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Introduction by the Organisers

The spectral theory of dynamical systems was initiated by Koopman [19] and
von Neumann [24], and later developed in various directions. So far, a complete
classification result in the realm of measure-theoretic dynamics only exists for
dynamical systems with pure point spectrum. This approach is usually formulated
via the Halmos–von Neumann theorem [17]. This certainly applies to model sets
(also known as cut and project sets), where the corresponding Kronecker factor
emerges constructively [8, 4].

The development of (mathematical) diffraction theory [18] admits an alternative
approach to measure dynamical systems on locally compact Abelian groups. For
systems with pure point spectrum, the equivalence of the two approaches has been
established in a series of publications [22, 20, 7, 21]. More recent are first steps
towards an extension to systems with mixed spectra [9], with particularly concrete
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results for systems with finite local complexity (FLC) [2, 5, 10] (compare also the
abstracts by D. Lenz, M. Baake, U. Grimm and F. Gähler below).

The essential point here is the insight that, in general, the dynamical spectrum
is richer than the diffraction spectrum of a system [23, 10], but not than the
collection of diffraction spectra of the system and a suitable family of its factors [9].
In general, one has to expect that such a family is infinite, at least if one restricts
to factors of the same complexity type. Astonishingly, in many of the classic
examples, one can work with a finite family; see [4, 3] and references therein, as
well as the abstract by D. Lenz below. What is presently lacking is a classification
of those systems where such a finiteness condition applies. Even a useful sufficient
criterion is unknown at present.

The primary aim of this mini-workshop was to bring together experts from
both ends of the spectrum in order to reach a better understanding of the correct
equivalence notion and to take first steps towards a spectral classification beyond
the pure point case. To facilitate discussions, the mini-workshop started with four
survey talks which set the scene on central topics such as almost periodic measures,
dynamical and diffraction spectra, Schrödinger spectra and statistical mechanics
approaches; see the abstracts by N. Strungaru, D. Lenz, D. Damanik and A.C.D.
van Enter for details. A further three talks addressed various topological aspects of
tilings and tiling spaces; compare the abstracts by J. Kellendonk, T. Fernique and
A. Clark. The talks of the remaining ten participants discussed specific questions
related to spectral properties, as detailed elsewhere in this introduction.

Particularly interesting questions in this context concern systems with singu-
lar continuous spectra, which have been studied in the context of Schrödinger
operators for some time (see, e.g., [12] and references therein, and compare the
abstracts by D. Damanik, A. Gorodetski, W. Yessen and J. Fillman), as well as
systems with absolutely continuous spectra, as they appear in the theory of point
processes [16, 1]. In the latter case, it quite often occurs that dynamical and
diffraction spectra become equivalent again [6]. In fact, this and various heuristic
arguments (compare the abstracts by A.C.D. van Enter and H. Kösters) point to-
wards the conjecture that the diffraction spectrum is absolutely continuous relative
to the maximal spectral measure of the dynamical spectrum.

A more recent extension of the theory emerged by the use of exact renormal-
isation techniques for the spectra (compare the abstracts by M. Baake and F.
Gähler), which can help significantly to determine the spectral type, and by the
study of weak model sets (see the abstracts by C. Richard and C. Huck), which
fail to be minimal as dynamical systems. Moreover, they have entropy, but can
still show pure point spectrum. This is, in a way, in contrast to highly ordered
systems such as the Rudin–Shapiro chain and its generalisations via Hadamard
matrices (compare the abstract by N. Frank), which show Lebesgue measures in
their dynamical and diffraction spectra.

Another focus of the mini-workshop was to take first steps to clarify the con-
nection between Schrödinger spectra and the dynamical and diffraction spectra
discussed above. There is very little understanding of this question in general,
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aside from some heuristics based on the existing results on the two sides. Namely,
based on the known results for some specific classes of examples, it is quite ap-
parent that with increasing disorder of the system, the dynamical and diffraction
spectra become more regular (i.e., more continuous), while the Schrödinger spectra
become more singular. Finding a direct connection between the two sides, perhaps
a suitable duality notion, explaining these tendencies would be highly desirable.
Thus, a secondary aim of the proposed mini-workshop was to facilitate and stimu-
late discussions between those participants working on dynamical and diffraction
spectra and those (also) working on Schrödinger operators.

One recent advance in this direction has been obtained in [13, 14], where (for the
central model in the context of quasicrystals, the Fibonacci case) the Schrödinger
density of states measure, which is the phase average of the spectral measures
associated with the Fibonacci Schrödinger operator, was shown to result from
the measure of maximal entropy of the associated trace map dynamical system
by projection along the stable manifolds of points in the non-wandering set of the
trace map. While this result does establish an explicit connection between spectral
measures and dynamical measures, it is somewhat special to the Fibonacci case as
it makes use of the presence of a hypberbolic basic set for the map implementing
the self-similarity. Such a structure is not present in more general settings.

As a result of the discussions that took place during the mini-workshop, sev-
eral research projects are now under way. One goal is to find a closer connection
between those systems that are dynamically pure point and the corresponding
Schrödinger spectra. For the most prominent examples, such as the Fibonacci
or the period doubling case, it is known that the singular continuous nature of
the Schrödinger spectral measure is uniform across the hull [11, 15]. In contrast,
no such uniform result is known for cases whose dynamical spectrum is not pure
point. It is therefore natural to explore whether there is a connection between
these phenomena, and hence to look for further models with pure point dynamical
spectrum and uniform singular continuous Schrödinger spectrum, as well as a bet-
ter understanding of whether models with uniform singular continuous Schrödinger
spectrum that do not have pure point dynamical spectrum can or cannot exist.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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[6] M. Baake, H. Kösters, R.V. Moody, Diffraction theory of point processes: Systems with
clumping and repulsion, to appear in J. Stat. Phys.; arXiv:1405.4255.

