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Introduction by the Organisers

The workshop Mathematical Logic: Proof Theory, Constructive Mathematics was
held November 16-22, 2014 and included two tutorials:

(1) Thierry Coquand: Univalent Foundation and Constructive Mathematics
(2 times 1 hour),

(2) Ulrich Kohlenbach, Daniel Körnlein, Angeliki Koutsoukou-Argyraki, Lau-
reņtiu Leu̧stean: Proof-Theoretic Methods in Nonlinear Analysis (2 times
50 min plus 2 times 30).

Coquand’s tutorial gave a general introduction on the univalent foundation pro-
gram of Voevodsky and discussed the construction of the cubical set model of type
theory in a constructive metatheory. This model satisfies the computation rules
for equality introduced by P. Martin-Löf as judgemental equality.
The second tutorial developed the proof-theoretic framework for the unwinding of
proofs in nonlinear analysis and outlined recent applications to: image recovery
problems (Part I, Kohlenbach), fixed point theory of pseudocontractive mappings
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(Part II, Körnlein), convex optimization (Part III, Leu̧stean) and abstract Cauchy-
problems given by accretive operators (Part IV, Koutsoukou-Argyraki).

In addition to these tutorials, 29 talks of mostly 25 minutes were given aiming:

To promote the interaction of proof theory and computability theory with core
areas of mathematics as well as computer science via the use of proof interpre-
tations. J. Avigad’s talk studied the amount of algorithmic randomness needed
in Weyl’s theorem on uniform distributions. H. Towsner showed how to arrive
at Tao’s version of Szemerédi’s regularity lemma as the functional interpretation
of a measure-theoretic Π3-statement. H. Schwichtenberg reported on a machine
extracted program from the Nash-Williams minimal bad sequence argument for
Higman’s lemma. V. Brattka introduced a concept of Las Vegas computable func-
tions to calibrate the computational power of randomized computations on real
numbers. A. Weiermann described a general formula for the computation of the
maximal order types for well quasi orders arising in the combinatorics of finite
multisets. P. Schuster showed how a reformulation of transfinite methods in alge-
bra as admissible rules can be used to eliminate uses of such methods from proofs
of sufficiently simple statements in abstract algebra. On the side of applications
to concrete applications in computer science, M. Seisenberger reported on applica-
tions of logic to the verification of railway control systems and U. Berger developed
a proposal to optimize programs extracted by proof-theoretic methods to be able
to e.g. control their complexity, allow for partial data and to override data that
are no longer used.

To further develop foundational aspects of proof theory and constructive math-
ematics. S. Artemov talked on intuitionistic epistemic logic which is based on
the BHK-semantics and treats intuitionistic knowledge as the result of a verifica-
tion. F. Aschieri reported on a new proof-theoretic method to extract Herbrand
disjunctions from classical first-order natural deduction proofs. B. Afshari’s talk
also studied Herbrand’s theorem, this time in terms of certain tree grammars as-
signed to proofs of existential statements in first-order logic. The talk by G.E.
Leigh addressed the issue of cut-elimination for first-order theories of truth. P.
Oliva presented new results on a game-theoretic interpretation of Spector’s bar
recursion, a more efficient novel variant of bar recursion and recent uses in the
analysis of the Podelski-Rybalchenko termination theorem. F. Ferreira showed
how a suitable functional interpretation can be used to give an ordinal analysis of
Kripke-Platek set theory. B. van den Berg reported on new developments in the
functional interpretation of systems of nonstandard analysis. T. Streicher talked
on models of classical realizability (in the sense of J.-L. Krivine) arising from
domain-theoretic models of λ-calculus with control. The talks by L.D. Beklemi-
shev and J.J. Joosten addressed recent progress in the area of provability logic with
applications to ordinal analysis. Also on the side of ordinal analysis was a talk by
T. Strahm, who developed a so-called flexible type system in the spirit of S. Fefer-
man whose strength is measured by the small Veblen ordinal. S. Berardi presented
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a new rule-learning based approach to the proof-theoretic analysis of second order
arithmetic. A. Bauer talked about constructive homotopy theory and models of
intensional type theory. I. Petrakis proposed a formalization of so-called Bishop
spaces as a constructive foundation for point-function topology. A. Swan studied
the existence property for intuitionistic set theories where this property has to be
understood in terms of definability. M. Rathjen reported on his recent proof of a
conjecture due to Feferman which states that the continuum hypothesis CH is not
definite in the technical sense that a certain semi-intuitionistic set theory does not
prove CH∨¬CH.

To explore further the connections between logic and computational complex-
ity. Talks in this area spanned the topics of propositional proof complexity, set-
theoretic computation, and complexity theoretic aspects of bounded arithmetic.
P. Pudlák reported on work-in-progress and new conjectures for two propositional
proof systems based on integer linear programming, the cutting planes proof sys-
tem and the Lovász-Schrijver proof system. N. Thapen reported new results
about size and width tradeoffs for propositional resolution refutations, includ-
ing new lower bounds via the colored PLS (polynomial local search) principle.
S. Buss presented a new framework of polynomial-time computation for set func-
tions based on Cobham-style limited recursion using ∈-recursion. A. Beckmann
described a proof-theoretic analysis for the polynomial-time computable set func-
tions based on safe/normal ∈-recursion. L. Ko lodziejczyk discussed recent progress
on complexity-theoretic aspects of the Paris-Wilkie problem on the relationship
between bounded arithmetic, the (negation) of exponentiation, and collection.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Provability vs. computational semantics for intuitionistic logic

Sergei N. Artemov

We outline an intuitionistic view of knowledge which maintains the original Brou-
wer-Heyting-Kolmogorov (BHK) semantics of intuitionism and is consistent with
Williamson’s suggestion that intuitionistic knowledge be regarded as the result
of verification. We argue that on this view co-reflection A → KA is valid and
reflection KA→ A is not; the latter is a distinctly classical principle, too strong as
the intuitionistic truth condition for knowledge which is more adequately expressed
by other modal means, e.g. ¬A→ ¬KA “false is not known.”

This is a joint work of 2014 with Tudor Protopopescu a preliminary version of
which can be found in [1].

We define a system of intuitionistic epistemic logic, IEL−, incorporating a
BHK-compliant notion of belief. The language is that of intuitionistic proposi-
tional logic augmented with the propositional operator K. Postulates of IEL−:

1. Axioms and rules of propositional intuitionistic logic
2. K(A→ B) → (KA→ KB)
3. A→ KA.

Logic IEL = IEL
− + ¬K⊥ incorporates a BHK version of knowledge.

Logic IEL
+= IEL + (KKA → KA) incorporates type-theoretical/strict knowl-

edge, that correspond to knowledge operator given by “truncated proposition”
inh(A) (squash types, mono types, bracket types) in intuitiinistic type theory
stating informally that type A is inhabited, i.e. has a proof. A truncated type
has at most one designated proof (if A has a proof). From the epistemic point of
view, inh(A) behaves like a verification which certifies that A has a proof without
providing a specific proof of A. The verification encoded by inh(A) ends up in
producing a specific object - a fixed and unique proof p of inh(A). The task of
verifying the claim ‘A is verified,’ reduces to checking this designated indicator p.

All three systems IEL
−, IEL, and IEL

+ are supplied with a self-explanatory
Kripke semantics, with soundness/completeness theorems.

Within this framework, the knowability paradox is resolved in a constructive
manner which, as we hope, reflects its intrinsic meaning.

References

[1] S. Artemov and T. Protopopescu Intuitionistic Epistemic Logic. Technical Report arXiv
1406.1582v1, Cornell University, June 2014.
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Probabilistic Choice and Las Vegas Computability

Vasco Brattka

(joint work with Guido Gherardi and Rupert Hölzl)

We study the computational power of randomized computations on infinite ob-
jects, such as real numbers. In particular, we introduce the concept of a Las Vegas
computable multi-valued function, which is a function that can be computed on a
probabilistic Turing machine that receives a random binary sequence as auxiliary
input. The machine can take advantage of this random sequence, but it always has
to produce a correct result or to stop the computation after finite time if the ran-
dom advice is not successful. With positive probability the random advice has to
be successful. We characterize the class of Las Vegas computable functions in the
Weihrauch lattice with the help of probabilistic choice principles and Weak Weak
Kőnig’s Lemma. Among other things we prove an Independent Choice Theorem
that implies that Las Vegas computable functions are closed under composition. In
a case study we show that Nash equilibria are Las Vegas computable, while zeros
of continuous functions with sign changes cannot be computed on Las Vegas ma-
chines. However, we show that the latter problem admits randomized algorithms
with weaker failure recognition mechanisms. The last mentioned results can be
interpreted such that the Intermediated Value Theorem is reducible to the jump of
Weak Weak Kőnig’s Lemma, but not to Weak Weak Kőnig’s Lemma itself. These
examples also demonstrate that Las Vegas computable functions form a proper
superclass of the class of computable functions and a proper subclass of the class
of non-deterministically computable functions. (The preprint [5] contains most of
the presented results.)

Keywords: Computable analysis, Weihrauch lattice, computability theory, re-
verse mathematics, randomized algorithms.
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A flexible type system for the small Veblen ordinal

Thomas Strahm

(joint work with Florian Ranzi)

The small Veblen ordinal ΘΩω0 is a well-known ordinal in proof theory; it can be
described by making use of Veblen functions of arbitrary finite arity and it is the
ordinal that measures the strength of Kruskal’s theorem. A natural subsystem of
second order arithmetic for the small Veblen ordinal is obtained by augmenting
ACA0 by Π1

2 bar induction, see Rathjen and Weiermann [3].
We propose a natural and flexible type system FIT whose strength is measured

by ΘΩω0. The acronym FIT stands for Function(al)s, Inductive definitions, and
Types. FIT is patterned in a variant of Feferman’s explicit mathematics: it con-
tains partial combinatory logic as its operational core and builds types on top by
using positive comprehension and accessibility inductive definitions. Induction on
the natural numbers as well as accessible parts is given in natural type 1 level
functional form.

The formulation of FIT bears some similarities with Feferman’s flexible type
system QL(F0-IR), see [1]. Whereas our system FIT accounts for infinitary inductive
definitions, QL(F0-IR) only allows finitary inductive types. It is shown in [1] that
QL(F0-IR) is a conservative extension of primitive recursive arithmetic PRA.

The lower bound proof for the novel type system FIT proceeds via a wellordering
proof for each initial segment of the small Veblen number, thereby using a natural
notation system which is directly based on finitary Veblen functions. The upper
bound of FIT is obtained by a suitable interpretation in the subsystem of second
order arithmetic based on ACA0 and extended by the schema of ω model reflection
for Π1

3 statements; this principle is equivalent to Π1
2 bar induction, see Jäger and

Strahm [2].

References

[1] S. Feferman, Logics for termination and correctness of functional programs II: Logics of
strength PRA, in: P. Aczel, H. Simmons, and S. S. Wainer, editors, Proof Theory, 195–225,
Cambridge University Press, 1992.

