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Introduction by the Organisers

The idea of the meeting was to discuss in a concentrated way several particular
classes of differential operators appearing in the theory of surface superconductiv-
ity. We mention explicitly the two most important representatives, which served
as an initial motivation. Let Ω be a bounded domain in Rn and n be the outward
pointing unit normal vector at its boundary ∂Ω which is assumed to be sufficiently
regular. If A is a magnetic vector potential and λ is a coupling constant, one is
interested in the associated magnetic Neumann eigenvalue problem

(1) (i∇+ λA)2u = Eu in Ω, n · (i∇+ λA)u = 0 at ∂Ω.

Another important example is the (zero-field) Robin eigenvalue problem

(2) −∆u = Eu in Ω, n · ∇u = λu at ∂Ω.

The both problems may be obtained through the linearization of the respective
Ginzburg-Landau functionals, and the lowest eigenvalues E = E(λ) are known
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be related to the critical temperature at which the normal state becomes unsta-
ble, while the respective eigenfunction u describes the associated density of the
particles (Cooper pairs). In view of this correspondence, one is interested in the
dependence of the eigenvalue and the eigenfunction on the geometry of Ω and the
coupling constant λ. A considerable amount of literature is dedicated to the study
of the problem (1) in the limit λ → +∞, which is based on various advanced
tools from the semiclassical and pseudodifferential analysis. It appears that the
respective eigenfunctions concentrate near the boundary, whose geometric prop-
erties determine the eigenvalue asymptotics. During the last years, a particular
attention is given to domains whose boundaries have singularities like corners or
edges, and in that case the study of new classes of model domains, such as sectors
or cones, becomes of importance.

During recent contacts at various meetings we found out that very similar qual-
itative effects are valid for the Robin problem (2) in the strong coupling limit.
Actually, the study of the Robin eigenvalue asymptotics appeared first in the
study of reaction-diffusion equations, and its relevance to the theory of supercon-
ductivity was given a limited attention only. On the other hand, recently, it has
attracted an increasing attention from the point of view of the shape optimization,
numerical computation or non-smoothness effects. One may also mention the re-
cent applications to the classical topics such as the extension theorems for Sobolev
spaces or Hardy inequalities.

In view of the above observations, we invited a group of experts from different
scientific communities in order to exchange new ideas and methods concerning
the analysis of differential operators of the above types. The meeting was con-
centrated on several specific questions: such as the qualitative spectral theory of
linear differential operators in bounded and unbounded domains, optimization of
eigenvalues with respect to geometry, boundary value problems in non-smooth
domains, semiclassical methods. Some non-linear models were discussed as well.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Eigenvalue sums of the Heisenberg Laplacian . . . . . . . . . . . . . . . . . . . . . . . . 3026

Daniel Daners
Non-positivity of the semigroup generated by the Dirichlet-to-Neumann
operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3028

James Kennedy (joint with Pavel Kurasov, Gabriela Malenová and Delio
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Ground state energy of the magnetic Laplacian on corner domains . . . . . 3039

Bernard Helffer (joint with Ayman Kachmar)
Eigenvalues for the Robin Laplacian in domains with variable curvature:
a semi-classical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3044

Fabian Portmann (joint with Tomas Ekholm and Hynek Kovař́ık)
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Abstracts

Boundary behavior of the Ginzburg-Landau order parameter in the
surface superconductivity regime

Michele Correggi

(joint work with Nicolas Rougerie)

The Ginzburg-Landau (GL) theory of superconductivity, originally proposed in
[GL], provides a phenomenological, macroscopic, description of the response of a
superconductor to an applied magnetic field. The state of a superconductor is
described in suitable units by an order parameter Ψ : R2 → C and an induced
magnetic vector potential 1

ε2A : R2 → R2 generating an induced magnetic field

h = 1
ε2 curlA. The ground state of the theory is found by minimizing the energy

(1) GGL
ε [Ψ,A] =

∫

Ω

dr

{

|∇AΨ|2 − 1

2bε2
(

2|Ψ|2 − |Ψ|4
)

+
b

ε4
|curlA− 1|2

}

.

where ∇A := ∇+i 1
ε2A, b and ε are positive parameters depending on the material

and the applied field, that we assume to be constant throughout the sample. Units
have been chosen in such a way that 1

ε2 measures the intensity of the external
magnetic field. We consider a model for an infinitely long cylinder of cross section
Ω ⊂ R2, a compact simply connected set with regular boundary. The functional
is gauge invariant, which implies that the only physically relevant quantities are
the gauge invariant ones such as the density |Ψ|2, which provides the local relative
density of Cooper pairs. Any minimizing Ψ must satisfy |Ψ| ≤ 1. A value |Ψ| = 1
(respectively, |Ψ| = 0) corresponds to the superconducting (respectively, normal)
phase where all (respectively, none) of the electrons form Cooper pairs.

In this note we focus on the mixed phase of an extreme type-II superconductor
(ε → 0) in the so called surface superconductivity regime, i.e., for an applied
magnetic field between the second and third critical values [FH]. This results in
the assumption

1 < b < Θ−1
0 ,

where Θ0 < 1 is some universal number. We denote the GL ground state energy
by EGL

ε = min(Ψ,A) GGL
ε [Ψ,A] and by (ΨGL,AGL) any minimizing pair.

The salient features of the surface superconductivity phase are as follows [FH]:

• ΨGL is concentrated in a thin boundary layer of thickness ∼ ε; it decays
exponentially to zero as a function of the distance from the boundary;

• The applied and induced magnetic fields are very close, i.e., curlA ≈ 1;
• Up to an appropriate choice of gauge and a mapping to boundary coordi-
nates, the GL energy is well approximated by a model 1D energy functional
in the direction perpendicular to the boundary.

One of the consequences of the above features is the energy asymptotics

(2) EGL
ε =

|∂Ω|E1D
0

ε
+O(1),
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where |∂Ω| is the length of the boundary of Ω, and E1D
0 is obtained by minimizing

the functional

(3) E1D
0,α[f ] :=

∫ +∞

0

dt

{

|∂tf |2 + (t+ α)2f2 − 1

2b

(

2f2 − f4
)

}

,

both with respect to the function f and the real number α. Following the partial
results in [AH, FHP, Pan] (see also [FH, Theorem 14.1.1]) and using techniques
developed in [CRY, CPRY], we proved recently [CR1] that (2) holds in the full
surface superconductivity regime, i.e., for 1 < b < Θ−1

0 . This model problem is
related to the GL minimization via the ansatz

(4) ΨGL(r) ≈ f0 (t) exp
(

−iα0
s
ε

)

exp (iφε(s, t))

where (f0, α0) is a minimizing pair for (3), φε an explicit gauge phase and (s, t)
are rescaled boundary coordinates in a tubular neighborhood of ∂Ω with εt =
dist(r, ∂Ω). In [CR1, Theorem 2.1] we indeed proved that |ΨGL|2 is close in L2

to the profile f2
0 (t) for any 1 < b < Θ−1

0 . A very natural question is whether
the above estimate may be improved to a uniform control in L∞ norm. Indeed
an L2 estimate is still compatible with the vanishing of ΨGL in small regions,
e.g., vortices, inside of the boundary layer, whereas an L∞ bound would rule out
such zeros. This problem was formulated as a conjecture in [Pan, Conjecture
1]. An affirmative solution is provided in [CR1, CR2] (and reported on here)
for samples with regular boundary (the case with corners is known to require a
different analysis [FH, Chapter 15]).

In order to expand the energy to the next order, we introduce a refined model
problem in the constant curvature (disc) case:

(5) E1D
k,α[f ] :=

∫ c0| log ε|

0

dt (1− εkt)
{

|∂tf |2 + (t+α− 1
2 εkt

2)2

(1−εkt)2 f2 − 1
2b

(

2f2 − f4
)

}

,

where c0 has to be chosen large enough and k is the curvature. We then set

(6) E1D
⋆ (k) := inf

α∈R

inf
f∈D1D

E1D
k,α[f ] = E1D

k,α(k)[fk],

i.e., (α(k), fk) stands for any minimizing pair. Then we split the boundary layer
Aε = {(s, t) ∈ [0, |∂Ω|]× [0, c0| log ε|]} , into Nε = O(ε−1) cells Cn = [sn, sn+1] ×
[0, c0| log ε|] of constant side length sn+1 − sn = ℓε ∝ ε in the s direction. We
approximate the curvature k(s) by its mean value kn in each cell:

kn := ℓ−1
ε

∫ sn+1

sn

ds k(s).

We also denote for short fn := fkn and αn := α(kn). The reference profile is then
the piecewise continuous function

(7) gref(s, t) := fn(t), for s ∈ [sn, sn+1].

Theorem 1 (Refined energy asymptotics). Let Ω ⊂ R2 be any smooth, bounded
and simply connected domain. For any fixed 1 < b < Θ−1

0 , in the limit ε → 0, it
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holds

(8) EGL
ε =

1

ε

∫ |∂Ω|

0

ds E1D
⋆ (k(s)) +O(ε| log ε|∞).

We now turn to the uniform density estimates that follow from the above the-
orem. We will compare |ΨGL| in L∞ norm to the simplified profile f0(t), since
f0(t)− fk(t) = O(ε), which is much smaller than the error in the estimate. Also,
the result may be proved only in a region where the density is relatively large,
namely in Abl := {r ∈ Ω : f0 (t) ≥ γε}, where γε ≫ ε1/6| log ε|a, for some suit-
ably large constant a > 0.

Theorem 2 (Uniform density estimates and Pan’s conjecture). Under the as-
sumptions of the previous theorem, it holds

(9)
∥

∥

∥

∣

∣ΨGL(r)
∣

∣ − f0 (t)
∥

∥

∥

L∞(Abl)
≤ Cγ−3/2

ε ε1/4| log ε|∞ ≪ 1.

In particular, for any r ∈ ∂Ω we have

(10)
∣

∣

∣

∣

∣ΨGL(r)
∣

∣ − f0(0)
∣

∣

∣
≤ Cε1/4

∣

∣| log ε|∞
∣

∣≪ 1.

We now return to the question of the phase of the order parameter. Of course,
the full phase cannot be estimated because of gauge invariance but its winding
number (a.k.a. phase circulation or topological degree) can: (10) indeed ensures
that deg (Ψ, ∂Ω) ∈ Z is well-defined.

Theorem 3 (Winding number of ΨGL on the boundary ∂Ω). Under the previous
assumptions, any GL minimizer ΨGL satisfies as ε→ 0

(11) deg
(

ΨGL, ∂Ω
)

=
|Ω|
ε2

+
|α0|
ε

+O(ε−3/4| log ε|∞).

