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Introduction by the Organisers

The variational approach to evolutionary systems provides one of the most inter-
esting areas of mathematical research, as it combines geometric information, such
as metric or more general dissipation structures, with energy landscapes and func-
tional analysis in infinite-dimensional spaces. Thus it opens up new approaches
and mathematical fields for studying evolutionary systems, which already gener-
ated a lot of original contributions from various points of view in the pure and
applied fields.

In the last decades many problems concerning evolutionary PDEs, modeling of
mechanical and biological phenomena, fluid and transport dynamics, stochastic
behaviour of many-particle systems, geometric evolution, Hamiltonian, dissipative
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and rate-independent flows, have been studied by new and various variational
techniques, with a clever combination of well established tools and new ideas.

These investigations have stimulated a fruitful interaction between the classical
approaches of PDE’s, calculus of variations (such as direct methods, Gamma-
convergence and relaxation, iterated minimization schemes, and variational prin-
ciples), geometric measure theory and nonsmooth analysis (BV functions, motion
of interfaces, and analysis in metric-measure spaces), functional analysis (Dirich-
let forms, semigroup theory, Gamma-calculus, convex integration, and infinite-
dimensional spaces), optimal transport, and calculus of probability (stochastic
processes, large-deviation principles, and stochastic perturbations). New beauti-
ful results have arisen and contributed to the advance of each field in a promising
interdisciplinary way with interesting and deep connections.

Among the themes presented during the workshop, we mention here:

• gradient flows and large deviations,
• regularity structures and rough paths;
• stochastic homogenization;
• optimal transport techniques and transportation distances, functional in-
equalities, entropic interpolation;

• discrete interaction systems, evolution on graphs, and their metric-vari-
ational interpretation;

• rate-independent problems, quasi-static crack growth, elasto-plasticity;
• singular limit of gradient flows and conservative systems and their asymp-
totic dynamics, hysteretic phase transitions;

• entropy-entropy dissipation methods, reaction-diffusion systems and their
geometric interpretation, discrete approach and structure-preserving nu-
merical methods;

• front propagation and models derived from Allen-Cahn equations;
• variational time discretizations for compressible Euler equations;
• general variational principles and models for evolution;
• evolution in metric spaces and Hamilton-Jacobi equations.

The workshop, organized by Luigi Ambrosio (Scuola Normale Superiore, Pisa),
Alexander Mielke (WIAS, Berlin), Mark Peletier (TU Eindhoven), and Giuseppe
Savaré (University of Pavia), aimed to present many new, striking and promis-
ing achievements in this wide area, thanks to the contribution of 48 participants
(16 young researchers) with broad geographic representation from Austria, Czech
Republic, France, Germany, Italy, Netherlands, UK and USA, and a variety of
research fields, each revealing different methodology, interests, and level of ab-
straction. Twenty-eight invited talks, mostly of 45 minutes, have been delivered,
leaving plenty of time for discussions, which have been greatly stimulated by the
diversity of the topics and of the contributions. The friendly atmosphere and the
perfect environment of Oberwolfach have also contributed to the success of the
meeting.
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Abstracts

A Variational Time Discretization for Compressible Euler Equations

Michael Westdickenberg

(joint work with Fabio Cavalletti and Marc Sedjro)

The compressible Euler equations model the dynamics of compressible fluids such
as gases. They form a system of hyperbolic conservation laws

(1)

∂t̺+∇ · (̺u) = 0

∂t(̺u) +∇ · (̺u⊗ u) +∇π = 0

∂tε+∇ ·
(
(ε+ π)u

)
= 0





in [0,∞)×Rd.

The unknowns (̺,u, ε) depend on time t ∈ [0,∞) and space x ∈ Rd and we assume
that suitable initial data (̺,u, ε)(t = 0, ·) =: (¯̺, ū, ε̄) is given. We will consider ̺
as a map from [0,∞) into the space of nonnegative, finite Borel measures, which
we denote by M+(R

d). The quantity ̺ is called the density and it represents the
distribution of mass in time and space. The first equation in (1) (the continuity
equation) expresses the local conservation of mass, where

(2) u(t, ·) ∈ L
2
(
Rd, ̺(t, ·)

)
for all t ∈ [0,∞)

is the Eulerian velocity field taking values on Rd. The second equation in (1) (the
momentum equation) expresses the local conservation of momentum m := ̺u.
The quantity ε is the total energy of the fluid and ε(t, ·) is a measure in M+(R

d).
The third equation in (1) expresses the local conservation of energy.

The quantity π in the momentum equation is the pressure. It is determined by
the thermodynamic properties of the fluid. Three cases are of interest:

• The pressure vanishes (the pressureless gas case). Then the total energy of
the fluid is simply the kinetic energy, and the third equation in (1) follows
formally from the first two, by the chain rule.

• The pressure is a function of the density ̺ only because the thermodynam-
ical entropy is constant throughout time and space (the isentropic case).
Again the conservation of total energy follows formally from the continuity
and the momentum equation.

• The pressure is a function of the density ̺ and total energy ε (the full Euler
case). In this case, there is again an additional conservation law since the
thermodynamical entropy formally satisfies a transport equation.

Even though system (1) formally conserves the total energy (being a Hamiltonian
system), there actually is a dissipation of energy due to the nonsmoothness of the
solutions: In the pressureless case, the modeling suggests a concentration of mass
(sticky particle dynamics) by which the kinetic energy decreases. In the cases with
pressure, solutions may form jump singularities along codimension-one manifolds,
which are called shocks. Again total energy is dissipated in the process.
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We consider a variational time discretization for the system of conservation laws
(1) in the spirit of minimizing movements for curves of maximal slopes on metric
spaces. We recall that for certain (possibly degenerate) parabolic equations, such
as the porous medium equations, the solutions are curves on the space of nonneg-
ative measures characterized by the requirement that at each time an energy (or
entropy) functional is decreased at maximal rate (which also characterizes gradi-
ent flows). This comes with a natural time discretization, where in each timestep
one tries to find the right balance between minimizing this energy functional and
keeping the step short. For the porous medium equation the update length is mea-
sured using the Wasserstein distance. For the variational time discretization of (1)
we proceed analogously: In each timestep we minimize the sum of the internal en-
ergy and of a new functional (which we call the minimal acceleration functional)
measuring the deviation of fluid element trajectories from straight paths. We min-
imize over the closed convex cone of monotone transport maps, which in particular
guarantees the non-interpenetration of matter. Notice that for the porous medium
equation, the relevant transport maps are cyclically monotone because those are
the maps that solve the optimal transport problem that underlies the Wasserstein
distance. In this case, the (cyclical) monotonicity follows implicitly from the choice
of metric, whereas for (1) we make monotonicity an explicit constraint. This can
be justified by the fact that in each timestep the transport maps are perturbations
of the identity map, which is monotone. Since monotone maps enjoy very good
properties (they are e.g. of bounded variation locally) one can prove the existence
of a minimizer for each timestep. By a suitable interpolation in time, we obtain
a family of approximate solutions to (1), parametrized by the timstep τ > 0. We
prove that as τ → 0, these approximate solutions converge (along a subsequence)
to a measure-valued solution of (1). An important ingredient is a characterization
of the polar cone of the cone of monotone maps: each element in the polar cone can
be represented by the distributional divergence of a matrix field taking values in
symmetric positive semidefinite matrices. This matrix field, which we call a stress
tensor, therefore has exactly the same structure as the matrix field ̺u⊗ u + π1,
which appears in the momentum equation (1). The momentum can be shown to
be Lipschitz continuous with respect to a suitable Kantorovorich norm.

References
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Pressureless Gas Dynamics Equations, SIAM Math. Anal. 47 (2015), 66–79.
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Variational problems on graphs and their continuum limits

Dejan Slepčev

(joint work with Xavier Bresson, James von Brecht, Nicolás Garćıa Trillos and
Thomas Laurent)

We discuss variational problems arising in analysis of data clouds. Many of the
tasks of machine learning, including clustering, classification, dimensional reduc-
tion, have variational descriptions. One of the standard approaches is to introduce
an objective functional which encodes the desirable properties of the object sought
and then develop and implement algorithms to find a minimizer. A large class of
the approaches, relevant to high-dimensional data, relies on creating a graph out
of the data cloud by connecting nearby points (see [4] and references therein). This
allows one to leverage the geometry of the data set.

An important question regarding such approaches is how they behave if more
data become available. To be precise consider problems for which there exists an
(unknown) ground truth given by a probability measure ν, supported on a compact
domain D, such that the available data points Xn = {x1, . . . , xn} are random i.i.d.
samples of the measure ν. It is highly desirable if a procedure is such that if more
data become available it converges to some well defined ideal object, which corre-
sponds to full information being known. Such property of algorithms is referred to
as consistency , [5, 9]. For example if one is interested in partitioning data into
two clusters a consistent procedure converges to a ideal continuum partitioning
of the measure ν. In other words minimizers of the discrete objective functionals
describing discrete partitioning should converge to a minimizer of an objective
functional describing the ideal partitioning in the continuum setting. While con-
sistency is one of the key properties of machine learning algorithms relatively few
results are available (see [1, 2, 3, 9, 5], and references therin).

To address consistency questions we approach them using tools of applied anal-
ysis and calculus of variations. Namely we show Γ-convergence of the discrete func-
tionals considered on random, proximity, graphs towards their continuum coun-
terparts, which along with a compactness result implies the desired convergence
of minimizers. A key element is identifying the proper topology with respect to
which the Γ-convergence takes place. Let us denote by νn the empirical measure
associated to the n data points:

(1) νn :=
1

n

n∑

i=1

δxi
.

The issue is then how to compare functions in L1(νn) with those in L1(ν). More
generally we consider how to compare functions in Lp(µ) with those in Lp(θ) for
arbitrary probability measures µ, θ on D and arbitrary p ∈ [1,∞). We set

TLp(D) := {(µ, f) : µ ∈ P(D), f ∈ Lp(D,µ)},
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where P(D) denotes the set of Borel probability measures on D. For (µ, f) and
(ν, g) in TLp we define the distance

dTLp((µ, f), (ν, g)) = inf
π∈Γ(µ,ν)

(∫∫

D×D

|x− y|p + |f(x)− g(y)|pdπ(x, y)
) 1

p

where Γ(µ, θ) is the set of all couplings (or transportation plans) between µ and θ.

An important consideration when investigating consistency of algorithms is how
the graphs on Xn are constructed. In simple terms, when building a graph on
Xn one sets a length scale εn such that edges between vertices in Xn are given
significant weights if the distance between vertices is εn or less. Taking smaller εn is
desirable because it is computationally less expensive and gives a better resolution,
but there is a price. If εn is too small the resulting graph may not represent the
geometry of D well and consequently the discrete graph cut may be very far from
the desired one. We worked on determining precisely how small εn can be taken
for the consistency to hold. More precisely consider a kernel η : Rd → [0,∞) to
be radially symmetric and decaying to zero sufficiently fast. Let ηε(z) =

1
εd
η
(
z
ε

)
.

The edge weights are

(2) wi,j = ηε(xi − xj).

Given a function un : Xn → R its (appropriately scalled) graph total variation is
defined as

(3) GTVn,ε(un) =
1

ε

1

n2

∑

i,j

wi,j |un(xi)− un(xj)|.

The role of the perimeter of Y ⊂ Xn on the graph is played by the graph cut, that
is the sum of all edges between Y and Y c, which is nothing but (a multiple of)
the graph total variation of the characteristic function of Y .

To prove consistency of machine learning approaches to clustering, the key
ingredient is the variational behavior of graph total variation as n→ ∞. This was
investigated in [6]:

Theorem [Γ-convergence and Compactness] Let D ⊂ Rd, d ≥ 2 be a domain
with Lipschitz boundary. Let ν be a probability measure on D with continuous
density ρ, which is bounded from below and above by positive constants. Let
x1, . . . , xn, . . . be a sequence of i.i.d. random points on D chosen according to
measure ν. Let εn → 0 as n→ 0 be such that

lim
n→∞

(log n)p

n

1

εdn
= 0.(4)

where pd = 1 if d ≥ 3 and p2 = 3
2 . Then, GTVn,εn , defined by (3), Γ-converges

with respect to TL1 topology to a constant (explicitly given) multiple of total
variation (weighted by ρ2) on D.

Furthermore for any sequence of functions un ∈ L1(D, νn): If

sup
n∈N

‖un‖L1(νn) +GTVn,εn(un) <∞
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then {un}n∈N is TL1-relatively compact.

In [8] this result was used to obtain strong results on consistency of graph-
based clustering algorithms. Namely given a weighted graph Gn = (Xn,Wn) the
balanced graph cut problems seeks to partition the graph in clusters by cutting few
edges (measured according to their weight) while also seeking to obtain clusters of
comparable sizes. For simplicity, here the attention is restricted to the two-class
case and a particular balance term, corresponding to Cheeger cuts:
(5)

En(Y ) =
Cutn(Y, Y

c)

min(|Y |, |Y c|) :=

∑
xi∈Y

∑
xj∈Y c wij

min(|Y |, |Y c|) over all nonempty Y ( Xn.

The continuum partitioning problem that corresponds to the discrete problem
is the following: Minimize the continuum balanced cut objective functional

(6) E(A) =
Per(A : D)

min(ν(A), ν(D\A)) , A ⊂ D with 0 < ν(A) < 1.

where Per(A : D) is the relative perimeter of A inD, weighted by ρ2. We show that
under assumptions of the Theorem above, almost surely, the minimizers, {Yn, Y cn},
of the balanced cut (5) of the graph Gn , converge in the TL1 sense (applied to the
characteristic functions of the sets) to {A,Ac}, the minimizer of the problem (6),
if such minimizer is unique. Otherwise convergence holds up along subsequences.

In addition to techniques of calculus of variations and analysis the results rely
on sharp estimates on the ∞-transportation distance between the measure ν and
the empirical measure νn of the i.i.d sample {x1, . . . , xn}, [7, 10, 11].
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[6] N. Garćıa Trillos and D. Slepčev. Continuum limit of total variation on point clouds,
preprint, (2014).
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From particles to a conservation law: large deviations for the totally
asymmetric exclusion process on the half line

Johannes Zimmer

(joint work with Horacio González Duhart Muñoz de Cote and Peter Mörters)

We study the totally asymmetric exclusion process on the lattice N := {1, 2, . . .}
with a source of particles at the origin. In an exclusion process, any lattice site
is either empty or occupied by at most one particle. Every particle carries an
independent Poisson clock with rate 1; when the clock rings, the particle tries to
jump to the right (never to the left, hence totally asymmetric) and succeeds in
doing so if the site to the right is unoccupied. The source is an infinite supply
of particles; it also carries a Poisson clock with rate α < 1. The source inserts a
particle if the source clock rings and the first lattice site is then empty.

The motivation for the study of this system is twofold: firstly, from the view-
point of statistical mechanics, the boundary driven TASEP is a prototypical non-
equilibrium system. In nonequilibrium, steady states generally exhibit long-range
correlations [3]. This is likely to complicate a large deviation analysis, which can
yield an effective description in terms of thermodynamics functionals. Secondly,
asymmetric exclusion processes lead in the hydrodynamic scaling limit a conser-
vation law, often called Burgers’ equation [1]

(1) ∂tρ(x, t) + ∂x(f(ρ(x, t)) = 0,

with flux function f(ρ) = ρ(1−ρ). More precisely, the empirical measure converges
to the unique entropy solution of (1), with boundary data satisfying the Bardos-le
Roux-Nédélec boundary conditions [2]. To illustrate the need of such boundary
conditions, we simulate the reservoir as Burgers equation on the real line with
initial data

ρ(x, 0) =

{
α x ≤ 0

0 else
.

Two very different scenarios can arise. Namely, for α < 1/2, the characteristics
intersect the half-line {(0, t) t > 0} in the (x, t) plane in which we wish to prescribe
the boundary data, thus the boundary data α is the appropriate choice. For α >
1/2, however, this half line lies in a rarefaction fan, and therefore the prescription
of suitable boundary data is nontrivial. The aforementioned theory of Bardos, Le
Roux and Nédélec [2] addresses this problem. For the particular problem under
consideration, one can see that boundary data chosen in [1/2, 1] is admissible [2, 5].

Large deviations are often a powerful tool to describe the macroscopic behaviour
of many, say n, particles. Here, let Xn = 1

n

∑n
k=1 ηk be the empirical density of a

semi-infinite TASEP with injection rate α ∈ (0, 1) at time infinity, starting with an
empty lattice (ηk ∈ {0, 1} is the number of particles at site k). Then Xn satisfies,
roughly speaking, a large deviation principle with rate function I if

lim
n→∞

1

n
logP{Xn ∈ A} = − inf

x∈A
I(x),
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so I characterises the degree of unlikeliness (with the minimisers of I being the
only possible observable states in the limit n→ ∞).

Can we understand the different behaviour regarding boundary conditions de-
pending on α from a large deviation argument? The answer is a cautious yes —
currently there seems no pathwise large deviation argument for the driven TASEP
on the half line to be available. Yet, for the average particle density in the limit
t → ∞, we are able to obtain the large deviation rate function. Namely, in the
easy case α ≤ 1

2 , the rate function is

I(x) = x log
x

α
+ (1− x) log

1− x

1− α
;

this is a well-known result implying that the empirical density converges at α, as
one would näıvely expect. For α > 1

2 , the rate function is [6]

I(x) =






x log
x

α
+ (1 − x) log

1− x

1− α
+ log (4α(1− α)) if 0 ≤ x ≤ 1− α,

2 [x log x+ (1 − x) log(1 − x) + log 2] if 1− α < x ≤ 1
2 ,

x log x+ (1− x) log(1− x) + log 2 if 1
2 < x ≤ 1.

This result can be interpreted as follows. For α ≤ 1
2 , the minimiser of I is α,

in agreement with the prescribed boundary at x = 0 in this case. For α > 1
2 , the

minimiser of I is always 1
2 , which is in the range of admissible boundary data. Note

that the rate function is non-analytic for x = 1 − α, showing a phase transition
occurs at this point.

A few words about the proof. The method relies on the so-called Matrix Prod-
uct Ansatz (MPA). This method to study correlations has been developed in the
seminal paper [4]; Großkinsky [7] has used it to characterise the stationary mea-
sure in this case (whose existence was shown by Liggett [8]). From these results,
it is not difficult to show that the cumulant generating function is given by

Λ(θ) = lim
n→∞

1
n logwT (eθD + E)nv − 2 log 2

with D,E infinite matrices and v, w vectors characterised by the matrix product
ansatz. The rate function I is in this case, by the Gärtner-Ellis theorem, the
Legendre transform of Λ. We compute Λ by obtaining upper and lower bounds
for the expression above, and showing that these bounds agree. The upper bound
relies on a characterisation of the matrices involved (D,E and v, w are explicitly
known), which allows us to determine the spectrum in a suitable weighted space,
exploiting the spectral theory of Toeplitz operators. The lower bound is shown by
expanding the expression for Λ and focusing on a few relevant coefficients.
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Deficit estimates for the Gaussian logarithmic Sobolev inequality

Max Fathi

(joint work with Emanuel Indrei and Michel Ledoux)

In recent years, the question of stability for functional inequalities has garnered
much attention. The problem is as follows: given a functional inequality for which
cases of equality exist and are explicitly know, if a function almost achieves equal-
ity, is it close in some sense to a case of equality? This brings us to trying to
bound from below the deficit in the functional inequality by a function which
measures how far we are from a case of equality. Typically, the lower bounds we
are looking for involve powers of some metric. Examples of inequalities that have
been studied include isoperimetric inequalities [6], Sobolev inequalities [3] and the
Brunn-Minkowski inequality [5].

