrix. In order to do this, we establish close connections
between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy.

Solving network problems including physical transport

Alexander Martin

(joint work with B. Geißler, A. Morsi and L. Schewe)

We consider a typical minimal cost (single) network flow problem. We are given
a network G = (V,E) with edge capacities c ∈ RA and weights w ∈ RA and a
demand vector b ∈ RV with

∑
v∈V bv = 0. The only difference to this classical

situation which is taught in class is that the flow we have to model is gas or
water. The mathematical modeling of gas or water leaves the world of linear
optimization and enters the field of partial differential equations. For instance,
the 1-dimensional flow of gas in some pipe is described by the so-called isothermal
Euler equations:

∂ρ

∂t
+
∂(ρv)

∂x
= 0

∂(ρv)

∂t
+
∂(ρv2 + p)

∂x
+ gρ

∂h

∂x
+

λ

2D
ρ|v|v = 0
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In addition, active elements are present such as valves, which can be opened or
closed to (re)direct the flow of gas, or compressors, which may increase the pressure
of gas. In other words we must deal with a problem inheriting binary decision
variables and partial differential equations at the same time. For the solution of
such problems in its general, that is dynamical, setting no appropriate methods
and algorithms are available. Instead, we consider the stationary case and dispense
with all time dependent terms. Then, the Euler equations reduce to ordinary
differential equations. Assuming the real gas factor to be constant along a pipe
and that the ram pressure term in the momentum equation can be neglected, these
can even be solved in closed form. We end up with a mixed integer nonlinear
optimization problem (MINLP). The commonly used approach to solve MINLPs
is by outer approximation and spatial branching. We propose a different method
by exploiting the strength of mixed integer linear programming solvers. The idea
is as follows:

We build relaxations of the feasible set of the MINLP in terms of mixed-integer
linear constraints only. To this end we first construct a piecewise linear approx-
imation of each nonlinear expression such that the resulting approximation sat-
isfies an a priori given error bound. This is achieved by an adaptive approx-
imation algorithm based on convex underestimators for multivariate nonlinear
expressions [7, 10] and by piecewise linear minimax approximations for the uni-
variate terms [11]. In a second step we extend the so-called incremental method
for piecewise linear functions [1] to a MILP model for piecewise polyhedral outer
approximations of the same tightness as the initially constructed approximation.
Thus, the resulting MILP model is a proper relaxation of the underlying MINLP
that incorporates all combinatorial constraints exactly and reflects any nonlinear
constraint up to a predefined error bound. Similar techniques have already been
applied to variants of the related problem of gas transport energy cost minimiza-
tion [2, 4, 3, 5, 6, 9]. However, the MILP models used therein only yield approxi-
mations and not relaxations of the underlying nonlinear models and are thus not
appropriate to disprove feasibility. For a detailed look at the physical model and
results on real-world gas networks, we refer to the forthcoming book [15].

In [12] these techniques have been applied to compute energy cost minimal
solutions for gas transport problems on networks with several hundred nodes and
arcs. The problem to decide, whether there is a feasible control for a gas network
(and if yes, which) for a given demand vector b has recently been solved even for
networks with several thousand nodes and arcs and several hundred switchable
facilities [14], see Figure 1. For smaller gas networks similar results have already
been proposed in [13, 15, 16]. Results for energy cost minimal operation of water
supply networks have been reported in [8, 10, 11] using a similar approach.

In summary, we are able to solve MINLPs with MIP techniques if the involved
nonlinear functions are of low dimension. This is in particular the case for network
problems including physical transport. And in this case the computations show
that this approach is even by far superior. However, what remains open is the
dynamical situation. As mentioned, up to now no appropriate method is around
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Figure 1. Germany’s largest network for low-calorific gas transport.

and it remains a great challenge to attack such kind of problems. It is our cur-
rent comprehension that we must dispense with the approach of remodeling every
function in the MIP world and instead find a way of including the broad and deep
knowledge for the solution of partial difference equations in a black box manner
in the MIP context.
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Discrete DC programming by discrete convex analysis

Kazuo Murota

(joint work with Takanori Maehara)

The theory of DC functions (difference of two convex functions) and DC program-
ming is one of the most successful areas of non-convex optimization [2, 9]. The
DC theory is based on a basic non-convex duality theorem, called Toland-Singer
duality [7, 8]:

inf
x∈Rn

{g(x)− h(x)} = inf
p∈Rn

{h∗(p)− g∗(p)}.

A DC program is hard to solve in general, but when the objective function has a
nice DC representation, there are some practical algorithms based on the Toland-
Singer duality. We establish a discrete analogue of the theory of DC programming.
using discrete convex analysis [1, 3, 4, 5].
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In discrete convex analysis, two convexity notions, M♮-convexity and L♮-convex-
ity, are distinguished: M♮-convexity is a generalization of matroid property and L♮-
convexity is a generalization of submodularity on subsets. Conjugacy between M♮-
convex functions and L♮-convex functions under discrete Legendre-Fenchel trans-
formation is a distinctive feature of discrete convex analysis. Fundamental results
in continuous convex analysis, in particular biconjugacy and subdifferentiability,
have corresponding statements in discrete convex analysis. Furthermore, efficient
algorithms are available for minimizing discrete convex functions.

We define a discrete DC function as a difference of two discrete convex functions.
Since there are two classes of discrete convex functions (M♮-convex functions and
L♮-convex functions), there are four types of discrete DC functions (an M♮-convex
function minus an M♮-convex function, an M♮-convex function minus an L♮-convex
function, and so on). These types of functions contain many functions appearing
in practice: a difference of submodular functions is an L♮−L♮ DC function, a
supermodular function that is restricted to a matroid is an M♮−L♮ DC function,
and so on.

We propose discrete DC programming problems as optimization problems of
discrete DC functions:

minimize (g(x)− h(x)).

Since there are two conjugate classes (M♮ and L♮) of discrete convex functions,
there are four types of discrete DC programs. We prove the discrete version of
the Toland-Singer duality for discrete DC programs. The discrete Toland-Singer
duality establishes the relation of four types of discrete DC programs, which is a
main feature of discrete DC programming.

We also propose algorithms for discrete DC programming. These algorithms
are obtained by combining the general discrete DC algorithm, which is a straight-
forward adaption of the continuous case, and the polyhedral structure of discrete
convex functions. The algorithms decrease the function value strictly in each iter-
ation and hence terminate in a finite number of iterations. Furthermore, when the
algorithms terminate, the obtained solutions satisfy a local optimality condition.

Narasimhan and Bilmes [6] considered minimization problems of a difference of
two submodular set functions (DS programs) and propose an algorithm, named
submodular-supermodular procedure. The DS programming is a special case of
our discrete DC programming (since submodular set functions coincide exactly
with L♮-convex functions on {0, 1}n), and their algorithm is a special case of our
general discrete DC algorithm.