Note that the remainder term in (11) is much larger than ε−1|α(k)−α0| = O(1)
so that the above result does not allow to estimate corrections due to curvature.

Acknowledgments. M.C. acknowledges the support of MIUR through the FIR
grant 2013 “Condensed Matter in Mathematical Physics” (code RBFR13WAET).
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Optimal magnetic Sobolev constants in the semiclassical limit

Søren Fournais

(joint work with Nicolas Raymond)

We consider a simply connected, bounded domain Ω ⊂ R
2, p ∈ [2,+∞), h > 0 and

a smooth vector potential A on Ω and define the following nonlinear eigenvalue
(or optimal magnetic Sobolev constant):

(1) λ(Ω,A, p, h) = inf
ψ∈H1

0 (Ω),ψ 6=0

Qh,A(ψ)
(∫

Ω
|ψ|p dx

)
2
p

= inf
ψ∈H1

0 (Ω),
‖ψ‖Lp(Ω)=1

Qh,A(ψ).

Here the magnetic quadratic form is defined by

∀ψ ∈ H1
0 (Ω), Qh,A(ψ) =

∫

Ω

|(−ih∇+A)ψ|2 dx.

The corresponding self-adjoint operator—the magnetic Laplacian—is denoted by
Lh,A.

We recall that B = ∂2A1 − ∂1A2 (where A = (A1, A2)) is the magnetic field
generated by A. There exists a vast literature dealing with the case p = 2. In this
case λ(Ω,A, 2, h) is the lowest eigenvalue of the magnetic Laplacian. The reader
may consult the books and reviews [4, 5, 8] for more on this subject.

1. Motivations and context. A standard argument gives that the infimum
in (1) is in fact a minimum. Furthermore, we have the following Euler-Lagrange
equation.

Lemma 1. The minimizers (which belong to H1
0 (Ω)) of the L

p-normalized version
of (1) satisfy the following equation in the sense of distributions:

(2) (−ih∇+A)2ψ = λ(Ω,A, p, h)|ψ|p−2ψ, ‖ψ‖Lp(Ω) = 1.

In particular (by Sobolev embedding), the minimizers belong to the domain of Lh,A.

This work is motivated by the seminal paper [3] where the minimization problem
(1) is investigated for Ω = Rd and with a constant magnetic field (and also in the
case of some nicely varying magnetic fields). In particular, Esteban and Lions
prove the existence of minimizers by using the famous concentration-compactness
method. In the present talk, we want to describe the minimizers as well as the
infimum itself in the semiclassical limit h→ 0. The naive idea is that, locally, after
a rescaling, they should look like the minimizers in the whole plane with a ‘model’
magnetic field capturing the local behavior of the original field. We will also allow
the magnetic field to vanish and this will lead to a variety of minimization problems
in the whole plane which are interesting in themselves and for which the results
of [3] do not apply. Another motivation to consider the minimization problem (1)
comes from the recent paper [1].
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2. Results. We would like to provide an accurate description of the behavior of
λ(Ω,A, p, h) when h goes to zero. Locally, we can approximate by either a constant
magnetic field, or a magnetic field having a zero of a certain order. Therefore, we
introduce the following notation.

Definition 2. For k ∈ N, we define

(3) λ[k](p) = λ(R2,A[k], p, 1) = inf
ψ∈D(Q

A
[k]),ψ 6=0

QA[k](ψ)

‖ψ‖2Lp
,

where A[k](x, y) =
(

0, x
k+1

k+1

)

. Here

QA[k](ψ) =

∫

R2

|(−i∇+A[k])ψ|2 dx,

with domain D(QA[k]) =
{

ψ ∈ L2(R2) : (−i∇+A[k])ψ ∈ L2(R2)
}

.

In the case k = 0 and p ≥ 2, it is known that the infimum is a minimum (see [3]).
We will prove in this talk that, for k ≥ 1 and p > 2, the minimum is also attained,
even if the corresponding magnetic field does not satisfy the assumptions of [3].

We can now state our first theorem concerning the case when the magnetic field
does not vanish.

Theorem 3. Let p ≥ 2. Let us assume that A is smooth on Ω, that B = ∇×A
does not vanish on Ω and that its minimum b0 is attained in Ω. Then there exist
C > 0 and h0 > 0 such that, for all h ∈ (0, h0),

(1− Ch
1
8 )λ[0](p)b

2
p

0 h
2h−

2
p ≤ λ(Ω,A, p, h) ≤ (1 + Ch1/2)λ[0](p)b

2
p

0 h
2h−

2
p .

Moreover, if the magnetic field is only assumed to be smooth and positive on Ω
(with a minimum possibly on the boundary), the lower bound is still valid.

Remark 4. The error estimate in the upper bound in Theorem 3 matches the
corresponding bound in the well-known linear case and we expect it to be optimal.
However, the relative error of h

1
8 in the lower bound is unlikely to be best possible.

The same remark applies to the error bounds in Theorem 7.

In the following theorem, we state an exponential concentration property of the
minimizers.

Theorem 5. Let p > 2, ρ ∈
(

0, 12
)

, ε > 0 and consider the same assumptions as
in Theorem 3. Furthermore, assume that the minimum is unique and attained at
x0 ∈ Ω.

Then there exist C > 0 and h0 > 0 such that, for all h ∈ (0, h0) and all ψ
solution of (2), we have

‖ψ‖L∞(∁D(x0,2ε)) ≤ Ce−Ch
−ρ‖ψ‖L∞(Ω),

where D(x, R) denotes the open ball of center x and radius R > 0.
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Remark 6. In Theorem 5, if the minimum of the magnetic field is non-degenerate,
we can replace ε by hγ with γ > 0 sufficiently small. In Theorem 5, we have the
same kind of results in the case of multiple wells. Theorems 3 and 5 are quantitative
improvements of [1, Theorem 1.1] in the pure magnetic case. We can notice that,
when p > 2, we have

(4) (−ih∇+A)2ϕ = |ϕ|p−2ϕ,

with ϕ = λ(Ω,A, p, h)
1
p−2ψ. Thus, we have constructed solutions of (4) which

decay exponentially away from the magnetic wells in the semiclassical limit.

The following theorem analyzes the case when the magnetic field vanishes along
a smooth curve.

Theorem 7. Let p > 2. Let us assume that A is smooth on Ω, that

Γ = {x ∈ Ω : B(x) = 0},
satisfies that Γ ⊂ Ω is a smooth, simple and closed curve, and that B vanishes
non-degenerately along Γ in the sense that

∇B(x) 6= 0 for all x ∈ Γ.

Assuming that B is positive inside Γ and negative outside, we denote by γ0 > 0
the minimum of the normal derivative of B with respect to Γ. Then there exist
C > 0 and h0 > 0 such that, for all h ∈ (0, h0),

(1− Ch
1
33 )λ[1](p)γ

4
3p

0 h2h−
4
3p ≤ λ(Ω,A, p, h) ≤ (1 + Ch

1
3 )λ[1](p)γ

4
3p

0 h2h−
4
3p .

Remark 8. The case p = 2 is treated in [2] (see also [6,7]). In [1], it is only stated

that h−2+ 2
pλ(Ω,A, p, h) goes to zero when h goes to zero. Moreover, by using the

strategy of the proof of Theorem 5, one can establish an exponential decay of the
ground states away from Γ.
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Sharp inequalities for eigenvalues of the Laplace operator with Robin
boundary conditions

Pedro Freitas

(joint work with P. R. S. Antunes and D. Krejčǐŕık)

Given a domain Ω in Rd we consider the eigenvalue problem

(1)







−∆u = λu in Ω ,

∂u

∂n
+ αu = 0 on ∂Ω ,

where n is the outer unit normal to Ω and the boundary parameter α is real.
We are interested in the question of optimising the first eigenvalue of (1) among

domains with fixed volume. In the case where the boundary parameter α is pos-
itive, it was shown by Bossel in 1986 that the disk is a minimiser in two dimen-
sions [Bos86], in a similar fashion to what happens in the Dirichlet case. This
result was extended to higher dimensions by Daners twenty years later [Dan06].

For negative values of α it had been conjectured by Bareket in 1977 that the
disk should now become a maximiser, with the switch taking place as the param-
eter goes through zero when all domains have a first zero eigenvalue (Neumann
boundary conditions).

In joint work with David Krejčǐŕık, we have recently shown that this conjecture
cannot hold for all values of the boundary parameter. More precisely, and based
on the asymptotic behaviour of the first eigenvalue as α goes to −∞, we prove that
spherical shells become better than the ball for large enough (negative) values of
the parameter.

Theorem 1. There exists a negative value of α, say, α1, for which there exist
spherical shells whose first eigenvalue is larger than the first eigenvalue of the ball
with the same volume.

On the other hand, we have been able to show that Bareket’s conjecture holds
in two dimensions if the boundary parameter is not very large.

Theorem 2. For bounded planar domains of class C2 and fixed area, there exists
a negative number α2, depending only on the area, such that the disk maximises
the first Robin eigenvalue for all α ∈ [α2, 0].

The above results immediately suggest several questions about which domains
become optimisers and how the transition takes place. In joint work with Pedro
R.S. Antunes and David Krejčǐŕık we have carried out a numerical study of the op-
timisation problem in dimensions two and three which indicates that indeed while
the ball becomes a maximiser for small (negative) values of α, it is then overtaken
by spherical shells which become the optimisers. The bifurcation occurs for a value
of the inner radius which is strictly positive, and the radii of these optimal shells
change continuously with the value of α. We have also obtained other estimates
for the first eigenvalue based on the concept of shrinking coordinates previously
developed in [FreKre08].
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Eigenvalue sums of the Heisenberg Laplacian

Bartosch Ruszkowski

(joint work with Hynek Kovař́ık and Timo Weidl)

The Heisenberg Laplacian is a special type of subelliptic operator, which is con-
nected to the first Heisenberg group H in a natural way. We study Riesz means of
the eigenvalues of the Heisenberg Laplacian with Dirichlet boundary conditions on
a cylinder in dimension d = 3. We obtain an inequality with a sharp leading term
and an additional lower order term for the eigenvalue sum, improving a result by
Hansson and Laptev in [1].

We recall that H is given by the set R× R× R equipped with the group law

(x, y, t)⊞ (u, v, s) :=
(

x+ u, y + v, t+ s+
1

2
(x · v − y · u)

)

.