[7] M. Baake, D. Lenz, Dynamical systems on translation bounded measures: Pure point
dynamical and diffraction spectra, Ergod. Th. & Dynam. Syst. 24 (2004), 1867–1893;
arXiv:math.DS/0302061.

[8] M. Baake, D. Lenz, R.V. Moody, Characterisation of model sets by dynamical systems,
Ergod. Th. & Dynam. Syst. 27 (2007), 341–382; arXiv:math.DS/0511648.

[9] M. Baake, D. Lenz, A.C.D. van Enter, Dynamical versus diffraction spectrum for structures
with finite local complexity, Ergod. Th. & Dynam. Syst., in press; doi:10.1017/etds.2014.28;
arXiv:1307.7518.

[10] M. Baake, A.C.D. van Enter, Close-packed dimers on the line: Diffraction versus dynamical
spectrum, J. Stat. Phys. 143 (2011), 88–101; arXiv:1011.1628.

[11] D. Damanik, Uniform singular continuous spectrum for the period doubling Hamiltonian,
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Abstracts

Almost periodic measures and Meyer sets

Nicolae Strungaru

(joint work with Robert V. Moody)

The space WAP (G) of weakly almost periodic measures contains both the cone of
positive definite translation bounded measures [1] and the subspace of translation
bounded Fourier transformable measures [2].

Every weakly almost periodic measure µ can be written uniquely as the sum

µ = µ
s
+ µ0 ,

of a strong almost periodic measure µs and a null weakly almost periodic measure
µ0. We will refer to this decomposition as the Eberlein decomposition.

The Eberlein decomposition is the Fourier dual of the Lebesgue decomposition
of a measure into a discrete and continuous measure [1, 2]. More exactly, given
a translation bounded Fourier transformable measure µ, the measures µs and µ0

are Fourier transformable and

µ̂
s
= (µ̂)

pp
; µ̂0 = (µ̂)

c
.

This result makes the class of weakly almost periodic measures, and the Eberlein
decomposition, of special interest for the theory of diffraction.

In general, given a weakly almost periodic measure µ, the supports of µs and µ0

can be much larger than the support of µ. If µ is supported inside a lattice, then so
are µs and µ0. It is intriguing that the same is true for measures supported inside
model sets with closed (compact) window [4]: If (G ×H,L) is a cut and project
scheme, W ⊂ H is a compact set, and µ is a weakly almost periodic measure with
supp(µ) ⊂ Λ(W ) then

supp(µ
s
) , supp(µ0) ⊂ Λ(W ) .

An immediate consequence is that the class of measures supported inside Meyer
sets is stable under the Eberlein decomposition: If µ is a weakly almost periodic
measure supported inside a Meyer set, then µs and µ0 are also supported inside
Meyer sets.

This result has important consequences for the diffraction of measures with
Meyer set support. If ω is any translation bounded measure, with an autocorrela-
tion measure γ supported inside a Meyer set, then each of the discrete diffraction
measure γ̂pp and continuous diffraction measure γ̂c is either trivial or has a rela-
tively dense support. In particular, Meyer sets always have a relatively dense set
of Bragg peaks, which are highly ordered [4, 3].
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Dynamical versus diffraction spectra in aperiodic order

Daniel Lenz

(joint work with Michel Baake, Aernout C.D. van Enter)

We consider uniquely ergodic one-dimensional subshifts over a finite alphabet con-
sisting of real numbers. Each such dynamical system comes with two spectra: The
dynamical spectrum arising from the unitary action on an L2-space and the diffrac-
tion spectrum arising from the autocorrelation of an (arbitrary) element from the
system.

A well-known result originally due to Dworkin [1] (and later elaborated on
in various works) gives that the diffraction spectrum is part of the dynamical
spectrum. At the same time it was shown by van Enter and Miȩkisz [3] that the
inclusion is usually strict as far as spectral types go.

This raises the question ‘where the parts of the dynamical spectrum which are
missing in the diffraction can be found’. Examples investigated by Baake and van
Enter [2] suggested that they may be found in the diffraction of subshift factors.
This is indeed the case in a very precise sense as could recently be shown in [4].
In fact, it turns out that it suffices to consider diffraction of conjugate systems.
Similar results hold for (uniquely ergodic) Delone dynamical systems with finite
local complexity.

These results imply a distinction between those systems where finitely many
factors suffice to recover the dynamical spectrum and those where this is not the
case. In this context, various questions are open.

To put our results in perspective, we mention that, as far as pure point spectrum
goes, there is an equivalence, i.e., pure point diffraction spectrum is equivalent to
pure point dynamical spectrum (as could be shown in a collaborative effort over
the last fifteen or so years).
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Schrödinger spectrum and quantum dynamics

David Damanik

In this talk we explained how the Schrödinger equation i∂tψ = Hψ describes
the time evolution of a quantum state and how the medium is modeled through
the potential of the Schrödinger operator H . The relevance of the spectrum as
the set of allowed energies, the spectral measures whose type is closely related to
the transport behavior of the system, and the actual transport exponents were
discussed.

