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Introduction by the Organisers

The mini-workshop on Reflection Positivity in Representation Theory, Stochastics
and Physics organized by P. Jorgensen (University of Iowa), K-H. Neeb (Uni-

versity of Erlangen-Nürnberg), and G. Ólafsson (Louisiana State University) was
held during the week Nov. 30 to Dec. 6, 2014. It was organized around the
concept of reflection positivity, a central theme at the crossroads of the theory of
representations of Lie groups, harmonic analysis, stochastic processes, and con-
structive quantum field theory. It employs tools and ideas from different branches
of mathematics. The workshop consisted of seventeen scientific presentations and
four problem sessions focused around nineteen problems from mathematics and
physics (see separate abstract).

Reflection positivity is one of the axioms of constructive quantum field theory as
they were formulated by Osterwalder and Schrader 1973/1975. In short, the goal
is to build a bridge from a euclidean quantum field to a relativistic quantum field
by analytic continuation to imaginary time. In terms of representation theory
this can be formulated as transferring representations of the euclidean motion



3060 Oberwolfach Report 55/2014

group to a unitary representation of the Poincaré group via c-duality of symmetric
pairs. This duality is defined as follows. If g is a real Lie algebra and τ : g → g

an involution, then we write h = gτ and q = g−τ for the τ -eigenspaces and
observes that gc = h⊕ iq inherits a natural Lie algebra structure and an involution
τc(x + iy) = x − iy. We write G and Gc for corresponding Lie groups. The
representation theoretical task is to start with a representation (π, E) of G and, via
the derived representation of g and Osterwalder-Schrader quantization, transfer it

to a unitary representation (πc, Ê) of Gc. Several of the participants have worked
on developing the basic ideas of this transfer process as well as applying it to
concrete groups and representations.

The motivation for duality and reflection positivity in Quantum Field Theory
is different from that from representations of Lie groups. Constructive quantum
field theory has its origin in Wightman’s axioms, and in the work of Osterwalder–
Schrader based on reflection positivity, and euclidean invariance. In the original
variant, based on Wightman, the quantum fields are operator valued distributions,
but the subsequent heavy task of constructing models with non-trivial interaction
has proved elusive. New approaches emerged, e.g., renormalization, and analytic
continuation to euclidean fields. One reason for the latter is that, in the eu-
clidean approach, the operator valued distributions (unbounded operators, and
non-commutativity), are replaced by (commuting) systems of reflection positive
stochastic processes, i.e., systems of random variables satisfying reflection symme-
try as dictated by the axioms of Osterwalder–Schrader.

Finally, the last decade witnessed an explosion in new research directions involv-
ing stochastic processes, and neighboring fields. This has entailed an expansion
of the more traditional tools based on Ito calculus; expanding to such infinite-
dimensional stochastic calculus models as Malliavin calculus, but also research by
some of the proposed workshop participants, for example, processes whose square-
increments are stationary in a generalized sense, and associated Gaussian, and
non-Gaussian, processes governed by singular measures, and constructed with the
use of renormalization techniques.

One of the goals of the workshop was to build bridges between these directions
and initiate discussions and an exchange of ideas between researchers in those
different fields. This culminated in the nineteen open problems that were proposed
and discussed by the participants. We refer to the abstracts for a list of problems
and some explanations.

The talks included several aspects of reflection positivity, such as:

(1) Basic mathematical background for reflection positive Hilbert spaces,
Osterwalder-Schrader quantization and reflection positive representations.

(2) Reflection positive representations and their integration
(3) Basic introduction to reflection positivity
(4) Reflection positivity in stochastic analysis and spectral theory
(5) Stochastic quantization
(6) The connection between complex measures, positivity and reflection posi-

tivity
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(7) Analysis on path groups, gauge groups, and some other infinite dimen-
sional groups

(8) Lie supergroups

The organizers thank the director Prof. Dr. Gerhard Huisken, and the Oberwolfach
staff for offering us outstanding support in all phases of the planning.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

I: Harmonic Analysis on Lie Supergroups — An Overview
II: Riesz Superdistributions

Alexander Alldridge

Informally, a supermanifold X is a space with local coordinates u, ξ such that:

uaub = ubua, uaξi = ξiua, ξiξj = −ξjξi

in the K-algebra of functions. Formally, it has a Hausdorff underlying topological
space and is locally isomorphic—in the ambient category of locally super-ringed
spaces with K-algebra sheaves of functions—to the model space (Rp, C∞

Rp⊗
∧
(Kq)∗).

Following the point of view introduced by Berezin and Kac, a Lie supergroup
is a group object in this category. As observed by Kostant and Koszul, this is
equivalent to the more tangible data of supergroup pairs (g, G0) where G0 is a real
Lie group and g is a K-Lie superalgebra such that g0̄ = Lie(G0) ⊗R K, carrying a
linear G0-action Ad by Lie superalgebra automorphisms which extends the adjoint
action of G0 and whose differential dAd is the restriction of the bracket of g.

By way of an example, we construct the meta-spin supergroup by its associated
supergroup pair (s, S̃0): Fix a supersymplectic super-vector space (W,ω) of finite
even dimension over C. The Clifford–Weyl algebra CW, is the unital enveloping
superalgebra of the Heisenberg–Clifford superalgebra h =W×C with the relations
[w,w′] = ω(w,w′). Its filtred part CW62 is a Lie superalgebra of the form s ⋉ h

where s = spo(W,ω) is the symplectic-orthogonal Lie superalgebra of (W,ω).
Any polarisation W = V+ ⊕ V− turns C[V+] = S(V−) into a CW-module, the

oscillator-spinor module, by letting V− act by multiplication and V+ by derivation.
Any choice of Hermitian inner product 〈· | ·〉 on V+ for which the graded parts are
orthogonal defines an antilinear even isomorphism V+ −→ V−. The fixed set of
its extension to an even antilinear involution of W is denoted by WR. Then sR :=
End(WR)∩s is the purely even Lie superalgebra sp(WR,0̄,ℑ〈· | ·〉)×o(WR,1̄,ℜ〈· | ·〉).
Taking S0 to be Sp × SO, we obtain a supergroup pair (s, S0). A double cover

(s, S̃0) is given by replacing S0 by Mp×Z/2Z Spin.
A linear action of a Lie supergroup G on a finite-dimensional super-vector space

V is the same thing as a pair (dπ, π0) of actions of the associated supergroup pair
(g, G0), where dπ extends the differential of π0 and is G0-equivariant for the ad-
joint action. These also makes sense in infinite dimensions. There is an equivalent
characterisation as representations of suitable convolution algebras, see Ref. [1].
For G0 reductive, Schwartz class versions thereof lead to moderate growth repre-
sentations and the generalisation of the Casselman–Wallach globalisation theorem.

The second part of the first talk focused on unitary representations of a Lie
supergroup G with associated supergroup pair (g, G0). We suggested to call a
continuous representation (dπ, π0) on a graded Hilbert space E weakly unitary if
π0 is unitary and E∞ is contained in the domain of dπ(x)∗ for any x ∈ g1̄. For
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K = R, the stronger notion of unitarity has been advocated by by Varadarajan et
al. Here, one requires eiπ/4dπ(x) to be skew-adjoint for any x ∈ g1̄.

Unitary representations are special unless g1̄ is ‘small’: If g0̄ = [g1̄, g1̄] and E
is an irreducible unitary representation E , then E is a generalised highest weight
module [9]. On the other hand, if G0 = (R,+) and g is the Clifford Lie superal-
gebra of dimension n|1, the abstract Fourier transform for weakly unitary repre-
sentations admits Fourier inversion formula and a Paley–Wiener theorem for the
Schwartz class [2]. Thus, for the purposes of Harmonic Analysis, weakly unitary
representations might be more useful.

An example of a weakly unitary representation of the meta-spin supergroup
pair (s, S̃0) is given by introducing a pre-Hilbert structure on the oscillator-spinor
module: Elements of C[V+] give superfunctions on V0̄ × V1̄ ⊗R C. Here, we have a
natural conjugation, and may define (f1|f2) :=

∫
V0̄×V1̄⊗RC

|D(z, z̄)| e−zz̄ f̄1f2.
The completion E is E0⊗

∧
V−,1̄ where E0 is the classical Bargmann–Fock space.

By results of Howe [6] (see also Ref. [7]), the representation integrates to a unitary

representation of S̃0. Moreover, if K̃0 ⊆ S̃0 is a maximal compact subgroup, then
the space of K̃0-finite vectors C[V+] is a Harish-Chandra (s, K̃0)-module. Thus,
the g-action extends to E∞, and E is weakly unitary. (See also Ref. [10].)

We concluded the first talk with an application to a problem from Random Ma-
trices taken from Refs. [4, 7], which we believe is connected to Reflection Positivity
(or RP). Let G′ be one of U(N), USp(N), O(N), or SO(N), where N is even in
the second case and USp(N) denotes the quaternionic unitary group. Let g′ be
the Lie algebra of G′ and g its commutant in s = spo(W,ω) where W = V+ ⊕ V ∗

+

with its standard symplectic form. Here, V+ = U ⊗CN where dimU = n|n. Then
g is gl(U), spo(U ⊕U∗), respectively, in the first two cases, and osp(U ⊕U∗) in the
latter two. Let G0 be of type U×U, SO∗ ×USp, or Mp×Z/2Z Spin, respectively.

Let E be the oscillator-spinor representation of (s, S̃0). Then the representa-

tion of (g, G0) on EG′

, the space of G′-fixed vectors, is irreducible, weakly uni-
tary, and extends analytically to the supersemigroup pair Γ = (g,Γ0̄ × G1̄,C)
where Γ0̄ is a compression semigroup or a double cover thereof and G1̄,C is the
complex Lie group GL(U1̄), Sp(U1̄ ⊕ U1̄), or SpinC(U1̄ ⊕ U∗

1̄ ), respectively. The
character χ of this representation is an analytic superfunction on Γ. For any
t = (eφ1 , . . . , eφn , eiψ1 , . . . , eiψn), ℜφj > 0, we have for connected G′:

∫

G′

n∏

j=1

detN (eiψj/2 − e−iφj/2k)

detN (eψj/2 − e−φj/2k)
dk = χ(t),

and there is a Weyl-type formula. A similar statement holds for G′ = O(N).
We now come to the second talk, devoted to the Superbosonisation Identity

of Littelmann–Sommers–Zirnbauer [8]. The motivating problem is the asymp-
totic expansion, as N −→ ∞, of the averaged Green’s function of an ensemble of
Hermitian matrices with U(N)-invariant law µ ≡ µN . It is a derivative of the par-

tition function Z(α, β) :=
∫
iu(N) det

(
H−β
H−α

)
dµ(H), which, by introducing fermionic
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‘ghosts’, may be rewritten as a Berezin integral. The Superbosonisation Identity
converts this into an expression amenable to asymptotic expansion.