For x := (x1, x2, x3) ∈ H we introduce the following vector fields X1, X2, X3 in H

X1 := ∂x1 +
1

2
x2∂x3 , X2 := ∂x2 −

1

2
x1∂x3 , X3 := ∂x3 ,

which form a basis of the Lie algebra of left-invariant vector fields on the first
Heisenberg group, see [2]. X1 and X2 fulfill the Hörmander finite rank condition,
see [3], because of [X1, X2] = −X3.

Let Ω ⊂ H be an open bounded domain. We consider the Heisenberg Laplacian
on Ω with Dirichlet boundary condition, denoted by

A(Ω) := −X2
1 −X2

2 ,

where a, b ∈ R. This self-adjoint operator corresponds to the closure of the semi-
bounded quadratic form

a[u] :=

∫

Ω

|X1u(x)|2 + |X2u(x)|2 dx,

initially defined for u ∈ C∞
0 (Ω). The subelliptic estimate in [4] together with

standard Sobolev theory yield that A(Ω) has discrete spectrum. We denote by
(λk(Ω))∈N the non-decreasing and unbounded sequence of the eigenvalues of A(Ω),
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where we repeat entries according to their finite multiplicities. In [1] Hansson and
Laptev derived universal bounds for

Tr(A(Ω) − λ)γ− :=

∞
∑

k=1

(λ− λ(Ω)k)
γ
+ , γ > 0.

They proved the following inequality for domains of finite measure

Tr(A(Ω)− λ)γ− ≤ Kγ |Ω|λγ+2,(1)

where

Kγ :=

{

9
32

γγ

(γ+2)γ+2 , 0 < γ ≤ 1,
1
16

1
(γ+1)(γ+2) , 1 ≤ γ.

They showed also that the constant Kγ is asymptotically sharp for γ ≥ 1 as
λ→ ∞. In addition for 0 ≤ γ < 1 they proved the following asymptotics

lim
λ→∞

λ−γ−2
∞
∑

k=1

(λ− λk(Ω))
γ
+ =

γ + 3

γ + 1
Kγ+1|Ω|.

For γ = 0 the left-hand side becomes the counting function of A(Ω). To derive
a bound for the eigenvalue sum, we consider inequality (1) for γ = 1. Applying
the Legendre transformation to this inequality leads one to a sharp bound for the
eigenvalue sum, see [1],

n
∑

k=1

λk(Ω) ≥ 8
√
2

3
|Ω|−1/2n3/2, for n ∈ N.(2)

We call this a Li-Yau inequality, see [5], because they were the first ones who
derived such a sharp bound for the eigenvalue sum of the Dirichlet Laplacian on
domains with finite volume.

We improve the inequality in (2) by adding a negative lower order term in λ for

cylindrical domains Ω := Ω̃× (a, b) ⊂ H, where Ω̃ ⊂ R
2 is a bounded domain; this

additional term reflects the geometry of the domain. Our result can be stated as
follows:
Let Ω := Ω̃×(a, b) ⊂ H be open bounded and convex. Then the following inequality
holds

n
∑

k=1

λk(Ω) ≥ 8
√
2

3
|Ω|−1/2n3/2 +

5

576

1

R(Ω̃)2
n, for n ∈ N,(3)

where R(Ω̃) > 0 is the in-radius of Ω̃ in the Euclidean sense in R2.
To prove inequality (3) we improve the bound for the trace of the eigenvalues in

(1) for γ = 1, because we know that an application of the Legendre transformation
always yields an estimate for the eigenvalue sum. To get an estimate for the trace
we need two ingredients. First of all we need the spectral decomposition of A(H).
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Therefore we compute

F3AF∗
3 =

(

i∂x1 −
1

2
x2ξ3

)2

+

(

i∂x2 +
1

2
x1ξ3

)2

= (i∇x′ + ξ3A(x1, x2))
2
,

where A(x1, x2) :=
1
2 (−x2, x1) and F3 is the Fourier transform in the x3-direction.

On the right-hand side we obtain the Laplacian with constant magnetic field.
We know the Landau levels of this operator and its corresponding orthogonal
projections, yielding a spectral decomposition of A(H). Using this property we can
derive the same bound as in (1) for γ = 1. This can then be improved using the
technique developed by Kovař́ık and Weidl in [7], where they derive an improved
sharp inequality for the eigenvalue sum of the Dirichlet Laplacian with constant
magnetic field on bounded domains. This technique is based on an application of
Hardy’s inequality combined with the diamagnetic inequality.

Our result can be generalized to bounded domains Ω := Ω̃× (a, b) ⊂ H, with Ω̃
not necessarily convex, if we assume the validity of the Hardy inequality

∫

Ω̃

|u(x)|2
δ(x)2

dx ≤ c

∫

Ω̃

|∇u(x)|2dx(4)

for all u ∈ C∞
0 (Ω̃). Here c denotes the optimal constant in this inequality and δ(x)

is the distance from a fixed point x ∈ Ω̃ to the boundary of Ω̃ in the Euclidean
sense. For instance (4) is fulfilled if Ω̃ is simply connected; in this case we know
that 4 ≤ c ≤ 16, see [6].
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Non-positivity of the semigroup generated by the
Dirichlet-to-Neumann operator

Daniel Daners

Let Ω ⊆ RN be a bounded open set with smooth boundary, and let λ ∈ R. Given
ϕ ∈ H1/2(Ω) solve the Dirichlet problem

(1) ∆u + λu = 0 in Ω, u = ϕ on ∂Ω.
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Problem (1) has a unique solution unless λ is one of the eigenvalues λ1 < λ2 <
λ3 < . . . of the Dirichlet Laplacian on Ω. If u is smooth enough we define the
Dirichlet-to-Neumann operator Dλ by

(2) Dλϕ :=
∂u

∂ν
,

where ν is the outer unit normal to ∂Ω. One can show that Dλ extends uniquely
to an operator Dλ ∈ L

(

H1/2(∂Ω), H−1/2(∂Ω)
)

. The part of −Dλ in L2(∂Ω)

generates an analytic semigroup (e−tDλ)t≥0 on L
2(∂Ω) and C(∂Ω); see [1,2]. In [1]

it is proved that (e−tDλ)t≥0 is a positive semigroup (that is, etDλ is a positive
operator for all t ≥ 0) whenever λ < λ1. The aim of the presentation is to explore
the positivity properties of (e−tDλ)t≥0 if λ > λ1. Details are found in [3].

A first example deals with the case of an interval Ω = (0, L) ⊆ R, where L > 0.
It turns out that positivity and non-positivity of (e−tDλ)t≥0 alternate at each
eigenvalue λk = (kπ/L)2 of the Dirichlet Laplacian.

The situation is much more complicated for the unit disk Ω = B(0, 1) in R2.
We find the following phenomena: There are values of λ > λ1 such that

(i) e−tDλ is not positive for every t > 0;
(ii) there exists t0 > 0 such that e−tDλ is positive for every t ≥ t0, but not

positive for some t ∈ (0, t0);
(iii) e−tDλ is positive for all t > 0.

In case (ii) we say that the semigroup (e−tDλ)t≥0 is eventually positive. An abstract
theory of eventually positive semigroups is developed in [2].

The proof is done by a careful analysis of the Fourier series representation of
the semigroup. If ϕ = eikθ, then the solution of (1) is given by

(3) u(r, θ) =
J|k|(

√
λr)

J|k|(
√
λ)

eikθ and hence Dλe
ikθ =

√
λJ ′

|k|(
√
λ)

J|k|(
√
λ)

eikθ,

where Jk is the Bessel functions of the first kind. In particular,

(4) µk(λ) :=

√
λJ ′

|k|(
√
λ)

J|k|(
√
λ)

are the eigenvalues of Dλ with eigenfunctions e±ikθ or cos kθ, sin kθ, where k ∈ N.
Given the Fourier series ϕ(θ) =

∑∞
k=−∞ cke

ikθ ∈ H1/2(∂Ω) we see that

(5) e−tDλϕ =

∞
∑

k=−∞

cke
−tµk(λ)eikθ.

A standard result in the theory of positive semigroups asserts that a necessary
condition for (e−tDλ)t≥0 to be positive is that the dominating eigenvalue of Dλ

has a positive eigenfunction. It is clear that the only eigenvalue having a positive
eigenfunction is µ0(λ) with eigenfunction the constant function with value 1. We
now discuss the three cases (i)–(iii).

(i) For most λ > λ1 the eigenvalue µ0(λ) is not dominant, and hence the
semigroup (e−tDλ)t≥0 is not positive.
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(ii) If ϕ ≥ 0, then by Herglotz’s theorem its Fourier coefficients form a positive
definite sequence; see [4, Section 7.6]. In particuar c0 ≥ |ck| and c−k = c̄k for all
k ∈ N. If µ0(λ) < µk(λ) for all k ∈ N, then

e−tDλϕ =

∞
∑

k=−∞

cke
−tµ|k|(λ)eikθ ≥ c0e

−tµ0(λ) − 2c0

∞
∑

k=1

e−tµk(λ)

= c0e
−tµ0(λ)

(

1− 2
∞
∑

k=1

e−t(µk(λ)−µ0(λ))

)

.

Hence there exists t0 > 0 independent of ϕ ≥ 0 such that fe−tDλϕ > 0 for all
t ≥ t0, hence (e−tDλ)t≥0 is eventually positive. An example for a range of λ for
which this is the case is λ ∈ (λ3, λ4) or λ ∈ (λ8, λ9). It is possible to show that
the e−tDλ is eventually positive, but not positive for some λ; see [2, 3].

(iii) If λ is in some left neighbourhood of λk such that J0(
√
λk) = 0 (e.g. λ3,

λ9), then (e−tDλ)t≥0 is positive. To prove this, note that (5) can be written as

(6) (e−tDλϕ)(θ) = (Gλ,t ∗ ϕ)(θ) :=
∫ π

−π

Gλ,t(θ − s)ϕ(s) ds,

where

(7) Gλ,t(θ) :=
1

2π

∞
∑

k=−∞

e−tdk(λ)eikθ

for all t > 0. The function Gλ,t is the “heat kernel” of the semigroup e−tDk(λ). To
prove the positivity it is therefore sufficient to show that Gλ,t ≥ 0 for all t > 0.
This is done by representing (7) by means of the Féjer’s kernels Kn ≥ 0, using
that k 7→ µk(λ) is a convex function for k large. Then it turns out that

(8) Gλ,t(θ) =

∞
∑

n=1

nbn(λ, t)Kn−1(θ),

where bn(λ, t) := e−tµn+1(λ) + e−tµn−1(λ) − 2e−tµn(λ). Due to the convexity of
µk(λ) as a function of k at most finitely many terms in (8) are possibly negative.
If µ0(λ) is very negative, which is the case if λ ↑ λk, then the total sum is positive
as shown in detail in [3].
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Estimating the eigenvalues of a quantum graph

James Kennedy

(joint work with Pavel Kurasov, Gabriela Malenová and Delio Mugnolo)

A quantum graph is a metric graph – a collection of intervals of varying lengths,
connected at a set of vertices – on which a differential operator such as the Lapla-
cian acts. Such objects, apart from modelling diffusion processes on networks,
are also sometimes used as toy problems, exhibiting features typical of higher-
dimensional problems despite their essentially one-dimensional structure. Together
with the parallel theory of discrete graphs and discrete Laplacians, they can also be
used to approximate manifolds in various senses. We refer to the monographs [1,6]
for more details.

