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Introduction by the Organisers

The main objective of the workshop was to discuss and investigate the multifaceted
connections and fruitful interplay between spectral theory of ordinary and partial
differential operators, system theory, inverse problems and properties of associated
classes of complex, matrix and operator valued analytic functions. The aim was
to bring together and to initiate a closer collaboration of four different groups of
mathematicians working in the related areas

1. Titchmarsh-Weyl m-functions and ordinary differential operators
2. Dirichlet-to-Neumann maps and elliptic partial differential operators
3. Abstract Weyl functions and Q-functions of selfadjoint operators
4. Transfer functions and system theory

1. The classical Titchmarsh-Weyl m-function in singular Sturm-Liouville the-
ory was introduced by H. Weyl more than a century ago. The implications for the
spectral theory of the underlying differential operators and the connection with
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complex analysis were later explored by E.C. Titchmarsh. Roughly speaking the
complete spectral data of the corresponding selfadjoint Sturm-Liouville differen-
tial operators are reflected in the singularity structure of the m-function. The
Titchmarsh-Weyl m-function is also used for solving direct and inverse spectral
problems for ordinary differential and difference equations, and plays an important
role in the analysis of some nonlinear differential equations, e.g. the Korteweg–de
Vries and Camassa–Holm equation. In the workshop recent developments and ex-
tensions of the classical Titchmarsh-Weyl m-function to such topics as quantum
graphs, non-selfadjoint spectral problems and resonance location were addressed.

2. More recently the Dirichlet-to-Neumann map from the theory of elliptic
differential equations was interpreted as a multidimensional analogue of the clas-
sical Titchmarsh-Weyl m-function, and it was used for spectral analysis of partial
differential operators. Similarly as in the case of ordinary differential equations
the Dirichlet-to-Neumann map plays a central role in inverse problems for elliptic
partial differential equations, e.g. Calderóns inverse problem from electrical im-
pedance tomography, the Gelfand inverse boundary spectral problem, and inverse
problems for dynamical Maxwell systems. For the solution of the latter an al-
gebraic operator Riccati equation for the Neumann-to-Dirichlet map is a useful
tool. During the meeting inverse problems with partial data, transmission eigen-
values, Titchmarsh-Weyl theory for elliptic operators, and connections to infinite
dimensional Hamiltonian systems and algebraic operator Riccati equations were
discusssed.

3. From a more global point of view both the Titchmarsh-Weyl m-function and
the Dirichlet-to-Neumann map appear to be examples of so-called Weyl functions
corresponding to an underlying symmetric operator and certain boundary maps
defined on the domain of the adjoint operator. This modern concept of bound-
ary triples and Weyl functions which naturally arises in the extension theory of
symmetric operators is closely connected to the classical notion of Q-functions
introduced and studied by M.G. Krein and H. Langer. Boundary triples and Weyl
functions/Q-functions are useful and efficient tools in general spectral analysis.
The main advantage of this abstract approach is that it may be applied to ordin-
ary and partial differential equations, singular perturbations and boundary value
problems, as well as the most recent and highly topical area of quantum graphs.

4. Another important type of abstract Weyl functions are transfer functions
in the analysis of finite and infinite dimensional linear systems which relate input
and output data of time invariant systems. The transfer function reflecs and in-
fluences the underlying system in a similar form as the Weyl or Q-function reflects
the spectral properties of the corresponding selfadjoint operator. The connections
between Dirac structures from the Hamiltonian approach to system theory, bound-
ary control and conservative state/signal system nodes, and boundary triples from
extension theory of symmetric operators have become explicit recently. The deeper
understanding of Weyl functions, Q-functions, characteristic and transfer func-
tions, their interplay with the intrinsic properties of the corresponding operator
and system realizations, and the corresponding inverse problem of determining
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and realizing the operators or systems from the given abstract boundary data is of
essential importance in various applications, e.g. spectral, coupling and recovery
problems for difference equations, ordinary and partial differential equations.

The workshop was attended by more than 50 participants and 27 scientific lec-
tures were presented. To stimulate discussions among participants coming from
different backgrounds, several shorter presentations on spectral geometry, asymp-
totic stability of fluid flows, quantum graphs and spectral approximation problems
were scheduled on two evenings.

The scientific programme was accompanied by lively discussions after the talks
and in the coffee breaks. The longer breaks and free evenings were used for work
in groups on current research papers, but also to initiate future activities such as
research projects and workshop meetings between the different groups of parti-
cipants. Informal information obtained from participants indicates that the work-
shop was a great success. In particular it allowed experts from different facets of
spectral theory to have the chance to understand more of the subject from different
perspectives.

On behalf of all participants, the organisers wish to thank the staff of MFO in
making the workshop a success in all respects.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting TomA.F.M. ter Elst in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Transition functions for Sturm-Liouville operators,
canonical systems and strings

Heinz Langer

1. Consider the Sturm-Liouville problem

(1) − y′′(x) + q(x)y(x) − zy(x) = 0, x ∈ [0, ℓ), z ∈ C, y′(0)− y(0) cotα = 0,

where 0 < ℓ ≤ ∞, q ∈ L1
loc

([0, ℓ)), 0 ≤ α < π. Denote by ϕ(x; z), ψ(x; z) the
solutions of the differential equation in (1) satisfying the initial conditions

ϕ(0; z) = sinα, ϕ′(0; z) = cosα, ψ(0; z) = − cosα, ψ′(0; z) = sinα.

that is, ϕ(·; z) is the solution of the differential equation that satisfies the given
boundary condition at x = 0.

The Fourier transformation U of the problem (1) is defined by the relation

(Uf)(λ) :=

∫ ℓ

0

f(x)ϕ(x;λ)dx, λ ∈ R, f ∈ L0,

where L0 is the set of all functions f ∈ L2(0, ℓ) which vanish identically near ℓ.
The measure τ on R is a spectral measure of the problem (1) if

∫ ℓ

0

|f(x)|2dx =

∫

R

|(Uf)(λ)|2 dτ(λ), f ∈ L0,

that is U is an isometry from (L0 ⊂)L2(0, ℓ) into L2
τ (R), and hence it can be

extended by continuity to all of L2(0, ℓ). The spectral measure τ is called ortho-
gonal if the mapping U is onto L2(0, ℓ). For any 0 < b ≤ ℓ the set of all spectral
measures of the problem (1) with ℓ replaced by b is denoted by Sb.

If 0 < b < ℓ, the spectral measures can be described by the corresponding Weyl-
Titchmarsh functions m as follows (see [3, Theorem 14.1]); here N denotes the set
of all Nevanlinna functions (this is the set of all functions which are holomorphic
in the upper and lower half-planes C± and map C± into C± ∪ R), and we set

Ñ := N ∪ {∞}.
1o. If 0 < b < ℓ , then the relation

mγ(z) :=

∫

R

dτγ(λ)

λ− z
=
ψ′(b; z)− ψ(b; z)γ(z)

ϕ′(b; z)− ϕ(b; z)γ(z)
, z ∈ C \ R,

establishes a bijective correspondence between all γ ∈ Ñ and all spectral measures
τ = τγ ∈ Sb. The spectral measure τγ is orthogonal if and only if γ is a real
constant or ∞.

An essential role in M.G. Krěın’s investigations of Sturm-Liouville problems is
played by the transition functions Φτ , defined for all τ ∈ Sb by

Φτ (t) :=

∫

R

1− cos
(√
λt
)

λ
dτ(λ), 0 ≤ t < 2b.
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They have the following property (see [5]):
2o. If 0 < b < ℓ and τ ∈ Sb then the values Φτ (t), 0 ≤ t ≤ 2b, do not depend on
τ ∈ Sb.

Denote this common value by Φb(t): Φb(t) := Φτ (t), t ∈ [0, 2b], τ ∈ Sb.
The transition function has the following physical meaning. Consider the string

with elastic damping, corresponding to (1), e.g. with Neumann boundary condi-
tions at x = 0 (α = π

2 ). Suppose a force δ0(x) starts acting at t = 0 constantly and

orthogonally to the string. Then Φb(t) describes the position of the left endpoint
of the string at time t, 0 ≤ t ≤ 2b.

With the transition function Φ on [0, 2b] there is associated the hermitian kernel

KΦ(s, t) := Φ(s+ t)− Φ(|s− t|), 0 ≤ s, t < b.

It is positive definite, that is, for all n ∈ N, si ∈ [0, b], ξi ∈ C, i = 1, 2, . . . , n, it
holds

n∑

i,j=1

KΦ(si, sj)ξiξj ≥ 0.

The following statement was proved by M.G.Krěın in [4]. Given a continuous
function Ψ on [0, 2b], such that the kernel KΨ on [0, b] is positive definite. Then
there exists (at least one) measure τ on R such that

(2) Ψ(t) =

∫

R

1− cos(
√
λt)

λ
dτ(λ), t ∈ [0, 2b].

It turns out (see [5]) that for the function Ψ = Φb the set of all measures τ in the
representation (2) coincides with the set Sb of all spectral measures. A crucial tool
in the proof of these statements is the method of directing functionals.

2. Consider the canonical system

(3) − Jy′(x) = z H(x)y(x), x ∈ [0, ℓ), y2(0) = 0,

where y = (y1 y2)
t, H is a real symmetric non-negative measurable 2 × 2-matrix

function, trH(x) = 1, x ∈ [0, ℓ) a.e.,
∫ ε

0

h22(x) dx > 0 for all ε > 0, J :=

(
0 −1
1 0

)
.

Let W (x; z) =

(
w11(x; z) w12(x; z)
w21(x; z) w22(x; z)

)
be the solution of the initial problem

dW (x; z)

dx
J = zW (x; z)H(x), W (0; z) = I2, 0 ≤ x < ℓ, z ∈ C;

for ℓ <∞ also x = ℓ is allowed. If 0 < b ≤ ℓ, b <∞ then for γ ∈ Ñ the function

mγ(z) :=
w11(b; z)γ(z) + w12(b; z)

w21(b; z)γ(z) + w22(b; z)

belongs to the class N, and it admits a representation

mγ(z) = α+

∫ ∞

−∞

(
1

λ− z
− λ

1 + λ2

)
dτγ(λ), z ∈ C \ R,
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with some α ∈ R. The measures τγ , γ ∈ Ñ, are the spectral measures of the
problem (3) on [0, b]; denote this set by Tb. The spectral measures can also be
defined through a Fourier transformation. If τ ∈ Tb the transition function for the
canonical system is now defined as follows:

gτ (t) :=

∫ ∞

−∞

(
eiλt − 1− iλt

1 + λ2

)
dτ(λ)

λ2
, t ∈ R.

For 0 < b ≤ ℓ we set tb :=

∫ b

0

√
detH(x) dx. Then the following statement holds.

Theorem 1. Suppose that 0 < b < ℓ and tb > 0. If τ1, τ2 ∈ Tb then for any two
functions gτ1, gτ2 we have

gτ1(t)− gτ2(t) = iβt, t ∈ [0, 2tb],

with some β ∈ R.

For any transition function g of the system (3) the kernel

Gg(s, t) := g(t− s)− g(t)− g(s) + g(0), s, t ∈ R,

is positive definite. Clearly, for the restriction gb to (−2tb, 2tb) instead of g this
holds for s, t ∈ (−tb, tb).
3o. Let g be a continuous function on (−2T, 2T ), 0 < T ≤ ∞, with g(−t) =

g(t), t ∈ (−2T, 2T ). The kernel Gg is positive definite on (−T, T ) if and only if g
admits a representation

g(t) = α+ iβt+

∫ ∞

−∞

(
eiλt − 1− iλt

1 + λ2

)
dτ(λ)

λ2
, t ∈ (−2T, 2T ),

with α ∈ R, β ≥ 0, and a measure τ on R such that

∫

R

dτ(λ)

1 + λ2
<∞.

Denote this class of functions g by GT .

Theorem 2. Let 0 < b ≤ ℓ, b <∞, such that for all ε > 0,

∫ b

b−ε

√
detH(x) dx > 0,

and let gb be the restriction of a transition function gτ , τ ∈ Sb, to [−2tb, 2tb]. Then
the set of all spectral measures τ ∈ Tb coincides with the set of all measures τ such
that

(4) gb(t) = iβt+

∫ ∞

−∞

(
eiλt − 1− iλt

1 + λ2

)
dτ(λ)

λ2
, t ∈ [−2tb, 2tb],

for some β ∈ R.

The integral on the right hand side of (4) defines a function g ∈ G∞ which is
a continuation of gb on [−2tb, 2tb] to R. Therefore the spectral functions of the
problem (3) are in a bijective correspondence with all the continuations of gb to R

in the class G∞ (see [7]).
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A Dirac-Krěın system is a canonical system of the form

(5) − J y′(x) = z y(x) +

(
b(x) a(x)
a(x) −b(x)

)
y(x), x ∈ [0, ℓ), y1(0) = 0;

we suppose that the functions a, b of the potential are continuous on [0, ℓ], 0 <
ℓ ≤ ∞. Let g be a transition function of (5), which is defined by means of the
spectral functions as for general canonical systems. A characteristic property of
the transition functions of a Dirac- Krěın system is, roughly speaking, that they
have an accelerant h, that is they admit a representation

g(t) = −1

2
|t|+

∫ t

0

(t− s)h(s) ds, t ∈ (−2ℓ, 2ℓ),

with a continuous function h. For more details see [6].

3. Let M be a non-decreasing function on [0, ℓ), M(0) = 0, M(x) > 0 if x > 0.
The corresponding string is described by the initial value problem

(6) − d2y(x)

dM dx
= z y(x), x ∈ [0, ℓ), y′(0−) = 0.

Let ϕ, ψ be the solutions of the differential equation in (6) that satisfy the initial
conditions

ϕ(0; z) = 1, ϕ′(0−; z) = 0; ψ(0, z) = 0, ψ′(0−; z) = 1.

That is, ϕ(x, z), ψ(x; z) are the solutions of the integral equations

ϕ(x; z) = 1− z

∫ x

0−

(x− s)ϕ(s; z) dM(s), ψ(x; z) = x− z

∫ x

0−

(x− s)ψ(s; z) dM(s).

If b < ℓ, the set of all spectral measures τ of the regular string S[b,M ] (regular
means b+M(b−) <∞) can be defined by the relation

∫ ∞

0

dτγ(λ)

λ− z
=
ψ′(ℓ; z)γ(z) + ψ(ℓ; z)

ϕ′(ℓ; z)γ(z) + ϕ(ℓ; z)
,

if γ runs through the class S of all Stieltjes functions; recall that by definition
γ ∈ S if γ is holomorphic in C \ [0,∞) and γ, γ̂ ∈ N, where γ̂(z) := zγ(z).

The transition function corresponding to the spectral measure τ is now the
function

Ψ(t) =

∫ ∞

0

cos(
√
λt)− 1

λ
dτ(λ), λ ∈ R.

This transition function has the characteristic property that the kernel

Ψ(t− s)−Ψ(t)−Ψ(s), s, t ∈ R,

is positive definite and Ψ is real. Now similar statements as for transition functions
of Sturm-Liouville problems and canonical systems can be formulated. For more
details see [7].

Finally we mention, that transition functions can be used to give local versions
of inverse spectral results as in papers by B. Simon [9], F. Gesztesy/B. Simon [2],
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and Bennewitz [1] for Sturm-Liouville equations and by M. Langer/H. Woracek
[8] for canonical systems.
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Reflections on Herglotz functions, Hill’s operator, metric graphs and
self-adjoint extensions

Konstantin Pankrashkin

If Q : R → R is continuous and 1-periodic, then the associated discriminant
∆ : C → C is defined by ∆(λ) := s′(1;λ)+c(1;λ), where s and c are the solutions of
the Hill’s differential equation −u′′+Qu = λu satisfying s(0;λ) = c′(0;λ) = 0 and
s′(0;λ) = c(0;λ) = 1. If one denotes by µn, n ≥ 1, the sequence of the Dirichlet
eigenvalues of the operator u 7→ −u′′ +Qu on (0, 1), then the discriminant enjoys
well-known oscillation properties:

• For any λ ∈ R with
∣∣∆(λ)

∣∣ < 2 one has ∆′(λ) 6= 0.
• If |∆(λ)| = 2 and ∆′(λ) = 0, then λ coincides with one of the Dirichlet
eigenvalues,

• For any n ∈ N one has: either ∆(µn) ≤ −2 and ∆(µn+1) ≥ 2 or ∆(µn) ≥ 2
and ∆(µn+1) ≤ −2.

• If ∆(µn) = 2 and ∆′(µn) = 0 for some n, then ∆′′(µn) < 0.
• If ∆(µn) = −2 and ∆′(µn) = 0 for some n, then ∆′′(µn) > 0.

These properties are crucial for the understanding of the structure of the set
∆−1

(
[−2, 2]

)
, which is exactly the spectrum of the Hill operator −d2/dx2 + Q

in L2(R). In the available literature, the above propeties are usually deduced
either using the fact that ∆ belongs to some class of entire functions, which fol-
lows the orignal approach by Lyapunov [4], or using rather involved computations
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based on the variation of constants for the differential equation, see e.g. Section
VIII.3 in [1].

The aim of the talk is to show that the above proprties can be deduced from
the elementary analysis of Herglotz functions, and that objects similar to the
discriminant appear when analyzing Weyl functions of self-adjoint extensions.

Recall that a holomorphic function h : C\R → C is a Herglotz one if h(z ) = h(z)
and ℑz · ℑh(z) ≥ 0. The following Lemma is proved in [5, Lemma 2].

Lemma 1. Let I ⊂ R be a non-empty open interval, two functions m,n be holo-
morphic in (C \ R) ∪ I and take real values on I, n 6= const. Assume that there
exist a, b ∈ R with a < b such that the functions

(1) ha(z) :=
m(z)− a

n(z)
, hb(z) :=

m(z)− b

n(z)

are Herglotz and non-constant, then:

(a) The zeros of n in I are simple.
(b) If λ ∈ I is such that m(λ) ∈ (a, b), then n(λ)m′(λ) > 0.
(c) If n(λ) = 0 for some λ ∈ I, then m(λ) /∈ (a, b).
(d) Let µ and ν be successive zeros of n in I, then either m(µ) ≤ a and

m(ν) ≥ b or m(µ) ≥ b and m(ν) ≤ a.
(e) If λ ∈ I is such that m′(λ) = 0, then:

(i) if m(λ) coincides with a or b, then n(λ) = 0.
(ii) if m(λ) = a, then m′′(λ) > 0.
(iii) if m(λ) = b, then m′′(λ) < 0.

One can show easily that the functions z 7→ h±(z) := −
(
∆(z) ± 2

)
/s(1; z) are

Herglotz and non-constant, cf. [5, Section 3], and the above properties of the
discriminant follow from the Lemma.

Now we are going to show how the functions h± and the associated dicriminant
appear in the theory of self-adjoint extensions. We recall first some definitions,
see e.g. the monograph [3]. Let H be a Hilbert space and S be a closed densely
defined symmetric operator in H. It is known that S has self-adjoint extensions iff
one can construct a boundary triple, which consisits of an auxiliary Hilbert space
G and two linear maps Γ,Γ′ : D(S∗) → G with the following two properties: (i)
〈S∗f, g〉−〈f, S∗g〉 = 〈Γ′f,Γg〉−〈Γf,Γ′g〉 for all f, g ∈ D(S∗), and (ii) the mapping
D(S∗) ∋ f 7→ (Γf,Γ′f) ∈ G × G is surjective. Given a boundary triple, one can
show that the operators H0 and H defined as the restictions S∗ on ker Γ and
ker Γ′, respectively, are self-adjoint extensions of S. A special role in their spectral
analysis is played by the associated Weyl function M(z) := Γ′(Γ|ker(S∗−z))

−1,

z /∈ specH0, see [2]. In particular, for z /∈ specH0 the condition z ∈ specH is
equivalent to 0 ∈ specM(z).

Remark that if the Weyl function is of the special formM(z) =
(
m(z)−T

)
/n(z),

where T is a bounded self-adjoint operator in G and m and n are scalar func-
tions, then the condition 0 ∈ specM(z) is equivalent to m(z) ∈ specT , and,
moreover, it was shown in [6] that in this case one can prove a unitary equivalence
between the spectral projectors of T and H in some intervals. Furthermore, if
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a := min specT < max specT =: b, then the functions ha and hb defined as in (1)
are Herglotz and non-constant, hence, the above Lemma gives some information
on the behavior of the function m which can then be viewed as an abstract dis-
criminant. Numerous examples in which Weyl functions are of the above form can
be found e.g. in [7, Section 3]: these include the above Hill operator, a class of
differential operators on equilateral metric graphs and some more abstract cases.
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128 (1899) no. 15, 910–913.

[5] K. Pankrashkin: A remark on the discriminant of Hill’s equation and Herglotz functions.
Arch. Math. (Basel) 102 (2014) 155–163.

[6] K. Pankrashkin: An example of unitary equivalence between self-adjoint extensions and
their parameters. J. Funct. Anal. 265 (2013) 2910–2936.

[7] K. Pankrashkin: Unitary dimension reduction for a class of self-adjoint extensions with
applications to graph-like systems. J. Math. Anal. Appl. 396 (2012) 640–655.