Consider U = Cp|q, V = U ⊗ CN , and W = V ⊕ V ∗. Let f be a holomorphic
superfunction on the superdomain in Cp|q×p|q over T0̄×Cq×q, where T0̄ is the tube
over Herm+(p). Assume that f and its derivatives satisfy Paley–Wiener estimates
along Herm+(p), locally uniformly in Cq×q. Then

∫

V⊕V ∗

|D(ψ, ψ̄)| f(ψψ̄) = CN

∫

Ω

|Dy|Ber(y)Nf(y),

where Ω is a homogeneous totally real subsupermanifold of Cp|q×p|q with under-
lying manifold Ω0 = Herm+(p) × U(q) and CN is a constant. As observed in

Ref. [3], its precise value is CN =
√
π
Np

ΓΩ(N, . . . , N)−1, where the gamma func-

tion ΓΩ(m) :=
∫
Ω
|Dy|e−str(y)∆m(y), for ∆m(Z) :=

∏p+q
k=1 Ber((Zij)i,j6k)

mk−mk+1

and m = (m1, . . . ,mp+q).
This results from the interpretation of the right-hand side of the Superboson-

isation Identity as a functional generalising the classical Riesz distribution on
Herm+(p) and the Cauchy integral on U(q). By use of Harmonic Analysis, we find

ΓΩ(m) = (2π)p(p−1)/2

p∏

j=1

Γ(mj−j+1)

q∏

k=1

Γ(q − k + 1)

Γ(mp+k + q − k + 1)

Γ(mp+k + k)

Γ(mp+k − p+ k)
.

Classically, the Riesz distributions give rise to the unitary structure on limits of
holomorphic discrete series representations of SU(p, p). The poles of the gamma
function of Herm+(p) are closely related to the discrete points of the Wallach set.

Recent work of Neeb and Ólafsson relates this circle of ideas to RP.
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Energy and Brownian representations of path groups

Maria Gordina

(joint work with A. M. Vershik, B. Driver, S. Albeverio)

This is a report on a joint work with A. M. Vershik, B. Driver, S. Albeverio. We
study two unitary representations of (infinite-dimensional) groups of paths with
values in a compact Lie group. Before stating the results and open problems, we
can can refer to [6, p. 263] which explains how these representations are connected
to the QFT and reflection positivity.

Now we proceed to the main object of this project. Let G be a compact con-
nected Lie group, and let g be its Lie algebra. We consider the group of finite
energy paths in G, namely,

H (G) = { h : [0, 1] → G, h (0) = e, h is absolutely continuous such that

‖h‖2H :=

∫ 1

0

|h−1 (s) h′ (s) |2
g
ds <∞

}
.

This is a group with respect to pointwise multiplication and topology determined
by the norm ‖ · ‖H . There are two unitary representations of this group that were
previously studied, some of the references include [3, 4].

The first one is in L2 (W (G) , µ), whereW (G) is the Wiener space of continuous
paths in G, and µ is the Wiener (non-Gaussian) measure. Then the Brownian
representation is a unitary representation induced by the action ofH (G) onW (G)
by left or right multiplication, Lϕ and Rϕ. The probability measure µ is known
to be quasi-invariant under these actions, and therefore we can define the right
Brownian measure representation UR by

(
URϕ f

)
(g) :=

(
UR (ϕ) f

)
(g) =

(
d
(
µ ◦R−1

ϕ

)

dµ
(g)

)1/2

f (gϕ)

and the left Brownian measure representation UL by

(
ULϕ f

)
(g) :=

(
UL (ϕ) f

)
(g) =

(
d
(
µ ◦ L−1

ϕ

)

dµ
(g)

)1/2

f
(
ϕ−1g

)

for any f ∈ L2 (W (G), µ), ϕ ∈ H(G), g ∈ W (G).
The energy representation is a unitary representation of H (G) on the space

L2 (W (g) , ν), where ν is the Gaussian measure. Let
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(Eϕf) (w·) := ei
∫

·

0
〈ϕ−1dϕ,dws〉f

(∫ ·

0

Adϕ−1 dws

)
.

for any ϕ ∈ H (G), f ∈ L2 (W (g) , ν). Eϕ is called the energy representation
of H (G).

While by now we know some of the properties of these representations such as
cyclicity and unitarily equivalence as stated in the theorem below, some questions
are still open.

Theorem 1. (1) Cyclicity of 1: the space

Span



hϕ (gt) =

(
d
(
µ ◦R−1

ϕ

)

dµ
(g)

)1/2

, ϕ ∈ H (G)





is dense in L2 (W (G) , µ).
(2) Both UR and UL are unitarily equivalent to the energy representation E.

The open questions for which we have partial answers to are the following:

(1) whether the von Neumann algebras generated by the left and right Brow-
nian representations are commutants of each other. This is a well-known
fact in the locally compact case, but clearly these techniques are not ap-
plicable for the group H (G);

(2) whether the left and right Brownian representations are factorial. The
main ingredient in the proof published in [2] seems to be wrong, and
therefore we need a very different approach;

(3) if it is the case, a natural question is to find the type of this factor.

Our main tool in attacking these questions are techniques developed by M. Rieffel
et al for example in [5]. Moreover, this might provide a very concrete example
where the modular theory of Tomita-Takesaki is applicable.
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Introduction to Reflection Positivity

Arthur Jaffe

The condition of reflection positivity (RP) was discovered in 1972 by Konrad Oster-
walder and Robert Schrader, while they were both working at Harvard University
with me as post-doctoral fellows [8, 9]. This discovery solved a major problem at
the time: if one could construct a Euclidean field theory, how could one use that
data to recover a relativistic quantum field?

In fact RP turned out to be the central feature that related probability of clas-
sical fields to quantum theory. It gave a Hilbert space inner-product (that turned
out to be a quantization algorithm for states of a classical field). It also provided
a quantization algorithm for operators: the quantization of time translation yields
a self-adjoint, contraction semi-group whose generator is the positive Hamiltonian
of quantum theory. The quantization of the classical field is the quantum field,
continued to imaginary time. And the quantization of the full Euclidean group,
yields an analytic continuation of a unitary representation of the Poincaré group.

Reflection positivity also provided a useful tool in analyzing phase transitions
for the classical field. The new RP inner product provided reflection and infra-red
bounds that were crucial in establishing the existence of phase transitions. For the
associated quantum fields, these phase transitions were reflected with symmetry
breaking and non-unique ground states.

RP also turned out to be key in analyzing lattice statistical mechanical models,
in establishing the existence of phase transitions, and in studying the degenerate
ground states of certain modes that occur in quantum information theory.

RP also provides a tool to analyze fermions and gauge theories, as well as
complex functionals for classical fields. These do not necessarily have a positive
functional integral. But the RP-functional can play an important substitute role,
yielding multiple reflection bounds and their consequences.

A number of early references can be found in [1]. Recent work on quantum
information with Majoranas [2, 3, 4] and with Para-Fermions [5] were covered in
the talk. The work on complex functionals appears in [6, 7]. Other related work
is in progress.
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[6] Arthur Jaffe, Christian Jäkel, and Roberto Martinez, II, Complex Classical Fields: A Frame-
work for Reflection Positivity, Commun. Math. Phys. 329 (2014), 1–28.
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Stochastic Quantization

Arthur Jaffe

We compare the standard method of quantization through functional integration
satisfying reflection positivity, see for example [1] and the references in [2] with the
method of stochastic quantization, introduced by Nelson in 1966 [5] and extended
by Parisi and Wu [5, 6]. Stochastic quantization has not yet been effectively
implemented to give examples of non-linear quantum field theories, with a Hilbert
space of states, and the other usual features of quantum theory. Recently Hairer
investigated the method and made progress in classifying the renormalization and
solutions to the classical stochastic partial differential equations involved [4].

Here we study the stochastic quantization of a free field. This leads to a linear
PDE with the stochastic time λ, namely

∂Φλ(x)

∂λ
= −1

2

(
−∆+m2

)
Φλ(x) + ξλ(x) .

Here ξλ(x) is a forcing term. One can solve the equation for given initial data at
λ = 0 and given ξλ(x). One then considers a white-noise distribution of the forcing
term ξλ(x). For simplicity we consider here vanishing initial data, Φ0(x) = 0.

It is elementary to see that the Gaussian white noise leads to a probability
distribution dµλ(Φ) for the solution to this equation at stochastic time λ. This
measure is defined by its moments. We have proved

Theorem. [3] For stochastic time λ < ∞, the measure dµλ(Φ) does not satisfy
reflection positivity with respect to reflection ϑ of the physical time, ϑ : t 7→ −t.

This result extends to non-Gaussian quantum measures for small perturbations
of a Gaussian, in case the perturbation is continuous. As a consequence of this
theorem, one has to question how to modify stochastic quantization, in order to
obtain a quantum field theory with the usual quantum mechanics and Hilbert
space.
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Positive energy representations of gauge groups

Bas Janssens

(joint work with Karl-Hermann Neeb)

This is an extended abstract of a presentation held at the Oberwolfach Seminar
‘Reflection Positivity in Representation Theory, Stochastics and Physics’ on De-
cember 4, 2014.

1. Definitions

In order to define gauge groups, we need 3 ingredients: a smooth manifold M , a
compact simple Lie group K, and a principal K-bundle π : P → M . The gauge
group Gauc(P ) is then the group of compactly supported (‘pure gauge’) vertical
automorphisms of P . The gauge algebra gauc(P ) is the Lie algebra of compactly
supported smooth sections of the adjoint bundle Ad(P ) := P ×Ad k.

Energy is conjugate to time, so in order to define positive energy representa-
tions, we need one extra ingredient: a time translation. This is a smooth ac-
tion T : R → Aut(P ) of R on P by bundle automorphisms, with the property
that the induced flow TM : R → Diff(M) is locally free. Both the time flow
v := d

dt |0T (t) in Vec(P ) and its projection to M , vM := d
dt |0TM (t) ∈ Vec(M),

are everywhere nonzero. Using this extra datum T , we construct the extended
gauge group G := Gauc(P ) ⋊T R and Lie algebra g := gauc(P ) ⋊v R, where the
twist in the semidirect product comes from considering an element T (t) ∈ Aut(P )
as an automorphism of Gauc(P ).

A unitary representation of a locally convex Lie group G is a group homo-
morphism ρ : G → U(H) into the group of unitary operators on a Hilbert space.
However, because the phase factor is irrelevant, we are interested in projective
unitary representations of G, that is, group homomorphisms ρ : G → PU(H) into
the projective unitary group. In joint work with K.-H. Neeb, we have classified,
in the context of compact space-time manifolds M and periodic time translations
T , the projective unitary representations of G which are smooth and of positive
energy [2].