References

[1] S. Fujishige: Submodular Functions and Optimization. 2nd ed., Annals of Discrete Mathe-
matics, vol. 58, Elsevier, Amsterdam, 2005.

[2] R. Horst, N. V. Thoai: DC Programming: Overview. Journal of Optimization Theory and
Applications, 103 (1999), 1–43.

[3] K. Murota: Discrete convex analysis. Mathematical Programming, 83 (1998), 313–371.



Combinatorial Optimization 2907

[4] K. Murota: Discrete Convex Analysis. Society for Industrial and Applied Mathematics,
Philadelphia, 2003.

[5] K. Murota: Recent developments in discrete convex analysis. In: W. Cook., L. Lovász, J.
Vygen, eds., Research Trends in Combinatorial Optimization, Springer, Berlin, Chapter 11,
pp. 219–260, 2009.

[6] M. Narasimhan and J. Bilmes: A submodular-supermodular procedure with applications to
discriminative structure learning. In Proceedings of the 21st Conference on Uncertainty in
Artificial Intelligence, pp. 404–412, 2005.

[7] I. Singer: A Fenchel-Rockafellar type duality theorem for maximization. Bulletin of the
Australian Mathematical Society, 20 (1979), 193–198.

[8] J. F. Toland: A duality principle for non-convex optimisation and the calculus of variations.
Archive for Rational Mechanics and Analysis, 71 (1979), 41–61.

[9] H. Tuy: D.C. optimization: Theory, methods and algorithms. In: R. Horst and P. M.
Pardalos, eds., Handbook of Global Optimization, Kluwer Academic Publishers, Dordrecht,
pp. 149–216, 1995.

Weighted linear matroid matching

Gyula Pap

The sketch of a polynomial time algorithm is presented in the talk to solve the
weighted linear matroid matching problem. A completely different approach is
due to Satoru Iwata, both approaches have been discovered independently, and
apparently at the same time.

Let V be a vectorspace over a given field Γ. A line is a linear subspace of rank 2.
Let E be a set of lines. A subsetM ⊆ E is called a matching if r(

⋃
M) = 2|M |. For

a weight function w : E → R+, the weight of a matchingM is defined by w(M) :=∑
e∈M w(e). The maximum weight linear matroid matching problem takes the

input V,E,w, and asks us to determine the maximum weight of a matching. This
maximum weight is denoted by ν(V,E,w).

1. Extended formulation

We consider a linear programming formulation of linear matroid matching, in
which we associate vectors xM and yM with every matching M . For an arbitrary
matching M ⊆ E, we define vectors x and y such that xM ∈ RE with xM (l) :=
χM (l) := 1 if l ∈ M and 0 otherwise. For K < L < V, F ⊆ E, we define
yMK,L(F ) := r(K ∧ sp(M ∩F ))− r(L ∧ sp(M ∩ F )). Thus we map a matching into

this very high dimensional space M 7→ (x, y).
Let D = {Di : 0 ≤ i ≤ k} denote a chain of subspaces in V such that {0} =

D0 < D1 < · · · < Dk = V , and let δi ≥ 0, i = 1, 2 · · · , k. For all F ∈ L and
1 ≤ i ≤ k, let Di−1 < SF

i < TF
i < Di. Define TF

i := Di−1 ∨ (sp(F ) ∧ Di).
When all these properties hold, then we may write D, Si, Ti, F ∼ (∗). We denote
T e
i := Di−1 ∨ (e∩Di), and Ie := {i : 1 ≤ i ≤ k, (e∩Di)−Di−1 6= ∅}. When e ∈ E

and chain D are like these ones above, then we put D, e ∼ (∗∗).
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Claim 1. x = xM , y = yM satisfies the following inequalities.

x(F ) −
k∑

i=1

ySi,Ti(F ) ≤
⌊
1

2

k∑

i=1

(r(Si)− r(Di−1))

⌋
D, Si, Ti, F ∼ (∗)

2x(e) ≤
∑

i∈Ie

yDi−1,T e
i
({e}) D, e ∼ (∗∗)

yK,L(F ) + yK,L(F
′) ≤ yK,L(F ∪ F ′) K < L,F ∩ F ′ = ∅

yK,L(F ) + yK′,L′(F ) ≤ yK,L′(F ) K < L < K ′ < L′

yK,L(F ) ≤ yK′,L′(F ) K ′ < K < L < L′

yK,L(F ) ≤ r(sp(F )) K < L < V.

2. Dual compositions

We define a dual structure that is used in the algorithm as an upper bound, main-
tained and altered until we find a complementary matching. The dual composition
is defined so that we can construct a dual feasible solution of the extended formu-
lation, and thus provide an upper bound on the weight of a matching.

Definition 1. β,D, δ,L, λ, SF
i , T

F
i is called a dual composition if each of the fol-

lowing properties holds.

(1) For all e ∈ E let β(e) ≥ 0. D = {Di : 0 ≤ i ≤ k} is a chain of subspaces
in V such that {0} = D0 < D1 < · · · < Dk = V . For all i = 1, 2 · · · , k
let δi ≥ 0. L is a laminar family of subsets of E. For all F ∈ L let
λF ≥ 0. Denote TF

i = (sp(F ) ∧ Di) ∨ Di−1 = (sp(F ) ∨ Di−1) ∧ Di and
T e
i := (e ∩ Di

i−1 for all 1 ≤ i ≤ k, F ∈ L, e ∈ E. For all F ∈ L and

1 ≤ i ≤ k, let Di−1 < SF
i < TF

i < Di where F ⊆ F ′ implies that

SF
i < SF ′

i and TF
i < TF ′

i .
(2) For 1 ≤ j ≤ k and a chain C = {F1, F2, · · · , Fm} ⊆ L such that F1 ( F2 (

· · · ( Fm ⊆ E, and TF1

j − SFm

j 6= ∅, then the following inequality holds.

∑

i≥j

δi ≥
∑

F∈C
λF

(3) For e ∈ E, 1 ≤ j ≤ k and a chain C = {F1, F2, · · · , Fm} ⊆ L such that

e ∈ F1 ( F2 ( · · · ( Fm ⊆ E, T e
j −SFm

j 6= ∅, then the following inequality
holds. ∑

i≥j

δi ≥ βe +
∑

F∈C
λF

(4) For all e ∈ E, the following inequality holds.

w(e) ≤ 2βe +
∑

F :e∈F∈L
λF .
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From a dual composition is defined we can construct a dual feasible solution of
the extended formulation, and thus the following weak duality holds.

w(M) ≤ val(β,D, δ,L, λ, SF
i , T

F
i ) :=

∑

i

δir(Di)+
∑

F∈L
λF

⌊
1

2

k∑

i=1

(r(Si)− r(Di))

⌋

Actually, the dual compositions provide for a tight upper bound on the maxi-
mum weight of a matching, as stated by the following theorem. This is proved by
an algorithm that maintains a dual composition until a complementary matching
is found, to certify optimality.