[2] G. Jäger and T. Strahm, Bar induction and ω model reflection, Annals of Pure and Applied
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Higman’s lemma and its computational content

Helmut Schwichtenberg

(joint work with Monika Seisenberger)

Higman’s Lemma is a fascinating result in infinite combinatorics, with manyfold
applications in logic and computer science, that has been proven using different
methods several times. The aim of this talk is to look at Higman’s Lemma from
a computational point of view. We give a proof of Higman’s Lemma that uses
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the same combinatorial idea as Nash-Williams’ indirect proof using the so-called
minimal bad sequence argument, but which is constructive. For the case of a two
letter alphabet such a proof was given by Coquand. Using more flexible structures,
we present a proof that works for an arbitrary well-quasiordered alphabet. We
report on a formalization of this proof in the proof assistant Minlog, and discuss
machine extracted terms (in an extension of Goedel’s system T ) expressing its
computational content.
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Uniform distribution and algorithmic randomness

Jeremy Avigad

A seminal theorem due to Weyl [2] states that if (an) is any sequence of distinct
integers, then, for almost every x ∈ R, the sequence (anx) is uniformly distributed
modulo one. In particular, for almost every x in the unit interval, the sequence
(anx) is uniformly distributed modulo one for every computable sequence (an) of
distinct integers. Call such an x UD random. Here it is shown that every Schnorr
random real is UD random, but there are Kurtz random reals that are not UD
random. On the other hand, Weyl’s theorem still holds relative to a particular
effectively closed null set, so there are UD random reals that are not Kurtz random.
These results are presented in Avigad [1].

References
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Recent results on provability algebras

Lev D. Beklemishev

We report on two results on provability algebras recently obtained in Moscow by
Daniyar Shamkanov [1] and by Fedor Pakhomov [2], respectively.

Shamkanov introduces a new ‘circular’ proof system for the standard provability
logic GL of Gödel and Löb. A circular proof of a formula A (or of a sequent Γ) is a
derivation of A in the usual sense from a set of hypotheses. Each of the hypotheses
must be justified in one of the two possible ways: either it is, as in the usual case,
an axiom, or it occurs strictly later in the given derivation. It is usually justly
expected that such a notion of proof yields a contradictory system.

In contrast, by a careful design of the proof system that lacks the cut and the
structural rules and by exploiting the fixed-point properties of the provability logic
GL, Shamkanov provides a sound and complete axiomatization of GL. His system
is a version of a Tait-style cut-free sequent calculus for the (weaker) modal logic
K4.

Formulas are built from propositional variables, negated variables and the con-
stants ⊤ and ⊥ by ∧,∨,�,♦. Sequents are multisets of formulas, treated as
disjunctions. Axioms are sequents of the form Γ, A,A and Γ,⊤. Inference rules
are as follows:

Γ,⊥
Γ

Γ, A Γ, B

Γ, A ∧B
Γ, A,B

Γ, A ∨B
Γ,♦Γ, A

♦Γ,�A,∆

Based on this system, Shamkanov gives a syntactic proof of the Lyndon inter-
polation property for GL. He has earlier obtained this result by model-theoretic
arguments.

Pakhomov deals with the question of decidability of the elementary theory of
the 0-generated subalgebra of the polymodal provability algebra of arithmetic. Let
M denote the Lindenbaum boolean algebra of Peano arithmetic PA endowed by
a sequence of unary operators dn : M → M, where dn maps the equivalence class
of a sentence A to that of a sentence naturally expressing the n-consistency of A
over PA. The structure (M; d0, d1, . . . ) is called the polymodal provability algebra
of PA.

It follows from the results of Volodya Shavrukov that this structure is quite
complicated, in particular its first-order theory is undecidable, even when the
language is restricted to just one operator d0. In contrast, its minimal subalgebra
(generated from 0 and 1 by all the operations of the structure) is much more
regular. This subalgebra has been studied in a number of papers in connection
with the ordinal analysis of PA.

A few years ago we asked whether this structure has a decidable first-order
theory, see [3]. Pakhomov succeeded in obtaining a positive answer to this ques-
tion. His paper, in fact, develops new interesting machinery of decomposition of
such algebras into some kind of products. The product construction preserves
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the decidability of the first-order theory. Thus, Pakhomov’s work not only pro-
vides us with the answer to the original problem, but also with a deep structural
information about the algebras in question.

References

[1] D. Shamkanov, Circular Proofs for the Gödel–Löb Provability Logic, Math. Notes, 96:4
(2014), 575–585.
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The Paris-Wilkie problem of the consistency of no collection and no
exponentiation

Leszek Ko lodziejczyk

BΣ1 is the theory extending I∆0 by all instances of the Σ1 collection scheme, that
is, by

∀x<v ∃y ϕ(x, y) ⇒ ∃w ∀x<v ∃y<w ϕ(x, y),

where ϕ ranges over Σ1 formulas. Σ1 collection is Π1-conservative, and frequently
also Π2-conservative, over reasonably well-behaved weak fragments of arithmetic,
but it is also known to be unprovable even from the true Π2 theory of N [1].
However, all proofs of this unprovability result make use of exponential-size objects
(often in the form of a Σ1 universal formula). This led Paris and Wilkie [2] to ask:

(1) Does I∆0 + ¬Exp prove BΣ1?

Here Exp is an axiom expressing the totality of the exponential function. It is
generally expected that the answer to the question is negative. In fact, there are
some results of the form “the answer is negative under some assumptions”, where
the assumptions are unproved statements from computational complexity theory.
Despite numerous efforts, an unconditional negative answer remains elusive.

In an attempt to explain why the Paris-Wilkie problem is so difficult, we present
a complexity-theoretic statement which implies that the answer to “Does ¬Exp
imply Σ1 collection?” is actually positive, at least over the true Π1 theory of N as
the base theory:

Theorem 1. If for every k ∈ N there is a non-decreasing time-constructible func-
tion f of fractional-exponential growth rate such that Σk-TIME(fO(1)) is contained
in the linear-time hierarchy, then Π1(N) + ¬Exp ⊢ BΣ1.

In order to replace Π1(N) by I∆0 as the base theory, one has to assume that
the containments are provable in I∆0, which has to be formulated in a special way
and makes for a rather complicated statement. The assumption of Theorem 1 is
not at all likely to be true; however, it seems plausible that disproving it might be
beyond the reach of the present-day methods of complexity theory. In particular,
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the assumption of Theorem 1 is designed to evade typical diagonalization-based
arguments used to disprove slightly stronger statements.

We also prove a theorem which essentially says that any proof of the unprov-
ability of a fixed finite fragment of Σ1 collection in I∆0 + ¬Exp would have to be
non-relativizing, in the sense that it would not work in the presence of an arbitrary
oracle:

Theorem 2. Let α be a new unary relation symbol. Then for every finite fragment
B(α) of BΣ1(α) there exists a consistent recursively axiomatized Π1(α) theory
TB(α) ⊇ I∆0(α) such that TB(α) + ¬Exp ⊢ B(α).

To prove Theorem 2, we have to go through a lemma in pure computational
complexity theory: for every k, there exists an oracle relative to which the k-th
level of the exponential time hierarchy, i.e. Σk-TIME(2O(n)), is contained in the
linear-time hierarchy.
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Proof-theoretic methods in nonlinear analysis I: Logical Foundations
and Some Applications

Ulrich Kohlenbach

During the last two decades a systematic program of ‘proof mining’ emerged as a
new applied form of proof theory and has successfully been applied to a number
of areas of core mathematics ([3]). This program has its roots in Georg Kreisel’s
pioneering ideas of ‘unwinding of proofs’ going back to the 1950’s.

We are primarily concerned with the extraction of hidden finitary and combina-
torial content from proofs that make use of infinitary noneffective principles. The
main logical tools for this are so-called proof interpretation. Logical metatheorems
based on such interpretations have been applied with particular success in the con-
text of nonlinear analysis including fixed point theory, ergodic theory, continuous
optimization and - most recently - abstract Cauchy problems. The combinatorial
content can manifest itself both in explicit effective bounds as well as uniformity
results.

In this first part of a tutorial on proof mining we will

• outline the general background of this proof-theoretic approach,
• report on recent results (with D. Günzel, [1]) adapting the framework to

the treatment of abstract Lp- and C(K)-spaces and bands in the Lp(Lq)-
lattice and clarifying its relation to the model-theoretic work in the context
of continuous or positive bounded logic (see e.g. [2]),
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• and indicate some recent applications (with M.A.A. Khan) in the context
of nonlinear analysis ([4, 5]).

Further applications will be discussed in Parts II-IV of the tutorial by D. Körnlein,
A. Koutsoukou-Argyraki and L. Leu̧stean.

Acknowledgment: The author was supported by the German Science Founda-
tion (DFG Project KO 1737/5-2).
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Proof-theoretic methods in nonlinear analysis II: Fixed Point Theory

Daniel Körnlein

This is the third part of a tutorial on proof mining, in which we discuss applications
of proof mining to metric fixed point theory. In fixed point theory, a general
problem of interest is the following. Given an operator T : X → X which has
a fixed point p = Tp, find a suitable explicit iteration scheme xn+1 = fn(xn, T )
that converges to a fixed point of T . In these situations, rates of convergence, i.e.
bounds on the existential quantifier in the convergence statement, do not exist.

In fact, Avigad, Gerhardy and Towsner [1] have shown that, in the context
of von Neumann’s Mean Ergodic Theorem, the ergodic averages do not have a
computable rate of convergence. This already rules out effective rates for many of
the iterations used in fixed point theory. Recently, E. Neumann [5] obtained further
results in this vein. However, logical metatheorems [2] guarantee the extractability
of rates of metastability Φ in the sense of Tao [6]:

∀kN, gN→N∃n ≤ Φ(k, g)∀i, j ∈ [n;n+ g(n)](‖xi − xj‖ ≤ 2−k).

We present two recent examples of metastability results for pseudocontractive
mappings in Hilbert space [3, 4].

Acknowledgment: The author was supported by the German Science Founda-
tion (DFG Project KO 1737/5-2).
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Eliminating cuts in theories of truth

Graham E. Leigh

Fix a first order theory S that has (i) a finite language, (ii) an elementary axioma-
tisation and (iii) interprets a modicum of arithmetic (say elementary arithmetic).
For example, standard presentations of Peano arithmetic and Zermelo-Fraenkal set
theory. We define CT[S] as the expansion of S by a fresh unary predicate symbol T
and the compositional axioms of truth for T (see, e.g. [3]). Importantly, schemata
of S are not extended to the new language. A formula of CT[S] is T -free if it does
not feature the predicate T .

In the talk I outlined a proof-theoretic argument for the following two theorems.

Theorem 3. CT[S] is a conservative extension of S, i.e. every T -free theorem
of CT[S] is derivable in S. Moreover, this fact is verifiable in hyper-exponential
arithmetic.

