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Introduction by the Organisers

The workshop Geometric Methods of Complex Analysis attracted 49 researchers
from 16 countries. Both, leading experts in the field and young researchers (includ-
ing three Ph. D. students and two postdocs) were well represented in the meeting
and gave talks. A rather wide spectrum of topics related to Complex Analysis (and
this was one of the aims of the workshop) was covered by the talks and informal
discussions. All 22 lectures presented on the meeting can be conditionally divided
into the following groups.

Pluripotential Theory and the Monge-Ampère equation was represented by talks
of S. Ko lodziej, D. Witt Nyström, T. Harz and H. C. Lu. Ko lodziej presented a
stability result for solutions of the Monge-Ampère equation on a compact Hermit-
ian manifold. As an application of this result one can show, in particular, Hölder
continuity of the solution. Witt Nyström discussed regularity of solutions to the
complex homogeneous Monge-Ampère equation. He also gave examples whose
perturbed solutions are not “almost smooth” which contradict the results of X. X.
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Chen and G. Tian. Harz discussed some properties of the core of a domain, {i.e.
the set of all points of this domain such that the Levi form of every bounded above
plurisubharmonic function has degeneration at this point}. In particular, he gave
a characterization of the core of a pseudoconvex domain under the additional as-
sumption that this core has a structure of the product with some Ck. Lu presented
results on the regularity of the maximal Kähler-Ricci flow.

Complex Dynamics was represented by the talks of H. Peters and E. Bedford.
Peters explained that there exist polynomial maps of C2 and holomorphic en-
domorphisms of P2 with a wandering Fatou component. Bedford discussed the
dynamical expansion of a polynomial automorphism of C2 and related to its ge-
ometry.

Almost Complex Geometry was represented by the talk of J.-P. Demailly who
discussed embedding results for compact almost complex manifolds into complex
algebraic varieties thus giving a partial answer to a problem from 1996 by Bogo-
molov.

Geometric Questions of Complex Analysis (including Theory of Foliations) and
Applications was represented by the talks of N. Sibony, F. Lárusson, M. Tsuka-
moto, J. Winkelmann, J.-M. Hwang, K.-T. Kim, J. Globevnik, E. Wold and F.
Forstnerič. Sibony presented results on value distribution theory for parabolic Rie-
mann surfaces motivated by the Green-Griffiths conjecture. Lárusson discussed
the interpolation property and convex interpolation property from Stein spaces
into affine toric varieties. Tsukamoto calculated the mean dimension (in the sense
of Gromov) of the space of all Brody curves in CPn thus giving an answer to a
problem of Gromov from 1999. Winkelmann explained that a compact Kähler
manifold is rationally connected (and hence also projective) if there is a map from
Cn to this manifold of small growth. Hwang discussed how the local differential
geometry of the given web-structure on a projective manifold affects its global al-
gebraic geometry. Kim presented semi-continuity results for automorphism groups
of domains in C2 with D’Angelo finite type boundary. Globevnik explained the
construction of a complete closed hypersurface immersed in the unit ball of Cn.
This solves a long standing open problem of Yang from 1977. Wold gave sharp
estimates of the squeezing function on a strictly pseudoconvex domain. Forstnerič
presented a characterization of the minimal hull of a compact set in R3 analogous
to the classical characterization by Poletsky of the polynomial hull by sequences
of holomorphic discs.

The ∂̄-equation and Geometry were represented by the talks of Z. B locki, X.
Zhou, J. Ruppenthal, B.-Y. Chen, E. Wulcan and T. Ohsawa. B locki presented
lower bounds for the Bergmann kernel on the diagonal of a pseudoconvex domain in
terms of the Azukawa indicatrix and the Kobayashi indicatrix of its pluricomplex
Green function. Zhou discussed the proof of Demailly’s strong openness conjec-
ture, Demailly-Kollár’s conjecture and Jonsson-Mustaţă’s conjecture. Ruppenthal
explained how the Koppelman type formulas recently developed by Andersson and
Samuelsson can be used in the study of L2-cohomologies of isolated singularities,
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in particular of A1-singularities. Chen presented results describing complex an-
alytic properties of Riemannian surfaces in terms of their Riemannian geometry.
Wulcan explained how one can define generalized cycles and how they are related
to the local intersection numbers. Ohsawa gave a survey on recent developments
in the problem of holomorphic extensions, both effective and noneffective.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Liyou Zhang in the “Simons Visiting Professors” pro-
gram at the MFO.
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Franc Forstnerič (joint with Barbara Drinovec Drnovšek)
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Abstracts

Value Distribution Theory for Parabolic Riemann Surfaces

Nessim Sibony

(joint work with Mihai Păun)

A conjecture by Green-Griffiths states that if X is a projective manifold of general
type, then there exists an algebraic proper subvariety of X which contains the
image of all holomorphic curves from the complex plane to X . To our knowledge,
the general case is far from being settled. We question here the choice of the
complex plane as a source space.

Let Y be a parabolic Riemann surface, i.e bounded subharmonic functions de-
fined on Y are constant. The results of Nevanlinna’s theory for holomorphic maps
f from Y to the projective line are parallel to the classical case when Y is the com-
plex line except for a term involving a weighted Euler characteristic. Parabolic
Riemann surfaces could be hyperbolic in the Kobayashi sense.