In this talk, I presented a few new results for the Gaussian logarithmic Sobolev
inequality

(1)

∫
f log fdγn ≤ 1

2

∫ |∇f |2
f

dγn

where γn is the standard centered gaussian measure on Rn, and f is any smooth
probability density with respect to γn. The left-hand side of this inequality is
known as the relative entropy of the probability measure ν = fγn with respect to
γn, and usually denoted by H(ν). The right-hand side (without the factor 1/2) is
known as the Fischer information I(ν)

The constant 1/2 in (1) is optimal in every dimension, and a probability density
f achieves equality if and only if it is of the form f(x) = exp(b ·x+ |b|2/2) for some
b ∈ Rn, i.e. if the probability measure fγn is a non-centered standard gaussian
(see [2]). In particular, the only centered probability measure achieving equality
is the gaussian measure itself.

Our aim is to obtain lower bounds on the deficit

δLSI(ν) =
1

2
I(ν) −H(ν)
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in terms of transport (or Wasserstein) distances

Wp,q(ν, ν̃) = inf
π

(∫
||x− y||pqdπ(x, y)

)1/p

where the infimum runs over all couplings π of the probability measures ν and ν̃.
We obtained two types of results: under additional assumptions on ν, we obtain

a lower bound in terms of W2,2(ν, γ) that is dimension-free. For general measures,
we obtain an estimate involving W1,1, which however seems to behave badly in
large dimensions. As of the time of writing, I am not aware of any completely
general result that behaves well in large dimension.

Denote by P(λ) the class of probability measures ν on the Borel sets of Rn

satisfying a Poincaré inequality with constant λ > 0 in the sense that for every
smooth g : Rn → R such that

∫
gdν = 0,

(2) λ

∫
g2dν ≤

∫
|∇g|2dν.

On P(λ), we established the following improved LSI:

Theorem 1. For any centered (
∫
xdν = 0) probability measure dν = fdγ in the

class P(λ),

H(ν) ≤ c(λ)

2
I(ν),

where

c(λ) =
1− λ+ λ log λ

(1 − λ)2
< 1

(
c(1) = 1

2

)
.

This improves results previously obtained in [1] and [7]. The constant is sharp

on P(λ), as can be seen when taking ν with density f(x) =
√
λ e(1−λ)x

2/2, λ > 0,
on the line. Of course, since the constant 1/2 in the Gaussian LSI is optimal, such
a strengthening can only be expected to hold on a subset of probability measures.

This inequality implies a lower bound on the deficit

(3) δLSI(ν) ≥
(
1− c(λ)

2

)
W2,2(ν, γn)

2

whenever ν is a centered probability measure in P(λ).
It should be mentioned that one cannot expect

δLSI(ν) ≥ cW2(ν, γ)
2

to hold for some c > 0 and all probability measures ν. Indeed, such an inequality
combined with the HWI inequality of [8] would then imply the logarithmic Sobolev
inequality H(ν) ≤ 1+c

2+4c I(ν) with therefore a constant strictly better than the

optimal 1/2. A complete stability result for the Gaussian LSI therefore requires a
distance weaker than W2. This is the aim of the following result:
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Theorem 2. There is a numerical constant c > 0 such that for any centered
probability measure dν = fdγ on Rn with f > 0 locally bounded and positive
entropy,

δLSI(ν) ≥ c

H(ν)
min

(
W1,1(ν, γ)

4

n2
,
W1,1(ν, γ)

2

n

)
.

This result has the advantage of being valid for general measures. However,
this estimate does not scale well for product measures in large dimension. For an
n-dimensional product measure νn = ν⊗n, δLSI(ν

n) = nδLSI(ν) grows linearly in
n. This is also the behavior of

W1,1(ν
n, γn)2

n
= nW1,1(ν, γ

1)2.

When n >>W1,1(ν, γ
1)−2, the expected growth is lost.

Both these results are stated for centered measures. However, we can obtain
deficits for noncentered probability measures through the following transform: if
dν = fdγ has mean b ∈ Rn, let

dνb(x) = f(x+ b)e−
(
b·x+ |b|2

2

)
dγ(x).

Then νb is a centered probability measure, and δLSI(νb) = δLSI(ν). We can there-
fore apply the previous results to νb, and still recover deficit estimates for ν.
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Front propagation in stratified media

Matteo Novaga

(joint work with Annalisa Cesaroni and Cyrill Muratov)

Front propagation is a common phenomenon in nonlinear systems governed by
reaction-diffusion mechanisms and their analogs, and arises in many applications,
including phase transitions, combustion, chemical reactions, population dynamics,
developmental biology, etc. By a front, one usually understands a narrow transition
region in which the solution of the underlying reaction-diffusion equation changes
abruptly between two equilibria. At the core of the phenomenon of propagation
is the fact that such fronts may exhibit wave-like long-time behavior, whereby the
level sets of the solution advance in space with some positive average velocity.

As a prototypical model, we consider the following Allen-Cahn equation in the
presence of a heterogeneous forcing term:

(1) ut = ∆u+
f(u)

ǫ2
+
a(x, u)

ǫ
,

where f = −W ′, W is a nonnegative double-well potential with zeroes in u = 0, 1,
and a is such that a(x, 0) = 0. In particular, for ǫ small enough u = 0 is a stable
equilibrium of (1).

As ǫ→ 0 the solution u converges to the characteristic function of a set evolving
by the forced men curvature flow

V (x) = κ(x)− g(x)

cW
,(2)

where V is the (inner) normal velocity, κ is the sum of the principal curvatures,

g(x) =
∫ 1

0 a(x, u)du, and cW =
∫ 1

0

√
2W (u)du. We shall consider equation (1)

in an infinite cylinder Σ = Ω × R, under the assumption that the function a
depends only on the transverse coordinates of the cylinder. Our main interest is
to characterize the speed and the shape of the long time limit of the fronts for (1)
and their relation to those for (2).

We now state our assumptions on Ω, a and f :

A) ∂Ω is of class C2,α for some α ∈ (0, 1];
B) a ∈ Cαloc(Ω× R), au ∈ Cαloc(Ω× R), a(·, 0) = 0;

C) f ∈ C1,α
loc

(
R
)
, f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0, W (1) = W (0) = 0,

W (u) > 0 for all u 6= 0, 1, and lim inf
|u|→∞

W (u) > 0;

D) there exists a set A ⊆ Ω such that

(3)

∫

A

g(y)dy > cW P (A,Ω),

where g(y) =
∫ 1

0
a(y, u)du.

Assumption C states that W (u) is a balanced non-degenerate double-well po-
tential (as a model function one could think of W (u) = 1

4u
2(1−u)2). Assumption

D ensures that the trivial state u = 0 is energetically less favorable for ǫ sufficiently
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small, resulting in the existence of the invasion fronts. Notice that (3) implies, in
particular, that supΩ g > 0, and is automatically satisfied if

∫

Ω

g(y)dy > 0.

Our methods are essentially variational. This stems from the basic observation
[3, 5] that, when the nonlinearity (1) is translationally invariant along the cylinder
axis, the solution of this equation in the reference frame moving with speed c > 0
along the cylinder may be viewed as a gradient flow in L2

c(Σ) = L2(Σǫ; e
czdx)

generated by the exponentially weighted Ginzburg-Landau type functional

Φc(u) =

∫

Σ

ecz
(
ǫ

2
|∇u|2 + W (u)

ǫ
− A(y, u)

)
dx,

where x = (y, z) ∈ Ω× R = Σ and A(y, u) =
∫ u
0
a(y, s)ds. In particular, traveling

wave solutions of (1) with speed c that belong to the Sobolev space H1
c (Σ), i.e.,

the space consisting of all functions in L2
c(Σ) with first derivatives in L2

c(Σ), are
stationary points of Φc (see [4, 6]).

We extend the results of [6] on existence and uniqueness of traveling waves
solutions to (1) with maximal propagation speed.

Theorem 1. Under Assumptions A–D, there exist positive constants ǫ0 and C,
depending on f , a and Ω, with the property that for all 0 < ǫ < ǫ0 there exists a
unique c†ǫ > 0 such that:

(1) Φǫ
c†ǫ

admits a non-trivial minimizer ūǫ ∈ H1
c†ǫ

∩ C2(Σ).

(2) Φǫ
c†ǫ
(ūǫ) = 0, and all non-trivial minimizers of Φǫ

c†ǫ
are translates of ūǫ

along z.
(3) 0 < ūǫ ≤ 1 + Cǫ, (ūǫ)z < 0 in Σ, and

lim
z→+∞

ūǫ(·, z) = 0 lim
z→−∞

ūǫ(·, z) = vǫ in C1(Ω),

where vǫ is a stable critical point of

Eǫ(v) =

∫

Ω

(
ǫ

2
|∇u|2 + W (u)

ǫ
−A(y, u)

)
dy,

with Eǫ(vǫ) < 0.

We now introduce the geometric functional

(4) Fc(S) = cW

∫

∂∗S∩Σ

ecz dHn−1(x) −
∫

S

ecz g(y) dx.

As before, travelling waves solution of (2) with speed c belonging to L2
c(Σ) are

stationary points of Fc [2, 1].
We show existence and uniqueness of traveling wave solutions of (2) following

the arguments developed in [2].

Theorem 2. Under Assumptions A–D, there exists a unique c† > 0 such that:
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(1) There exists a function ψ : Ω → [−∞,∞) such that (c†, ψ) is a (gen-
eralized) traveling wave for the forced mean curvature flow and the set
Sψ := {(y, z) ∈ Σ | z < ψ(y)} is a minimizer of Fc† .

(2) Letting ω = {ψ > −∞}, the set ω×R is a minimizer of Fc† under compact
perturbations, and ψ ∈ C2(ω).

(3) ψ is unique up to additive constants on every connected component of ω.
(4) ∂ω is a solution to the prescribed curvature problem cWκ = g.

Following [1], we eventually show that traveling wave solutions of (1) converge
to traveling wave solutions of (2) as ǫ→ 0.

Theorem 3. Let c†ǫ, ūǫ and vǫ be as in Theorem 1 and let c† be as in Theorem 2.
There holds

lim
ǫ→0

c†ǫ = c†.

Moreover, for every sequence ǫn → 0 there exist a subsequence (not relabeled) and
an open set S ⊂ Σ such that

ūǫn → χS in L1
loc(Σ),

where S is a non-trivial minimizer of Fc†. Moreover,

ūǫn → χS locally uniformly on Σ \ ∂S,
and for every θ ∈ (0, 1) the level sets {ūǫn = θ} converge to ∂S locally uniformly
in the Hausdorff topology.
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The WIDE principle for evolution equations

Ulisse Stefanelli

We present a global-in-time variational approch to the Cauchy problem for the
abstract evolution equation

(1) ρu′′ + ∂D(u′) + ∂E(u) ∋ f, u(0) = u0, ρu′(0) = u1.

The trajectory t ∈ [0, T ] 7→ u(t) ∈ H takes values in the real Hilbert space H (with
scalar product (·, ·) and norm ‖·‖) and the prime denotes time differentiation. The
inertial term ρu′′ is modulated by the nonnegative parameter ρ ≥ 0 and we assume
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to be given the dissipation D : H → R ∪ {∞} and the energy E : H → R ∪ {∞}
functionals (the symbol ∂ stands for some suitable notion of gradient). Eventually,
f ∈ L2(0, T ;H) and u0, ρu1 ∈ H are suitably prescribed initial data.

Problem (1) may arise in connection with the variational formulation of different
nonlinear evolution systems including parabolic equations and inequalities, also
of degenerate or rate-independent type, semilinear waves, and classes of mixed
hyperbolic-parabolic problems.

We coordinate to problem (1) the Weighted Inertia-Dissipation-Energy (WIDE)
functional Wε : L

2(0, T ;H) → (−∞,∞] for ε > 0

Wε(u) =

∫ T

0

e−t/ε
(
ε2ρ

2
‖u′′‖2 + εD(u′) + E(u)− (f, u)

)
dt

with domain {u ∈ L2(0, T ;H) : ρ‖u′′‖2, D(u′), E(u) ∈ L1(0, T )} and address
the constrained minimization problem

(2) min{Wε(u) : u(0) = u0, ρu
′(0) = ρu1}.

The relation between minimization (2) and the differential problem (1) is re-
vealed by (formally) computing the Euler-Lagrange system for Wε which reads

ε2ρu′′′′ − 2ερu′′′ + ρu′′ − ε∂2D(u′)u′′ + ∂D(u′) + ∂E(u) ∋ f

u(0) = u0, ρu′(0) = ρu1, ρu′′(T ) = 0, ε2ρu′′′(T ) = ε∂D(u′(T )).

Hence, the minimization (2) of the WIDE functionalWε corresponds to an elliptic-
in-time regularization of problem (1). By letting uε denote a minimizer of Wε, the
variational resolution of (1) requires to ascertain that

(3) uε → u for some subsequence, where u solves (1)

where of course a suitable topology for the convergence has be prescribed. The
interest in such a variational resolution relies on the nice structural properties of
the functionalWε. In particular, the WIDE approach (2)-(3) offers a natural frame
for the analysis of evolution relaxation, may provide a selection criterion in case
(1) shows nonuniqueness, and can be rather easily combined with approximations
and discretizations.

The feasibility of the WIDE variational program (2)-(3) has been confirmed in
a number of different situations. We provide here a schematic overview of the
related literature.

In the case of gradient flows (ρ = 0 and D(u′) = ‖u′‖2/2) the WIDE approach
has to be traced back at least to Ilmanen [9] who used it in the mean-curvature
context. Examples of relaxation related with micro-structure evolution are pro-
vided by Conti & Ortiz [7] and the general analysis in the λ-convex E case is in
[16]. Still in the convex case Bögelein, Duzaar, & Marcellini [6] address the
specific case of quasilinear parabolic equations in divergence form and [27] deals
with the mean-curvature flow of cartesian surfaces and, more generally, linear-
growth functionals. The non-λ-convex Hilbert-space case E = φ1 − φ2 where φi
are both convex and φ1 dominates φ2 is discussed in [4]. The WIDE theory has
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been also extended to the case of curves of maximal slope [5] for geodesically-λ-
convex functionals in metric spaces in [20, 21], see also [23].

The case of parabolic doubly-nonlinear equations, corresponding indeed to
a dissipation term of the form D(u′) = ‖u′‖p/p for 1 < p 6= 2, has been tackled
in the series of contributions [1, 2, 3]. The rate-independent case p = 1 has
been discussed by Mielke & Ortiz [14], see also [15] for some refined time-
discretization results. An application in the context of crack propagation is in
Larsen, Ortiz, & Richardson [13].

Moving from Ilmanen’s paper, De Giorgi conjectured in [8] that the WIDE
variational approach could be implemented in the hyperbolic setting of semilinear
waves as well, namely for ρ > 0, D = 0, E =

∫
Ω(|∇u|2 + |u|p)dx for p > 1. This

conjecture has been first settled for finite times in [28] and then by Serra & Tilli

[24] in the original infinite-time setting. Extensions to mixed hyperbolic-parabolic
semilinear equations [11], lagrangian systems [10], and to some different classes of
nonlinear energies are also available [25].

A functional close to WED (with ε fixed though) has been considered by Lucia,

Muratov, & Novaga in connection with travelling waves in reaction-diffusion-
advection problems [12, 17, 18, 19].

References

[1] G. Akagi, U. Stefanelli. Weighted energy-dissipation functionals for doubly nonlinear evolu-
tion, J. Funct. Anal., 260 (2011) 2541–2578.

[2] G. Akagi, U. Stefanelli. A variational principle for doubly nonlinear evolution,
Appl. Math. Lett., 23 (2010) 1120–1124.

[3] G. Akagi, U. Stefanelli. Doubly nonlinear evolution equations as convex minimization, SIAM
J. Math. Anal., 46 (2014) 3:1922–1945.

[4] G. Akagi, U. Stefanelli. A variational principle for gradient flows of nonconvex functionals,
in preparation (2014).
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Renormalized viscosity solution for a class of first order
Hamilton-Jacobi equations in metric spaces

Jin Feng

We are interested in possibly singular and discontinuous first order Hamilton-
Jacobi equation of isotropic type in a complete metric space with length property.
An example of this kind is that HamiltonianH(x, p) = 1

2p
2+V (x) with V bounded

from above but equals to −∞ for a dense subset of the states. Situation like this
arises from continuum mechanics, where the state variable lives in space of prob-
ability measures and the potential term models attractive Newtonian potential.

We introduce a notion of renormalized viscosity solution by re-defining deriva-
tives using a new base metric that captures singularities in the Hamiltonian. We
then establish a well posed-ness theory for a large class of elliptic Hamilton-Jacobi
equations in such context.
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Discrete entropy methods for nonlinear diffusive evolution equations

Ansgar Jüngel

The concept of entropy plays a fundamental role in several fields like thermody-
namics, kinetic theory, and statistics. In recent years, powerful tools based on
entropy-dissipation methods for diffusive problems have been developed to un-
derstand their entropy structure and to prove the exponential convergence of the
solutions to equilibrium with explicit and sometimes sharp convergence rates. Ex-
amples are the approach of Bakry-Emery and its extensions [1], the relation to
functional inequalities [6], and the entropy construction method, based on sys-
tematic integration by parts [9]. The Bakry-Emery calculus is closely related to
geometric properties of metric measure spaces, like geodesic λ-convexity [11] and
Ricci curvature [14].

The extension of entropy methods to the discrete setting is of high importance
for the design of novel structure-preserving numerical schemes and the understand-
ing of discrete stochastic processes like finite Markov chains and finite graphs. The
analysis in discrete spaces started only very recently. For instance, Bonciocat and
Sturm [2] developed a notion of rough curvature bounds for discrete spaces, based
on optimal mass transportation. Maas [12] presented a discrete counterpart of
the Wasserstein gradient flow interpretation of the linear heat flow in the whole
space by Jordan, Kinderlehrer, and Otto. Chow et al. [5] related the free en-
ergy, Fokker-Planck equations, and stochastic processes on finite graphs. Erbar
and Maas [7] proved that the discrete porous-medium equation, where the Lapla-
cian is the generator of a reversible continuous-time finite Markov chain, arises
as the gradient flow of a discrete logarithmic entropy with respect to a nonlocal
transportation metric. Similarly, Mielke [13] established geodesic λ-convexity of
the logarithmic entropy for finite Markov chains. His results are closely related
to the Bochner-Bakry-Emery approach of Caputo et al. [3]. Furihata and Mat-
suo [8] developed the Discrete Variational Derivative Method which allows for the
derivation of structure-preserving numerical schemes based on gradient-flow type
formulations.

The main interest in these works, however, is not the design of efficient numerical
schemes (except [8]) and generally no results on the long-time behavior of the
discrete solutions were stated. We have proven the following results:

(1) The time decay of fully discrete implicit Euler finite-volume ap-
proximations of porous-medium and fast-diffusion equations with Neu-
mann or periodic boundary conditions is proved in the entropy sense [4].
The algebraic or exponential decay rates are computed explicitly. In par-
ticular, the numerical scheme dissipates all zeroth-order entropies which
are dissipated by the continuous equation. The proofs are based on novel
continuous and discrete generalized Beckner inequalities. Furthermore,
the exponential decay of some first-order entropies is proved in the contin-
uous and discrete case using systematic integration by parts. Numerical
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experiments in one and two space dimensions illustrate the theoretical re-
sults and indicate that some restrictions on the parameters seem to be
only technical.