Theorem 4. Let Ax(x) be a formula expressing that x encodes the universal
closure of an axiom of S. The theory CT[S] + ∀x(Ax(x) → T (x)) is a conservative
extension of S and this fact is verifiable in S.

The first part of Theorem 1 was first established by Barwise and Schlipf in the
early 70s (see Theorem IV.5.3 of [1]) and later reproved by Kotlarski, Krajewski
and Lachlan [5], which also establishes the first part of Theorem 2. Both proofs
are model-theoretic, however, showing that a countable non-standard model of S
contains a full satisfaction class if it is recursively saturated. Since every model of S
is elementarily extended by a recursively saturated model of the same cardinality,
conservativity is obtained. Recently, Enayat and Visser [2] provided an alternative
model-theoretic argument for conservativity which is formalisable within weak
arithmetic and yields both theorems.

Halbach [4] offers a proof-theoretic approach to Theorem 3 by means of cut
elimination. The strategy proceeds as follows. First the theory CT[S] is reformu-
lated as a finitary sequent calculus with a cut rule and rules of inference in place
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of each of the compositional axioms for truth. A typical derivation in this calculus
features cuts on formulæ involving the truth predicate and in general the system
does not permit cut elimination. Instead, Halbach outlines a method of partial cut
elimination whereby every cut on a formula involving the truth predicate is sys-
tematically replaced by a derivation with cuts only on T -free formulæ. Halbach’s
proof, however, contains a critical error (see, for example, Theorem 8.5 of [3]).
Nevertheless, the argument yields a method to eliminate cuts of a very particular
kind, namely those on formulæ T (s) for which it is derivable (within, say, S) that
the logical complexity of the formula coded by s is bounded by some closed term.

During the talk I discussed the link between the system CT[S] and its fragment
with bounded cuts that is necessary to achieve cut eliminaiton. This takes the
form of the following lemma.

Lemma (Bounding lemma). If Γ and ∆ are finite sets consisting of only truth-
free and atomic formulæ, and the sequent Γ ⇒ ∆ is derivable in CT[S], then there
exists a derivation of this sequent in which all cuts are either on T -free formulæ
or bounded in the sense above.

Let CT
∗[S] denote the subsystem of CT[S] featuring only bounded cuts of the

form described above. Since this calculus permits the elimination of all cuts con-
taining the truth predicate, the first part of Theorem 3 is a consequence of the
above lemma. Moreover, the proof yields bounds on the size of the resulting
derivation, from which the second part of Theorem 3 can be deduced.

Considering Theorem 4, we observe that the reduction of CT[S] to CT
∗[S] also

yields a reduction of CT[S] + ∀x(Ax(x) → T (x)) to an analogous extension of
CT

∗[S]. Despite not admitting cut elimination in the same style, this latter system
is relatively interpretable in CT[S], whence Theorem 3 provides the desired result.

Full proofs of the results can be found in [6].
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Some recents results on Herbrand’s Theorem

Federico Aschieri

(joint work with Margherita Zorzi)

We present a new Curry-Howard correspondence for classical first-order natural
deduction [5]. We add to the lambda calculus an operator which represents, from
the viewpoint of programming, a mechanism for raising and catching multiple
exceptions, and from the viewpoint of logic, the excluded middle over arbitrary
prenex formulas. Treating the excluded middle as primitive, rather than deriving
it from the double negation elimination as in [7, 6], has a key advantage. The
logically obscure concept of “continuation” used in programming languages is no
longer primitive; instead, the execution of classical programs can be described as
a logical process of making hypotheses, testing and correcting them when they are
learned to be wrong. The machinery thus allows to extend the idea of learning
– originally developed in Arithmetic [1, 2, 3, 4] – to pure logic. So our reduction
rules for classical natural deduction appear very natural and can even be described
in a pure logical manner, without any reference to lambda calculus. Indeed, this
double perspective is stressed in [5].

We prove that our typed calculus is strongly normalizing and show that proof
terms for simply existential statements reduce to a list of individual terms forming
a Herbrand disjunction. A by-product of our approach is thus a natural-deduction
proof and a computational interpretation of Herbrand’s Theorem. This interpre-
tation is far and away more direct that the one based on negative translations of
classical natural deduction into the intuitionistic counterpart followed by a nor-
mal form argument for proofs of ¬∀xP statement. Moreover, as opposed to [7, 6]
or other double-negation-elimination-based natural deduction systems, the simply
existential formulas are interpreted as data types, because terms of that type nor-
malize to lists of witnesses. This just not happen in systems based on call/cc or
λµ-calculus. Moreover, our computational interpretation also explains Herbrand’s
theorem and in particular what it is the real reason why Hebrand’s disjunctions
are produced and not single witnesses. Without studying the excluded middle as
primitive concept and the correspondent logical process of making hypotheses and
learning, this would not be possible.
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Cobham Recursive Set Functions

Sam Buss

(joint work with A. Beckmann, S.D. Friedman, M. Müller, N. Thapen)

This talk discusses a new notion of polynomial time computability for general sets,
based on ǫ-recursion with a Cobham style bounding using a new smash function
tailored for sets. This class of functions is called the Cobham Recursive Set Func-
tions (CRSF), and gives a notion of polynomial time computability intrinsic to
sets. The smash (#) function accommodates polynomial growth rate of both the
size of the transitive closure and the rank of sets. For suitable encodings of binary
strings as hereditarily finite sets, the CRSF functions are precisely the usual poly-
nomial time computable functions. The goal in defining the CRSF functions is to
give a model of computation on sets which

• Is analogous to complexity classes on bit strings,
• Is natural and intrinsic to sets
• Reduces to standard complexity classes on hereditarily finite sets with

suitable encodings.

Definition. The set composition function a⊙b and the set smash function a#b
are defined by ∈-recursion as

∅⊙b = b

a⊙b = {x⊙b : x ∈ a}, for a 6= ∅
and

a#b = b⊙{x#b : x ∈ a}.

Theorem.

1. rank(a#b) + 1 = (rank(b) + 1)(rank(a) + 1).
2. |tc(a#b)| + 1 = (|tc(a)| + 1)(|tc(b)| + 1).

Definition. If g is an (n+1)-ary function, h is an n-ary function and τ is a
n-ary function, then (Cobham Recursion4) gives the n-ary function f :

f(a,~c) = g({f(b,~c) : b ∈ a}, a,~c),
provided that, for all a,~c, we have τ(x, a,~c) : f(a,~c) 4 h(a,~c).

Definition. The Cobham Recursive Set Functions, CRSF, are the set functions
obtained from a finite set of initial functions and the set smash function # by
closing under (Composition) and (Cobham Recursion4).
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Theorem. For f(~a) ∈ CRSF, there are polynomials p and q so that

• rank(f(~a)) ≤ p(maxi{rank(ai)}) and
• |tc(f(~a))| ≤ q(maxi(|tc(ai)|)).

Theorem. Under a suitable encoding of finite binary strings as hereditarily finite
sets, the CRSF functions (on sets encoding finite binary strings) are precisely the
polynomial time computable functions.

In earlier work, Beckmann, Buss and Friedman [2] defined safe/normal set func-
tions, inspired by the safe/normal functional definition of polynomial time due to
Bellantoni and Cook [3]. Arai [1] gave an alternate characterization of polynomial
time using a modified version of safe/normal set functions.

Definition. The PCSF+ functions are defined like Arai’s class of Predica-
tively Computable Set Functions (PCSF) but with closure under (Normal
SeparationSN).

Theorem. The following are equivalent: For any set function f , f(~x) is in
CRSF if and only if g(~x/) = f(~x) is a PCSF+ function.
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Transfinite Methods as Admissible Rules

Peter Schuster

(joint work with Davide Rinaldi)

Let ⊢ be a mono-conclusion entailment relation on a semigroup (S, ∗) such that

U, a ⊢ c U, b ⊢ c
U, a ∗ b ⊢ c

holds [6, 7, 8] for all finite subsets U and elements a, b, c of S. Let ⊢∗ be the
multi-conclusion entailment relation on S that is generated by ⊢ and the axioms

a ∗ b ⊢∗ a, b d ⊢∗

where a, b ∈ S are arbitrary but d is a distinguished element of S. Then every
proof of U ⊢∗ v can be converted into a proof of U ⊢ v whenever U is a finite
subset and v an element of S. As a by-product, the cut rule is eliminated.

For example, the theory of integral domains is conservative for definite Horn
clauses over the theory of reduced rings, which might help to settle an issue raised
in [9]; other applications to algebra are about local rings, valuation rings and or-
dered fields. The conversion also allows to eliminate, from indirect proofs of state-
ments of elementary wording, instances of the appropriate incarnation of Zorn’s



2954 Oberwolfach Report 52/2014

Lemma: the Krull–Lindenbaum Lemma in universal form [6, 8, 10]. Yet the rela-
tion to cut elimination proper and to related work [1, 2, 3, 4, 5] is to be clarified.
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Applications of Logic to the Verification of Railway Control Systems

Monika Seisenberger

(joint work with Andrew Lawrence, Ulrich Berger, Phil James,
Fredrik Nordvall-Forsberg, and Markus Roggenbach)

The objective of this talk is to give an overview on logical methods used in (1)
the verification of traditional solid state interlockings and (2) the modelling and
analysis of the Eurepean Rail Traffic Management System (ERTMS). The research
is done in cooperation with Siemens Rail Automaton, UK.

Traditionally, railway interlockings are specified using a graphical language,
called Ladder Logic. In the first part of the talk, we give a semantics for this
language and show how to get from a specification of an interlocking in Ladder
Logic to a SAT solving problem. This process has been automated and realistic
Interlocking examples, provided by the Railway company, have been verified using
a) MiniSat and b) SCADE, an industrial tool developed for safety critial applica-
tions (see [1] for an overview of the work done in this part). We further applied
our own SAT solver, which we extracted (via modified realisability) from a formal
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constructive proof that a set of clauses (in conjunctive normal form) is either satis-
fiable or not. The extracted SAT solver is a verified DPLL algorithm, which either
yields a model or a derivation indicating why the clause set is not satifiable (for
more detail see [2] or [3]). In addition we extracted a resolution solver which either
yields a model, or a resolution derivation that the set of clauses is unsatisfiable.
Our extracted solver is not as fast as the solver used by SCADE, but it is proven
correct and complete.