Theorem 1. Let V be a vectorspace, let E be a set of lines, and w : E → R+ a
weight function. Then

ν(V,E,w) = min val(β,D, δ,L, λ, SF
i , T

F
i ),

where the minimum is taken over dual compositions.

Inapproximability of combinatorial problems via small LPs and SDPs

Sebastian Pokutta

(joint work with Gábor Braun and Daniel Zink)

In this talk we provide an alternative view on extended formulations, both sim-
plifying and generalizing the previous theory. As a consequence, we establish a
strong reduction mechanism for approximate LP and SDP formulations, leading
to new LP inapproximability results for non-0/1 CSPs (e.g., VertexCover, Max-
MULTICUT, and bounded degree MaximumIndependentSet).

Our framework is motivated by the earlier approach in [4] to capture uniform
linear programming formulations independent of the specific linear encoding and
it generalizes the polyhedral pair approach in [2, 3]. In particular, there is no need
to encode the combinatorial optimization problem first as a polytope, a polyhe-
dral pair, or a linear program, not only simplifying the setup but also enabling
the notion of LP or SDP complexity of a problem and not just one of its encod-
ings. The resulting notion of formulation complexity can be understood as the
minimum extension complexity over all possible linear encodings of the considered
optimization problem. This independence of encoding addresses previous concerns
that the obtained lower bounds are polytope-specific and hence encoding-specific
and alternative linear encodings (i.e., LPs to start from) of the same problems
might admit smaller formulations: we show that this is not the case. As a conse-
quence we can define a sound reduction mechanism for LP and SDP formulations
of problems with approximations in mind.

The key element in the analysis of extended formulations is Yannakakis’s cele-
brated Factorization Theorem (see [10, 9]) and its generalizations (see e.g., [6, 2,
3, 4]) equating the minimal size of an extended formulation with a property of a
slack matrix, e.g., in the linear case the nonnegative rank. We provide an abstract
factorization theorem acting directly on the optimization problem (and not just
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on one of its representations). This allows us to characterize the minimum size of
any LP or SDP capturing an optimization problem. Moreover, from an optimal
factorization we can also explicitly reconstruct an optimal encoding as a linear
program or semidefinite program. Combining our framework with [4], we obtain
strong inapproximability for various combinatorial problems of interest.

LP and SDP inapproximability of specific problems. By [8, 4] it is known that
Max-k-XOR (for k ≥ 2) cannot be approximated within a factor better than 1

2
by a linear program with a polynomial number of constraints. In the case of
SDPs, so far an unconditionally SDP-hard base problem has been missing and we
formulate conditional SDP inapproxamibility factors under the assumption that
the Goemans-Williams SDP for MaxCUT is optimal, which is compatible with the
Unique Games Conjecture.

Combining these base problems with our reduction mechanism we obtain LP in-
approximability and conditional SDP inapproximability for several problems that
are not 0/1 CSPs as shown in the table below. In particular, we answer an open
question regarding the inapproximability of VertexCover (see [4]) and we answer
a weak version of our sparse graph conjecture posed in [1].

Inapproximability Approximability
Problem (LP) (SDP) (PCP) (LP)

VertexCover 3
2 − ε 1.12144− ε 1.361− ε 2

Max-k-MULTICUT 2c(k)+1
2c(k)+2 + ε c(k)+cGW

c(k)+1 1− 1
34k + ε 1

2(1−1/k)

bdd MaxIndep 1
2 + ε 0.87856+ ε O

(
log4 ∆

∆

)
—

Here cGW ≈ 0.87856 is the approximation factor of the algorithm for MaxCUT
from [5], and c(k) is a constant depending on k.

Note: At the same workshop a 7/8 + ε inapproximability for Max-3-SAT for
polynomial size SDPs was presented [7]. Combining this result with our reduction
mechanism provides unconditional inapproximability results for SDPs with inap-
proximability factors mostly matching those from the classical PCP approaches.
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Constructive discrepancy minimization for convex sets

Thomas Rothvoss

Discrepancy theory deals with finding a bi-coloring χ : {1, . . . , n} → {±1} of a set
system S1, . . . , Sm ⊆ {1, . . . , n} so that the worst imbalance maxi=1,...,m |χ(Si)|
of a set is minimized, where we denote χ(Si) :=

∑
j∈Si

χ(j). A seminal result of

Spencer [Spe85] says that there is always a coloring χ so that |χ(Si)| ≤ O(
√
n) if

m = n. The result is in particular interesting since it beats the random coloring
which has discrepancy Θ(

√
n logn). Spencer’s technique, which was first used by

Beck in 1981 [Bec81] is usually called the partial coloring method and is based on
the argument that due to the pigeonhole principle many of the 2n many colorings
χ, χ′ must satisfy |χ(Si)− χ′(Si)| ≤ O(

√
n) for all sets Si. Then one can take the

difference between such a pair of colorings with |{j | χ(j) 6= χ′(j)}| ≥ n
2 to obtain

a partial coloring of low discrepancy. Iterating the argument logn times provides
a full coloring.

Few years later and on the other side of the iron curtain, Gluskin [Glu89]
obtained the same result using convex geometry arguments. In a paraphrased
form, Gluskin’s result showed the following:

Theorem 1 (Gluskin [Glu89], Giannopoulos [Gia97]). For a small constant δ > 0,
let K ⊆ Rn be a symmetric convex set with Gaussian measure γn(K) ≥ e−δn

and v1, . . . , vm ∈ Rn vectors of length ‖vi‖2 ≤ δ. Then there are partial signs
y1, . . . , ym ∈ {−1, 0, 1} with |supp(y)| ≥ m

2 so that
∑m

i=1 yivi ∈ 2K.

While this theorem is non-constructive, Bansal [Ban10] showed that a random
walk, guided by the solution of an SDP can find the coloring for Spencer’s The-
orem in polynomial time. However, the approach needs a very careful choice of
parameters and the feasibility of the SDP still relies on the non-constructive ar-
gument. A simpler and truly constructive approach was provided by Lovett and
Meka [LM12]. Still that approach did not apply for arbitrary convex sets with
large enough Gaussian measure.
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Our contribution

Our main contribution is the following:

Theorem 2. There is a polynomial time algorithm, which for any symmetric
convex set K ⊆ Rn with Gaussian measure at least e−n/500 finds a point y ∈
K ∩ [−1, 1]n with yi ∈ {−1, 1} for at least n

9000 many coordinates. Here it suffices
if a polynomial time separation oracle for the set K exists.