(2) New one-leg multistep time discretizations of nonlinear evolution
equations are investigated in [10]. The main features of the scheme are
the preservation of the nonnegativity and the entropy-dissipation struc-
ture of the diffusive equations. The key ideas are to combine Dahlquist’s
G-stability theory with entropy-dissipation methods and to introduce a
nonlinear transformation of variables which provides a quadratic struc-
ture in the equations. It is shown that G-stability of the one-leg scheme
is sufficient to derive discrete entropy dissipation estimates. The general
result is applied to a cross-diffusion system from population dynamics and
a nonlinear fourth-order quantum diffusion model, for which the existence
of semi-discrete weak solutions is proved. Under some assumptions on the
operator of the evolution equation, the second-order convergence of solu-
tions is shown. Moreover, some numerical experiments for the population
model are presented, which underline the theoretical results.

(3) The dissipation of the discrete entropy for implicit Runge-Kutta time
approximations of evolution equations was presented. The advantage,
compared to the one-leg multistep approach, is that the entropy functional
evaluated at the corresponding time step is dissipated and not the more
complicated approximate entropy from [10]. The idea is to exploit the
concavity property of the difference of the entropies at two consecutive
time steps, as a function of the time step size. The computations can be
performed using the method of systematic integration by parts of [9].

(4) Work in progress includes the derivation of discrete Bakry-Emery
methods for nonlinear equations. The results of Mielke [13] can be inter-
preted as a discrete Bakry-Emery approach for the linear Fokker-Planck
equation in one space dimension, discretized by a uniform finite-volume
scheme. In collaboration with J.A. Carrillo and M.C. Santos, nonlinear
equations like the porous-medium equation are investigated. First results
seem to indicate that a generalization of Mielke’s results is possible for cer-
tain (power-law type) nonlinearities. A second work in progress concerns
the development of higher-order minimizing movement schemes.
The idea is to replace the implicit Euler discretization by a one-leg mul-
tistep scheme. This leads to higher-order convergence rates which, for
the moment, are verified only numerically in the case of second-order
schemes in simple situations. Entropy-dissipating properties are proven
in the Hilbert space setting for differential inclusions.

References

[1] A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter. On convex Sobolev inequalities
and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun.
Part. Diff. Eqs. 26 (2001), 43-100.



3202 Oberwolfach Report 57/2014

[2] A. I. Bonciocat and K.-T. Sturm. Mass transportation and rough curvature bounds for
discrete spaces. J. Funct. Anal. 256 (2009), 2944-2966.

[3] P. Caputo, P. Dai Pra, and G. Posta. Convex entropy decay via the Bochner-Bakry-Emery
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Singular perturbations of infinite-dimensional gradient flows

Riccarda Rossi

(joint work with Virginia Agostiniani and Giuseppe Savaré)

Let H be a (separable) Hilbert space and E : [0, T ] × H → R a time-dependent
energy functional. In this note, based on the forthcoming [2], we address the
asymptotic analysis as ε ↓ 0 of the gradient flow driven by E, namely

(1) εu′(t) + DuE(t, u(t)) = 0 in H, for a.a. t ∈ (0, T ).

We assume E bounded from below and E(·, u) differentiable, with

(2) ∃ CE0 , CE1 > 0 ∀ (t, u) ∈ [0, T ]×H : |∂tE(t, u)| ≤ C0
EE(t, u) + C1

E .

Hereafter we will in fact suppose that E ∈ C1([0, T ]×H) is Fréchet-differentiable
on H and therefore understand Du in (1) as the differential of E(t, ·). This will
allow us to simplify the exposition, avoiding technicalities and only focusing on
the intrinsic difficulties of the singular perturbation problem (1). Nonetheless, the
analysis in [2] is carried out for nonsmooth energies E(t, ·).
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Preliminary considerations. Under the further coercivity condition that

(3) the map u 7→ E(t, u) has compact sublevels in H,

it is well known that for every fixed ε > 0 and for every u0 ∈ H there exists at
least a solution uε ∈ H1(0, T ;H) to (1), fulfilling the Cauchy condition uε(0) = u0.
Testing (1) by u′ε, integrating in time, and exploiting the chain rule for E, it is
immediate to check that uε complies with the energy identity

(4)

∫ t

s

ε|u′ε(r)|2 dr + E(t, uε(t)) = E(s, uε(s)) +

∫ t

s

∂tE(r, uε(r)) dr

for all 0 ≤ s ≤ t ≤ T , from which all the a priori estimates on a family (uε)ε
of solutions are deduced. More specifically, using (2), via the Gronwall Lemma
we obtain: (a) The energy bound supt∈(0,T ) E(t, uε(t)) ≤ C; (b) The estimate
∫ T
0
ε|u′ε|2 dt ≤ C′, for positive constants C, C′ > 0 independent of ε > 0. While

(a) and (3) yield that there exists a compact set K ⊂ H s.t. uε(t) ∈ K for all
t ∈ (0, T ) and ε > 0, the equicontinuity estimate provided by (b) degenerates as
ε ↓ 0. Thus, no Arzelà-Ascoli type result applies to deduce compactness for (uε)ε.

This major difficulty is not related to the present infinite-dimensional setting
but also arises in finite dimension. Likewise, in finite and infinite dimension it can
be circumvented by convexity arguments. For example, in H = Rd it is possible to
show that, if E ∈ C2([0, T ]×Rd) and E(t, ·) is uniformly convex, then, starting from
any u0 ∈ Rd with DuE(0, u0) = 0 and D2

uE(0, u0) positive definite, there exists a
unique curve u ∈ C1([0, T ];Rd) fulfilling DuE(t, u(t)) = 0 for every t ∈ [0, T ], to
which the whole family (uε)ε converge as ε ↓ 0, uniformly on [0, T ].

Therefore, it is significant to focus on the case in which the energy u 7→ E(t, u)
is allowed to be nonconvex (but still supposed smooth for the sake of simplicity).
In this context, two problems arise: (1) Prove that, up to the extraction of a
subsequence, the gradient flows uε converge in H as ε ↓ 0 to some limit curve
u (pointwise a.e. in (0, T )); (2) Describe the evolution of u. Namely, we expect
u to be a curve of critical points, jumping at the times t ∈ (0, T ) such that
D2
uE(t, u−(t))) is noninvertible, viz. u−(t) is a degenerate critical point for E(t, ·).

A finite-dimensional result. For the singular perturbation problem (1), a first
answer to (i)–(ii) was provided in finite dimension (i.e. H = Rd) in [4], under the
assumption that the energy E ∈ C3([0, T ]× Rd) (a) has a finite number of degen-
erate critical points; (b) the vector field F := DuE complies with the transversality
conditions at every degenerate critical point; (c) a further technical condition.
Hence, in [4, Thm. 3.7] it was shown that, starting from a well-prepared datum
u0, there exists a unique piecewise C2-curve u : [0, T ] → Rd with a finite jump set
J = {t1, . . . , tk}, such that: (i) DuE(t, u(t)) = 0 with D2

uE(t, u(t)) positive defi-
nite for all t ∈ [ti, ti−1) and i = 1, . . . , k − 1; (ii) at ti ∈ J u−(ti) is a degenerate
critical point for E(ti, ·) and there exists a unique curve v ∈ C2(R;Rd) such that
lims→−∞ v(s) = u−(ti), lims→+∞ v(s) = u+(ti) and

(5) v′(s) + DuE(ti, v(s)) = 0 for all s ∈ R;
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(iii) the whole sequence (uε)ε converge to u uniformly on the compact sets of
[0, T ]\J , and suitable rescalings of uε converge to v.

The fact that at each jump point ti the unique heterocline v connecting u−(ti)
and u+(ti) is a gradient flow of the energy E(ti, ·) bears this mechanical interpreta-
tion: The internal scale of the system, neglected in the singular limit ε ↓ 0, “takes
over” and governs the dynamics in the jump regime, which can be in fact viewed
as a fast transition between two metastable states.

The structure of the above statement reflects the line of its proof. First, the
unique limit curve is a priori constructed via the Implicit Function Theorem, also
resorting to the transversality conditions. Secondly, the convergence of (uε)ε is
proved. In [2] we extend the result from [4] to the infinite-dimensional (Hilber-
tian) case. In this context, it is particularly meaningful to disconnect the analysis
from smoothness conditions on the energy E(t, ·). Thus, the argument we de-
velop is rather akin to the variational approach to (nonsmooth) gradient flows
systematized in [1] and recently extended to rate-independent systems in [3]. In
particular, first we prove the existence of a limit curve by suitable compactness
techniques, and then we variationally characterize its fast dynamics at jumps.
Our results. The key observation is that (4) equivalently rewrites as
∫ t

s

(
ε
2 |u

′
ε(r)|2+ 1

2ε |DuE(r, uε(r))|
2
)
dr+E(t, uε(t)) = E(s, uε(s))+

∫ t

s

∂tE(r, uε(r)) dr

from which it is possible to deduce that

(6)

∫ T

0

|u′ε(r)||DuE(r, uε(r))| dr ≤ C.

Thus, while no (uniform w.r.t. ε > 0) bounds are available on |u′ε|, estimate (6) sug-
gests that: (1) The limit of the energy-dissipation integral

∫ t

s
|u′

ε(r)||DuE(r, uε(r))|dr

will describe the dissipation of energy (at jumps) in the limit ε ↓ 0; (2) To extract
compactness information from (6), featuring the weight |DuE(·, uε)|, it is necessary
to suppose that the (degenerate) critical points of E, in whose neighborhood the
weight tends to zero, are somehow “well separated” one from each other.

In fact, in [2] we require that for every t ∈ [0, T ] the critical set

(7) C(t) := {u ∈ H : DuE(t, u) = 0} consists of isolated points .

This allows us to prove the following
Theorem: Let E ∈ C1([0, T ]×H;R) comply with (2), (3), and (7). Let u0 ∈ H

and let (uε)ε solve (1) with uε(0) = u0. Then, there exist a subsequence εk ↓ 0, a
positive Radon measure µ on [0, T ], and u ∈ L∞(0, T ;H) such that
(i) uεk(t) → u(t) for all t ∈ [0, T ];

(ii)
(
εk
2 |u′εk(r)|2 +

1
2εk

|DuE(r, uεk(r))|2
)
L1 ⇀∗ µ;

(iii) u and µ fulfill for a.a. t ∈ (0, T ) and a.a. s ∈ (0, t)

−DuE(t, u(t)) = 0,(8)

µ([s, t]) + E(t, u(t)) = E(s, u(s)) +

∫ t

s

∂tE(r, u(r)) dr;(9)
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(iv) the jump set J of u coincides with the set of atoms of µ, it is at most countable,
and the jump relations

µ({t}) = E(t, u−(t))− E(t, u+(t)) = c(t;u−(t), u+(t)) for all t ∈ J(10)

hold, with the cost c(t;u−(t), u+(t)) defined as the inf
∫ 1

0
|θ′(r)||DuE(t, θ(r))| dr :

θ(0) = u−(t), θ(1) = u+(t), θ ∈ A} and A the class of admissible curves, obtained
by gluing together a finite number of locally Lipschitz curves connecting points in
the critical set C(t).

In fact the inf in the definition of c(t;u−(t), u+(t)) is attained. Hence, from (10)

we have at every t ∈ J that E(t, u−(t)) − E(t, u+(t)) =
∫ 1

0
|θ′(r)||DuE(t, θ(r))| dr

for any optimal jump transition θ. An argument based on the chain rule yields
that every locally Lipschitz piece θ|(ti,ti+1) can be reparameterized to a curve θ̃ :
(si, si+1) → H, with (si, si+1) possibly unbounded, solving the analogue of (5)

(11) θ̃′(σ) + DuE(t, θ̃(σ)) = 0 in H, for a.a. σ ∈ (si, si+1).

Thus we retrieve the same mechanical interpretation as for the result in [4].
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Quasi-static crack growth in hydraulic fracture

Gianni Dal Maso

(joint work with Stefano Almi and Rodica Toader)

Hydraulic fracture studies the process of crack growth in rocks driven by the
injection of high pressure fluids. The main use of hydraulic fracturing is the
extraction of natural gas or oil. In these cases, a fluid at high pressure is pumped
into a pre-existing fracture through a wellbore, causing the enlargement of the
crack.

In the study of hydraulic fracture, all thermal and chemical effects are usually
neglected and the fracturing stimulation is performed only by hydraulic forces,
not by explosives, thus the inertial effects are negligible. This justifies the use of
quasi-static models.

In our model we make the following general hypotheses:

• the rock fills the whole space R3 and has an initial crack, lying on a plane Σ
passing through the origin;

• the rock is linearly elastic and fully impermeable;
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• the crack can grow only within Σ;
• the fluid is assumed to be incompressible, and is pumped through the
origin into the region between the crack lips;

• at every time t we know the total volume V (t) of the fluid that has been
pumped into the crack up to time t.

The mathematical problem is to show that, given the function t 7→ V (t), we
can determine at each time the shape and size of the crack, as well as the fluid
pressure p(t).

For the precise formulation of the model we use the following notation:

• Γ(t) is the unknown crack at time t in the reference configuration R3;
• C(x) : M3×3

sym → M3×3
sym is the known elasticity tensor of the rock; it is

linear, symmetric, and there exist two constants 0 < α < β < +∞ such
that α|F|2 ≤ C(x)F ·F ≤ β|F|2 for a.e. x ∈ R3 and every F ∈ M3×3

sym, so
that

1

2

∫

R3\Σ

CEu ·Eudx

is the stored elastic energy of the rock corresponding to a displacement u,
with strain Eu := (∇u+∇ut)/2;

• νΣ := e3 is the upper unit normal vector to Σ and [u] is the jump of the
displacement u through Σ;

• at time t the admissible displacements u of the rock belong to the space
W1

2,6(R
3\Σ;R3) := {u ∈ L6(R3\Σ;R3) : ∇u ∈ L2(R3\Σ;M3×3)} (this

incorporates the condition u = 0 at infinity in a weak sense), [u] = 0 on
Σ\Γ(t) (continuity condition out of the crack), and [u] · νΣ ≥ 0 on Γ(t)
(non-interpenetration condition on the crack);

• the approximate volume of the cavity of the crack determined by an ad-
missible displacement u is

∫
Σ
[u] · νΣ dH2 =

∫
Γ(t)

[u] · νΣ dH2, where H2 is

the two-dimensional Hausdorff measure.

Given the crack Γ(t) ⊂ Σ at time t, the equilibrium condition for the rock
implies that the displacement u(t) of the rock is the unique minimizer of the
elastic energy 1

2

∫
R3\ΣCEu ·Eudx among all displacements u ∈ W1

2,6(R
3\Σ;R3)

such that [u] = 0 on Σ \ Γ(t), [u] · νΣ ≥ 0 on Γ(t), and V (t) ≤
∫
Σ[u] · νΣ dH2.

• It is possible to prove that u(t) satisfies V (t) =
∫
Σ[u(t)] · νΣ dH2, hence

there is no dry region near the crack edge.
• By minimality, we have−div(CEu(t)) = 0 on R3\Γ(t) (elasticity equation)
and −(CEu(t))νΣ = ±p(t)νΣ on Γ(t)±, where p(t) ≥ 0 is a constant
(interpreted as the pressure of the fluid), Γ(t)+ is the upper face of Γ(t)
and Γ(t)− is the lower face.

According to Griffith’s theory, the energy dissipated to produce a crack Γ is
given by κH2(Γ), where the constant κ > 0 is the toughness of the rock. The total
(elastic + dissipated) energy corresponding to a displacement u with crack Γ is
defined by E(u,Γ) := 1

2

∫
R3\Σ

CEu ·Eudx+ κH2(Γ). Given a crack Γ and a time

t, the reduced energy Emin(Γ, V (t)) is defined as the minimum value of the total
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energy E(u,Γ) among all displacements u ∈ W1
2,6(R

3\Σ;R3) such that [u] = 0 on

Σ\Γ(t), [u] · νΣ ≥ 0 on Γ(t), and V (t) ≤
∫
Σ
[u] · νΣ dH2. We can now define the

notion of quasistatic evolution in our context.
Let T > 0 and V ∈ AC([0, T ]; [0,+∞)). We say that t 7→ Γ(t) is an irreversible

quasi-static evolution of the hydraulic crack problem if it satisfies the following
conditions:

• irreversibility: Γ(·) is increasing, i.e., Γ(s) ⊂ Γ(t) for 0 ≤ s ≤ t ≤ T ;
• global stability: Emin(Γ(t), V (t)) ≤ Emin(Γ, V (t)) (Griffith’s condition) for
every t ∈ [0, T ] and every Γ ≥ Γ(t);

• energy-dissipation balance: the function t 7→ Emin(Γ(t), V (t)) is absolutely

continuous on the interval [0, T ] and d
dtEmin(Γ(t), V (t)) = p(t)V̇ (t) for

almost every t ∈ [0, T ], where p(t) is the pressure introduced above.

Penny-shaped cracks. Assume that the initial crack Γ0 is a disk centred at
the origin and that the rock is homogeneous and isotropic. Then, by symmetry,
it is natural to consider only circular cracks. One can introduce the definition of
irreversible quasi-static evolution of the penny-shaped hydraulic crack problem by
assuming that all cracks Γ have the form BR := {(x1, x2, 0) : x21 + x22 ≤ R2}.

We proved the following result (see [1]). Let V ∈ AC([0, T ]; [0,+∞)) and
R0 > 0. Assume that Emin(BR0

, V (0)) ≤ Emin(BR, V (0)) for every R ≥ R0

(stability at time t = 0). Then there exists a unique irreversible quasi-static
evolution of the penny-shaped hydraulic crack problem, with Γ(0) = BR0

. It is

given explicitly by Γ(t) = BR(t), with R(t) = max
{
R0,

(
3E1

2κπ

)1/5
V

2/5
∗ (t)

}
, where

E1 is the elastic energy of the displacement corresponding to the crack B1 and to
the volume 1, while V∗(t) is the smallest monotone increasing function which is
greater than or equal to V (t), i.e., V∗(t) = max

0≤s≤t
V (s).

The proof relies on the fact that the function R 7→ Emin(BR, V ) is convex.

More general cracks. Given r > 0, we introduce a class Admr(Σ) of admissible
cracks, whose regularity depends on the parameter r. More precisely, we say that
Γ ∈ Admr(Σ) if it satisfies:

• 0 ∈ Γ;
• Γ is a compact and connected subset of Σ;
• inner ball condition: for every x ∈ ∂Γ there exists y ∈ Γ such that x ∈
∂Br(y) and Br(y) ⊆ Γ.

One can introduce the definition of irreversible quasi-static evolution of the
hydraulic crack problem in Admr(Σ) by assuming that all cracks Γ belong to
Admr(Σ). In this more general setting we proved the following existence result
(see [1]). Let r > 0, V ∈ AC([0, T ], [0,+∞)), and Γ0 ∈ Admr(Σ). Assume
that Emin(Γ0, V (0)) ≤ Emin(Γ, V (0)) for every Γ ∈ Admr(Σ) such that Γ ⊇ Γ0

(stability at time t = 0). Then there exists an irreversible quasi-static evolution
t 7→ Γ(t) of the hydraulic crack problem in Admr(Σ), with Γ(0) = Γ0.