A ray [ψ] ∈ P(H) is called smooth if the orbit map G → P(H) : g 7→ ρ(g)[ψ]
is smooth, and a projective representation ρ is called smooth if the set P(H)∞ of
smooth rays is dense in P(H). The requirement that a projective unitary represen-
tation be smooth is very natural in the context of Lie theory for infinite dimensional
groups, as it ensures the existence of a common domain H∞ for the derived projec-
tive Lie algebra representation dρ : g → PEnd(H∞) = End(H∞)/Cid. Smoothness
should probably not be seen as a serious restriction on our result.

More serious, but still not overly restrictive, is the requirement that ρ be of pos-
itive energy. This is the requirement that the Hamilton operator H := −idρ(0, 1),
the selfadjoint generator of time translations (well defined up to scalars), have a
lower bound on its spectrum.



Reflection Positivity in Representation Theory, Stochastics and Physics 3073

2. Special cases

An important special case of this construction is when P =M ×K is trivial (and
trivialised), and T is the lift to P of a locally free R-action TM on M . We then
have G = C∞

c (M,K)⋊TM
R and g = C∞

c (M, k)⋊vM R, with (1, t) ·(f, 0) ·(1,−t) =
(f( · + t), 0) on G and [(0, 1), (ξ, 0)] = (LvM ξ, 0) on g. Because our principal
bundles π : P → M are locally trivial and our actions TM are locally free, every
gauge group locally looks like the one derived from (M,TM ) as above. The extra
data coming from (P, T ) (over and above the information present in (M,TM ))
should be seen as global data, describing a twist.

A second important special case is M = S1, where every principal fibre bundle
is isomorphic to a bundle Pσ → S1, obtained by gluing the endpoints {0}×K and
{2π} ×K of [0, 2π]×K together while twisting with a finite order automorphism
σ ∈ Aut(K). The gauge algebra gauc(Pσ) is then isomorphic to the twisted loop
algebra

(1) Lσ(k) := {ξ ∈ C∞(R, k) ; ξ(t+ 2π) = σ(ξ(t))} .
The adjective ‘twisted’ is only used if the class of σ in π0(Aut(k)), hence the
principal K-bundle Pσ, is nontrivial.

3. Cocycles

For infinite dimensional Lie groups G modelled on a barrelled locally convex Lie
algebra g, there is a bijective correspondence between projective unitary represen-
tations of G and a certain class (called ‘regular’ in [1]) of linear unitary representa-
tions (π, V ) of a central extension R → g♯ → g, where π(1) = 2πi on 1 ∈ R →֒ g♯.
(A Lie algebra representation is called unitary if V has a nondegenerate Hermitean
sesquilinear form, and all operators π(ξ), ξ ∈ g♯ are skew-symmetric.) Since infin-
itesimal, linear representations are much easier to handle than global, projective
representations, our strategy is:

1) Classify the central extensions g♯ → g.
2) Determine which ones come from projective unitary positive energy rep-

resentations.
3) For a given extension g♯, classify the unitary Lie algebra representations

(π, V ) with π(1) = 2πi that integrate to a group representation.

Since equivalence classes of central extensions correspond to classes
[ω] ∈ H2(g,R) in continuous Lie algebra cohomology, the first step comes down
to calculating H2(g,R). This was done in joint work with Christoph Wockel [3],
where we showed that if we fix a volume form vol onM (which we take orientable),
an equivariant connection ∇ on P , and a positive definite invariant bilinear form
κ on k (a multiple of the Killing form), then a class [ωX ] is uniquely determined
by a distributon valued vector field X ∈ Vec(M)⊗C∞(M) D′(M) with div(X) = 0
and LvMX + div(vM )X = 0, by the formula

ωX(ξ, η) =

∫

M

κ(ξ,∇Xη)vol .
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Step two is handled in [2], where we show (the proof is inspired by a trick in [4]) that
if ωX comes from a projective positive energy representation, then X = vM ⊗ µ,
where µ is a T -invariantmeasure onM , and the cocycle is trivial on {0}⋊vMR ⊆ g.

4. Step three: Localisation

In the context of loop algebras, cf. eqn. (1), where vM = d
dt lifts to v by the

canonical flat connection with holonomy σ, we have µ = cdt with c ≥ 0, soX = c ddt
and g♯ = (R⊕ωLσ(k))⋊ d

dt
R is the affine Kac-Moody algebra with cocycle ω(ξ, η) =

c
∫ 2π

0 κ(ξ, ∂tη)dt. If we normalise κ correctly, then the cocycle ω is integrable if and

only if c ∈ Z, the irreducible positive energy representations of g♯ are precisely the
highest weight representations (πλ,Hλ) at dominant integral weight λ of g♯ (see
[5]), and the requirement πλ(1) = 2πi translates to the requirement that c ∈ Z be
the level of λ.

Every point in M has a locally T -invariant open neighbourhood U ≃ U0 ×
I (the interval I ⊆ R parametrizes the time direction and U0 is a transversal
slice) such that P is trivialisable on an open neighbourhood of U . For such a
neighbourhood, we can build the Banach Lie algebra gauU := L∞(U0, H

1(I, k)),
where the Hilbert–Lie algebra H1(I, k) is the closure of C∞

c (I, k) for the inner
product (ξ, η)H1 :=

∫
I
κ(ξ, η)dt +

∫
I
(1 + t2)κ(∂tξ, ∂tη)dt. Since P trivialises over

U , we have a continuous injection gauc(P |U ) →֒ gauU , and the lynchpin of [2] is the
localisation lemma, which says that the positive energy representation (dρ,H∞)
extends to gU as a continuous unitary Lie algebra representation on the space
H∞
H of smooth vectors for the Hamilton operator. This allows one to apply dρ on

functions with a sharp cutoff in the direction transversal to vM , which allows one
to essentially cut the problem into little pieces.

5. Results

Using this localisation lemma, we proved in [2] that if M is compact and TM
(but not necessarily T !) is periodic, and proper and free as an R/ΛZ-action, then
every irreducible smooth projective positive energy representation is an irreducible
evaluation representation on finitely many orbits.

Evaluation representations are constructed as follows. If O ⊆ M is an orbit
under time translation, then O ≃ S1 because TM is periodic, so by the second
example of Section 2, the restriction homomorphism evO : gau(P ) → gau(P |O)
maps into a twisted loop algebra. If one picks finitely many distinct orbits Oi,
and for each orbit an irreducible unitary highest weight representation (πλi

,Hλi
)

of the affine Kac-Moody algebra (R⊕ω gau(P |Oi
)) ⋊vOi

R with πλi
(1, 0, 0) = 2πi

(the level c is implicit in ω), then the evaluation representation associated to
Oi and (πλi

,Hλi
) is the Hilbert space H :=

⊗n
i=1 Hλi

with g-action given by
π(ξ) =

∑n
i=1 1 ⊗ . . . ⊗ πλi

(ξ|Oi
) ⊗ . . .1, and where, similarly, the Hamiltonian

H := −iπ((0, 0, 1)) is the sum of the Hamiltonians of the individual Kac–Moody
algebras.
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We stress that the compactness and periodicity assumptions only enter at a
relatively late stage of the proof, and we expect our methods to apply in more
general situations. For example, consider the 1-point compactification S4 of R4

with principal K-bundle P → S4. The action of the Poincaré group SO(3, 1)⋉R4

yields a time translation which is proper and free on R4, but has fixed point
∞ on S4. I expect (the proof is not yet sufficiently rigorous to use the term
‘theorem’) that every projective unitary representation of Gau(P )0 that extends
to a positive energy representation of gauc(P )⋊ (so(3, 1)⋉R4) factors through a

K̃-representation by evaluating in ∞.
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Reflection positivity as it arises for operators in Hilbert space, in
representation theory, in stochastic analysis, and in physics

Palle E.T. Jorgensen

While the study of reflection positivity began in mathematical physics in the 1970s
(the Osterwalder-Schrader theory, and Euclidean fields), it has acquired a life of its
own in independent questions for operators in Hilbert space, the study of spectral
theory, in representation theory (analytic continuation of unitary representations
of Lie groups), in stochastic analysis, and in physics. The details of this were re-
viewed in the presentation by myself as well as the other speakers at the workshop.
In the talk Jorgensen referred to both his joint work with G. Olafsson (see [2], [3]),
and more recently with K.H. Neeb; cited by the other speakers. As well as to the
math physics literature, see e.g., [7], [8], [9], [4], [5], [6].

The tools from: (i) operators in Hilbert space, from (ii) the theory of uni-
tary representations and their c-duals; and from (iii) stochastic processes will be
introduced in steps (i)→(ii)→(iii).

In (i), we have the following setting: E : a fixed Hilbert space; e±, e0: three
given projections in E ; R: a fixed period-2 unitary: E → E .

We assume that:

(1) (Refl) Re+ = e−R, and Re0 = e0

Definition 1.

(M)Markov: e+e0e− = e+e− and (RF )Osterwalder-Schrader: e+Re+ ≥ 0.

Lemma 2. (M) ⇒ (RF ).
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Proof. Assume (M), then

e+Re+ =
by (Refl)

e+ e−R =
by (M)

e+ e0 e−R = e+ e0Re+ = e+ e0 e+ ≥ 0. �

Among the new results presented at the workshop are the following:

Lemma 3. Let e+ and R be as above, and suppose e+Re+ ≥ 0, and set

N := {ψ ∈ E|〈ψ,Rψ〉 = 0}, and
q : E+ −→ E+/N −→ Ê := compl.

(E+

N

)

ψ 7→ ψ +N
(i) Then q is contractive from E+ to Ê , and
(ii) q∗q = e+Re+.

If further e0 ≤ e±, then q
∗q = e0.

(iii) There is a quantization mapping: b −→ b̂ from the algebra B(E+,N ) of

bounded operators on E+ preserving N into B(Ê) such that:

qb = b̂ q, e0b = q∗b̂ q, (̂b1b2) = b̂1b̂2, ∀b1, b2 ∈ B(E+,N ).

(iv) If RbR = b∗, then (̂b)∗ = b̂.

Theorem 4 (Jorgensen-Neeb-Olafsson). Let G be a locally compact group with a
closed semigroup S ⊂ G, e ∈ S, and S−1∪S = G. Let H be a Hilbert space, and P
a representation of S acting in H. Assume v0 ∈ H, ‖v0‖ = 1, satisfies P (s)v0 = v0
for all s ∈ S. Let Q be a compact Hausdorff space, and let A ≃ C(Q) be an abelian
C∗-algebra acting on H. Assume that for all n, all x1, x2, · · · , xn ∈ G such that

(2) x1 ∈ S, x−1
1 x2 ∈ S, · · · , x−1

n−1xn ∈ S,

and all fi ∈ A+, 1 ≤ i ≤ n, we have

(3) 〈v0, f1P (x−1
1 x2)f2 · · ·P (x−1

n−1xn)fnv0〉 ≥ 0

Set Ω := QG.