We then focused on the specific case of the Fibonacci Hamiltonian, which is the
central model in the study of electronic properties of one-dimensional quasicrystals.
It is given by the following bounded self-adjoint operator in ℓ2(Z),

[Hλ,ωψ](n) = ψ(n+ 1) + ψ(n− 1) + λχ[1−α,1)(nα+ ω mod 1)ψ(n),

where λ > 0, α =
√
5−1
2 , and ω ∈ R/Z.

For this model, we have obtained quite detailed quantitative information about
the fractal dimension of the spectrum [1, 2, 6] and of the density of states measure
[3, 6], as well as the optimal Hölder exponent of the integrated density of states
[4, 6] and the transport exponents [5, 6, 7, 8], particularly the upper transport
exponent corresponding to the fastest moving part of the wavepacket.

For all these quantities associated with the Fibonacci Hamiltonian, the precise
asymptotics in the regime of small or large coupling have been determined.
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Aperiodicity in statistical mechanics

Aernout C.D. van Enter

In statistical mechanics, one usually considers (ground state or Gibbs) probability
measures as the fundamental objects, while the individual configurations (Dirac
combs, which at T = 0 are typically translation bounded measures) are considered
in the quasicrystallography community. Ergodicity arguments often explain why
for many global traits µ-almost all, for some measure µ, or even all configurations
display the same global behaviour. Spectra are an example in case. Tradition-
ally, the diffraction spectrum was computed for Dirac combs, and the dynamical
spectrum as the spectrum of the unitary operator generating translations, acting
on the L2(µ)−space. However, they are intimately connected, and the diffraction
spectrum forms a subset of the dynamical spectrum. It turns out that, if the
diffraction spectrum is pure point, then so is the dynamical spectrum. This can
be interpreted in the sense that the aggregates (the ‘molecules’) built up from
the individual particles (the ‘atoms’) can be more but not less ordered than these
atoms. This leads to the following, more general conjecture.

Conjecture 1. If the diffraction spectrum has no absolutely continuous compo-

nent, then neither has the dynamical spectrum.

As of now, there have been constructed a variety of lattice models whose ground
states are ordered in a non-periodic way, but as for Gibbs states, the results are
much more modest, see for example [3] and references mentioned there. Indeed, at
T = 0, for minimal systems it is often not hard to show the existence of interactions
for which they are ground state measures. Such arguments go back to Aubry and
Radin [1, 9]. Moreover, matching rules for tilings can be translated into nearest-
neighbour interactions for which these tilings are ground states. For T > 0, only
some more or less implicit existence results are known. Some explicit results would
be very welome, I discussed what might be expected and in particular I discussed
two conjectures.

Conjecture 2. No quasicrystals in d = 2: In two dimensions at positive temper-

ature, all extremal Gibbs measures for finite-range interactions are periodic (that
is, quasicrystals do not exist for short-range models).

Conjecture 3. Quasicrystals occur in d = 3: In three or more dimensions, there

exists a translation-invariant Gibbs measure for a short-range interaction which

decomposes into non-periodic extremal Gibbs measures.

At the end of my talk, I discussed how aperiodic sequences and tilings recently
have attracted attention in the glass physics community, where issues such as ape-
riodic order, slowing down, Parisi overlap distributions and chaotic temperature
dependence have been discussed. For some of these issues, see e.g. [6, 7, 8, 10, 11,
4, 5, 2].
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Autocorrelation via renormalisation

Michael Baake

(joint work with Natalie Frank, Franz Gähler, Uwe Grimm, E. Arthur Robinson)

Substitution systems of constant length are rather well understood, both combi-
natorially and spectrally; see [6, 1, 4] and references therein, as well as the recent
general approach in [3]. For classic examples such as the Thue–Morse or the
Rudin–Shapiro sequence, the spectral properties can be accessed explicitly and
constructively via a recursion relation for the autocorrelation coefficients, for in-
stance with weights in {±1}. These coefficients then constitute a positive definite
real-valued function on the group Z. Its Fourier transform is the fundamental
part of the diffraction measure of the system, and simultaneously the relevant
spectral measure for the discussion of the dynamical spectrum; see [2] and refer-
ences therein for details on this connection. For the Thue–Morse system, one finds
purely singular continuous diffraction, while the Rudin–Shapiro system is one of
the rare examples with absolutely continuous diffraction; compare the abstract by
N. Frank in this report.

In general, no simple extension of this procedure is known, but one can use
an approach via general pair correlation measures, as used in [6] and also in [3]
for constant length and lattice substitutions. The new insight comes from the
observation that, in the setting with natural tile lengths in one dimension, there
is a set of exact renormalisation relations for these pair correlation functions that
derive from the tile inflation rule together with local recognisability, which holds
for all aperiodic cases. These relations comprise two regimes, one of a purely
recursive nature and one with a self-consistency structure. The latter determines
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the solution and can be used to gain insight into the spectral type and other
aspects of the system.