In the proof we use the following properties of the class Admr(Σ):
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• Γ = Γ̊ for every Γ ∈ Admr(Σ);
• Γ1,Γ2 ∈ Admr(Σ) =⇒ Γ1 ∪ Γ2 ∈ Admr(Σ);
• Γ ∈ Admr(Σ) =⇒ diam(Γ) ≤ 8

πrH
2(Γ) + r;

• if Γk is a sequence in Admr(Σ) which converges to Γ in the Hausdorff
metric, then Γ ∈ Admr(Σ) and H2(Γk) → H2(Γ);

• let Γ0, Γk, Γ∞ ∈ Admr(Σ) be such that Γ0 ⊆ Γk and Γk → Γ∞ in the
Hausdorff metric, and let Vk, V∞ ≥ 0 with Vk → V∞; if Emin(Γk, Vk) ≤
Emin(Γ, Vk) for every Γ ∈ Admr(Σ) with Γ ⊇ Γk, then Emin(Γ∞, V∞) ≤
Emin(Γ, V∞) for every Γ ∈ Admr(Σ) with Γ ⊇ Γ∞; moreover, if uk and u∞
are the solutions corresponding to (Γk, Vk) and (Γ∞, V∞), and pk and p∞
are the corresponding pressures, then uk → u∞ in W1

2,6(R
3\Σ), pk → p∞,

and Emin(Γk, Vk) → Emin(Γ∞, V∞).
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Global existence of renormalized solutions to entropy-dissipating
reaction-diffusion systems

Julian Fischer

Reaction-diffusion equations with mass-action kinetics occur in the mathematical
modeling of many phenomena, e.g. in the modeling of chemical reactions or in
drift-diffusion models for semiconductors. Consider a single reversible chemical
reaction of the form

α1A1 + . . .+ αSAS ⇋ β1A1 + . . .+ βSAS

(with αi, βi ∈ N0), where the Ai denote the different chemical species (i.e. the
different types of molecules; e.g. A1 could be H2O or O2). Introduce the notation
ui for the concentration of the chemical species Ai. The simplest corresponding
reaction-diffusion equation with mass-action kinetics is then given by

d

dt
ui = ai∆ui + (βi − αi)

(
cF

S∏

k=1

uαk

k − cB

S∏

k=1

uβk

k

)

︸ ︷︷ ︸
=:Ri(u)

∀i ∈ {1, . . . , S},(1)

where the ai > 0 denote the species-dependent diffusion coefficients and where
cF , cB > 0 denote reaction constants. For this equation, the entropy estimate

d

dt

∫

Ω

S∑

i=1

(µi − 1 + log ui)ui dx ≤ −c
∫

Ω

S∑

i=1

|∇√
ui|2 dx(2)

(which is a consequence of the particular structure of the reaction terms Ri(u)
and which is valid for classical solutions e.g. in case of homogeneous Neumann
boundary conditions and for appropriately chosen µi ∈ R, c > 0) prevents global
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blowup of solutions. Note that formally, the reaction-diffusion equation (1) may
even be written as a gradient flow of the entropy [7].

Despite this absence of global blowup, even for the simple reaction-diffusion
equation (1) global existence of any kind of solution in general has been an open
problem, even for smooth initial data and bounded smooth domains. The key issue
in establishing global existence of solutions is to give a meaning to the reaction
terms Ri(u): besides the entropy estimate, already on a formal level only an
L2(Ω × [0, T ]) estimate is available for solutions [9]; however, in general higher
powers of the solution occur in the reaction terms Ri(u). Thus, a priori it is
not known whether the reaction terms in (1) even define a distribution. For this
reason, previous existence results have been limited to reactions of low degree, i.e.
(very) small values of

∑
αk or

∑
βk, or almost coinciding diffusion coefficients,

see e.g. [1, 4, 6, 8] and the references therein.
In the recent paper [5], we propose a notion of renormalized solutions for

reaction-diffusion equations of the form

d

dt
ui = ∇ · (Ai∇ui)−∇ · (ui~bi) +Ri(u) ∀i ∈ {1, . . . , S}

and establish global existence of solutions. For the reaction rates Ri(·), besides
local Lipschitz continuity and the natural condition Ri(v) ≥ 0 in case vi = 0 (a
chemical species that is not present may not be consumed by reactions) our only
assumption is that the entropy condition

S∑

i=1

Ri(v)(log vi + µi) ≤ 0 ∀v ∈ (R+
0 )
S

holds for appropriate µi ∈ R. We would like to emphasize that this entropy condi-
tion is satisfied for all reversible reactions with mass-action kinetics; furthermore,
it holds for all systems of reversible reactions with mass-action kinetics that are
subject to the so-called condition of detailed balance; see e.g. [10].

In general, the concept of renormalized solutions for a partial differential equa-
tion (introduced by DiPerna and Lions [2, 3]) imposes an evolution equation for
nonlinear functions ξ(u) of the actual solution u, whenever ξ belongs to some
suitable class of functions; more precisely, ξ(u) is required to satisfy the equation
deduced from the original PDE by a formal application of the chain rule. In case
of the simplified equation (1), our definition of renormalized solutions consists of
requiring that the equation

∫

Ω

ξ(u)ψ dx

∣∣∣∣
T

0

=−
∫ T

0

∫

Ω

S∑

i,j=1

ψai∂i∂jξ(u)∇ui · ∇uj dx dt

−
∫ T

0

∫

Ω

S∑

i=1

ai∂iξ(u)∇ui · ∇ψ dx dt(3)

+

∫ T

0

∫

Ω

S∑

i=1

∂iξ(u)Ri(u)ψ dx dt
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must be satisfied for any ξ ∈ C∞((R+
0 )

S) with compactly supported derivatives,
any test function ψ ∈ W 1,∞(Ω), and any T > 0. Furthermore, we impose the
regularity constraints ui ∈ L∞([0, T ];L1(Ω;R+

0 )) and
√
ui ∈ L2([0, T ];H1(Ω)).

In the construction of such renormalized solutions, two major difficulties occur:
first, for the family of solutions uε to the regularized problems

d

dt
uεi = ai∆u

ε
i +

Ri(u
ε)

1 + ε|R(uε)| ∀i ∈ {1, . . . , S},(4)

compactness in L1(Ω× [0, T ]) is not immediate: a direct application of the Aubin-
Lions Lemma is not possible due to the potential failure of the uniform bound-
edness of d

dtu
ε in L1([0, T ]; (Hm(Ω))′) for all m. Introducing a family ϕEi of

multi-variable truncations of the map v 7→ vi – the truncation occurring whenever∑S
k=1 vk exceeds E –, this problem can be overcome by applying the Aubin-Lions

Lemma to the family ϕEi (u
ε) instead.

The key difficulty in the construction of renormalized solutions, however, is the
lack of compactness in L2(Ω× [0, T ]) of the spatial derivatives ∇uε of the approx-
imating sequence. Only weak convergence of ∇

√
uεi in L2(Ω × [0, T ]) is implied

by the known mathematical energy estimates (which basically consist just of the
entropy estimate (2)). The functions uε can be shown to satisfy a renormalized
formulation of the regularized equation (4) which is completely analogous to (3).
However, in the limit ε → 0 convergence of the first term on the right-hand side
of the ε-regularized version of (3) cannot be established directly for our approxi-
mating sequence uε, as this term contains a product of spatial derivatives.

Instead, we resort to an alternative strategy: we pass to the limit ε→ 0 in the
equation satisfied by ϕEi (u

ε); in this limit, only the oscillations of the sequence

∇√uεj on the set {E ≤
∑S

k=1 u
ε
k ≤ 2E} may cause a convergence defect in our

equation, as only in this range ϕEi (·) is non-affine. From the resulting equation
for ϕEi (u) which is only satisfied up to this convergence defect, an equation for
ξ(ϕE(u)) which also only holds up to this convergence defect may be derived by
a generalized chain rule. Finally passing to the limit E → ∞, an exact equation
for ξ(u) is derived by showing that the convergence defect vanishes in the limit
E → ∞. The latter issue is the most delicate part of the proof. It is accomplished
by a Fatou-type estimate of the form
∞∑

Ê=0

lim
ε→0

∫ T

0

∫

Ω

χ{Ê≤
∑

S
k=1

uε
k
<Ê+1}|∇

√
uεi |2 dx dt ≤ lim inf

ε→0

∫ T

0

∫

Ω

|∇
√
uεi |2 dx dt

(the expression on the right-hand side being finite due to the entropy estimate)
which entails the desired decay of oscillations as E → ∞

lim
E→∞

lim
ε→0

∫ T

0

∫

Ω

χ{E≤
∑

S
k=1

uε
k
≤2E}|∇

√
uεi |2 dx dt = 0.
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Abstract thermodynamics on duals to unital Banach algebras

Tomáš Roub́ıček

The initial-boundary-value problem for the scalar parabolic equation

.
ϑ−∆ϑ = f, ϑ|t=0 = ϑ0,

∂ϑ

∂ν
= 0 on I × ∂Ω

on a domain Ω ⊂ Rd and I = [0, T ] allows typically for various tests, namely by ϑ

or by
.
ϑ ≡ ∂ϑ

∂t , or after differentiation in time again by
.
ϑ or by

..
ϑ etc. Such tests

always rely on Banach or Hilbert-space structures of underlying function spaces,
reflecting its interpretation as a gradient flow governed by the −∆ operator.

If interpreted as a heat-transfer equation, the natural test leading to an en-
ergy balance is however by a constant function 1. The corresponding a-priori L1-
estimate then relies on non-negativity of the solution and on the natural L1-bounds
on the heat source f ≥ 0 and ϑ0 ≥ 0. It reveals that, as a minimal requirement,
one needs the ordering and the unity, and the multiplication by unity at disposal.

All this is available at commutative Banach algebras with unity, which are em-
bedded into their duals through the Gelfand-triple construction. More specifically,
we may use a theory of C∗-algebras (based on complex fields and playing still with
an involution operator): any C∗-algebra has a Gelfand representation [3], being
homeomorphic with the space of complex-valued continuous functions on a com-
pact set K consisting of all nontrivial multiplicative functionals on this algebra,
equipped with the weak* topology of its dual. The subset of all its selfadjoint
elements, let us denote it Θ, is a commutative Banach algebras with unity (called
a unital Banach algebra) which is homeomorphic with C(K), the real-valued con-
tinuous functions on K. Ordering of C(K) by the cone of non-negative functions
is then the natural ordering of Θ, and induces also the dual ordering of the dual
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space Θ∗ which is isomorphic to the space of Borel measures Meas(K) ∼= C(K)∗

on K. In applications, K occurs very explicitly and is typically metrizable and Θ
is separable.

Further, we put Σ = L2(K) := a completion of C(K) with respect to the norm

‖ϑ‖
Σ

:= (
∫
K
ϑ2 dx)1/2 where dx denotes the measure induced by the constant

function 1. We assume L2(K) ∼= L2(K)∗, which unfortunately does not seem to
be automatic and is indeed in a position of an assumption, although easily to be
satisfied in particular applications we have in mind. Altogether, we thus have

111
the unity

ր
∈ Θ

a (real) commutative Banach algebra
ց

⊂ Σ ∼= Σ∗ ⊂ Θ∗
ւ
an ordered Banach space

︸ ︷︷ ︸
a Gelfand triple

. (1)

Beside the ordering on Θ∗ ∼= Meas(K), we have at disposal the standard Jordan
decomposition of measures and their standard total variation.

The abstract parabolic-like equation is then formulated on such a dual. To
define the abstract “heat” flux, we need still an abstract construction of a linear
gradient-like operator: we assume that there exists a family {LLLp}1≤p≤∞ of Banach

spaces with LLLp′ = LLL∗
p for any 1 ≤ p < ∞ and G ∈ Lin(Θ∗,LLL1) and define the

abstract Sobolev spaceWWW p := {ϑ∈Θ∗; Gϑ∈LLLp} with the norm ‖ϑ‖WWWp
:= ‖ϑ‖

Θ∗

+‖Gϑ‖LLLp
, and assume thatG|WWW p

∈ Lin(WWW p,LLLp) for any 1 ≤ p ≤ ∞, thatWWW p ⊂ Σ
for any 2 ≤ p ≤ ∞, andWWW∞ ⊂ Θ densely. We will further need a compatibility of
the Jordan-type decomposition withWWW 2 in the sense that ϑ+,ϑ−∈WWW 2 whenever
ϑ∈WWW 2 and a compatibility of G with the Banach-algebra structure G111 = 0. The
Gelfand triple (1) is thus expanded to the chain

WWW∞ ⊂ Θ ⊂ Σ ⊂ Θ∗ ⊂WWW ∗
∞. (2)

Instead of [G|WWW 1
]∗ : LLL∗

1 = LLL∞ → WWW ∗
1, we consider the “adjoint gradient” rather

as Div := −[G|LLL∞
]∗|LLL1

∈ Lin(LLL1,WWW
∗
∞).

A certain prototype of the chain (2) isW 1,∞(Ω) ⊂ C(Ω̄) ⊂ L2(Ω) ⊂ Meas(Ω̄) ⊂
W 1,∞(Ω)∗ and LLLp = Lp(Ω;Rd) with the operators G = ∇ and Div=div.

Further, we consider an abstract positive-definite “heat-conductivity” operator
K ∈ Lin(LLL1,LLL1) and assume also K|LLL2

∈ Lin(LLL2,LLL2). Thus the bilinear form
(g1,g2) 7→LLL2

〈Kg1,g2〉LLL2
admits a continuous extension (g1,g2) 7→LLL1

〈Kg1,g2〉LLL∞
.

Then, Div(Kg) ∈WWW ∗
∞ for g ∈ LLL1 is defined by the abstract Green-like formula

∀v ∈WWW∞ : WWW∗
∞

〈
Div(Kg),v

〉
WWW∞

:=
LLL1

〈
−Kg, Gv

〉
LLL∞

.

For an external enthalpy source hext = hext(t) valued in Θ∗ we will deal with an
initial-value problem for an abstract heat-transfer equation:

.
ϑ−Div

(
KGϑ

)
= hext , ϑt=0 = ϑ0, (3)
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with
.
ϑ denoting the time derivative assumed valued in Θ∗. Approximation by

time discretisation (τ > 0 a time step, T/τ integer) leads to:

ϑkτ−ϑk−1
τ

τ
−Div

(
KGϑkτ

)
= (hext)

k
τ =:

1

τ

∫ kτ

(k−1)τ

hext,τ (t) dt

for k = 1, ..., T/τ , with ϑ0
τ = ϑ0, and hext,τ a regularization of hext valued in

WWW ∗
2. Existence of a non-negative ϑkτ ∈WWW 2 follows by standard monotone-operator

technique, assuming K∈Lin(LLL2,LLL2) positive definite hext(t) ≥ 000, ϑ0 ≥ 000.
By ϑτ and ϑτ we denote the piecewise affine continuous and the piecewise

constant left-continuous interpolants, respectively. It is then possible to prove the
convergence of the approximate solutions

ϑτ → ϑ weakly* in L∞
w∗(I;Θ

∗) ∼= L1(I;Θ)∗

If K = K(ϑ) or for some coupled problems, we need some estimates of the (ab-
stract) gradient Gϑτ . To this goal, one can formulate an abstract condition
(
ϑτ
)
τ>0

bounded in L∞(I;Θ∗)
( .
ϑτ−Div

(
KGϑτ

))
τ>0

bounded in L1(I;Θ∗)





⇒
(
Gϑτ

)
τ>0

bounded in Lp(I;LLLp)

for some 1 ≤ p <∞,

(4)

which implies ϑτ → ϑ strongly in Lp(I; Θ̃) for and 1 ≤ p < ∞ for any WWW p ⊂⊂
Θ̃. In concrete problems, (4) is to be verified by very specific “nonlinear” tests
imitating (but not identical) the “energetic” test by 111 as in [2].

Further extension of the above abstract procedure is a coupling with “non-
thermal” subsystems. For this, we consider an abstract free energy ψ :UUU×Θ → Θ∗

depending on an abstract “non-thermal” variable u valued in a Banach space UUU
and an abstract temperature θ valued (rather formally) in Θ. We use a naturally
arising convention that extensive (resp. intensive) variables are valued in Θ∗ (resp.
in Θ). For the total free energy Ψ : UUU ×Θ → R defined by Ψ(u, θ) := 〈ψ(u, θ),111〉,
we define a specific entropy s ∈ Θ∗ and the total entropy S∈R respectively as

s := −Ψ ′
θ(u, θ) and S :=

〈
s,111
〉
,

and further, by an abstract Gibbs’ relation, the specific internal energy ε∈Θ∗as:

ε(u, θ, s) := ψ(u, θ) + s•θ

where we use an abstract “localization” bi-linear mapping • :Θ∗×Θ → Θ∗, cf.
[4, Sec. 5.3.1]. Then, for the total internal energy E(u, θ, s) :=

Θ∗〈ε(u, θ, s),111〉Θ =
Ψ(u, θ) +

Θ∗〈s, θ〉Θ, we have the expression for temperature as expected:

θ = E
′
s(u, θ, s).

Furthermore, the entropy equation reads as

θ •
.
s−Div

(
K(u, θ)Gθ

)
= r (5)
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where the heat flux in terms of temperature θ is governed by the Fourier law
−K(u, θ)Gθ and where r ∈ Θ∗ denotes the dissipation (i.e. heat production) rate.
The heat-transfer equation arising from (5) reads as

cv(u, θ)•
.
θ −Div(K(u, θ)Gθ) = r+ θ •Ψ ′′

θu
(u, θ)•

.
u (6)

with the heat capacity cv(u, θ)= − θ •S′
θ
(u, θ)= − θ •Ψ ′′

θθ
(u, θ)∈Θ∗. By using

the enthalpy-like transformation Cv(u, θ) :=
∫ 1

0 cv(u, tθ)•θ dt ∈ Θ∗, (6) reads as

.
ϑ−Div

(
K(u, θ)Gθ

)
= r+

(
θ •Ψ ′′

θu(u, θ)+[Cv]
′
u(u, θ)

)
•
.
u with ϑ = Cv(u, θ).

The simplest coupling arises by considering a (generalized) gradient flow V
.
u +

Ψ ′
u
(u, θ) = f(t) and then r = V

.
u•

.
u where V ∈Lin(VVV ,VVV ∗) is a coercive operator,

VVV ⊃ UUU .
For a generalizations for inertial forces and/or rate-independent subsystems

and existence of a suitably defined weak solution we refer to [4, Sec. 5.3.2]. For
illustration of the abstract scheme by some applications of such a coupled system
in continuum thermomechanics of solids like e.g. [1] we refer to [4, Sec. 5.3.3].
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Synchronization and Rhythms: Asymptotic Dynamics for Systems
Close to Gradient Flows

Giambattista Giacomin

The driving idea of my presentation can be summed up by: in families of in-
teracting units (multicellular organisms, colonies of organisms, components in a
circuit,. . .) synchronization and rhythmic behaviors are often observed. Moreover,
rhythms are not mere accidents, but they have profound functional roles. What is
then the origin of synchronization and rhythms? The issue is very vast [14], but
we can highlight two important classes:

(1) Systems in which there is a pacemaker. One example is the circadian
rhythm, where the pacemaker is of course the sun. The pacemaker is at
the origin of both synchronization and rhythm.
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(2) The interaction of the units leads to (some sort of) synchronization and a
rhythm emerges as stable time asymptotic dynamics of the whole family.
The main example here is that most of the living organism, even very
simple ones, are able to reproduce a rhythm that is very close to the
circadian one. This mechanism is definitely more mysterious than the one
in (1), but absolutely omnipresent and of profound functional importance.