Eigenvalue estimates for operators with finitely many negative squares

Carsten Trunk

(joint work with Jussi Behrndt, Roland Möws)

Let A and B be selfadjoint operators and assume that the resolvent difference of A
and B is of rank one. Then the continuous spectra of the two operators coincide.
The number of eigenvalues in a gap of the continuous spectrum is the same or it
differs by one. This is a well-known fact for selfadjoint operators in Hilbert spaces.

The same question for selfadjoint operators in Krein spaces is more delicate
and allows a variety of answers. This question arises naturally in the study of
singular indefinite Sturm-Liouville problems. Often, a one (or two) dimensional
perturbation of a singular indefinite Sturm-Liouville operator leads to an operator
which is the direct sum of two (or more) selfadjoint Sturm-Liouville operators in
L2-Hilbert spaces with well-known spectra.

Hence, such an approach can be used to describe the spectrum of the singular
indefinite Sturm-Liouville operator. Obviously, the continuous (essential) spectra
of the singular indefinite Sturm-Liouville operator and its one dimensional perturb-
ation coincide. With the help of the Weyl function, eigenvalue estimates in gaps
of the continuous spectrum can be obtained: The unperturbed and the perturbed
operator are considered as two different selfadjoint extensions of a fixed minimal
symmetric operator. By standard methods from extension theory, one introduces
a Weyl function which, similar to the case of Hilbert spaces, contains all spec-
tral information. If the unperturbed operator belongs to one of the well studied
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subclasses of selfadjoint operators in Krein spaces (like non-negative operators,
operators with finitely many negative squares, definitizable or locally definitizable
operators), then this is reflected in the properties of the Weyl function. These
properties of the Weyl function can be used to prove eigenvalue estimates and
results for accumulation of eigenvalues.

In the recent years we used the above scheme (together with other techniques)
to investigate indefinite Sturm-Louville operators defined on the real line. We
described the location of the essential spectrum, [9], derived bounds for the number
of non-real eigenvalues, [2, 6, 7], obtained eigenvalue estimates in gaps of the
continuous spectrum for different classes of operators, [3, 4], characterized non-real
accumulation of eigenvalues [1], and obtained bounds for the location of non-real
eigenvalues of perturbations of non-negative operators in Krein spaces [5].

Currently (together with Jussi Behrndt (Graz) and Roland Möws (Berlin)) we
study operators with finitely many negative squares. A selfadjoint operator A in
a Krein space (K, [·, ·]) with ρ(A) 6= ∅ is said to have κ negative squares if for some
κ ∈ N the hermitian form 〈·, ·〉 on domA, defined by

〈f, g〉 := [Af, g], f, g ∈ domA,

has κ negative squares, that is, there exists a κ-dimensional subspace M in domA
such that 〈v, v〉 < 0 if v ∈ M, v 6= 0, but no κ + 1 dimensional subspace with
this property. Selfadjoint operators with finitely many negative squares belong
to the class of definitizable operators introduced and comprehensively studied by
H. Langer in [11, 12] and are used in the description of the spectral properties of
indefinite Sturm-Liouville problems, see, e.g., [7, 8, 10, 13].

For an operator A with κ negative squares we obtain a sharp estimate for
the number of eigenvalues in a gap of the essential spectrum under rank one
perturbations. More precisely, let B be another selfadjoint operator in the same
Krein space with

dim ran
(
(A− λ0)

−1 − (B − λ0)
−1
)
= 1

and let I be an open interval with ρ(B)∩ I 6= ∅ such that σ(A)∩ I consists only of
isolated eigenvalues. Denote the numbers of distinct eigenvalues of A and B in I
by nA(I) and nB(I), respectively, and denote the number of common eigenvalues
in I by

nA,B(I) = ♯
{
λ : λ ∈ I ∩ σp(A) ∩ σp(B)

}
.

Then the number of distinct eigenvalues of B in I can be estimated in terms of
the number of distinct eigenvalues of A in I and some correction terms. These
correction terms consist of nA,B(I) and the number KA (KB) of eigenvalues of A
(resp. B) of a specific sign characteristic in I. The number KA (KB) is always
smaller than the number of negatives squares of A (resp. B),

KA ≤ κ and KB ≤ κ+ 1.

Roughly speaking KA (resp. KB) counts the number of negative squares in I and
has a somehow localized character. The precise estimates are presented in the
following theorem. We emphasize that these estimates are sharp.
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Theorem 1. The following statements are true.

(i) If nA(I) <∞ and 0 6∈ I then

nA(I) − nA,B(I)− 2KA − 1 ≤ nB(I) ≤ nA(I) + nA,B(I) + 2KB + 1,

where KA (KB) denotes the number of all eigenvalues λ of A (resp. B) in
I ∩ ρ(B) \ {0} (resp. I ∩ ρ(A) \ {0}) with the property that there exists an
eigenvector x corresponding to λ with λ[x, x] ≤ 0. We have KA ≤ κ and
KB ≤ κ+ 1.

(ii) If nA(I) <∞ and 0 ∈ I then

nB(I) ≥ nA(I)− nA,B(I)− 2KA −
{
3 if 0 ∈ ρ(B),

1 if 0 ∈ σ(B).

and

nB(I) ≤ nA(I) + nA,B(I) + 2KB +

{
3 if 0 ∈ ρ(A),

1 if 0 ∈ σ(A),

where KA and KB are defined as in (i).
(iii) Each of the estimates in (i) and (ii) is sharp.
(iv) We have nA(I) = ∞ if and only if nB(I) = ∞.

We remark that the estimates in (ii) can be slightly improved if one takes into
account whether 0 is a critical point of B (for the notion of critical points see [12]).

This gives also, as described above, eigenvalue estimates for singular indefinite
Sturm-Liouville problems.
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Analysis of the Dirichlet-to-Neumann operator on nonsmooth domains

Tom ter Elst

(joint work with W. Arendt)

Let Ω be a bounded open set in R
d with Lipschitz boundary. The Dirichlet-

to-Neumann operator D0 on the boundary Γ = ∂Ω is defined as follows. Let
ϕ, ψ ∈ L2(Γ). Then ϕ ∈ dom(D0) and D0ϕ = ψ if and only if there exists a
u ∈ H1(Ω) such that Tru = ϕ and ∂νu = ψ, where ∂ν is the normal derivative. It
turns out that D0 is a self-adjoint operator with compact resolvent. The aim is to
extend the above to more general domains and to study the operator.

We assume from now one that Ω is an open bounded connected set in R
d with

d ≥ 2. Write Γ = ∂Ω and provide Γ with the (d − 1)-dimensional Hausdorff
measure σ. We assume that σ(Γ) <∞.

Let u ∈ H1(Ω) and ϕ ∈ L2(Γ). We say that ϕ is a trace of u if there exist
u1, u2, . . . ∈ H1(Ω) ∩C(Ω) such that

lim
n→∞

un = u in H1(Ω) and lim
n→∞

un|Γ = ϕ in L2(Γ).

Next, let u ∈ H1(Ω) be such that ∆u ∈ L2(Ω) as distribution. Then we say that
u has a weak normal derivative in L2(Γ) if there exists a ψ ∈ L2(Γ) such that

(1)

∫

Ω

(∆u) v +

∫

Ω

∇u · ∇v =

∫

Γ

ψ v dσ

for all v ∈ H1(Ω) ∩ C(Ω). In that case ψ is uniquely determined by (1), we write
∂u
∂ν := ψ and call ψ the (weak) normal derivative of u.

Using form methods [2] we proved the next theorem.

Theorem 1. There exists a unique self-adjoint (single valued) operator D0 in
L2(Γ) such that for all ϕ, ψ ∈ L2(Γ) one has

ϕ ∈ dom(D0) and D0ϕ = ψ

if and only if

there exists a u ∈ H1(Ω) such that




∆u = 0 as distribution on Ω

ϕ is a trace of u

∂u

∂ν
= ψ.
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Let D0 be as in Theorem 1. It turns out that D0 is a positive operator. Let
S be the semigroup generated by −D0, so St = e−tD0 for all t > 0. Obviously
St1Γ = 1Γ for all t > 0. Actually, S is a Markov semigroup.

It is in general possible that there exists a ϕ ∈ L2(Γ) with ϕ 6= 0 and ϕ is a
trace of 0 ∈ H1(Ω). Hence in general an element of H1(Ω) can have more than
one function as trace. Uniqueness of trace can be characterised.

Theorem 2. The following are equivalent.

• Every element of H1(Ω) has at most one trace.
• dim(kerD0) = 1.
• S is irreducible.
• limt→∞ Stϕ = Pϕ for all ϕ ∈ L2(Γ), where P is the projection onto the

constants.
• The form aR is closable, where

aR(u, v) =

∫

Ω

∇u · ∇v +
∫

Γ

u v

with D(aR) = H1(Ω) ∩ C(Ω).

Let H̃1(Ω) be the closure ofH1(Ω)∩C(Ω) inH1(Ω). In general H̃1(Ω) 6= H1(Ω),

but if Ω has a continuous boundary, then H̃1(Ω) = H1(Ω). Clearly if u ∈ H1(Ω)

and there exists a ϕ ∈ L2(Γ) such that ϕ is a trace of u, then u ∈ H̃1(Ω). Existence
and uniqueness of a trace can also be characterised in various ways.

Theorem 3. The following are equivalent.

• Every element of H̃1(Ω) has a unique trace.
• There exists a c > 0 such that

∫

Γ

|u|2 ≤ c
( ∫

Ω

|∇u|2 +
∫

Ω

|u|2
)

for all u ∈ H1(Ω) ∩ C(Ω).
• 0 6∈ σess(D0).
• limt→∞ St = P in L(L2(Γ)), where P is the projection onto the constants.
• There exists an ε > 0 such that ‖St − P‖L(L2(Γ)) ≤ e−εt for all t > 0.
• There exists a β > 0 such that aβ is lower bounded, where

aβ(u, v) =

∫

Ω

∇u · ∇v − β

∫

Γ

u v

with D(aβ) = H1(Ω) ∩C(Ω).

The second item in the previous theorem gives continuity of a trace map from

H̃1(Ω) into L2(Γ). If Ω has a Lipschitz boundary then this trace map is also
compact. There are counter examples ([1] Example 9.4 and [3] Subsection 5.3)
that in general continuity does not imply compactness. Again a characterisation
of compactness is nevertheless possible.
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Theorem 4. The following are equivalent.

• The Dirichlet-to-Neumann operator D0 has compact resolvent.

• Every element in H̃1(Ω) has a unique trace and the map Tr : H̃1(Ω) →
L2(Γ) is compact.

• For all β > 0 the form aβ is lower bounded, where

aβ(u, v) =

∫

Ω

∇u · ∇v − β

∫

Γ

u v

with D(aβ) = H1(Ω) ∩C(Ω).
The proofs of these theorems are in the paper [1]. We finish with some open

problems.

Open problem 5. Suppose that Ω has a continuous boundary. Does it follow
that every element of H1(Ω) has at most one trace?

Does existence of a trace imply uniqueness? Precisely:

Open problem 6. Suppose that every element of H̃1(Ω) has a trace. Does it
follow that every element of H1(Ω) has at most one trace?
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Boundary triplets and trace formulas

Hagen Neidhardt

(joint work with Mark Malamud)

In [7] M.G. Krĕın proved the existence of a real-valued function ξ(·) ∈ L1(R) for
pairs {H,H0} of self-adjoint operators which differ by a trace class operator, i.e.
V := H −H0 ∈ S1(H), such that the following trace formula

(1) tr (Φ(H)− Φ(H0)) =
1

π

∫

R

Φ′(t)ξ(t)dt

holds for a sufficiently large class of functions Φ(·). The function ξ(·) is usually
called the spectral shift function (SSF) of the pair {H,H0}. Furthermore, for
the rigorous justification of the existence of the SSF he introduced the concept of
perturbation determinant ∆H/H0

(·) and proved the inversion formula

(2) ξ(t) = lim
y↓0

Im (log(∆H/H0
(t+ iy))) for a.e. t ∈ R,

expressing ξ(·) by means of ∆H/H0
(·) where the branch of the logarithm is fixed by

the condition limy→+∞ log(∆H/H0
(t+iy)) = 0. Such treatment has allowed him to
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show that there exists a unique SSF satisfying ξ(·) ∈ L1(R; dt). In subsequent pub-
lications M.G. Krĕın [8, 9] extended (1) to a pair {H,H0} of self-adjoint resolvent
comparable operators, i.e., operators satisfying

(3) (H − z)−1 − (H0 − z)−1 ∈ S1(H), z ∈ ρ(H) ∩ ρ(H0).

This extension has been motivated by applications to Schrödinger operators H =
H0 + q (and other differential operators). Clearly, H is not a trace class per-
turbation of H0 = −∆ while the pair {H,H0} satisfies (3) for certain classes of

decaying potentials q. For pairs satisfying (3) the spectral shift function ξ(·) = ξ(·)
exists and belongs to L1(R; dt

1+t2 ), however, it is determined up to an additive real
constant.

In [10, Theorem 9.2] Krĕın has studied the accumulative case H := H0 − iG,
G ≥ 0. For a sufficiently large class of functions Φ(·) holomorphic in C− the
following trace formula

(4) tr (Φ(H) − Φ(H0)) = −i
∫

R

Φ′(t) dωK(t).

was verified, where ωK(·) = ωK(·) is a bounded non-decreasing function.
Finally, pairs {H,H0} with H0 = H∗

0 and H := H0 − iG where G ≥ 0, and
G log(G) ∈ S1(H), were studied in [1]. It is proved in [1] that under the assumption
G log(G) ∈ S1(H) there exists a real-valued function ξ(·) ∈ L1(R, dt

1+t2 ) such that

in place of (4) one has

tr (Φ(H)− Φ(H0)) =

∫

R

Φ′(t) ξ(t) dt

for Φ from a certain class of holomorphic in C− functions. Notice that G log(G) ∈
S1(H) is stronger than G ∈ S1(H). Both results are improved as follows:

Theorem 1. Let {H ′, H} be a pair of m-accumulative resolvent comparable oper-
ators in H and ρ(H)∩C− 6= ∅. For a sufficiently large class of functions Φ(·), which
are holomorphic in neighborhood of σ(H ′) and σ(H) such that Φ(H ′) − Φ(H) ∈
S1(H) the following holds:
(i) There exists a complex-valued function ω(·) ∈ L1(R; dt

1+t2 ) called the SSF of

the pair {H ′, H} such that the following trace formula holds

(5) tr (Φ(H ′)− Φ(H)) =
1

π

∫

R

Φ′(t)ω(t)dt.

A complex-valued function ω̃ ∈ L1(R; dt
1+t2 ) is also a SSF of the pair {H ′, H}, i.e.

(5) holds with ω̃ in place of ω, if and only if ω̃(·)− ω(·) ∈ H1
−(R,

dt
1+t2 ).

(ii) If in addition, either the resolvent difference of H ′ and H is finite dimensional
or the imaginary part of ω satisfies the Zygmund condition

∫

R

|ωI(t)| log(1 + |ωI(t)|)
dt

1 + t2
<∞, ωI(·) := Im (ω(·)),
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then there exists a real-valued SSF ξ(·) ∈ L1
(
R; dt

1+t2

)
. The latter happens if, in

particular, ω(·) ∈ L2
(
R; dt

(1+t2)α/2

)
for some α ∈ [0, 2]. Moreover, if α ∈ (0, 1),

then there is a real SSF ξ(·) satisfying ξ(·) ∈ L2
(
R; dt

(1+t2)α/2

)
.

(iii) If H = H∗ (resp. H ′ = H ′∗), then there is a SSF ω(·) of the pair {H ′, H}
satisfying Im (ω(t)) ≤ 0 (resp. Im (ω(t)) ≥ 0) for a.e. t ∈ R.

In the case of additive perturbations H := H0 − iG with G ∈ S1, Theorem 1
can be specified. Namely, in this case a complex-valued SSF ω(·) can be chosen to
be summable, i.e. ω(·) ∈ L1(R; dt). Notice that if H = H∗ Theorem 1 improves
Krĕın’s formula (4): the measure dωK becomes absolutely continuous.

We treat all the problems in the framework of extension theory by considering
the operatorsH ′ andH as proper extensions of a closed symmetric operatorA with
equal deficiency indices. The pair {H ′, H} is called singular if dom(H ′) 6= dom(H).
Notice that for singular pairs Krĕın’s definition of perturbation determinant [10] is
not applicable. To overcome this difficulty we apply the boundary triplet technique
elaborated in [2, 3, 4, 5, 6] and especially in our recent papers [11, 12]. In particular,
it is possible to express the perturbation determinant ∆H′/H(·) in terms of the
basic objects of the extension theory: Weyl function M(·) and boundary operators
B,B′. For instance, if n±(A) = n <∞ and H ′ = H ′∗, H = H∗, a SSF of the pair
{H ′, H} admits the representation

(6) ξ(t) = Im (log (det (B′ −M(t+ i0)))− log (det (B −M(t+ i0)))) ,

whereM(t+i0) := limε→+0M(t+iε). Formula (6) complements Krĕın’s inversion
formula (2) and makes it possible to compute the SSF explicitly for a pair of
boundary value problems for certain classes of ordinary differential operators. The
proof of the result above and other results can be find in [15], see also the preprints
[11, 13] and brief summary [14].
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Some classes of Weyl functions of abstract boundary mappings

Seppo Hassi

(joint work with Vladimir Derkach, Mark Malamud)

During last four decades the concepts of a boundary triplet (BT) and the corres-
ponding Weyl function have been elaborated thoroughly with numerous applica-
tions e.g. in the study of boundary value problems, extension theory of symmetric
operators, and spectral theory. The concept of a BT for a densely defined sym-
metric operator S was introduced by A. Kochubei and V. Bruk (see e.g. [8]) as
follows: a triplet {H,Γ0,Γ1}, where H is a Hilbert space and Γ0 and Γ1 are linear
mappings from domS∗ into H, is called (nowadays) a boundary triplet for S∗, if:

• for all f, g ∈ domS∗ the abstract Green’s identity holds:

(S∗f, g)H − (f, S∗g)H = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H.

• the combined mapping Γ = Γ0 × Γ1 : domS∗ → H×H is surjective.
In fact, using a somewhat different (geometric) approach, a more general concept of
a reduction operator involving abstract boundary conditions has been introduced
and developed already much earlier by J.W. Calkin [2].

In the beginning of 1980s V. Derkach and M. Malamud (see the concluding
paper [6]) associated with a BT the Weyl function M(·) via the formula

M(z)Γ0fz = Γ1fz, fz ∈ ker(S∗ − z), z ∈ C \ R.
In particular, they proved that M(·) is a Q-function. This latter concept was
originally introduced by M.G. Krĕın in 1944 in connection with his formula for
resolvents of selfadjoint extensions of a symmetric operator. Later on the concept
of a Q-function and Krĕın’s resolvent formula itself have been developed further
and investigated in a well-known series of papers by M.G. Krĕın and H. Langer.

In the 1990s Derkach and Malamud [7] extended the concept of a boundary
triplet as follows. Let S∗ be a dense linear subset of S∗. Then a triplet {H,Γ0,Γ1},
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where H is a Hilbert space and Γ0 and Γ1 are (closable) mappings from S∗ into
H, is called a (B-)generalized boundary triplet for S∗ if:

(B1) for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ S∗ the abstract Green’s identity holds:

(f ′, g)H − (f, g′)H = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H;

(B2) Γ0 : S∗ → H is surjective;
(B3) A0 := ker Γ0 is a selfadjoint relation in H.

This notion made it possible to treat a pair {A0, A1} of disjoint selfadjoint exten-
sions of S (A0 ∩ A1 = S), instead of a pair of transversal selfadjoint extensions of
S (A0 +̂A1 = S∗), as the basic extensions A0 = kerΓ0 and A1 = kerΓ1 of such a
generalized boundary triplet.

A general class of abstract boundary mappings for symmetric operators or rela-
tions S in a Hilbert space was introduced by Derkach, Hassi, Malamud and de Snoo
[3]; see also [4, 5]. This concept of a generalized BT (GBT) (called a boundary
relation in [3]) allowed the authors to prove the most general realization theorem:
every Nevanlinna family is the Weyl function (or a Weyl family) of such a GBT.

The definition reads as follows: with H a Hilbert space, a linear relation Γ :
H2 7→ H2 is a boundary relation for S∗, if domΓ is dense in S∗ and

(BR1) the abstract Green’s identity

(f ′, g)H − (f, g′)H = (h′, k)H − (h, k′)H,

holds for every {f̂ , ĥ}, {ĝ, k̂} ∈ Γ;

(BR2) Γ is maximal in the sense that if {ĝ, k̂} ∈ H2 × H2 satisfies the Green’s

identity in (BR1) for every {f̂ , ĥ} ∈ Γ, then {ĝ, k̂} ∈ Γ.