In the second part of the talk, we present our modelling of ERTMS. The
European Train Control System is a next generation train control system, cur-
rently in UK only in test use on a few lines, which aims at improving the per-
formance/capacity of the rail traffic systems, without compromising their safety.
It generalizes from traditional discrete interlockings to a system that includes on-
board equipment and communication between trains and interlockings via radio
block processors. Whilst the correctness of traditional interlocking systems is well-
researched in the literature, it is challenging to verify ERTMS based systems for
safety properties such as collision freedom due to the involvement of continuous
data. It is further an open field of how to substantiate the claim that the ERTMS
approach offers a better performance of the railway compared to the traditional
control. We model ERTMS, specifically trains, interlockings, radioblock proces-
sors, and controllers as hybrid automata. (They are hybrid because they combine
discrete and continuous data.) We provide a formalization in Real Time Maude
[4] for simple scenarios which allow to simulate runs, i.e. discuss performance, and
also to apply LTL modell checking (see [5]) to prove safety conditions such as
collision freedom and as well as the fact that points do no change their direction
when trains are on the respective segment.
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Univalent Foundation and Constructive Mathematics

Thierry Coquand

This talk was in two parts. The first part was a general introduction/tutorial
on the univalent foundation program of Voevodsky [Voe]. The second part was a
presentation of a variation of the cubical set model analysed in [BCH]. Let C be
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the following category: the objects are finite sets I, J,K, . . . and a map I → J is
a monotone map 2I → 2J , where 2 is the poset 0 ≤ 1. (Alternatively, such a map
can be described as a set theoretic map J → D(I) where D(I) is the free bounded
distributive lattice on I.) A cubical set is defined to be a presheaf on C. In
particular, the interval I can be defined to be the representable functor defined by
any singleton. We extend in this way the model of [BCH] by adding diagonal and
connection operations. Using the diagonal operation, we get a direct interpretation
of function extensionality, and we can think of the set of path of a cubical set X
as the exponential I → X . Using connections, we get a direct interpretation of
the fact that any “singleton” type (Σx : A)Id(A, a, x) is contractible. It is then
possible to refine the Kan condition [Kan], that any open box can be filled, and
get a model of type theory which justifies the axiom of univalence and which
is developped in a constructive metatheory. Contrary to the model presented
in [BCH], this model interprets the computation rule for equality introduced in
[M-L] as a judgemental equality. We can also in this way justify the propositional
truncation operation [UnFo, Voe] introduced by Voevodsky as well as some higher
inductive types [UnFo] such as the push-out operation.
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Recent Applications of Bar Recursion and Selection Functions

Paulo Oliva

1. Introduction

Bar recursion was introduced by Spector [7] as an extension of Gödel’s system T .
The aim was to extend Gödel’s dialectica interpretation [1] of arithmetic to full
classical analysis, by computationally interpreting countable choice, dependent
choice and arithmetical comprehension. I list here some of the recent work I
have done (jointly with several collaborators) on both trying to have a better
understanding of bar recursion, and on applying it in different settings.



Mathematical Logic: Proof theory, Constructive Mathematics 2957

2. Recent Developments

Most of the work below is motivated by a novel understanding of bar recursion as
a process of calculating optimal strategies in a general form of sequential game.
This sparked interest both in the Game Theory and Proof Theory communities.

2.1. Higher-order Sequential Games. The crucial observation in order to un-
derstand the connection between bar recursion and sequential games is that func-
tionals of type (X → R) → X , called selection functions, can be viewed as an
abstract description of a player who has to choose a move x ∈ X having in mind
the possible outcomes r ∈ R. We think of the mapping p : X → R as the context
of the player, which says what outcome will result for each given move. The func-
tional (X → R) → X then describes the preferred outcome for each given game
context. For more details see [2, 3].

2.2. Selection Functions and Game Theory. Our novel modelling of players
as higher-order functionals (X → R) → X has interesting consequences to the
theory of games, as developed in (classical) Game Theory as developed by Von
Neumann. In [5] we explain how peculiar games can be directly modelled in our
framework, leading to a more general framework where games that were previ-
ously considered to be of a different nature can be all modelled uniformly. The
higher-order approach to model games also has several other advantages, e.g. gain
in modularity and compositionally of games; computational and resource-aware
strategies can be naturally captured; and previous restrictions on the ordering of
preferences can be avoided.

2.3. Herbrand Functional Interpretation of DNS. The Herbrand functional
interpretation [8] has been recently introduced as a variant of Gödel’s dialectica
interpretation capable of interpreting principles from non-standard arithmetic. In
recent joint work with Mart́ın Escardó [4] we have been able to extend the Her-
brand functional interpretation to full analysis by giving an interpretation of the
double negation shift (and hence countable choice) using Spector’s bar recursion.
In fact, the interpretation is more naturally presented using a variant of the prod-
uct of selection functions over the finite power-set monad, which we show is equiv-
alent (over system T ) to Spector’s original bar recursion.

2.4. Proof Mining the Podelski-Rybalchenko “Termination Theorem”.
In joint work with Stefano Berardi and Silvia Steila we have used bar recursion
to give a (sub-recursive) computational interpretation to the Podelski-Rybalchenko
termination theorem [6]. This is work currently in progress and we hope to finish
writing our paper by the end of the year.

2.5. More Efficient Spector Bar Recursion. In recent joint work with Thomas
Powell we have developed a novel variant of Spector’s bar recursion which in prac-
tical cases seems to run much more efficiently than Spector’s original definition.
The crucial idea is to make use of the control functional of the bar recursion (i.e.
the functional Y for which we need to check Y (ŝ) < |s|) to guide the recursion. In
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this way we replace finite sequence by finite partial functions σ, and replace the
usual stopping condition with Y (σ̂) ∈ dom(σ). At the same time, we perform bar
recursive updated at the point n = Y (σ̂) so that we are always trying to fill the
gap that led to a bar recursive call.
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Bishop spaces: constructive point-function topology

Iosif Petrakis

A Bishop space is a structure F = (X,F ), where X is an inhabited set and F is
a set of functions of type X → R which includes the constant functions and it is
closed under addition, uniform limits and composition with elements of Bic(R).
By R we denote the Bishop reals and by Bic(R) the set of Bishop continuous
functions of type R → R. Bishop used the term function space for F and topology
for F . A Bishop morphism between two Bishop spaces F = (X,F ) and G = (Y,G)
is a function h : X → Y such that ∀g∈G(g ◦ h ∈ F ). We denote the set of Bishop
morphisms by Mor(F ,G). If h ∈ Mor(F ,G), we call h open, if ∀f∈F∃g∈G(f = g◦h).

The theory of Bishop spaces is so far the least developed approach to con-
structive topology with points. Bishop introduced them in [1], some comments on
them were added in [2], while in [3] Bridges revived the subject. Ishihara in [5]
studied the relation of the subcategory Fun of the category Bis of Bishop spaces
with the category of neighborhood spaces Nbh. We develop the theory of Bishop
spaces within BISH putting the emphasis on function-theoretic concepts rather
than set-theoretic ones.

Most of the new Bishop spaces generated from old ones are defined through
Bishop’s inductive concept of the least topology F(F0) generated by a given base
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F0 of real-valued functions on X . It is easy to see that h ∈ Mor(F ,F(G0)) iff
∀g0∈G0(g0 ◦ h ∈ F ). More interestingly, if h : X → Y is an epimorphism, and F =
(X,F(F0)), then h is open iff ∀f0∈F0∃g∈G(f0 = g◦h). The product of Bishop spaces
was already defined by Bishop, while we introduce the exponential Bishop space
F → G = (Mor(F ,G), F → G), which corresponds to the point-open topology
within Top. It seems that the category of Bishop spaces Bis behaves like the
category of topological spaces Top w.r.t. the cartesian closure property. Although
Ishihara and Palmgren constructed in [6] the quotient topological space using
predicative methods, our definition of the quotient Bishop space is straightforward
and permits a smooth translation of the standard classical theory of quotient
topological spaces into the theory of Bishop spaces.

We call a Bishop space F completely regular, if the apartness relation induced
by its topology F is tight, and we show that the completely regular Bishop spaces
behave in Bis as the completely regular topological spaces in Top. Namely, the
Stone-C̆ech isomorphism between C(ρX) and C(X), the Embedding lemma and
the Tychonoff embedding theorem for completely regular topological spaces have
their constructive counterpart within the theory of Bishop spaces.

Using Bishop’s version of the Tietze theorem for metric spaces we prove the
Urysohn lemma for zero sets. This is the first step to constructivise parts of the
classical theory of rings of continuous functions within Bishop spaces. We study
various embeddings of one Bishop space to another and we translate results from [4]
into Bishop spaces. This translation is not always constructive. For example, we
need the LPO to prove without restrictions to its formulation the fundamental
Urysohn extension theorem within Bishop spaces.

The application of the general theory of Bishop spaces to concrete spaces like
the Cantor and the Baire space, the Hilbert cube etc., viewed as Bishop spaces,
shows how close to standard topology, as a mathematical tool, the theory of Bishop
spaces can be. Moreover, based on the work [7] of Palmgren, a reconstruction of
the basic homotopy theory within Bishop spaces seems possible.

References

[1] E. Bishop: Foundations of Constructive Analysis, McGraw-Hill, 1967.
[2] E. Bishop and D. Bridges: Constructive Analysis, Grundlehren der Math. Wissenschaften

279, Springer-Verlag, Heidelberg-Berlin-New York, 1985.
[3] D. S. Bridges: Reflections on function spaces, Annals of Pure and Applied Logic 163 (2012),

101–110.
[4] L. Gillman and M. Jerison: Rings of Continuous Functions, Van Nostrand, 1960.
[5] H. Ishihara: Relating Bishop’s function spaces to neighborhood spaces, Annals of Pure and

Applied Logic 164 (2013), 482–490.
[6] H. Ishihara and E. Palmgren: Quotient topologies in constructive set theory and type theory,

Annals of Pure and Applied Logic 141 (2006), 257–265.
[7] E. Palmgren: From Intuitionistic to Point-Free Topology: On the Foundations of Homotopy

Theory, in S. Lindström et al. (eds.), Logicism, Intuitionism, and Formalism, Synthese
Library 341, Springer Science+Buiseness Media B.V. 2009.



2960 Oberwolfach Report 52/2014

Well quasi orders

Andreas Weiermann

(joint work with Michael Rathjen, Jeroen Van der Meeren)

An important characteristic of a well quasi order or better its associated well
partial order is provided by its maximal order type which is the order type of a
maximal possible linear extension. We describe a general formula which can be
used to predict maximal order types for well quasi orders when they are given by a
certain class of recursive tree constructions. To this end we consider effective con-
structions W which map effectively given well quasi orders to effectively presented
well quasi orders. Using W we define the set T (W ) of generalized trees T where
the immediate subtrees of T are arranged into a term relative to W (T (W )). T (W )
comes with a naturally induced quasi order. The general conjecture is that T (W )
will become a well quasi order with maximal order type equal to ϑ(o(W (Ω))) where
Ω denotes the first uncountable ordinal, o(W (Ω)) denotes the maximal order type
of W (Ω) and ϑ denotes a certain standard collapsing function [1]. Our conjecture
has been verified for a large class of examples and comes with several applications
to independence results for systems of second order arithmetic [2].
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Proof-theoretic methods in nonlinear analysis III: Quantitative results
on Fejér monotone sequences

Laurenţiu Leuştean

(joint work with Ulrich Kohlenbach, Adriana Nicolae)

This is the third part of a tutorial on proof mining. We report on recent applica-
tions of proof mining [3], providing in a unified way quantitative forms of strong
convergence results for numerous iterative procedures which satisfy a general type
of Fejér monotonicity, where the convergence uses the compactness of the under-
lying set. These quantitative versions are in the form of explicit rates of so-called
metastability in the sense of T. Tao [4] .