Let X be a manifold of general type, and let A be an ample line bundle on
X . It is known that there exists a holomorphic jet differential P (of order k)
with values in the dual of A. If the map f has infinite area and if Y has finite
Euler characteristic, then f satisfies the differential relation induced by P . As a
consequence, we obtain a generalization of Bloch Theorem concerning the Zariski
closure of maps f with values in a complex torus. We then study the degree
of Nevanlinna’s current T [f ] associated to a parabolic leaf of a foliation F by
Riemann surfaces on a compact complex manifold. We show that the degree of
T [f ] on the tangent bundle of the foliation is bounded from below in terms of
the counting function of f with respect to the singularities of F , and the Euler
characteristic of Y. In the case of complex surfaces of general type, we obtain a
complete analogue of McQuillan’s result: a parabolic curve of infinite area and
finite Euler characteristic tangent to F is not Zariski dense. That requires some
analysis of the dynamics of foliations by Riemann Surfaces.

Extending holomorphic maps from Stein manifolds into affine toric
varieties

Finnur Lárusson

(joint work with Richard Lärkäng)

In Oka theory we study approximation and interpolation problems for holomorphic
maps from Stein spaces into a complex manifold. We are interested in manifolds
for which there are only topological obstructions to solving such problems. This
is the class of Oka manifolds.

To make this more precise, say that a complex manifold Y has the interpolation
property (IP) if a holomorphic map to Y from a subvariety S of a reduced Stein
space X has a holomorphic extension to X if it has a continuous extension.
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Define the ostensibly much weaker convex interpolation property (CIP) by taking
X = Cn and S to be a contractible submanifold.

By a deep and fundamental theorem of Forstnerič, CIP implies IP. The manifold
Y is said to be an Oka manifold if it satisfies CIP, IP, or any of a dozen other
nontrivially equivalent properties.

Our basic question is: What if Y is allowed to be singular?
The targets Y that we study are affine toric varieties, always assumed irreducible

but not necessarily normal (“nnn”). Our main results may be roughly summarised
as follows.

• Every nnn affine toric variety satisfies a weakening of the interpolation
property that is much stronger than the convex interpolation property.

• The full interpolation property fails for most nnn affine toric varieties,
even for a source as simple as the product of two annuli embedded in C4.

In particular, the implication CIP ⇒ IP fails for singular targets, even for smooth
sources.

More precisely, our main results are the following four theorems.

Theorem 1. Let Y be a nnn affine toric variety. Let S be a factorial subvariety
of a reduced Stein space X such that Hp(X,Z) → Hp(S,Z) is surjective for p =
0, 1, 2. Then every holomorphic map S → Y extends to a holomorphic map X →
Y .

As a very particular consequence, every nnn affine toric variety satisfies the
convex interpolation property. The key to the proof of the theorem is a new
notion of a twisted factorisation of a nondegenerate holomorphic map into Y . We
call a holomorphic map f : S → Y ⊂ Cn nondegenerate if the image by f of each
irreducible component of S intersects the torus in Y . Equivalently, no component
of f is identically zero on any component of S. (We take a nnn affine toric variety
Y in Cn to be embedded in Cn as the zero set of a prime lattice ideal. Then the
torus in Y is Y ∩ (C∗)n.)

Recall that S is factorial if the stalk Ox of the structure sheaf of S is a factorial
ring for every x ∈ S. Then S is normal and hence locally irreducible, so its
connected components and irreducible components are the same. Factoriality is a
strong property, not much weaker than smoothness, but it is a natural assumption
in our work. The key consequence of factoriality is that Weil divisors and Cartier
divisors are the same.

Theorem 2. Let Y be a nnn affine toric variety of dimension d in C
n with 0 ∈ Y .

(a) Suppose that the normalisation of Y is Cd. If S is a normal subvariety
of a reduced Stein space X, then every nondegenerate holomorphic map
S → Y extends to a holomorphic map X → Y .

(b) Suppose that the normalisation of Y is not Cd. There is a smooth surface
S in C4, biholomorphic to the product of two annuli, and a nondegenerate
holomorphic map S → Y that does not extend to a holomorphic map
C4 → Y .
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Here, 0 denotes the origin in C
n. A variety Y as in the theorem is contractible,

so the extension problem has no topological obstruction.
The following dichotomy refines the first case of the previous one. Note that

case (a) refers to arbitrary, possibly degenerate holomorphic maps. We have an
example showing that for (b) to hold in general, the source C×{0}∪{(0, 1)} needs
to be disconnected.

Theorem 3. Let Y be a nnn affine toric variety of dimension d in Cn with 0 ∈ Y .
Suppose that the normalisation of Y is Cd.

(a) Suppose that Y is locally irreducible. If S is a seminormal subvariety of a
reduced Stein space X, then every holomorphic map S → Y extends to a
holomorphic map X → Y .

(b) Suppose that Y is not locally irreducible. There is a degenerate holomor-
phic map C × {0} ∪ {(0, 1)} → Y that does not extend to a holomorphic
map C2 → Y .

The following examples illustrate the three kinds of varieties in Theorems 2
and 3.

• The map C2 → C4, (s, t) 7→ (s, t2, t3, st), is the normalisation of its im-
age Y . The map induces a homeomorphism C2 → Y , so Y is locally
irreducible.