We focus on the second mechanism – the intrinsically generated rhythms – and
the aim is to attack mathematically an idea that has been very much developed
in the applied sciences: a system made of very many noisy excitable units may
behave almost periodically, typically if noise is neither two strong nor too weak
[8]. Of course a noisy finite dimensional system cannot behave periodically, unless
it is very degenerate (and this is not what we have in mind). One of the key words
here is almost: periodic behavior appears as a mathematical extrapolation – a law
of large numbers – only in the limit of infinitely large families of units. Another
word that may be too imprecise at this stage is excitable unit: this is actually a
vague notion in the literature, but it is typically a finite dimensional dynamical
system that models a unit that has a resting position. Under small perturbations
the unit relaxes quickly back to the resting state, but it the perturbation is suf-
ficiently strong the unit perfumes a more complex action before getting back to
rest (example: a neuron that spikes [8])

Note that an excitable unit has nothing periodic in itself: the periodic behavior
is expected to emerge as a result of the interaction between several units that have
a non linear dynamics and because of the noise that perturbs the units. We can
say that these phenomena are well understood at a numerical level [8], but, in spite
of the considerable importance in real world phenomena, mathematical results are
extremely meager.

The aim of my presentation has been to introduce a class of models – the
active rotator model – proposed by H. Sakaguchi, S. Shinomoto and Y. Kuramoto
[9, 10, 12] for which we can rigorously establish the appearance of stable periodic
motion. This is really a minimal toy model and it allows to see how challenging in
reality the question is. The active rotator model is made up by one dimensional
units that are one dimensional: ϕ ∈ T := R/(2πZ):

(1) ϕ̇(t) = U(ϕ(t)),

with U : T 7→ R smooth. We assume that
∫
T
U 6= 0, that is U is not the derivative

of a function. For the purpose of this abstract it suffices to focus on U(ϕ) :=
a sin(ϕ) − 1, a > 1. Note that the dynamics has one stable fixed point and it is
probably easy for the reader to grasp the idea of excitable unit by just meditating
on this simple dynamics.

We now want to put several units of this type into interaction, we add noise,
and the easiest model we can write is [9, 10, 12]

(2) dϕj(t) = δU(ϕj(t))dt−
K

N

N∑

i=1

sin (ϕj(t)− ϕi(t)) dt+ σdwj(t) ,
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where j = 1, 2, . . .N , δ ≥ 0, K ≥ 0, σ > 0 and {wj}j=1,2,... are independent
standard Brownian motions.

At this stage it is important to remark that this stochastic evolution admits
only one invariant probability measure but the evolution is reversible with respect
to this measure if and only if δ = 0. Stochastic reversibility is what in physics is
called detailed balance law [2].

The Fokker-Planck equation that emerges as evolution equation for the N → ∞
limit of the empirical measure the variables {ϕj(t)}j=1,...,N [2, 9, 10, 12] is

(3) ∂tpt(θ) =
σ2

2
∂2θpt(θ)− ∂θ [pt(θ)(J ∗ pt)(θ)] − δ ∂θ [pt(θ)U(θ)] ,

where J(·) = −K sin(·) and ∗ denotes the convolution on T. Of course pt(·) is a
probability density. Let us point out immediately that (3) is a gradient system [2]
if and only if δ = 0 (stochastic reversibility becomes a gradient structure in the
continuum limit).

It is for (3) that we can establish synchronization and rhythmic behavior, under
suitable assumptions on the parameters. Schematically our result is the following:
if K/σ2 is larger than one, but below a threshold that we can compute, for a > 1 in
a suitable interval (again, that we can make explicit: recall that U(·) = a sin(·)−1)
there exists a (locally) stable pulsating wave for (3) for δ sufficiently small. Our
results become sharp in the limit δ ց 0 [6] (see [3, 4] for generalizations).

The result can be probably understood better if we recall that the system is
a gradient flow of a suitable free energy if δ = 0. For such a PDE all stationary
solutions can be computed and one can establish the existence of a stable manifold
of stationary solution [5]: these stationary solutions describe coherent or synchro-
nized states. This model in fact is well known in statistical mechanics and it can be
explicitly solved [13]. Using dynamical systems technics (robustness of normally
contracting manifolds [1, 7, 11]) we can show that such a stable manifold exists
also for δ 6= 0, at least if δ is not too large. Moreover a systematic perturbation
theory can be developed so that also for δ 6= 0 we can obtain explicit expressions
that become more and more accurate the smaller δ is.
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Weak Solutions for a Stochastic Mean Curvature Flow of Two
Dimensional Graphs

Max von Renesse

(joint work with Martina Hofmanova and Matthias Röger)

We study a stochastically perturbed mean curvature flow for graphs in R3 over
the two-dimensional unit-cube and subject to periodic boundary conditions, giving
rise to the SPDE

df =
√
1 + |∇f |2 div

( ∇f√
1 + |∇f |2

)
dt+

√
1 + |∇f |2 ◦ dWt,

where ◦ dWt denotes the formal Stratonvich differential of the noise. This is a
special case of a model proposed in the physics literature for the motion of a
surface separating the two phases of a binary alloy at critical temperature subject
to additional perturbation by a noisy environment [16].

The mathematical difficulties of this model arise from the fact that the equation
is only quasilinear and degenerate elliptic in the main part and that the noise is
multiplicative in the gradient of the solution.

In a series of papers around 2000 Lions and Souganidis announced a theory
of stochastic viscosity solutions for fully nonlinear SPDE which would cover the
equation above, yielding well posedness for the model.

In our work we present a full proof of existence of weak martingale solutions
on the two dimensional torus by energy estimates, giving an alternative to the
announced stochastic viscosity solution approach.

To overcome difficulties induced by the degeneracy of the mean curvature oper-
ator and the multiplicative gradient noise present in the model we employ a three
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step approximation scheme together with refined stochastic compactness and mar-
tingale identification methods.

The crucial energy estimate for the surface area functional depend on an al-
gebraic vanishing theorem which holds true only for two-dimensional matrices.
The passage to the limit in the multiplicative noise coefficient is achieved by an
extension of compensated compactness arguments to a stochastic setting.

References

[1] S. M. Allen and J. W. Cahn. A microscopic theory for antiphase boundary motion and its
application to antiphase domain coarsening. Acta Metall., 27:1085?1095, 1979.

[2] G. Barles, H. M. Soner, and P. E. Souganidis. Front propagation and phase field theory.
SIAM J. Control Optim., 31(2):439–469, 1993.

[3] Rainer Buckdahn and Jin Ma. Pathwise stochastic Taylor expansions and stochastic viscosity
solutions for fully nonlinear stochastic PDEs. Ann. Probab., 30(3):1131–1171, 2002.

[4] Michael Caruana, Peter K. Friz, and Harald Oberhauser. A (rough) pathwise approach to
a class of non-linear stochastic partial differential equations. Ann. Inst. H. Poincaré Anal.
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Analysis of a variational model for nematic shells

Antonio Segatti

(joint work with G. Canevari, M. Snarski and M. Veneroni)

A nematic shell is a thin film of nematic liquid crystal coating a rigid and curved
substrate Σ represented as a two-dimensional surface. The basic mathematical
description of these shells is given in terms of a unit vector field constrained to be
tangent to the substrate Σ. In analogy with the nomenclature for liquid crystals
on domains, this vector field is named director and it expresses at any point of Σ
the mean orientation of the nematic molecules. The rigorous mathematical treat-
ment of nematic shells is intriguing since the analysis requires tools from diverse
fields such as the calculus of variations, partial differential equations, topology,
differential geometry and numerical analysis. On the other hand, the interest in
this study is not only academic but rather it is motivated by the vast technolog-
ical applications of nematic shells. To the best of our knowledge, the study of
these structures has been mostly confined to the physical literature (see, among
the others, [2, 3, 7]) with the sole exception of [4]. As observed in [7], the liquid
crystal ground state (and all its stable configurations, in general) is determined
by two competing driving principles: on the one hand the minimization of the
“curvature of the texture” penalized by the elastic energy, and on the other the
frustration due to constraints of geometrical and topological nature, imposed by
anchoring the nematic to the surface of the underlying particle. In [5] and in [6]
we have analyzed a new energy model proposed by Napoli and Vergori in [3]. This
energy affects the two aspects above, leading to different results with respect to
the classical models [2, 4]. To describe our results and to highlight some of the
related difficulties, we consider the simplest one-constant approximation of the
surface energy on a compact two-dimensional surface Σ ⊂ R3 without boundary
(see [5] for the analysis of the full energy):

(1) Wextr(n) :=
κ

2

∫

Σ

|Dn|2 + |Bn|2 dVolg,
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where n is tangent vector field with unit norm. Here κ is a positive constant, the
symbol D denotes the covariant derivative on Σ, and B is the shape operator.
We refer to (1) as to the extrinsic energy to highlight the difference with the
classical energy proposed in [2] which consists only in the Dirichlet part of (1)
and thus has an intrinsic character. As a result, the energy in [2, 4] does not
take into account how the substrate Σ sits in R3. In what follows, we will better
explain the differences between these two approaches when Σ is the axisymmetric
torus. The energy (1) has been derived in [3] via a formal dimension reduction
thus suggesting as an interesting open problem its rigorous deduction using the
Γ-convergence. Our results address

(a) the relation between the topology of the surface and the functional setting,
(b) the minimization of (1) and the well posedness of its gradient flow on a

general genus one surface,
(c) the precise structure of local minimizers on the axisymmetric torus.

The gradient flow of the energy, aside from being an interesting mathematical
object on its own, it provides an efficient tool for numerical approximations of
minimizers. Furthermore, it can be seen as a first step towards the study of a Leslie-
Ericksen type model for nematic liquid crystals on surfaces. Step (a) is necessary
to give a rigorous formulation to the problem and to identify for which surfaces the
energy (1) is well defined. We thus obtain (see [5]) an H1 version of the celebrated
Hairy Ball theorem or, more generally, that there exist unit norm tangent vector
fields on Σ (compact and without boundary) with H1 regularity if and only if Σ has
Euler Characteristic equal to zero. In [1] we extended this result to vector fields
and line fields with VMO regularity and to manifolds with boundary. Steps (b)
and (c) are two sides of the same story: On the one hand, the analysis in (b) has
the advantage of being applicable to any two-dimensional topologically admissible
surface and even, up to some technical difficulties, to (N−1)-dimensional compact
and smooth hypersurfaces embedded in RN . On the other hand, in (c) we sacrifice
generality in order to obtain precise analytical and numerical information on the
solutions. Thus, once we have fixed Σ to be an aximmetric torus, we study the
energy (1) representing the vector field using a scalar parameter α that measures
the angle that n forms with a given moving orthonormal frame {e1, e2}, i.e. n =
e1 cos(α)+e2 sin(α). As a result, the regularity issue and the existence of solutions
with prescribed winding number become more transparent than working directly
on (1). The local existence of the representation above is straightforward, but
a global one is in general not possible (even when the topology of Σ allows for
H1-fields). Consequently, a first step in the analysis is to prove that for every
H1-regular unit-norm vector field n there exists a representation α ∈ H1

loc(R
2)

defined on the universal covering of Σ. Once we have represented n via the angle
α, the energy (1) takes the form (Q := [0, 2π]× [0, 2π])

(2) Wextr(α) =
κ

2

∫

Q

{
|∇sα|2 + η cos(2α)

}
dvol + f(µ),
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where η is a function which depends only on the geometry of the torus and f(µ)
is a constant depending only on the aspect ratio µ := R

r , with R, r being the
major and the minor radii, respectively. This structure, a Dirichlet energy plus a
double (modulo 2π) well potential, is well-studied in the context of Cahn-Hilliard
phase transitions. In particular, the constant states αm ≡ 0 and αp ≡ π/2 (see
Figure 1) are equilibrium configurations. Moreover, depending on the torus aspect
ratio, the sign of η may not be constant on Q and this forces a smooth transition
between the states αm, where η < 0, and αp, where η > 0. Note that αp and αm
(and more generally all the constant states) are minimizers for the intrinsic energy,
independently of the value of µ. On the other hand the energy (2) is sensitive to
changes in the torus aspect ratio due to the potential term. In particular, when
µ < µ∗ ≈ 1.52 (found numerically) the high bending energy associated to α = αp
in the internal hole of the torus makes the constant solution αp no longer stable.
Another feature is that the new (non constant) solution depicted at the bottom
of Figure 1 emerges. This new solution attempts to minimize the effect of the
curvature by orienting the director field along the meridian lines α = αm (which
are geodesics on the torus) near the hole of the torus, while near the external
equator the director is oriented along the parallel lines α = αp (which are lines of
curvature). It is important to note that this new solution is a consequence of the
extrinsic term in the energy (1) and does not show up when using the intrinsic
energy.

αm αp

Figure 1.
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Dynamics of entropic interpolations

Christian Léonard

Displacement interpolations are flows of probability measures that solve some op-
timal transport problem, while entropic interpolations are flows of probability
measures that solve some Schrödinger problem: an entropy minimization problem
addressed by Schrödinger in 1931. These two notions are intimately linked to
each other. In several settings of interest, displacement interpolations are limits
of entropic interpolations.

Notation. For any measurable space Y, M(Y ) is the set of all positive measures
on Y and P(Y ) is the subset of all probability measures. The path space on X is
denoted by Ω ⊂ X[0,1]. The canonical process (Xt)t∈[0,1] is defined for each t ∈ [0, 1]
and ω ∈ Ω by Xt(ω) = ωt ∈ X. For any Q ∈ M(Ω) and 0 ≤ t ≤ 1, we denote
Qt := (Xt)#Q := Q(Xt ∈ ·) ∈ M(X) the law of Xt under Q.

Displacement interpolations. To make things easy, let the state space X be a
Riemannian manifold and d be its Riemannian distance. Consider the problem of
minimizing the average kinetic action

(1)

∫

Ω

dP

∫

[0,1]

|Ẋt|2Xt
/2 dt→ min; P ∈ P(Ω) : P0 = µ0, P1 = µ1

under the constraint that the initial and final marginals of P0 and P1 of P are
equal to the prescribed probability measures µ0 and µ1 ∈ P(X) on X. Suppose
for simplicity that there is a unique solution P to this problem. Then P has the
form P (·) =

∫
X2 δγxy(·)π(dxdy) where δγxy is the Dirac mass at γxy: the unique

geodesic between x and y, and π ∈ P(X2) is the unique solution of the optimal
transport problem

∫

X2

d2(x, y)π(dxdy) → min; π ∈ P(X2) : π0 = µ0, π1 = µ1
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where π0 and π1 ∈ P(X) stand for the first and second marginals of π. The displace-
ment interpolation between µ0 and µ1 is the flow of marginals [µ0, µ1] := (Pt)0≤t≤1

of the solution P of (1). This notion has been introduced by McCann in his PhD
Thesis [8]. It is the basis of the development of the theory of lower bounds for the
Ricci curvature of geodesic spaces, see the textbooks [1, 10].

Entropic interpolations. Consider the Schrödinger problem of minimizing the
relative entropy

(2) H(P |R) :=
∫

Ω

log(dP/dR) dP → min; P ∈ P(Ω) : P0 = µ0, P1 = µ1

with respect to the reference path measure R ∈ M(Ω) under the same marginal
constraints as in (1). For a survey of basic results about the Schrödinger problem,
see [7]. If we choose R to be the law of the reversible Brownian motion on X, we
obtain with Girsanov’s theory that

H(P |R) = H(P0|vol) +
∫

Ω

dP

∫

[0,1]

|vPt (Xt)|2Xt
/2 dt

where vPt is Nelson’s forward velocity field of the diffusion law P , [9]. When
X = Rn, denoting EP [·|·] the conditional expectation,

(3) vPt (x) = lim
h→0,h>0

1

h
EP [Xt+h −Xt | Xt = x].

The entropic interpolation between µ0 and µ1 is the flow of marginals [µ0, µ1]
R :=

(Pt)0≤t≤1 of the unique solution P of (2).

A worthy analogy. The analogy between (1) and (2) is not only formal. Con-
sidering the slowed down process Rǫ = (Xǫ)#R which is the law of Xǫ

t = Xǫt, 0 ≤
t ≤ 1, it is known that

ǫH(P |Rǫ) → min; P ∈ P(Ω) : P0 = µ0, P1 = µ1

Γ-converges to (1), see [6]. In particular, the entropic interpolation [µ0, µ1]
Rǫ

is a
smooth approximation of the displacement interpolation [µ0, µ1].

This kind of convergence also holds for optimal L1-transport on graphs [4] and
Finsler manifolds (instead of optimal L2-transport on a Riemannian manifold)
where diffusion processes must be replaced by random processes with jumps (work
in progress).

Dynamics of the interpolations. Unlike entropic interpolations, displacement
interpolations lack regularity. Already known results about the dynamics of the
displacement interpolations in geodesic spaces with a Ricci curvature bounded
from below can be found in [3]. Understanding the dynamics of entropic interpo-
lations could be a first step (before letting ǫ tend to zero) to recover such results.
A formal representation of the displacement interpolation is given by

Ẋt = ∇ψ(t,Xt), P -a.s.
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where P is a solution of (1), ψ is the viscosity solution of the Hamilton-Jacobi

equation

{
∂tψ + |∇ψ|2/2 = 0
ψt=1 = ψ1

and ψ1 is in accordance with the endpoint data

µ0 and µ1. Note that

(4) Ẍt = ∇[∂tψ + |∇ψ|2/2](t,Xt) = 0, P -a.s.

fitting the standard geodesic picture. Similarly, a rigorous representation of the
entropic interpolation is given by

vPt = ∇ψ(t,Xt), P -a.s.

where vP is defined at (3), P is the solution of (2) and ψ is the classical solution of

the Hamilton-Jacobi-Bellman equation

{
∂tψ +∆ψ/2 + |∇ψ|2/2 = 0,
ψt=1 = ψ1.