Fejér monotonicity is a key notion employed in the study of many problems
in convex optimization and programming, fixed point theory and the study of
(ill-posed) inverse problems (see e.g. [5, 1]).

Our approach covers examples ranging from the proximal point algorithm for
maximal monotone operators to various nonlinear iterations: Picard iteration
for firmly nonexpansive mappings, Ishikawa iteration for nonexpansive mappings,
Mann iteration for strict pseudo-contractions, asymptotically nonexpansive map-
pings and a class of generalized nonexpansive mappings. Our results cover the
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ones obtained in [2], which in fact, has been the point of departure of our present
investigation

Many of the results hold in a general metric setting with some convexity struc-
ture added (so-called W -hyperbolic spaces). Sometimes uniform convexity is as-
sumed still covering the important class of CAT(0)-spaces due to Gromov.

Acknowledgement: Laurenţiu Leuştean was supported by a grant of the Ro-
manian National Authority for Scientific Research, CNCS - UEFISCDI, project
number PN-II-ID-PCE-2011-3-0383
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Proof-theoretic methods in nonlinear analysis IV: Rates of
convergence and metastability for abstract Cauchy problems

generated by accretive operators

Angeliki Koutsoukou-Argyraki

(joint work with Ulrich Kohlenbach)

We present a work that is the first application of proof mining to the theory of
partial differential equations and was recently published in [3].

In this work we extract rates of convergence and rates of metastability (in the
sense of Tao) for convergence results regarding abstract Cauchy problems gener-
ated by φ-accretive at zero operators A : D(A)(⊆ X) → 2X where X is a real
Banach space, proved in [1], by proof-theoretic analysis of the proofs in [1] and
having assumed a new, stronger notion of uniform accretivity at zero, yielding a
new notion of modulus of accretivity. We compute the rate of metastability for
the convergence of the solution of the abstract Cauchy problem generated by a
uniformly accretive at zero operator A to the unique zero of A via proof mining
and based on a result in [2].

Definition 1. [3] Let X be a real Banach space. An accretive operator A : D(A) →
2X with 0 ∈ Az is called uniformly accretive at zero if

∀k ∈ N ∀K ∈ N∗ ∃m ∈ N ∀(x, u) ∈ A

(‖x− z‖ ∈ [2−k,K] → 〈u, x− z〉+ ≥ 2−m)(∗).
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Any function Θ(·)(·) : N×N∗ → N is called a modulus of accretivity at zero for A
if m := ΘK(k) satisfies (∗).

Our central result is the following theorem:

Theorem 1. [3] Let X be a real Banach space. Suppose that A : D(A) → 2X is
a uniformly accretive at zero operator on X with the range condition that has a
modulus of accretivity Θ. Suppose that the problem

u′(t) +A(u(t)) ∋ 0, t ∈ [0,∞)

u(0) = x0,

has a strong solution for each x0 ∈ D(A). Then, for each x ∈ D(A) the integral
solution u(·) of the problem

u′(t) +A(u(t)) ∋ f(t), t ∈ [0,∞)

u(0) = x,

where f ∈ L1(0,∞, X), converges strongly to the zero z of A as t → ∞ and one
has

∀k ∈ N ∀ḡ : N → N ∃n̄ ≤ Ψ(k, g,M,B,Θ) ∀x ∈ [n̄, n̄+ ḡ(n̄)] (‖u(x) − z‖ < 2−k)

with rate of metastability

Ψ(k, g,M,B,Θ) = g̃(M·2k+1)(0) + h(g̃(M·2k+1)(0)),

where

g̃(n) := g(n) + n

with

g(n) := g(n+ h(n)) + h(n),

h(n) := (B(n) + 2) · 2ΘK(n)(k+2)+1,

K(n) := p
√

2(B(n) + 1)q.

Here B(n) ∈ N is any nondecreasing upper bound on 1
2‖u(n) − z‖2 and M ∈ N is

any upper bound on the integral I :=
∫∞

0
‖f(ξ)‖dξ.

The rate obtained is extremely uniform, depending only on general bounds on the
initial data and the modulus of accretivity Θ of A.

References
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Grammars for first-order proofs

Bahareh Afshari

(joint work with Stefan Hetzl and Graham E. Leigh)

We look at the combinatorial structure of first-order proofs, in particular cut elim-
ination. This study is motivated by the aim to compress automatically generated
analytic proofs. For this we make connections to formal language theory and
specifically regular and context-free tree grammars. The role of the grammars is
to provide a template for introducing cuts into the proof.

Let π be a proof of ∃xF where F is quantifier-free. By Herbrand’s Theorem

[4] (see, e.g. [1]) there exist closed terms t0, t1, . . . , tk such that
∨k

i=0 F (x/ti) is
a tautology. There are various ways to find such a Herbrand disjunction, most
commonly via cut-elimination and Gentzen’s midsequent theorem.

In [5] it was shown that this cumbersome process can be circumvented in some
cases. Suppose π is a proof of an existential formula in which all cuts have complex-
ity at most Σ1. From this proof one can directly define a regular tree grammar Gπ
(of size no greater than that of the proof) such that its language, denoted L(Gπ), is
finite and contains the Herbrand set H(π′) where π′ is any cut-free proof obtained
from π via standard cut-elimination.

π ⊢ ∃xF c.e.−−−−→ π′ ⊢cf ∃xF

defn





y





y
Herbrand extraction

Gπ (of size ≤ |π|) L−−−−→ L(Gπ) ⊇ H(π′)

Figure 1. Proof grammars

Furthermore, it was proved that the anticlockwise arrows of Figure 1 are re-
versible: given a Herbrand set one can compute a concise grammar and determine
suitable cut-formulæ to assemble a proof with Σ1-cuts.

In the talk I showed how the correspondence in Figure 1 can be expanded
to the level of Π2-cuts. A simple Π2-proof is a formal proof in first-order logic
presented in sequent calculus with explicit contraction and weakening in which all
cut-formulæ are of the form ∀x∃yA or ∃x∀yA with A quantifier free.

Theorem (Afshari, Hetzl & Leigh). Let π be a simple Π2-proof of a Σ1 formula.
There is an associated context-free rigid tree grammar Gπ (whose number of pro-
duction rules is bounded by the size of π) with a finite language such that every
Herbrand set obtained via (standard) cut-elimination rules from π is contained in
the language of Gπ.

In contrast to the case of Σ1-cuts, the new grammars are built over λ-terms
and involve production rules for function type variables. We give both a diagram-
matic and recursive definition of the grammars associated to Π2-proofs. The latter
provides a neat formalisation in which the flow of information through cuts can
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be visualised readily and derivations in the grammar Gπ can be matched with
corresponding traces in the proof π.

From a theoretical point of view this work provides an abstraction of proofs with
cuts which focuses only on the aspects relevant to the extraction of Herbrand sets.
Compared to other approaches in the literature, including Herbrand nets [7], proof
forests [3] and functional interpretation [2], proof grammars offer, in my opinion, a
conceptually clear representation of Herbrand’s theorem. We expect that further
investigation of Π2-proofs will yield a Herbrand-confluence result analogous to [6]
as well as techniques for the systematic introduction of Π2-cuts.
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Ordinal analysis based on Turing progressions

Joost J. Joosten

1. Provability logics and Turing progressions

By Gödel’s Second Incompleteness Theorem any Σ0
1 sound c.e. theory allowing

coding of syntax can be strengthened by adding its consistency statement. Turing
progressions arise by transfinitely iterating this process along some computable
well-order. We denote the the αth Turing progression of T by Tα and define
the Π0

1 ordinal of a theory U as |U |Π0
1

:= sup{α | EAα ⊆ U} where EA stands
for Kalmar Elementary Arithmetic. Various concrete examples were presented in
U. Schmerl’s [11] like |PA|Π0

1
= ε0 and |PA + RFN(PA)|Π0

1
= ε1 where εi denotes

the ith fixpoint of α 7→ ωα.
It turns out that provability logics with various provability modalities are very

well suited to talk about Turing progressions. Let Λ, ξ, ζ, . . . denote ordinals. The
logic GLPΛ is the propositional modal logic that has for each ξ<Λ a modality [ξ].

The rules of GLPΛ are Modus Ponens and necessitation ψ
[ζ]ψ and the axioms are all

tautologies together with the following schemata: [ξ](A → B) → ([ξ]A → [ξ]B);
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[ξ]([ξ]A → A) → [ξ]A; 〈ξ〉A → [ζ]〈ξ〉A for ξ < ζ; and [ξ]A → [ζ]A for ξ < ζ.
By interpreting [n] into arithmetic as “provable in T together with all true Π0

n

formulas” the logic GLPω –which is sound and complete for this interpretation– can
naturally be used to denote fragments of arithmetic via a theorem that is essential
due to Leivant ([10]) to the effect that provably we have 〈n + 2〉EA⊤ ≡ IΣn+1.

This link between modal logic is actually within the closed fragment GLP
0
ω (no

propositional variables). Within GLP
0
ω one can consider so-called worms which

are iterated consistency statements like 〈1〉〈0〉〈1〉⊤ and order them via A < B :=
GLPω ⊢ B → 〈0〉A. This yields ([9]) a well-order of order-type ε0. Beklemishev
could set these features of GLPω to work in [1] so that an ordinal analysis for
PA and its kin can almost entirely be performed within the modal logic yielding
results like |PA + Con(PA)|Π0

1
= ε0 · 2.

2. Beyond first order theories

A first step in generalizing the above beyond first order has been established
by studying the logics GLPΛ for Λ ≥ ω. These logics are now well understood
([2, 3]). In particular, a universal model for GLP

0
Λ contains most information

about the closed fragment ([6]) and the well-orders therein ([8]). It turns out
that an adequate study of these well-orders requires the development of a new
notion of transfinite ‘iterations’ of normal ordinal functions and left-inverses of
such iterations ([5]). A second step is constituted by showing that reading [ξ] as
a formalization of “provable in T using an omega rule of nesting at most ξ” yields
a sound and complete interpretation of GLPΛ under some fairly non-restrictive
conditions on Λ and T ([7]). Moreover, using this reading one can relate ([4]) the
predicative second order theory ATR0 to what is called predicative oracle reflection
very much in the spirit of Leivant’s result mentioned above. With these recent
developments it seems that a Π0

1 ordinal analysis of theories like ATR0 becomes
well within reach.
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On proof systems for integer linear programing

Pavel Pudlák

This is a report on a work in progress. A number of proof systems for integer linear
programing have been proposed. Among the most important ones are Cutting
Planes (CP) of Gomory and Chvátal, and Lovász-Schrijver (LS) of Lovász and
Schrijver. Both systems are strictly stronger than Resolution, but their mutual
relation is still unclear. We will give an argument that suggests that in some cases
LS is stronger than CP. Our tool is the following version of the feasible interpolation
theorems proved for CP and LS.