• Whitney’s umbrella in C3, defined by the equation x2y = z2, has normal-
isation C2 → Y , (s, t) 7→ (s, t2, st), and is not locally irreducible.

• The cone in C3 defined by the equation xy = z2 is normal but of course
not isomorphic to C2.

Finally, in the normal case, we have the following result.

Theorem 4. Let Y be a singular nondegenerate normal affine toric variety.

(a) Let S be a connected factorial subvariety of a connected reduced Stein space
X such that H2(X,Z) → H2(S,Z) is surjective. Then every holomorphic
map S → Y extends to a holomorphic map X → Y .

(b) There is a smooth surface S in C4, biholomorphic to the product of two
annuli, and a nondegenerate holomorphic map S → Y that does not extend
to a holomorphic map C4 → Y .

A normal affine toric variety may be factored as Y × (C∗)k, where the normal
affine toric variety Y has no torus factors, and is thus said to be nondegenerate,
and Y is naturally embedded in some Cn so as to contain the origin. Then Y is
contractible, and Y is singular unless Y is isomorphic to some Cm. The extension
problem into C∗ is of course fully understood: the hypothesis on H1 in Theorem 1
is only there to take care of torus factors. Thus Theorem 4 follows from Theorems
1 and 2.

We also have the following further results.
It is well known in Oka theory that interpolation yields approximation.

Proposition 5. Let Ω be a Runge domain of finite embedding dimension in a
factorial Stein space X, such that Hp(Ω,Z) = 0 for p = 1, 2. Let Y be a nnn
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affine toric variety, and let f : Ω → Y be a holomorphic map. Then f can be
approximated uniformly on compact subsets of Ω by holomorphic maps X → Y .

Interpolation on a discrete subset is always possible.

Proposition 6. Let S be a discrete subset of a reduced Stein space X. Let Y be
a nnn affine toric variety. Then every map S → Y extends to a holomorphic map
X → Y .

The following result is known, but we offer a new proof.

Proposition 7. A factorial affine toric variety is smooth.

Finally, meromorphic extensions are readily obtained.

Proposition 8. Let S be a factorial subvariety of a reduced Stein space X. Let
Y ⊂ Cn be a nnn affine toric variety with 0 ∈ Y . Let f : S → Y be a nondegenerate
holomorphic map. Then f extends to a meromorphic map X → Y .

We expect that our results could be extended to arbitrary toric varieties without
much difficulty. On the other hand, what Oka theory for general singular targets
might look like is entirely unclear. It remains to be seen what sort of general
theorems, if any, one could expect. Clearly, allowing the targets to have even a
single, mild, isolated singularity makes a big difference.

Finally, many thanks to the organisers for the invitation to speak on this work
and for organising such a pleasant and stimulating workshop.

The complex Monge-Ampère equation on compact Hermitian
manifolds

S lawomir Ko lodziej

(joint work with N. C. Nguyen)

This is joint work with N.C. Nguyen. The main result is the stability of solutions
of the Monge-Ampère equation on a compact Hermitian manifold (X,ω).

Theorem 1. Let 0 < c0 ≤ f, 0 ≥ g ∈ Lp(X), be such that there exist continuous
ω-psh solutions of the equation

(ω + ddcu)n = fωn; (ω + ddcv)n = gωn,

with supX u = 0 = supX v. Fix 0 < α < 1/(n + 1). Then, there exists C =
C(ω, α, c0, ||f ||p) such that

||u− v|| ≤ ||f − g||αp .

One can use the stability to show that under the above assumptions for f the
solution of the equation is Hölder continuous.
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Theorem 2. Suppose 0 < c0 ≤ f ∈ Lp(X), and consider ω-psh solution of the
Monge-Ampère equation

(ω + ddcu)n = fωn,

on a compact Hermitian manifold. Then u is Hölder continuous for any Hölder
exponent smaller than 2/[p∗n(n+ 1) + 1], with p∗ being the conjugate of p.

The second application of the stability result is an extension of a theorem of
Székelyhidi and Tosatti to the case of compact Hermitian manifolds.

Theorem 3. Let (X,ω) be a compact n-dimensional Hermitian manifold. Sup-
pose that u is bounded and ω-psh solution of

(ω + ddcu)n = exp(−F (u, z)),

in the weak sense of currents, where F is smooth. Then u is smooth.

Mean dimension of the dynamical system of Brody curves

Masaki Tsukamoto

Mean dimension is a topological invariant for dynamical systems with infinite
dimension and infinite entropy, introduced by Gromov [1]. Our main purpose here
is to show that this notion reveals a new fundamental structure in holomorphic
curve theory.

Let z = x+
√
−1y be the standard coordinate in C. Let f = [f0 : f1 : · · · : fN ] :

C → CPN be a holomorphic curve. We define the spherical derivative |df |(z) ≥ 0
by

|df |2(z) :=
1

4π
∆ log(|f0|2 + |f1|2 + · · · + |fN |2)

(
∆ :=

∂2

∂x2
+

∂2

∂y2

)
.

We call f a Brody curve if |df | ≤ 1 all over the plane. We define M(CPN)
as the space of all Brody curves f : C → CPN endowed with the compact-open
topology. This is compact and the group C continuously acts on it by

C×M(CPN) → M(CPN ), (a, f(z)) 7→ f(z + a).