In fact, our method is extremely simple:

(1) take a random Gaussian vector x∗ ∼ Nn(0, 1)
(2) compute the point y∗ = argmin{‖x∗ − y‖2 | y ∈ K ∩ [−1, 1]n}
(3) return y∗
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Problems about uniform covers, with tours and detours

András Sebő

(joint work with Yohann Benchetrit and Matěj Stehĺık)

Is 1 a linear or integer combination of some combinatorially interesting vectors?
Some examples, with detours:

1. Tours

A tour in the graph G = (V,E) is an Eulerian 0 − 1 − 2 function on the edges
(even on stars, connected support). We adapt Wolsey’s argument [16] to prove:

Fact: If G is 3-edge-connected, the all 1 function 1 is in the convex hull of tours.

Proof. 2/3 dominates a point in the spanning tree polytope (satisfies subtour elimination) ; 1/3
dominates a point in the T -join polyhedron, for all T . It is then easy to see that 1 = 2/3 + 1/3
is in the convex hull of trees + an edge-set for each tree correcting the parities of its degrees. �

The same holds for T -tours, that is, connected T -joins, in particular {s, t}-tours.
Problem 1: Can this bound be improved for tours?
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The answer is probably yes: by the ‘4/3 integrality gap conjecture’ [8] 4/3 ×
2/3 = 8/9 is in the convex hull of tours. For {s, t}-tours 3/2× 2/3 = 1.

We make now a detour to a lower bound that is in some cases better than linear
programming. The more there are degree 2 vertices the better it is.

Let G = (V,E) be a graph, m := |E|, n := |V |. There is a unique graph
G∗ = (V ∗, E∗), m∗ := |E∗|, n∗ := |V ∗| without degree 2 vertices of which G is a
subdivision. Let TG be the set of odd degree vertices of G, τ the minimum size of
a TG-join, and OPT the minimum size of a tour.

Inequality: Let G be a 2-edge-connected graph. Then m+τ−2k ≤ OPT ≤ m+τ,
where k = m−n+1 = m∗−n∗+1 is the number of ears in an ear-decomposition.

Proof. Consider a tour in G = (V,E), and let F be the set of edges of multiplicity
2 or 0, and F ∗ ⊆ F those of multiplicity 0; F is a TG-join.

Since E \ F ∗ is connected, |E \ F ∗| ≥ n − 1, that is, |F ∗| ≤ m − n + 1 =
m∗ − n∗ + 1 = k. The tour length is: |E|+ |F | − 2|F ∗| ≥ m+ τ − 2k. �

Note that the upper bound is just the minimum of the Chinese Postman trail;
F ∗ contains at most one edge of each series class; the inequality and its proof can
be straightforwardly generalized to weights.

Corollary : For the subdivisions of a given graph the solution of the Chinese
Postman problem has a constant additive error for the smallest tour.

Problem 2: When the lower bound is bad (k is large), the upper bound can also
be replaced by a much smaller value! How to improve the bounds in a useful way?

2. H-perfect graphs

Given a graph G and a non-negative rational λ, the fractional chromatic number
χf is the minimum of λ such that 1/λ is in the stable set polytope. For t-perfect

graphs [13] the maximum of 1 on {x ∈ RV (G) : x(S) ≤ 1, for all stable S,x ≥ 0}
is at most 3, so the optimum of the dual, χf ≤ 3.

Shepherd conjectured that the same is true for the chromatic number χ.
Laurent and Seymour [13] realized that the complement of the line graph of

the prism (a prism is the complement of C6) is a counterexample. This graph is
the “t-minor” of a 3-colorable t-perfect graph, contradicting the integer round-up
property of 3-colorable t-perfect graphs, conjectured by Shepherd [15]. It is then
natural to conjecture 4-colorability. Actually more could be true:

Conjecture 3: Every h-perfect graph is ω + 1 - colorable (ω := clique-number).

Theorem: If this conjecture is true for ω = 2, then it is true in general.

Proof. If ω > 2, the optimal face is that of the ω-cliques so any stable set active in an optimal
dual solution meets all ω-cliques. �

Benchetrit [1] found that the complement of the line graph of a 5-wheel is also a
counterexample to Shepherd’s conjecture. In some sense the two counterxamples
are the only obstacles to the integer round-up property [1].
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We make now a detour to the maximum number, β, of starting odd ears in an ear
decomposition [3], related to h-perfect graphs, rounding, the matching polytope;
expressing the complexity of the latter. This is joint work with Yohann Benchetrit.

Question 4: What is the complexity of computing β?

A θ is a subgraph consisting of three edge-disjoint paths, two of which are odd, and
one even, between two fixed vertices of a graph. A basis of the cycle space (over
GF(2)) of a graph that consists only of odd cycles will be called an odd cycle-basis.
The existence of an odd cycle basis of a non-bipartite graph immediately follows
from the open ear-decomposition of 2-connected graphs, and the following easy
and well-known fact [11]: in a 2-vertex-connected non-bipartite graph there exist
between any two vertices both an even and an odd path.

Theorem Let G be a 2-vertex-connected graph. The following are equivalent:

(i) There exists no θ in G.
(ii) β(G) ≤ 1.
(iii) Any two simple odd cycles have an odd number of common edges.
(iv) In each odd cycle basis, any two cycles meet in an odd number of edges.
(v) There exists an odd cycle basis with the property stated in (iii).

Proof. Any of (i) or (iii) imply (ii), since an odd cycle C completed by an open odd ear P is
a θ, and contradicts (iii). These are known from [5], [6], the rest is from [3]. Supposing (ii)
the proof of (iii) is a graph-theory exercise: if two cycles, Q1 and Q2 do not satisfy (iii) and
|V (Q1) ∩ V (Q2)| ≥ 2, then |E(Q1) \ E(Q2)| is odd, easily contradicting (ii). Otherwise Q1 and
Q2 are edge-disjoint and one concludes using Menger’s theorem.

Two implications are straightforward: (iv) is just a special case of (iii), and (v) is a special
case of (iv). Last, but not least, if (v) holds, then any odd cycle is the mod 2 sum of an odd
number of cycles, and then knowing (iii) for the basis, it follows for any pair of odd cycles. �

3. Hereditary hypergraphs

This section reports about joint work with Matěj Stehĺık [14]. Let H = (V,E) be
a hereditary hypergraph: if e ∈ E all subsets of e are in E.

Closed Problems:

1. Is 1 an integer sum of incidence vectors of e ∈ E, |e| ≥ 2 ?
2. Compute the minimum size ρ of a cover of V by members of E.
3. Compute the maximum size µ of a set that can be partitioned into e ∈ E,

|e| ≥ 2. Such a set is called a µ-matching.

Theorem: Problem 2. is NP-hard (SET COVER) but 1. and 3. are polynomially
solvable. Furthermore, there exists a cover of size ρ containing a µ-matching.