Despite, or perhaps because of, their seemingly simple nature, relatively little
seems to be known about the spectral geometry of such graphs, in particular
as regards eigenvalue estimates of “isoperimetric” type, giving bounds for the
eigenvalues in terms properties of the graph analogous to those usually considered
for shape optimisation problems on domains or manifolds: volume, diameter and so
on. In this talk, which is based on [4], we explore a prototypical case systematically:
we wish to estimate the first non-trivial eigenvalue of the Laplacian with Kirchhoff,
or natural, conditions at the vertices, a natural generalisation or analogue of the
familiar Neumann condition.

More precisely, denote by Γ a compact, connected, nonempty metric graph, i.e.,
a finite union of edges, each being identifiable with a finite interval equipped with
the Euclidean metric in one dimension, connected at a finite set of vertices. We
denote by E ≥ 1 the number of edges, V ≥ 1 the number of vertices, L ∈ (0,∞)
the total length (the sum of all the edge lengths), and by D = sup{dist(x, y) :
x, y ∈ Γ} ∈ (0,∞) the diameter of Γ, where the distance between two points is the
length of the shortest path connecting them within Γ. As usual, the eigenvalues
of the Kirchhoff Laplacian on Γ, which we consider as the eigenvalues of the graph
itself, form a sequence

0 = λ0(Γ) < λ1(Γ) ≤ λ2(Γ) ≤ . . .→ ∞,

The first eigenvalue λ1, in this case also the spectral gap of the operator, is of
interest for a number of reasons; for instance, it determines loosely speaking the
rate of convergence of a diffusion process on the graph to the equilibrium. The
problem we consider here may be formulated as asking how λ1 depends on the four
basic quantities L, E, V and D. (Obviously, there are many other possibilites,
but in analogy with both the theory of shape optimisation on domains and the
“spectral geometry” of finite graphs, we believe these are the most natural.)

All the usual tools, in particular the characterisation of the eigenvalues in terms
of the Rayleigh quotient, comparison arguments, test function arguments, and so
on, are available in this case, and indeed become more powerful on graphs, since
they are essentially one-dimensional objects: it is easy to derive a number of
elementary but powerful comparison results describing how modifying the graph
affects λ1. (Here we speak of performing “surgery”: adding or deleting an edge,
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identifying two vertices and so on.) One can therefore say more than in the case of
domains or manifolds, and other questions become interesting: it is for example a
subtle question as to which combinations of the aforementioned parameters yield
universal upper and lower bounds on λ1.

With all this in mind, it is all the more surprising that possibly the only exist-
ing result within the framework of our problem is the fundamental “isoperimetric”
inequality bounding λ1 from below in terms of the length (i.e. volume) of Γ, orig-
inally proved in the 1980s and reproved several times.

Theorem 1 ( [3, 5, 7]). If Γ has total length L > 0, then

λ1(Γ) ≥
π2

L2
,

with equality if and only if Γ has one edge, i.e., Γ is an interval of length L.

Interesting here is that although the Kirchhoff vertex condition is morally equiv-
alent to a Neumann boundary condition, the behaviour of the eigenvalues resem-
bles that of a Dirichlet problem; there is no corresponding upper bound in terms
of L alone, as a graph with very many short edges, all connected to each other,
can have arbitrarily large λ1. However, we can recover an upper bound if we fix
E (examples show that V cannot help with either an upper or a lower bound):

Theorem 2. If Γ has E ≥ 2 edges and total length L > 0, then

λ1(Γ) ≤
π2E2

L2
.

The set of maximisers is large, consisting of at least two different “classes” of
graphs (so-called “flower” and “pumpkin” graphs).

It turns out that diameter alone is not enough to control λ1.

Theorem 3. Given any D > 0, there exist sequences of graphs Γn, Γ̃n, all having
diameter D, such that λ1(Γn) → 0 and λ1(Γ̃n) → ∞ as n → ∞: the Γn may be
chosen such that the number of vertices V (Γn) = 2 for all n.

The non-existence of an upper bound seems both non-trivial and non-obvious,
and was obtained by introducing a new, special class of graphs which can be
compared to a one-dimensional Sturm–Liouville problem. Showing that this class
is in a sense “maximising” allows one to recover an upper bound by fixing the
number of vertices as well as the diameter.

Theorem 4. If Γ has V ≥ 1 vertices and diameter D > 0, then

λ(Γ) ≤ π2(V + 1)2

D2
.

This bound is in general far from optimal, equality holding only if V = 1 and
Γ is a loop, but the key point is the existence of an upper estimate, given that
there is no corresponding lower bound for this combination of parameters, nor an
upper bound for L together with V . (Note that specifying V is in a sense weaker
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than specifying E due to the relation V ≤ E + 1, with equality if Γ is simple, i.e.,
if there is no more than one edge connecting any two vertices.)

If instead we fix D and E simultaneously, or D and L simultaneously, then we
can obtain both upper and lower bounds; for example, we have

π2

D2E2
≤ λ1(Γ) ≤

4π2E2

D2

as an essentially trivial consequence of the other bounds and/or crude test function
arguments. More interestingly, and less trivially, we also have

1

DL
≤ λ1(Γ) ≤

π2

D2

4L− 3D

D
;

although again far from optimal, at least the lower bound exhibits the correct
dependence on D and L (as can be seen via examples). It is an ongoing project to
find both the optimising constants and the corresponding graphs in all these cases.
Moreover, this is merely our prototype problem: one can ask similar questions
for higher eigenvalues, for different operators, in particular for different vertex
conditions (as was also done in a recent preprint [2]), and for different geometric,
analytic and combinatorial properties of the graph besides our four quantities L,
E, V and D.
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Discrete spectrum of Schrödinger operators with δ-interactions on
conical surfaces

Vladimir Lotoreichik

(joint work with Jussi Behrndt and Pavel Exner)

Spectral analysis of multi-dimensional Schrödinger operators with interactions sup-
ported on null sets such as points, curves, and surfaces, is a classical topic in
mathematical physics. Besides a physical motivation to investigate these opera-
tors, originating, in particular, from quantum mechanics, there exist also several
purely mathematical motivations, one of which is that these operators exhibit
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non-trivial interplay between their spectral properties and the geometry of the in-
teraction support. One such interplay is considered in the paper [1] by J. Behrndt,
P. Exner, and myself. It was a great pleasure for me to present the results of our
paper at the mini-workshop “Eigenvalue problems in surface superconductivity”.

In [1] we characterise the spectrum of the self-adjoint lower-semibounded three-
dimensional Schrödinger operator Hα,θ with attractive δ-interaction of constant
strength α > 0 supported on the conical surface

Cθ :=
{

(x, y, z) ∈ R
3 : z = cot(θ)

√

x2 + y2
}

, θ ∈
(

0, π/2
]

.

This operator can be rigorously introduced via closed, densely defined, symmetric,
and lower-semibounded sesquilinear form

aα,θ[u, v] :=
(

∇u,∇v
)

L2(R3;C3)
− α

∫

Cθ

uv dσ, dom aα,θ := H1(R3).

According to the main results of [1], the essential and discrete spectra of Hα,θ are
characterised as follows:

• σess(Hα,θ) =
[

− α2

4
,+∞

)

;

• σd(Hα,θ) = ∅ if θ = π/2;

• #σd(Hα,θ) = ∞ if θ ∈ (0, π/2).

The above results remain valid if the δ-interaction is supported on a sufficiently
regular local deformation of Cθ. This fact, in particular, shows that the tip of the
conical surface is not “responsible” for the infiniteness of the discrete spectrum and
that the corresponding effect is generated exclusively by the shape of the conical
surface Cθ at infinity.

The key tools in the proofs are Neumann bracketing and variational principles
for self-adjoint operators. The test functions for variational principles should be
chosen to respect the shape of Cθ. The crucial difficulty is to prove the infiniteness
of the discrete spectrum for all θ ∈ (0, π/2). For this purpose one has to make
the profile of the test functions dependent on the angle θ in a suitable way. At
this point a special family of functions comes into play which is used in [2] to
demonstrate sharpness of the celebrated Hardy inequality.

In [1] we obtain also asymptotic upper bounds on the eigenvalues of Hα,θ with
θ ∈ (0, π/2). We expect that the methods of the very recent preprint [3] can be
employed to derive the exact spectral asymptotics of Hα,θ.
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Eigenvalues of Robin Laplacians and mean curvature bounds

Nicolas Popoff

(joint work with Konstantin Pankrashkin)

For a regular bounded domain Ω ⊂ Rn, we are interested in the following linear
boundary value problem:

{ −∆u = λu on Ω,

∂nu− αu = 0 on ∂Ω,

where ∂n denotes the outward normal derivative at the boundary and α ∈ R is the
Robin coefficient. This problem has connections with the study of enhanced surface
superconductivity in zero magnetic fields [7]. With this problem we associate the
quadratic form

qα : u 7→
∫

Ω

|∇u|2dx− α

∫

∂Ω

|u|2dS, u ∈ H1(Ω),

where dS denotes the measure surface of ∂Ω. We denote by Qα the associated
self-adjoint operator, defined on the domain {u ∈ H2(Ω), ∂nu − αu = 0 on ∂Ω}.
We define Ej(α,Ω) as the jth eigenvalue of Qα. The behavior of Ej(α,Ω) at first
order when α → +∞ has been investigated in [4,10–12]. It is now well known that
for any fixed j there holds

Ej(α,Ω) = −α2 + o(α2), α→ +∞.

In the two dimensional case, and when the boundary of Ω is C4, the following more
precise asymptotics is proved in [5, 13] for each fixed j:

Ej(α,Ω) = −α2 − κmax(Ω)α+O(α2/3), α→ +∞,

where κmax(Ω) denotes the maximum of the curvature of the boundary. A complete
asymptotic expansion is given in [8] under additional assumptions on the domain.
For the n-dimensional spherical shell Sr1,r2 of outer radius r2 > 0 and inner radius
r1 ∈ [0, r2), with r1 = 0 corresponding to a ball, it is proved in [6] that

(1) Ej(α,Sr1,r2) = −α2 − n− 1

r2
α+ o(α), α → +∞.