This is an infinite dimensional and infinite entropy system. We denote by
dim(M(CPN ) : C) the mean dimension of the C-action on M(CPN). This is
a nonnegative real number which counts the number of parameters in M(CPN)
“per unit area of the plane C”.

Main Problem (Gromov 1999). Calculate the mean dimension dim(M(CPN ) :
C).

Let f : C → CPN be a Brody curve. We define its energy density ρ(f) by

ρ(f) := lim
R→∞

(
1

πR2
sup
a∈C

∫

|z−a|<R

|df |2dxdy
)
.

We define ρ(CPN ) as the supremum of ρ(f) over f ∈ M(CPN ).
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Main Theorem (arXiv:1410.1143).

dim(M(CPN ) : C) = 2(N + 1)ρ(CPN ).

A key ingredient is an information theoretic version of mean dimension intro-
duced by Lindenstrauss–Weiss [2]. We also use the analytic machineries developed
in [3].
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Rationality and growth conditions

Jörg Winkelmann

(joint work with Frédéric Campana)

This is joint work with Frédéric Campana ([4]).
Let X be a Kähler compact complex manifold and let f : Cn → X be a

differentiably non-degenerate meromorphic map. Our goal is to relate algebraic-
geometric properties of X to the existence of such maps of small growth. One
easily sees that for every unirational projective manifold X there is a rational such
map, hence in particular a map of very small growth. We look for a result in the
opposite direction. The main result is:

If there exists such a map of order ρf < 2, then X must be rationally connected.

In particular, X is projective.

Here the order ρf is a tool to measure the growth of a meromorphic map
f : Cn → X . For an algebraic map we have necessarily ρf = 0. On the other hand
ρτ = 2 for the universal covering map τ : Cn → T of a n-dimensional compact
complex torus.

The order is defined in the following way: Let ω be a Kähler form on X and let
α be the euclidean Kähler form on Cn, i.e., α = ddc||z||2. Define the characteristic
function for f : Cn → X as

Tf(r) =

∫ r dt

t2n−1

∫

Bt

(f∗ω) ∧ αn−1.

Then the order is defined as

lim sup
r→∞

logTf (r)

log r
.

A compact complex manifold is called “rationally connected” (RC) if for any
two points there exists a chain of rational curves linking these two points ([1]).
RC Kähler manifolds are automatically projective.
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Given a projective complex manifold X , there exists an RC-quotient φ : X → Y
([1],[6]). This is a meromorphic map such that generic fibers are maximal RC
subvarieties of X . The quotient has only few rational curves, more precisely it is
not uniruled ([5]).

Not being uniruled is equivalent to the canonical bundle being pseudoeffective
([2]). In this way a projective manifold X which is not RC obtains (by pulling
back the canonical bundle from Y ) an invertible pseudoeffective subsheaf of some
ΩX . For a line bundle pseudoeffectivity is equivalent to admitting a singular
hermitian metric with semipositive curvature which in turn implies that log ||s||
is plurisubharmonic for every holomorphic section s. This plurisubharmonicity is
then used to deduce a lower bound for ||Df || from which one may conclude that
ρf ≥ 2 unless X is RC. This is the key line of reasoning in the case where X is
projective. To show that the statement for general compact Kähler manifolds, one
observes the following: Kodairas argument combined with Hodge theory imply
that every non-projective compact Kähler manifold admits non-zero holomorphic
2-forms, which can be used to deduce a lower bound on the growth of f , following
the reasoning in [7].

This result improves on earlier work of Campana, Păun ([3]), Noguchi and
Winkelmann ([7]).

The result does not hold without the Kähler assumption, in fact there is non-
degenerate map f : C2 → S for a Hopf surface S with ρf = 1 although Hopf
surfaces do not contain any rational curves ([7]).
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Algebro-differential embeddings of compact complex structures

Jean-Pierre Demailly

(joint work with Hervé Gaussier)

The goal of this talk was to present an embedding theorem for compact almost
complex manifolds into complex algebraic varieties, cf. [DG14] for details. An
almost complex manifold of dimension n is a pair (X, JX), where X is a C∞ real
manifold of dimension 2n and JX a C∞ section of End(TX) such that J2

X = −Id.
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Let Z be a complex projective manifold of dimension N . Such a manifold carries
a natural integrable almost complex structure JZ . Now, assume that we are given
an algebraic distribution D in TZ, namely a holomorphic subbundle D ⊂ TZ.
Every fiber Dx of the distribution is then invariant under JZ , i.e. JZDx ⊂ Dx

for every x ∈ Z. Here, the distribution D is not assumed to be integrable. We
recall that D is integrable in the sense of Frobenius (i.e. stable under the Lie
bracket operation) if and only if the fibers Dx are the tangent spaces to leaves of
a holomorphic foliation. More precisely, D is integrable if and only if the torsion
operator θ of D, defined by

(1) θ : O(D) ×O(D) −→ O(TZ/D), (ζ, η) 7−→ [ζ, η] mod D
vanishes identically. As is well known, θ is skew symmetric in (ζ, η) and can be
viewed as a holomorphic section of the bundle Λ2D∗ ⊗ (TZ/D).

Let M be a real submanifold of Z of class C∞ and of real dimension 2n with
n < N . We say that M is transverse to D if for every x ∈M we have

(2) TxM ⊕Dx = TxZ.