Theorem 5. Let Γ(x̄) and ∆(ȳ) be two sets of inequalities with disjoint sets of
variables x̄ and ȳ. Let a CP (respectively LS) proof P of

Γ(x̄),∆(ȳ) ⊢
∑

j

cjxj ≤
∑

i

biyi

be given. Then one can construct in polynomial time a number d and a CP (LS)
proof of

Γ(x̄),∆(ȳ) ⊢
∑

j

cjxj ≤ d ≤
∑

i

biyi.

Note that this theorem gives us quantitative information when Γ(x̄),∆(ȳ) is con-
sistent. The proofs are straightforward generalizations of the proofs of the feasible
interpolation theorems for CP and LS [1, 2]. One can also derive additional infor-
mation about the form of polynomial size circuits computing d.

Let A be a matrix and b and c vectors. The weak duality of linear programing
(WD) is the fact that

{
∑

j

Aijxj ≤ bi}i, {
∑

i

Aijyi ≥ cj}j ⊢
∑

j

cjxj ≤
∑

i

biyi.

The proof is trivial:
∑

j cjxj ≤ ∑

ij Aijxjyi ≤
∑

i biyi. However, if the elements
of the matrix and the vectors are variables, this is not directly formalizable in CP
and LS because it involves quadratic and cubic terms. We consider two situations.

(1) Let A be constant and b and c variables. One can introduce extension
variables so that

∑

j cjxj ≤
∑

i biyi is transformed into a linear inequality and we
can still use it in the interpolation theorems. Then WD is provable in LS by a
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polynomial size proof. This is because
∑

ij Aijxjyi is a quadratic term and LS is
able to argue about such terms at least to the extent we need. In contrast, it is
unlikely that CP would prove such a form of WD by a polynomial size proof. The
reason is that such a proof would give us, using the feasible interpolation theorem
above, a polynomial size circuit for linear programing of a very special form; such
a circuit would only use monotone arithmetic operations if the elements of the
vector b are positive.

(2) Let all elements of A, b and c be variables. One can introduce intro-
duce more extension variables to represent the quadratic inequalities

∑

j Aijxj ≤
bi,

∑

iAijyi ≥ cj by linear ones. We conjecture that this form of WD does not have
a polynomial size proof in LS. The reason is that the interpolation theorem for LS
gives us strongly polynomial circuits for computing d, so we would get strongly
polynomial circuits for linear programing. Whether or not there are strongly poly-
nomial circuits for linear programing is an open problem. So, in principle, it is
not excluded that WD has short proofs in LS, but it seems unlikely that one could
solve the open problem in such a way.

We conclude by noting that one can extend these results to a more natural
context of proof systems for mixed linear programing (where some variables range
over integers and some over reals).

The author is supported by the ERC Advanced Grant 339691 (FEALORA) and the institute

grant RVO 67985840.
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A trade-off between length and width in resolution

Neil Thapen

Resolution is a well-known proof system for refuting propositional CNF formulas.
A literal is a propositional variable or its negation. A clause is a disjunction of
literals. We define a conjunctive normal form formula or CNF to be a set of
clauses, which we treat semantically as though it were a conjunction of clauses.
The resolution rule allows us to derive the clause C ∨D from the two clauses C ∨q
and D ∨ ¬q, where q is any propositional variable. A resolution refutation of a
CNF F is a derivation of the empty clause from F using the resolution rule.

Every unsatisfiable CNF has a resolution refutation. However, interesting ques-
tions remain about the complexity of refutations. We consider two measures of
complexity, length and width. The length (or size) of a resolution refutation Π is
the number of clauses it contains. The width of Π is the maximum width of any
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clause in Π, where the width of a clause is just the number of literals it contains.
Similarly the width of a CNF F is the maximum width of any clause in F .

A result of [1] showed an interesting and useful connection between the minimal
length and minimal width of refutations:

Theorem 1. Let F be a CNF in n variables with width k. Suppose that F has a
resolution refutation Π of length S. Then F also has a resolution refutation Π′ of
width at most k +

√
n logS. �

In other words, every short refutation can be transformed into a narrow refu-
tation. However, the transformation of Π into Π′ used in the proof of Theorem 1
may increase the length of the refutation exponentially. We address the natural
question of whether the theorem can be strengthened to guarantee that the narrow
refutation Π′ is not substantially longer than the initial short refutation Π. We
show that the expected answer (“no”) is correct. Our main result is:

Theorem 2. Fix a small constant ǫ > 0. Take any sufficiently large m such that
both m and mǫ are powers of two. There is a CNF Φm with Θ(m1+2ǫ) variables
and Θ(m1+3ǫ) clauses, of width O(logm), such that

(1) Φm has a refutation of length O(m1+3ǫ) and width m+O(logm)
(2) Φm has no subexponential length refutation of width strictly less than m.

It follows from (1) that Φm has a refutation of width O(m
1
2+ǫ

√
logm), by

Theorem 1. But by (2), as long as ǫ < 1
2 every such refutation has exponential

length.
This kind of result is known as a trade-off between length and width. The

reason for the name is that if we need a refutation of small length, we can find
one; and if we need a refutation of small width, we can find one; but we must
choose between small length and small width, since there is no way to minimize
both in the same refutation.

The CNF Φm is a propositional version of the coloured polynomial local search
principle, or CPLS, which was introduced in [2] as a combinatorial principle as
strong as reflection for resolution. It thus in some sense captures the strength
of resolution, and also of first-order theories built around bounded Π2 induction
(such as Buss’s theory T 2

2 ), as these are closely connected with resolution.
The idea of the lower bound proof is, roughly, that we consider four senses in

which a clause can be “narrow” – mostly these differ in which variables we are
counting. Given a refutation Π, if Π has small width it follows immediately that
every clause in Π is narrow in our first sense. If furthermore Π has subexponential
length, then we can hit Π with a random restriction such that with high probability
every clause in the resulting refutation is also narrow in the remaining three senses.
We then use an adversary argument to show that no such narrow refutation of the
restricted CNF can exist.
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Finitary and Infinitary Approaches to Szemerédi Regularity

Henry Towsner

If U and V are finite sets and E ⊆ U ×V , there is a natural notion of density, the
edge density:

dE(U, V ) =
|E ∩ (U × V )|

|U | · |V | .

If E is chosen randomly, with high probability it should be the case that when
U ′ ⊆ U and V ′ ⊆ V are big enough, dE(U ′, V ′) ≈ dE(U, V ). The pair U, V is said
to be ǫ-regular if it resembles a random pair in the following precise sense:

The pair U, V is ǫ-regular (with respect to E) if whenever U ′ ⊆ U
and V ′ ⊆ V with |U ′| ≥ ǫ|U | and |V ′| ≥ ǫ|V |,

|dE(U ′, V ′) − dE(U, V )| < ǫ.

Szemerédi’s Regularity lemma says that any finite graph (G,E) can be parti-
tioned G =

⋃

i≤K Gi so that
∑

i,j|i and j are not ǫ-regular

|Gi| · |Gj | < ǫ|G|2,

where the bound K depends only on ǫ–in particular, |G| can be much larger than
K. The main idea in the proof is identifying the energy of a partition,

E({Gi}) =
∑

i,j≤K

d2E(Gi, Gj),

and observing that when a partition fails to satisfy the lemma, it can be refined
to a partition with higher energy.

A very general, stronger version of this statement was formulated by Tao [1]:
for any F : N → N and ǫ > 0, there is a K so that any finite graph (G,E) can be
partitioned G =

⋃

i≤K Gi so that if
⋃

i≤F (K)Hi is a partition refining {Gi} then

E({Gi}) ≤ E({Hi}) + ǫ: the partition {Gi} has “nearly maximized” the energy.
(Tao’s version is actually slightly stronger even than this.)

This statement looks like the output of the functional interpretation. We “in-
vert” the functional interpretation to identify a suitable Π3 statement of which
this is this functional interpretation.

Instead of a large finite graph we work with a non-standard graph (X,E) with
hyperfinite size. In this setting there are two natural σ-algebras on X2: the σ-
algebra B2 generated by the definable sets, and the σ-algebra B2,1 generated only
by definable rectangles. We can define a measure by taking the standard part—

µ(S) = st( |S|
|X|2 ). Then standard measure theory tells us that there is a projection:

for any f ∈ L2(B2), there is an L2(B2,1) function E(f | B2,1) best approximating
f in the L2 norm.
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The existence of a projection is a Π3 statement,

∀ǫ > 0∃g ∈ L2(B2,1)∀h ∈ L2(B2,1)||f − g||L2 ≤ ||f − h||L2 + ǫ.

Furthermore, when we investigate what the projection means in the case of χE ,
we see that the ǫ-almost projection of E(χE | B2,1) is, essentially, a partition of X
into (standardly) finitely many pieces most of which are ǫ-regular.

Applying the functional interpretation to this Π3 statement, we indeed get back
Tao’s version of the regularity lemma. We discuss generalizations and applications
of this idea [2, 3].
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A rule-learning based interpretation for second order arithmetic
(Stefano Berardi, Torino University)

Stefano Berardi

We introduce poly-trees, a notion of infinitary tree to represent infinitary proofs
of second order logic, a simplification of Girard’s Dilators ([1], [2], [3], [4], [5]).
Our long-term goal is to define an infinitary sequent calculus for second order
arithmetic, using poly-trees as proofs, then proving a normalization result for it
and using it for studying an ordinal notation for second order arithmetic. However,
this work is self-contained and centered on combinatorial results on poly-trees.

We plan to interpret the proof of a type ∀α.A as a construction T =
∨L

i∈kTi
which is indexed over a set k. We call k, using a machine learning terminology, a
training set. From the set of values {Ti|i ∈ k} over the training set the construction
T is able to “learn” how to process new inputs with a “correct” result: we test our
learning against a larger set of inputs t(k) ⊃ k, which we call the test set, with
the only request that for any i ∈ t(k) we may decide whether i ∈ k or not. As

a typical example, a constructor
∨L

i∈h(.)i of t(k) may have type h = k, the very
type we are defining. No circularity will arise: we will allow a very limited use of

individuals of the form
∨L
i∈hUi with h not “yet defined”, taking into account the

limited knowledge we have of them.
A type k is a set of trees closed under all at most countable branching, and

some branching of uncountable index set h, for some type h defined before k. A
type may be characterized by the set of its constructors having an uncountable
index set h. We call PTree the set of all poly-trees we define. If ≺ is decidable,
then we may take t(k) = PTree for any type k.