For the classic Fibonacci inflation (a 7→ ab, b 7→ a), using a result due to
Strungaru [5], see also his abstract in this report, one can give an independent
proof of its pure point nature, while for one of the simplest non-PV inflations
(namely a 7→ abbb, b 7→ a), one can now show the absence of absolutely continuous
spectral components. This means that this example shows, apart from its trivial
(constant) eigenfunction, a purely singular continuous spectrum. More generally,
one can formulate an algebraic condition for the absence of absolutely continuous
diffraction, thus explaining the rarity of examples such as the Rudin–Shapiro chain
mentioned above.
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Conjugacies of FLC Delone sets

Johannes Kellendonk

(joint work with Lorenzo Sadun)

Motivated by various results which give a characterisation of repetitive FLC Delone
sets in Rd by means of their associated topological dynamical system (see [1] for
an overview), we ask:

(1) Given two Delone sets with topologically conjugate dynamical systems,
how are they related? Which geometrical properties are preserved under
topological conjugacy?

(2) Given a Delone set, how many other Delone sets have the same dynamical
system, up to topological conjugacy?

We require the Delone sets to be of finite local complexity (FLC), as otherwise
there will be too many possibilities. It is well known that two Delone sets which
are mutually locally derivable have the same dynamical system. Mutual local
derivability is therefore considered as the trivial way to obtain Delone sets with the
same dynamical system. The key result is the following [2]: Two FLC Delone sets

Λ,Λ′ have topologically conjugated dynamical systems whenever there exists a third
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Delone set Λ′′ which is mutually local derivable with Λ′ and a shape conjugation

of Λ.
A shape conjugation of Λ is defined by a map F : Λ → Rd and results in the

new set Λ′′ = {x + F (x) | x ∈ Λ}. F has to satisfy certain conditions which
allow for a cohomological interpretation. Therefore, shape conjugations of Λ are,
up to mutual local derivability, parametrised by the subgroup of asymptotically

negligible elements of H1(Λ,Rd), at least if they are small. Here, H1(Λ,Rd) is the
first cohomology of Λ with values in Rd. The second question above is therefore a
question on how big this subgroup is. We provide some general results about it and
then specialise to the case of model sets whose internal space is a finite-dimensional
real vector space and whose window is a finite disjoint union of convex sets. In
that case, we obtain an answer to the first question [3]: Any shape conjugation

is a reprojection, meaning that the only effect a shape conjugation has is that it
changes the direction along which the points in the strip are projected.
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From random to aperiodic tilings

Thomas Fernique

Consider a finite set of polygons of the Euclidean plane, called tiles. We call a
tiling any interior-disjoint covering of the Euclidean plane by translated such tiles.
A tile set which forms tilings, but only non-periodic ones, is said to be aperiodic.
The corresponding tilings are said to be aperiodic. The first aperiodic tile set was
found in 1964 by R. Berger, and several nice examples have been found since.
Aperiodic tilings are widely used to model quasicrystals, and a central question in
this context is to understand them beyond isolated examples.

One knows three general methods to find aperiodic tile sets. The first one
consists in enforcing a hierarchical structure that prevents periodicity: It has been
used for the first examples and later systematised (by S. Mozes in 1990, extended
by Ch. Goodman-Strauss in 1998, see also [3]). A second one is the computational
way opened by J. Kari in 1995: Tiles are designed to make tilings that simulate
computations that themselves enforce aperiodicity (see also [4]). The last one relies
on geometrical properties of tilings: It has been opened by L. Levitov in 1988 and
continued by several authors (J. Socolar, T. Le, S. Burkov, A. Katz, see also [1]),
but no complete characterisation has yet been obtained.

One drawback of an aperiodic tile set as a model of quasicrystals is the sys-
tematic existence of deceptions, which are finite patches of tiles that cannot be
extended to tilings of the whole plane. In other words, attempts to build a tiling
by assembling tiles one by one may fail (it remains unknown how often they fail).
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Alternatively, people considered so-called random tilings : Constraints on the way
tiles can be neighbours are relaxed so that not only aperiodic tilings but a huge
set of tilings can be formed; in some cases, these tilings are, with high probability,
close enough to aperiodic tilings. However, little is known beyond the dimer case.

Although random tilings can provide a good model of the first quasicrystals
(those obtained by quenching), this approach seems outdated, given the way most
of the quasicrystals are now obtained, namely by slow cooling. In this light, we are
interested in Markov processes which would gradually transform a random tiling
into an aperiodic one (see [2]). This leads to questions about the mixing time of
Markov chains defined on rather complicated spaces of tilings.
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Sums of Cantor sets and the square Fibonacci Hamiltonian

Anton Gorodetski

To determine the spectral properties of Laplacian on the graph defined by a Pen-
rose tiling (or any other higher-dimensional model of a quasicrystal) is a famous
open problem. One of the ways to get some intuition here is to consider a discrete
Schrödinger operator in ℓ2(Z2) (or ℓ2(Zd)) with separable potential, namely

[Hψ](m,n) = ψ(m−1, n)+ψ(m+1, n)+ψ(m,n−1)+ψ(m,n+1)+V (m,n)ψ(m,n),

where V (m,n) = V1(m) + V2(n) with bounded maps V1,2 : Z → R. Consider the
associated Schrödinger operators on ℓ2(Z),

[H1,2ψ](n) = ψ(n+ 1) + ψ(n− 1) + V1,2(n)ψ(n),

then the spectrum of H is given by σ(H) = σ(H1) + σ(H2). In particular, if one
considers the Fibonacci potential

V1,2(n) = λ1,2 χ[1−α,1)(nα+ ω1,2 mod 1),

where α =
√
5−1
2 , this construction gives the square Fibonacci Hamiltonian. The

spectral properties of the one-dimensional Fibonacci Hamiltonian were studied in
detail [3], and it is known that its spectrum is a dynamically defined (or regular)
Cantor set. The question on the structure of the sum of two dynamically defined
Cantor sets is classical, and appeared in dynamical systems, harmonic analysis,
and number theory.
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In [1], we use the results from [2] to prove the following (see [4] for previous
restricted results).