One can in fact assume more generally that the distribution D is singular, i.e.
given by a certain saturated subsheaf O(D) of O(TZ). Then O(D) is actually a
subbundle of TZ outside an analytic subset Dsing ⊂ Z of codimension ≥ 2, and
we further assume in this case that M ∩ Dsing = ∅. When M is transverse to D,
one gets a natural R-linear isomorphism

(3) TxM ≃ TxZ/Dx

at every point x ∈M . Since TZ/D carries a structure of holomorphic vector bun-
dle (at least over ZrDsing), the complex structure JZ induces a complex structure
on the quotient and therefore, through the above isomorphism (3), an almost com-

plex structure JZ,D
M on M . Bogomolov made the following basic observation.

Proposition 1. When D is a foliation (i.e. O(D) is an integrable subsheaf of

O(TZ) ), then JZ,D
M is an integrable almost complex structure.

In general, the Nijenhuis tensor NJ(ξ, η) = [ξ0,1, η0,1]1,0 of J = JZ,D
M can be

expressed by

(4) NJ ∈ C∞(X,Λ0,2TX ⊗ T 1,0X), NJ(ζ, η) = 4 θ(∂Jf · ζ, ∂Jf · η),

for all vector fields ξ, η ∈ C∞(X,T 0,1X). This shows again that θ ≡ 0 implies
NJ ≡ 0. Moreover, assuming ∂f injective, integrable complex structures are
obtained precisely when the image of ∂f lies in the (algebraic) isotropic locus

IsoZ,D :=
{
S ∈ Gr(D, n) ; θ|S×S = 0

}
⊂ Gr(D, n)

in the Grassmannian bundle of n-dimensional subspaces associated with D. The
next interesting question is to understand what happens when one considers a
variation of transverse embeddings.
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Proposition 2. Assume again that D is a foliation. If ft : X → (Z,D), t ∈
[0, 1] is a smooth isotopy of transverse embeddings, i.e. a smooth family such that
each ft is an embedding of X onto a transverse submanifold Mt = ft(X), then
the induced complex structures (Xt, Jft) are all biholomorphic through a smooth

family of diffeomorphisms in Diff0(X), i.e. the identity component in the group of
diffeomorphisms.

The following basic question somehow suggests that every compact complex
manifold should admit such an algebraic realization, starting from algebraic data
Z, D, and a (topological) isotopy class α of transverse embeddings.

Basic question 3 (Bogomolov [Bog96]). For any compact complex manifold
(X, J), does there exist a triple (Z,D, α) formed by a smooth complex projec-
tive variety Z, an algebraic foliation D on Z and an isotopy class α of transverse
embeddings X → Z, such that J = Jf for some f ∈ α ?

There are indeed many examples of Kähler and non Kähler compact complex
manifolds which can be embedded in that way (the case of projective ones being
of course trivial): compact complex tori, Hopf and Calabi-Eckman manifolds, and
more generally all manifolds given by the so-called LVMB construction [Bos01],
due to López de Medrano, Verjovsky, Meersseman and Bosio. In the non integrable
case, one can further obtain a precise formula for the variation of induced almost
complex structures.

Theorem 4. For r ∈ [1,+∞[, let J r(X) be the space of Cr almost complex

structures on X, and let Γ̃r(X,Z,D) be the space of transverse embeddings X →֒
(X,D) of class Cr that are transversally Cr+1. Then

(i) J r(X) is a Banach manifold whose tangent space at a point J is Cr(X,

End
C

(TX)), and Γ̃r(X,Z,D) is also a Banach manifold. Its tangent space
at a point f : X → Z is

Cr(X, f∗D) ⊕ Cr+1(X,TX).

(ii) The natural map f 7→ Jf sends Γ̃r(X,Z,D) in J r(X) ;

(iii) The differential dJf of f 7→ Jf on Γ̃r(X,Z,D) is a continuous morphism

Cr(X, f∗D)⊕Cr+1(X,TX) −→ Cr(X,End
C

(TX)), (u, v) 7−→ 2i
(
θ(∂f, u)+∂v

)
.

If ∂f is injective and such that u 7→ θ(∂f(x) • , u) defines a surjection from Dx

to End
C

(TxX)) at every point x ∈ X , then the implicit function theorem implies
that f 7→ Jf is a submersion. This requires rank(D) = N − n ≥ n2, hence the
dimension of Z must be at least quadratic in n. It turns out that there actually
exist universal embedding spaces for this problem. They are in some sense a
combination of Grassmannians and twistor spaces.

Theorem 5. For all integers n ≥ 1 and k ≥ 4n, there exists a complex affine
algebraic manifold Zn,k of dimension N = 2k+ 2(k2 + n(k− n)) possessing a real
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structure (i.e. an anti-holomorphic algebraic involution) and an algebraic distri-
bution Dn,k ⊂ TZn,k of codimension n, for which every compact n-dimensional
almost complex manifold (X, J) admits an embedding f : X →֒ ZR

n,k transverse to
Dn,k and contained in the real part of Zn,k, such that J = Jf . Moreover, f can
be chosen to depend in a simple algebraic way on the almost complex structure J
selected on X, and Jf is integrable if and only if the image of ∂Jf

lies in the
isotropic locus IsoZn,k,Dn,k

⊂ Gr(Dn,k, n).