The main results presented in this talk is [14, Theorem 1]: Assume that Ω ⊂ Rn

is C4, then for any fixed j ≥ 1 we have the asymptotics:

(2) Ej(α,Ω) = −α2 − (n− 1)Hmax(Ω)α +O(α1/2), α→ +∞
where Hmax(Ω) is the maximum of the mean curvature at the boundary of Ω.

A classical problematics is the question of the Faber-Krahn-type inequality:
among domains Ω of fixed volume, which domain optimizes the eigenvalues of
the Laplacian? When α < 0, it is known that the balls are the minimizers of
E1(α,Ω), see [2, 3], and it was conjectured in [1] that for α > 0, the balls are
the maximizers of E1(α,Ω) (reverse Faber-Krahn inequality). This is proved for
α > 0 small enough in [6], moreover Freitas and Krejčǐŕık use the asymptotics (1)
to show that the conjecture appears to be false for α large enough: indeed, given
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a ball B, one can find a spherical shell S of same volume such that for α large
enough: Ej(α,S) > Ej(α,B).

In order to maximize the eigenvalues Ej(α,Ω), the asymptotics (2) brings the
natural question:

How to minimize Hmax(Ω), the volume of Ω being fixed?

By using a generalized Minkowski formula [9] we prove in [14] the following result:
Assume that Ω is a star-shaped domain with C2 boundary. Then

(3) Hmax(Ω) ≥
(

Vol(Bn)
Vol(Ω)

)1/n

,

where Bn is the unit ball of Rn, and the equality holds if and only if Ω is a ball.
By using (2), we deduce an asymptotic version of the reverse Faber-Krahn

inequality: Assume that Ω is a regular star-shaped domain which is not a ball.
Then for all j ≥ 1, there exists α0 ∈ R such that for all α ≥ α0 there holds
Ej(α,Ω) < Ej(α,B), where B is a ball with same volume as Ω. We address the
question of extending (3) to regular domains with connected boundaries.
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Krahn et de l’inégalité de Cheeger. Comptes Rendus Acad. Sci. Série 1. Math. 302:1 (1986)
47–50.

[3] D. Daners. A Faber-Krahn inequality for Robin problems in any space dimension. Math.
Ann. 335:4 (2006) 767–785.

[4] D. Daners, J. B Kennedy. On the asymptotic behavior of the eigenvalues of a Robin problem.
Differ. Integr. Eq. 23:7/8 (2010) 659–669.

[5] P. Exner, A. Minakov, L. Parnovski. Asymptotic eigenvalue estimates for a Robin problem
with a large parameter. Portugal. Math. 71:2 (2014) 141–156.
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Magnetic WKB Constructions

Nicolas Raymond

(joint work with Virginie Bonnaillie-Noël and Frédéric Hérau)

This talk, based on the paper [2], is devoted to the analysis of the self-adjoint
operators on the space L2(Rms × R

n
t , ds dt) of the following type

(1) Lh = (hDs +A1(s, t))
2 + (Dt +A2(s, t))

2,

where A1 and A2 are real analytic, D = −i∇, and L2(Rms ×Rnt , ds dt) is equipped
with the standard scalar product:

〈ψ1, ψ2〉L2(Rms ×Rnt , ds dt)
=

∫

Rm×Rn

ψ1ψ2 ds dt.

The corresponding quadratic form is denoted by Qh. We would like to describe the
lowest eigenpairs (eigenvalues and eigenfunctions) of this operator in the limit h→
0 under elementary confining assumptions. In the electric context such questions
are investigated in [6–8] (see also the original reference [1]).

An important motivation to analyze partially semiclassical problems with mag-
netic fields comes in fact, after homogeneity considerations, from the fully semi-
classical case (i.e. when the parameter h lies in front of all derivatives). The
study of the discrete spectrum of the magnetic Laplacian (−i~∇+A)2 has given
rise to many contributions in the last twenty years, especially in the semiclassical
limit. To have an overview on the subject one may refer to the book by Fournais
and Helffer [3], the survey by Helffer and Kordyukov [4] and the lecture notes by
Raymond [9].

Let us write the operator valued symbol of Lh. For (x, ξ) ∈ Rm × Rm, we
introduce the electro-magnetic Laplacian acting on L2(Rn, dt):

Mx,ξ = (Dt +A2(x, t))
2 + (ξ +A1(x, t))

2.

Denoting by µ(x, ξ) its lowest eigenvalue we would like to replace Lh by the m-
dimensional pseudo-differential operator:

µ(s, hDs).

We work under the following assumptions. The first assumption states that
the lowest eigenvalue of the operator symbol of Lh admits a unique and non
degenerate minimum and the second one concerns the simplicity of the spectrum
of the effective harmonic oscillator.

Assumption 1.

- The family (Mx,ξ)(x,ξ)∈Rm×Rm is analytic of type (B) in the sense of Kato
[5, Chapter VII].

- For all (x, ξ) ∈ Rm ×Rm, the bottom of the spectrum of Mx,ξ is a simple
eigenvalue denoted by µ(x, ξ) (in particular it is an analytic function) and
associated with a L2-normalized eigenfunction ux,ξ ∈ S(Rn) which also
analytically depends on (x, ξ).
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- The function µ admits a unique and non degenerate minimum µ0 at point
denoted by (x0, ξ0) and such that lim inf |x|+|ξ|→+∞ µ(x, ξ) > µ0.

- The family (Mx,ξ)(x,ξ)∈Rm×Rm can be analytically extended in a complex
neighborhood of (x0, ξ0).

Assumption 2. Under Assumption 1, let us denote by Hess µ(x0, ξ0) the Hessian
matrix of µ at (x0, ξ0). We assume that the spectrum of Hess µ(x0, ξ0)(σ,Dσ) is
simple.

Assumption 2 is automatically satisfied when m = 1. The last assumption is a
spectral confinement.

Assumption 3. For R ≥ 0, we let ΩR = Rm+n \ B(0, R). We denote by LDir,ΩR
h

the Dirichlet realization on ΩR of (Dt+A2(s, t))
2 +(hDs+A1(s, t))

2. We assume
that there exist R0 ≥ 0, h0 > 0 and µ∗

0 > µ0 such that for all h ∈ (0, h0), the first

eigenvalue of L
Dir,ΩR0

h satisfies:

λ
Dir,ΩR0

1 (h) ≥ µ∗
0.

In particular, due to the monotonicity of the Dirichlet realization with respect
to the domain, Assumption 3 implies that there exist R0 > 0 and h0 > 0 such that
for all R ≥ R0 and h ∈ (0, h0):

λDir,ΩR
1 (h) ≥ λ

Dir,ΩR0

1 (h) ≥ µ∗
0.

Theorem 1. Let us assume Assumptions 1, 2 and 3 and that A1 and A2 are
polynomials. For all n ≥ 1, there exists h0 > 0 such that for all h ∈ (0, h0) the
n-th eigenvalue of Lh exists and satisfies

λn(h) = λn,0 + λn,1h+ o(h),

where λn,0 = µ0 and λn,1 is the n-th eigenvalue of 1
2Hess µ(x0, ξ0)(σ,Dσ).

We provide now WKB expansions of the lowest eigenpairs in a pure magnetic
case. We reduce here our study to the case when A2 = 0. We therefore focus now
on operators of the form

(2) Lh = D2
t + (hDs +A1(s, t))

2.

Let us state the most important result of this talk.

Theorem 2. We assume that A2 = 0 and that A1 is real analytic. Under As-
sumptions 1, 2 and 3, there exist a function Φ = Φ(s) defined in a neighborhood
V of x0 with ℜHessΦ(x0) > 0 and, for any n ≥ 1, a sequence of real numbers
(λn,j)j≥0 such that

λn(h) ∼
h→0

∑

j≥0

λn,jh
j ,

in the sense of formal series, with λn,0 = µ0. Besides there exists a formal series
of smooth functions on V × Rnt

an(.;h) ∼
h→0

∑

j≥0

an,jh
j
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with an,0 6= 0 such that

(Lh − λn(h))
(

an(.;h)e
−Φ/h

)

= O (h∞) e−Φ/h.

Furthermore the functions t 7→ an,j(s, t) belong to the Schwartz class uniformly in
s ∈ V. In addition, if A1 is a polynomial function, there exists c0 > 0 such that
for all h ∈ (0, h0) there holds

B
(

λn,0 + λn,1h, c0h
)

∩ sp (Lh) = {λn(h)},

and λn(h) is a simple eigenvalue.
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Ground state energy of the magnetic Laplacian on corner domains

Monique Dauge, Nicolas Popoff

(joint work with Virginie Bonnaillie-Noël)

1. Introduction. Let Ω ⊂ Rn be a bounded domain and let A = (A1, . . . , An)
be a magnetic potential on Ω. The magnetic Laplacian in its “semi-classical”
formulation takes the form

(−ih∇+A)2 =
∑

j

(−ih∂j +Aj)
2,

with the small parameter h > 0, and we denote by Hh(A,Ω) the operator associ-
ated with the corresponding magnetic Neumann boundary condition:

(−ih∇+A)ψ · n = 0 on ∂Ω,

where n denotes the unit normal to the boundary. This operator is self-adjoint,
and if Ω is simply connected, its spectrum depends only on the magnetic field
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B = curlA. MoreoverHh(A,Ω) has compact resolvent and we denote by λh(B,Ω)
its first eigenvalue. For simplicity we denote by H(A,Ω) = H1(A,Ω) the operator
without parameter (h = 1).

The study of the spectrum of Hh(A,Ω) provides equivalent information on the
spectrum of H(σA,Ω) in the limit σ → +∞. This Laplacian with large magnetic
field appears as a linearization of the Ginzburg-Landau equation near the third
critical field, see [9, 10, 16].

There exists many works around the asymptotics of λh(B,Ω) in the semi-
classical limit h → 0. In various situations, it has been proved that for h small
enough:

(1) −Chκ− ≤ λh(B,Ω)− E(B,Ω)h ≤ Chκ+ ,

where E(B,Ω) ≥ 0 is a constant (positive if B does not vanish) that is given by
the infimum of some local problems on Ω and on its boundary. Here κ± > 1 are
constants depending on the geometry of Ω and on the variations of the magnetic
field. Without being exhaustive, let us cite the works [1, 11, 13, 17, 23] and the
book [10] for regular 2d and 3d domains. For polygonal domains in dimension
2, we refer to e.g. [2–4, 14, 19]). Much less is known for corner three-dimensional
domains, see e.g. [19, 22].