Let µF , F = {x1, x2, · · · , xn}, be the measure on Qn = Q× · · · ×Q︸ ︷︷ ︸
n times

specified by

(4)

∫

Qn

f1 ⊗ · · · ⊗ fndµF = 〈v0, f1P (x−1
1 x2)f2 · · ·P (x−1

n−1xn)fnv0〉

Let FS = {F | specified by conditions (2)}.
For measures µ on Ω := QG (= all functions w : G → Q), the pathspace, we

denote by π∗
F , F ∈ FS the pull-back µ∗

F (µ) via the coordinate projection πF : Ω →
QF .

Then there is a unique measure µ on Ω such that

(5) π∗
F (µ) = µF for all F ∈ FS .

Moreover, the solution µ to (5) is G-invariant.
The sigma-algebra for µ is the sigma-algebra of subsets of Ω generated by the

cylinder sets.
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Proof. We refer to our papers for a detailed exposition of the proof details. �

Glossary/terms used:

Modular theory (MT) used here refers to the theory of von Neumann algebras, and
is also called Tomita-Takesaki theory. In von Neumann algebra theory, MT was
(since the 1970s) the key building block in our understanding of type III factors.
But MT also lies at the foundation of rigorous formulations of equilibrium states
(temperature-states) in statistical mechanics. Finally, Hans Borchers’ formulation
of local quantum fields makes critically use of the one-parameter modular group
of automorphisms from MT.

Super : The notion of superalgebra refers to a Z2-grading. It has been used exten-
sively in the study of (super) Lie algebras arising in physics. Lie superalgebras:
The even elements of the superalgebra correspond to bosons, and odd elements to
fermions.

Free fields : Quantum field theory (QFT) is a theoretical framework for construct-
ing quantum mechanical models of subatomic particles and fields. A QFT treats
particles as excited states of an underlying physical field. The case of free fields
encompasses the mathematical model before interaction is added.

Borchers-triples (BT): The term “Borchers-triple” was suggested by Buchholz, it
refers to a triple (M,U, v) where M is a von Neumann algebra in a Hilbert space
H, U is a unitary representation of space-time, satisfying the spectrum-condition
and acting by conjugation on M , v is unit vector in H (vacuum) fixed by U ,
and cyclic and separating for M . The spectrum-condition refers to a prescribed
covariance system for (M,U). The triples are used in our understanding of local
quantum fields, and they are studied with the use of modular theory.

Borchers-local fields: von Neumann algebras indexed by local regions in space
time.

Our use of “Lax-Phillips model” refers to Lax-Phillips scattering theory, but applies
more generally to any unitary one-parameter groups in Hilbert space which satisfy
certain axioms for an outgoing subspace; and it allows us to realize such one-
parameter groups, up to unitary equivalence, as groups of translation operators.

Wightman QFT-axioms : An attempt by Arthur Wightman in the 1950s, at a
mathematically rigorous formulation of quantum field theory. While the Wight-
man fields are operator valued distributions, by contrast Euclidean fields are al-
gebras of certain random variables; hence commutative algebras. The OS-axioms
form a link between them, via a subtle analytic continuation and renormalization.

Commentary: In the axioms for PR, the reflectionR typically takes the form of a
unitary period-2 operator in Hilbert space. However, in order to get a more natural
fit between RP and modular theory, it is more natural that R be anti-unitary. The
operator J from modular theory is anti-unitary. If M is a von-Neumann algebra
with a chosen faithful, normal state s , then there is a corresponding J such that
JMJ =M ′ (the commutant of M ;) and, fixing β there is a one-parameter group
of automorphisms of M which has the state s as a β-KMS state.
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Reflection Positivity and Operator Algebras in Quantum Field Theory

Gandalf Lechner

In this talk, some operator-algebraic aspects of quantum field theory (QFT) were
reviewed, and their links/similarities to reflection positivity was discussed.

The basic setting is that of modular theory, either of a von Neumann algebra
M ⊂ B(H) with a cyclic separating vector Ω ∈ H (algebraic version), or of a
closed real standard subspace H ⊂ H of a Hilbert space (spatial version). We first
recalled the basic definitions in this context – in particular the Tomita operator S
associated with (M,Ω) and H ⊂ H, respectively, its polar decomposition, and the
Tomita-Takesaki Theorem as well as the KMS condition. It was also recalled how
to proceed from the algebraic to the spatial version (by H := MsaΩ) and from
the spatial version to the algebraic version (by second quantization).

In QFT, one is usually interested in situations with additional structure, such
as group actions and/or specific subalgebras/-spaces. In the simplest case – per-
taining to quantum fields localized on a half line – this amounts to considering a
von Neumann algebra M ⊂ B(H) (respectively, a standard subspace H ⊂ H) and
a unitary strongly continuous R-action T on H such that T (t)MT (−t) ⊂ M for
t ≥ 0 and T (t)Ω = Ω for all t ∈ R (respectively, T (t)H ⊂ H for t ≥ 0). A theorem
by Borchers [1] then states that in case the generator P of this representation is
positive/negative, ±P > 0, then the modular data J,∆ satisfy

∆itT (s)∆−it = T (e∓2πt · s), JT (s)J = T (−s) .
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In other words, T extends to a (anti-) unitary representation of the “ax + b
group”. It is also worth mentioning that this situation is very similar to the Lax-
Phillips situation of an “outgoing subspace”, the difference being that the space
under consideration is only real linear here. In the non-degenerate spatial case,
i.e. if there are no T -invariant vectors in H , and the ax + b representation is
irreducible, there exists a unique standard pair (H,T ), which can for example be
described on H = L2(R+, dp/p), with

(T (t)ψ)(p) = eipt · ψ(p), (∆itψ)(p) = ψ(e−2πtp), (Jψ)(p) = ψ(p).

Here H consists of all functions in H which are boundary values of Hardy-type
functions on the upper half plane, satisfying a reality condition [2].

If one considers the two-dimensional situation, i.e. asks for an R2-action
(x+, x−) 7→ T (x+, x−), with both generators positive, and which acts by endo-
morphisms on M (respectively, H) for x+ ≥ 0, x− ≤ 0 (physically, the coordi-
nates x± ∈ R parametrize the two light rays through the origin of two-dimensional
Minkowski space), one obtains by Borchers’ theorem an extension of T from R2

to the two-dimensional proper Poincaré group.
On the QFT side, Borchers triples (consisting of a von Neumann algebra with

cyclic separating vector and a half-sided R2-action T as above), respectively stan-
dard pairs (consisting of a real standard subspace with half-sided R2-action) can
be considered as “germs” of local, covariant models of QFT. In fact, by using the
group action and intersections, one can proceed from the single algebra M (re-
spectively, real subspace H) to a net of algebras/real subspaces, indexed by the
open subsets of R2, and enjoying natural locality and covariance properties. This
motivates the analysis of Borchers triples, and since Euclidean formulations have
proven to be a valuable tool in constructive QFT in the past, the question emerges
whether useful Euclidean realizations of Borchers triples and / or standard pairs
exist.

The connection of representations of the Poincaré group to representations of
the Euclidean group is known to be closely linked to reflection positivity (see, for
example [3, 4]). What is required in addition here is a Euclidean datum repre-
senting the half-sided algebra/subspace. The talk ended with a sketch of how the
approach of Schlingemann [5] might be useful in this context, and pointed out
the double role of reflections (time reflection as usual, and space-time reflection,
represented by the modular conjugation J) present in this setting.
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Examples of reflection positive representations of semisimple groups

Jan Möllers

The first use of reflection positivity in the context of unitary representation theory
of semisimple groups is due to Robert Schrader. In his paper [4] he relates com-
plementary series representations of SL(2n,C) to certain unitary representations
of the product group SU(n, n) × SU(n, n) (or rather its universal cover). This

concept was later picked up by Jorgensen–Ólafsson [2] and Neeb–Ólafsson [3] and
applied to different pairs of semisimple groups. In this talk we provide a unified
framework into which all these examples fit.

This uniform treatment can be applied to obtain a correspondence between
certain unitary representations of pairs of groups which were studied by Enright [1]
even before Schrader’s paper [4]. We remark that Enright does not use or even
mention reflection positivity at all.

1. The possible pairs (g, gc)

Let g be a simple real Lie algebra and τ an involution of g. Write g = h + q for
the decomposition of g into τ -eigenspaces to eigenvalues +1 and −1. We assume
that the c-dual Lie algebra

gc := h+ iq ⊆ gC

is Hermitian of tube type, i.e. the corresponding Riemannian symmetric space
Gc/Kc is a bounded symmetric domain of tube type. We discuss examples where
complementary series representations of g can be related to unitary highest weight
representations of gc.

2. The pair (so(n+ 1, 1), so(2, n))

This example is for n = 1 due to Jorgensen–Ólafsson [2, Introduction] and for

n > 1 due to Neeb–Ólafsson [3, Section 6].
Let G = O(n + 1, 1) and g = so(n + 1, 1) its Lie algebra. The (spherical)

complementary series representations πs (s ∈ (−n
2 ,

n
2 )) of the group G can be

realized on Hilbert spaces Es of distributions on Rn endowed with the inner product

〈u, v〉s =
∫

Rn

∫

Rn

|x− y|−2s−nu(x)v(y) dx dy.

(This expression makes sense at least for s ∈ (−n
2 , 0).) The unitary action πs of

G on Es is induced by the conformal action of G on Rn.
Consider the unitary involution θ on Es given by

θu(x) = |x|2s−nu
(

x

|x|2
)
, x ∈ Rn.
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The involution θ is in fact given by θ = πs(w) for a certain element w ∈ G of
order 2. This element defines an (inner) involution τ of G by τ(g) = wgw and the
corresponding c-dual gc of the Lie algebra g is isomorphic to so(n, 2).

Let Es,+ ⊆ Es be the subspace

Es,+ = {u ∈ Es : suppu ⊆ D},
where D = {x ∈ Rn : |x| < 1} is the unit disc. For u ∈ Es,+ a short computation
shows that

〈u, v〉s,θ := 〈θu, v〉s =
∫

D

∫

D

(1− 2x · y + |x|2|y|2)−s−n
2 u(x)v(y) dx dy.