The choice k = 4n yields the explicit embedding dimension N = 38n2 + 8n,
and we have seen that a quadratic bound N = O(n2) is indeed optimal. In case
(X, J) carries a J-compatible symplectic structure ω of type (1, 1), the embedding
theorem of Tischler and Gromov for symplectic structures allows to construct
similar universal spaces equipped with an additional transverse Kähler structure
β, such that f∗β = ω. They have dimensions growing linearly in b = h1,1(X) and
quadratically in n. Finally, there is an interesting connection between Bogomolov’s
conjecture and a natural approximation problem for holomorphic foliations.

Proposition 6. Assume that holomorphic foliations can be approximated by Nash
algebraic foliations uniformly on compact subsets of any polynomially convex open
subset of CN . Then every compact complex manifold can be approximated by com-
pact complex manifolds that are embeddable in the sense of Bogomolov into foliated
projective manifolds.
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Webs of curves and their web-structures

Jun-Muk Hwang

A (1-dimensional) web-structure on a complex manifold U is a collection of line
subbundles {Wi ⊂ T (U), 1 ≤ i ≤ d} such that Wi ∩Wj = 0 if i 6= j. We say that

the web-structure is bracket-generating if the distribution
∑d

i=1Wi on U is bracket-
generating in the sense of distribution. We say that the web-structure is pairwise
nonintegrable if for each Wi, there exists some Wj , j 6= i, such that the distribution
Wi +Wj on U is not integrable. Given a web-structure {Wi ⊂ T (U), 1 ≤ i ≤ d} on
a complex manifold U and a web-structure {W ′

i ⊂ T (U ′), 1 ≤ i ≤ d} on a complex
manifold U ′, we say that a biholomorphic map ϕ : U → U ′ is an equivalence of
web-structures if dϕ(∪d

i=1Wi) = ∪d
j=1W

′
j .

We are interested in web-structures arising from families of algebraic curves
covering a projective variety in the following way. A (not necessarily irreducible)
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family W of algebraic curves covering a projective variety X is called a web of
curves if there are only finitely many members of W through a general point
of X . Given a general point of X , we can find a Euclidean neighborhood U of
the point contained in the smooth locus of X such that members of W give a
web-structure on U , to be denoted by W|U . We say that W is bracket-generating
(resp. pairwise nonintegrable) if the web-structure W|U is bracket-generating (resp.
pairwise nonintegrable).

We are interested in how the local differential geometry of the web-structure
W|U affects the global algebraic geometry of X . Our main result is the following.

Theorem 1 Let W (resp. W ′) be a web of curves on a projective variety X (resp.
X ′), which is bracket-generating and pairwise nonintegrable. Let ϕ : U → U ′

be a biholomorphic map between connected Euclidean open subsets U ⊂ X and
U ′ ⊂ X ′ which is an equivalence of W|U and W ′|U ′ . Then ϕ can be extended to a
generically finite algebraic correspondence between X and X ′, i.e., there exists a
projective variety Γ ⊂ X×X ′ which is generically finite over both X and X ′ such
that Graph(ϕ) ⊂ Γ.

The original motivation for this theorem is to prove the following.

Theorem 2 Let X,X ′ ⊂ PN be two projective manifolds covered by lines of
projective space PN . Assume that b2(X) = b2(X ′) = 1. Let ϕ : U → U ′ be a
biholomorphic map between two connected Euclidean open subsets U ⊂ X and
U ′ ⊂ X ′ such that ϕ (resp. ϕ−1) sends pieces of lines in U (resp. U ′) to pieces of
lines in U ′ (resp. U). Then there exists a biholomorphic map Φ : X → X ′ such
that ϕ = Φ|U .

This was proved in my joint paper with Ngaiming Mok, Cartan-Fubini type
extension of holomorphic maps for Fano manifolds of Picard number 1 (Journal
Math. Pures Appl. 80 (2001) 563-575 ) under the assumption that the family of
lines passing through a general point of X and X ′ has positive dimension. The
remaining part of Theorem 2 is exactly when the families of lines on X and X ′

form webs of curves. One can use the condition b2(X) = b2(X ′) = 1 to check that
these webs of curves are both bracket-generating and pairwise nonintegrable. Thus
Theorem 1 gives an extension of ϕ to a generically finite algebraic correspondence
betweenX andX ′. Once this is done, we use a more delicate structure of the family
of lines covering X and X ′ to show that the correspondence actually determines
a biholomorphic map between X and X ′.
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Lower Bounds for the Bergman Kernel

Zbigniew B locki

We discuss lower bounds for the Bergman kernel on the diagonal in terms of
pluripotential theory. For n = 1 the main result is the following estimate, conjec-
tured by Suita [4] and proved in [1]:

KΩ(w,w) ≥ 1

π
cΩ(w)2,

where cΩ(w) is the logarithmic capacity of C \Ω w.r.t. w. In arbitrary dimension
a stronger estimate from [2] is the following one:

KΩ(w,w) ≥ 1

e−2ntλ({GΩ(·, w) < t})
,

where Ω ⊂ Cn is pseudoconvex, GΩ is the pluricomplex Green function and t ≤ 0.
This estimate is especially interesting when t → −∞. Using this one can get the
following bound from [3]:

KΩ(w,w) ≥ 1

λ(IAΩ (w))
,

where

IAΩ (w) = {X ∈ C
n : lim sup

ζ→0
(GΩ(w + ζX,w) − log |ζ|) ≤ 0}

is the Azukawa indicatrix, and for convex Ω

KΩ(w,w) ≥ 1

λ(IKΩ (w))
,

where

IKΩ (w) = {ϕ′(0) : ϕ ∈ O(∆,Ω), ϕ(0) = w}
is the Kobayashi indicatrix.
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Harmonic Discs of Solutions to the Complex Homogeneous
Monge-Ampère Equation

David Witt Nyström

(joint work with Julius Ross)

I will report on joint work with Julius Ross (for more details see the preprint
arXiv:1408.6663).