This report presents results from our work [5] that provides, in the framework of
a unified treatment of smooth and nonsmooth domains, a generalization of former
results to domains containing edges, corners and conical points in dimension 3.

2. Classes of domains. A cone is an open subset of Rn invariant by dilation.
We define classes of cones and corner domains by recurrence over the dimension
as in [8], see also [18]:

Definition 1. LetM = Rn orM = Sn. The class of tangent cones Pn and corner
domains D(M) are defined recursively as follow:

• P0 = {0} and D(S0) is formed by the subsets of {−1, 1}.
• Π ∈ Pn if and only if the section Π ∩ Sn−1 belongs to D(Sn−1).
• Ω ∈ D(M) if and only if for all x ∈ Ω, there exists a tangent cone Πx to

Ω at x and Πx ∈ Pn.

Here are some examples in lower dimensions:

Example 2. In dimension n = 1:

• The elements of P1 are R, R+ and R−.
• The elements of D(S1) are S1 and all open intervals I ⊂ S1 with I 6= S1.

In dimension n = 2:

• The elements of P2 are R2 and all sectors with opening α ∈ (0, 2π), in-
cluding half-spaces (α = π).

• The elements ofD(R2) are curvilinear polygons with piecewise non-tangent
smooth sides. Note that corner angles do not take the values 0 or 2π, and
that D(R2) includes smooth domains.
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• The elements of D(S2) are S
2 and all curvilinear polygons with piecewise

non-tangent smooth sides in the sphere S2.

In dimension n = 3:

• The elements of P3 are all cones with section in D(S2). This includes R3,
half-spaces, dihedra and many different cones like octants or axisymmetric
cones.

• The elements of D(R3) are tangent in each point x to a cone Πx ∈ P3.
Note that the nature of the section of the tangent cone determines whether
the 3d domain has a vertex, an edge, or is regular near x.

A cone is said to be polyhedral if its boundary is contained in a finite union of
hyperplanes, and a domain is polyhedral if all its tangent cone are polyhedral. As
examples, all domains in D(R2) are polyhedral, but circular cones in R3 are not
polyhedral. Notice that the main fact about a non polyhedral cone is that one
of its principal curvatures is unbounded near its vertex. A point x ∈ Ω with non
polyhedral tangent cone Πx is called a conical point of Ω.

3. Local energies, main result. To each x ∈ Ω we associate a tangent magnetic
Laplacian H(Ax,Πx), where

Ax : x̃ 7→ (∇A)(x) · x̃, x̃ ∈ Πx

is the linearization of A at x. Notice that curlAx = B(x) is the magnetic field
frozen at x.

Definition 3. We define the local ground state energy at x:

E(Bx,Πx), the infimum of the spectrum of H(Ax,Πx).

We now define

E(B,Ω) = inf
x∈Ω

E(Bx,Πx),

the infimum of the local energies.

This definition of E(B,Ω) coincides with the constant appearing in (1) for par-
ticular cases. We show that this quantity provides the semiclassical limit of the
first eigenvalue λh(B,Ω) in any dimension:

∀Ω ∈ D(Rn), lim
h→0

λh(B,Ω)

h
= E(B,Ω).

Our main result consists in estimates with remainders for domains in dimensions
n ≤ 3:

Theorem 4. Let Ω ∈ D(R3) and A be a regular potential. Then

−C−h11/10 ≤ λh(B,Ω)− hE(B,Ω) ≤ C+h9/8,

where the positive constants C− and C+ depend only on the domain Ω and on
norms of the magnetic potential A, namely:

C− = C(Ω)(1 + ‖A‖2W 2,∞(Ω)) and C+ = C(Ω)(1 + ‖A‖2W 3,∞(Ω)).
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Assume moreover that Ω is polyhedral. Then we have the following improvements:

−C−h5/4 ≤ λh(B,Ω)− hE(B,Ω) ≤ C+h4/3.

4. Principles of proof for the lower bounds. The proof of lower bounds
combines standard IMS type formulas and estimates of remainders with original
multi-scale covering in order to overcome the unboundedness of curvature near
conical points: We make a first covering of Ω with balls of size hδ0 with δ0 > 0;
Then, in annular regions at distance between hδ0 and O(1) of conical points, we
replace the first covering by a finer one with balls of size hδ0+δ1 . We deduce the
following lower bound:

(2) λh(B,Ω) ≥ hE(B,Ω)− Ch2 − C
(

h2δ0+
1
2 + h1+δ0 + h2−2δ0

)

− C
(

h
1
2+δ0+2δ1 + h1+δ1 + h2−2(δ0+δ1)

)

,

with C = C(Ω)(1+‖A‖2W 2,∞(Ω)), where the error terms come from the linearization

of the magnetic potential, of the metrics, and from cut-off errors when using the
IMS formula. We optimize these remainder by choosing δ0 = 3

10 and δ1 = 3
20 and

the lower bound of the theorem follows.
If there is no conical points, then we use a standard one-scale partition with

balls of size δ and we have a lower bound similar to (2), but involving only the
terms with δ0 alone. By choosing δ = 3

8 , we deduce the lower bound of the theorem
when there is no conical points.

5. Principles of proof for the upper bounds. The proof of the upper bound
requires a better understanding of tangent operators and of the local ground en-
ergy. We review and complete the description of model problems on cones Π of P3.
The case when Π = R3 is well known (Landau modes). We rely on the analysis
from [6,12,17] for half-spaces. Particular cases of sectors and wedges are analyzed
in [2,14,19,20], and the general case is treated in [21]. For 3d cones without invari-
ance direction, some particular cases are studied in [7,19]. In the general case, we
link the bottom of the essential spectrum of H(A,Π) with ground state energies of
magnetic Laplacians defined on tangent substructures of Π, see [5, Theorem 6.6].

We then analyze the regularity properties of the ground state energy x 7→
E(Bx,Πx) with the use of singular chains. A singular chain is a sequence of
points (x0, x1, . . . , xν−1), ν ≥ 1, recursively defined, x0 lying in the closure of
the corner domain, and the next points belonging to the sections of it tangent
cones (see [5, Section 3.4] for the precise definition of singular chains). We define
a distance and a partial order on singular chains and we prove a general result:
If a real function defined on singular chains is continuous and order preserving,
then it is lower semi-continuous. By using the continuity properties of the ground
state energy of tangent magnetic Laplacian together with the exhaustive analysis
of tangent operators, we prove:

Theorem 5. Let Ω ∈ D(R3) and B be a continuous magnetic field on Ω. Then
x 7→ E(Bx,Πx) is lower semi-continuous on Ω.
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In particular there exists x0 ∈ Ω such that E(Bx0 ,Πx0) = E(B,Ω). Moreover
we combine this result with the diamagnetic inequality to deduce that if B does
not vanish on Ω, then E(B,Ω) > 0.

The proof of the upper bounds of Theorem 4 is based on a construction of
suitable quasi-modes adapted to the geometry of Ω near x0. In the standard case,
the quasi-modes are constructed from a bounded generalized eigenfunction defined
on Πx0 , then one applies a cut-off and scalings in order to concentrate the support
of the quasimodes around x0. We qualify this quasi-mode as sitting. When we
know the existence of a generalized eigenfunction only on a tangent substructure
of Πx0 (this corresponds to singular chains of length ν ≥ 2), our quasimodes are
decentered in some directions provided by the singular chain, have a multiple-scale
structure in general, and we qualify it as sliding. In dimension n = 3, considering
chains of length ν ≤ 3 is sufficient to conclude. The size of the support of the
quasi-modes and the different shifts used depends on the geometry of Ω near x0.
We get remainders similar to those of (2), depending on wether x0 is a conical point
or not. We then use particular properties of the initial generalized eigenfunction
to improve these remainders. We will adopt different strategies depending on the
number k of directions in which it has exponential decay: A Feynman-Hellmann
formula if k = 1, a refined Taylor expansion of the potential if k = 2, and an
Agmon decay estimate if k = 3.

6. Conclusion. Our analysis could be generalized in any dimension n ≥ 4, pro-
vided one has a better knowledge of the model problems, leading to the proof
of existence for suitable generalized eigenfunctions on substructures. Let us also
mention that the Robin Laplacian with large Dirichlet parameter has similar prop-
erties than those of the magnetic Laplacian in the semi-classical limit, see [15].
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Eigenvalues for the Robin Laplacian in domains with variable
curvature: a semi-classical approach

Bernard Helffer

(joint work with Ayman Kachmar)

Let Ω ⊂ R
2 be an open domain with a smooth C∞ and compact boundary Γ = ∂Ω.

We study the low-lying eigenvalues of the Robin Laplacian in L2(Ω) which is
defined as

(1) Pα = −∆ in L2(Ω),

with domain, D(Pα) = {u ∈ H2(Ω) : ν · ∇u− αu = 0 on ∂Ω}, where α > 0 is
a given parameter and ν is the unit outward normal vector of Γ.

The operator Pα is associated with the closed semi-bounded quadratic form,
defined on H1(Ω) by

(2) u 7→ Qα(u) := ||∇u||2L2(Ω) − α

∫

∂Ω

|u(x)|2ds(x) .
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If we denote by (λn(α)) the sequence of min-max eigenvalues of Pα, it is proved
In [3, 17, 19] that, for every fixed n ∈ N∗,

(3) λn(α) = −α2 − κmaxα+ o(α) as α→ +∞ ,

where κmax is the maximal curvature along the boundary. Note that the first term
in (3) was obtained previously (see [2, 15] and references therein).

If the domain Ω is an exterior domain, then the operator Pα has as essential
spectrum [0,∞). In this case, the asymptotics in (3) show that, for every fixed n,
if α is selected sufficiently large, the eigenvalue λn(α) is in the discrete spectrum
of the operator Pα. When the domain Ω is an interior domain, the operator Pα
is with compact resolvent and its spectrum is purely discrete.

Our aim is to improve the asymptotic expansion in (3) and to give the leading
term of the spectral gap λn+1(α) − λn(α). We suppose that the boundary ∂Ω is
parameterized by arc-length s and κ is the curvature of ∂Ω. We suppose (Assump-
tion (A)) that the curvature κ attains its maximum κmax at a unique point s = 0
and that the maximum is non-degenerate, i.e. k2 := −κ′′(0) > 0 . The main result
of [8] is:

Theorem 1. Under Assumption (A), for any positive n, there exists a sequence
(µj,n)j∈N, such that the eigenvalue λn(α) has, as α → +∞, the asymptotic expan-
sion

λn(α) ∼ −α2 − ακmax + (2n− 1)

√

k2
2
α1/2 +

+∞
∑

j=0

µj,nα
− j

2 .