The condition (BR1) means that in a Krĕın space sense Γ is isometric, while the
condition (BR2) guarantees that Γ is in fact unitary (in the sense of Shmul’yan)
w.r.t. the underlying Krĕın spaces. Associated with a general isometric or unitary
(cf. (BR1), (BR2)) boundary mapping Γ from S∗ (with dense domain in S∗) into
H×H there are the corresponding component mappings Γ0 and Γ1 into H. Our
recent investigations in the theory of boundary triplets and their Weyl functions
concern the following two cases:

(S) A0 = kerΓ0 is selfadjoint;
(ES) A0 = kerΓ0 is essentially selfadjoint.
The corresponding triplets are called S-generalized and ES-generalized bound-

ary triplets, respectively (when Γ is single-valued). The Weyl functions associated
with these classes of boundary triplets are characterized. For this purpose a new
class of form-domain invariant Nevanlinna families is introduced. A Nevanlinna
function M(·) is said to be form-domain invariant if:

(F) the quadratic form generated in H by the imaginary part of M(λ) via

tM(λ)[u, v] =
1

λ− λ̄
[(M(λ)u, v)− (u,M(λ)v)],

is closable for all λ ∈ C \ R and the closure of the form tM(λ) has a constant
domain.
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The first main theorem reads as follows.

Theorem 1. Let {H,Γ0,Γ1} be a unitary boundary triplet for S∗ and let M(·)
and γ(·) be the corresponding Weyl function and the γ-field. Then the following
statements are equivalent:

(i) {H,Γ0,Γ1} is an ES-generalized boundary triplet;

(ii) γ(λ) admits a single-valued closure γ(λ) for some λ ∈ C+ and some λ ∈
C− or, equivalently, for every λ ∈ C \ R;

(iii) the Weyl function M(·) ∈ R(H) is form-domain invariant.

ES-generalized boundary triplets admit a natural renormalization which give
rise to, in general, isometric boundary triplets which are S-generalized. In par-
ticular, it is shown that for every form-domain invariant operator-valued strict
Nevanlinna function M(·) ∈ Rs(H) there exist a bounded operator G ∈ [H] with
kerG = kerG∗ = {0}, a closed symmetric densely defined operator E in H, and a
bounded Nevanlinna function M0(·) ∈ R[H], such that

M(λ) = G−∗(E +M0(λ))G
−1, λ ∈ C \ R.

In general, the function E +M0(·) in this formula does not belong to the class
of Nevanlinna functions. It can be realized as a Weyl function of an almost B-
generalized boundary triplet. The class of almost B-generalized boundary triplets
is a natural extension of the class of (B-)generalized boundary triplets, as well as
of the class of quasi-boundary triplets in [1], where the conditions (B1), (B3) are
satisfied and the condition (B2) is relaxed as follows:

(B2′) ranΓ0 is dense in H.

The corresponding class of Weyl functions is characterized and a Krĕın type re-
solvent formula for almost B-generalized boundary triplets is established.

Applications of ES-generalized boundary triplets in concrete boundary value
problems are discussed in the PDE and ODE settings. In particular, it is shown
that simple JH-unitary transforms of B-generalized boundary triplets can produce
ES-generalized boundary triplets for S∗, whose Weyl functions are unbounded
form-domain invariant Nevanlinna functions. This fact can be used to study e.g.
the Laplacian operator ∆ in (bounded) domains Ω(⊂ R3) with a smooth boundary
∂Ω, in which case the above transform of boundary triplets correspond to certain
regularizations of the trace operators γD and γN being extensively studied in the
literature; see e.g. [1, 9, 11, 13]. Another class of applications for ES-generalized
boundary triplets appears naturally in the study of Sturm-Liouville operators with
infinitely many point interactions, see [10], and with operator potential, see [12].
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Does Diffusion Determine the Domain?

Wolfgang Arendt

In 1966 Marc Kac asked the famous question: “Can one hear the shape of a
drum?”. Even though there exist counterexamples in form of polygonals Kac’
proper question seems still to be wide open. We give an account and propose
some new operator theoretical investigations. The talk consists of three parts:

1. An account on known positive results and counterexamples.
2. A shift of paradigm: Intertwining operators with special properties.
3. Analysis of the counterexamples in the spirit of intertwining operators.

1. The question and some answers

Given a domain in Rd (i.e. a bounded, open, connected set), the space L2(Ω) has
an orthonormal basis (ek)k∈N such that ek ∈ H1

0 (Ω) and

−∆ek = λkek, 0 < λ1 ≤ λ2 ≤ . . . .

We call the series (λk)k∈N the Dirichlet eigenvalues. If we want to denote the
dependence on Ω we write λk(Ω) := λk.

Two Lipschitz domains Ω1,Ω2 are called isospectral if λk(Ω1) = λk(Ω2) for all
k ∈ N. A Lipschitz domain is a domain with Lipschitz boundary

Two domains Ω1,Ω2 are called congruent if there exists an isometry τ : Rd →
Rd such that τ(Ω2) = Ω1. Recall that an isometry is a mapping of the form
τ(x) = Bx+ b, where B is an orthogonal d× d-matrix and b ∈ Rd.

Problem 1. If Ω1 and Ω2 are two isospectral Lipschitz domains, are they neces-
sarily congruent?
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M. Kac asked this famous problem in 1966 in a more restricted form, namely
supposing that the dimension d is two and Ω1,Ω2 have C∞-boundary. This re-
stricted question is still open today. No C1-counterexamples are known in any di-
mension and no convex Lipschitz domains are known which give a counterexample
in dimension 2 or 3.

However, Gordon, Webb and Wolpert gave a counterexample to Problem 1 in
dimension 2 in form of two polygonals. In dimension 4 they modified a counter-
example of Urakawa and constructed two cut convex cones which are isopectral
and non-congruent (see [3, Section 1.7] for more precise statements and references).

There is an interesting positive result which is based on Weyl’s formula and a
version of the Faber-Kahn inequality due to D. Daners and J. Kennedy [7]. It is
remarkable that it is true under the optimal regularity hypothesis at the boundary.
We say that Ω is regular in capacity if cap(Br(z) \ Ω) > 0 for all z ∈ ∂Ω, r > 0,
where Br(z) := {x ∈ Rd : |x − z| < r}. For each domain Ω there is a unique

domain Ω̃ ⊃ Ω which is regular in capacity such that cap(Ω̃ \ Ω) = 0 (see [2] for
more details).

Theorem. Let Ω be a domain in Rd which is regular in capacity and B be a ball.
If Ω and B are isospectral, then they are congruent.

We refer to [3, Section 1.7] for more details.

2. Intertwining operators

Some time ago we proposed a shift of paradigm. Denote by ∆Ω the Dirichlet
Laplacian on L2(Ω); i.e D(∆Ω) = {u ∈ H1

0 (Ω) : ∆u ∈ L2(Ω)}, ∆Ωu = ∆u. Then
∆Ω is selfadjoint, has compact resolvent and λk(Ω) is the k-th eigenvalue of −∆Ω.
It is easy to see that the following three assertions are equivalent

(a) Ω1 and Ω2 are isospectral
(b) there exists a unitary operator U : L2(Ω1) → L2(Ω2) such that Uet∆Ω1 =

et∆Ω2U for all t ≥ 0.
(c) there exists some invertible operator φ : L2(Ω1) → L2(Ω2) such that

φ et∆Ω1 = et∆Ω2φ.

Here et∆Ω1 is the semigroup generated by ∆Ω1 , and u(t) = et∆Ω1u0 solves the
diffusion equation

u̇ = ∆Ω1u

u(0) = u0

for u0 ∈ L2(Ω1). Thus condition (c) means that φ maps solutions to solutions.
If u0 ≥ 0, then et∆Ω1u0 ≥ 0 for all t ≥ 0. The positive solutions are of special

interest: They describe the evolution of an initial density. This is a motivation to
consider in (c) an order isomorphism φ; i.e. an isomorphism for which φf ≥ 0 iff
f ≥ 0 for all f ∈ L2(Ω1).

Theorem (c.f. [2]). Let φ be an order isomorphism from L2(Ω1) to L
2(Ω2) where

Ω1 and Ω2 are domains which are regular in capacity. If et∆Ω2φ = φ et∆Ω1 for all
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t ≥ 0, then Ω1 and Ω2 are congruent and there exists an isomorphism τ such that
φf = c · f ◦ τ for all f ∈ L2(Ω1) and some c > 0.

Given that L2(Ω) = L2(Ω̃) and ∆Ω = ∆Ω̃, the regularity assumption is optimal
in this result.

Since order isomorphisms transform positive solutions into positive solutions,
the result might be expressed by saying that “diffusion determines the domain”. It
remains true for Robin and Neumann boundary conditions on Lipschitz domains
but not for all boundary conditions; see [2]. It also remains true for complete
Riemannian manifolds (see [4], [5]).

3. The counterexample in the spirit of intertwining operators

In view of this result we reconsider the counterexample of Gordon-Webb and
Wolpert which works for Dirichlet and Neumann boundary conditions. It has
been analysed and simplified by several mathematicians (among them P. Bérard,
S.J. Chapman). We construct in [5] explicitly an intertwining operator φ instead
of considering merely the eigenfunctions. It turns out that in the case of Neumann
boundary conditions φ can even be chosen positive (i.e. f ≥ 0 implies φf ≥ 0).
However, we know by the theorem above that it is not possible that φ−1 ≥ 0.

The analysis of the counterexample in terms of the intertwining operator is re-
warding. We can show that for the special domains in the counterexample no such
operator can exist which is intertwining for both Dirichlet and Neumann bound-
ary conditions, even though different intertwining operators do exist. However the
following problem seems to be open.

Consider for every β ≥ 0 the Laplacian ∆β
Ω with Robin boundary conditions

∂νu+ βu = 0.

Problem 2. Let Ω1,Ω2 be two Lipschitz domains. Assume that ∆β
Ω1

and ∆β
Ω2

have
the same series of eigenvalue for each β ≥ 0 and also for β = ∞ (i.e. Dirichlet
boundary conditions). Does it follow that Ω1 and Ω2 are congruent?
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Strong coupling in leaky graphs and Robin billiards

Pavel Exner

(joint work with Michal Jex, Sylwia Kondej, Alexander Minakov, Konstantin
Pankrashkin, Leonid Parnovski)

A lot of attention was paid in recent years to leaky quantum graphs described by
singular Schrödinger operators which can be written formally as

Hα,Γ = −∆− αδ(x − Γ) , α > 0 ,

where Γ is a manifold or a complex of a lower dimensionality. Such operators
can be defined naturally through the associated quadratic form if codimΓ = 1 and
through boundary conditions involving generalized boundary values if codimΓ = 2.
One can derive various spectral properties of Hα,Γ, in particular, existence of a
geometrically induced discrete spectrum and its strong-coupling asymptotic beha-
vior for a sufficiently smooth curve or surface Γ without a boundary; for results
prior to 2008 we refer to [1]. At the same time, some questions remained open and
have been addressed only recently. The aim of the present talk is to review briefly
the corresponding new results.

Theorem 1 ([2]). Suppose γ is a C4 smooth open arc in R2 of length L with
regular ends; then the strong-coupling limit of the j-th negative eigenvalue of Hα,Γ

is

λj(α) = −1

4
α2 + µj +O

( lnα
α

)
as α → +∞ ,

where µj is the j-th eigenvalue of the operator − d2

dDs2 − 1
4γ(s)

2 on L2(0, L) with
Dirichlet b.c., where γ(s) is the signed curvature of Γ at the point s ∈ (0, L).

The technique of bracketing leading to tight two-sided estimates of Hα,Γ used for
curves without endpoints gives here the upper bound only. To get the lower one,
a Neumann bracketing on neighborhoods of an extended curve has to be used in
combination with the eigenfunction expression

ψj(x) =
1

2π

∫

Γ

K0(κj |x− Γ(s)|) fj(s) ds

corresponding to the eigenvalue λj = −κ2j , where fj is the eigenfunction of the cor-
responding Birman-Schwinger operators, and the fast decay of the Green function
for large κj . A similar result holds for non-closed finite curves in R3 [3].

Another problem concerns more singular Schrödinger operators with the δ in-
teraction replaced by the so-called δ′ [4]. The corresponding operator Hβ,Γ is
associated with the quadratic form

hβ,Γ[ψ] = ‖∇ψ‖2 − β−1

∫

Γ

|ψ(s, 0+)− ψ(s, 0−)|2 ds

defined on functions ψ ∈ C(R2) ∩ H1(R2 \ Γ) written in the natural curvilinear
coordinates as ψ(s, u). For a loop-shaped curve Γ we have the following result:
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Theorem 2 ([5]). Let Γ be a C4-smooth closed curve without self-intersections.
Then σess(Hβ,Γ) = [0,∞) and to any n ∈ N there is a βn > 0 such that
#σdisc(Hβ,Γ) ≥ n holds for β ∈ (0, βn). Denoting for such a β by λj(β) the j-th
eigenvalue of Hβ,Γ, again counted with its multiplicity, we have the asymptotic
expansion

λj(β) = − 4

β2
+ µj +O

(
β| lnβ|

)
, j = 1, . . . , n ,

valid as β → 0+, where µj is the j-th eigenvalue of the comparison operator S,
the same as above. Moreover, for the counting function β 7→ #σd(Hβ,Γ) we have

#σdisc(Hβ,Γ) =
2L

πβ
+O(| lnβ|) as β → 0+ .

A similar result holds for infinite non-straight curves. For smooth curved surfaces,
finite closed or infinite without boundaries, we have an analogous asymptotic ex-
pansion [6] in which S is replaced by

S = −∆Γ +K −M2 ,

where −∆Γ is the Laplace-Beltrami operator on L2(Γ) and K,M are the Gauss
and mean curvature of Γ, respectively.

The second topic of the talk concerns the related ‘one-sided’ problem, namely
the large-parameter asymptotics of a Robin billiard. Let Ω be an open, simply
connected set in R2 with a closed C4 Jordan boundary ∂Ω = Γ : [0, L] ∋ s 7→
(Γ1,Γ2) ∈ R2, with γ : [0, L] → R being the signed curvature of Γ. We consider
the boundary-value problem

−∆f = λf in Ω ,
∂f

∂n
= βf onΓ ,

with β > 0, where ∂
∂n is the outward normal derivative. The corresponding self-

adjoint operator Hβ is associated with the quadratic form

qβ [f ] = ‖∇f‖2L2(Ω) − β

∫

Γ

|f(x)|2ds

defined on Dom(qβ) = H1(Ω). In [7, 8] asymptotics of the ground-state eigenvalue
was found. In [9] we extended it for higher eigenvalues: we showed that for a fixed
j we have in the asymptotic regime β → +∞ the relation

λn(β) = −β2 − γ∗β +O
(
β2/3

)
, γ∗ := max

[0,L]
γ(s) .

This result was further improved and extended to higher dimensions in [10]; these
authors proved that for open, connected domains Ω ⊂ Rd, d ≥ 2, with a C3-smooth
boundary, the j-th the eigenvalue behaves in the limit β → ∞ as

λj(β) = −β2 − (d− 1)Hmax(Ω)β +O
(
β2/3

)
,

where Hmax(Ω) is the maximum mean curvature at the boundary ∂Ω. Moreover,
if the boundary is C4 smooth, the error term can be replaced by O

(
β1/2

)
. For an
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infinitely smooth boundary of a planar Ω whose curvature has a single maximum
the following terms of the asymptotics have been recently computed in [11].

As the last item let us mention the paper [12] in which infinite domains Ω ∈ R2

have been considered. We found there the analogous strong coupling asymptotics,
also for particular domains such as waveguides, i.e. Ω in the form of a curved strip.
Moreover, we have discussed there the spectrum of Hβ in the non-asymptotic
regime for domains the boundary of which is straight outside a compact. In
particular, we have shown that if such an Ω is concave, σdisc(Hβ) = ∅ holds
for any β > 0.

References

[1] P. Exner, Leaky quantum graphs: a review, in Proceedings of the Isaac Newton Institute
programme “Analysis on Graphs and Applications”, AMS “Proceedings of Symposia in Pure
Mathematics” Series, vol. 77, Providence, R.I., 2008; pp. 523–564.

[2] P. Exner, K. Pankrashkin Strong coupling asymptotics for a singular Schrödinger operator
with an interaction supported by an open arc, Comm. PDE 39 (2014), 193–212.

[3] P. Exner, S. Kondej, Strong coupling asymptotics for Schrödinger operators with an inter-
action supported by an open arc in three dimensions, submitted

[4] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solvable Models in Quantum Mech-

anics, 2nd edition, AMS Chelsea Publishing, Providence, R.I., 2005.
[5] P. Exner, M. Jex, Spectral asymptotics of a strong δ′ interaction on a planar loop, J. Phys.

A: Math. Theor. 46 (2013), 345201.
[6] P. Exner, M. Jex, Spectral asymptotics of a strong δ′ interaction supported by a surface,

Phys. Lett. A378 (2014), 2091–2095.
[7] M. Levitin, L. Parnovski, On the principal eigenvalue of a Robin problem with a large

parameter, Math. Nachr. 281 (2008), 272–281.
[8] K. Pankrashkin, On the asymptotics of the principal eigenvalue for a Robin problem with a

large parameter in planar domains, Nanosystems: Phys. Chem. Math. 4 (2013), 474–483.
[9] P. Exner, A. Minakov, L. Parnovski, Asymptotic eigenvalue estimates for a Robin problem

with a large parameter, Portugal. Math. 71 (2014), 141–156.
[10] K. Pankrashkin, N. Popoff, Mean curvature bounds and eigenvalues of Robin Laplacians,

arXiv:1407.3087

[11] B. Helffer, A. Kachmar, Eigenvalues of the Robin Laplacian in domains with variable
curvature, arXiv:1411.2700

[12] P. Exner, A. Minakov, Curvature-induced bound states in Robin waveguides and their
asymptotical properties, J. Math. Phys. 55 (2014), 122101.

Partially fundamentally reducible operators in Krĕın spaces

Vladimir Derkach

(joint work with Branko Ćurgus)

Recall that a complex vector space K with a sesquilinear form [·, ·] is called a Krĕın
space, if there exist orthogonal subspaces K+, K− of K such that

(1) K = K++̇K−, a direct sum,

and (K+, [·, ·]) and (K−,−[·, ·]) are Hilbert spaces. The decomposition (1) is called
a fundamental decomposition of K and the operator J = P+ − P− is called a
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fundamental symmetry of a Krĕın space. For the general theory of Krĕın spaces
and operators acting in them we refer to the monographs [1, 2].

The ultimate task in this note is to provide sufficient conditions for a self-adjoint
operator in a Krĕın space to be similar to a self-adjoint operator in a Hilbert space.
A simple characterization of similarity is as follows. A self-adjoint operator A in a
Krĕın space (K, [·, ·]) is similar to a self-adjoint operator in a Hilbert space, if and
only if A is fundamentally reducible in (K, [·, ·]); where fundamentally reducible
means that there exists a fundamental decomposition K = K++̇K− of (K, [·, ·])
such that A is the direct sum of its restrictions to K+∩(dom A) and K−∩(dom A).

In what follows the operator A is supposed to be nonnegative self-adjoint oper-
ator with a nonempty resolvent set. The spectrum of such an operator is real and,
excluding arbitrary neighborhoods of 0 and ∞, the operator A has a projector
valued spectral function whose properties resemble the properties of the spectral
function E(∆) of a self-adjoint operator in a Hilbert space; for details see [12]. If
the spectrum of A accumulates on both sides of 0 (∞), then 0 (∞, respectively) is
called a critical point of A. If the spectral function of A is bounded in a neighbor-
hood of a critical point, then that critical point is said to be regular. Otherwise,
it is said to be a singular critical point. The set of all singular critical points of A
is denoted by cs(A). Here, by definition, cs(A) ⊆ {0,∞}.

Our first step in studying the similarity question is to introduce a new concept
related to the fundamental reducibility in Krĕın spaces.

Definition 1. We say that a self-adjoint operator A in a Krĕın space (K, [·, ·])
is partially fundamentally reducible if there exists a fundamental decomposition
K = K+[+̇]K− of (K, [·, ·]) such that the subspaces

D+ =
{
f ∈ K+∩ (dom ) :Af ∈ K+

}
and D− =

{
f ∈ K−∩ (dom ) :Af ∈ K−

}

are dense in K+ and K− and the restrictions S+ = A|D+ and S− = −A|D−
are

symmetric operators with defect numbers (1, 1) in the Hilbert spaces (K+, [·, ·]) and
(K−,−[·, ·]), respectively.

Our objective is to give sufficient conditions on a nonnegative partially funda-
mentally reducible operator A in a Krĕın space under which either 0 6∈ cs(A), or
∞ 6∈ cs(A), or both 0,∞ 6∈ cs(A). The importance of the condition 0,∞ 6∈ cs(A)
lies in the fact that it is equivalent to the similarity of A to a self-adjoint operator
in a Hilbert space.

To this end we will use a coupling method developed in [6] and based on the
boundary triple technique (see [10, 5]). We will apply this theory to the symmetric
operators S+ and S− associated via Definition 1 with a partially fundamentally
reducible operator A. Specifically, let

(
C,Γ+

0 ,Γ
+
1

)
be a boundary triple of the

operator S∗
+, the adjoint of S+ in the Hilbert space (K+, [·, ·]), and let m+ be

the corresponding Weyl function. Then there exists a unique boundary triple(
C,Γ−

0 ,Γ
−
1

)
for S∗

− such that the operator A is a coupling of S+ and S− relative

to the boundary triples
(
C,Γ+

0 ,Γ
+
1

)
and

(
C,Γ−

0 ,Γ
−
1

)
. That is, f ∈ dom (A) if and
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only if there exist f+ ∈ dom
(
S∗
+

)
and f− ∈ dom

(
S∗
−

)
such that

f = f+ + f− and Γ+
0 f+ = Γ−

0 f−, Γ+
1 f+ = −Γ−

1 f−.