We note that the unit disc D is the intersection of the Lie ball

DC = {z = x+ iy ∈ Cn : |x|2 + |y|2 + 2
√
|x|2|y|2 − (x · y)2 < 1}

with Rn ⊆ Cn, and that the kernel function (1− 2x ·y+ |x|2|y|2)−s− n
2 is identified

with the restriction of a power of the Bergman kernel (1− 2z ·w+ z2w2)−n of the
bounded symmetric domain DC to the totally real subdomain D. The bounded
symmetric domain DC is the Riemannian symmetric space Gc/Kc and it is well
known that the corresponding power of the Bergman kernel is positive definite on
DC (and hence on the totally real submanifold D) if and only if s is contained in
the so-called Berezin–Wallach set {−n

2 } ∪ [−1,∞).
Forming the intersection of the parameter ranges (−n

2 , 0) and {−n
2 } ∪ [−1,∞)

this yields the following theorem:

Theorem (Jorgensen–Ólafsson [2], Neeb–Ólafsson [3]). (1) Let s ∈ (−n
2 , 0),

then the form 〈·, ·〉s,θ is positive semidefinite on Es,+ if and only if s ∈
[−1, 0). In this case the completion of Es,+/N where N is the null space

of 〈·, ·〉s,θ will be denoted by Ês.
(2) For s ∈ [−1, 0) we obtain a unitary representation π̂s of the universal

cover Gc of O(n, 2) on Ês. The representations of Gc obtained in this
way are unitary highest weight representations (or analytic continuations
of holomorphic discrete series).

We remark that instead of the reflection θ at the unit sphere one can as well
consider the time reflection

θ̃u(x1, . . . , xn−1, xn) = u(x1, . . . , xn−1,−xn)
on the subspace

Ẽs,+ = {u ∈ Es : suppu ⊆ Rn+},
where Rn+ = {xn > 0}. Since θ and θ̃ are unitarily equivalent via the action πs of
G this yields unitarily equivalent Hilbert spaces and representations.

3. The pair (gl(2n,C), u(n, n)× u(n, n))

The following example is (in a slightly different way) due to Schrader [4].
We consider the group G = GL(2n,C). Corresponding to the parabolic sub-

group for the partition 2n = n+n there are complementary series representations
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πs (s ∈ (−1, 1)) of G on a Hilbert space Es of distributions onM(n×n,C) endowed
with the inner product

〈u, v〉s =
∫

M(n×n,C)

∫

M(n×n,C)

| detC(x− y)|−2s−2nu(x)v(y) dx dy.

(This expression makes sense at least for s ∈ (−1, 0).) In this case the involution
θ is given by

θu(x) = | detC x|2s−2nf((x∗)−1), x ∈M(n× n,C)

and the corresponding subspace Es,+ ⊆ Es is given by

Es,+ = {u ∈ Es : suppu ⊆ D},
where D = {x ∈ M(n × n,C) : ‖x‖ < 1}, the operator norm ‖ · ‖ being induced
from the Euclidean norm on Cn. A short computation for u ∈ Es,+ shows

〈u, u〉s,θ = 〈θu, u〉s =
∫

D

∫

D

| detC(1− x∗y)|−2s−2nu(x)u(y) dx dy.

Now note that D embeds into D ×D as a totally real subspace by x 7→ (x, x) and
via this embedding the kernel

| detC(1 − x∗y)|−2s−2n = detC(1− x∗y)−s−n · detC(1 − xT y)−s−n

is the restriction of the product of powers of the Berman kernels of D and D. The
powers detC(1 − x∗y)−s−n are positive definite on D if and only if s is contained
in the Berezin–Wallach set {−n, . . . ,−1}∪ (−1,∞) and hence reflection positivity
applies for s ∈ (−1, 0) and yields unitary representations π̂s of the universal cover
of Gc = U(n, n)×U(n, n) which are tensor products of unitary highest weight and
lowest weight representations.

4. The pairs (hC, h× h)

Generalizing the pair (gl(2n,C), u(n, n) × u(n, n)) one can consider (hC, h × h).
Here h is any Hermitian Lie algebra of tube type, g = hC its complexification
viewed as a real Lie algebra. Then gC ≃ hC × hC and gc = h × h is another real
form of gC.

These cases are discussed by Enright [1] without using reflection positivity.
However, employing the same machinery as in Section 3 one can obtain the same
results as Enright does in the spirit of reflection positivity.
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From the path integral to the Hamiltonian formalism in a
diffeomorphism–invariant context

José Mourão

(joint work with Abhay Ashtekar, Jerzy Lewandowski, Donald Marolf, Thomas
Thiemann)

The Osterwalder–Schrader axioms allow us to construct the Hamiltonian
Lorentzian formalism from the rigorous Euclideanized path integral in a quan-
tum scalar field theory on Rd+1 [7, 11, 12]. We report on the results obtained in
[4, 5] on an extension of the Osterwalder–Schrader axioms to theories invariant
under Diff(M, s), the group of diffeomorphisms of space–time M , assumed to be
diffeomorphic to R× Σ, preserving the structure s.

The ultimate goal would of course be to develop a formalism applicable to
Quantum Gravity but a very nice instructive example is given by Yang–Mills
theory on two dimensions, YM2. The classical Yang-Mills action

SYM (A) = − 1

g2

∫

M

trF ∧ ⋆F,

is invariant under Diff(M,Ar), the infinite–dimensional group of area preserving
difeomorphisms.

In [4] we used the realization of the Ashtekar–Isham compactification, A/G [1],
of the infinite–dimensional space A/G of connections modulo gauge transforma-
tions on M , as the projective limit of spaces of connections modulo gauge trans-
formations on finite graphs (homeomorphic to Gn/AdG) [2, 3, 10, 15, 16] and the
calculation of the expectation values of multiple loop Wilson variables (products
of traces of holonomies)

(1) < Tα1
. . . Tαn

>=

∫

A/G

Tα1
(A) . . . Tαn

(A) dµYM2
,

as the continuum limit of a lattice regularized model, to define a unique σ–additive
probability measure, µYM2

, on A/G. The expectation values (1) were also calcu-
lated in the framework of rigorous measures on the affine space of random connec-
tions on R2, with linear gauge fixing, in [6, 8] and extended to arbitrary Riemann

surfaces in [13, 14]. For measures on A/G the results of [4] were extended to
arbitrary Riemann surfaces in [9].

By identifying time with the first coordinate in R2 and in R × S1, we showed
in [4] that the measure µYM2

defined by (1) satisfies a natural generalization, to
quantum theories of connections, of the Osterwalder–Schrader axioms including
reflection positivity. The Osterwalder–Schrader reconstruction theorem is then
valid and, in accordance with the classical Hamiltonian formulation, the physical
Hilbert space is trivial if M = R2 and is naturally isomorphic to the space of Ad–
invariant, square integrable functions on G, L2(G, dx)Ad, where dx is the Haar
measure, if M = R × S1. In the latter case the Hamiltonian operator obtained
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from the reconstruction theorem is

Ĥ = −g
2

2
L∆,

where L is the length of S1 and ∆ is the Laplacian on G, corresponding to the
bi-invariant metric.

The invariance of µYM2
under the infinite dimensional group Diff(M,Ar) mo-

tivated us to extend the Osterwalder–Schrader axioms to the context of general
quantum field theories invariant under Diff(M, s), for a space–time M diffeomor-
phic to R × Σ, with a fixed background structure s [5]. In quantum gravity one
expects the path integral measure to have Diff(M) acting as gauge if Σ is compact
without boundary but, for example, in asymptoticaly flat or anti-De Sitter space-
timesM , one expects the Euclideanized path integral measure to be invariant only
under diffeomorphisms preserving the Euclideanized asymptotic structure and only
those asymptotically trivial diffeomorphisms should act as gauge. In these cases
the asymptotic structure will play the role of background structure s.

To formulate the generalized axioms, for a theory with background structure s
on M ∼= R× Σ, we say that a foliation F of space-time is compatible with s if it
belongs to the following subset of the set B = Diff(R×Σ,M) of diffeomorphisms
from R× Σ to M ,

(2) F =
{
F ∈ B : θF = F ◦ θ ◦ F−1, TFt = F ◦ Tt ◦ F−1 ∈ Diff(M, s), ∀t ∈ R

}
,

where Tt(s, x) = (s+t, x) and θ(t, x) = (−t, x). Reflection positivity of the relevant
correlation functions was then required for every s–compatible foliation F and the
reconstruction of the Hamiltonian formalism proved for every such F . Different
choices of compatible foliations may lead to inequivalent Hamiltonian theories as
was shown to be the case for Yang-Mills theory on R × S1. Two equivalence
relations, weak and strong, were introduced on F . Strongly equivalent foliations
lead to equivalent Hamiltonian theories, while weakly equivalent foliations have
naturally isomorphic physical Hilbert spaces but possibly inequivalent Hamiltonian
theories.

Besides YM2 on R2 and on R × S1 we showed that the extension of the
Osterwalder–Schrader axioms is also valid for 2 + 1 gravity and BF theories.
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A representation theoretic perspective on reflection positivity

Karl-Hermann Neeb

(joint work with Gestur Ólafsson)

We report on a long-term project with G. Ólafsson ([NO14a, NO14b, NO15,
MNO14]). It aims at a better understanding of reflection positivity, a basic concept
in constructive quantum field theory ([GJ81, JOl00, JR07a, JR07b]). Originally,
reflection positivity, also called Osterwalder–Schrader positivity (or OS positiv-
ity), was conceived as a requirement on the euclidean side to establish a duality
between euclidean and relativistic quantum field theories ([OS73]). It is closely
related to “Wick rotations” or “analytic continuation” in the time variable from
the real to the imaginary axis.

The underlying fundamental concept is that of a reflection positive Hilbert space,
introduced in [NO14a]. This is a triple (E , E+, θ), where E is a Hilbert space,
θ : E → E is a unitary involution and E+ is a closed subspace of E which is θ-positive
in the sense that the hermitian form 〈u, v〉θ := 〈θu, v〉 is positive semidefinite on

E+. Let N := {v ∈ E+ : 〈θv, v〉 = 0}, write Ê for the Hilbert space completion of

the quotient E+/N with respect to ‖v‖θ :=
√
〈θv, v〉 and q : E+ → Ê , v 7→ v̂ for

the canonical map. If

T : D(T ) ⊆ E+ → E+
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is a linear or antilinear operator with T (N ∩ D(T )) ⊆ N , then there exists a
well-defined operator

T̂ : D(T̂ ) ⊆ Ê → Ê defined by T̂ (v̂) = T̂ v, v ∈ D(T ).

To relate this to group representations, let us call a triple (G,H, τ) a symmetric
Lie group if G is a Lie group, τ is an involutive automorphism of G and H is
an open subgroup of the group Gτ of τ -fixed points. Then the Lie algebra g of
G decomposes into τ -eigenspaces g = h ⊕ q and we obtain the Cartan dual Lie
algebra gc = h⊕ iq. If (G,H, τ) is a symmetric Lie group and (E , E+, θ) a reflection
positive Hilbert space, then we say that a unitary representation π : G → E is
reflection positive with respect to (G,H, τ) if the following three conditions hold:

(RP1) π(τ(g)) = θπ(g)θ for every g ∈ G.
(RP2) π(h)E+ = E+ for every h ∈ H .

(RP3) There exists a subspace D ⊆ E+ ∩ E∞ whose image D̂ in Ê is dense such
that dπ(X)D ⊂ D for all X ∈ q.