Iterating

time derivations in the spirit of (3) in both directions of time allows to define a
relevant notion of stochastic acceleration aP , see for instance [9, 2]. We obtain the
following analogue of (4)

aPt =
1

2
∇[∂tψ+∆ψ/2+|∇ψ|2/2]+1

2
∇[−∂tϕ+∆ϕ/2+|∇ϕ|2/2](t,Xt) = 0, P -a.s.

where ϕ solves some HJB equation

{
−∂tϕ+∆ϕ/2 + |∇ϕ|2/2 = 0
ϕt=0 = ϕ0

in the other

direction of time. As an interesting consequence, we obtain in [5] that along any
entropic interpolation µt := Pt, 0 ≤ t ≤ 1 on a Riemannian manifold, the relative
entropy H(µt|vol) of µt with respect to the volume measure vol, we have

d2

dt2
H(µt|vol) =

1

2
{Γ2(ϕt) + Γ2(ψt)}

where ϕ and ψ are the solutions of the above HJB equations in both directions of
time and Γ2 is the Bakry-Émery operator given by Γ2(u) = Ric(∇u)+∑i,j(∂i∂ju)

2

with Ric the Ricci tensor. This last formula is a rigorous (in the sense that the
second derivative is well defined) analogue of the heuristic formula (obtained with
Otto’s heuristic calculus)

d2

dt2
H(µt|vol) = Γ2(ψt)

which holds for the displacement interpolation (µt) and is the basic step for devel-
oping the Lott-Sturm-Villani theory of lower bounded Ricci curvature of geodesic
spaces, see [10].
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A toy model for hysteretic phase transitions

Michael Herrmann

(joint work with Michael Helmers)

The one-dimensional lattice ODE

u̇j = pj+1 − 2 pj + pj−1 with pj = uj − signuj(1)

admits solutions with propagating phase interfaces and provides a microscopic
justification for macroscopic hysteresis models. Here, the two phases correspond
to the sets {u < 0} and {u > 0}, on which the bistable function u 7→ u− signu is
strictly increasing.

Microscopic dynamics. For a finite system with N < ∞ particles and either
periodic or Neumann boundary conditions, equation (1) can be regarded is a mi-
croscopic H

−1-gradient flow for u. In particular, it satisfies the energy balance

Ė(t) = −D(t) , E := 1
2

∑

j

p2j , D :=
∑

j

(pj+1 − pj)
2 ,

so there is a strong tendency to reach a state with small dissipation. However, due
to phase transitions (one of the uj ’s changes sign) there exist small time intervals
with huge dissipation and strong microscopic fluctuations, see Figures 1 and 2 for
an illustration.

Macroscopic dynamics. The parabolic scaling limit

τ := ε2t, ξ := εj

has been investigated in [1] for a system with infinitely many particles and under
certain assumptions on the microscopic initial data; the main result can be formu-
lated as follows: The discrete p-data converge as ε→ 0 strongly to a limit function
P , which is uniquely determined by the hysteretic free boundary problem

∂τ
(
P (τ, ξ) + µ(τ, ξ)

)
= ∂2ξP (τ, ξ) , µ(·, ξ) = R

[
P (·, ξ)

]
.(2)
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Figure 1. Two snapshots for uj (Black) and pj (Gray) for a nu-
merical single-interface solution with 20 particles: The phase interface
(vertical line) propagates to the right since the particles undergo a
phase transition one after another.

Figure 2. Evolution of u4 and the (rescaled) dissipation D for the
simulation from Figure 1; the particle j undergoes a phase transition
at time t∗j .

Here, R abbreviates the hysteresis operator from Figure 3 and the limit U of the
u-data satisfies U = P + µ. The well-posedness of the initial value problem to (2)
has been proven in [2].

Figure 3. The relay operator R describes the hysteresis of phase
interfaces in the macroscopic scaling limit.
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Geodesics convexity of the entropy in discrete interacting systems

Jan Maas

(joint work with Matthias Erbar, Max Fathi and Prasad Tetali)

A celebrated result by McCann [9] asserts that the Boltzmann–Shannon entropy
is displacement convex, i.e., geodesically convex in the L2-Wasserstein space of
probability measures. This discovery triggered many developments at the interface
of analysis, probability and geometry; we refer to [12] for an overview.

If the underlying space is discrete, the notion of displacement convexity be-
comes meaningless, since the induced L2-Wasserstein space does not contain any
geodesics. However, in independent recent works [2, 8, 10], new metrics have been
introduced for probability measures on discrete spaces, which take over the role of
the Wasserstein metric in discrete settings. In this talk we present recent geodesic
convexity results for entropy functionals with respect to these metrics.

A gradient flow structure for Markov chains. Let L be the generator of a
continuous time Markov chain on a finite set X, thus for functions ψ : X → R, the
operator L is of the form Lψ(x) =

∑
y∈X

Q(x, y)(ψ(y)− ψ(x)) where Q(x, y) ≥ 0

for all x, y ∈ X with x 6= y, and Q(x, x) = 0 for all x ∈ X. We shall assume that
there exists a reversible probability measure π on X, which means that the detailed
balance equations π(x)Q(x, y) = π(y)Q(y, x) hold for all x, y ∈ X. As usual, the
relative entropy functional is defined by

H(ρ) =
∑

x∈X

ρ(x) log ρ(x)π(x)

on the space of probability densities P(X) = {ρ ∈ RX
+ :
∑
x ρ(x)π(x) = 1}.

The following result has been obtained in several independent works: by Chow,
Huang, Li and Zhou [2] in the setting of Fokker-Planck equations on graphs, by
Mielke [10] in the setting of reaction-diffusion systems, and by the author [8] in
the setting of continuous time Markov chains.

Theorem 1 (Gradient flow structure of Markov chains). The discrete heat equa-
tion ∂tρ = Lρ is the gradient flow equation for the relative entropy H with respect
to a Riemannian structure on the interior of P(X).

More formally, this means that the equation ∂tρ = Lρ can be written as ∂tρ =
−∇WH(ρ), where the gradient ∇W is taken in a suitable Riemannian structure.
The associated Riemannian distance, which we denote by W, is given a discrete
analogue of the Benamou–Brenier formula for the Wasserstein metric.

Geodesic convexity of the entropy. It is natural to ask whether there are
examples of reversible Markov chains (X, Q, π) for which the entropy is geodesically
κ-convex in the metric space (P(X),W) for some κ ∈ R. This means that

H(ρt) ≤ (1− t)H(ρ0) + tH(ρ1)−
κ

2
t(1 − t)W(ρ0, ρ1)

2(1)
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for any curve (ρt)t∈[0,1] in P(X) with W(ρs, ρt) = |s−t|W(ρ0, ρ1). As a consequence
of the gradient flows structure, this property has several interesting implications
for the associated Markov chain. In particular, if κ > 0, it follows that L satisfies
a modified logarithmic Sobolev inequality, which implies the exponential conver-
gence bound

H(ρt) ≤ e−2κtH(ρ0)

for solutions to the gradient flow equation ∂tρ = Lρ.
The first examples for geodesic convexity of the entropy in reversible Markov

chains have been obtained in the recent papers [3, 11]:

• Mielke [11] proved geodesic κ-convexity for one-dimensional birth-death
chains under appropriate conditions. He applies this results to discrete ap-
proximations of one-dimensional Fokker–Planck equations with κ-convex
potential, and shows that the optimal convexity constants for the discrete
approximations converge to the desired limit.

• Erbar–Maas [3] obtained a tensorisation result for geodesic κ-convexity: if
two Markov chains (Xi, Qi, πi)i=1,2 satisfy (1), then the associated product
chain enjoys the same property with the same constant. This result allows
one to obtain dimension independent bounds for high-dimensional product
systems.

Discrete interacting systems. Until recently, no results were available for high-
dimensional systems without a product structure, except for the elementary exam-
ple of the complete graph. In this talk we present the first results in this direction.

The Bernoulli-Laplace model. We consider the simple exclusion process on the
complete graph: consider k indistinguishable particles distributed over n sites la-
beled by [n] = {1, . . . , n}, where 1 ≤ k < n. Each site contains at most one parti-
cle. The state space of the system is the set Ω(n, k) = {x ∈ {0, 1}n : x1+· · ·+xn =
k} (or equivalently, the set of all subsets of [n] of size k). The Bernoulli-Laplace
model is the continuous time Markov chain described as follows: after random
waiting times (independent exponentially distributed with rate 1

k(n−k) ), one par-

ticle is selected uniformly at random, and jumps to a free site, selected uniformly

at random. The uniform probability measure on Ω(n, k), given by πBL(x) =
(
n
k

)−1

for all x, is reversible. The following result is proved in [5]:

Theorem 2 (Geodesic κ-convexity for the Bernoulli-Laplace model). Let n > 1
and 1 ≤ k ≤ n−1, and set κ = n+2

2k(n−k) . Then the entropy is κ-geodesically convex

along W-geodesics in (P(Ω(n, k)),W).

The obtained constant is optimal, possibly up to a factor 2. Moreover, we
recover the best known constant in the modified logarithmic Sobolev inequality
for the Bernoulli-Laplace model obtained in [1].
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The random transposition model. Let Sn be the group of all permutations of
{1, . . . , n}. We consider simple random walk on the canonical graph structure
on Sn, obtained by connecting two permutations if they differ by exactly one
transposition. The unique reversible measure is the uniform measure πRT given
by πRT (σ) = 1/n!. The following result is proved in [5]:

Theorem 3 (Geodesic κ-convexity for the random transposition model). Let n >
1 and set κ = 4

n(n−1) . Then the entropy is κ-geodesically convex along W-geodesics

in (P(Sn),W).

Combining this result with known results on the log-Sobolev inequality we infer
that the optimal constant κ satisfies 4/(n2 − n) ≤ κ ≤ 2/(n − 1). It remains an
open question to determine the correct order.

The results obtained in collaboration with Erbar and Tetali [5] rely on combi-
natorial methods. In subsequent work with Fathi [6] we reproved the results using
a complete different method. This method relies on an extension of the Bochner
approach, which has been developed in the setting of discrete functional inequal-
ities by Caputo, Dai Pra and Posta [1]. As another application of this method,
we obtain geodesic κ-convexity results for zero-range processes on the complete
graph.

Related geodesic convexity results in non-linear settings have been obtained in
[7] (for reaction-diffusion systems) and in [4] (for porous medium equations).

References

[1] P. Caputo, P. Dai Pra, and G. Posta. Convex entropy decay via the Bochner-Bakry-Emery
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Stochastic PDEs, Regularity structures, and interacting particle
system

Hendrik Weber

Over the last few years there has been remarkable progress in the theory of non-
linear stochastic partial differential equations (SPDE), mostly by Hairer (see [4]
and in particular in the groundbreaking work [3]) and Gubinelli (see [2]). In these
lectures I presented some of the ideas that are at the basis of these developments.

Key examples of interest include the KPZ equation and the Φ4 model. The
KPZ equation is given by the SPDE

∂th(t, x) = ∂2xh(t, x) +
1

2
(∂xh(t, x))

2 + ξ(t, x) ,(KPZ)

where the spatial variable x is one-dimensional. The term ξ(t, x) is a formal expres-
sion denoting space-time white noise. It is a quite irregular random distribution.
The irregularity of this term is the main difficulty one has to address. Equation
(KPZ) was introduced in [5] in 1986. It models fluctuations around the growth of
a flat surface in 1 + 1 dimensions.

A second principle example is the dynamic Φ4
d model. It is formally given by

the stochastic partial differential equation (SPDE)

∂tφ(t, x) = ∆φ(t, x) − φ3(t, x) −mφ(t, x) + ξ(t, x) .(Φ4
d)

Here the spatial variable x takes values in a d-dimensional space. We can treat
this model in the cases d = 1, 2, 3 only.

In both of these examples, the space time white noise ξ is too irregular to solve
the equation in a classical sense. More precisely, if we measure the regularity in a
“parabolic way”, ξ is a random distribution taking values in a space of distributions
of regularity below− d+2

2 . Schauder-like estimates then suggest that one can expect

the solution h of the KPZ equation to have regularity below 1
2 and that the solution

φ of the (Φ4
d) takes values in spaces of regularity below 2−d

2 . In both of these cases

this is insufficient to interpret the non-linearities (∂xh)
2 and φ3 (at least if d ≥ 2

in (Φ4
d)).

However, it turns out that as soon as such an equation satisfies a certain scaling
property (called subcriticality in [3]), then it can be interpreted as limits of a
renormalisation procedure. Roughly speaking subcriticality means that on small
scales the solution behaves like a perturbation of the stochastic heat equation. For

example, if h is a solution of (KPZ) and we set ĥ(t, x) = λ−
1
2h(λ2t, λx), then a

formal calculation yields

∂tĥ = ∂2xĥ+
λ

1
2

2
(∂xĥ)

2 + ξ̂ .

On small scales, i.e. for λ → 0, the prefactor λ
1
2 of the non-linear term goes to

zero. A similar statement holds true for (Φ4
d) in space dimensions d = 1, 2, 3.

The renormalisation procedure for such equations consists of regularising the
solution and subtracting the right diverging counter terms when removing this
regularisation. If we let ξδ = ξ ∗ ρδ be a smooth approximation of the white noise,
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then the main results of [4, 3] state that there exist choices of diverging Cδ, C̄δ
such that the solutions of

∂thδ = ∂2xhδ +
1

2
(∂xhδ)

2 − Cδ + ξδ

∂tφδ = ∆φδ − (φ3δ − 3C̄δφδ) + ξδ

converge to a non-trivial limit when δ goes to zero.
These limits arise can be obtained as scaling limits for interacting particle sys-

tems. In the case of the KPZ equation this was already observed by Bertini and
Giacomin [1] in the nineties. There the “infinite constant” in the renormalisation
procedure can be interpreted is a shift of reference frame. Recently, Mourrat and
myself could establish a similar result for the two dimensional Φ4 equation [6]. We
approximate the solution of (Φ4

d) by an Ising model with a long interaction range
near the critical temperature. The “infinite constant” appears as a shift of this
critical temperature.
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Abstract and stochastic homogenization of plasticity equations with
the needle problem approach

Ben Schweizer

(joint work with Martin Heida and Marco Veneroni)

With a new approach, the “needle-problem approach” introduced in [6], we derive
effective models for plasticity equations in heterogeneous media. Our model are
the small strain plasticity equations of von-Mises type with a positive hardening
effect. The material parameters are the elasticity tensor, the hardening coefficient
and the flow-rule function — all these coefficients are allowed to depend on a
parameter ε > 0. In a typical application, the coefficients vary on a space scale of
order ε. We treat the following set of equations:

(1)
−∇ · σε = f , σε = C−1

ε eε ,

∇suε = eε + pε , ∂tp
ε ∈ ∂Ψε(σ

ε −Bεp
ε) .

In these equations, u is the deformation, σ the stress tensor, e and p are the
elastic and the plastic strain component of ∇su = (∇u +∇uT )/2. The equations
are posed on a bounded domain Q ⊂ Rn and accompanied by an initial condition
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for p and a boundary condition for u. All unknowns have the superscript ε,
since the coefficients Cε, Bε and the convex flow-rule function Ψε depend on ε.
In the periodic setting, the homogenization limit for the above system has been
firstly stated in [1] and has been verified e.g. in [7] and [8]. Regarding an abstract
approach we mention [4].

We say that the coefficients “allow averaging” if, for some abstract strain-stress-
map Σ, the following property is satisfied: For an arbitrary simplex T ⊂ Q, for a
vanishing force f ≡ 0, and for affine boundary data U : x 7→ ξ(t) ·x, let (uε, σε, pε)
be a solution to (1). Then, as ε→ 0, the stress averages converge:

(2)
1

|T |

∫

T

σε(t) → Σ(ξ)(t) .

The operator Σ associates to an evolution of strains ξ = ξ(t) (note that ξ(t)
coincides with the average strain ∇suε(t) of the solution) a stress tensor σ(t0) =
Σ(ξ(.))(t0). It is given by a map Σ : H1(0, T ;Rn×ns ) → H1(0, T ;Rn×ns ) (modulo
initial conditions). Due to memory effects in plasticity problems, Σ must depend
on the history: the evolution of strains ξ = ξ(t) is mapped to an evolution of
stresses Σ(ξ)(t) = Σ(ξ(.))(t).

In [2], we derived from this averaging assumption a homogenization result: For
general domains Q, general boundary data U and general forces f , the effective
problem for every limit u = limε→0 u

ε reads

(3) −∇ · Σ(∇su) = f in Q× (0, T ) .

We emphasize the locality in space: For every point x ∈ Q, the stress σ(x, t0) =
Σ(∇su(x, .)) is a function of the history of strains ∇su(x, .), but it depends only
on the strain history in the point x.

In [3], we analyzed the plasticity system with stochastic coefficients. The coef-
ficients are constructed in a standard way with an ergodic dynamical system on a
probability space. We obtain that, in the stochastic setting, the coefficients allow
averaging. This provides (apart from the one-dimensional result in [5]) the first
stochastic homogenization result for a plasticity system.
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Systems of diffusion equations as gradient flows in multi-component
transportation metrics

Daniel Matthes

(joint work with Jonathan Zinsl)

Consider the following coupled system of evolution equations for the vector-valued
density function ρ : [0, T ]× R → J ⊂ RN in one space dimension:

(1) ∂tρ(t;x) = ∂x

(
M
(
ρ(t;x)

)
∂x

[
δE(ρ)

δρ

]
(t;x)

)
.

Here δE/δρ is the variational derivative of the energy functional E, and M : J →
RN×N
spsd is the mobility matrix. We assume that the range J of ρ is a compact

and convex subset of RN . Formally, (1) is a gradient flow of E with respect to a
multi-component transportation metric dM. This metric — if it exists — is given
in the spirit of Benamou and Brenier [1] as follows:

(2) dM(ρ0, ρ1)
2 = inf

{∫ 1

0

[∫

R

wTs M(ρs)
−1ws dx

]
ds ; ∂sρs + ∂xws = 0

}
,

where the infimum runs over all weakly continuous curves ρ : [0, 1]× R → J that
connect ρ0 to ρ1; the function w : [0, 1]× R → RN is the associated momentum.
By extending the ideas from the scalar setting [2, 3] to vector-valued densities,
it can be shown [7] that the infimum in (2) defines a pseudo-metric on the space
M(R; J) of measurable J-valued densities on R if the following holds:

• (S) smoothness: M : J → RN×N is continuous, and is smooth on the
interior intJ of J ;

• (P) positivity: M(z) is a symmetric positive definite matrix for each z ∈
intJ ;

• (C) concavity:
∑N

m,n=1 ζmζn∂zm∂znM(z) is a symmetric negative semi-

definite matrix for each z ∈ intJ , ζ ∈ RN .

The pseudo-metric is a genuine, geodesically complete metric on each subset of
M(R; J) consisting of densities with finite dM-distance to some given reference
density. It turns out that condition (C) is quite restrictive, and examples of ad-
missible mobility matrices M are rare.

Example 1. A possible generalization of the scalar (N = 1) mobility function
m(z) = z(1− z) to N > 1 components is the following,

M(z) =




z1(1 − z1) −z1z2 · · · −z1zN
−z1z2 z2(1− z2) · · · −z2zN

...
...

. . .
...

−z1zN z2zN · · · zN(1 − zN)


 ,
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which is defined on the simplex J = {z ∈ RN≥0; z1 + · · · + zN ≤ 1}, satisfies

(S)+(P)+(C), and can be interpreted as describing the reduction of particle mo-
bility due to volume filling.

In the following, we limit ourselves to fully decoupled mobility matrices M,
defined on J := [0, 1]N , which are of the following form:

M(z) =



m1(z1)

. . .

mN(zN )


 .

If each of the N mobility functions mn : [0, 1] → R is continuous on [0, 1], and
smooth, positive and concave on (0, 1), then M satisfies (S)+(P)+(C). To each
fully decoupled M, we associate a function H : J → R of the form H(z) =
h1(z1) + · · ·+ hN (zN ), where the hn : (0, 1) → R are such that mnh

′′
n ≡ 1.

Proposition 1. Let M be a fully decoupled mobility matrix on J = [0, 1]N , with
associated pseudo-metric dM.