Let (X,ω) be a compact Kähler manifold of dimension n and D ⊂ C be the
open unit disc. Consider boundary data consisting of a family ω + ddcφ(·, τ) of
Kähler forms where φ(·, τ) is a smooth function on X for τ ∈ ∂D. The Dirichlet
problem for the complex Homogeneous Monge Ampère equation (HMAE) asks for
a function Φ on X × D such that

Φ(·, τ) = φ(·, τ) for τ ∈ ∂D,

π∗ω + ddcΦ ≥ 0,

(π∗ω + ddcΦ)n+1 = 0.

We say Φ is a regular solution if it is smooth and ω + ddcΦ(·, τ) is a Kähler
form for all τ ∈ D. By an example of Donaldson [7], we know there exist smooth
boundary data for which there does not exist a regular solution (see also the work
of Lempert-Vivas [9] and Darvas-Lempert [6] on geodesic segments). Nevertheless,
the equation always has a unique weak solution, which by the work of Chen [4]
with complements by B locki [3] we know is at least “almost” C1,1 (so in particular
C1,α for any α < 1). See [8] for a recent survey.

A more subtle aspect of the regularity of solutions to the HMAE is the question
of existence and distribution of harmonic discs.

Definition. Let g : D → X be holomorphic. We say that the graph of g is a
harmonic disc (with respect to Φ) if Φ is π∗ω-harmonic (i.e. π∗ω+ddcΦ vanishes)
along this graph.

As is well known, a regular solution to the HMAE yields a complex foliation of
X × D whose leaves restrict to harmonic discs in X × D. Even when the solution
is not regular, the existence of such harmonic discs is important; for instance
along such a harmonic disc the density of the varying measure ωn

φ(·,τ) is essentially

log-subharmonic (see [1] [5] [2, Sec 3.2]).
It was hoped that any weak solution would enjoy a weaker form of regularity,

so that a dense open subset of X × D would be foliated by harmonic disc, but as
we will see this is not always the case.

I will describe a correspondence between on the one hand the HMAE when
X = P1 and the boundary data has a certain kind of symmetry and on the other
hand the so-called “Hele-Shaw” flow in the plane. As a result we see that the set
of harmonic discs is determined by the topology of the flow.

To state precise results, let ωFS denote the Fubini-Study form on P1 and φ be
a smooth Kähler potential, i.e. a smooth function on P1 such that ωFS + ddcφ
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is Kähler. Let ρ denote the usual C×-action on P
1 which acts by multiplication

on C ⊂ P1. We consider the function φ(z, τ) := φ(ρ(τ)z) as boundary data over
P1×∂D, so for each τ ∈ ∂D we have a Kähler form ωFS +ddcφ(·, τ). We show that
the solution Φ to the Homogeneous Monge-Ampère equation with this boundary
data is intimately connected to the Hele-Shaw flow

Ωt := {z : ψt(z) < φ(z)}
where

ψt := sup{ψ : ψ is usc and ψ ≤ φ and ωFS + ddcψ ≥ 0 and ν0(ψ) ≥ t}.
By this we mean the supremum is over all upper semicontinuous (usc) functions
from P1 to R ∪ {−∞} with these properties, and ν0(ψ) denotes the order of the
logarithmic singularity (Lelong number) of ψ at 0 ∈ C ⊂ P1. In fact, we show that
the solution Φ and the family ψt are related via a Legendre transform.

Using this we prove the following:

Theorem 1. Let Φ be the solution to the HMAE with boundary data φ and g : D →
P1 be holomorphic. Then the graph of g is a harmonic disc of Φ if and only if
either

(1) g ≡ 0, or
(2) g(τ) = τ−1z for some fixed z ∈ P

1 \ Ω1, or
(3) τ 7→ τg(τ) is a Riemann mapping for a simply connected Hele-Shaw do-

main Ωt that maps 0 ∈ D to 0 ∈ Ωt.

The Hele-Shaw flow Ωt has a physical interpretation as describing the expansion
of a liquid in a medium with permeability inversely proportional to ∆(φ + ln(1 +
|z|2)). Guided by this one can rather easily find potentials φ for which at some
time t the flow domain Ωt becomes multiply connected.

This then translates into an obstruction to the presence of harmonic discs of
the associated solution to the HMAE:

Theorem 2. There exist smooth boundary data φ(·, τ) for which the solution to
the Dirichlet problem for the HMAE has the following property: there exists an
open set U in P1 × D meeting P1 × ∂D, such that no harmonic disc intersects U .

Next we address the question whether generic boundary data give rise to solu-
tions with a weak form of regularity. The following theorem answers that question
negatively.