The polynomial algorithms are easy consequences of vertex-packing edges and
triangles [7], whereas the last sentence follows from [11][Exercise 9.4], originating
from Gallai’s work [10]. Yet the connections provide a new insight into packing and
covering: the difficult theorem of Gallai [10] is in fact equivalent to a much simpler
theorem in [9], and relevant information is smuggled in about the NP-hard problem
of minimum covers, and by transposition, about minimum transversals [14].



Combinatorial Optimization 2915

Problem 5: Study some conjectures about packing, covering and minimum
transversals bearing in mind the connections mentioned above.

4. Triangles

Problem 6: [12] Characterize the graphs for which 1 is a nonnegative combination
of triangles as edge-sets. In other words, can the system of linear inequalities
describing the cone of triangles of a graph be described ?

The origins of this problem are in regular covers of edges by triangles, see [12].
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Computability of maximum entropy distributions and counting

problems

Mohit Singh

(joint work with Nisheeth Vishnoi)

Given a polytope P and a point x in P , there can be many ways to write x as
a convex combination of vertices of P . Interpreting any convex combination as
a probability distribution over vertices of P , the distribution that maximizes en-
tropy has received considerable interest. Interest in such distributions arises due to
their applicability in areas such as statistical physics, economics, biology, informa-
tion theory, machine learning, combinatorics and, more recently, approximation
algorithms. In this talk, I will discuss the computability of maximum entropy
distributions. A key difficulty in computing max-entropy distributions has been
to show that they have polynomially-sized descriptions. We show that such de-
scriptions exist under general conditions. Subsequently, we show how algorithms
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for (approximately) counting the vertices of P can be translated into efficient al-
gorithms to (approximately) compute max-entropy distributions. In the reverse
direction, we show how access to algorithms that compute max-entropy distribu-
tions can be used to count, which establishes an equivalence between counting and
computing max-entropy distributions.
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A note on the Ring Loading Problem

Martin Skutella

An instance of the Ring Loading Problem is given by an undirected ring (cy-
cle) on node set V = {1, 2, . . . , n} (numbered clockwise along the ring) with de-
mands di,j ≥ 0 for each pair of nodes i < j in V . The task is to route all demands
unsplittably, that is, each demand di,j needs to be routed from node i to node j
either in clockwise direction on the path i, i + 1, . . . , j or in counterclockwise di-
rection on the path i, i− 1, . . . , j. The objective is to minimize the maximum load
on an edge of the ring. The optimum solution value is denoted by L.

This optimization problem arose in the early 1990ies as a crucial subproblem
in the design of survivable telecommunication networks utilizing fiber-optic-based
technologies; it was first studied by Cosares and Saniee [1] who also introduced
the name Ring Loading Problem.

Known results. Cosares and Saniee [1] prove by a reduction from the prob-
lem Partition that the Ring Loading Problem is weakly NP-hard. It is not
known whether the problem is even strongly NP-hard or can be solved in pseudo-
polynomial time. If all non-zero demands are equal, the problem can be solved in
polynomial time; this follows from the work of Frank [2] and is based on a theorem
of Okamura and Seymour [5].

The hardness of the general problem motivates the consideration of the relaxed
version of the Ring Loading Problem where demands may be split, i. e., a
demand can be sent partly clockwise, partly counterclockwise. The optimum ring
load L∗ of a split routing is obviously a lower bound on the optimum load L of
an unsplittable routing. Myung, Kim, and Tcha [4] show how to compute L∗ in
time O(nk), where k is the number of nonzero demands.

Schrijver, Seymour, and Winkler, in a landmark paper [6], present a clever anal-
ysis for a simple greedy algorithm that turns any split routing into an unsplittable
routing while increasing the load on any edge by at most 3

2D, where D is the

maximum demand value maxi,j di,j . Their result thus implies L ≤ L∗ + 3
2D. On

the other hand, they exhibit an instance of the Ring Loading Problem together
with a carefully chosen split routing that cannot be turned into an unsplittable
routing without increasing the load on some edge by at least 101

100D. This observa-
tion, however, does not immediately imply a gap strictly larger than D between
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the optimum values of split and unsplittable routings. In the conclusion of their
paper, Schrijver, Seymour, and Winkler write:

“. . . even though the mathematics refuses to cooperate, we guar-
antee L ≤ L∗ +D.”

In the excellent survey [7], Shepherd restates this ‘guarantee’ as a conjecture.

Our contribution. Our main result is the following theorem.

Theorem 1. Any split routing solution to the Ring Loading Problem can be
turned into an unsplittable routing while increasing the load on any edge by no
more than 19

14D.

In particular, this result implies L ≤ L∗ + 19
14D. Our algorithm runs in linear

time and combines pairs of solutions obtained by the greedy algorithm of Schrijver,
Seymour, and Winkler [6] using a clean crossover operation.

We also exhibit a relatively simple instance of the Ring Loading Problem

together with particular split routings that cannot be turned into unsplittable
routings without increasing the load on some edge by at least 11

10D. Our results
are the first improvements on the classical results of Schrijver, Seymour, and Win-
kler [6] (upper bound 3

2D and lower bound 101
100D). Last but not least, we present

an instance with L = L∗ + 11
10D, thus disproving Schrijver et al.’s long-standing

conjecture L ≤ L∗+D. Our extensive yet unsuccessful search for instances yielding
a larger lower bound gives us serious doubts as to whether there exist any.

Conjecture 1. L ≤ L∗+ 11
10D for all instances of the Ring Loading Problem.

We have serious doubts as to whether the algorithmic techniques and analytic
tools discussed in this paper are powerful enough to close the remaining gap. But
we hope that, 16 years after the publication of Schrijver et al.’s landmark paper [6],
the presented progress will stimulate further research and new ideas on this fine
and challenging problem.

For further details we refer to [8].

Acknowledgements. The author would like to thank Bruce Shepherd for giving
the impetus to this work as well as for numerous inspiring conversations and
valuable comments. A very special thanks is due to Tom McCormick for the
hospitality at UBC without which this work could never have been done.
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The Learning With Errors problem: from lattices to cryptography

Damien Stehlé

The search variant of the Learning With Errors problem (LWE) is to recover
s ∈ (Z/qZ)n from arbitrarily many samples of the form (ai, < ai, s > + ei mod q),
where the ai are chosen uniformly from (Z/qZ)n, and the “errors” ei ∈ Z are
sampled from some distribution supported on small numbers, typically an integer
Gaussian distribution with standard deviation parameter αq for α = o(1).

The decision counterpart of LWE is to tell from which of the following dis-
tributions are sampled arbitrarily many given elements of (Z/qZ)n+1, with some
non-negligible probability (when n log q tends to infinity) over the uniform choice
of s ∈ (Z/qZ)n and with some probability non-negligibly larger than 1/2:

(ai, 〈ai, s〉+ ei mod q)i and (ai, ui)i .

Here the ai and ei are as above, and the ui are chosen uniformly from Z/qZ. There
exist polynomial-time reductions between these search and decision variants [6].