Let m− be the Weyl function of S− corresponding to the boundary triple(
C,Γ−

0 ,Γ
−
1

)
. The Weyl functions m+ and m− belong to the class of Nevanlinna

functions and completely characterize the simple (non-self-adjoint) parts of the
symmetric operators S+ and S− acting in the Hilbert spaces K+ and K−. There-
fore, it is natural to look for conditions for the fundamental reducibility of A in
terms of the local behavior of the associated Weyl functions m+ and m− at 0 and
∞.

This approach was utilized, for example in [8, 9], where the boundedness of the
function

(2) y 7→ Imm+(iy) + Imm−(iy)

m+(iy) +m−(−iy)
, y > 0,

on (0, 1) (on (1,∞)) was proved to be necessary for 0 6∈ cs(A) (∞ 6∈ cs(A), respect-
ively). Since we use these necessary conditions in an essential way, we introduce the
following terminology. A pair of functions (m+,m−) is said to have D0-property
(D∞-property) if the function in (2) is bounded on (0, 1) (on (1,∞), respectively).

Next we introduce two different kinds of local behavior of a Nevanlinna function
m with the integral representation

m(z) = a+

∫

R

(
1

t− z
− t

1 + t2

)
dσ(t)

where a = ā and the measure dσ(t)/(1 + t2) is finite. The function m is said to
have B0-property (B∞-property, respectively) if the mapping

f 7→
∫ +∞

0

f(x)

x+ y
dσ(x),

is a bounded mapping from L2
σ(R+) into L2

wm
(0, 1) (L2

wm
(1,∞), respectively).

Here wm(y) =
(
Imm(iy)

)−1
, the reciprocal of the imaginary part of m.

Further, we define the asymptotic class A∞ which consists of all Nevanlinna
functions m for which there exist α ∈ (0, 1), C > 0 and a Möbius transformation
µ(z) = (az + b)/(cz + d) with |ad − bc| = 1 such that the composition µ ◦m is a
Stieltjes function and for all z ∈ C \ R we have

(µ ◦m)(rz) ∼ C

(−rz)α as r → +∞.

The asymptotic class A0 consists of all Nevanlinna functions m for which the
function −m(1/z) belongs to A∞. We prove that all functions in A∞ satisfy B∞-
property and all pairs of functions in A∞ have D∞-property and that all functions
in A0 satisfy B0-property and all pairs of functions in A0 have D∞-property.

With D- and B-properties our main results are as follows. If A is a nonnegative
partially fundamentally reducible operator and if the associatedWeyl functionsm+

and m− have B∞-property, then ∞ 6∈ cs(A) if and only if the pair (m+,m−) has
D∞-property. Analogously, if A is a nonnegative partially fundamentally reducible
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operator and if the associated Weyl functions m+ and m− have B0-property, then
0 6∈ cs(A) if and only if the pair (m+,m−) has D0-property and ker(A) = ker(A2).
Together these two results give sufficient conditions for a nonnegative partially
fundamentally reducible operator in a Krĕın space (K, [·, ·]) to be similar to a self-
adjoint operator in a Hilbert space. The proof of the main results are based on
the Veselić similarity criterion [13]. In the case when m+ = m− these results were
proved in [11].

The results are applied to indefinite Sturm-Liouville differential operators. In
some cases they lead to a new point of view at some results from [3, 4, 7, 8, 9]. We
also get some new results for the case of nonsymmetric coefficients and the case
when A is a coupling of two differential operators of different order.
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[4] B. Ćurgus, B. Najman, The operator (sign x)d2/dx2 is similar to a self-adjoint operator in
L2(R). Proc. Amer. Math. Soc. 123 (1995) 1125–1128.

[5] V.A. Derkach, M.M. Malamud, Generalized resolvents and the boundary value problems for
hermitian operators with gaps, J. Funct. Anal. 95 (1991) 1–95.

[6] V.A. Derkach, S. Hassi, M.M. Malamud, H.S.V. de Snoo, Generalized resolvents of sym-
metric operators and admissibility, Methods of Functional Analysis and Topology, 6 (2000)
24–55.

[7] A. Fleige, B. Najman, Nosingularity of critical points of some differential and difference
operators, Oper. Theory: Adv. Appl., vol. 102, Birkhäuser, Basel, 1998.
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Uniqueness results for systems of ODE and canonical systems

Mark Malamud

I. General uniqueness result for system of ODE.
Let B be a non-singular diagonal n× n matrix,

(1) B = diag(b1In1 , . . . , brInr ) ∈ Cn×n n = n1 + . . .+ nr.

Consider on [0,1] a system of differential equations of the form

(2) − iB−1y′ +Q(x)y = λy, y = col(y1, . . . , yn),

with a summable potential matrix Q ∈ L1[0, 1]⊗ Cn×n.
Alongside with equation (2) we consider the vector equation

(3) − iB−1ỹ′ + Q̃(x)ỹ = λỹ, ỹ = col(ỹ1, . . . , ỹn),

with summable potential matrix Q̃ ∈ L1[0, 1]⊗ Cn×n.

Consider block matrix representations of the potential matrices Q(·) and Q̃(·)
with respect to the orthogonal decomposition Cn =

r⊕
j=1

Cnj .

(4) Q = (Qjk)
r
j,k=1, Q̃ = (Q̃jk)

r
j,k=1, Qjk, Q̃jk : [0, 1] → Cnj×nk ,

Assume that both potential matrices Q(·) and Q̃(·) have zero block diagonal with
respect to this decomposition

(5) Qjj(x) = Q̃jj(x) = 0, x ∈ [0, 1], j ∈ {1, . . . , r}.
The latter condition can be achieved by means of a respective gauge transformation

Theorem 1. Let Q = (Qjk)
r
j,k and Q̃ = (Q̃jk)

r
j,k=1 be the potential matrices of the

form (4)–(5), and let T ∈ Cn×n, detT 6= 0. Let also W (·, λ) and W̃ (·, λ) be n× n
fundamental matrices solutions of equations (2) and (3), respectively satisfying by
initial conditions

(6) W (0, λ) = W̃ (0, λ) = T, λ ∈ C.

If the monodromy matrices of these systems coincide, i.e.

W (λ) :=W (1, λ) = W̃ (1, λ) =: W̃ (λ),

then Q(x) = Q̃(x) for a.e. x ∈ [0, 1].

Remark 2. If the spectrum of x B is simple, (n1 = . . . = nr = 1), i.e. r = n, the
result was obtained by Z. Leibenzon [1] by a completely different method.

II. Systems of ODE. Self-adjoint case.
Here we substantially improve Theorem 1 assuming that the matrix B and a
potential matrix Q are self-adjoint.
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Theorem 3. Let B = diag(b1In1 , . . . , brInr ) = B∗ and Q = Q∗, Q̃ = Q̃∗ ∈
L1[0, 1] ⊗ Cn×n. Suppose also that n1 = . . . = nr = p and T is a B−1–unitary
matrix (T ∗B−1T = B−1), and

(7) W (0, λ) = W̃ (0, λ) = T = (Tjk)
r
j,k=1, Tjk ∈ Cp×p.

Assume also that the matrices Tjk are non–degenerate, detTjk 6= 0, j, k ∈
{1, . . . , r}, and det(Wkk(λ)W̃kk(λ)) 6= 0. Assume also that after certain rearrange-

ment of the columns of the monodromy matrices W (·) and W̃ (·) the following
equalities hold

(8) Wjk(λ)W
−1
kk (λ) = W̃jk(λ)W̃

−1
kk (λ), 1 ≤ k ≤ r − 1, j ∈ {jk,1, . . . , jk,r−k}.

Then Q(x) = Q̃(x) for a.a. x ∈ [0, 1].

In other words, there exists such a permutation of the columns of the mono-
dromy matrix W (·) that the potential matrix Q(·) is uniquely determined by the
family of r(r − 1)/2 matrix–functions Mjk := WjkW

−1
kk where k ∈ {1, . . . , r − 1}

and j = j(k) takes exactly r − k, depending on k, values j ∈ {jk,1, . . . , jk,r−k}.
Corollary 4. Let B = B∗ and Q = Q∗ ∈ L1[0, 1] ⊗ Cn×n. Suppose also that
n1 = . . . = nr = p and T is a B−1–unitary matrix. Then Q is uniquely determined
by r − 1 matrix columns of the monodromy matrix W (·).
Remark 5. (i) In fact, in accordance with Theorem 3 a potential matrix Q is
uniquely determined by r(r − 1)/2+ r− 1 = (r+ 2)(r− 1)/2 matrix entries of the
monodromy matrix W (·). Note also that under a stronger assumption Q = Q∗ ∈
L∞[0, 1]⊗Cn×n Corollary 4 was proved in [2] by using of triangular transformation
operators for system (2). The latter were also constructed in [2].

(ii) In the case r = 2 Theorem 3 was also proved in [2]. In this case it means
that a potential matrix Q is uniquely determined by the Weyl function M(·).

It can be shown that it is not the case for r ≥ 3. Moreover, the number r(r−1)/2
of functions Mjk(·) indicated in Theorem 3 is minimal possible for the unique
determination of a potential matrix Q.

Let us clarify Theorem 3 for r = 3.

Theorem 6. Let r = 3, det(Wjj(λ)W̃jj(λ)) 6≡ 0, j ∈ {1, 2, 3}, and let detTjk 6= 0
for j, k ∈ {1, 2, 3}. Suppose also that

(9) Mj1(λ) :=Wj1(λ)W
−1
11 (λ) = W̃j1(λ)W̃

−1
11 (λ) =: M̃j1(λ), j ∈ {2, 3},

λ ∈ Ω11 ∩ Ω̃11, and one of the following conditions is satisfied:

(i) if M12(λ)M21(λ) 6≡ Ip and M̃12(λ)M̃21(λ) 6≡ Ip, then

(10) W32(λ)W
−1
22 (λ) = W̃32(λ)W̃

−1
22 (λ), λ ∈ Ω22 ∩ Ω̃22;

(ii) if M12(λ)M21(λ) ≡ Ip and M̃12(λ)M̃21(λ) ≡ Ip, then

(11) M23(λ) :=W23(λ)W
−1
33 (λ) = W̃23(λ)W̃

−1
33 (λ) = M̃23(λ), λ ∈ Ω33 ∩ Ω̃33.

Then Q(x) = Q̃(x) for a.e. x ∈ [0, 1].
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III. Hamiltonian (canonical) systems. Let us apply the previous results to
the canonical systems of the form

(12) J
dz

dt
= λH(t)z, J

dz̃

dt
= λH̃(t)z̃, t ∈ [0, 1].

Here J = −J∗ = −J−1 is a diagonal signature matrix, and H(·) and H̃(·) are the

nonnegative Hamiltonians, H(t), H̃(t) ≥ 0, t ∈ [0, 1].
Let WH(·, λ) and WH̃(·, λ) be n × n fundamental matrix of solutions of these

equations satisfying the initial condition

(13) WH(0, λ) =WH̃(0, λ) = In.

Finally we denote by WH(λ) := WH(1, λ) and WH̃(λ) := WH̃(1, λ) monodromy
matrices of the first and the second system, respectively.

In the case n = 2 the problem of the unique determination of the Hamiltonian
by the monodromy matrix has completely been solved by de Branges [3] (see also
[4]). Let us recall his classical result.

Theorem 7 ([3]). Let

(14) H(t) =

(
h11(t) h12(t)
h12(t) h22(t)

)
and H̃(t) =

(
h̃11(t) h̃12(t)

h̃12(t) h̃22(t)

)
,

be real symmetric non-negative and trace normed Hamiltonians, i.e.

(15) trH(t) = h11(t) + h22(t) = h̃11(t) + h̃22(t) = trH̃(t) = 1, t ∈ [0, 1].

If WH(λ) =WH̃(λ), then H(t) = H̃(t) for a.e. t ∈ [0, 1].

Our main uniqueness result for n× n canonical systems reads as follows.

Theorem 8. Let B = B∗ ∈ Cn×n and let −iB = J |B| = |B|1/2J |B|1/2 be the

polar decomposition of the matrix −iB and let H(·) and H̃(·) be Hamiltonians
admitting representations

(16) H(t) = |B|1/2P ∗(t)P (t)|B|1/2, H̃(t) = |B|1/2P̃ ∗(t)P̃ (t)|B|1/2, t ∈ [0, 1],

where matrix–functions P (·), P̃ (·), are absolutely continuous, P (·), P̃ (·) ∈
AC[0, 1]⊗ Cn×n and B−1–unitary, i.e.

(17) P ∗(t)B−1P (t) = B−1, P̃ ∗(t)B−1P̃ (t) = B−1, t ∈ [0, 1].

Assume also that P (1) = P̃ (1) and [P (0), B] = [P̃ (0), B] = 0. If WH(λ) =WH̃(λ),

then H(t) = H̃(t) for a.e. t ∈ [0, 1].

Remark 9. (i) If B = J = J∗ = J−1, then Hamiltonians H and H̃ are symplectic.
In this case Theorem 8 improves the Krein uniqueness result. Namely, he assumed

in addition that both Hamiltonians H and H̃ are bounded and their entries are real-
valued. Certain other uniqueness results for n× n canonical systems can be found
in [4].
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Spectral information contained in Weyl functions

Ian Wood

(joint work with B.M. Brown, J. Hinchcliffe, M. Marletta, S. Naboko)

The Weyl-Titchmarsh m-function is an important tool in the study of forward
and inverse problems for ODEs, as it contains all the spectral information of the
problem.

In this talk we will consider the abstract operator M-function or Weyl function
which can be introduced using the abstract setting of boundary triples for an
adjoint pair of operators. Our aim is to study how much spectral information is
still contained in the M-function in this more general setting.

Definition 1. Two closed, densely defined operators A, Ã in a Hilbert space H

are an adjoint pair, if A∗ ⊇ Ã and Ã∗ ⊇ A.

It is well-known that for each adjoint pair of closed densely defined operators
on H , there exist “boundary spaces” H, K and “trace operators”

Γ1 : D(Ã∗) → H, Γ2 : D(Ã∗) → K, Γ̃1 : D(A∗) → K and Γ̃2 : D(A∗) → H
such that for u ∈ D(Ã∗) and v ∈ D(A∗) we have an abstract Green formula

〈
Ã∗u, v

〉
H
−
〈
u,A∗v

〉
H

=
〈
Γ1u, Γ̃2v

〉
H
−
〈
Γ2u, Γ̃1v

〉
K
.

The trace operators Γ1, Γ2, Γ̃1 and Γ̃2 are bounded with respect to the graph

norm. The pair (Γ1,Γ2) is surjective onto H × K and (Γ̃1, Γ̃2) is surjective onto
K ×H.

Definition 2. The collection {H⊕K, (Γ1,Γ2), (Γ̃1, Γ̃2)} is called a boundary triple

for the adjoint pair A, Ã.

We next fix a realisation of the operator by setting AB := Ã∗|ker(Γ1−BΓ0) for
B ∈ L(K,H).

Definition 3. For λ ∈ ρ(AB), we define

(1) the solution operator Sλ,B as a mapping Sλ,B : H → ker(Ã∗ − λ) where
u = Sλ,Bf solves

(Ã∗ − λ)u = 0 and (Γ1 −BΓ0)u = f,
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(2) the M -function MB(λ) : H → K via MB(λ)f = Γ0Sλ,Bf.

S̃λ,B and M̃B(λ) are defined analogously using the adjoint operators.
For the symmetric case the answer to the question of how much spectral in-

formation is contained inMB(λ) is well-known due to results by Krĕın and Langer
and, in our setting, by Derkach and Malamud: the information contained inMB(λ)
corresponds to the completely non-selfadjoint (or simple) part of the operator.

We will therefore be particularly interested in the non-symmetric case. Mim-
icking the construction of the completely non-selfadjoint subspace of a symmetric
operator, we introduce the following space.

Definition 4. For µ0 6∈ σ(AB), define the space

S = Spanδ 6∈σ(AB)(AB − δI)−1Ran(Sµ0,B).

We call its closure S the detectable subspace.

Again, there is a space S̃, defined analogously using the adjoint.
The detectable subspace is independent of µ0 and B and is a regular invariant

subspace for the resolvent of AB .
It turns out that under mild assumptions on σ(AB) the M -function MB(λ) is

analytic at a point λ0 if and only if Pm,S̃(AB − λI)−1Pn,S is analytic at a point

λ0. Here, Pn,S and Pm,S̃ denote projections onto any finite-dimensional subspaces

of S and S̃. Under some additional assumptions, we even have that the finite-
dimensional projections bordering the resolvent can be replaced by projections

onto S and S̃, respectively.
We will conclude the talk by considering the problem of determining the de-

tectable subspace in several examples. The first is the very simple case of the
1d-Schrödinger operator. As expected, we have:

Proposition 5. For the Schrödinger operator on the interval (0, 1) with bounded
potential we have S = L2(0, 1).

Our second example is a matrix differential operator

Ã∗ =

(
− d2

dx2 + q(x) w̃(x)

w(x) u(x)

)
,

where q, u, w and w̃ are L∞(0, 1)-functions.
In the special case when the product of the off-diagonal elements vanishes, we

can determine S. Even for this simple special case, the answer is not straightfor-
ward.

Theorem 6. Assume ww̃ = 0, that θ(·, λ), φ(·, λ) are a fundamental system for
−y′′ + (q − λ)y = 0 and set

Eu,w := Spann∈Nw(x)θ(x, u(x))u
n(x) + Spann∈Nw(x)φ(x, u(x))u

n(x).
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Then

S⊥ =

{(
h
g

)
: g ⊥ Eu,w,

h(x) =

∫ x

0

(wg)(t)[φ(t, u(t))θ(x, u(t)) − θ(t, u(t))φ(x, u(t))]dt

}

In particular,

S =

(
L2(0, 1)

χ{w 6=0}L
2(0, 1)

)

iff Eu,w = χ{w 6=0}L
2(0, 1).

Finally, we consider the Friedrichs model, which is a perturbed multiplication
operator on L2(R): Let φ, ψ ∈ L2(R) and

(Af)(x) = xf(x) + 〈f, φ〉ψ(x),
with domain

D(A) =

{
f ∈ L2(R)

∣∣∣xf(x) ∈ L2(R), lim
R→∞

∫ R

−R

f(x)dx = 0

}
.

Let Ã be defined in the same way with the roles of φ and ψ exchanged. Then

Ã∗f = xf(x) − cf1+ 〈f, φ〉ψ(x),
with

D(Ã∗) =
{
f ∈ L2(R) | ∃cf ∈ C : xf(x)− cf1 ∈ L2(R)

}
.

We obtain a boundary triple for the pair A, Ã by setting

Γ1f = lim
R→∞

∫ R

−R

f(x)dx and Γ0f = cf .

We again only consider a special case, namely when φ and ψ have disjoint
support. In the following, we denote

f̂(k ± i0) := lim
ǫ→0

∫

R

f(x)

x− (k ± iǫ)
dx.

Theorem 7. Let φ · ψ = 0 and Ω1 := {k ∈ R : φ̂(k − i0)ψ(k) = 1}.
(i) If Ω1 has zero measure, then S = L2(R).

(ii) If Ω1 has non-zero measure, then S⊥ 6= {0} and

S = {f ∈ L2(R) : f(k) = ψ(k)
(̂
fφ
)
(k − i0) on Ω1}.

In this case, dim S⊥ = ∞.

We have the following results on complete detectability, i.e. S = L2(R).

Theorem 8. Assume φ · ψ = 0, then complete detectability is generic: Replace ψ
by αψ for α ∈ C and denote the corresponding detectable subspace by Sα. Then
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• for all α outside a countable set E0 we have Sα = L2(R),
• for sufficiently small |α| we have Sα = L2(R).

Many more results on the detectable subspace for the Friedrichs model can be
found in [2].
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The Connection Problem for Solutions of Sturm-Liouville Problems
with two singular endpoints, and its relation to m-Functions

Charles T. Fulton

(joint work with Heinz Langer, Annemarie Luger, Steven Pruess, David Pearson)

In his seminal paper [22, p. 230] Hermann Weyl made the following assertion:

Da sich Gleichungen vom Grenzkreistypus in jeder Hinsicht wie
Gleichungen ohne Singularitäten verhalten, hat man danach den
Grenzkreisfall als den regulären aufzufassen.