Theorem 1. Let {Cλ} be a family of dynamically defined Cantor sets of class C2

(i.e., Cλ = C(Φλ), where Φλ is an expansion of class C2 both in x ∈ R and in

λ ∈ J = (λ0, λ1)) such that d
dλ

dimH Cλ 6= 0 for λ ∈ J . Let K ⊂ R1 be a compact

set such that

dimH Cλ + dimHK > 1 for all λ ∈ J.

Then, Leb(Cλ +K) > 0 for a.e. λ ∈ J .

Theorem 2. There exists a non-empty open set U ⊂ R2
+ such that, for a.e.

(λ1, λ2) ∈ U , the density of states measure of the corresponding square Fibonacci

Hamiltonian is singular continuous, while the spectrum has positive Lebesgue mea-

sure.
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Tridiagonal substitution Hamiltonians

William Yessen

(joint work with Jake Fillman, May Mei, Yuki Takahashi)

We consider tridiagonal substitution Hamiltonians, namely operators H : ℓ2(Z) →
ℓ2(Z), given by

(Hω,(p,q)φ)n = pn−1φn−1 + pnφn+1 + qnφn,

where ω = · · ·ωn−1 · · ·ω0 · · ·ωn · · · is a two-letter primitive invertible substitution
sequence (such as, for example, the Fibonacci substitution sequence), and {pn}n∈Z

and {qn}n∈Z
are {p, 1}- and {q, 0}-valued sequences modulated by ω. We allow

q ∈ R and p ∈ R \ {0} with (p, q) 6= (1, 0).
The fractal structure of the spectrum in the cases where q = 0 or p = 1 is

completely understood (see [2]). Our main result in the case q 6= 0 and p 6= 1
states that the spectrum has a richer structure here.

Theorem 1 (Yessen [5], Mei–Yessen [4]). For any ω, if p 6= 1 and q 6= 0,
then the local Hausdorff dimension at x, LHD(x), for x in the spectrum, varies

continuously with x and for any x0 in the spectrum, LHD(x) is nonconstant in

any arbitrarily small neighbourhood of x0.

Furthermore, unlike in the case where p = 1 or q = 0, we have
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Theorem 2 (Yessen [5], Mei–Yessen [4]). Given a two-letter primitive invertible

substitution sequence ω, there exists a set Dω ⊂ {(p, q) ∈ R2 : p 6= 0} of zero

measure such that for all (p, q) ∈ D, the Hausdorff dimension of the spectrum

of the corresponding tridiagonal Hamiltonian is equal to one (and accumulates at

one of the endpoints of the spectrum). On the other hand, for all (p, q) /∈ D, the

Hausdorff dimension of the spectrum is strictly smaller than one.

The square Hamiltonian can also be considered (see [1] for definitions). In
this case, the previous theorem, together with the results from [1], leads to the
following result (see [3]).

Theorem 3 (Fillman–Takahashi–Yessen [3]). There exists a positive measure set

of parameters such that the corresponding square Hamiltonian has a spectrum that

contains an interval as well as a Cantor set; moreover, the density of states mea-

sure contains absolutely continuous as well as singular continuous components.
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Continuum models of one-dimensional quasicrystals

Jake Fillman

(joint work with David Damanik, Anton Gorodetski)

We discuss some models of one-dimensional quasicrystals, which are studied heav-
ily in the physics literature; for example, see [1, 5, 6, 8, 10, 11, 15, 16]. Our models
are given by Schrödinger operators on L2(R) whose potentials are generated by an
underlying ergodic subshift over a finite alphabet and a rule that replaces letters of
the alphabet by compactly supported potential pieces. For a survey of the discrete
counterparts of these operators, see [3].

We first develop the standard theory that shows that the spectrum and the
spectral type are almost surely constant. We discuss applications of cocycle dy-
namics to the spectral analysis of such operators. In particular, analogues of the
theorems of Kotani and Johnson hold for this class of operators. That is, the
almost sure absolutely continuous spectrum coincides with the essential closure
of the set of energies with vanishing Lyapunov exponent, and the resolvent set
coincides with the complement of the uniformly hyperbolic energies, provided the
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underlying dynamics are minimal [7, 12]. Consequently, the spectrum is a Cantor
set of zero Lebesgue measure if the potentials are aperiodic and irreducible and the
underlying symbolic dynamics satisfy the Boshernitzan condition [2] — the proof
combines work of Damanik–Lenz to deduce absence of nonuniform hyperbolicity
and Klassert–Lenz–Stollman to prove absence of absolutely continuous spectrum
[4, 9].

We then study the case of the Fibonacci subshift in detail and describe results
for the local Hausdorff dimension of the spectrum at a given energy in terms of
the value of the associated Fricke–Vogt invariant. In particular, the formalism of
Sütő which identifies the spectrum with the set of energies at which the associated
trace map is bounded can be worked out in this setting [13, 14].
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Binary bijective block substitutions in d dimensions

Uwe Grimm

(joint work with Michael Baake)

The Thue–Morse substitution and its generalisations generate one-dimensional
structures on Z that, in the case of balanced weights (zero average scattering
strength), show purely singular continuous diffraction; see [1, 2] and references
therein. The corresponding dynamical spectra contain non-trivial pure point parts,
which are absent in the diffraction, but which can be recovered by considering the
diffraction of suitable factors, for instance the image under a simple sliding block
map. Here, one obtains the period-doubling sequence (with point spectrum on
the dyadic integers) and its generalisations as factors; for the precise connection
between the diffraction spectra and the relevant spectral measures, see [4].