A typical source of reflection positive representations are the representations
(πϕ,Hϕ) obtained via GNS construction [NO14a] from τ -invariant positive def-
inite functions ϕ : G → B(V), respectively the kernel K(x, y) = ϕ(xy−1), where
V is a Hilbert space. If G+ ⊆ G is an open subset with G+H = G+, then ϕ
is called reflection positive for (G,G+, τ) if the kernel Q(x, y) = ϕ(xτ(y)−1) is
positive definite on G+. For E = Hϕ, the subspace E+ is generated by the func-

tions K(·, y)v, y ∈ G+, v ∈ V , and Ê identifies naturally with the Hilbert space

HQ ⊆ VG+

(cf. [NO14a, Prop.1.11]). If the kernels 〈Q(x, y)v, v〉 are smooth for v
in a dense subspace of V , then (RP1-3) are readily verified.

If π is a reflection positive representation, then πcH(h) := π̂(h) defines a unitary

representation of H on Ê . However, we would like to have a unitary representa-

tion πc of the simply connected Lie group Gc with Lie algebra gc on Ê extending
πcH in such a way that the derived representation is compatible with the oper-

ators id̂π(X), X ∈ q, that we obtain from (RP3) on a dense subspace of Ê . If
such a representation exists, then we call (π, E) a euclidean realization of the rep-

resentation (πc, Ê) of Gc. Sufficient conditions for the existence of πc have been
developed in [MNO14]. The prototypical pair (G,Gc) consists of the euclidean mo-
tion group Rd ⋊ Od(R) and the simply connected covering of the Poincaré group

P↑
+ = Rd ⋊ SO1,d(R)0.
In [NO14b] we study reflection positive one-parameter groups and hermitian

contractive semigroups as one key to reflection positivity for more general sym-
metric Lie groups and their representations. Here a crucial point is that, for every
unitary one-parameter group U ct = eitH with H ≥ 0 on the Hilbert space V , we ob-
tain by ϕ(t) := e−|t|H a B(V)-valued function on R which is reflection positive for
(R,R+,− idR) and which leads to a natural euclidean realization of U c. From this
we derive that all representations of the ax+ b-group, resp., the Heisenberg group
which satisfy the positive spectrum condition for the translation group, resp., the
center, possess euclidean realizations.
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In [NO15] we explore reflection positive functions ϕ : T → B(V) for (T,T+, τ),
where τ(z) = z−1 and T+ is a half circle. This leads us naturally to anti-unitary
involutions, an aspect that did not show up for triples (G,G+, τ), where G+ is
a semigroup. In particular, we characterize those unitary one-parameter groups
(U c,H) which admit euclidean realizations in this context as those for which there
exists an anti-unitary involution J commuting with U c. Any such pair (J, U c) with
U ct = eitH can be encoded in the pair (J,∆), where ∆ = e−βH is positive selfadjoint
with J∆J = ∆−1, a relation well-known from Tomita–Takesaki theory. Finally,
we describe a link between KMS states for C∗-dynamical systems (A,R, α).

It would be very intersting to develop the representation theoretic side of reflec-
tion positivity under the presence of anti-unitary involutions which occur in many
constructions in Quantum Field Theory (see [BS04, p. 627], [Bo92], [BGL02]).
Here are some corresponding remarks. If (E , E+, θ) is a reflection positive Hilbert
space and J : E → E an antiunitary involution satisfying JE+ = E+ and Jθ = θJ ,

then J introduces an antiunitary involution Ĵ on Ê . If, in addition, (Ut)t∈R is a
reflection positive one-parameter group, i.e., θUtθ = U−t and UtE+ ⊆ E+ for t ≥ 0,

then we obtain the one-parameter semigroup Ût = e−tH of symmetric contractions

on Ê such that

JUtJ = Ut and ĴU ct Ĵ = U c−t.

For the triple (T ∼= R/Z,T+, τ) one expects the opposite relations

JUtJ = U−t and ĴU ct Ĵ = U ct , t ∈ R.

To proceed beyond one-parameter groups, recall that in Borchers’ theory of
modular inclusions [Bo92], one encounters modular pairs (J,∆) and pairs of uni-
tary one-parameter groups (U,U ′) satisfying

∆itU(s)∆−it = U(e−2πts) and JU(s)J = U(−s)
∆itU ′(s)∆−it = U ′(e2πts) and JU ′(s)J = U ′(−s).

We thus obtain a unitary representation

πc(s1, s2, t) = U(s1)U
′(s2)∆

−itx

of the Poincaré group R2 ⋊ SO1,1(R) in dimension 2.
In this context one would like to find natural euclidean realizations of such

representations by representations of the euclidean motion group R2 ⋊ O2(R),
where the reflections in O2(R) act by antiunitary involutions. Such euclidean
realizations should connect naturally with the euclidean field theorie studied by
Schlingemann [Sch99].
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Reflection positive representations and their integration

Gestur Ólafsson

(joint work with S. Merigon, K-H. Neeb)

We present some new results on reflection positive representations and integration

of Lie algebra representations. For details and more information see [MNÓ14].
This is a part of a long time project with K.-H. Neeb on reflection positivity,
[NÓ13, NÓ14, NÓ15]. See also [JÓ98, JÓ00]. Let us start with some basic concepts
and notation. For that see also the report by K.-H. Neeb [N14] in this volume.
A reflection positive Hilbert space is a a triple (E , E+, θ) such that E is a Hilbert
space E+ is a subspace and θ : E → E is an involution. The positivity condition is

(u, u)θ = (θu, u) ≥ 0 for all u ∈ E . Let N := {u ∈ E+ | ‖u‖θ = 0} and denote by Ê
the completion of E+/N in the norm ‖ • ‖θ. For densely defined maps T : E+ → E+
with (N ) ⊆ H, define T̂ : Ê → Ê . Denote the adjoint with respect to (•, •)θ by ⋆.

In the following (G,H) will always be a symmetric pair with respect to the
involution τ and (E , E+, θ) will be a reflection positive Hilbert space. We recall
that a unitary representation of G on E is reflection positive if

(RP1) θπθ = π ◦ τ .
(RP2) π(H)E+ = E+.
(RP3) There exists a subspace D ⊆ E+ ∩ E∞ such that D̂ is dense in Ê and

dπ(X)D ⊂ D for all X ∈ g. (In application it is often enough to assume
that this holds for X ∈ q.)
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Here dπ is the derived representation, sometimes denoted by dπ or π∞.

If π is reflection positive, then h 7→ π̂(h), h ∈ H , defines a unitary repre-
sentation πH of H . On the other hand dπ(X) ⊆ dπ(X)⋆ for X ∈ q. Finally,
dπc(X + iY ) := dπ(X) + idπ(Y ), X ∈ h, Y ∈ q, defines a (formally) infinitesimal
unitary representation of gc such that, again formally as we have not assumed

that πH(H)D̂ = D̂, πH(h)dπc(Z)πH(h−1) = dπc(Ad(h)Z), h ∈ H,Z ∈ gc. The
question is then, if one can integrate dπc to a unitary representation of Gc. By

that we mean, if there exists a unitary representation π̂ of Gc on Ê such that
dπ̂(Z)|D̂ = dπc(Z) for all Z ∈ gc.

The first few articles on this problems include [FOS83, J86, J87, LM75, S86].
We will not discuss those articles here, just few words about the Lüscher-Mack
Theorem [LM75]. For that one assumes that there exists aH-invariant open convex
cone C ⊆ q such that S := H expC ≃ H × C is a open semigroup in G invariant

under s♯ = τ(s)−1. Assume further that π(S)E+ ⊆ E+. Then π̂(s) : Ê → Ê is

well defined and π̂(s)
⋆
= π̂(s♯). It follows that ̂π(expX), X ∈ q, is a symmetric

contraction on Ê . In particular, the infinitesimal generator is self-adjoint with
negative spectrum. The conclusion of the Lüscher-Mack theorem is that π̂ always
exists.

But the spectral condition implies that π̂ restricted to the analytic subgroup of
Gc corresponding to the Lie algebra generated by iq is a direct integral of lowest
weight representations, a condition that puts a very restrictive condition on g and
π. In particular if G is simple it implies that Gc/Kc, Kc maximal compact in
Gc, has to be a bounded symmetric complex domain and the theorem works then
well for certain classes of representations for the automorphism group tube type
domains as discussed in [JÓ98, JÓ00]. On the other hand, it is not valid for the
Heisenberg group nor the euclidean motion group.

The key idea in [MNÓ14] is the interplay between geometry, group and Lie
algebra action and positive definite kernels. It is achieved by realizing the repre-
sentation (πc, πH) in a geometric setting which is rich enough to imply integrability
to a representation of Gc. For that one consider Hilbert spacesH = HK defined by
a smooth reproducing kernelK on a locally convex manifoldM and which are com-
patible with a smooth action (β, σ) of (g, H), which means that σ :M ×H → M
is a smooth right action and β : g → V(M) is a homomorphism of Lie algebras for

which the map β̂ : g ×M → TM, (X,m) 7→ β(X)(m) is smooth, dσ(X) = β(X)
for X ∈ h, and each vector field β(X), X ∈ q, is locally integrable. The compati-
bility between K and (β, σ) can be expressed by L1

β(X)K = −L2
β(τX)K for X ∈ g.

Recall that HK is the completion of

Ho
K =

{∑

finite

cjKxj

∣∣∣∣∣ cj ∈ C, xj ∈M

}

with Ky(x) = K(x, y) and inner product determined by (Kx,Ky) = K(y, x).
We prove a geometric version of Fröhlich’s Theorem on selfadjoint operators

and corresponding local linear semiflows [F80]:
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Theorem[Geometric Fröhlich Theorem] Let M be a locally convex manifold and
K a smooth positive definite kernel. If X is a vector field such that on M such
that LX,xK(x, y) = LX,yK(x, y) and for all m ∈ M there exists an integral curve
γm : [0, ǫm] →M , γm(0) = m, then LX |Ho

K
is essential self-adjoint and its closure

LK satisfies

etLKKm = Kγm(t) .

Using this theorem one shows, that a (g, H)-compatible action as above leads
to a representation of gC on a dense domain D in the corresponding reproducing
kernel Hilbert space HK , with Ho

K ⊆ C∞(M). Furthermore, gc acts by essentially
skew-adjoint operator. That one can integrate the representation relies on a result
in [M11].

We apply this general result to several situations, one of them being gener-
alization (and simplification) to Banach Lie groups of Jorgensen’s theorem on
integration of local representations. Another interesting example is the situation
where ∅ 6= U ⊆ G is open, and UH = U . We say that ϕ : UU ♯ → C is τ -positive
definite if the kernel K(x, y) = ϕ(xy♯) is positive definite. Define a (gc, H) action
on HK by πc(h)F (g) = F (gh) and dπc(iY )F = iLY F , Y ∈ q. Then π̂ exists. We
get the Lüscher-Mack Theorem as a simple corollary by taking U = S.