Since its introduction by Oded Regev, the presumed hardness of LWE has
served as a security foundation of numerous cryptographic primitives: public-key
encryption [6], fully homomorphic encryption [2], attribute-based encryption [3],
among many others.

In the typical situation where 1/α is polynomially bounded in n log q, the best
known algorithm for solving LWE runs in time exponential in n log q. That algo-
rithm views LWE as a problem on Euclidean lattices, and consists in calling the
Block Korkine Zolotarev lattice reduction algorithm [7, 4]. LWE seems to remain
exponentially hard to solve even if one is allowed to rely on quantum computations.

The link between LWE and lattices is in fact very deep. Regev [6] showed a
quantum polynomial-time reduction from the approximation variant of the Short-
est Vector Problem in dimension n to LWE, assuming that q is prime and polyno-
mially bounded in n, and that α satisfies αq ≥ 2

√
n. The Shortest Vector Problem

with approximation parameter γ (GapSVPγ) consists in assessing whether a given
lattice has a first minimum smaller than 1 or larger than γ. In the latter reduction,
one can take γ as small as n(log n)O(1)/α. The reduction is quantum in that the
reduction algorithm uses the quantum Fourier transform. A classical polynomial-
time reduction from GapSVPγ to LWE was recently proposed by Brakerski et
al. [1], but the dimension of the lattice problem is only O(

√
n). The classical re-

duction does not require q to be prime and achieves a comparable approximation
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factor γ. Removing or explaining the GapSVP dimension discrepancy between the
quantum and classical reductions is an exciting open problem.

In this talk, we presented LWE, described how it can be used for public-key
encryption, and stressed its links with standard algorithmic problems on Euclidean
lattices.
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LP-based algorithms for capacitated facility location

Ola Svensson

(joint work with Hyung-Chan An and Mohit Singh)

We consider the metric capacitated facility location (Cfl) problem which together
with the metric uncapacitated facility location (Ufl) problem is the most classical
and widely studied variant of facility location. In Cfl, we are given a single metric
on the set of facilities and clients, and every facility has an associated opening
cost and capacity. The problem asks us to choose a subset of facilities to open and
assign every client to one of these open facilities, while ensuring that no facility
is assigned more clients than its capacity. Our aim is then to find a set of open
facilities and an assignment that minimize the cost, where the cost is defined as the
sum of opening costs of each open facility and the distance between each client and
the facility it is assigned to. Ufl is the special case of Cfl obtained by dropping
the capacity constraints, or equivalently setting each capacity to ∞.

In spite of the similarities in the problem definitions of Ufl and Cfl, current
techniques give a considerably better understanding of the uncapacitated version.
One prominent reason for this discrepancy is that a standard linear programming
(LP) relaxation gives close-to-tight bounds for Ufl, whereas no good relaxation
was known in the presence of capacities. For Ufl, on the one hand, the standard
LP formulation has been used in combination with most LP-based techniques,
such as filtering [10], randomized rounding [4, 11], primal-dual framework [7], and
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dual fitting [5, 6], to obtain a fine-grained understanding of the problem resulting
in a nearly tight approximation ratio [9].

For Cfl, on the other hand, it has remained a major open problem to find a
relaxation based algorithms with any constant performance guarantee, also high-
lighted as Open Problem 5 in the list of ten open problems selected by the recent
textbook on approximation algorithms of Williamson and Shmoys [12]. However,
formulating one for the capacitated facility location problem has turned out to
be non-trivial. Aardal et al. [1] made a comprehensive study of valid inequalities
(such as various adaptations of flow cover inequalities) for capacitated facility lo-
cation problem and proposed further generalizations; the strength of the obtained
formulations was left as an open problem. Many of these formulations were, how-
ever, recently proven to be insufficient for obtaining a constant integrality gap by
Kolliopoulos and Moysoglou [8]. In the same paper it is also shown that applying
the Sherali–Adams hierarchy to the standard LP formulation will not close the
integrality gap.

Our contributions. Our main contribution is a strong linear programming re-
laxation which has a constant integrality gap for the capacitated facility location
problem. We prove its constant integrality gap by presenting a polynomial time
approximation algorithm which rounds the LP solution.

Theorem 1. There is an algorithmically amenable linear programming relaxation
for the capacitated facility location problem that has a constant integrality gap.
Moreover, there exists a polynomial-time algorithm that finds a solution to the
capacitated facility location problem whose cost is no more than a constant (288)
factor times the LP optimum.

Our relaxation is formulated based on multi-commodity flows and is inspired
by the general idea of flow cover inequalities. The overall idea is as follows. In an
integral solution, each client needs to send one unit of flow to an opened facility
with available capacity in a certain multi-commodity flow problem. Writing down
the constraints for this problem results in the standard LP which unfortunately
has a large integrality gap. To strengthen this formulation we consider partial
assignments of clients. In a partial assignment, some clients are already assigned
to facilities. Using this concept we strengthen the linear program by, for each
partial assignment, enforcing that the unassigned clients are still able to send
one unit of flow to opened facilities with available capacity where the capacity
of a facility now is reduced by the number of clients that were preassigned to it.
Due to space constraints, we refer the reader to the full paper [2] for the formal
description of the relaxation.

Open questions. One natural question that arises is characterizing the exact
integrality gap of our relaxation. While we prioritized ease of reading over a
better ratio in the choice of parameters in our paper, it appears that the current
analysis is not likely to give any approximation ratio better than 5, the best ratio
given by the local search algorithms [3]. On the other hand, the best lower bound
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known on the integrality gap of our relaxation is 2, and the question remains open
whether we can obtain an approximation algorithm with a ratio smaller than 5
based on our relaxation.

Open Question. Determine the integrality gap of our LP relaxation.

Another interesting question is whether there exists a compact linear program-
ming relaxation for Cfl with constant integrality gap. Our current relaxation has
exponentially many constraints and it would be very interesting to decide if there
is a relaxation of similar strength but of polynomial size.

Open Question. Determine if there is a polynomial size LP relaxation for the
capacitated facility location problem with a constant integrality gap.
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Positive semidefinite rank

Rekha R. Thomas

The positive semidefinite (psd) rank of a matrixM ∈ Rp×q
+ is the smallest integer k

such that there exist psd matrices A1, . . . , Ap and B1, . . . , Bq of size k×k such that
Mij = 〈Ai, Bj〉 := Trace(AiBj). This is an example of a cone rank of a nonnegative
matrix wherein we have a “closed” family of closed convex cones C = {Ck}, and
the rank ofM with respect to C is defined as rankC(M) := min {k : ∃ a1, . . . , ap ∈
Ck, b1, . . . , bq ∈ (Ck)

∗ s.t. Mij = 〈ai, bj〉 ∀ i, j}. Here C∗
k is the dual cone of Ck,

and a closed family of cones is one in which every face of every cone in the family
is also in the family. The cone rank of M with respect to the family of positive
orthants is the nonnegative rank of M , while the cone rank of M with respect to
the family of psd cones is the psd rank of M .