We present two semi-classical proofs which are either related to the so called
harmonic approximation or to the WKB approximation. Compared with what was
developed for Schrödinger operators (see Helffer-Sjöstrand [11] and B. Simon [20]),
the semi-classical parameter is h = α−2, the boundary acts as a potential well and
the curvature creates a miniwell [13]. In this last case, the toy model is, in the
limit h→ 0, the operator (say in R2 and for some κ > 0) −h2∆+x2(1+κy2) , the
well being the line x = 0 and the mini well (0, 0). The heuristic idea for this model
is to first reduce the problem, inside the well x = 0, to the semi-classical analysis

of the operator h2D2
y + h

√

1 + κy2. The assumption (A) indicates the case of a
unique miniwell. In the case considered here, one can roughly say that the bottom
of the spectrum of Pα is obtained by considering at the boundary (parametrized
by arc-length coordinate) the operator Hbbd := −α2 +D2

s − ακ(s) , and using for
a further analysis the quadratic approximation of −κ(s) at the minimum.
As in [11], a natural and interesting question is to discuss the case of multiple
maxima. When the curvature attains it maximum on Γ at k points si many effects
can appear depending on the values of the κ′′(si) (as in the case of the Schrödinger
operator). In the case of symmetries (see [11, 12] in the case of Schrödinger), the
determination of the tunneling effect between the points of maximal curvature is
expected to play an important role. A first example is discussed in [10] when
the domain Ω has two congruent corners (at a corner, we can assign the value
∞ to κmax). In the regular case (typically an ellipse), an interesting step is the
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construction of WKB solutions in the spirit of what was done in the context of
the Born-Oppenheimer approximation (1927) (see the unpublished analysis of S.
Lefebvre (1986) for the model h2D2

x +D2
y + (1 + x2)y2, the general analysis by A.

Martinez [16] and a recent work by V. Bonnaillie, F. Hérau and N. Raymond [1]).
As in the case of the (2D) model in superconductivity [1, 5, 9], the idea is that
the ”one well” eigenfunction is well approximated by the WKB approximation in
large domains of the boundary. In the case of an ellipse, we expect (in reference
to the model Hbd) a tunneling in the form

λ2 − λ1 ∼ α−ν
(

a0 + o(1)
)

exp−α 1
2S0 ,

where S0 is the tangential Agmon distance between the two points of maximal
curvature on the boundary associated with the metric

√

κmax − κ(s) ds2. It could

appear strange that the approximation by Hbd which determines the first eigenval-
ues modulo o(1) could predict the size of an exponentially small tunneling effect,
but this is what is observed in the case of Born-Oppenheimer (see [16]).

As explained by Giorgi-Smits in [7] the problem is connected with the research
of the properties of the minimizers of the (2D)-enhanced Ginzburg-Landau func-
tional:

G(ψ,A) :=
~2

2mb

∫

∂Ω

|ψ|2dσx

+

∫

Ω

[

β0
2
|ψ|4 + α0|ψ|2 +

1

2m
|(h
i
∇− 2e

c
A)ψ|2 + 1

8π
µ0|

1

µ0
(curlA)− σ|2

]

dx ,

where b < 0 is the parameter modeling the enhanced surface superconductivity,
β0 > 0, α0 < 0, µ0 > 0, and σ denotes the intensity of the exterior magnetic field
(σ = 0 in the above analysis). Instead of looking at critical fields like in surface
superconductivity (see [4] and references therein), one considers instead critical
temperatures. When σ 6= 0, various asymptotic regimes have been analyzed by
A. Kachmar (see [14] and further papers). The Robin condition is called in this
context the De Gennes condition.

Acknowledgments. I would like to thank the organizers of this meeting and
particularly K. Pankrashkin for fruitful discussions and former collaboration on
the subject. This work is supported by the ANR programme NOSEVOL.
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[17] K. Pankrashkin. On the asymptotics of the principal eigenvalue problem for a Robin problem
with a large parameter in a planar domain. Nanosystems: Physics, Chemistry, Mathematics,
2013 4 (4), 474–483.

[18] K. Pankrashkin. On the Robin eigenvalues of the Laplacian in the exterior of a convex
polygon. arXiv:1411.1956 (2014).

[19] K. Pankrashkin, N. Popoff. Mean curvature bounds and eigenvalues of Robin Laplacians.
arXiv:1407.3087 (2014).

[20] B. Simon. Semi-classical analysis of low lying eigenvalues I. Ann. Inst. Henri Poincaré 38
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Estimates for the first eigenvalue of the magnetic Dirichlet Laplacian

Fabian Portmann

(joint work with Tomas Ekholm and Hynek Kovař́ık)

Let Ω ⊂ R2 be a bounded open set, A ∈ C∞(Ω ;R2) a magnetic vector potential
with corresponding magnetic field B := curlA. The magnetic Dirichlet Laplacian

HD
Ω,B := (−i∇+A)2

is defined through its quadratic form

hDΩ,A[u] :=

∫

Ω

|(−i∇+A)u(x)|2 dx

with form domain H1
0 (Ω). The main objective of this talk is to provide bounds on

the first eigenvalue of HD
Ω,B ,

λ1(Ω, B) := inf specHD
Ω,B = inf

u∈H1
0 (Ω)

hDΩ,A[u]

‖u‖2 .
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There exist two well-known lower bounds for λ1(Ω, B); the commutator estimate

hDΩ,A[u] ≥ ±
∫

Ω

B(x)|u(x)|2 dx(1)

and the diamagnetic inequality

λ1(Ω, B) ≥ λ1(Ω, 0).(2)

A natural question which arises is whether a combination of (1) and (2) is possible.
As a first result we have the following estimate. Any u ∈ H1

0 (Ω) satisfies

hDΩ,A[u] ≥ ±
∫

Ω

B(x) |u(x)|2 dx+ e−2S(Ω,B) λ1(Ω, 0)

∫

Ω

|u(x)|2 dx,

where

S(Ω, B) := inf
Ψ∈F(Ω,B)

oscΨ,

and F(Ω, B) denotes the class of super potentials associated to B,

F(Ω, B) :=
{

Ψ : R2 → R
2 : ∆Ψ = B in Ω

}

.

For a given magnetic field B, the choice of optimal Ψ depends very much on
the geometry of the domain, and we therefore turn to the special case of constant
magnetic field. Let B(x) = B0 > 0 and define

ℓ(Ω, 0) := sup
x∈Ω

x2 − inf
x∈Ω

x2,

the maximal diameter in the x2-direction for a certain orientation of Ω. We then
pick a rotation R = R(θ) ∈ SO(2), parametrized by an angle θ ∈ [0, 2π), and set

ℓ(Ω, θ) := sup
x∈R(θ)Ω

x2 − inf
x∈R(θ)Ω

x2,

the maximal x2-distance of the rotated set R(θ)Ω. The quantity ℓ(Ω) is then
defined as follows: ℓ(Ω) := infθ∈[0,2π) ℓ(Ω, θ). From the boundedness of Ω it follows
that ℓ(Ω) is finite. We are then able to show that

λ1(Ω, B0) ≥ B0 + e−
B0
4 ℓ(Ω)2λ1(Ω, 0).

If we furthermore assume that the domain Ω is convex, we can estimate the quan-
tity ℓ(Ω) in terms of the in-radius of the domain: 2Rin ≤ ℓ(Ω) ≤ 3Rin.
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The Hardy inequality and the heat equation with magnetic field

David Krejčiř́ık

In this extended abstract of works [5] and [1], we are concerned with spectral-
threshold properties of the magnetic Schrödinger operator

(1) HB =
(

− i∇x −A(x)
)2 − cd

|x|2 in L2(Rd)

and the large-time behaviour of the associated heat semigroup

(2) e−tHB .

The operator HB is introduced as the Friedrichs extension of (1) initially defined
in C∞

0 (Rd). The relationship between the magnetic potential (1-form) A and the
associated magnetic tensor (2-form) B is standard, through the exterior derivative
B = dA. The latter is compatible because of the Maxwell equation dB = 0. The
dimensional quantity

(3) cd :=

(

d− 2

2

)2

is the best constant in the classical Hardy inequality

(4) −∆x ≥ cd
|x|2 ,

valid in the sense of quadratic forms, where −∆x should be interpreted as the
self-adjoint realisation of the Laplacian in L2(Rd). We always assume d ≥ 2 (the
one-dimensional situation is excluded because there is no magnetic field in R).

An important characterisation of the spectral-threshold behaviour of HB is
given by the existence/non-existence of Hardy-type inequalities. In the absence of
magnetic field, H0 is critical in the sense that cd is optimal in (4) and no other
non-trivial reminder term can be added on the right hand side of (4). On the other
hand, the following magnetic Hardy inequality holds whenever B is non-trivial.

Theorem 1. Let d ≥ 2. Suppose that B is smooth and closed. If B 6= 0, then
there exists a positive constant cd,B such that for any smooth A satisfying dA = B,
the following inequality holds

(5) HB ≥ cd,B

1 + |x|2 log2(|x|)
.

This inequality was first proved by Laptev and Weidl in [7] in d = 2 under a
flux condition and with a better weight (without the logarithm) on the right hand
side of (5). A general version of (5), but with the right hand side being replaced
by a compactly supported function in R

d, was given by Weidl in [9]. As the most
recent development, Ekholm and Portmann in [2] established (5) in d = 3 under an
extra assumption on B. Since the present version of the magnetic Hardy inequality
(in any dimension, with the minimal assumption B 6= 0 and with an everywhere
positive Hardy weight) does not seem to exist in the literature, we give a proof of
Theorem 1 in [1] before proving the main result of the paper.
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It is well known that the large-time behaviour of a heat semigroup is determined
by spectral-threshold properties of its generator. By the spectral theorem, we have
‖e−tHB‖L2(Rd)→L2(Rd) = e−tλ1 , where λ1 := inf σ(HB). At the same time, the
diamagnetic inequality

(6)
∣

∣(∇− iA)ψ(x)
∣

∣ ≥
∣

∣∇|ψ|(x)
∣

∣ ,

valid pointwise for almost every x ∈ Rd and any ψ ∈ H1
loc(R

d), implies inf σ(HB) ≥
inf σ(H0) = 0, so the magnetic field can only improve the large-time behaviour
of (2). This is notably evident for non-trivial homogeneous fields, i.e. B(x) =
B0 6= 0 for all x ∈ R

d, when λ1 > 0 and the heat semigroup e−tHB0 thus exhibits
an exponential decay rate.