Assume now that M is a finite dimensional manifold with a G-action. Assume
that D is a positive definite distribution on M ×M (assumed conjugate linear).
Then KD(ϕ, ψ) = D(ϕ ⊗ ψ) defines a positive definite kernel on C∞

c (M) and
hence a Hilbert space E = HK . Let τM : M → M be an involution such that
τM (g · m) = τ(g) · τM (m). Let θF = F ◦ τM . Finally let M+ 6= ∅ be an open
H-invariant sub-manifold and such that D ◦ (τM , id) is positive definite on M+.
We let E+ be the image of C∞

c (M+) in E . Then (E , E+, θ) is reflection positive and
we get a compatible (gc, H)-action which integrates to a representation π̂ of Gc.

Here typical examples are obtained from reflection positive representations of
(G,S, τ), where M+ = S ⊆ G is a ♯-invariant open subsemigroup. If ν is a

reflection positive distribution vector, see [NÓ13] for definition, then

Kν(f, g) = 〈ν, π−∞(f∗ ∗ g)ν〉 for f, g ∈ C∞
c (G)

is a reflection positive distribution on G and the above results for distributions
applies to get a representation π̂ of Gc. Note, that it is not required that, as in
the Lüscher-Mack Theorem, the semigroup S has a polar decomposition.
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[NÓ13] —, Reflection positive one-parameter groups and dilations, to appear in Complex
Analysis and Operator Theory, arXiv:math.RT.1312.6161
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Integral Representations in Euclidean Quantum Field Theory

Jakob Yngvason

The talk was a review of some old results about representations of the Schwinger
functions (“euclidean Green’s functions”) in quantum field theory as moments of
measures on spaces of distributions. These results, obtained in the 1970’s and 80’s,
are apparently not well known among mathematicians seeking new applications
of reflection positivity, a concept originating in the seminal papers of Konrad
Osterwalder and Robert Schrader from 1973–75 [1]. A further motivation for the
talk was recent work in quantum field theory [2] where more general types of
complex linear functionals than sigma-additive measures appear naturally.

The mathematical setting is as follows. The Borchers-Uhlmann algebra is the
tensor algebra over Schwartz space of rapidly decreasing test functions S = S(Rd),
d ∈ N.

S =
∞⊕

n=0

Sn

with

S0 = C, Sn = S(Rnd).
Its elements are sequences

f = (f0, . . . , fN , 0, . . .), fn ∈ Sn, N <∞,
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addition and multiplication by scalars is defined component-wise, and the product
is the tensor product:

(f ⊗ g)n(x1, . . . , xn) =
n∑

ν=0

fν(x1, . . . , xν)gn−ν(xν+1, . . . , xn).

Note that the n-fold tensorial power S(Rd)⊗n of the basic test function space S(Rd)
is dense in Sn in the Schwartz topology. There is also an antilinear involution:

(f∗)n(x1, . . . , xn) = fn(xn, . . . , x1).

With this structure S is a topological ∗-algebra.
In euclidean quantum field theory one is concerned with the dual space S ′,

consisting of the continuous linear functionals on S, i.e.,

S = (S0, S1, . . .) ∈ S ′, Sn ∈ S ′
n, with S(f) =

∑

n

Sn(fn).

It is required that the tempered distributions Sn are totally symmetric, i.e., in-
variant under the natural action of the permutation group on S(Rd)⊗n. Moreover,
they should be euclidean invariant, i.e., invariant under the natural action of the
d-dimensional euclidean group on the test functions.

If S ′
R is the space of real, tempered distributions on Rd and ω ∈ S ′

R, there is a
corresponding hermitian character χω on the algebra S, defined by

(χω)n = ω⊗n.

In [3, 4] the following questions were addressed:

Q1. When does a symmetric functional S have an integral representation

S =

∫

S′

R

χω dµ(ω)

with a positive, finite, sigma-additive measure dµ(ω) on the space S ′
R of

real, tempered distributions on Rd?
Q2. When is there at least such a representation by a signed or complex sigma-

additive, finite measure?

These questions can be regarded as infinite dimensional versions of classical mo-
ment problems with Sn =

∫
ω⊗ndµ(ω) corresponding to the n-th moment of dµ(ω).

In [5] a further question is discussed:

Q3. When is there a representation as in Q1 or Q2 with a measure that is
invariant under the action of the euclidean group on S ′

R?

The answers are as follows:

A1. A representation by a positive measure is possible if and only if S is pos-
itive on all “positive polynomials”, i.e, all f ∈ S such that ω 7→ χω(f) a
nonnegative function on S ′

R [3].
A2. A representation by a signed or complex measure is possible if and only if

there are Schwartz-norms ‖ · ‖k, k = 1, 2, . . . on S(Rd) such that
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(1) |Sn(g1 ⊗ · · · ⊗ gn)| ≤ ‖g1‖1 · · · ‖gn‖n
for all gi ∈ S(Rd) [4].

A3. If S is euclidean invariant and has a representation by a positive measure,
there is also a representation by a euclidean invariant positive measure.

If the Sn are the euclidean invariant Schwinger functions of a Wightman
quantum field theory in the sense of [1] and there is a mass gap in the
energy-momentum spectrum spectrum, then condition (1) also guarantees
a representation by a euclidean invariant signed or complex measure.

The last statement is highly nontrivial as can be seen from the example of the
time-ordered functions of a free Wightman field [5].

A signed or complex gaussian measure on S ′
R is a measure dµ(ω) such that

∫
eiω(f)dµ(ω) = e−Q(f)

for f ∈ SR, where Q is a continuous quadratic form on SR (in general complex
valued). The moments Sn =

∫
ω⊗ndµ(ω) of such a measure have a gaussian

structure: S2n+1 = 0, and

(2) S2n(x1, . . . , x2n) =
∑

partitions

∏

ik<jk

S2(xik , xjk ).

It was shown in [5] that the following are equivalent:

• The Sn are moments of a complex, gaussian measure.
• Re S2(f ⊗ f) ≥ 0 for all f ∈ SR and Im S2(f ⊗ g) is given by a Hilbert
Schmidt operator w.r.t. the scalar product (f, g) 7→ ReR2(f⊗g), f, g ∈ SR.

On the other hand, if (2) holds, then condition (1) is clearly fulfilled. Thus, by
A2 there is a representation by some signed or complex measure.

Complex measures such that all their moments exist and are tempered distribu-
tions can be regarded as the dual space of the algebra F of “polynomially bounded
functions” on S ′

R. These are functions of the form

(3) F (ω) = f(χω(f1), . . . , χω(fn))

with fi ∈ S and f : Cn → C polynomially bounded and continuous. There is a
natural topology on F given by seminorms of the form

sup
ω

|F (ω)|
‖χω‖0

where ‖ · ‖0 is the dual seminorm on S ′ of a continuous seminorm ‖ · ‖ on S. The
complex measures required in Q1 correspond precisely to linear functionals on F
that are continuous in this topology. The condition (1) results from restricting
this topology to functions of the form (3) with f a polynomial.

Selecting one coordinate in Rd as a “time” coordinate we denote by F+ the
subalgebra generated by functions of the form (3) where the supports of the com-
ponents of the fi are in the half-space where the time coordinate is non-negative.
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Reflection positivity for a measure dµ(ω) is the condition
∫
θF (ω)F (ω)dµ(ω) ≥ 0

for all F ∈ F+, where θ is time reflection.
The following somewhat surprising result was proved in [6]:

Theorem. If dµ is invariant under time translations and reflection positive, then
dµ is a positive measure.

The proof relies essentially on the polar decomposition of the measure, dµ(ω) =
eiα(ω)d|µ|(ω) with d|µ|(ω) a bounded positive measure and α(·) real valued and
bounded. It does not exclude reflection positive but non-positive complex func-
tionals that are not given by a sigma additive meansure.
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Semibounded covariant representations of the Weyl relations

Christoph Zellner

Let (V, ω) be a locally convex symplectic space and Heis(V, ω) = R ×ω V the
Heisenberg group. Suppose in addition we are given a one-parameter group
γ : R → Sp(V, ω) defining a smooth action of R on V . A continuous unitary
representation π : Heis(V, ω) → U(H) with π(t, 0, 0) = eit1 satisfies the Weyl
relations

π(x)π(y) = e
1
2
ω(x,y)π(x+ y), x, y ∈ V.

We are interested in such representations π which admit an implementation of
γ, i.e., a unitary one-parameter group Ut on H satisfying Utπ(x)U−t = π(γ(t)x),
such that the self-adjoint generator of Ut is bounded below. Note that the imple-
mentation of γ corresponds to an extension of π to a representation of a so-called
oscillator group G(V, ω, γ) := Heis(V, ω) ⋊γ R. More precisely we want to report
on semibounded representations of G(V, ω, γ): Let π : G → U(H) be a smooth
unitary representation of a locally convex Lie group G and dπ : g → End(H∞) its
derived representation. Then π is called semibounded if the self-adjoint operators
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idπ(x) are uniformly bounded above for x in a non-empty open subset of the Lie

algebra g ([3]). In this case we set Bπ := {x ∈ g : idπ(x) is bounded above}0.
A standard oscillator group is of the form GA = Heis(VA, ωA)⋊γR, where γ is a

unitary one-parameter group on a Hilbert spaceH , VA := C∞(A) is the space of γ-
smooth vectors equipped with its natural C∞-topology, ωA(x, y) = Im〈Ax, y〉 and
A is the self-adjoint generator of γ satisfying A ≥ 0 and kerA = {0}. The following
theorem clarifies the importance of standard oscillator groups when considering
semibounded representations.

Theorem 1. Let G := G(V, ω, γ) be an oscillator group.

(a) The following are equivalent:
(i) ∃ π : G→ U(H) semibounded with π(t, 0, 0) = eit1.
(ii) ∃ standard oscillator group GA and a dense continuous inclusion

ι : V →֒ C∞(A) such that ι : G →֒ GA, (t, v, s) 7→ (t, ι(v), s) is a
morphism of Lie groups (after possibly replacing γ by γ−1).

(b) Assume (a), γ(R) ⊂ End(V ) equicontinuous and DV ⊂ V dense, where
D := γ′(0). Then every semibounded representation π of G extends to a
(unique) semibounded representation π̂ of GA, where GA is as in (a).

For a standard oscillator group GA a smooth representation π : GA → U(H)
with π(t, 0, 0) = eit1 is semibounded if and only if −idπ(0, 0, 1) is bounded below.
However for a general oscillator group G(V, ω, γ) this equivalence does not always
hold. EveryGA has a natural semibounded irreducible representation the so-called
Fock representation πF : GA → U(HF ) defined by the positive definite function

ϕ(t, x, s) = eit−
1
4
〈Ax,x〉. The following theorem determines the semibounded rep-

resentations of GA in the case inf Spec(A) > 0.