The notion of psd rank was introduced in [2] to study semidefinite represen-
tations of convex sets. For instance, given a full-dimensional polytope P ⊂ Rn

with vertices p1, . . . , pv, and facet inequalities a⊤j x ≤ βj for j = 1, . . . , f , its slack

matrix SP is the v × f matrix whose (i, j)-entry is βj − a⊤j pi, the slack of the ith

vertex in the jth facet inequality. Let Sk
+ denote the cone of k × k psd matrices.

We say that P has a psd lift of size k if there exists a linear map π and an affine
space L such that P = π(Sk

+ ∩ L). The set Sk
+ ∩ L is called a psd-lift of P . It

was shown in [2] that the psd rank of SP is the size of the smallest psd lift of P .
The theorem is in fact more general; a convex set P ⊂ Rn has a lift into a closed
convex cone C if and only if the slack operator of P has a factorization through
C and its dual. This factorization theorem generalizes a result of Yannakakis [3]
that says that the nonnegative rank of SP is the size of the smallest polyhedral
lift of P , i.e., a lift of the form Rk

+ ∩ L for an affine space L.
Several results have been obtained for psd rank since its definition. One of the

most active areas has been its use in the factorization theorem for polytopes. It
has been shown by Briët, Dadush and Pokutta that there are 0, 1-polytopes in Rn

whose psd rank cannot be polynomial in n. Very recently, Lee, Raghavendra and
Steurer have announced that for cut, stable set and TSP polytopes on n-vertex
graphs, psd rank is again super polynomial in n. On the positive side, Gouveia,
Robinson and myself have characterized polytopes in Rn whose psd rank is the
minimum possible – namely n+ 1.

The psd rank has many further features and properties beyond its use in under-
standing psd lifts of convex sets. My talk was based on a recent survey article [1]
coauthored with Hamza Fawzi, João Gouveia, Pablo Parrilo and Richard Robinson
on the topic of psd rank, with the aim of bringing this invariant to the attention
of the broader mathematical community. We examine several directions in which
the study of psd rank can be developed and survey the known results thus far.
Citations of all results mentioned above can be found in [1].
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Embedding formulations and complexity for unions of polyhedra

Juan Pablo Vielma

We consider strong Mixed Integer Programming (MIP) formulations for a disjunc-
tive constraint of the form

(1) x ∈
n⋃

i=1

Pi

where {Pi}ni=1 ⊆ Rd is a finite family of rational polyhedra, which for simplicity
of exposition we assume are bounded. Classical polynomially sized MIP formu-
lations for (1) can be divided into two classes depending on their strength and
types of auxiliary variables (e.g. [4]). The first class includes integral formulations
by Balas, Jeroslow and Lowe, which use both integer constrained and continu-
ous auxiliary variables. The second class includes formulations by Balas, Blair,
Jeroslow, Lee and Wilson, which exclude continuous auxiliary, but can fail to be
integral. A common feature of both classes is the use of n non-negative integer
variables that are constrained to add up to one. In this talk we show how alternate
uses of integer variables can lead to small integral formulations that do not use
continuous auxiliary variables. For this we introduce the following generic class of
MIP formulations for (1).

Definition 1 (Embedding Formulation). For any H :=
{
hi
}n
i=1

⊆ {0, 1}k such

that hi 6= hj for all i 6= j, we let

Q (H) := conv

(
n⋃

i=1

Pi ×
{
hi
}
)
.

For any H we have that Q (H) is a rational polyhedron and
(
x, hi

)
∈ Q (H) if

and only if x ∈ Pi. Hence, (x, y) ∈ Q (H) ∩
(
Rd × {0, 1}k

)
is a MIP formulation

for (1). If k = n and hi = ei, the i-th unit vector, we obtain a formulation with
the traditional use of integer variables and if n = 2k and H = {0, 1}k we obtain
a so-called logarithmic formulation (e.g. [4]). Following [5], we refer to these two
choices of H as unary and binary encodings respectively as they can be interpreted
as the corresponding encoding of the choice among the Pi. Furthermore, because
for the unary encoding

⋃n
i=1 Pi ×

{
hi
}
and Q (H) are usually denoted the Cayley

Embedding and the Cayley polytope of {Pi}ni=1 (e.g. [1]), we refer to Q (H) ∩



2924 Oberwolfach Report 51/2014

(
Rd × {0, 1}k

)
as an Embedding Formulation of (1). Finally, we note that, by

construction, every embedding formulation is integral.
While binary encoded formulations can provide a computational advantage

when solved by a branch-and-bound based solver (e.g. [4, 5]), it is not immedi-
ately clear which encoding yields the smallest formulation (i.e. the one for which
Q (H) has the fewest facets). For instance, Q (H) always contains conv (

⋃n
i=1 Pi)

trough projection. Hence, the larger number of auxiliary variables of the unary
encoded formulation may provide an advantage. However, it is well known that
the Cayley polytope also contains the Minkowski sum of {Pi}ni=1 through an ap-
propriate affine section (e.g. [1]). Hence, the unary encoded formulation may be
large even if conv (

⋃n
i=1 Pi) is small. In contrast, the binary encoded formulation

only seems to contain partial Minkowski sums of about log2 n polytopes. This
suggests a potential advantage for the binary encoded formulations.

Using results from [2, 3], we show that for certain classes of disjunctive con-
straints related to the modeling of piecewise-linear functions, the binary encoding
can indeed yield significantly smaller embedding formulations. In particular, for
bi-variate piecewise-linear functions the size of the binary encoded formulation is
linear in n while the size of the unary encoded formulation is superpolynomial in
n. However, we also show that the advantage of the binary encoded formulation
is strongly dependent on the specific binary encoding selected (i.e. on the order of

{0, 1}k induced by H).
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Duality for mixed-integer convex minimization

Robert Weismantel

(joint work with Michel Baes and Timm Oertel)

Several attempts have been made in the past to formally define a dual of a lin-
ear integer or mixed integer programming problem. Let us first mention some
important developments in this direction.
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One idea to define a dual program associated with a binary linear integer pro-
gramming problem is to encode the given 0/1-problem in form of a linear program
in an extended space such that the new variables correspond to linearizations of
products of original variables. This allows us to apply linear programming duality
that can then be reinterpreted in terms of the original variables. This concept
of duality has its origins in the work of [7] and is closely connected with work
of Lovasz and Schrijver as well as with earlier work of Balas on disjunctive op-
timization. It also provides us an interesting link to the theory of polynomial
optimization including duality results associated with hierarchies of semidefinite
programming problems, see [3].