• Let ψ ∈ C∞
c (J ;R). Then, for every sufficiently small ǫ ≥ 0, the internal

energy functional E(ρ) =
∫ (
H + ǫψ

)
(ρ) dx possesses a dM-geodesically

contractive gradient flow, given by

∂tρ = ∂xxρ+ ǫ∂x
(
M(ρ) ∂x∇zψ(ρ)

)
.

• Let ϕ ∈ C∞
c (R;RN ). Then, for every ǫ > 0, the potential energy func-

tional E(ρ) =
∫
〈ρ, ϕ〉 dx + ǫ

∫
H(ρ) dx possesses a dM-geodesically λ-

contractive gradient flow, given by

∂tρ = ∂x
(
M(ρ) ∂xϕ

)
+ ǫ∂xxρ,(3)

for some λ ≥ −Cǫ−1.

The first result says that the component-wise heat equation and its small pertur-
bations are contractive in dM. This follows from calculations using the formalism
developed of Liero and Mielke [5] on basis of the “Eulerian calculus” of Otto-
Westdickenberg. The second result is actually concerned with scalar diffusion
equations, since the gradient flow decouples into N equations of the form

∂tρn = ∂x
(
mn(ρn) ∂xϕn

)
+ ǫ ∂xxρn.

λ-contractivity of these flows with λ ≥ −Cǫ−1 has been proven in [4].
The result that is summarized in Proposition 1 is rather weak in comparison

to what is known about convexity in the L2-Wasserstein metric. Still, the result
is sufficient to prove [7] that weak solutions to certain (non-convex) evolution
equations of type (1) can be obtained by means of the minimizing movement
scheme in dM.

Theorem 1. Let a convex function F ∈ C2(int J) and a potential V ∈ C∞
c (R;RN )

be given. Assume that F (z) → 0 for z → 0. Define the energy

E(ρ) =

∫ [
F (ρ) + 〈ρ, V 〉

]
dx.
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Further, let an initial condition ρ0 ∈ L1(R; J) with E(ρ0) <∞ be given. For every
time step τ > 0, define inductively

ρ0τ := ρ0, ρnτ := argmin
ρ∈L1(R;J)

[
1

2τ
dM(ρ, ρn−1

τ )2 + E(ρ)

]
,

and let ρ̄τ : [0,∞) → L1(R; J) be the piecewise constant in time interpolation.
Then ρ̄τ converges — e.g., strongly in L2([0, T ]× R) — to a weak solution of

(4) ∂tρ = ∂x
(
A(ρ)∂xρ

)
+ ∂x

(
M(ρ) ∂xV

)
, A(z) = M(z)∇2

zF (z).

The key step in the proof of Theorem 1 is the derivation of two a priori estimates.
The first follows from dissipation of

∫
H(ρ) dx and yields a τ -uniform control on ρ̄τ

in L2([0, T ];H1). The second estimate is obtained by perturbing the minimizers
ρnτ along the gradient flow (3) and leads to a time-discrete weak formulation of
(4); the auxiliary potential ϕ plays the role of a test function. The contractivity
stated in Proposition 1 is essential to make the formal a priori estimates rigorous,
using the flow interchange principle developed in [6].

Remark 1. Using the same techniques, one is able to prove a similar existence re-
sult for a class of degenerate evolution equations of fourth order. This generalizes
the results from [4] for the scalar Cahn-Hilliard equation to coupled systems.
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The bi-axial test: a case study for uniqueness in small strain 3D
elasto-plasticity

Gilles A. Francfort

(joint work with Alessandro Giacomini and Jean-Jacques Marigo)

It is well known by now that, in any well-posed quasi-static evolution, the stress
field and correspondingly, the elastic strain field are uniquely determined. Let
us recall that, in elasto-plasticity, the (linearized) strain, that is the symmetrized
gradient Eu of the displacement field u, is additively decomposed into e+p where e
stands for the elastic strain field and p for its plastic counterpart. In the existence
theory for such evolutions the plastic strain field is a finite Radon measure (see
e.g. [1]). Uniqueness of the plastic strain has thus far never been established,
except for a one-dimensional example whose focus was actually regularity, rather
than uniqueness [2].

In this talk which is an abridged summary of [3, Section 3], I consider a specific
three-dimensional setting, that of the bi-axial test. The domain is a rectangular
parallelepiped (x1, x2, x3) ∈ Ω := (0, ℓ) × (0, d) × (0, ℓ). A pressure p̄ ≥ 0 is
applied to the faces x2 = 0, d, while a displacement u3 = tx3 is applied to the
faces x3 = 0, ℓ, which furthermore, are frictionless surfaces. The faces x1 = 0, ℓ,
are traction free. The yield stress condition is of Von Mises type and it is given
by |σD| ≤

√
2/3σc where σD := σ − tr σ/3i is the deviatoric part of the stress

field σ, itself related to the elastic strain field through the isotropic Hooke’s law
σ = Ee (the Young’s modulus E is positive and, for simplicity, we assume that
the Poisson’s ratio ν is 0). It is also assumed that p̄ < σc.

It is then proved that the problem admits a spatially homogeneous solution for
which the stress field σ remains constant when t ≥ tcrit, tcrit being an explicit
function of the data of the problem. Because of stress uniqueness, that stress field
is the stress field for the evolution.

The investigation focuses on whether that solution is unique. It is shown that
such is the case, provided that p̄ 6= σc/

√
3. To our knowledge, this result is the

first uniqueness result for a bona fide three-dimensional elasto-plastic evolution
problem, that is one which does not admit a unidirectional solution.

The case p̄ = σc/
√
3 is more involved. The time derivative of the plastic strain

field must then be of the form ṗ(t) = η(t)σD(tcrit), η ∈ AC([0, T ];Mb(Ω)), where
Mb(X) stands for the set of bounded Radon measures on X , a locally compact
set. Thanks to compatibility, it is then easily shown that

η(t) = η̌(t) + β(t)x2,

where β is an element of Mb([tcrit,∞)) while η̌(t) satisfies the following spatial
wave equation:

∂2η̌

∂x21
− ∂2η̌

∂x23
= 0.

Consequently, one can in particular seek solutions of the form

β ≡ 0, η̌(t) = ζ−(t, x1 − x3) + ζ+(t, x1 + x3), ζ± ∈ M
+
b (R).
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From this, the computation of u(t) is rather simple since Eu̇(t) = η̌(t)σD(tcrit). In
particular, if uniqueness is to hold true, then the boundary conditions in x3 = 0, ℓ,
should determine both ζ− and ζ+. But this cannot be so whenever d < ℓ because
the domains of dependence of those boundary conditions do not cover all of Ω.

Consequently, an infinite number of plastic strain rates can be obtained. In
particular, ṗ(t), t ≥ tcrit can be any Cantor function in x multiplied by any element
of C∞

c ([tcrit,∞)! So spurious Cantor plastic strain rates can appear and disappear
at will, provided that t ≥ tcrit. This provides a rather dramatic example of non-
uniqueness (and non-smoothness) of the plastic strain rate in three-dimensional
Von Mises elasto-plasticity.
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Evolutionary Γ-convergence results for rate-independent processes in
viscoelastic materials

Marita Thomas

(joint work with Riccarda Rossi)

This contribution deals with the mathematical modeling and the analysis of me-
chanical systems that couple rate-dependent and rate-independent processes. A
guiding example is the dynamical deformation of a viscoelastic body, located in a
domain Ω ⊂ Rd, 1 < d ∈ N, under the influence of further dissipative processes
such as plasticity, phase transitions or damage, tracked during a time span [0, T ].
Assuming small strains, the deformation of the body is described by the displace-
ment field u : [0, T ] × Ω → Rd with e := 1

2 (∇u + ∇u⊤) the small strain tensor.
In the spirit of generalized standard materials the changes of the elastic behavior
of the material due to the evolving dissipative process are modelled with the aid
of an additional internal variable z : [0, T ] × Ω → D, D ∈ {R,Rd,Rd×d}. It is
assumed that the evolution of z is rate-independent, governed by a convex and
positively 1-homogeneous potential R : Z → [0,∞]. In contrast, the viscosity of
the material is modelled as a rate-dependent effect, featured by a convex dissipa-
tion potential V : V → [0,∞) of general, superlinear growth, which acts on the
rate of the displacements u̇ or rather on the strain rate e(u̇). The spaces Z and
V are separable Banach spaces, and V is also reflexive. The energy functional
F : [0, T ]×W×V×Z → R ∪ {∞}, F(t, u̇, u, z) := ̺

2‖u̇‖2W + E(t, u, z), consists of

the kinetic energy ̺
2‖u̇‖2W defined on a Hilbert spaceW with V ⊂ W continuously

and densely, and of the stored energy functional E : [0, T ] ×V × Z → R ∪ {∞},
which is weakly sequentially lower semicontinuous on V × Z and coercive on a
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separable, reflexive Banach space U ×X with U ⊂ V continuously and densely,
U ⊂ W compactly, and X ⊂ Z compactly. In this way, the spaces U,V,W sat-
isfy that U ⊂ V ⊂ W = W∗ ⊂ V∗ ⊂ U∗ with continuous, dense embeddings, so
that a coupled rate-independent – rate-dependent system is characterized by the
sixtuple (V,W,Z,F,V,R).

Now, taking into account the convexity properties of the dissipation potentials
V and R one may apply the Legendre-Fenchel transform to obtain their conjugates
V∗(ξv) := supv∈V(〈ξv, v〉V − V(v)) and R∗(ξz) := supz∈Z(〈ξz , z〉Z − R(z)), where,
due to the 1-homogeneity of R, the conjugate functional R∗ in particular is the
indicator of a convex set. In view of these relations, and assuming the uniform con-
vexity of E, there are several equivalent ways to formulate the evolution equations
of the state variables (u, z), namely,





Rate equations: for a.e. t ∈ (0, T ) :

−ρü(t)∈ Du̇V(u̇(t)) + ∂uE(t, u(t), z(t)) in V∗,

ż(t)∈ ∂ξzR
∗(−ξz(t)) in Z∗,

(1)

⇔





Force balance: for a.e. t ∈ (0, T ) :

u̇(t)∈ ∂ξuV
∗(−ξu(t)− ρü(t)) in V,

0∈ ∂żR(ż(t)) + ∂zE(t, u(t), z(t)) in Z,

(2)

⇔





De Giorgi’s formulation:

∂u̇V(u̇(t)) + ∂ξuV
∗(−ξu(t)− ρü(t)) = −〈ξu(t) + ρü(t), u̇(t)〉V

∂żR(ż(t)) + ∂ξzR
∗(−ξz(t)) = −〈ξz(t), ż(t)〉Z

(3)

with ξu(t)∈ ∂uE(t, u(t), z(t)), ξz(t)∈ ∂zE(t, u(t), z(t)) for a.e. t∈ (0, T ). However,
as R is 1-homogeneous, only, and as E in general needs not to be uniformly convex,
the lines of (1)–(3) that involve ż may not be well defined. Instead, we use ideas
from the fully rate-independent theory, cf. e.g. [4], and introduce a weaker notion
of solution by replacing the subdifferential formulation for z (second of (1) or (2))
by a semistability inequality and an upper energy dissipation estimate, i.e. we
define an energetic solution (u, z) for coupled rate-independent – rate-dependent
systems as follows: A pair (u, z) is an energetic solution of (V,W,Z,F,V,R) if
(4)
z∈L∞(0, T ;X)∩BV(0, T ;Z), u∈L∞(0, T ;U)∩W 1,1(0, T ;V), ü∈L∞(0, T ;W) ,

and if (u, z) also satisfies the momentum balance, i.e. the first of (1), for a.a.
t ∈ (0, T ), and, in addition, for all t ∈ [0, T ], the upper energy dissipation estimate

(5)
F(t, q(t)) +

∫ t
0
V(u̇(s)) + V∗(−ξu(s)− ρü(s)) ds+DissR(z; [0, t])

≤ F(0, q(0)) +
∫ t
0
∂sE(s, u(s), z(s)) ds

with q := (u̇, u, z) and DissR(z; [0, t]) := supall partitions of [0,t]

∑
jR(z(tj)−z(tj−1)),

together with the semistability inequality

(6) ∀z̃ ∈ Z : F(t, u̇(t), u(t), z(t)) ≤ F(t, u̇(t), u(t), z̃) + R(z̃ − z(t)) .
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This notion of solution has been introduced and analyzed in [5] for general rate-
independent processes in viscoelastic materials with continuous R and quadratic V
such that V(u̇(s))+V∗(−ξu(s)−̺ü(s)) = 2V(u̇(s)) in (5). Here, we allow for more
general growth properties so that this identity must not hold true. Let us also
mention that a formulation involving (5) has been used for generalized gradient
flows (̺ = 0) in e.g. [1, 2], and for the Vlasov-Fokker-Planck equation in [3].

Moreover, we introduce the following weaker notion of solution: We say that a
pair (u, z) of regularity (4) is a weak energetic solution of (V,W,Z,F,V,R) if,
for all t ∈ [0, T ], the pair (u, z) only satisfies the upper energy dissipation estimate
(5) together with semistability (6) (but not the momentum balance).

Existence of (weak) energetic solutions is obtained via a time-discretization in
terms of a minimzing movement scheme. At each time-step, existence of mini-
mizers results from the direct method of the calculus of variations. From these,
piecewise constant and linear interpolants are constructed and it has to be shown
that they satisfy a time-discrete version of the (weak) energetic formulation. By
compactness arguments thanks to the time-discrete upper energy dissipation esti-
mate and a version of Helly’s selection principle, see e.g. [4], subsequences suitably
converging to a limit (u, z) are extracted and it has to be shown that (u, z) is a
(weak) energetic solution of the time-continuous process. Existence proofs for V of
superlinear growth, R lower semicontinuous, with and without inertial terms and
for E(t, ·, z) λ-convex and Fréchet-subdifferentiable, are given in [6, I.].

Hence, already passing from time-discrete to -continuous in the existence proof
requires that the defining properties of the notion of solution are preserved during
this limit passage. For this, suitable compactness and closedness conditions have
to be imposed on the functionals. In the fully rate-independent setting such condi-
tions on evolutionary Γ-convergence have been deduced in [4]. For similar results in
the setting of generalized gradient systems we refer to [2]. We now state a closed-
ness result which is obtained in [6, II.] for weak energetic solutions: Consider
a family of systems (V,W,Z,Fk,Vk,Rk)k with weak energetic solution (uk, zk)
for all k ∈ N, such that (uk(t), u̇k(t), zk(t)) ⇀ (u(t), u̇(t), z(t)) in V × V × Z,
ük(t) ⇀ ü(t) in V∗ for a.e. t ∈ (0, T ). Let R + E ≤ Γ-lim infk(Rk + Ek) and
V+ V∗ ≤ Γ-lim infk(Vk + V∗

k), as well as Fk(0, qk(0)) → F(0, q(0)). Furthermore,
assume that the following three closedness conditions are satisfied:

q̃k ⇀ q̃ in V × Z ⇒ ∂tEk(t, q̃k) → ∂tE(t, q̃) ,(7a)




Closedness of semistable sets:
If zk satisfy (6) for (Z,Ek(t, uk, ·),Rk), (uk, zk)⇀ (u, z) in V × Z,
then z is semistable for (Z,E(t, u, ·),R),

(7b)






WeakV-weakV∗ -closedness of ∪k∂uEk(t, uk, zk):
If uk ⇀ u in V, zk → z in Z, supk Ek(t, uk, zk) ≤ C, ξk ∈ ∂uEk(t, uk, zk),
and ξk ⇀ ξ in V∗, then ξ ∈ ∂uE(t, u, z).

(7c)

Then, the limit (u, z) is a weak energetic solution of the system (V,W,Z,F,V,R).
Note that (7a) allows us to pass to the limit with the right-hand side of (5).

Condition (7b) is in analogy to the fully rate-independent setting, see [4], and can
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be ensured by an adaption of the mutual recovery sequence condition. Moreover,
(7c) can also be relaxed to strongV-weakV∗-closedness if Ek(t, ·, z) : V → R∪{∞}
are equicoercive in U ⊂ V compactly. Another sufficient condition for (7c) can
be stated for energetic solutions: Then, (7c) can be concluded if (Ek(t, ·, zk))k
Mosco-converge to the limit functional E(t, ·, z) and if the momentum balance of
the k-systems allows us to deduce that lim supk→∞〈ξk(t), uk(t)〉V ≤ 〈ξ(t), u(t)〉V.
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Homogenisation of dislocation dynamics

Lucia Scardia

(joint work with Maria Giovanna Mora and Mark Peletier)

It is well known that plastic, or permanent, deformation in metals is caused by
the concerted movement of many curve-like defects in the crystal lattice, called
dislocations. What is not yet known is how to use this insight to create theoretical
predictions at continuum scales. It would be natural to take a sequence of systems
with increasing numbers of dislocations, and derive an effective description in
terms of dislocation densities. A mathematical procedure that proved to be very
successful for the micro-to-macro upscaling is based on Γ-convergence, a variational
convergence that is well known in the mathematical community and has been
already applied to a variety of problems in materials science.

In [5] and [10] we used Gamma-convergence to derive a continuum description of
the behaviour of walls of dislocations close to an obstacle, starting from a discrete
model of the dislocation interactions. Our rigorous approach led to a family of
upscaled models that we compared with other theories proposed in the literature,
offering a selection criterion to identify the hidden assumptions in some of the
previous derivations.

In [7] we extended these results to more general distributions of positive dis-
locations in the plane, still in the single-slip case with Burgers vector b = e1,
but removing the constraint for the dislocations to arrange into vertically periodic
structures.

More precisely, for a density of dislocations given by µ = 1
n

∑n
i=1 δzi , with

zi ∈ Ω ⊂ R2 for every i, we considered a semi-discrete dislocation energy of the
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form

(1) Fn(µ) = inf
β∈An(µ)

{
1

2

∫

Ωn(µ)

Cβ : β dx

}
,

where Ωn(µ) = Ω \ ∪iBεn(zi), with εn ≪ 1/n, and the admissible class An(µ) is
defined as

An(µ) :=
{
β ∈ L2(Ω;R2×2) :

∫

∂Bεn (zi)

β τ dH1 =
e1
n

for every i = 1, . . . , n
}
.

It was shown in [3] that the energy contribution in a small neighbourhood of
every dislocation is of order | log εn|/n2 (hence the total self energy is of order
| log εn|/n), while every pair of dislocations contributes an interaction energy of
order n−2 (hence the total interaction energy is of order 1). Therefore, depending
on how εn scales with respect to n, one of the two energy contributions will be
dominant. On the other hand, the self energy is a (possibly very large) constant
and plays no role in the dislocations interactions, which is our main interest.

For this reason, instead of studying the asymptotic behaviour as n → ∞ of
the energy Fn in (1), we first subtracted the self energy contribution from Fn,
obtaining an interaction energy Fn. In [7] we proved that the Γ-limit of Fn with
respect to narrow convergence is the functional F given by

(2) F(ρ) =

∫∫

Ω×Ω

V (x, y)dρ(x)dρ(y) + min Iρ(v),

where ρ is the limit of discrete measures µn. In (2) the interaction potential V is
defined as

V (x, y) :=

∫

Ω

CKx(z) : Ky(z) dz,

where Kx is the canonical strain field generated by a single dislocation at x in R2,
namely it solves

(3)

{
divCK(·;x) = 0 in R2,

CurlK(·;x) = e1δx in R2.