It has since become well known that for problems with two singular endpoints,
one LC endpoint is sufficient to guarantee a simple spectrum. Henceforth we re-
strict attention to SL equations on a doubly singular interval (a, b) which have
the LP case at each endpoint. We show that some LP endpoints are also rather
similar to regular endpoints in the sense that they also guarantee a simple spec-
trum, irrespective of the type of LP endpoint at the other singular endpoint. It is
well known that every singular endpoint of a Sturm-Liouville equation must be-
long to exactly one of the following five mutually exclusive endpoint classifications:
LP/N,LP/O,LP/O−N,LC/N,LC/O [21, p.144]. If the left endpoint x = a
is of type LP/N (that is, LP and Nonoscillatory for all real λ) then there exists
a nontrivial solution ϕ(x, λ) of the SL equation satisfying the following properties
(see Fulton, Langer, Luger [4, Assumption A, p.1793] and Gezstesy, Zinchenko [1,
Hypothesis 3.1, p.1058]): (i) ϕ is entire in λ for each x ∈ (a, b), (ii) ϕ is square
integrable near x = a, and (iii) ϕ is real for all x ∈ (a, b) when λ is real. Un-
der these assumptions ([4, p.1795] or [1, p.1065]) the eigenfunction expansion for
(py′)′ + (λr − q)y = 0 has the form

(1) g(x) =

∫ b

a

Fg(λ)ϕ(x, λ)dρ(λ),

where ρ(λ) is a scalar spectral function, and F is the Fourier transform of g.
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The Sturm-Liouville Connection Problem

Under the LP/N assumption at x = a it is possible to select a fundmental system
of solutions {ϕ, ψ} which are both entire in λ, real on the real λ-axis, with ϕ
satisfying the above three properties at x = a, and which are normalized by
p(x) ·Wx(ϕ, ψ) = 1. For Im(z) 6= 0, let Ψ(x, z) be the solution which is square
integrable at the LP endpoint x = b. Then the Sturm-Liouville Connection
Problem is the problem of finding the (complex-valued) constants C1(z) and
C2(z) in the relation of linear dependence (for all x ∈ (a, b) and all Im(z) 6= 0),

(2) Ψ(x, z) = C1(z)ϕ(x, z) + C2(z)ψ(x, z).

This is often a special case of the so-called Central Connection Problem
studied by W. Balser [14, p.193-196] and many others (compare [19] for the related
idea of Stokes multipliers). The Weyl Function arises from (2) as

(3) m(z) = −C1(z)/C2(z).

For all cases investigated so far (which also have the left endpoint being a R.S.P.),
the m − functions arising from the above connection formula approach have
been found to be generalized Nevanlinna functions (see Krein and Langer [20]),
which are not Herglotz; see [2, 3, 4, 6] (Bessel, Associated Legendre, H-atom
equations), K.L. Schmidt [12] (extension to a Dirac operator), and (the earliest
cases) Derkach [16], Dijksma and Shondin [17, 18]) (Bessel, Laguerre equations).
See also recent work on theory and application of cases with two LP endpoints
by G. Teschl, A. Kostenko, A. Sakhnovich, P. Kurasov, A. Luger, L. Silva, and
J. Toleza [7, 8, 9, 10, 11]. Open Problem: Formulate satisfactory normaliza-
tions of the fundamental system {ϕ, ψ} near endpoints of LP/N type, which are
not regular singular points, for example, Lennard-Jones potentials near x = 0:
q(x) = 4ǫ

[
(σ/x)12 − (σ/x)6

]
, ǫ > 0, σ > 0.

The Appell Equations and Spectral Density Functions

For problems where the left endpoint is Regular or a R.S.P. of type LC/N or
LP/N, and the right endpoint, x = ∞, is LP/O−N with cutoff Λ = 0, and q
is absolutely integrable near +∞, Fulton, Pearson and Pruess [5] have recently
obtained the following characterization of the spectral density function:

(4) f(λ) =
1

π[P (x, λ)ϕ(x, λ)2 +Q(x, λ)ϕ(x, λ)ϕ′(x, λ) +R(x, λ)ϕ′(x, λ)2]
,

where (P,Q,R)T is the unique solution of the I.V.P. for the APPELL system

(5)
d

dx



P
Q
R


 =




0 λ− q 0
−2 0 2(λ− q)
0 −1 0


 ·



P
Q
R


 ,

(6) lim
x→∞

(P (x, λ), Q(x, λ), R(x, λ)) =

(√
λ, 0,

1√
λ

)
, λ ∈ (0,∞).
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In (4) the solution ϕ(x.λ) is a solution which is entire in λ and (i) satisfying a
Regular or LC boundary condition at the left endpoint, or (ii) satisfying the above
three properties at a left endpoint of type LP/N. Numerical algorithms using (4)
which achieve near machine precision accuracy were given in [5]. Some applications
where such computations are of importance arise in quantum chemistry, Brändas
et al [15], [5, p.641-642] and in plasma physics, Wilkening and Cerfon [13].

The importance of investigations on spectral multiplicity for ordinary differ-
ential operators (particularly higher order and Hamiltonian systems, where the
problems are mostly wide-open) was emphasized by Naimark in his 1952 book,
Linear Differential Operators (p. 133):

The determination of a minimal generating basis for various classes
of differential operators and consequently the determination of the
multiplicity of the spectrum in relation to the properties of the
coefficients in the differential expression is one of the most import-
ant problems in the theory of differential operators.
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Dirac systems with rational data: explicit formulas and related
nonlinear equations

Marinus A. Kaashoek

The research reported on has its roots in joint work with the late Israel Gohberg
and Alexander Sakhnovich (Vienna), which started in the nineties. The emphasis
is on “early results” rather than on the most recent ones. A main theme is the
use of the state space method of mathematical system theory in solving direct and
inverse problems for differential systems with rational data. The differential sys-
tems will be of Dirac type, selfadjoint or skew-selfadjoint, continuous variable or
discrete variable. These systems are also known as canonical or pseudo-canonical
systems, Zakharov-Shabat systems, AKNS systems (Ablowitz, Kamp, Newell, Se-
gur). Amongst other things they serve as auxiliary systems for integrable nonlinear
PDEs.

Selfadjoint continuous variable setting. Let us begin with a selfadjoint Dirac
system on the positive half line R+:

d

dx
y(x, z) =

(
ijz + ijV (x)

)
y(x, z), x ∈ R+, z ∈ C,

j =

[
Im 0
0 −Im

]
, V (x) =

[
0 v(x)

v(x)∗ 0

]
.

Here Im is the m×m identity matrix, and v is an m×m matrix function which
(by some abuse of terminology) will be referred to as the potential of the system.
Note that the 2m× 2m matrix V (x) is selfadjoint for each x ∈ R+, and hence the
operator H := −ij ddx − V (x) is formally selfadjoint.

Now let us introduce the class of potentials v we shall be dealing with in this
selfadjoint continuous variable setting. We start with two matrices γ1 and γ2, both
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of size n×m, and a square matrix β of size n×n such that β∗−β = iγ2γ
∗
2 . Using

these three matrices we define

(1) A =

[
β∗ γ2γ

∗
2

0 β

]
, B =

[
γ2
γ1,

]
, C =

[
γ∗1 γ∗2

]
,

P =

[
In −iIn
0 0

]
, A× = A−BC.

We shall assume that the potential v is given by

(2) v(x) = −2C
(
Pe−2ixA× |Im P

)−1

PB, x ≥ 0.

The fact that β∗ − β = iγ2γ
∗
2 guarantees that the linear map Pe−2ixA× |Im P ,

acting on the range of P , is invertible, and hence the right hand side of (2) is well-
defined. We call v defined by (2) the pseudo-exponential potential generated by γ1,
γ2, and β, and we shall denote this class of potentials by the acronym PE1. The
pseudo-exponential potentials have their roots in a 1995 paper of Alpay-Gohberg
[1]. More precisely, they are generalizations of the potentials considered in [1].
The following theorem [2, Theorem 4.3] solves the direct spectral problem.

Theorem 1. Let v be the pseudo-exponential potential generated by γ1, γ2, and
β, and let z1, . . . , zp be the real eigenvalues of β. Put

νk = 2πresz=zkγ
∗
1 (zIn − β)−1γ1, k = 1, . . . , p,

W (z) = Im + C(zI2n −A)−1B,

where the matrices A, B, and C are qiven by (1). Then the matrix function

τ(z) =

∫ z

0

W (t) dt+
∑

zk<z

νk

is the nondecreasing piecewise absolutely continuous spectral function of the sel-
fadjoint Dirac system with v as its potential. In particular, the rational matrix
function W has no poles on R and is positive semi-definite on R.

The representation (2) of a potential v in PE1 is very useful in the theory of
integrable nonlinear equations. Indeed, as the following theorem [2, Theorem 6.1]
shows, by adding an additional parameter t we obtain explicit solutions of some
of the classical matrix-valued nonlinear equations.

Theorem 2. Let γ1 and γ2 be n×m matrices, and let β be an n× n matrix with
the additional property β∗ − β = iγ2γ

∗
2 . Put

v(x, t) = 2γ∗1

(
[In − iIn]e

−2i(xA×+t(A×)k)

[
In
0

])−1

(iγ1 − γ2),

where k is a positive integer and

A× =

[
α∗ 0
−γ1γ∗1 α

]
with α := β× = β − γ1γ

∗
2 .
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Then for each t in a sufficiently small interval 0 ≤ t < ε the function v(x, t) is a
pseudo-exponential potential from the class PE1. Moreover, they give solutions of
the matrix nonlinear Schrödinger equation

2
∂v

∂t
+ i

∂2v

∂x2
= 2ivv∗v

if k = 2, and of the matrix modified Korteweg-de Vries equation

4
∂v

∂t
+
∂3v

∂x3
= 3

(
∂v

∂x
v∗v + vv∗

∂v

∂x

)

if k = 3.

If v is a pseudo-exponential potential for a selfadjoint Dirac system generated
by the matrices γ1, γ2, and β, then v can also be written in the form

(3) v(x) = 2θ∗1e
ixα∗

S(x)−1eixαθ2, x ≥ 0,

where α = β − γ1γ
∗
2 , θ1 = γ1, θ2 = iγ1 − γ2, and

(a) α− α∗ = i(θ1θ
∗
1 − θ2θ

∗
2),

(b) S(x) = In +

∫ x

0

Λ(t)Λ(t)∗ dt, with Λ(x) =
[
e−ixαθ1 eixαθ2

]
.

Skew-selfadjoint continuous variable setting. Next we consider a skew-
selfadjoint Dirac system:

d

dx
y(x, z) =

(
ijz + jV (x)

)
y(x, z), x ∈ R+, z ∈ C,

j =

[
Im 0
0 −Im

]
, V (x) =

[
0 v(x)

v(x)∗ 0

]
.

We assume that the potential v belongs to the class PE2, that is, v is given by

(4) v(x) = 2θ∗1e
ixα∗

S(x)−1eixαθ2, x ≥ 0.

where

(c) α is an n × n matrix, θ1 and θ2 are matrices of size n ×m and S0 is an
n× n positive definite matrix satisfying the Lyapunov equation

αS0 − S0α
∗ = i(θ1θ

∗
1 + θ2θ

∗
2);

(d) S(x) is the n× n matrix function given by

S(x) = S0 +

∫ x

0

Λ(t)jΛ(t)∗dt, Λ(x) =
[
e−ixαθ1 eixαθ2

]
.

Although formulas (2) and (4) are identical, the classes PE1 and PE2 are quite
different. This follows from the differences between items (c) and (d) on the one
hand and the preceding items (a) and (b) on the other hand. In the sequel an
ordered set Σ := {α, S0, θ1, θ2} is called an admissible quadruple whenever item (c)
above is fulfilled. In that case S(x) in item (d) is well-defined and positive definite
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for each x ≥ 0, and we refer to the function v defined by (4) as the pseudo-
exponential potential generated by the admissible quadruple Σ = {α, S0, θ1, θ2}.
The notion of an admissible quadruple is closely related to the notion of a so-
called symmetric S-node; see Chapter 2 of [6].

It turns out the Weyl function ϕ of a skew-selfadjoint Dirac system with the
pseudo-exponential potential v determined by an admissible quadruple is a strictly
proper rational matrix function. More precisely, the following theorem [3, Theorem
2.1] holds.

Theorem 3. Assume that the pseudo-exponential potential v of the skew-
selfadjoint Dirac system is generated by the admissible quadruple {α, S0, θ1, θ2}.
Then the system has a unique Weyl function ϕ which is given by

ϕ(z) = iθ∗2S
−1
0 (zIn − α×)−1θ1, α× := α− iθ1θ

∗
1S

−1
0 .

In [3, Theorem 2.1] the matrix S0 is the n× n identity matrix. This additional
condition is not essential; see [5, Theorem 2.5]. The following theorem solves the
corresponding inverse problem.

Theorem 4. Let ϕ be a strictly proper rational m×m matrix function. Then ϕ
is the Weyl function of a skew-selfadjoint Dirac system with a pseudo-exponential
potential v. Moreover, the potential v can be be explicitly recovered from ϕ using
the procedure described below.

Step 1. Let n be the McMillan degree of ϕ, and construct a minimal realization
of ϕ:

ϕ(z) = iβ∗
2(zIn − γ)−1β1.

Step 2. Consider the algebraic Riccati equation

γX −Xγ∗ − iXβ2β
∗
2X + iβ1β

∗
1 = 0,

and use the fact (Kalman-Falb-Arbib, 1969) that this equation has a unique positive
definite solution X.

Step 3. Put

S0 = In, θ1 = X−1/2β1, θ2 = X1/2β2,

α = X−1/2γX1/2 + iθ1θ
∗
1 .

Then α − α∗ = i(θ1θ
∗
1 + θ2θ

∗
2). Thus Σ = {α, S0, θ1, θ2} is an admissible quad-

ruple and ϕ is the Weyl function of the skew-selfadjoint Dirac system of which the
pseudo-exponential potential is generated by Σ.

Theorem 2 has a natural analogue in the skew-selfadjoint case; see Theorem 4.1
in [3].

Skew-selfadjoint Dirac systems in a discrete variable setting. More recent
research [4] and [5] deals with pseudo-exponential potentials for discrete variable
skew-selfadjoint Dirac systems:
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yk+1(z) =
(
I2m + iz−1Ck

)
yk(z), k ∈ N0, z ∈ C,

Ck = U∗
k jUk, Uk unitary 2m× 2m matrix.

The sequence {Ck}k∈N0 is called the potential ; in math physics the term spin
sequence is used. Note that Ck = C∗

k = C−1
k for all k ∈ N0.

To define a pseudo-exponential potential in the discrete case we start with an
admissible quadruple Σ = {α, S0, θ1, θ2}, which is now assumed to be strongly
admissible, i.e., the pair {α, θ1} is required to be controllable. The latter implies
that the eigenvalues of α all belong to the open upper half plane C+. Put

Σk = {α, Sk, (In + iα−1)kθ1, (In − iα−1)kθ2},

Λk =
[
(In + iα−1)kθ1 (In − iα−1)kθ2

]
,

Sk =

∫ ∞

−∞

(λIn − α)−1ΛkΛ
∗
k(λIn − α∗)−1 dλ.

Then the quadrupple Σk is again strongly admissible. The sequence

Ck = j + Λ∗
kS

−1
k Λk − Λ∗

k+1S
−1
k+1, k ∈ N0,

is called the pseudo-exponential potential generated by the strongly admissible quad-
ruple Σ = {α, S0, θ1, θ2}.

It turns out (see [5, Theorems 3.8 and 3.9]) that the solutions of the direct
and inverse problems for Weyl functions in the discrete variable skew-selfadjoint
setting are very similar to those for the continuous variable case. Indeed (see
[5, Theorem 3.8]), for a discrete variable skew-selfadjoint Dirac system with a
pseudo-exponential potential generated by the strongly admissible quadruple Σ =
{α, S0, θ1, θ2} the Weyl function is given by the strictly proper rational matrix
function

ϕ(z) = −iθ∗1S−1
0 (zIn + γ)−1θ2, γ := α− iθ2θ

∗
2S

−1
0 .

Conversely (see [5, Theorem 3.9]), any strictly proper rational matrix function
appears as the Weyl function of such a system, and the procedure to solve the
inverse problem is analogous to the procedure describe in Theorem 4.

Analogous to the continuous variable case, skew-selfadjoint discrete variable
systems with a pseudo-exponential potential depending on an additional continu-
ous time parameter lead to explicit solutions of discrete integrable nonlinear equa-
tions. For the scalar the nonlinear equations correspond to the isotropic Heisenberg
magnet model [4]. For matrix-valued, possibly non-square, pseudo-exponential po-
tentials the equations involved are related to the generalized discrete Heisenberg
model [5, Section 4].

Finally, the results presented in this talk are exemplary for a range of analogous
results involving other classes of functions (e.g., scattering functions, reflection
coefficients, transmission coefficients), or other classes of systems (e.g., Sturm-
Liouville systems or full line systems). The references can be found in the book [7].
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On the asymptotic spectral density of one-dimensional Dirac operators

Karl Michael Schmidt

The radial Dirac operator

−iσ2
d

dr
+mσ3 +

k

r
σ1 + q(r), 0 < r <∞,

with mass m ∈ R, angular momentum quantum number |k| ≥ 1
2 and real-valued,

locally integrable potential q is known to have purely absolutely continuous spec-

trum covering the real line if lim
r→∞

q(r) = −∞ and the Erdélyi condition
∞∫ |q′|

q2 <∞
is satisfied [2], [3]. In [1], the question of whether the spectral density has local
maxima as the spectral parameter tends to ∞ (“high-energy points of spectral
concentration”) was studied, and it is the purpose of the present work to give an
answer to this question.

Our approach to the spectral density does not use the Weyl-Titchmarsh m
function, but is based on the oscillation method for real spectral parameter only.
Although the problem has 2 singular end-points, there is a single spectral function
and a spectral expansion in terms of one solution. The key is the following set of
observations.

Theorem 1 (see [1], Theorem 1). Let k ≥ 1
2 , q ∈ L1

loc[0,∞). Then, for each
λ ∈ R,

(−iσ2
d

dr
+mσ3 +

k

r
σ1 + q(r))u(r) = λu(r)
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has a unique R2-valued solution w(r, λ) =

(
o(1)

1 + o(1)

)
rk (r → 0). When we

introduce Prüfer variables w = |w|
(
sinϑ
cosϑ

)
, the angle satisfies lim

r→0
ϑ(r, λ) = 0,

lim
r→0

∂
∂λϑ(r, λ) = 0.

Lemma 2 (see [1], Corollary 1; Theorem 2). With w, ϑ as above,

∂ϑ

∂λ
(r, λ) =

1

|w(r, λ)|2
∫ r

0

|w(t, λ)|2 dt (r > 0, λ ∈ R);

∂ϑ

∂λ
(r, λ) = r(1 + o(1)) (λ→ ∞).

By a spectral averaging argument, combined with the fact that, under the
above assumptions on q, the limit |w(∞, λ)| := lim

r→∞
|w(r, λ)| exists, this can be

used to show that the spectral expansion formula with respect to Φ, the canonical
fundamental system at an intermediate point c ∈ (0,∞), is given by

f(x) =

∫

R

Φ(x, λ)
w(c, λ)w(c, λ)T

π |w(∞, λ)|2
∫ ∞

0

Φ(y, λ)T f(y) dy dλ (f ∈ L2(0,∞)2).

Hence, considering a fundamental system Ψ = (w | z), where z is any linearly
independent solution, a straightforward calculation gives

f(x) =

∫

R

w(x, λ)

∫ ∞

0

w(y, λ)T f(y) dy
dλ

π |w(∞, λ)|2 (f ∈ L2(0,∞)2).

It remains to study, for large λ, the spectral density

1

π |w(∞, λ)|2

=
1

π
exp

(
−2 log |w(c, λ)| − 2

∫ ∞

c

(
k

s
cos 2ϑ(s, λ) +m sin 2ϑ(s, λ)) ds

)
.

By repeated integrations by parts, it was shown in [1] that

d

dλ

∫ ∞

c

(
k

s
cos 2ϑ(s, λ)+m sin 2ϑ(s, λ)) ds

= −mc sin 2ϑ(c, λ) + k cos 2ϑ(c, λ)

λ− q(c)
+ o(

1

λ
)

(λ→ ∞), provided q satisfies the additional hypotheses

q, q′ ∈ ACloc(0,∞),−q(r) ≥ Cra

for some C, a > 0, and either

(P ) ∃C̃ > 0 : |q(k)(r)| ≤ C̃ra−k (k ∈ {1, 2})
or

(E)

{
∃δ > 0 : rq(k)

|q|1+δ ∈ L1(0,∞) (k ∈ {1, 2})
∀ε > 0 : q′(r)

|q(r)|1+ε = O(1) (r → ∞).



Spectral Theory and Weyl Functions 53

If q is constant (w.l.o.g., q = 0) on [0, c], symmetries of the differential equation
can be used to show that

∂

∂λ
log |w(r, λ)| = −k

λ
+
k

λ
cos 2ϑ(r, λ) +

rm

λ
sin 2ϑ(r, λ) +O(

1

λ2
) (λ→ ∞).

Combining these asymptotics, we find

d

dλ

1

π |w(∞, λ)|2 =

(
2k

λ
+ o(

1

λ
)

)
1

π |w(∞, λ)|2 (λ→ ∞),

which shows that the spectral density is eventually strictly monotonic, so there
are no high-energy points of spectral concentration, and that the spectral density
has asymptotic estimates

λ2k−ε <<
1

π |w(∞, λ)|2 << λ2k+ε (λ→ ∞)

for all ε > 0.
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Remarks on the convergence of pseudospectra

Sabine Bögli

(joint work with Petr Siegl)

For ε > 0 the ε-pseudospectrum of a closed operator T acting in a Banach space X
is defined as the set

(1) σε(T ) := σ(T ) ∪
{
λ ∈ ρ(T ) : ‖(T − λ)−1‖ > 1

ε

}
.