A second import development in integer optimization is based on the connec-
tions between valid inequalities and subadditive functions. This leads to a for-
malism that allows us to establish a subadditive dual of a general mixed integer
linear optimization problem, see [6] for a treatment of the subject and references.
Since then many papers have dealt with the question of deriving relaxations of
an integer optimization problem by means of generating superadditive functions.
Recently, a strong subadditive dual for conic mixed integer optimization has been
established in [4].

There are several other special cases for which the dual of a mixed integer
optimization problem has been derived. One such example is based on the theory
of discrete convexity established in [5]. Here, an explicit dual is constructed for
L-convex and M-convex functions.

A third general approach to develop duality in several subfields of optimiza-
tion is based on the Lagrangean relaxation method. The latter method is broadly
applicable and – among others – leads to a formalism of duality in convex opti-
mization. This is our point of departure. We will show that optimality certificates
and duality in convex optimization have a very natural mixed-integer analogue. A
duality theory in Euclidean space follows from a precise interplay between points
– that are viewed as primal objects – and hyperplanes interpreted as dual ob-
jects. It turns out that there is a similiar interplay in the mixed-integer setting.
Here, the primal objects are sets of points, whereas the dual objects are lattice-free
polyhedra. Our motivation for studying optimality certificates and a mixed integer
convex dual comes from the important developments in convex optimization in the
past decade. As a first step towards new mixed-integer convex algorithms it seems
natural to make an attempt of extending some of the basic convex optimization
tools to the mixed-integer setting.

Let f : dom(f) 7→ R be a continuous, convex function. In order to simplify our
exposition we may assume w.l.o.g. here that dom(f) = Rn. Assume that f has a,
not necessarily unique, minimizer x⋆. Then a necessary and sufficient certificate
for x⋆ being a minimizer of f is that 0 ∈ ∂f(x⋆), i.e. the zero-function is in the
subdifferential of f at x⋆. Hence

x⋆ = argmin
x∈Rn

f(x) ⇐⇒ 0 ∈ ∂f(x⋆).
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The question emerges how to obtain a certificate that a point x⋆ ∈ Zn ×Rd solves
the corresponding mixed integer convex problem

x⋆ = argmin
x∈Zn×Rd

f(x)?

Theorem 1. Let f : Rn+d 7→ R be a continuous convex function. x⋆ = argmin
x∈Zn×Rd

f(x)

if and only if there exist k ≤ 2n points x1 = x⋆, x2, . . . , xk ∈ Zn × Rd and vectors
hi ∈ ∂f(xi) such that the following conditions hold:

(a) f(x1) ≤ . . . ≤ f(xk),
(b) {x ∈ Rn+d | hTi (x− xi) < 0 for all i} ∩ (Zn × Rd) = ∅,
(c) hi ∈ Rn × {0}d for i = 1, . . . , k.

More generally, let g1, . . . , gm : dom(f) 7→ R be continuous, convex functions.
Again we may assume w.l.o.g. that dom(gj) = Rn for all j. By g(x) we denote the
vector of components g1(x), . . . , gm(x). Let us first discuss the continous convex
optimization problem

x⋆ = argmin
x∈Rn,
g(x)≤0

f(x).

Assume that there exists a point y fulfilling the so-called Slater condition, that is,
g(y) < 0. Under this assumption the Karush-Kuhn-Tucker conditions (e.g. [1, 2])
provide necessary and sufficient optimality conditions. Namely, the point x⋆ such
that g(x⋆) ≤ 0 attains the optimal continuous solution if and only if there exist
hf ∈ ∂f(x⋆), hgi ∈ ∂gi(x

⋆), for i = 1, . . . ,m and non-negative λi, i = 1, . . . ,m,
such that

hf +

m∑

i=1

λihgi = 0 and λigi(x
⋆) = 0 ∀i.

As a second result we generalize the KKT theorem to the mixed-integer setting

(1) x⋆ = argmin
x∈Zn×Rd,

g(x)≤0

f(x).

We first generalize the Slater condition.

Definition 1. We say that the constraints g(x) ≤ 0 fulfill the mixed-integer Slater
condition if for every point (y, z) ∈ Zn×Rd with g((y, z)) ≤ 0 there exists a z′ ∈ Rd

such that g((y, z′)) < 0.

Theorem 2. Let g fulfill the mixed-integer Slater condition. A point x⋆ ∈ Zn×Rd

is optimal with respect to (1) if and only if g(x⋆) ≤ 0 and there exist k ≤ 2n points
x1 = x⋆, x2, . . . , xk ∈ Zn×Rd and k vectors u1, . . . , uk ∈ Rm+1

+ with corresponding
hi,m+1 ∈ ∂f(xi), and hi,j ∈ ∂gj(xi) for j = 1, . . . ,m such that the following five
conditions hold:

(a) If g(xi) ≤ 0 then f(xi) ≥ f(x1), ui,m+1 > 0 and ui,jgj(xi) = 0 for
j = 1, . . . ,m,

(b) If g(xi) � 0 then ui,m+1 = 0 and ui,k(gk(xi) − gl(xi)) ≥ 0 for all k, l =
1, . . . ,m,
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(c) 1 ≤ | supp(ui)| ≤ d+ 1 for i = 1, . . . , k,

(d) {x ∈ Rn+d | ∑m+1
j=1 ui,jh

T

i,j(x− xi) < 0 for all i} ∩ (Zn × Rd) = ∅,
(e)

∑m+1
j=1 ui,jhi,j ∈ Rn × {0}d for i = 1, . . . , k.

This result shows that the optimality of a mixed integer point can be verified
in polynomial time, provided that the number of integer variables is constant.

In the purely continuous setting it is not too difficult to apply the KKT-theorem
in order to show a duality theorem. Provided that the Slater condition holds, that
all functions f and gj , j = 1, . . . ,m are continuous and convex and that the primal
and dual feasible sets are nonempty, one has

f⋆ = min
x∈Rn

{ f(x) | g(x) ≤ 0} = max
α,u∈R

m
+

{α | α ≤ f(x) + uT g(x)∀x ∈ Rn}.

In the same vein we use Theorem 2 in order to derive a mixed integer dual.

Theorem 3. Let f : Rn+d 7→ R and g : Rn+d 7→ Rm be convex functions, s.t.
{x ∈ Zn × Rd | g(x) ≤ 0} is non-empty, compact and contained in the domain of
f . Further, let g fulfill the mixed-integer Slater condition. Then,

min
x∈Zn×Rd

{ f(x) |g(x) ≤ 0}
= max

α∈R

U∈R
2n×m
+

{ α | ∃ π : Zn × Rd 7→ {1, . . . , 2n} s.t.

∀x ∈ Zn × Rd α ≤ f(x) + Uπ(x)g(x) or 1 ≤ Uπ(x)g(x)},
where Ui denotes the i-th row of U .
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