We have now to precise how to extend a tree function i ∈ k 7→ Ti of training

set k over any tree U =
∨L

i∈hUi ∈ PTree, possibly defined by some constructor
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∨L
i∈h(.) not allowed in k. Assume we have in input a tree U =

∨L
i∈hUi defined by

a constructor which is not yet known when we define k: the two main examples
are when h = k, or any countable set X which is not part of our current language.
In this case the input channel of the tree itself is a kind of “black box”, and it
is not available to us: we cannot select an index i ∈ h. The only way of using

U as input is to produce, as output, a tree V =
∨L

i∈hg(Ui) with the same index
set h as U , defined by some map g. In this way we ask to the “external world”
to provide index i in the unknown index set h. In the future we will find some
i ∈ h. In this moment, we will use i ∈ h to select the subtree Ui in the input
tree. Then we compute the output g(Ui) out of the value Ui. We call this way
of computing “polymorphism”, because it works for many possible shapes of the
unknown elements of the index type h, instead of working for an index type whose
elements are known. Polymorphism may use its input only in a very simplified
way: we recopy the index type and the label, and we right-compose the branching
i ∈ h 7→ Ui of the argument with some other map g (maps in our interpretation
should be closed by composition).

If we extend the index set k to PTree, we obtain a tree T =
∨L{Ti|i ∈ PTree}

which may be instanced to any tree i ∈ PTree, not just to the trees i belonging to
the training set k. The main property we are going to prove for this kind of trees
is the following, which we call the Lifting Theorem: if the restricted version
of T is well-founded, then for all i ∈ PTree which are well-founded trees, Ti is
well-founded.

References

[1] Girard Jean-Yves Pi12-logic. I. Dilators, Ann. Math. Logic 21, no. 2-3, 75–219, 1981
[2] Girard Jean-Yves Introduction to Pi12-logic, The present state of the problem of the foun-

dations of mathematics (Florence, 1981). Synthese 62, no. 2, 191–216, 1985
[3] Girard Jean-Yves A survey of Pi-1-2-logic, Logic, methodology and philosophy of science,

VI (Hannover, 1979), pp. 89–107, Stud. Logic Foundations Math., 104, North-Holland,
Amsterdam-New York, 1982

[4] Jean-Yves Girard, Jacqueline Vauzeilles: Functors and Ordinal Notations. A Functorial
Construction of the Bachmann Hierarchy. I:J. Symb. Log. 49(3): 713-729 (1984). II: J.
Symb. Log. 49(4): 1079-1114 (1984).

[5] Girard Jean-Yves and Ressayre Jean-Pierre Elments de logique Pi1n [Elements of Pi1n-
logic], Recursion theory (Ithaca, N.Y., 1982), 389–445, Proc. Sympos. Pure Math., 42,
Amer. Math. Soc., Providence, R.I., 1985

Constructive homotopy theory and models of intensional type theory

Andrej Bauer

Classical homotopy theory is based on the idea of a path as a continuous map
defined on a closed interval. Such paths form the fundamental groupoid because
two paths may be joined if one ends where the other begins. The argument relies
on the fact that by gluing two abutting closed intervals together we get a closed in-
terval. Unfortunately, this need not be the case constructively, and so constructive
homotopy theory falls even before it has made the first step.
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This phenomenon was observed before by Michael Beeson [1] and Erik Palm-
gren [2] who each proposed a solution: we may limit attention to spaces with the
path-joining property in which paths can actually be joined (complete separable
metric spaces are such), or we may pass from ordinary spaces to point-free ones,
in which case the problem disappears.

In this talk I report on work in a third direction: we may relax the notion of
a path as a continuous map defined on a finite gluing of abutting intervals. That
is, if γ : [a, b] → X and δ : [b, c] → X are paths in X , then they may be joined
to give a path γ · δ : [a, b] ∪ [b, c] → X , where crucially we do not assume that
[a, b]∪[b, c] = [a, c]. This leads to a Moore-style presentation of homotopy in which
paths are parameterized by many interval-like objects.

In fact, the whole development can be done constructively in extensional type
theory, and we need not work specifically with gluings of abutting intervals. In-
stead, we formulate abstract properties of an algebra of intervals and show that
they give a notion of fibration and a path object that can be assembled into a
model of intensional type theory.
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Proof Theoretic Characterisations of Feasible Set Functions

Arnold Beckmann

(joint work with Sam Buss, Sy-David Friedman, Moritz Müller, and Neil Thapen)

Recently, various restrictions of the primitive recursive set functions relating to
feasible computation have been proposed, amongst them the Safe Recursive Set
Functions [2], the Predicatively Computable Set Functions [1], and the Cobham Re-
cursive Set Functions (Beckmann, Buss, Friedman, Müller, Thapen – this is work
in progress). In this talk I have described ideas how some of these classes can be
captured as the Σ1-definable set functions in suitable restrictions of Kripke-Platek
set theory, by elementary proof-theoretic means. In particular, I have described a
theory whose Σ1-definable set functions are exactly the Safe Recursive Set Func-
tions, and another theory whose Σ1 definable set functions are characterised by
the Cobham Recursive Set Functions.
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Classical Realizability arising from Domain Theoretic Models of
Lambda Calculus with Control

Thomas Streicher

In the first decade of this millenium Jean-Louis Krivine introduced his notion
of classical realizability giving rise to models of Zermelo-Fraenkel set theory (see
[Kri01]). However, for the purpose of realizing the axiom DC of Dependent Choice
in [Kri03] he used a kind of quote construct as known from the programming lan-
guage Lisp in contrast to more traditional proof theory where usually bar recursion
is used for this purpose.

In our talk we present classical realizability models arising from domain-theoretic
models of λ-calculus with control by solving the domain equation D ∼= ΣD

ω

(see
[SR98]) where Σ is the 2 element lattice and Dω is the countable product of D.
As shown in [Str13] such realizability structures give rise to classical realizability
toposes. When solving the domain equation for D in Scott domains the ensuing
topos is equivalent to Set. The reason is that Scott domains host the join op-
eration ∨ : Σ × Σ → Σ. This operation does not exist in the category Coh of
coherence spaces and stable continuous functions between them. When solving
the domain equation for D in Coh one obtains a classical realizability topos K
which is not a Grothendieck topos and thus, in particular, not a forcing model.

Since D allows for general recursive definitions one can construct within D a
bar recursor by which one can realize DC. For verifying this we use bar induction
on the meta level which is admissible since in D one can represent all sequences of
elements in D. This also guarantees that K validates all true first order sentences
of arithmetic.

We conclude with the following two open questions

(1) Is K 2-valued?
(2) Does DC still hold when restricting D to computable elements?

A negative answer to the second question would demonstrate that in general clas-
sical realizability does not validate dependent choice as conjectured by Krivine but
unproved so far.
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Results around a nonstandard functional interpretation

Benno van den Berg

(joint work with Eyvind Briseid and Pavol Safarik)

In recent work with Eyvind Briseid and Pavol Safarik we defined functional inter-
pretations for systems for nonstandard arithmetic. We used these interpretations
to prove conservation and term extraction results.

In the talk I explained how the nonstandard functional interpretation could have
been found without aiming for a proof-theoretic analysis of nonstandard systems,
but rather by modifying certain ideas for refined term extraction. I started from
Lifschitz’ paper on calculable numbers [7]: his idea was that constructive arith-
metic could be seen as an extension of classical arithmetic. He did this by adding
a new unary predicate K to the language of arithmetic and defining a realizability
interpretation of the extended theory where the old arithmetical quantifiers where
interpreted uniformly, while x is the only realizer of K(x). As a result, the rela-
tivised quantifiers are interpreted as in Kleene’s 1945 realizability. Similar ideas
with two kinds of quantifiers, one computationally empty and one with compu-
tational content, have surfaced in the work of many people (Troelstra, Berger,
Hernest and many others).

In fact, in Lifschitz’ work one does not just have two kinds of quantifiers, but also
two kinds of disjunctions. To eliminate this one could weaken the meaning of K(x)
by saying that a realizer for K(x) is a (coded) sequence 〈s1, . . . , sn〉 with x = si
for some i. Clearly, this also changes (weakens) the computational content of the
existential quantifiers. But it can be used to define a realizability interpretation
which we have dubbed Herbrand realizability.

Herbrand realizability does not in itself provide a good analysis of nonstan-
dard systems. However, the associated functional interpretation (which stands
to Herbrand realizability in the same way as the Dialectica interpretation stands
to modified realizability) has characteristic principles which are recognisable as
principle from nonstandard analysis, especially in the approach taken by Edward
Nelson in his Internal Set Theory [9, 10].

In this talk I also reported on other developments:

• In a recent preprint [2] with Sam Sanders we clarified the status of the
transfer principle in our theories. We obtained an improved conserva-
tion result in the classical case; we also established a precise link between
transfer principles and forms of comprehension.

• In ongoing work with Eyvind Briseid and Pavol Safarik, we show that
countable saturation has no proof-theoretic strength intuitionistically; how-
ever, it follows from recent work by Escardo and Oliva [5] that, classically,
it has the strength of full second-order arithmetic.

• This proof-theoretic work led to the definition of two new toposes [3, 4]. In
his master thesis Amar Hadzihasanovic studied the relation between these
toposes and the sheaf topos for nonstandard arithmetic found by Ieke
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Moerdijk [8] and further investigated by Erik Palmgren. These results are
reported in [6].

This framework also promises to be suitable for the purposes of Reverse Mathemat-
ics; in addition, it may provide a translation manual between the model-theoretic
approaches and proof-theoretic approaches towards establishing uniformities (non-
standard models versus proof-mining).
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Definability and Non-Definability in Intuitionistic Logic

Andrew Swan

If T is a first order theory and ψ(x) and φ(x) are formulas over T with one free
variable, then we say ψ(x) defines a witness for φ(x) if T ⊢ ∃!x ψ(x) and T ⊢
ψ(x) → φ(x). We say T has the existence property (EP) if whenever T ⊢ ∃x φ(x),
there is some ψ(x) that defines a witness for φ.

The existence property is sometimes considered as something that ought to
hold for constructive theories because of the BHK interpretation of existential
quantifiers. It is therefore natural to ask whether commonly used constructive set
theories satisfy the existence property.

In [1], Friedman and S̆c̆edrov showed that IZF, an intuitionistic version of ZF
does not have EP, even though it does have other “nice” constructive properties
such as the numerical existence property, disjunctive property and Church’s rule.
The cause appears to be the “non explicit” collection axiom. However, in some
cases set theories with collection can still have the existence property. Rathjen
showed that three variants of CZF have EP: CZF−, CZFE and CZFP (see [2]).
All three satisfy collection.
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In [2], it was left open whether or not CZF itself has EP. I showed in [3] that
in fact CZF does not have EP. One of the main ideas in the proof is fairly simple
and can be illustrated with an example using intuitionistic ordered fields. I will
prove that the formula ∃x (x2 − 2)(x2 − 3) = 0 has no definable witnesses when
added as an axiom to the theory of intuitionistic ordered fields (although it does
when added to the classical theory of ordered fields).