While the ε-pseudospectrum of a normal operator in a Hilbert space coincides with
the open ε-neighbourhood of the spectrum, the situation is more involved in the
non-normal case or for operators acting in Banach spaces, see the classical book by
Trefethen and Embree [8]. In this talk we address the convergence of pseudospectra
for sequences of unbounded operators and the related problem when the resolvent
norm of an operator T may be constant on an open subset of the resolvent set ρ(T ).

In view of applications in PDEs, e.g. the domain truncation method where the
operators T and Tk act in different Hilbert spaces H and Hk, we employ the so-
called generalised norm resolvent convergence where the spaces are assumed to be
subspaces of a larger Hilbert space and the projected resolvents converge in norm,

(2) ∃λ0 ∈
⋂

k∈N

ρ(Tk) ∩ ρ(T ) : ‖(Tk − λ0)
−1PHk

− (T − λ0)
−1PH‖ −→ 0.



54 Oberwolfach Report 1/2015

The first main result we present is the pseudospectral convergence (in Hausdorff
distance) for a sequence of operators that converges in generalised norm resolvent
sense. This is a generalisation of Hansen’s result [4] for a sequence of operators
acting in the same space (and converging in gap topology which is equivalent to
norm resolvent convergence).

The pseudospectral convergence result relies on the condition that the limiting
operator T does not have constant resolvent norm on an open set; for classes of
operators which do not a priori satisfy this condition, it needs to be guaranteed
by assumption.

Whether the resolvent norm of a bounded operator in a Banach space can be
constant on an open set was first studied by Globevnik [3]. He showed that this
cannot happen in the unbounded component of the resolvent set. Since then,
the occurrence of constant resolvent norm on an open set has been studied in
particular by Shargorodsky et al. [5, 7, 6, 2]. The occurrence has been excluded
if the Banach space X satisfies certain convexity properties (that are satisfied for
Hilbert spaces and Lp-spaces with 1 ≤ p ≤ ∞) and the operator T acting in X
is i) bounded, or ii) the generator of a C0-semigroup, or iii) densely defined with
compact resolvent.

On the other hand, several examples are known in which the resolvent norm
is constant on an open set; there are examples of bounded operators in carefully
chosen Banach spaces that violate the convexity assumptions, but there exist also
examples of unbounded operators in Hilbert spaces.

As the second main result, we prove that if a closed operator T (acting in a
Hilbert space or, more generally, in a complex uniformly convex Banach space) has
constant resolvent norm on an open set, then this constant is the global minimum.
As a consequence, a resolvent norm decay (along some path in ρ(T ) tending to
infinity) is a sufficient condition for excluding constant resolvent norm on an open
set. This applies in particular if T is bounded or generates a C0-semigroup, thus
generalising Shargorodsky’s conditions i) and ii) above.
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Some remarks on Weyl–Titchmarsh and Donoghue m-functions

Fritz Gesztesy

(joint work with S. Clark, S. Naboko, R. Nichols, R. Weikard, and M. Zinchenko)

We report on recent results on m-functions for Schrödinger operators based on [2]
and [3]. For brevity, we will focus on the case of scalar potentials only.

Starting with the half-line case, we asssume V ∈ L1([0, R]) for all R > 0, V

real-valued, and introduce the differential expression τ+ = − d2

dx2 + V (x), x ≥ 0.
To avoid boundary conditions at ∞, we suppose that τ+ is in the limit point case
at ∞ and denote the self-adjoint operator in L2([0,∞)) associated with τ+ and
the boundary condition sin(α)g′(0+) + cos(α)g(0+) = 0 by H+,α, α ∈ [0, π).

Next, let φα(z, · ), θα(z, · ), z ∈ C, be a normalized fundamental system of
solutions of τ+ψ = zψ given by,

φα(z, 0) = −θ′α(z, 0) = − sin(α), φ′α(z, 0) = θα(z, 0) = cos(α), α ∈ [0, π).

(Here ′ ≡ d/dx.) Weyl–Titchmarsh solutions ψ+,α(z, · ) of τ+ψ = zψ, z ∈ C\R,
are the unique solutions satisfying

ψ+,α(z, · ) ∈ L2([0,∞)), sin(α)ψ′
+,α(z, 0+)+cos(α)ψ+,α(z, 0+) = 1, α ∈ [0, π).

Uniqueness of ψ+,α(z, · ) is a consequence of the limit point hypothesis and hence
ψ+,α(z, · ) is necessarily of the form

ψ+,α(z, x) = θα(z, x) + φα(z, x)m+,α(z), z ∈ C\R, x ∈ R, α ∈ [0, π),

with m+,α(·) the Weyl–Titchmarsh m-function for H+,α. m+,α(·) is well-known
to be a Nevanlinna–Herglotz function (mapping C+ to C+ analytically, C+ = {z ∈
C | Im(z) > 0}), and hence there exists a (nonnegative) measure dρ+,α such that

m+,α(z) = Re(m+,α(i)) +

∫

R

dρ+,α(λ)
1 + λz

(λ2 + 1)(λ− z)
, α ∈ [0, π),

and
∫
R
dρ+,α(λ)[|λ|2 + 1]−1 <∞, α ∈ [0, π).

With ET (·) the family of spectral projections for a self-adjoint operator T in
the Hilbert space H, and σ(T ) the spectrum of T , dρ+,α(·) ∼ dEH+,α(·), that
is, dρ+,α(·) is a (scalar) control measure for the operator-valued spectral measure
dEH+,α(·) of H+,α. In particular, supp(dρ+,α(·)) = supp(dEH+,α(·)) = σ(H+,α).

Due to our limit point assumption on τ+ at infinity, it is known that

m+,α(z) = − lim
x→∞

θα(z, x)/φα(z, x), z ∈ C\R, α ∈ [0, π),

and using the elementary fact (for z ∈ C\R)

φα(z, x) = − tan(α)θα(z, x) + θα(z, x)

∫ x

0

dx′

θα(z, x′)2
, α ∈ [0, π)\{π/2},

θα(z, x) = − cot(α) − φα(z, x)

∫ x

0

dx′

φα(z, x′)2
, α ∈ (0, π),
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one readily obtains for z ∈ C\R,

m+,α(z) =




limx→∞

[
tan(α) −

∫ x
0 dx

′ θα(z, x
′)−2

]−1

, α ∈ [0, π)\{π/2},

cot(α) + limx→∞

∫ x
0
dx′ φα(z, x

′)−2, α ∈ (0, π).

If in addition, τ+ is also nonoscillatory at ∞, then H+,α is bounded from below
(i.e., for some cα ∈ R, H+,α ≥ cαI), and the previous limits of integrals exist as
Lebesgue integrals (employing Hartman’s theory of (non)principal solutions) and
they extend to all z ∈ C\[cα,∞) in the form

m+,α(z) =





[
tan(α) −

∫∞

0 dx′ θα(z, x
′)−2

]−1

, α ∈ [0, π)\{π/2},

cot(α) +
∫∞

0
dx′ φα(z, x

′)−2, α ∈ (0, π).

The case α = 0 appeared in [4] (see also [5]); the case of matrix-valued potentials
V has recently been dealt with in [2].

Turning to the half-line Donoghue m-function next, we recall the minimal and
maximal operators H+,min and H+,max associated with τ+ (the former with the
boundary conditions g(0+) = g′(0+) = 0, the latter without any boundary con-
ditions, both being closed operators), satisfying H+,min ⊂ H+,α ⊂ H+,max =
H∗

+,min, the defect space for H+,min is spanned by ψ+,α(z, · ),
ker(H∗

+,min − zI) = lin.span{ψ+,α(z, · )}, z ∈ C\R, α ∈ [0, π).

The Donoghue definition of the m-function for H+,α then reads (cf. [1])

mDo
+,α(z) = z + (z2 + 1)

(
ψ+,α(i), (H+,α − zI)−1ψ+,α(i)

)
L2([0,∞))

‖ψ+,α(i)‖−2
L2([0,∞))

=

∫

R

dωDo+,α(λ)
1 + λz

(λ2 + 1)(λ− z)
, z ∈ C\R, α ∈ [0, π),

where

dωDo+,α(λ)[λ
2 + 1]−1 = d‖EH+,α(λ)ψ+,α(i)‖2L2([0,∞))‖ψ+,α(i)‖−2

L2([0,∞)), α ∈ [0, π).

One notes the normalization, mDo
+,α(±i) = ±i, and since ‖ψ+,α(z, · )‖2L2([0,∞)) =

Im
(
m+,α(z)

)/
Im(z), z ∈ C\R, this yields the relationships

mDo
+,α(z) =

[
m+,α(z)− Re

(
m+,α(i)

)][
Im
(
m+,α(i)

)]−1
, z ∈ C\R,

dωDo+,α(·) =
1

Im
(
m+,α(i)

)dρ+,α(·), α ∈ [0, π),

and hence, dωDo+,α(·) ∼ dρ+,α(·) ∼ dEH+,α(·), and
supp

(
dωDo+,α(·)

)
= supp

(
dρ+,α(·)

)
= supp(dEH+,α(·)) = σ(H+,α), α ∈ [0, π).

This is in accordance with ψ+,α(i, · ), and hence ψ+,α(z, · ) for all fixed z ∈ C\R,
α ∈ [0, π), being a cyclic vector for H+,β for all β ∈ [0, π).

Continuing with the full-line case, we assume V ∈ L1
loc(R; dx), V real-valued,

such that the differential expression τ = − d2

dx2 + V (x), x ∈ R, is in the limit point
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case at ±∞. The associated self-adjoint and maximally defined Schrödinger oper-
ator in L2(R; dx) is then denoted by H . Introducing Weyl–Titchmarsh solutions
of τψ = zψ and m-functions, ψ±,α(z, · ) and m±,α(z), z ∈ C\R, corresponding to
any neighborhood of ±∞, one now has

ψ±,α(z, x) = θα(z, x) + φα(z, x)m±,α(z), z ∈ C\R, x ∈ R, α ∈ [0, π),

and obtains for the 2× 2 matrix-valued Weyl–Titchmarsh function for H ,

Mα(z) =

(
1

m−,α(z)−m+,α(z)
1
2
m−,α(z)+m+,α(z)
m−,α(z)−m+,α(z)

1
2
m−,α(z)+m+,α(z)
m−,α(z)−m+,α(z)

m−,α(z)m+,α(z,x0)
m−,α(z)−m+,α(z)

)
, z ∈ C\R, α ∈ [0, π).

Mα(·) is a 2× 2 matrix-valued Nevanlinna–Herglotz function with representation

Mα(z) = Re(Mα(i)) +

∫

R

dΩα(λ)
1 + λz

(λ2 + 1)(λ− z)
, z ∈ C\R, α ∈ [0, π),

with
∫
R
‖dΩα(λ)‖[1 + λ2]−1 < ∞, α ∈ [0, π). Thus, dΩα(·) ∼ dEH(·) and

supp(dΩα(·)) = supp(dEH(·)) = σ(H), α ∈ [0, π).
Decomposing R = (−∞, 0]∪ [0,∞) and P±L

2(R) = L2([0,±∞)), one is lead to
the corresponding 2× 2 matrix-valued Donoghue m-function for H ,

MDo
α (z) = z I2 + (z2 + 1)×

×
((

P−ψ−,α(i),(H−zI)−1P−ψ−,α(i)
)
L2(R)

(
P−ψ−,α(i),(H−zI)−1P+ψ+,α(i)

)
L2(R)(

P+ψ+,α(i),(H−zI)−1P−ψ−,α(i)
)
L2(R)

(
P+ψ+,α(i),(H−zI)−1P+ψ+,α(i)

)
L2(R)

)

= T ∗
αMα(z, x0)Tα + Cα, α ∈ [0, π),

where Tα and Cα = C∗
α are z-independent 2×2 matrices, Tα is invertible and Cα is

off-diagonal. Again,MDo
α (·) is a 2×2 matrix-valued Nevanlinna–Herglotz function

and its associated 2 × 2 nonnegative matrix-valued measure dΩDoα (·) contains all
the spectral information for H in L2(R), dΩDoα (·) ∼ dΩα(·) ∼ dEH(·). Especially,
{P−ψ−,α(i), P+ψ+,α(i)} generates a cyclic subspace for any self-adjoint extension
of Hmin = H−,min ⊕ H+,min, and hence for H in L2(R). The case of bounded
operator-valued potential coefficients V is discussed in [3].
Acknowledgements. F.G., S.N., R.W. are indebted to J. Behrndt, M. Brown, M.
Plum, and C. Tretter for their kind invitation to this most stimulating workshop.
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L1-Estimates for Eigenfunctions of the Dirichlet Laplacian.

Rainer Hempel

(joint work with Michiel van den Berg and Jürgen Voigt)

For d ∈ N and Ω ⊂ Rd open, we consider the Dirichlet Laplacian HΩ of Ω, defined
as the Friedrichs extension of −∆ on C∞

c (Ω). Note that Ω need not be bounded
nor of finite volume; also, no boundary regularity is required. The spectrum
σ(HΩ) is the disjoint union of the essential spectrum, σess(HΩ), and the discrete
spectrum σdiscr(HΩ). It is well-known that HΩ has compact resolvent if and only
if σess(HΩ) = ∅; in this case, σ(HΩ) consists in a sequence of positive eigenvalues
tending to infinity, each of finite multiplicity. HΩ has compact resolvent if Ω is
bounded or of bounded volume, but neither condition is necessary.

In this note, we discuss eigenfunctions Φ of HΩ, associated with a discrete
eigenvalue, where we provide upper bounds for the L1-norm ‖Φ‖1 in terms of the
L2-norm ‖Φ‖2 and spectral data of HΩ. In view of an important application in the
problem of the heat content of Ω as discussed in van den Berg and Davies [1], the
possibility and the structure of an estimate on ‖Φ‖1 in terms of spectral data was
recently formulated as an open problem in an Oberwolfach report [3]; here a key
requirement was to find an estimate which would be independent of the volume of
Ω. We are now happy to provide a solution to this problem.

For simplicity, we describe our main results only for the case where HΩ has
compact resolvent. Here the eigenvalues can be ordered according to the min-
max-principle as 0 < λ1 ≤ λ2 ≤ . . . ≤ λk ≤ λk+1 ≤ . . ., with λk → ∞ as k → ∞.
We will also use the eigenvalue counting function

Nt := max{k ∈ N ; λk < t}, t > 0.(1)

We then have:

Theorem 1 (van den Berg, Hempel, and Voigt [4], Vogt [5]). For Ω ⊂ Rd open
with σess(HΩ) = ∅, we have

‖Φ‖21 ≤ Cλ
−d/2
k N2λk

(HΩ)‖Φ‖22,(2)

for all eigenfunctions Φ of HΩ associated with the eigenvalue λk.

Remarks.
(a) The constant C in (2) can be given an explicit value which depends only on

the dimension d ([5]).
(b) For Ω of bounded volume |Ω|, the Schwarz inequality yields the simple

estimate ‖u‖21 ≤ |Ω|‖u‖22 for any u ∈ L2(Ω). One could argue that N2λk
(HΩ) is a

substitute for |Ω|.
(c) The “classical” heat-kernel bound

‖Φ‖∞ ≤ C1λ
d/4‖Φ‖2,(3)
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valid for eigenfunctions of HΩ associated with the eigenvalue λ, immediately gives
a lower bound on the L1-norm of the form

‖Φ‖1 ≥ C2λ
−d/4‖Φ‖2.(4)

(d) Very roughly, the basic idea of proof goes as follows: By means of an IMS-

partition of unity, we find a subset Ω̃ ⊂ Ω which satisfies two requirements: first,
the volume |Ω̃| can be estimated in terms of N2λk

; second, the eigenfunctions Φ

as in Thm. I decay exponentially away from Ω̃ with a quantitative control of the
decay. The progress in [5] as compared to [4] lies mainly in the second property.

(e) The method of proof of [4] is rather robust and flexibel and allows for gener-
alizations in various directions, including Schrödinger operators, elliptic operators
in divergence form, or Laplace-Beltrami operators as in [2]. There is ongoing re-
search in this direction by M. Stautz (Ph.D.-thesis, TU Braunschweig) with several
promising preliminary results.

We now turn to an application of Theorem 1 to the heat content and the heat
trace of Ω. Suppose 0 ≤ u = u(x, t) solves the heat equation on Ω with Dirichlet
boundary conditions zero and initial condition u(x, 0) = 1 for all x ∈ Ω. The heat
content of Ω at time t ≥ 0 is

QΩ(t) :=

∫

Ω

u(x, t)dx =

∫

Ω

∫

Ω

pΩ(x, y; t)dxdy ∈ [0,∞],(5)

with pΩ denoting the heat kernel. If HΩ has compact resolvent, pΩ has an expan-
sion in terms of an orthonormal basis of eigenfunctions {Φk}k∈N of HΩ,

pΩ(x, y; t) =

∞∑

k=1

e−tλkΦk(x)Φk(y),(6)

and thus

QΩ(t) ≤
∑

k

e−tλk‖Φk‖21 ∈ [0,∞].(7)

A somewhat simpler quantity is the heat trace of Ω, given by

ZΩ(t) =
∑

k

e−λkt ∈ [0,∞].(8)

It has been shown in [1] that

ZΩ(t) ≤ (2πt)−d/2QΩ(t/2),(9)

for all t > 0. Our Thm. 1 implies that QΩ(t) is finite for all t > 0 provided ZΩ(t)
is finite for all t > 0. More precisely, we have the following estimate:

Theorem 2 ([4], [5]). Suppose HΩ has compact resolvent. Then for all t0 > 0
and t > 2t0,

QΩ(t) ≤ Cε,dλ
−d/2
1 Z2

Ω(
t

2 + ε
), 0 < ε <

t

t0
− 2;(10)

the constant Cε,d in (10) depends only on d and ε.
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Spectral results for mixed problems and fractional order elliptic
operators

Gerd Grubb

1. Krein formula for the mixed problem. Let Ω be bounded smooth open
⊂ Rn, with ∂Ω = Σ. Denote ∂jnu|Σ = γju, j ∈ N0. For the L2-Sobolev space

Hs(Rn), we denote rΩH
s(Rn) = Hs(Ω), {u ∈ Hs(Rn) | suppu ⊂ Ω} = Ḣs(Ω).

Consider a symmetric strongly elliptic second-order differential operator on Ω

Au = −
∑n

j,k=1
∂j(ajk(x)∂ku) + a0(x)u,

with real C∞-coefficients. The associated sesquilinear form a(u, v) is coercive on
H1(Ω), and we can assume it positive by adding a constant to a0. Set νu =∑
njγ0(ajk∂ku), the conormal derivative. Realizations of A:

The maximal realization Amax with D(Amax) = {u ∈ L2(Ω) | Au ∈ L2(Ω)}.
The Dirichlet realization Aγ with D(Aγ) = {u ∈ H2(Ω) | γ0u = 0}.
The Neumann realization Aν with D(Aν) = {u ∈ H2(Ω) | νu = 0}.
A mixed realization Aν,U . Here U is a smooth open subset of Σ, and

D(Aν,U ) = {u ∈ H1(Ω) ∩D(Amax) | νu = 0 on U, γ0u = 0 on Σ \ U}.
The latter three are defined variationally from the form considered on Ḣ1(Ω),
H1(Ω), resp.H1

U (Ω) = {u ∈ H1(Ω) | supp γ0u ⊂ U}. They are selfadjoint positive,

and whereas D(Aγ), D(Aν) ⊂ H2(Ω), it is known that D(Aν,U ) ⊂ H
3
2−ε(Ω) only.

Let Z = kerAmax, and let Kγ denote the Poisson operator Kγ : ϕ 7→ u solving
the semihomogeneous Dirichlet problem Au = 0 on Ω, γ0u = ϕ on Σ; it maps e.g.

Kγ : H
− 1

2 (Σ)
∼→ Z, closed subset of L2(Ω).

Let P = νKγ , the Dirichlet-to-Neumann operator; it is known to be a
symmetric pseudodifferential operator on Σ of order 1.

Proposition 1. Let x′ ∈ Σ and choose coordinates such that the interior normal
is (0, . . . , 0, 1). Write the principal symbol of A at x′ as ann(x

′)ξ2n +2b(x′, ξ′)ξn +
c(x′, ξ′), and let

m(x′, ξ′) = ann(x
′)c(x′, ξ′)− b(x′, ξ′)2,
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it is positive for ξ′ 6= 0 by the ellipticity of A.
Then P has principal symbol p0(x′, ξ′) = −m(x′, ξ′)

1
2 at x′.

Hence if M is a symmetric differential operator on Σ with principal symbol m,
P = −M 1

2+ order 0.

For the mixed problem, define on Σ the restriction operator r+ : ϕ→ ϕ|U , and
the extension operator e+ extending ψ on U by 0 on Σ\U . When Q is an operator
over Σ we denote r+Qe+ = Q+ (truncation).

Let X = Ḣ− 1
2 (U) (the subspace of distributions in H− 1

2 (Σ) supported in U).