Theorem 2. Assume inf Spec(A) > 0 and let π : GA → U(H) be semibounded
with π(t, 0, 0) = eit1. Then

(π,H) ∼= (πF ⊗ ν,HF ⊗K)

where ν(t, x, s) = ν̃(s) and ν̃ : R → U(K) is a one-parameter group with self-
adjoint generator bounded below.

In particular, π|Heis(VA) is equivalent to a direct sum of Fock representations
πF |Heis(VA). If π is irreducible then dimK = 1.

The proof of this theorem requires a careful analysis of the space of smooth
vectors and related techniques, as discussed in [4] in a more general setting. In
the case A = Id the preceding result was already obtained by Chaiken [1].

The next result shows that the space of smooth vectors for a semibounded
representation π of GA with π(t, 0, 0) = eit1 is determined by the single one-
parameter group t 7→ π(exp(tx)) whenever x ∈ Bπ.

Theorem 3. Let π : GA → U(H) be semibounded with π(t, 0, 0) = eit1. Then
H∞ = D∞(idπ(x)) for all x ∈ Bπ = R× VA×]0,∞[. Moreover

‖dπ(x)v‖2 ≤ 4‖x‖2〈Hv, v〉+ 2〈Ax, x〉 · ‖v‖2

for all x ∈ VA, v ∈ H∞ if H := 1
i dπ(0, 0, 1) ≥ 0.
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This theorem implies that eidπ(x) is a smoothing operator for x ∈ Bπ in the sense
that eidπ(x)H ⊂ H∞. By considering the C∗-algebra C∗(π(GA)e

idπ(Bπ)π(GA)) ⊂
B(H) and using results of Neeb and Salmasian on smoothing operators it follows
that every semibounded representation π : GA → U(H) is a direct integral of
semibounded factor representations if GA and H are separable. This was also
obtained in [6] using different techniques.

In the following let GA be a standard oscillator group and assume VA is sep-
arable, dim(VA) = ∞ and A is diagonalizable, i.e., Aek = akek with ak > 0 for
an orthonormal basis (ek)k∈N in VA. Let V 0 = ⊕kCek denote the algebraic span
of the ek, k ∈ N. A representation π : Heis(V 0, ωA) → U(H) is called regular if
π(t, 0) = eit1 and π is continuous on one-parameter groups (ray continuous). In [2]
a description of all regular representations of Heis(V 0, ωA) was obtained in terms
of tuples (µ, ν, ck(n)). Here H ∼=

∫
N∞

0

Hndµ(n) where µ is a probability measure

on N∞
0 , ν(n) = dimHn and ck(n) : Hn+δk → Hn is a measurable field of unitaries

satisfying some conditions, cf. [2] for the details. With the help of Theorem 3 the
following can be obtained.

Theorem 4. Let π : Heis(V 0, ωA) → U(H) be a regular representation. Then π
extends to a semibounded representation π̂ : GA → U(H) if and only if

ψ : N∞
0 → R ∪ {∞}, (nk)k 7→

∑

k

aknk

is finite µ-almost everywhere.

This yields a description of all semibounded representations π of GA with
π(t, 0, 0) = eit1 (up to equivalence) in terms of tuples (µ, ν, (ck)k∈N, η) given as fol-
lows: The tuple (µ, ν, (ck)k∈N) is as in [2], µ satisfies the additional condition that
ψ is finite µ-almost everywhere and η : R → U(H)∩πh(Heis(V 0))′ is a continuous
unitary one-parameter group with self-adjoint generator bounded below, where πh
denotes the representation of Heis(V 0) on H corresponding to (µ, ν, (ck)k).

Most of the results presented in this report can be found in [6].
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Problem Sessions

Palle Jorgensen, Karl-Hermann Neeb, Gestur Ólafsson

To get an overview over the current problems concerning reflection positivity (RP),
four discussion sessions were organized during the second half of the workshop. The
list of problems that were discussed during those sessions is:

(1) Describe super versions of massive free fields.
(2) What is the significance of anti-unitary involutions play in RP?
(3) Do Borchers triples have natural euclidean realizations?
(4) What is the natural super version of a reflection positive Hilbert space?
(5) Is it possible to construct a euclidean version of algebraic QFTs?
(6) Find more examples of diffeomorphism invariant reflection positive QFTs.
(7) Is there a notion of reflection positivity in non-commutative geometry?
(8) Clarify the connection between RP and complex-valued measures?
(9) Is there a variant of the Lax–Philips Representation Theorem for one-

parameter groups acting on standard real subspaces?
(10) How to relate stochastic quantization with reflection positivity?
(11) What are interesting situations where RP occurs without a euclidean

Hilbert space?
(12) What is the common core of various aspects of reflection positivity?
(13) Is it possible to connect reflection positivity and number theory?
(14) Describe the duality properties related to multiple involutions with RP.
(15) What is the role of reflection positivity in String Theory?
(16) Which representations arise from reflection positivity in 1d CFT?
(17) Show the equivalence of the Osterwalder–Schrader and the Wightman ax-

ioms without growth estimates, resp., regularity assumptions.
(18) Describe the spectrum for multiplarticle cluster expansions compatible

with reflection positivity beyond the mass gap.
(19) Is it possible to relate the modular theory of von Neumann algebras di-

rectly to physical effects?
(20) Are there connections between the BMV Theorem and RP?

During the discussion session the participants had a lively exchange on these
questions. Some of them are deep open problems, others rather ask for background
information that could be provided by the participants. The following comments
reflect some of the main points of the discussions.

Ad (1), (4): Presently we don’t have a description of reflection positivity in
terms of the recently developed theory of unitary representations of Lie super-
groups (cf. [CCTV06], [NS13]). Here, the fermionic fields studied by Osterwalder–
Schrader [OS73, OS75] form a natural starting point (see also [Va04] for super
Poincaré groups and super space times). A closely related problem is to generalize
the representation theoretic side of reflection positivity ([NO14a, NO14b]) and in
particular the concept of a reflection positive Hilbert space to the super context.

Ad (2): So far, antiunitary involutions have not been discussed systematically
on the representation theoretic side of reflection positivity, but they naturally enter
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the scene when the underlying groups are compact ([NO15]; see also [Ne15] which
in turn connects to modular theory of operator algebras).

Ad (3), (5): In [Sch99] Schlingenmann develops a euclidean version of Algebraic
Quantum Field Theory for a euclidean invariant system of C∗-algebras A(O),
O ⊆ Rd. This includes a reflection positivity requirement ω(θ(A∗)A) ≥ 0 for the
vacuum state on the subalgebra A(Rd+). What is presently not clear is how to find
natural euclidean realizations of a Poincaré invariant QFT. The term “Borchers
triple” refers to a triple (M, U,Ω), where M is a von Neumann algebra of operator
on a Hilbert space H, Ω a faithful separating state of M and U is a unitary
representation of the group of space-time translations fixing Ω, with spectrum
supported in the forward light cone, and where conjugation with the elements from
a wedge domain W map M into itself ([Bo92]). Since they are key ingredients in
QFTs, a basic problem is to find natural euclidean realizations for Borchers triples
in the sense of [Ne15].

Ad (6): This questions asks for variations of the QFTs constructed by Ashtekar,
Lewandowski, Marolf, Mourao and Thiemann in [ALMMT97, AMMT00].

Ad (7): To find a answer to this question is part of an ongoing project of Grosse
and Wulkenhaar; see [GW13, GW14] for recent progress.

Ad (8), (17): In the work of Osterwalder–Schrader [OS73, OS75, GJ81], the
equivalence between the Wightman axioms and the OS axioms is shown under the
assumptions that the Schwinger and the Wightman “functions” Sn and Wn define
tempered distributions satisfying some growth condition in n. Since there exist
Wightman fields violating these regularity conditions, it would be of some interest
to see if they also correspond to less regular Schwinger “functions”. This is closely
related to the approach to QFTs where Wightman distributions are interpreted
as a positive functional on the Borchers–Uhlmann (BU) algebra ([Bo62]). In this
context complex measures naturally enter the picture by representating the linear
functionals on the BU algebra ([BY76]); for connections to reflection positivity,
we refer to [JRM13]. Here a central issue is to understand what the natural test
function spaces should be.

Ad (9): This refers to Lax–Phillips scattering theory in its abstract form for
unitary one-parameter groups in Hilbert spaces which satisfy certain axioms and
for which is provides a unique normal form for such one-parameter groups. This
problem asks for an extension of this normal form result to for one-parameter
groups (Ut)t∈R whose positive part leaves a standard real subspace V ⊆ H invari-
ant, i.e., V ∩ iV = {0} and V + iV is dense. These situations arise from Borchers
triples in modular theory.

Ad (19): Modular theory, also called Tomita–Takesaki theory, lies at the foun-
dation of rigorous formulations of equilibrium states in statistical mechanics and
Borchers’ formulation of local quantum fields ([Bo92]) makes critically use of it.
Here a key result is the Bisognano-Wichmann Theorem which roughly asserts that
for an algebraic QFT and the canonical right wedgeW in 4-dimensional Minkowski
space, the Tomita–Takesaki modular objects (JW ,∆W ) can be expressed in terms
of the PCT operator and the action of the Poincaré group (cf. [Yn94]).
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Ad (20): In 2013, Stahl proved the conjecture (due to Bessis, Moussa and
Villani) which asserts that, for two hermitian n × n-matrices A,B the function
tr(eA−tB) is a Laplace transform of a positive measure on the interval between the
minimal and maximal eigenvalues of B (cf. [Er13], [St12]).
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Fréchet–Lie supergroups, Math. Zeit. 275 (2013), 419–451
[OS73] Osterwalder, K., and R. Schrader, Axioms for Euclidean Green’s functions. 1,

Comm. Math. Phys. 31 (1973), 83–112
[OS75] —, Axioms for Euclidean Green’s functions. 2, Comm. Math. Phys. 31 (1973),

83–112
[Sch99] Schlingemann, D., From euclidean field theory to quantum field theory, Rev. Math.

Phys. 11 (1999), 1151–1178
[St12] Stahl, H. R., Proof of the BMV Conjecture, arXiv:math.CV.1107.4875



3100 Oberwolfach Report 55/2014

[Va04] Varadarajan, V. S., “Sypersymmetry for Mathematicians: An Introduction,”
Amer. Math. Soc., Courant Lecture Notes 11, 2004

[Yn94] Yngvason, J., A note on essential duality, Letters in Math. Physics 31 (1994),
127–141

Reporter: Christoph Zellner



Reflection Positivity in Representation Theory, Stochastics and Physics 3101

Participants

PD Dr. Alexander Alldridge

Mathematisches Institut

Universität zu Köln; Gebäude 318
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