A natural generalisation to higher dimensions is provided by (non-degenerate)
binary bijective block substitutions in d dimensions [6, 7]. Working with the
alphabet {±1} ensures balanced weights, as both letters are equally frequent due to
the bijectivity. The corresponding diffraction measure corresponds to the maximal
spectral measure in the orthocomplement of the pure point spectrum; see [4] for
details. This measure can then be analysed by an analogous approach to the
one used for the Thue–Morse sequence and its generalisations [1], as was first
demonstrated for the example of the ‘squiral’ tiling [3]. The strategy is as follows.
Starting from the block substitution, one derives a set of renormalisation equations
for the autocorrelation coefficients η(m) for m ∈ Zd; compare also the abstract by
M. Baake in this report. These consist of a finite set of equations that determine
a subset of coefficients uniquely in terms of η(0), while the remaining relations
determine all other coefficients recursively. This suffices to show that the spectral
type has to be pure. Then, as it cannot be absolutely continuous by an application
of the Riemann–Lebesgue lemma, it is always singular. If the block substitution
has trivial height, the diffraction is always purely singular continuous [6], and there
is evidence that the only cases with pure point spectrum are those where the block
substitution is compatible with a fully periodic structure.

The non-trivial pure point part of the corresponding dynamical spectrum can,
once again, be recovered by considering suitable factors, in line with recent general
results [4] on the relation between the dynamical and diffraction spectrum; see also
[5] for a recent extension to more general lattice substitutions.
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A decorated silver mean tiling with mixed spectrum

Franz Gähler

There are many inflation tilings with a pure-point and a continuous part in their
dynamical or diffraction spectrum, also higher-dimensional ones [1, 2]. Most are
generated by a constant length inflation, and are thus lattice based. Here, we
describe a procedure to construct a mixed-spectrum, almost 2-1 extension of any
pure-point inflation tiling, and illustrate it with the well-known silver mean tiling,
constructing thus a mixed-spectrum tiling based on a quasiperiodic tiling.

The starting point is the observation that many of the mixed-spectrum examples
have a symmetry in their inflation rules [3]. All tiles come in geometrically equal
pairs, and tiles within a pair are distinguished by the presence or absence of a
bar. Swapping the bar status of all tiles is a symmetry, which commutes with the
inflation. Wiping out all bars defines a factor map which is 2-1 almost everywhere.
Provided the maximal equicontinuous factors (MEF) of both the barred and the
unbarred tiling are the same, the factor map from the barred tiling to its MEF is
then 2-1 almost everywhere, which implies that its spectrum is mixed [4].

This picture suggests how to construct mixed-spectrum inflation tilings in a
systematic way. Starting with our favourite pure-point inflation tiling, we split
each tile type into a pair, one with and one without a bar, and assign the bars in
the inflation rule such that i) the bar swap symmetry is observed, ii) the resulting
inflation is primitive, and iii) the barred and the unbarred tiling have the same
MEF. As there are many ways to assign the bars, often there are such solutions.

We illustrate the procedure with the silver mean tiling, for which we introduce
a suitably twisted version with bar swap symmetry. By general arguments, it is
in fact true that the spectrum carried by the kernel of an almost 2-1 map to a
pure-point factor must be pure. The factor map from the barred to the unbarred
tiling is such a map, wherefore the spectrum in the odd sector with respect to the
bar swap must be pure, either absolutely continuous or singular continuous. To
discriminate between the two, we compute the autocorrelation of the twisted silver
mean tiling with a decoration which is odd under the bar swap. This autocorrela-
tion does not tend to zero for a series of distances tending to infinity, which by the
Riemann–Lebesgue lemma implies that its Fourier transform, the diffraction spec-
trum, must have a singular component. As the diffraction spectrum is contained
in the dynamical spectrum, the latter thus has a singular continuous component
in the odd sector, so that it must be purely singular continuous there.
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Ergodic properties of visible lattice points

Christian Huck

(joint work with Michael Baake)

Recently, the dynamical and spectral properties of square-free integers, visible lat-
tice points and various generalisations have received increased attention; cf. [4, 5, 6,
7]. One reason is the connection with Sarnak’s conjecture [8] on the ‘randomness’
of the Möbius function, another the explicit computability of correlation functions
as well as eigenfunctions for these systems. Here, we use the visible points

V = Z2 \
⋃

p prime

pZ2

of the square lattice Z2 as a paradigm. Clearly, V has holes of arbitrary size and
it is classic that the natural density of V is equal to 1/ζ(2) = 6/π2. It turns out
that V has positive topological entropy equal to its density [7] and one thus might
expect to leave the realm of pure point spectrum. However, V has pure point
dynamical and diffraction spectrum [3, 1]. In fact, it is a major step to show that
the lattice translation orbit closure