Its dual space is X∗ = H
1
2 (U) = r+H

1
2 (Σ). Define V = Kγ(X) ⊂ Z and denote

the restriction Kγ |X by

Kγ,X : X
∼→ V, with adjoint K∗

γ,X : V
∼→ X∗.

In J.Math.An.Appl.’11, we showed:

Theorem 2. For the mixed problem there is an operator L mapping D(L) ⊂ X
bijectively onto X∗ such that the Krĕın resolvent formula holds:

A−1
ν,U −A−1

γ = iVKγ,XL
−1K∗

γ,XprV ≡ T. (1)

Here L acts like −P+ and has

D(L) = {ϕ ∈ X | P+ϕ ∈ X∗} ⊂ Ḣ1−ε(U).

In the same paper we also determined the spectral asymptotics of T , when
A = −∆+ lower order terms. The crucial point is to understand L−1. (It is NOT
the same as −(P−1)+.) The methods were based on Eskin ’81, Birman-Solomiak
’77, Laptev ’81. Now a new tool is available: Boundary value theories for fractional
powers of elliptic operators. This will allow general A.

2. Boundary problems for fractional order operators. A basic example of
a ps.d.o. of noninteger order is the fractional Laplacian (−∆)a, 0 < a < 1:

(−∆)au = F−1(|ξ|2aû(ξ)), û(ξ) = Fu =

∫

Rn′

e−ix·ξu(x) dx.

It is currently of interest both in probability, finance, mathematical physics and
geometry. More general example: Ma, where M is a 2’order strongly elliptic
differential operator on Rn

′

. Ma is a ps.d.o. of order 2a by Seeley ’66.
Let U be bounded smooth open ⊂ Rn

′

. Dirichlet problem for Ma on U?
Let ma(u, v) = (Mau, v) for u, v ∈ C∞

0 (U). It satisfies

Rema(u, u) ≥ c‖u‖2a − k‖u‖20, c > 0, k ∈ R,

and its closure with domain Ḣa(U) defines an operator Ma
Dir in L2(U) by vari-

ational theory. It acts likeMa
+, with D(Ma

Dir) ⊂ Ḣa(U). It represents the problem

Ma
+u = f, u sought in Ḣa(U). (2)

Regularity results for (2) are quite recent.
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Ros-Oton and Serra in J.An.Pur.Appl.’14 showed by potential theory and in-
tegral operator methods, when M = −∆ and U is C1,1, that

f ∈ L∞(U) =⇒ u ∈ daCα(U) ∩ Ca(U), (3)

for some α > 0. Here d(x) = dist(x, ∂U). They stated that they did not know of
other regularity results for (−∆)a in the literature.

Ps.d.o. methods? The Boutet de Monvel calculus ’71 requires integer order plus
a so-called 0-transmission property at ∂U . Ma is not covered.

But we have recently developed another calculus. It is based on a more gen-
eral µ-transmission property, introduced by Hörmander in his 1985 book (in fact
in an unpublished lecture note from IAS Princeton 1965). Here Ma has the a-
transmission property, since the symbol has even parity and is of order 2a.

It allows to improve the information in (3) to u ∈ daCa(U) and to get higher reg-
ularity: f ∈ Ct(Ω) =⇒ u ∈ daCa+t(Ω) for t > 0 (Adv.Math.’15, Anal.&PDE’14),

The results rely on constructing an approximate inverse ofMa
Dir (a parametrix).

Consider a localized situation where U and Σ \U are replaced by, respectively,

Rn
′

± = {x | ±xn′ > 0}. There exist order-reducing operators:

Theorem 3. There exist two families of ps.d.o.s Λ
(t)
± of order t ∈ R, preserving

support in R
n′

± , respectively, such that for all s ∈ R,

Λ
(t)
+ : Ḣs(R

n′

+ )
∼→ Ḣs−t(R

n′

+ ), (Λ
(t)
− )+ : Hs(Rn

′

+ )
∼→ Hs−t(Rn

′

+ ).

Theorem 4. On Ḣa(U), the operator Ma
+ can be written in the form

Ma
+ = (Λ

(a)
− )+r

+QΛ
(a)
+ , (4)

where Q is a ps.d.o. of order 0 in the Boutet de Monvel calculus, such that the
problem

Q+v = g, supp v ⊂ R
n′

+ , (5)

is well-posed. Here the solution to (2) is found as Λ
(−a)
+ e+v, when g = (Λ

(−a)
− )+f .

Theorem 5. Let Q̃+ + G0 be a parametrix for (5) (G0 being a singular Green
op. of order and class 0 in the B.d.M. calculus). Then the problem (2) has the
parametrix

R = (Λ
(−a)
+ )+(Q̃+ +G0)(Λ

(−a)
− )+. (6)

Similar results can be obtained in the situation of the manifold Σ = ∂Ω and its
subset U (of dimension n′ = n− 1).

For spectral asymptotics, we have a general result for truncated ps.d.o.s: When

P = P1,+ . . . Pl0,+(P0,+ +G)Pl0+1,+ . . . Pl,+,

where P0 is of order 0, G is a sing. Green op. on U of order and class 0, the Pj are
of order −tj < 0, then the singular values sk(P) satisfy, with t = t1 + · · ·+ tl,

sk(P)kt/(n−1) → C(P) for k → ∞,
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C(P) defined from the principal symbols on U . This applies immediately to (6).

3. Application to the mixed problem. Consider (1). Since L = −P+ is of

the form M
1
2
++ lower order terms by Proposition 1, we can show that L−1 = R+

l.o.t., where R is the parametrix of M
1
2

Dir. Then

T = iVKγ,XRK
∗
γ,XprV + l.o.t.

The operators surrounding R are replaced by truncated ps.d.o.s on U in a similar
way as in J.Math.An.Appl.’11, and we arrive at the result (in J.Math.An.Appl.’15):

Theorem 6. The eigenvalues of T satisfy

µk(T )k
2/(n−1) → C(T ) for k → ∞,

where C(T ) is an integral over U of a function defined from the principal symbols:

C(T ) = 1
(n−1)(2π)n−1

∫

U

∫

|ξ′|=1

( ann(x
′)

2m(x′, ξ′)

)n−1
2

dω(ξ′)dx′.

The finite section method for dissipative Jacobi and Schrödinger
operators

Marco Marletta

(joint work with Sergey Naboko, Rob Scheichl)

We consider the approximation of the essential spectrum by finite section methods,
for dissipative Schrödinger operators in L2(0,∞) with a regular endpoint at 0, and
dissipative Jacobi matrices in ℓ2(N).

In the Schrödinger case, our starting point is an operator L0 given by an ex-
pression

L0u = −u′′ + q(x)u,

in which the real-valued potential q is in the limit-point case at infinity and in-
tegrable at 0; at 0 we impose, without loss of generality, a Dirichlet boundary
condition. The domain of L0 is thus

D(L0) = {u ∈ L2(0,∞) | − u′′ + qu ∈ L2(0,∞), u(0) = 0}
and L0 is self-adjoint. We make no further assumptions about the spectrum of
L0, which may be any closed, unbounded-above subset of R. We are interested in
the finite section method applied to the dissipative operator

L = L0 + is(x)·,
in which s is a bounded, non-negative element of L1(0,∞). In applications using
dissipative barrier methods s usually has compact support - say, supp(s) ⊆ [0, N ]
for some N > 0 - and is often the characteristic function of some finite interval.
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In the case of Jacobi operators we start with a self-adjoint operator in ℓ2(N)
represented formally by an infinite matrix

J0 =




b1 a1 0 0 0 · · ·
a1 b2 a2 0 0 · · ·
0 a2 b3 a3 0 · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·




and we consider the finite section method applied to

J = J0 + idiag(s1, s2, . . .),

in which sj ∈ ℓ1(N). In applications s is often finitely supported with, say, sN−1 >
0 and sj = 0 for j ≥ N .

We have proved the following results.

Theorem 1. Suppose that s ∈ ℓ1(N) and sj ≥ 0 for all j. Suppose that λess is a
point of essential spectrum of J = J0 + is. Then every open neighbourhood of λess
in C contains eigenvalues of the leading M ×M submatrix of J , for all sufficiently
large M .

For eachM > 0 let LM denote the dissipative Schrödinger operator in L2(0,M)
equipped with Dirichlet boundary conditions u(0) = 0 = u(M).

Theorem 2. Suppose L0 = L∗
0, that min(q, 0) ∈ L∞(0,∞), q ∈ L2

loc, s ∈
L1(0,∞)∩L∞(0,∞), s ≥ 0 and s(x) → 0 as x → ∞. Suppose that λess is a
point of essential spectrum of L = L0+ is. Then every open neighbourhood of λess
in C contains eigenvalues of the finite-interval operators LM , for all sufficiently
large M .

Theorem 3. Suppose L0 = L∗
0 and that there is an open interval I = (α, β) of

σess(L0) with gaps above and below, with no nearby eigenvalues of LM for some

sequence of M ր ∞. Then for each subinterval Ĩ = (α + δ, β − δ) and ν > 0 we
have the counting estimate

{
NP (M, Ĩ)

} δ2

2ν2

log(NP (M, Ĩ)) ≤ Cν
δ
NP (M, I)

where Cν is independent of M and δ > 0. Consequently L0 has no integrated
density of states on the interval I.

These results are contained in [1]. For the case of a Schrödinger operator with
periodic potential (or compactly supported perturbations thereof) we have the
following result.

Theorem 4. Let λess be an interior point of a spectral band. Then there exists
for each M > 0 an eigenvalue λM ∈ spec(LM ), such that for large M ,

|λess − λM | = O(M−1).

This result, together with further results on spectral pollution, are in [2].
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Dispersion estimates for one-dimensional Schrödinger and
Klein–Gordon equations

Gerald Teschl

(joint work with Iryna Egorova, Elena Kopylova, Vladimir Marchenko)

Let

H = − d2

dx2
+ V (x), x ∈ R,

be the one-dimensional Schrödinger operator with a decaying potential and let

ψ(t) = e−itHψ0

be the solution of the corresponding Schrödinger equation

iψt = Hψ.

In the case without potential, V ≡ 0, the kernel of the evolution group can be
computed explicitly

ψ(t, x) =
1√
4πit

∫

R

ei
(x−y)2

4t ψ0(y)dy

and immediately gives rise to the dispersive decay estimate

(⋆) ‖ψ(t)‖∞ ≤ C√
t
‖ψ0‖1.

Here ‖.‖p denotes the usual Lp norms. Combining this estimate with preservation
of the L2 norm further gives the usual interpolation estimates plus the well-known
Strichartz estimates (cf. [5]) which play an important role in the investigation of
associated nonlinear evolution equations like the nonlinear Schrödinger (NLS) or
the Gross–Pitaevskii equation.

Of course, in the presence of a potential V , one expects the dispersive estimate
(⋆) to hold true as long as V decays sufficiently fast as |x| → ∞ provided ψ0 is
restricted to the absolutely continuous subspace of H . In fact, this was shown
by several authors in increasing generality with respect to the assumptions on the
potential V [1, 3, 4, 6]. The best result was the one by Goldberg and Schlag [4]
who proved the above estimate under the assumption

∫
R
(1 + |x|j)|V (x)|dx < ∞

with j = 1 if there is no resonance at the bottom of the continuous spectrum and
with j = 2 in case of a resonance. In [2] we give a simplified approach to this
problem and remove the extra decay condition on the potential in the resonant
case. Our proof is based on the novel fact that, under the above assumption with
j = 1, the scattering matrix is in the unital Wiener algebra of functions with
integrable Fourier transforms.
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Furthermore, we establish a faster decay in the non-resonant case and show
corresponding disperse decay estimates for the Klein–Gordon equation

ψtt(x, t) = −(H +m2)ψ(x, t), m > 0.
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Blowup and gradient growth for model equations of fluid dynamics

Vu Hoang

(joint work with A. Kiselev, M. Radosz, X. Xu)

In this talk I address a few problems of great interest concerning non-local, non-
linear transport equations. The basic equation is given by

(1) θt(x, t) + u(x, t)θx(x, t) = 0, θ(x, 0) = θ0(x)

where the unknown function θ depends on (x, t) ∈ R × (0,∞). To complete the
problem, one must also specify u in terms of θ. By setting u = θ we get Burgers’
equation.

A basic problem for (1) is to decide whether solutions with smooth initial data
(C∞ with suitable decay at infinity) remain so for all time. One speaks of blowup,
if they become singular at a finite time (for reasonable velocity field, one can
usually prove local-in-time existence of a solution θ : R × [0, T ] → R, where the
existence time T = T (θ0) > 0 depends on the initial data.

For Burgers’ equation, blowup is easily proven. Inspired by the equations of
fluid mechanics (see e.g. [1]), we consider nonlocal velocity fields

(2) u(x, t) =

∫

R

g(x− y)θ(y)dy

given by integration over a (more or less) singular kernel. E.g. if k(τ) = log |τ |,
then global existence of a smooth solution from smooth data is easily proven.
Another model is the Cordoba-Cordoba-Fontelos (CCF) model, for which

(3) u(x, t) = PV

∫

R

(y − x)−1θ(y)dy

http://arxiv.org/abs/1411.0021
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the velocity field is the Hilbert transform. Blowup for this model was proven in
the remarkable paper [2]. Interpolating between (2) and (3), we may also consider
the kernel g(τ) = |τ |γ with γ ∈ (0, 1), i.e.

(4) u(x, t) =

∫

R

|y − x|−γθ(y)dy

This is less singular than (3) (but note the difference in the sign of the kernel).
For this model, blowup can also be proven. This will be published elsewhere.

There are a number of open questions.

• Numerical simulations [2] seem to indicate that in case of symmetric, non-
negative initial data with maximum at x = 0, the singularity that occurs
“first” is a cusp. The solution at the singular time behaves possibly like
a square root around the origin. Can one show that a cusp always occur
in the situation described, or at least construct initial data such that the
resulting singularity has a square-root like behavior (see also the recent
preprint [3])?

• It is true that singularities for (4) tend to form at points where θ′ 6= 0 and
that singularities for (3) form only at points with θ′ = 0?

• Construct a blowup solution for (4) such that the first singularity that
forms is a infinite slope of θ at the origin, θ being otherwise smooth at all
other points.
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Linear systems, transfer functions, and operator theory

Jonathan R. Partington

This talk is largely of a tutorial nature, beginning with a short account of the
theory of continuous-time, single-input single-output linear systems, regarded as
closed linear operators on L2(0,∞). For more details of the basic theory, as well as
many supplementary references, we refer to [7]. We also discuss Hankel operators,
and scaled Hankel operators, and their use in rational approximation.

As an example, consider the delay equation

dy

dt
+ ay(t− τ) = u(t), y(0) = 0,

where τ > 0, the function u is the input, and y is the output. Taking Laplace
transforms U = Lu, etc., we have

Y (s) =
U(s)

s+ ae−sτ
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for s ∈ C+, the complex right half-plane. Here G(s) := 1/(s+ae−sτ) is the transfer

function. By the Paley–Wiener theorem the Laplace transform is
√
2π times an

isometry between L2(0,∞) and H2(C+), the Hardy space of analytic functions in
C+ with boundary values in L2(iR). Now, the operator T of multiplication by G
is everywhere-defined and bounded if and only if G lies in H∞(C+), the space of
bounded analytic functions. In our example, this requires the condition aτ < π/2.

George Weiss noted that for 1 ≤ p <∞, if T : Lp(0,∞) → Lp(0,∞) is bounded
and shift-invariant, then there is a G ∈ H∞(C+) such that for y = Tu we have
Y (s) = G(s)U(s), s ∈ C+. Also ‖T ‖ ≥ ‖G‖∞, with equality for p = 2.

Some cases, e.g. p = 2, have been known for much longer. However, Weiss also
gave a counterexample for p = ∞ using the axiom of choice.
One way to study systems in general is by their graphs,

G(T ) := {(u, Tu) : u ∈ Dom(T )},
allowing for closed unbounded operators defined on a proper subspace of L2(0,∞).

We now say T is shift-invariant, if G(T ) is a closed shift-invariant subspace.
As observed by Georgiou and Smith we may use Beurling’s theorem to describe
the graph in the frequency domain, i.e., as a closed subspace of pairs (U, Y )T in
H2(C+)

2. In the non-degenerate case it is

G(T ) =
(
M
N

)
H2(C+),

where M,N ∈ H∞(C+) and (M,N) is inner, i.e., |M(iy)|2 + |N(iy)|2 = 1 a.e.
That is, the transfer function “is” N(s)/M(s).

For h ∈ L1(0,∞) the convolution system

y(t) =

∫ t

0

h(t− τ)u(τ) dτ

has transfer function G = Lh ∈ H∞(C+). Here h is called the impulse response.
As another example, we mention diffusive systems. Let µ be a Borel measure

on [0,∞) such that the (impulse response)

h(t) :=

∫ ∞

0

e−tx dµ(x)

exists for t > 0. The transfer function is then

G(s) := Lh(s) =
∫ ∞

0

dµ(x)

x+ s
,

a Stieltjes transform. These have been studied by Montseny, and more recently
in more generality by my student Bashar Abusaksaka [1]. They can be realised in
terms of PDEs such as the heat equation.

Rational approximation. For practical implementation, analysis and control
design, rationalH∞ transfer functions are preferred. Consider the Hankel operator
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Γh on L2(0,∞), where

Γhu(t) =

∫ ∞

0

h(t+ τ)u(τ) dτ.

Then Γh has finite rank n if and only if G = Lh is rational of degree n (Kronecker’s
theorem). Alternatively, for G ∈ H∞(C+) we define the unitarily equivalent

Γ̃G : H2(C−) → H2(C+) by

Γ̃Gu = PH2(C+)(Gu),

noting that L2(iR) = H2(C−) ⊕ H2(C+). That is, we multiply and take an
orthogonal projection.

We always have ‖Γ̃G‖ ≤ ‖G‖∞, so if R is rational of degree n, then

‖G−R‖∞ ≥ ‖Γ̃G − Γ̃R‖
which involves approximating a compact operator by an operator of rank n.

Write σ1 ≥ σ2 ≥ . . . for the singular values (approximation numbers, s-numbers)
of Γ. Then, by definition,

‖Γ̃G − T ‖ ≥ σn+1,

if T is any operator of rank n. In fact, this can be achieved with a Hankel operator
T = ΓR, as proved by Adamjan, Arov, and Krein. This “optimal Hankel-norm
approximant” is easy to compute.

Estimates for Hankel singular values of delay systems can be found in [3]. For
example, let

dy

dt
+ y(t− 1) = u(t− α),

where α > 0, fixed; we have the transfer function

G(s) =
e−αs

s+ e−s
, and

nσn → α

π
(α > 0), while n2σn → 1

π2
(α = 0).

The degree-n optimal Hankel-norm approximant R gives an error bound satis-
fying

σn+1 ≤ ‖G−R‖∞ ≤ σn+1 + σn+2 + . . .

(Glover for degG < ∞, Glover et al [2], and recently Guiver–Opmeer [6] for the
general case). Alternative “general” approximation schemes (e.g. “balanced trun-
cation”) give a similar error bound. But convergence is not guaranteed unless

Γ̃G is nuclear. However for delay systems, Padé approximants give the optimal
convergence rate [4].

For L2(0,∞) approximation of h or H2(C+) approximation of G, we may use
properties of the scaled Hankel operator

(Θhu)(t) =
1√
π

∫ ∞

0

t−1/4h(t+ τ)τ−1/4u(τ) dτ.
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Like the Hankel operator, its rank is the degree of G = Lh. Now its Hilbert–
Schmidt norm is exactly the L2 norm of h. Thus, for rational degree-n approxim-
ants.

‖G−R‖2 ≥
√
2π(σ2

n+1 + σ2
n+2 + . . .)1/2,

where the (σn) are the singular values of Θh. These are much harder to calculate
explicitly, although, e.g. for delay systems, their rate of decay is known. Again
the optimal approximation rate can be achieved in this case [5].

Finally we mention again the thesis [1], where for diffusive systems a full analysis
of boundedness, Hilbert–Schmidt and nuclearity properties is given, for both the
Hankel and scaled Hankel operators.
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The State/Signal Resolvent Functions

Olof Staffans

(joint work with Damir Z. Arov)

In this talk I give an introduction to the spectral theory of a linear stationary s/s
(state/signal) system in continuous time. A s/s system has a state space which
plays the same role as the state space of an ordinary i/s/o (input/state/output)
system, but it differs from an i/s/o systems in the sense that the interaction signal
which connects the system to the outside world has not been divided a priori into
one part which is called the “input” and another part which is called the “output”.
The class of s/s systems can be used to model, e.g., linear time-invariant circuits
which may contain both lumped and distributed components. To each s/s system
corresponds in general an infinite number of i/s/o systems which differ from each
other by the choice of how the interaction signal has been divided into an input
part and output part. Each such i/s/o system is called an i/s/o representation of
the given s/s system.
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I begin by giving an introduction to the time domain theory for i/s/o systems.
Such a system can be written in the form

(1) Σiso :

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

[
x(t)
u(t)

]
∈ dom (S) , t ∈ R+, x(0) = x0.