I will also cover some recent work relating the existence property to type theory.
Propositional truncation can be added to type theory to allow one to “squash”
a type down to a proposition (a type where any two elements are equal to each
other). It has recently received a lot of attention due to its heavy use in homotopy
type theory. I will show how propositional truncation can be used to state the
existence property for variants of intensional type theory. This raises interesting
questions regarding the status of the existence property for several variants of type
theory.
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A functional interpretation of KPω

Fernando Ferreira

The Σ-ordinal of Kripke-Platek set theory (with infinity) KPω is by definition

||KPω||Σ := min{α : Lα |= ψ for all Σ-sentences ψ such that KPω ⊢ ψ}.
In [1], William Howard introduced a term calculus for the so-called primitive

recursive tree functionals of finite type. This typed calculus has two base types:
one for the natural numbers and the other (denoted by Ω) for Howard’s construc-
tive ordinals. To each closed term q of type Ω it is naturally associated an ordinal
height |q|. By means of a functional interpretation (based on the work of Jeremy
Avigad and Henry Towsner in [2]), we show that ||KPω|| is

sup{|q| : q is a closed term of the base type Ω}.
This is the well-known Bachmann-Howard ordinal. Hence, our work presents

an alternative characterization of the Σ-ordinal of KPω, one that does not rely
on the traditional Gentzen type ordinal analysis. The functional interpretation
gives extra information, namely it yields a “growth” characterization of the Π2-
consequences of KPω via suitable terms of Howard’s calculus applied to the stages
of Gödel’s constructible hierarchy. The functional interpretation generalizes to a
natural second-order extension of KPω with strict Π1

1-reflection. We prove that
this second-order extension is Σ-conservative over KPω. It is an open question
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whether it is also Π2-conservative. This part of the presentation is based on the
paper [3].

In the remainder of the presentation, we showed how a modification of the above
functional interpretation is able to analyze the theory KPω(P), roughly Kripke-
Platek set theory with a primitive power set operation (hence, quantification under
set inclusion is considered a bounded quantification). The notion of ΣP -formula
is naturally defined and it is shown that the relativized ΣP -ordinal of KPω(P),
defined as

min{α : Vα |= ψ for all ΣP -sentences ψ such that KPω(P) ⊢ ψ}
is also the Bachmann-Howard ordinal. This reproves a recent result of Michael
Rathjen reported in [4]. A “growth” characterization of the ΠP

2 -consequences of
KPω(P) is also given, but now in terms of the the stages of the cumulative hierarchy
(instead of the constructible hierarchy). These results are not yet published, nor
fully checked.
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Logical representations of partial, mutable and reusable data

Ulrich Berger

In the talk we highlight some shortcomings of the proof-theoretic technique of
program extraction from proofs regarding the representation of data and make
proposals for overcoming them in a logic-oriented way.

1. Introduction

Program extraction (via realizability) from proofs in intuitionistic arithmetic and
related systems generates terms in a suitable extension of Gödel’s system T , that
is in a functional programming language. This is fine in theory, but insufficient in
practice. In order to extract programs that are of practical relevance one should
be able to

• control the way computed data are stored so that they can be reused
• allow for partially defined data
• override data that are no longer used
• control the computational complexity of extracted programs
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Quite a lot of work has been done on the last item. This talk will address the less
explored first three items. As illustrating examples we use the signed digit and
Gray-code representation of real numbers as well as in-place Quicksort.

2. Induction

Our background theory is first-order logic with inductive definitions: For every
monotone operator Φ : Pow(X) → Pow(X) we can define its least fixed point
µΦ ⊆ X . We call µΦ the set inductively defined by Φ. Instead of “I := µΦ” we

write “I
µ
= Φ(I)” or “I(x)

µ
= Φ(I)(x)”. If I

µ
= Φ(I) we have for every subset A of

X the induction principle

Φ(A) ⊆ A→ I ⊆ A

Inductive definitions give rise to wellfounded trees and structural recursion.
As an example we consider real numbers (R, 0, 1,+, ∗, <, . . .) as an abstract

structure described by true disjunction-free first-order axioms. Natural numbers
are defined inductively as a subset of R.

N(x)
µ
= x = 0 ∨ N(x− 1)

This generates the unary representation of natural numbers. A program for addi-
tion is extracted from a proof that the predicate N is closed under addition.

In order to compute with real numbers, we first define the set Q of rational
numbers and then define when a real number can be approximated arbitrarily well
by rational numbers:

A(x) := ∀n ∈ N ∃q ∈ Q|x− q| ≤ 2−n

A realizer of A(x) is a fast Cauchy sequence (given as a function from N to Q)
converging to x. We can extract addition w.r.t. the Cauchy representation from a
proof that A is closed under addition.

3. Coinduction

We obtain a representation of reals by infinite streams instead of functions by
coinduction: We extend the logic by allowing to define a set as the largest fixed
point νΦ of a monotone operator Φ : Pow(X) → Pow(X). We call νΦ the set

coinductively defined by Φ. Instead of “I := νΦ” we write “I
ν
= Φ(I)” etc. If

I
ν
= Φ(I) we have for every subset A of X the coinduction principle

A ⊆ Φ(A) → A ⊆ I

We define a coinductive predicate expressing that a real number x in the interval
[−1, 1] has a signed digit representation:

C(x)
ν
= x ∈ [−1, 1] ∧ ∃d ∈ {−1, 0, 1} C(2x− d)

A realizer of C(x) is an infinite stream of signed digits d0 : d1 : . . . such that

x =
∑

i

di2
−(i+1)



Mathematical Logic: Proof theory, Constructive Mathematics 2979

This representation can be generalized to a nested inductive/coinductive defini-
tion of continuous real functions yielding a representation of such functions as
non-wellfounded trees. Programs with respect to these representations have been
extracted in the Minlog system [2].

Remark . In mathematics we tend to identify infinite streams with functions
defined on the natural numbers. In programming, streams and functions are very
different : A function is stored as a closure, i.e. a piece of code (representing the
λ-term defining the function) together with an environment for the free variables.
On the other hand, a stream is stored as a dynamically linked list containing
the elements of the stream computed so far, together with code defining the yet
uncomputed rest of the stream. The crucial difference between functions and
streams is that if a value of a function is needed again, it is recomputed, while if
an element of a stream is needed again, it just needs to be looked up.

4. Dynamic induction

Gaining efficiency by remembering computed values of a recursively defined func-
tion is often called dynamic programming. Dynamic programming has a logical
counterpart which we call dynamic induction. It consists in proving the induction
scheme using coinduction and a trivial instance of induction.

The program extracted from dynamic induction realizes N ⊆ A as an infinite
stream (coinduction) and looks up its elements (induction). Dynamic induction
generalizes in a straightforward way from N to inductive definitions of the form

I(x)
µ
= B(x) ∨ ∃y < x I(y)

for arbitrary predicates B and relations <. It is open whether this can be extended
to arbitrary strictly positive inductive definitions. The problem seems to be related
to work by Hinze [4] and Altenkirch [1].

5. Gray code

The Gray code (discovered by Frank Gray in 1946 who called it “reflected binary
code”) is an alternative to the binary representation of natural numbers where
neighbouring numbers differ in only one digit. Tsuiki extended this to a represen-
tation of real numbers [5]. The Gray code of x ∈ [−1, 1] is the itinerary of the
tent map t(x) = 1 − 2|x|, i.e. the n-th digit is 0 resp. 1 if tn(x) < 0 resp. > 0. If
tn(x) = 0, the n-th digit is undefined. One easily sees that at most one digit of the
Gray code can be undefined. Therefore, computation with the Gray code can be
modelled by a Two-Head-Turing-Machine. Such a machine cannot be extracted
from a proof in the current system since it exhibits a kind of parallelism that is
absent in extracted programs. In ongoing work we try to develop a logic where
this is possible.
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6. Extracting programs with destructive update

The well-known Quicksort algorithm can be implemented by successively swapping
the elements of the array to be sorted (in-place quicksort). This program cannot
be extracted because it destructively changes the array. Extracted programs are
purely functional and never destroy data.

However, one can give a proof that every array of natural numbers can be sorted
in such a way that the extracted program can be canonically transformed to the
imperative in-place quicksort program [3]. We are currently developing logic that
directly extracts such programs.
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CH and semi-intuitionism

Michael Rathjen

Dummett’s diagnosis of the failure of Frege’s logicist focusses on the adoption of
classical quantification over domains comprised of objects falling under an indef-
initely extensible concept. He repudiates the classical view as illegitimate and
puts forward reasons in favor of an intuitionistic interpretation of quantification.
Solomon Feferman, in recent years, has argued that the Continuum Hypothesis
(CH) might not be a definite mathematical problem (see [2, 3, 4]).1 “My reason
for that is that the concept of arbitrary set essential to its formulation is vague
or underdetermined and there is no way to sharpen it without violating what it is
supposed to be about. In addition, there is considerable circumstantial evidence to
support the view that CH is not definite.” ([2, p.1]) In particular the power set,
P(A), of a given set A may be considered to be an indefinite collection whose
members are subsets of A, but whose exact extent is indeterminate (open-ended).
In [2], Feferman proposed a logical framework for what’s definite and for what’s
not. “One way of saying of a statement ϕ that it is definite is that it is true or
false; on a deflationary account of truth that’s the same as saying that the Law of
Excluded Middle (LEM) holds of ϕ , i.e. one has ϕ ∨ ¬ϕ . Since LEM is rejected
in intuitionistic logic as a basic principle, that suggests the slogan, “What’s defi-
nite is the domain of classical logic, what’s not is that of intuitionistic logic.” [...]
And in the case of set theory, where every set is conceived to be a definite totality,

1Incidentally, the paper [2] was written for Peter Koellner’s Exploring the frontiers of incom-
pleteness (EFI) Project, Harvard 2011-2012.
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we would have classical logic for bounded quantification while intuitionistic logic
is to be used for unbounded quantification.” ([2, p. 23]) At the end of [2] he made
that idea more precise by suggesting semi-intuitionistic set theories from [1] as
frameworks for formulating questions of definiteness and studying the definiteness
of specific set-theoretic statements. In relation to CH , he conjectured that this
statement is not definite in the specific case of a semi-intuitionistic set theory T,
in the sense that T does not prove CH ∨ ¬CH . The set-theoretical point of
view expressed by T accepts the definiteness of the continuum in its guise as the
arithmetical/geometric structure of the real line, but does not allow the powerset
operation to be applied to arbitrary sets.

The objective of this talk to report on the paper [5] which proves Feferman’s
conjecture. [5] is a technical paper. It lays out new evidence for the reader to
consider. However, as far as the ongoing discussions of the foundational status of
CH are concerned, readers will have to form their own conclusions.

A chief technique applied in this article is realizability over relativized con-
structible hierarchies combined with forcing. More widely the impression is that
CH is not an isolated case in that other statements could be proved to be indefi-
nite relative to semi-intuitionistic set theories in this way. At any rate, it appears
that the paper adds a hitherto unexplored tool for engineering specific realizability
models and proving independence results.
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