XV = {t+ V | t ∈ Z2}

of V in the product topology on the power set P(Z2) ≃ {0, 1}Z
2

contains precisely
the admissible subsets A of Z2, the latter being defined by the property that,
for any prime p, at leat one coset modulo pZ2 is missing in A, which means
|A/pZ2| < p2. One can further show that the patch frequencies of V exist and this
gives rise to a Z2-invariant Borel probability measure ν on XV that can be seen
to be ergodic. Further, V turns out be a ν-generic element of the hull. Our main
result is that the measure theoretic dynamical system (XV ,Z

2, ν) is isomorphic
to the Kronecker system

∏
p Z

2/pZ2, defined by the obvious ‘diagonal’ action of

Z2 and the normalised Haar measure; see [2] for details. Moreover, both the
dynamical and the diffraction spectra are given by the points of Q2 with square-
free denominator.
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On pattern entropy of model sets

Christoph Richard

(joint work with Christian Huck)

Consider G = Rd, a locally compact Abelian Hausdorff group H , and a lattice L̃
in G×H . Let πG, πH denote the canonical projections from G×H to its factors.

Assume that πG restricted to L̃ is one-to-one and that πH(L̃) is dense in H .

Consider, for any relatively compactW ⊂ H , the weak model set Λ(W ) =
{
πG(ℓ̃ ) |

ℓ̃ ∈ L̃, πH(ℓ̃ ) ∈ W
}
. Fix Haar measures θG on G and θH on H such that L̃ has

density 1. A van Hove sequence (An)n∈N in G consists of compact sets of positive
Haar measure such that for every compactK ⊂ G we have θG(∂

KAn)/θG(An) → 0
as n → ∞, where ∂KA = (KA ∩ Ac) ∪ (KAc ∩ A). Fix any van Hove sequence
(An)n∈N in G and consider the relative point frequencies

(1) fn(W ) =
1

θG(An)
card

(
Λ(W ) ∩An

)
.

We extend the density formula [2] for regular model sets, which satisfy θH(∂W ) =
0. This is done by approximating Λ(W ) with regular model sets and leads to

Proposition 1 (Generalised density formula [3]). Under the above assumptions,

θH
(
int(W )

)
≤ lim inf

n→∞
fn(W ) ≤ lim sup

n→∞
fn(W ) ≤ θH

(
cl(W )

)
.

For A ⊂ G compact and t ∈ G, the finite set Λ(W ) ∩ tA is called an A-pattern
of Λ(W ). Let NA

(
Λ(W )

)
denote the number of different A-patterns of Λ(W ) up

to G-translation. The pattern entropy h
(
Λ(W )

)
of Λ(W ) is defined as

h
(
Λ(W )

)
= lim sup

n→∞

1

θG(An)
logNAn

(
Λ(W )

)
.

We can show that the pattern entropy of Λ(W ) and, more generally, of any coloured
Delone set of finite local complexity, is a finite limit for suitable van Hove sequences
such as balls or rectangular boxes of diverging inradius, thereby extending earlier
results [1]. The following entropy estimate was conjectured by Moody [3].

Theorem 1. If H is second countable and if all An are simply connected, then

h
(
Λ(W )

)
≤ θH(∂W ) log 2.
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This estimate can be seen to hold via analysing V -patterns within fundamen-

tal domains of L̃ of ‘arbitrarily thin H-component’. The result then follows by
combinatorial standard estimates together with the generalised density formula.
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Substitution Zd sequences with non-simple Lebesgue dynamical

spectrum

Natalie Priebe Frank

In this talk, we discuss a family of substitution rules in Zd whose dynamical systems
have a mixed spectrum that includes an absolutely continuous part. Introduced
in [1], these substitutions generalize the well-known Rudin–Shapiro sequence to
higher dimensions. We explain the method of construction and show how it leads
to the destruction of two-point correlations, which ultimately results in a Lebesgue
diffraction measure.

The starting point for the construction is a Hadamard matrix, which is a square
matrix whose entries are ±1 and whose rows are pairwise orthogonal. Simple
examples are M =

(
+−
−−

)
, which generates the original Rudin–Shapiro sequence,

and

B =

(−−−+
−−+−
−+−−
+−−−

)
,

which allows nontrivial one- or two-dimensional substitutions.
Once the Hadamard matrix is chosen, we use it to define both the alphabet and

the size of the substitution. Given that the Hadamard matrix is of size n× n, the
alphabet is defined to be An = {±1,±2, . . . ,±n}. We also assign a d-dimensional
rectangular array with n total entries, denoted I, to serve as the shape of the
substitution. For the matrix M , we can take I = {0, 1} ⊂ Z; for the matrix B we
can take either I = {0, 1, 2, 3} ⊂ Z if we want a one-dimensional substitution, or
I = {(0, 0), (1, 0), (0, 1), (1, 1)} ⊂ Z2 if we want a two-dimensional substitution.