Here S : [XU ] →
[
X
Y

]
is a closed operator, X , U and Y are Hilbert spaces, x(t) ∈ X

is the state, u(t) ∈ U is the input, and y(t) ∈ Y is the output. By a classical

future trajectory of Σiso we mean a triple of functions
[ x
u
y

]
which satisfies (1) for

all t ∈ R+, with x continuously differentiable with values in X and [ uy ] continuous
with values in

[
U
Y

]
. Different classes of i/s/o systems of this type are described in

[Sta05].
A general i/s/o system can be seen as an extension of a standard finite-dimensio-

nal i/s/o system. If S is bounded, the S can be written in block matrix form
S = [ A B

C D ], and (1) becomes

(2) Σiso :

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
t ∈ R+, x(0) = x0.

In this case we say that A is the main operator, B is the control operator, C is the
observation operator, D is the feedthrough operator. The case where A generates
a C0 semigroup and B, C, and D are bounded is described in the book [CZ95].

I then move on to discuss i/s/o systems in the frequency domain. One gets the
frequency domain version of (1) by taking a formal Laplace transform in (1) to
get an equation of the type

(3) Σ̂iso :

[
λx̂(λ) − x0

ŷ(λ)

]
= S

[
x̂(λ)
û(λ)

]
,

[
x̂(λ)
û(λ)

]
∈ dom (S) , λ ∈ Ω,

where Ω is some open subset of the complex plane. By definition, the resolvent
set ρ(Σiso) consists of those points λ ∈ C for which (3) defines a bounded lin-

ear operator from
[
x0

û(λ)

]
to
[
x̂(λ)
ŷ(λ)

]
, i.e., to each

[
x0

û(λ)

]
∈ [XU ] there is a unique

pair
[
x̂(λ)
ŷ(λ)

]
which satisfies (1) (since S is closed it will then automatically be

true that
[
x̂(λ)
ŷ(λ)

]
depends continuously on

[
x0

û(λ)

]
). The bounded linear operator

Ŝ(λ) :
[
x0

û(λ)

]
→
[
x̂(λ)
ŷ(λ)

]
, defined for all λ ∈ ρ(Σiso), is is called the i/s/o resolvent

matrix of Σiso.
1

The i/s/o resolvent matrix Ŝ turns out to be analytic in ρ(Σiso), and it satisfies
an i/s/o resolvent identity, which is a generalization of the standard i/s/o resolvent

identity. Since Ŝ(λ) maps [XU ] into [XU ] this operator can be split into four blocks

Ŝ(λ) :=
[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
, where Â(λ) maps x0 into x̂(λ), B̂(λ) maps û(λ) into x̂(λ),

etc. The different components of Ŝ(λ) are called as follows:

1It is, of course, possible to define Ŝ(λ) also for λ /∈ ρ(Σiso) by means of its graph determined

by (3). For such λ the operator Ŝ(λ) will still be closed, but it will be unbounded or multi-valued
or not defined on all of

[
X

U

]
.
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• Â is the s/s (state/state) resolvent function,

• B̂ is the i/s (input/state) resolvent function,

• Ĉ is the s/o (state/output) resolvent function,

• D̂ is the i/o (input/output) resolvent function.

In the literature these four operator-valued function are known under different

names. The operator Â is the usual resolvent of the main operator A of the system,

i.e., Â(λ) = (λ−A)−1, where Ax =
[
1X 0

]
S [ x0 ] with dom (A) =

{
x ∈ X

∣∣ [ x0 ] ∈
dom (S)

}
(this is the “top left corner” of S). If Σiso has been constructed from

a conservative boundary triplet as described in [AKS12a] and [AKS12b], then B̂

is the so called “Gamma field” and D̂ is the “Weyl function”. Two other names

for D̂ are the “transfer function” (used in control theory) and the “characteristic
function of the main operator” (used in operator theory).

We then continue to discuss the notion of a state/signal system in time and
frequency domain. In the time domain the dynamics of a s/s system Σ can be
described by an equation of the type

(4) Σ:

[
ẋ(t)
x(t)
w(t)

]
∈ V, t ∈ R+.

A classical future trajectory of (4) is a pair of continuous functions [ xw ], with
x continuously differentiable, which satisfies (4). By taking the formal Laplace
transform of (4) we get the corresponding frequency domain equation

(5) Σ̂ :



λx̂(λ) − x0

x̂(λ)
ŵ(λ)


 ∈ V, λ ∈ Ω,

where Ω is some open subset of the complex plane C. The equation (5) defines

an analytic family Ŝ(λ) of subspaces of
[

X
X
W

]
, where X is the state space and W

is the signal space (which for the purpose of this talk may be taken to be the

product of the input and output spaces). The family Ŝ of subspaces is called the
characteristic node bundle, and it is a special case of an analytic vector bundle
defined in the full complex plane C. The resolvent set ρ(Σ) of the s/s system Σ is
defined in such a way that λ ∈ ρ(Σ) if and only if Σ has an i/s/o representation
Σiso with λ ∈ ρ(Σiso). This is equivalent to requiring that the characteristic node

bundle Ŝ(λ) has a graph representation of a particular type.

In the s/s setting the i/o resolvent function D̂ of an i/s/o representation Σiso is

replaced by the characteristic signal bundle F̂, whose fibers F̂(λ) are obtained from

the corresponding fiber of the characteristic node bundle Ê(λ) by an intersection
and a projection, i.e., we take x0 in (5) to be zero and ignore the value of x̂(λ) to
get

(6) F̂(λ) =



w ∈ W

∣∣∣∣∣∣



0
z
w


 ∈ Ê(λ) for some z ∈ X



 .
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A more detailed version of this abstract is found in [Sta15]. Another introduc-
tion to what I have been explaining above is written down in [Sta14]. Proofs are
given in [AS14]. The connection to boundary triplets and generalized boundary
triplets is explained in [AKS12a] and [AKS12b].
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Accretive closure relations for impedance passive systems nodes.

Hans Zwart

1. Introduction

Consider the linear system given by

ẋ(t) = Ax(t) +Bu(t)

y(t) = B∗x(t),

where we assume that A is the infinitesimal generator of a C0-semigroup on the
Hilbert space X and B is a bounded linear map from another Hilbert space U into
X . If the semigroup generated by A is contractive and S ∈ L(U) is self-adjoint
and non-negative, then it is easy to see that the feedback u = −Sy gives the
closed loop operator A−BSB∗ which generates a contraction semigroup as well.
In this paper we show that this result can be extended to a larger class a systems,
including boundary triplets as a special case.

The starting point of this research is the following result, [5, Chapter 6], [2], or
[3].

Theorem 1. Let Aext be a linear operator on X ⊕ U of the form

Aext =

(
A1

A21 0

)
.
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If Aext generates a contraction semigroup and S ∈ L(U) satisfies Re〈Su, u〉 ≥
ε‖u‖2 for all u ∈ U and some ε > 0, then the operator AS generates a contraction
semigroup on X. Here AS is defined as

ASx = A1

(
x

SA21x

)
.

with domain D(AS) = {x ∈ D(A21) such that ( x
SA21x ) ∈ D(Aext)}

By taking S = 0 and

Aext =

(
0 d

dζ
d
dζ 0

)

on H1(R)2, AS becomes bounded, but not closed. Thus the condition that ReS ≥
εI > 0 cannot be weakened in general.

In the following session we show that under an extra condition on Aext the
condition on S may be weakened.

2. Main result

To formulate the extra condition on Aext we return to the system introduced in
the beginning of the previous section. However, now we allow for unbounded B’s.
Before doing so we have to introduce some notation. Let A be an infinitesimal
generator, and let A∗ denotes its adjoint. By X1 we denote D(A) with the graph
norm, and by X−1 we denote that dual (with respect to X) of D(A∗). It is well-
known that A has a bounded extension fromX intoX−1. We denote this extension

by Ã. For B ∈ L(U,X−1) and C ∈ L(X1, U) we define the system node Σ as

(1)

(
A&B
C&0

)(
x
u

)
=

(
Ãx+Bu

y

)

with domain those pairs (x, u) such that Ãx + Bu ∈ X . For x ∈ D(A), y equals
Cx, see also [4]. We assume that Σ has no explicite feedthrough, i.e., for all
(0, u) ∈ D(Σ) we have that

(
C&0

)( 0
u

)
= 0.

Theorem 2. Let Aext be the linear operator on X ⊕ U defined by

Aext =

(
A&B
−C&0

)

with domain D(Σ). Assume that

• If Aext generates a contraction semigroup;
• There exists an s in the resolvent set of A and an m > 0 such that (sI −
A)−1Bu‖ ≥ m‖u‖2;

• S ∈ L(U) satisfies Re〈Su, u〉 ≥ 0 for all u ∈ U ,
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then the operator AS generates a contraction semigroup on X. Here AS is defined
as

(2) ASx = (A&B)

(
x
u

)
, with ( xu ) ∈ D(AS)

and D(AS) given by

D(AS) = {x ∈ X | there exists a u ∈ U such that ( xu ) ∈ D(Σ)

and − S(C&0)

(
x
u

)
= u}.(3)

By our assumption, the u in (3) is unique for every x and thus ASx is well-
defined.

We end with an example. Let (U,Γ0,Γ1) be a boundary triplet with maximal
operator A∗

0. We define the system node or “equivalently” Aext as

(4) Aext

(
x
u

)
=

(
iA∗

0x
iΓ1x

)

with domain

D(Aext) =

{(
x
u

)
∈ D(A∗

0) | Γ0x = u

}
.

By the properties of the boundary triplet, the conditions in the theorem are sat-
isfied, and so for S + S∗ ≥ 0 we have that AS generates a contraction semigroup
on X . By the form of our extended operator we see that ASx = A∗

0x for those
x ∈ D(A∗

0) for which Γ0x = −iSΓ1x. Thus we made a restriction of the max-
imal operator by imposing boundary conditions. This reproves the corresponding
results in [1].

References

[1] V.I. Gorbachuk and M.L. Gorbachuk. Boundary Value Problems for Operator Differential
Equations. Kluver Academic Publishers, 1991.

[2] Y. Le Gorrec, B. Maschke, J.A. Villegas, and H. Zwart, Dissipative boundary control systems
with application to distributed parameters reactors, Joint CCA, ISIC and CACSD, October
4-6, Munich, Germany 2006.

[3] F. Schwenninger and H. Zwart. Generators with closure relation Operators and Matrices,
8, (2014).

[4] O.J. Staffans. Well-Posed Linear Systems. Cambridge University Press, 2005.
[5] J.A. Villegas. A Port-Hamiltonian Approach to Distributed Parameter Systems. PhD thesis,

Department of Applied Mathematics, Enschede, The Netherlands, May 2007. Available at
http://doc.utwente.nl/.



76 Oberwolfach Report 1/2015

An isopectral problem for the conservative Camassa–Holm flow

Aleksey Kostenko

(joint work with Jonathan Eckhardt)

Over the last two decades, a lot of work has been devoted to the Cauchy problem
for the Camassa–Holm equation, a nonlinear wave equation, given by

(1) ut − uxxt = 2uxuxx − 3uux + uuxxx, u|t=t0 = u0.

The Camassa–Holm equation first appeared as an abstract bi-Hamiltonian partial
differential equation in an article of Fokas and Fuchssteiner [10]. However, it did
not receive much attention until Camassa and Holm [5] derived it as a nonlinear
wave equation which models unidirectional wave propagation on shallow water.

One of the most eminent properties of the Camassa–Holm equation lies in the
fact that it is formally integrable in the sense that there is an associated Lax pair.
The isospectral problem of this Lax pair turned out to be

−f ′′(x) +
1

4
f(x) = z ω(x, t)f(x), x ∈ R,(2)

where ω = u−uxx and z ∈ C is a complex spectral parameter. Of course, (inverse)
spectral theory for this Sturm–Liouville problem is of peculiar interest for solving
the Cauchy problem of the Camassa–Holm equation; [1, 2, 3, 9].

A particular kind of solutions of the Camassa–Holm equation are the so-called
multi-peakon solutions. These are solutions of the form

u(x, t) =

N∑

n=1

pn(t) e
−|x−qn(t)|,(3)

where the functions on the right-hand side satisfy the following nonlinear system
of ordinary differential equations:

q′n =

N∑

k=1

pk e
−|qn−qk|, p′n =

N∑

k=1

pnpk sgn(qn − qk) e
−|qn−qk|.(4)

Note that the system (4) is Hamiltonian, that is,

dqn
dt

=
∂H(p, q)

∂pn
,

dpn
dt

= −∂H(p, q)

∂qn
,(5)

with the Hamiltonian given by

H(p, q) =
1

2

N∑

n,k=1

pnpk e
−|qn−qk| =

1

4
‖u‖2H1(R).(6)

It turns out that the behavior of multi-peakon solutions crucially depends on
whether all the heights pn of the single peaks are of the same sign or not. In
the first case, all the positions qn of the peaks stay distinct, move in the same
direction and the system (4) allows a unique global solution. Otherwise, some of
the positions qn of the peaks will collide eventually, which causes the corresponding
heights pn to blow up in finite time [5]. All this happens in such a way that the
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solution u in (3) stays uniformly bounded in H1(R) but its derivative develops a
singularity at the points where two peaks collide.

However, it turned out that it is always possible to continue weak solutions
beyond wave-breaking. In order to end up with unique continuations, one has
to impose additional constraints on the solutions. For example, if one requires
the energy of the solutions to be conserved, one is led to the notion of global
conservative solutions [4, 11, 12]. For the corresponding Cauchy problem to be
well-posed, it is necessary to introduce an additional quantity, which measures
the energy density of the solution (as done recently in [4, 11]). Following [11], a
global conservative solution consist of a pair (u, µ) where µ is a non-negative Borel
measure with absolutely continuous part determined by u via

µac(B, t) =

∫

B

|u(x, t)|2 + |ux(x, t)|2dx, t ∈ R(7)

for each Borel set B ∈ B(R). Within this picture, blow-up of solutions corresponds
to concentration of energy (measured by µ) to sets of Lebesgue measure zero. For
further details we refer to [4, 11] (see also [12], where a detailed description of
global conservative multi-peakon solutions was given).

For the special case of multi-peakon solutions, the weight ω in (2) is always a
finite sum of weighted Dirac measures. The corresponding spectral problem (2)
is equivalent to the one for an indefinite Krein–Stieltjes string [13, §13]. This
connection and the solution of the corresponding inverse problem due to Krein
(employing Stieltjes theory of continued fractions) has successfully been employed
by Beals, Sattinger and Szmigielski [1] in order to study multi-peakon solutions
(in the sense of (4)). In particular, they noticed that in the indefinite case, the
inverse problem is not always solvable within the class of spectral problems (2),
which directly corresponds to the fact that the system (4) may blow up. It is
the purpose of my talk to introduce a generalized isospectral problem for global
conservative multi-peakon solutions of the Camassa–Holm equation. Of course,
an eligible spectral problem also has to incorporate the singular part of µ in some
way and indeed, it turns out that the appropriate spectral problem is given by

−f ′′(x) +
1

4
f(x) = z ω(x, t)f(x) + z2υ(x, t)f(x), x ∈ R,(8)

where υ( · , t) denotes the singular part of µ( · , t) and z ∈ C is a complex spectral
parameter. The idea for considering this particular spectral problem goes back to
work of Krein and Langer [14] (see also [15]) on the indefinite moment problem.

More precisely, let N(t) ∈ N and x1(t), . . . , xN(t)(t) ∈ R be a strictly increasing
sequence such that

ω( · , t) =
N(t)∑

n=1

2pn(t)δxn(t) and υ( · , t) =
N(t)∑

n=1

υn(t)δxn(t),(9)

where pn(t) ∈ R, υn(t) ≥ 0 and |pn(t)| + υn(t) > 0 for each n = 1, . . . , N(t). One
should note that it is always possible to go back and forth between the pair (u, µ)
and the measures ω and υ. Now consider the family of spectral problems (8).



78 Oberwolfach Report 1/2015

The spectrum of (8) will be denoted with σ(t) and the corresponding norming
constants with γλ(t) for each λ ∈ σ(t). Note that σ(t) consists of N(t)+#supp(υ)
simple non-zero eigenvalues. For further details concerning the direct and inverse
spectral theory for the generalized indefinite spectral problem (8) we refer to [7, 8].

The connection between these spectral problems and the conservative Camassa–
Holm equation now lies in the following observation.

Theorem 1 ([6]). The pair (u, µ) is a global conservative multi-peakon solution
of the Camassa–Holm equation if and only if the problems (8) are isospectral with

γλ(t) = e−t/2λγλ(0), t ∈ R, λ ∈ σ(0).(10)

Moreover, utilizing the solution of the indefinite moment problem given by M.
G. Krein and H. Langer in [14], we show that the conservative Camassa–Holm
equation is integrable by the inverse spectral transform in the multi-peakon case.
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The inverse spectral problem for indefinite strings

Jonathan Eckhardt

(joint work with Aleksey Kostenko)

Classical objects in spectral theory are the differential equation

−u′′ = z u ω(1)

on an interval [0, L) (where L ∈ (0,∞], ω is a non-negative Borel measure on [0, L)
and z is a complex spectral parameter) and the corresponding Weyl–Titchmarsh
function m, which encodes all the spectral information. A remarkable and well-
known result of M. G. Krein and L. de Branges identifies the totality of all possible
Weyl–Titchmarsh functions for this class of spectral problems with the class of so-
called Stieltjes functions in a bijective way. In other words, they were able to
uniquely solve the inverse spectral problem for (1). My talk is concerned with
further questions in this direction which are not far to seek: What happens if ω is
allowed to be a real-valued Borel measure on [0, L) instead of just non-negative? Is
there an equally concise analogue of the solution of the inverse spectral problem?

Although there does not seem to exist simple answers to these questions, one
way to overcome those problem was suggested by M. G. Krein and H. Langer [2]
by means of extending the class of spectral problems. Inspired by their work, we
consider the modified differential equation

−u′′ = z u ω + z2u υ(2)

on an interval [0, L), where ω is a real-valued distribution in H−1
loc [0, L) and υ is a

non-negative Borel measure on [0, L). Of course, this differential equation has to
be understood in a weak sense: We say that a function f ∈ H1

loc[0, L) is a solution
of (2) if there is a constant ∆f ∈ C so that

∆fh(0) +

∫ L

0

f ′(x)h′(x)dx = z ω(fh) + z2
∫

[0,L)

fh dυ(3)

for all h ∈ H1
c [0, L). In this case, the constant ∆f is uniquely determined and will

henceforth always be denoted with f ′(0−) for apparent reasons.
Associated with the differential equation (2) (and suitable boundary conditions

at the endpoints) is the Weyl–Titchmarsh function m defined on C\R by

m(z) =
ψ′(z, 0−)

zψ(z, 0)
, z ∈ C\R,(4)

where ψ(z, · ) is a Weyl solution of the differential equation (2) (that is, a solution
with a certain behaviour at L). The Weyl–Titchmarsh function m is a Herglotz–
Nevanlinna function and therefore admits an integral representation of the form

m(z) = c1z + c2 −
1

Lz
+

∫

R

1

λ− z
− λ

1 + λ2
dµ(λ), z ∈ C\R,(5)

where the measure µ turns out to be a spectral measure for (the operator part of)
a particular self-adjoint realization of (2) in a suitable Hilbert space.
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The main result of [1] and my talk is the identification of the totality of all
possible Weyl–Titchmarsh functions for this class of spectral problems with the
whole class of Herglotz–Nevanlinna functions in a bijective way, giving an indefinite
analogue of the solution of the inverse spectral problem for definite strings.
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Numerical Evans function method for spectral stability of solitary
waves in periodic media

Tomáš Dohnal

(joint work with Elisabeth Blank)

For solitary waves of PDEs in one spatial dimension the eigenvalues of the lin-
earized stability problem can often be determined as zeros of the corresponding
Evans function [2, 3]. Zeros of the Evans function detect linear dependence of the
stable and unstable manifolds of the linearized problem and thus coincide with
eigenvalues of the linearized operator. The analytic Evans function has been used
extensively in the literature for problems with constant or asymptotically con-
stant (|x| → ∞) coefficients. In such cases the stable and unstable manifolds are
spanned by exponentially decaying Fourier waves.

In problems with periodic coefficients the manifolds are spanned by Bloch waves,
which can be generally computed only numerically. We have applied this method
in [4] to the stability of gap solitons u(x, t) = e−iωtφ(x) of the periodic nonlinear
Schrödinger equation (PNLS)

i∂tu+ ∂2xu− V (x)u + Γ(x)|u|2u = 0, x, t ∈ R

with a linear potential V that is periodic for |x| ≥ L for some L ≥ 0 and with ω
in any spectral gap of −∂2x + V . As we show, a numerically stable approximation
of the manifolds requires the use of exterior algebra and Grassmanian preserving
ODE integrators. Evans function zeros can then be detected via the complex
argument principle.

A motivation for the Evans function method as opposed to a standard discret-
ization of the eigenvalue problem and a numerical evaluation of its eigenvalues is
the absence of spectral pollution in the former method. Also existing rigorous
methods on nonlinear stability are often inapplicable in periodic problems. For
instance methods of Grillakis-Shatah-Strauss type [1] apply only to gap solitons of
(PNLS) with ω inside the semi-infinite gap of the spectrum of the purely periodic
operator −∂2x + V∞.
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