The second term in (2) is a boundary term due to the boundedness of the domain
Ω, and represents their interactions with ∂Ω.

The continuum limit energy (2) has an expression that is common to many
(also unrelated) systems of interacting particles. In particular, from (3) follows
that |V (x, y)| ∼ − log |x − y| for x close to y, and potentials with a logarithmic
singularity have been studied extensively in the literature (see e.g. [1], [9]-[8]).
Our work is an important first step towards the analysis of equilibrium dislocation
configurations and patterning.

However, macroscopic plasticity is heavily dependent on dynamic properties of
the dislocation curves. This motivated us to go further and try to extend our
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results to the dynamical case. In [7] we added to the interaction energy Fn a
time-dependent forcing term

∫

Ω

f(x, t) dµ(x)

and coupled the total microscopic energy F̃n(µ) := Fn(µ) −
∫
Ω
fdµ with a dissi-

pation distance of the following form:

(4) d(µ, ν) :=

{
infγ∈Γ(µ,ν)

∫∫
Ω×Ω

|x− y| dγ(x, y) if (π2)#µ = (π2)#ν,

+∞ otherwise,

where Γ(µ, ν) is a restricted set of couplings of µ and ν,

(5)

Γ(µ, ν) :=
{
γ ∈ P(Ω×Ω) : γ(A×Ω) = µ(A), γ(Ω×A) = ν(A) for all Borel sets

A ⊂ Ω, and π2(x) = π2(y) for γ-a.e. (x, y) ∈ Ω× Ω
}
.

This is the usual 1-Wasserstein or Monge-Kantorovich transport distance on P(Ω)
[11], except for the additional restriction that π2(x) = π2(y) for γ-a.e. (x, y); this
restriction forces the transport to move parallel to b = e1.

We then proved the existence of a rate-independent evolution driven by the

microscopic total energy F̃n and by the dissipation d, and used the static Γ-
convergence result illustrated above to obtain a rate-independent limit evolution,
using the method in [6]. In strong form, the limit continuum dislocation density
ρ satisfies the transport equation

∂tρ+ div(ρv) = 0,

where velocity v satisfies v · e2 = 0 and

−(v(t, x) · e1) ∂x1

δF̃

δρ
(ρ(t), t),= |v(t, x)|,

where ∂x1

δF̃
δρ (ρ(t), t) is the horizontal component of the total mesoscopic force

acting on a dislocation at x. Hence either v(x, t) = 0 or the force equals ±1. This
means that the force has to reach a threshold for dislocations to move.

There are several steps we are going to take in the near future towards more
realistic and complex systems, including the boundary-layer analysis for pile-ups
of dislocations at an obstacle (see [4]), the analysis of dislocation dipoles, and the
multiple slip case.
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From conservative to dissipative systems through quadratic
time-rescaling

Yann Brenier

From the Euler equations to the Darcy law. Darcy’s law can be recovered
in an unusual way from Euler’s equations

(1) ∂tρ+∇ · (ρv) = 0, ∂t(ρv) +∇ · (ρv ⊗ v) = −∇p
(where (ρ, p, v) ∈ R1+1+3 are the density, pressure and velocity fields of a fluid, p
being a given function of ρ), through the quadratic time rescaling

(2) t→ θ = t2/2, ρ(t, x) → ρ(θ, x), v(t, x)dt → v(θ, x)dθ,

leading to ∂θρ + ∇ · (ρv) = 0, ρv + 2θ[∂θ(ρv) +∇ · (ρv ⊗ v)] = −∇p(ρ), and, as
θ << 1, to the the Darcy law and the porous medium equation

ρv = −∇p(ρ), ∂θρ = △(p(ρ)).

Quadratic time-rescaling of ODEs. Under the quadratic time-rescaling t →
θ = t2/2, the ordinary dynamical system d2X

dt2 = −∇ϕ(X) becomes dX
dθ +2θ d

2X
dθ2 =

−∇ϕ(X), with two asymptotic regimes as θ is small or large:

the gradient flow dX
dθ = −∇ϕ(X), and the inertial motion d2X

dθ2 = 0. Consistently,

the conservation of energy d
dθ [ϕ(X)]+θ ddθ |dXdθ |2 = −|dXdθ |2 leads to the dissipation of

energy in the gradient flow regime. Furthermore, we may compare the respective
solutions X and Y of the dynamical system and the gradient flow, with initial
conditions dX

dt = 0, Y = X at t = 0, by monitoring the ”modulated energy” (or
”relative entropy”)

(3)
1

2
|dX
dt

− t
dY

dθ
|2 + ϕ(X)− ϕ(Y )−∇ϕ(Y ) · (X − Y ),
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provided ϕ is strongly convex with bounded third derivatives. We get

|X(t)− Y (t2/2)|2 + |dX
dt

(t)− t
dY

dθ
(t2/2)|2 ≤ t4 exp(t2c)c.

where c is a constant that depends only on ϕ and X(0).
[Remark: The quadratic time-rescaling t→ θ = t2/2 exactly fits with Galileo’s

experiment, in which a rigid ball descends a rigid ramp of constant slope, with

zero initial velocity and constant acceleration G, reaching position X = x0 +
Gt2

2
at time t. So, X is just a linear function of the rescaled time θ, X = x0 + θG and

we not only get dX
dθ + 2θ d

2X
dθ2 = G but also simultaneously dX

dθ = G, d2X
dθ2 = 0,

i.e. both gradient flow and inertial motion.]

Derivation of ”Darcy’s Magnetohydrodynamics” from Born-Infeld’s
Electromagnetism. The following model, combining Darcy law and dissipative
Magnetohydrodynamics:

(4) ∂tρ+∇ · (ρv) = 0, ρv = ∇ · (ηB ⊗B)−∇p

(5) ∂tB +∇× (B × v) +∇× (µ ∇× (νB)) = 0

(where (ρ, p, v, B) ∈ R1+1+3+3 are the density, pressure, velocity and magnetic
fields, (µ, ν, η, p) being given functions of ρ) looks very far from ”first princi-
ples”. Nevertheless, in the special case µ = ν = η = ρ−1 = −p (which in-
volves the ”Chaplygin pressure law”, sometimes used in Cosmology, with sound
speed (dpdρ)

1/2 = ρ−1), this model can be directly derived, through the simple

quadratic time-rescaling t→ t2/2, from the very ”pure” Born-Infeld equation, de-
signed in 1934 [1] as a nonlinear substitute to the Maxwell equation and still
used in String Theory [3]. In general, the Born-Infeld theory involves a d + 1
dimensional Lorentzian space-time manifold of metric gijdx

idxj and vector po-
tentials A = Aidx

i that are critical points of the (fully covariant) ”action”∫ √
−det(g + dA) . Here, we concentrate on the 3+1 Minkowski space of special

relativity (as Max Born and Leopold Infeld did in 1934). Then, the Born-Infeld
equations read, using classical electromagnetic notations,

∂tB +∇× (
B × (D ×B) +D√

1 +D2 +B2 + (D ×B)2
) = 0, ∇ · B = 0

∂tD +∇× (
D × (D ×B)−B√

1 +D2 +B2 + (D ×B)2
) = 0, ∇ ·D = 0

Using Noether’s theorem, we get 4 extra conservation laws

∂tρ+∇ · (ρv) = 0, ∂t(ρv) +∇ · (ρv ⊗ v − B ⊗B −D ⊗D

ρ
) = ∇(ρ−1),

v =
D ×B

ρ
, ρ =

√
1 +D2 +B2 + (D ×B)2
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Following [2], we observe that it is consistent (and much simpler) to consider
(B,D, ρ, v) as independent variables solving the 10×10 augmented system (which
includes the 4 extra conservation laws)

∂tB +∇× (B × v + ρ−1D) = 0, ∂tD +∇× (D × v − ρ−1B) = 0,

∂tρ+∇ · (ρv) = 0, ∂t(ρv) +∇ · (ρv ⊗ v − B ⊗B −D ⊗D

ρ
) = ∇(ρ−1),

while ignoring v = D×B
ρ , ρ = (1 + D2 + B2 + (D × B)2)1/2. (Indeed, these

algebraic constraints are preserved by smooth solutions of the ABI system.) We
now compute the time-rescaled (augmented) BI equations

t→ θ = t2/2, ρ, B, v,D → ρ,B, v
dθ

dt
,D

dθ

dt
,

∂θρ+∇ · (ρv) = 0, ∂θB +∇× (B × v + ρ−1D) = 0,

D + 2θ[∂θD +∇× (D × v)] = ∇× (ρ−1B),

ρv + 2θ[∂θ(ρv) +∇ · (ρv ⊗ v − D ⊗D

ρ
)] = ∇ · (B ⊗B

ρ
) +∇(ρ−1).

We get, as θ << 1, the desired model of Darcy MHD, with ”constitutive laws”
µ = ν = η = −p = 1/ρ, while, for very large times θ >> 1, we get

∂θρ+∇ · (ρv) = 0, ∂θD+∇× (D× v) = 0, ∂θ(ρv) +∇ · (ρv⊗ v− D ⊗D

ρ
) = 0

which actually describes a continuum of vibrating strings.
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Variational Analysis of a reduced Allen-Cahn action functional

Annibale Magni

(joint work with Matthias Röger)

We consider systems in a bounded domain Ω ⊂ Rn having two stable states and
admitting a mean field description in terms of a phase function u : Ω → R and
with a free energy of the form

(1) F(u) =

∫

Ω

( ǫ
2
|∇u|2 +W (u)

)
dx ,

where W : R → R is a suitable double well potential, and ǫ > 0.
While the zero–temperature dynamics of such a system is given by the gradient
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flow of (1), the evolution at a temperature γ > 0 is described by means of the
Allen-Cahn equation perturbed by an additive white noise η, i.e.

(2) ǫ∂tu = ǫ∆u− 1

ǫ
W ′(u) +

√
2γ η .

Large deviation principles for stochastically perturbed Allen–Cahn equations have
been considered among others by [1],[2],[3] and the corresponding action functional
for a time T > 0 has been computed to be

(3) Sǫ(u) =

∫ T

0

∫

Ω

(
ǫ(∂tu)

2 +
1

ǫ
(−ǫ∆u+

1

ǫ
W ′(u))2

)
dx dt .

For given initial and final states of the system, an action minimizer represents a
most likely connecting path between the two states and the value of the minimum
of the action is related to the probability that the transition between the two states
takes place in the given time T .
In [4] we have studied the minimization of the sharp interface limit of Sǫ for ǫ→ 0,
with prescribed initial and final states. The limit functional, also called reduced
action functional has been computed in [3], [6] and reads

(4) S0(Σ) =

∫ T

0

∫

Σt

(
|~v(x, t)|2 + |~H(x, t)|2

)
dHn(x) dt+ 4

∑

i∈J

Hn(Σi) ,

where Σ := (Σt)t∈[0,T ] is a family of smoothly evolving smooth hypersurfaces (with

normal speed ~v and mean curvature ~H) out of a discrete set of times J ⊂ [0, T ] at
which new components can be nucleated.
The straightforward application of the direct method of the Calculus of Variations
to the functional (4) in the class of evolving integral varifolds with speed and mean
curvature in L2 fails. This failure is due to the impossibility of keeping track of the
initial and final data along a minimizing sequence, which in turn is a consequence
of the fact that a bound on (4) ensures only a control in BV((0,T)) for the total
area of the evolving varifolds. To overcome this problem, we complemented the
evolution of varifolds with a phase evolution according to the following definitions

Definition 1. Consider a family µ := (µt)t∈(0,T ) of Radon measures on Rn+1

and set µ := µt ⊗ L1. We call µ an L2−flow if (for almost all t ∈ (0, T )) µt is

an integral n−varifold with mean curvature ~H ∈ L2(µt;R
n+1), µ has generalized

normal speed ~v ∈ L2(µ;Rn+1) (see [5], Definition 3.1) and sup0<t<T µt(R
n+1) <

∞.

Definition 2. Given T > 0 and two open sets Ω(0), Ω(T ) ⊂ Rn+1 with finite
perimeter, let M = M(T,Ω(0),Ω(T )) be the class of pairs (µ,u), with µ :=
(µt)t∈(0,T ) and u := (ut)t∈(0,T ), such that the evolution µ is an L2-flow, for almost
all t ∈ (0, T )

u(·, t) ∈ BV (Rn+1, {0, 1}), with |∇u(·, t)| ≤ µt(5)
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hold, the evolution of phases u satisfies u ∈ C
1
2 ([0, T ];L1(Rn+1)), u attains the

initial and final data

u(·, 0) = XΩ(0), u(·, T ) = XΩ(T ),(6)

and

∫

Rn+1×(0,T )

∂tη(x, t)u(x, t) dx dt =

∫

Rn+1×(0,T )

η(x, t)~v(x, t) · ν(x, t) d|∇u(·, t)| dt
(7)

holds for all η ∈ C1
c (R

n+1 × (0, T )), where ~v is the generalized velocity of µ and
where ν(·, t) denotes the generalized inner normal on ∂∗{u(·, t) = 1}.
In the class M of generalized evolutions, we have given a generalized definition for
the action functional taking into account also the phase evolution u.

Definition 3. For Σ ∈ M, Σ = (µ,u) as above, we define

S(Σ) := S+(Σ) + S−(Σ),(8)

S+(Σ) := sup
η

[
2|∇u(·, T )|(η(·, T ))− 2|∇u(·, 0)|(η(·, 0))(9)

+

∫

Rn+1×(0,T )

−2
(
∂tη +∇η · ~v

)
+ (1 − 2η)+

1

2
|~v − ~H|2 dµt dt

]
,

S−(Σ) := sup
η

[
− 2|∇u(·, T )|(η(·, T )) + 2|∇u(·, 0)|(η(·, 0))(10)

+

∫

Rn+1×(0,T )

2
(
∂tη +∇η · ~v

)
+ (1− 2η)+

1

2
|~v + ~H|2 dµt dt

]
,

where the supremum is taken over all η ∈ C1(Rn+1 × [0, T ]) with 0 ≤ η ≤ 1.

For sufficiently regular evolutions, the generalized action functional agrees with
(4), as proven in the following

Theorem 4. Let Σ be given by an evolution (Ω(t))t∈[0,T ] of open sets Ω(t) ⊂
Rn+1, which means

u(·, t) = XΩ(t) and µt := H
n ∂Ω(t).

Assume that (∂Ω(t))t∈[0,T ] represents, outside of a set (possibly empty) of singu-
lar times 0 = t0 < t1 < · · · < tk < tk+1 = T , a smooth evolution of smooth
hypersurfaces. Then

S(Σ) =

∫ T

0

∫

∂Ω(t)

(|~v(·, t)|2 + |~H(·, t)|2) dHn dt+ 2

k+1∑

j=0

sup
ψ

|µtj+(ψ) − µtj−(ψ)|,

(11)

where the supremum is taken over all ψ ∈ C1(Rn+1) with |ψ| ≤ 1, and where we
have set µt := Hn ∂Ω(0) for t < 0 and µt := Hn ∂Ω(T ) for t > T .

Within the setting of generalized evolutions, we finally were able to apply the
direct method and prove existence of global minimizers for S.
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Theorem 5. Let T > 0 and let Ω(0) ⊂ Rn+1, Ω(T ) ⊂ Rn+1 be two given open
bounded sets with finite perimeter. Consider a family of evolutions (Σl)l∈N ⊂
M(T,Ω(0),Ω(T )) with

S(Σl) ≤ Λ for all l ∈ N,(12)

where Λ > 0 is a fixed constant.
Then there exists a subsequence l → ∞ (not relabelled) and a limit evolution
Σ ∈ M(T,Ω(0),Ω(T )), such that

ul → u in L1(QT ) ∩ C0([0, T ];L1(Rn+1)),(13)

µlt → µt for almost all t ∈ (0, T ) as integral varifolds on Rn+1,(14)

µl → µ as Radon measures on QT ,(15)

and such that u ∈ C0,1/2([0, T ];L1(Rn+1)) and µ≪ Hn+1.
Moreover it holds

S(Σ) ≤ lim inf
l→∞

S(Σl) .(16)

In particular, the minimum of S in M(T,Ω(0),Ω(T )) is attained.
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Minimizers of Interaction Energies

José A. Carrillo

The aggregation equation is given by the mean field limit of the system of ODEs

dxi
dt

= −
∑

j 6=i

∇W (xi − xj) .

given by {
∂ρ
∂t + div (ρu) = 0

u = −∇W ∗ ρ
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The aggregation equation has a natural associated Liapunov functional defined by

E[ρ] =
1

2

∫

R2

∫

R2

W (x− y) ρ(x) ρ(y) dx dy .

The first result presented in this talk concerns local minimizers of this interaction
energy functional. They are the candidates to be the long time asymptotics of the
aggregation equation. We showed in [1] that the dimensionality of the support of
local minimizers of the interaction energy E[ρ] depends on the repulsion at the
origin of the potential. If the potential is essentially C2 smooth at the origin,
numerical simulations show that there is concentration on points. We showed
that the dimension of the support has to be zero if of integer value for smooth
potentials. For more singular potentials, we proved a bound from below on the
Haussdorf dimension of the support. More precisely, if the potential behaves like
the power −|x|b/b at the origin, with 2 − d ≤ b < 2, d ≥ 2, then the dimension
of the support of local minimizers is larger or equal than 2 − b. Therefore, as the
potential gets more and more repulsive at the origin the support of the minimizers
gets larger and larger in dimension.

The second result concerned the question of global minimizers of the interaction
energy. The existence of compactly supported global minimisers is shown in [2]
under almost optimal hypotheses. The main assumption on the potential is that
it is catastrophic, or not H-stable, which is the complementary assumption to that
in classical results on thermodynamic limits in statistical mechanics. The proof
is based on a uniform control on the local mass around each point of the support
of a global minimiser, together with an estimate on the size of the “gaps” it may
have. The class of potentials for which we prove existence of global minimisers
includes power-law potentials and, for some range of parameters, Morse potentials,
widely used in applications. We also showed that the support of local minimisers
is compact under suitable assumptions.

Finally, the third result was dealing with the case of very repulsive potentials
at the origin but integrable, that is, when the potential behaves like the power
−|x|b/b at the origin, with d < b ≤ 2 − d, d ≥ 2. We showed in [3] that the
repulsion strength at the origin also determines the regularity of local minimizers
of the interaction energy in this range. If this repulsion is like Newtonian or more
singular than Newtonian (but still locally integrable), then the local minimizers
must be locally bounded densities (and even continuous for more singular than
Newtonian repulsion). We proved this (and some other regularity results) by
first showing that the potential function associated to a local minimizer solves an
obstacle problem and then by using classical regularity results for such problems.
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École Polytechnique
Plateau de Palaiseau
91128 Palaiseau Cedex
FRANCE

Prof. Dr. Jose Antonio Carrillo de

la Plata

Department of Mathematics
Imperial College London
Huxley Building
London SW7 2AZ
UNITED KINGDOM

Prof. Dr. Gianni Dal Maso

SISSA
Via Bonomea 265
34136 Trieste
ITALY

Dr. Karoline Disser

Weierstraß-Institut für
Angewandte Analysis und Stochastik
Mohrenstr. 39
10117 Berlin
GERMANY

Dr. Matthias Erbar

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Max Fathi

LPMA / UMR 7599
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