In this talk, we are interested in a more delicate situation when B is local in
the sense that it decays sufficiently fast at infinity, so that

(7) σ(HB) = [0,∞) .

Then no extra decay of the heat semigroup is seen at the level above. Although
the spectrum as a set is insensitive to this class of magnetic fields, it follows from
Theorem 1 that there is a fine difference reflected in the presence of the magnetic
Hardy inequality. To exploit this subtle repulsive property of the magnetic field,
we introduce a weighted space

(8) L2
w(R

d) := L2(Rd, w(x) dx) , where w(x) := e|x|
2/4 ,

and reconsider (2) as an operator from L2
w(R

d) ⊂ L2(Rd) to L2(Rd). As a measure
of the additional decay of the heat semigroup, we then consider the polynomial
decay rate

(9) γB := sup
{

γ
∣

∣

∣
∃Cγ > 0, ∀t ≥ 0,

∥

∥e−tHB
∥

∥

L2
w(Rd)→L2(Rd)

≤ Cγ (1 + t)−γ
}

.

It is not difficult to see that γ0 = 1/2 for any d ≥ 2. The primary objective of our
work is to study the influence of a local but non-trivial magnetic field B on γB.
Our main result reads as follows.

Theorem 2. Let d ≥ 2. Suppose that B is smooth, closed and compactly sup-
ported. Then

(10) γB =











1 + β

2
if d = 2 ,

1

2
if d ≥ 3 ,

where

(11) β := dist(ΦB ,Z) , ΦB :=
1

2π

∫

R2

∗B(x) dx ,

with ∗B denoting the Hodge dual of B.

To prove Theorem 2, we adapt the method of self-similar variables, which was
developed for the field-free heat equation by Escobedo and Kavian in [3]. The
technique was applied to the magnetic setting by the author in d = 2 in [5]. The
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most recent work [1] can be considered as an extension of [5] to any dimension,
but the presence of the inverse-square potential in (1) also invokes [8].

It follows from our method of proof that the dichotomy in (10) is a consequence
of topological properties of the sphere Sd−1. In d = 2, the heat semigroup (2) be-
haves for large times as if the magnetic field degenerated to a singular (Aharonov-
Bohm) magnetic field with the same total flux.

Open Problem 1 (better topology). The Gaussian weight in (8) is required
by our method of proof. However, it is reasonable to expect that Theorem 2 holds
with less restrictive weights in (9). It seems natural that the optimal weight should
be related to the optimal weight in the Hardy inequality (5).

Open Problem 2 (transience between local and global fields). We expect
the same decay rates (10) if the assumption about the compact support of B is
replaced by a fast decay at infinity only. However, it is quite possible that a slow
decay of the field at infinity will improve the decay of the solutions even further.
In particular, is there a super-polynomial decay rate for the heat semigroup if B
decays to zero very slowly at infinity?

Open Problem 3 (beyond the polynomial decay rate). In dimensions d ≥ 3
or if β = 0 in d = 2, the transient effect of the magnetic field is not observable
in the present setting through the polynomial decay rate γB. Anyway, because of
the presence of magnetic Hardy inequalities (cf. Theorem 1), we expect that there
is always an improvement in the decay of the heat semigroup (2) whenever B 6= 0.

Open Problem 4 (abstract conjecture). More generally, let us recall that we
expect that there is always an improvement of the decay for the heat semigroup
of an operator satisfying a Hardy-type inequality (cf. [6, Conjecture in Sec. 6]
and [4, Conjecture 1]).
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Strong confinement limit for the nonlinear Schrödinger equation
constrained on a curve

Nicolas Raymond

(joint work with Florian Méhats)

The Dirichlet realization of the Laplacian on tubes of the Euclidean space plays
an important role in the physical description of nanostructures. In the last twenty
years, many papers were concerned by the influence of the geometry of the tube
(curvature, torsion) on the spectrum. For instance, in [10], Duclos and Exner
proved that bending a waveguide in dimension two and three always induces the
existence of discrete spectrum below the essential spectrum (see also [8]). Another
question of interest in their paper is the limit when the cross section shrinks to a
point. In particular they prove that, in some sense, the Dirichlet Laplacian on a
bidimensional tube, with cross section (−ε, ε) is well approximated by Schrödinger
operator

−∂2x1
− κ2(x1)

4
− 1

ε2
∂2x2

,

acting on L2(R× (−1, 1), dx1 dx2) and where κ denotes the curvature of the cen-
ter line of the tube. Such approximations have been recently considered in [13]
or in presence of magnetic fields [12] through a convergence of resolvent method.
Concerning this kind of results, one may refer to the memoir by Wachsmuth and
Teufel [15] where dynamical problems are analyzed in the spirit of adiabatic re-
ductions.

In this talk, based on the paper [14], we consider the time dependent Schrödinger
equation with a cubic non linearity in a waveguide and we would especially like
to determine if the adiabatic reduction available in the linear framework can be
used to reduce the dimension of the non linear equation and provide an effective
dynamics in dimension one. The derivation of nonlinear quantum models in re-
duced dimensions has been the object of several works in the past years. For the
modeling of the dynamics of electrons in nanostructures, the dimension reduction
problem for the Schrödinger-Poisson system has been studied in [6, 9] for confine-
ment on the plane, in [4] for confinement on a line, and in [11] for confinement on
the sphere. For the modeling of strongly anisotropic Bose-Einstein condensates,
the case of cubic nonlinear Schrödinger equations with an harmonic potential has
been considered in [1–3, 5, 7].

With the same formalism, we will consider the case of unbounded curves and
the case of closed curves. Consider a smooth, simple curve Γ in R2 defined by its
normal parametrization γ : x1 7→ γ(x1). For ε > 0 we introduce the map

(1) Φε : S = M× (−1, 1) ∋ (x1, x2) 7→ γ(x1) + εx2ν(x1) = x,

where ν(x1) denotes the unit normal vector at the point γ(x1) such that we have
det(γ′(x1), ν(x1)) = 1 and where

M =

{

R for an unbounded curve,
T = R/(2πZ) for a closed curve.
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We recall that the curvature at the point γ(x1), denoted by κ(x1), is defined by

γ′′(x1) = κ(x1)ν(x1).

The waveguide is Ωε = Φε(S) and we work under the assumption that waveguide
does not overlap itself and that Φε is a smooth diffeomorphism: We assume that
there exists ε0 ∈ (0, 1

‖κ‖L∞
) such that, for ε ∈ (0, ε0), Φε is injective. We also

assume that the function κ is bounded, as well as its derivatives κ′ and κ′′.
We denote by −∆Dir

Ωε
the Dirichlet Laplacian on Ωε. We are interested in the

following equation:

(2) i∂tψ
ε = −∆Dir

Ωεψ
ε + λε|ψε|2ψε

on Ωε with a Cauchy condition ψε(0; ·) = ψε0 and where λ ∈ R are parameters.
In the sequel, it will be convenient to work in the coordinates (x1, x2) and to con-

sider the following change of temporal gauge φε(t;x1, x2) = e−iµ1ε
−2tϕε(t;x1, x2),

where µ1 is the lowest eigenvalue (associated with the normalized eigenfunction
e1) of the Dirichlet realization of D2

x2
on (−1, 1). This leads to the equation

(3) i∂tϕ
ε = Hεϕ

ε + (Vε − ε−2µ1)ϕ
ε + λm−1

ε |ϕε|2ϕε

with conditions ϕε(t;x1,±1) = 0, ϕε(0; ·) = φε0 and where

Hε = P2
ε,1 + P2

ε,2 Vε(x1, x2) = − κ(x1)
2

4(1− εx2κ(x1))2

with

Pε,1 = m−1/2
ε Dx1m

−1/2
ε , Pε,2 = ε−1Dx2 , mε(x1, x2) = 1− εx2κ(x1).

Let us introduce the energy associated with (3):

Eε(φ) =
1

2

∫

S

|Pε,1φ|2 dx1 dx2 +
1

2

∫

S

|Pε,2φ|2 dx1 dx2

+
1

2

∫

S

(

Vε −
µ1

ε2

)

|φ|2 dx1 dx2 +
λ

4

∫

S

m−1
ε |φ|4 dx1 dx2.

Notice that we have substracted the conserved quantity µ1

2ε2 ‖φ‖2L2 to the usual
nonlinear energy, in order to deal with bounded energies. Indeed, we will consider
initial conditions with bounded mass and energy, which means more precisely the
following assumption.

Assumption 1. There exists two constants M0 > 0 and M1 > 0 such that the
initial data φε0 satisfies, for all ε ∈ (0, ε0),

‖φε0‖L2 ≤M0 and Eε(φε0) ≤M1.

We will see that (3) is well approximated in the limit ε → 0 by the following
one dimensional equation

(4) i∂tθ
ε = D2

x1
θε − κ(x1)

2

4
θε + λγ|θε|2θε,
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with γ =

∫ 1

−1

e1(x2)
4 dx2 = 3/4 and

θε(0, x1) = θε0(x1) =

∫ 1

−1

φε0(x1, x2)e1(x2) dx2 for x1 ∈ M.

The main result of this talk is the following theorem.

Theorem 1 (H2 solutions). Assume that φε0 ∈ H2 ∩ H1
0(S) and that there exist

M0 > 0, M2 > 0 such that, for all ε ∈ (0, ε0),

(5) ‖φε0‖L2 ≤M0,
∥

∥

∥
(Hε −

µ1

ε2
)φε0

∥

∥

∥

L2
≤M2.

Then φε0 satisfies Assumption 1 and

(i) The limit problem (4) admits a unique solution

θε ∈ C(R+;H
2(M) ∩ C1

(

R+; L
2(M)

)

.

(ii) For all ε ∈ (0, ε1(M0)), the two-dimensional problem (3) admits a unique
solution ϕε ∈ C

(

R+;H
2 ∩ H1

0(S)
)

∩ C1
(

R+; L
2(S)

)

.

(iii) For all T > 0 there exists CT > 0 such that, for all ε ∈
(

0, ε1(M0)
)

, we
have the refined error bound

sup
t∈[0,T ]

∥

∥ϕε(t)− θε(t)e1
∥

∥

L2(S)
≤ CT ε.
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Université de Rennes I
35042 Rennes Cedex
FRANCE

Bartosch Ruszkowski

Institut f. Analysis, Dynamik &
Modellierung
Fakultät für Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
70569 Stuttgart
GERMANY