The next step is to place each entry of I into one-to-one correspondence with
1, 2, . . . , n and decree that any letter ±k ∈ An can appear only at the position
in I associated to k. With these definitions in place, we are ready to define the
substitution S(e) for each letter e ∈ An. First suppose e = j is a positive element
of An. We use the jth row of the Hadamard matrix to determine whether to place
a +k or a −k at the kth location of I. The result is a word S(j) ∈ IAn that we
refer to as the substitution of the letter j. We then define S(−j) to be −S(j).
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In this way we obtain, for the Hadamard matrixM given above, the substitution
S(1) = 1−2, S(−1) = −1 2, S(2) = −1−2, and S(−2) = 1 2, and we see under
repeated iteration

1 → 1−2 → 1−2 1 2 → 1−2 1 2 1−2−1−2 → · · · ,

where each block is a word on the alphabet A2 = {±1,±2}.
One can begin to see why this construction could result in a Lebesgue compo-

nent of the dynamical (and diffraction) spectrum as follows. Consider the factor
map obtained by forgetting the numbers but keeping the ± signs. Correlating a
substituted block S(e) with another S(f), where |e| 6= |f |, will result in a sum
of exactly 0, since the rows of the Hadamard matrix associated to e and f are
orthogonal. One can prove that iterating the substitution does not change this
fact, so that in sequences generated by the substitution there are arbitrarily large
subwords that, when correlated, yield exactly 0.

A possible generalization to the construction would be to start with a Vander-

monde matrix, which is a matrix with entries from a given root of unity, whose
rows are pairwise orthogonal. In this situation, it would seem that the dynam-
ical spectrum could contain, in addition to the discrete part, both singular and
absolutely continuous parts.
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Diffraction spectra and dynamical spectra of some random point sets

Holger Kösters

(joint work with Michael Baake and Robert V. Moody)

Let ω be a stationary and ergodic locally finite random point set in Rd such that
E(ω(B)2) <∞ for any bounded Borel set B. The autocorrelation measure γ of ω is
given by limn→∞

1
λλd(Bn)

(ω|Bn
∗ ω̃|Bn

), where Bn is the ball of radius n around the

origin, ω̃ is the reflection of ω at the origin, and the limit is in the vague topology.
The diffraction measure γ̂ of ω is the Fourier transform of γ. The equivalence class
of γ̂ is also called the diffraction spectrum of ω, while the dynamical spectrum of ω
is the maximal spectral type of the associated measure-theoretic dynamical system.
It is of interest to describe and / or to compare these two spectra.

We discuss two classes of random point sets which allow for some interaction
between the points but for which the diffraction spectra and the dynamical spectra
may still be determined explicitly. More precisely, we consider determinantal and
permanental point processes (see, e.g., [2] for definitions) with ‘nice’ kernels.

Theorem 1 ([1]). Let ω be the determinantal point process associated with the ker-

nel K(x, y) := ϕ̂(x − y), where ϕ is a probability density taking values in [0, 1].
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Then

γ = δ0 + (1 − |ϕ̂|2)λλd and γ̂ = δ0 + (1− (ϕ ∗ ϕ−))λλ
d .

Theorem 2 ([1]). Let ω be the permanental point process associated with the ker-

nel K(x, y) := ϕ̂(x − y), where ϕ is a probability density. Then

γ = δ0 + (1 + |ϕ̂|2)λλd and γ̂ = δ0 + (1 + (ϕ ∗ ϕ−))λλ
d .

Here, ϕ− denotes the reflection of ϕ at the origin. Observe that, for both classes,
the diffraction measure is absolutely continuous and, in fact, equivalent to Lebesgue
measure apart from the Bragg peak at the origin. Moreover, an argument due to
Soshnikov [3] shows that the maximal spectral type is also equivalent to Lebesgue
measure apart from the eigenvalue at the origin. Thus, the diffraction spectrum
and the dynamical spectrum coincide in these examples.

These results are perhaps not unexpected in view of the good mixing properties
of the point processes under consideration. However, if one moves to more general
permanental point processes with a kernel derived from a singularly continuous
probability measure, the situation may change. Here, the diffraction spectrum
and the dynamical spectrum may additionally contain a singularly continuous
part, and they are not necessarily equivalent.
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Topological perspective on the dynamics of tilings

Alex Clark

We describe how, following Freudenthal [4], each compact, metrizable space ad-
mits a spectral decomposition into an inverse sequence of compact polyhedra with
surjective (even piecewise linear) bonding maps. This spectral decomposition al-
lows one to approximate continuous maps between two compact spaces by using
maps between the polyhedral approximating spaces in the towers representing the
underlying spaces. There are several variations for how one can find such ap-
proximating maps, leading to what are known as ‘zig-zag’, almost commutative
maps of towers. Equally important, appropriately chosen almost commutative
zig-zag maps between two towers representing compact metric spaces defines a
homeomorphism between the underlying spaces; see, e.g, [5].

Anderson and Putnam [1] and Gähler have found natural ways to express tiling
spaces as inverse limits that reflect the underlying translation dynamics. This leads
one to consider the possibility of enriching the information encoded in the inverse
limit expansion beyond the topological. If the expansions encode the dynamics
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at the same time as the topology and one only allows maps between towers that
‘almost’ respect the dynamics in an appropriate sense, one finds that dynamically
equivariant maps can be represented as almost commutative maps of towers.

We then revisit the results of [2, 3] from this point of view. It is especially
simple in the one-dimensional case where the translation dynamics of a tiling
space can be encoded using the length of the circles in the approximating spaces,
which correspond to supertiles in the simplest cases. We then show how these
ideas can be used to show a theorem from [2]: If two tiling spaces X,X ′ are based
on the same Pisot substitution but with possibly different choices of tile lengths,
then (after a linear rescaling of time) the translation dynamics of X and X ′ are
topologically conjugate. Size does not matter in this case.

We then show how using a theorem from [2] describing the continuous eigen-
values of the translation dynamics, one can see that for many substitutions of
constant length, the generic choice of lengths for tiles leads to topological weak
mixing. Size does matter in this case.
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