Theorem 3. There exist smooth boundary data φ(·, τ) for which the following is
true: there exist a nonempty open set U ′ in P

1 × D and an ǫ > 0 such that if
φ′(z, τ) is any smooth boundary data with

‖φ′ − φ‖C2(P1×∂D) < ǫ

and Φ′ is the associated solution to the HMAE then no harmonic disc (associated
to Φ′) passes through U ′.
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The first theorem gives solutions that are not “partially smooth” and the sec-
ond examples whose perturbed solutions are not “almost smooth”, in apparent
contradiction with [5, Thm. 1.3.2] and [5, Thm. 1.3.4], respectively.
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A two-dimensional polynomial mapping with a wandering Fatou
component

Han Peters

(joint work with Matthieu Astorg, Xavier Buff, Romain Dujardin and Jasmin
Raissy)

Consider a holomorphic self-map of a complex manifold. The Fatou set is the
largest open set on which the family of iterates is locally normal. Its components
are called Fatou components.

In 1982 Dennis Sullivan proved that every Fatou component of a rational func-
tion is periodic or pre-periodic, which completed the classifications of Fatou com-
ponents on the Riemann sphere. Here we show that there exist polynomial maps in
2 complex dimensions for which there are Fatou components that are not periodic
or pre-periodic, so called wandering Fatou components. Our examples extend to
holomorphic endomorphisms of P2.

To be more precise, our examples are two-dimensional polynomial skew-products
of the form

F (z, w) =

(
f(z) +

π2

4
w, g(w)

)
,
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where f : C → C is a polynomial of the form

f(z) = z + z2 + az3 +O(z4),

and the polynomial g satisfies

g(w) = w − w2 +O(w3).

The constant a is chosen in a small disk with the point 1 in its boundary, so that
the Lavaurs map of f has an attracting fixed point. We use tools developed for
the study of one-dimensional parabolic implosion to prove the existence of the
wandering Fatou components.

The existence of Fatou components for polynomials was considered by Krastio
Lilov in 2004, who proved that in a neighborhood of a super-attracting fiber there
cannot exist wandering Fatou components. More recently Liz Vivas and Peters
showed that in an attracting fiber there can exist Fatou disks if resonance occurs
between the rate of the attraction and the rate of repulsion of a repelling fixed
point in the invariant fiber. In the current work there is also some sort of resonance
between the parabolic behaviors in both directions.

This is joint work with Matthieu Astorg, Xavier Buff, Romain Dujardin and
Jasmin Raissy, and is based on an original idea of Misha Lyubich.

L
2 extensions and multiplier ideal sheaves

Xiangyu Zhou

In this talk, we’ll present our recent work on the multiplier ideal sheaves, namely,
our proof of Demailly’s strong openness conjecture, immediate consequences of the
conjecture, solutions of further problems including a conjecture of Demailly-Kollár,
a conjecture of Jonsson-Mustaţă, effectiveness in the strong openness conjecture,
and the structure of the multiplier ideal sheaves associated to the psh functions
with Lelong number 1.

1. Introduction

1.1. Definition. Associated to a given plurisubharmonic function ϕ on a complex
manifold X , the multiplier ideal sheaf is the ideal subsheaf I(ϕ) ⊂ OX of germs of
holomorphic functions f ∈ Ox such that |f |2e−ϕ is locally integrable near x ∈ X .

1.2. First properties.

• I(ϕ) is a coherent analytic sheaf.
• I(ϕ) is integrally closed.
• Nadel vanishing theorem.
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2. Demailly’s strong openness conjecture and corollaries

2.1. Statement and result.

Denote by I+(ϕ) := ∪ε>0I((1 + ε)ϕ).
Strong openness conjecture ([3], [4]): Let ϕ be a psh function on X. Then

I+(ϕ) = I(ϕ).

Remark. Assuming further that I(ϕ) = OX , it was proved by Berndtsson [1].

Theorem 2.1 ([7], [8]). Demailly’s strong openness conjecture holds.

The main idea of the proof is also presented during the talk, which is a combining
use of Ohsawa-Takegoshi L2 extension theorem, curve selection lemma and a key
observation in one complex variable.

2.2. Corollaries.

Corollary 2.2. Let (L, e−ϕ) be a pseudo-effective line bundle (i.e., ϕ is psh) on
a compact Kähler manifold X of dimension n, Then

Hp(X,KX ⊗ L⊗ I(ϕ)) = 0,

for any p ≥ n− nd(L,ϕ) + 1.

This was conjectured in [2].
Remark. When the bundle is a big line bundle on X (i.e., the curvature

current Θ of the singular Hermitian metric is a Kähler current: ∃ǫ > 0, s.t.,
Θ ≥ ǫω), it’s known that nd(L) = n. Therefore the theorem reduces to Nadel
vanishing theorem.

Corollary 2.3. For the big line bundle L, the equality

(1) J (||mL||) = J (hmmin)

holds for every integer m > 0.

This was conjectured in [5].

Corollary 2.4. One has {I(ϕ)} = {I(ϕA)}, where ϕ is a psh function and ϕA is
a psh function with analytic singularities.

3. Further problems

We mention also the following results.

• A conjecture of Demailly-Kollár ([6]) is proved in [9];
• A conjecture of Jonsson-Mustaţă ([13]) is proved in [9];
• Effectiveness conditions in the strong openness conjecture are found in

[11];
• The structure of the multiplier ideal sheaves of the psh functions with

Lelong number 1 is obtained in [12].
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In the proofs of the first three results, some idea and method about sharp
L2 extension theorem in [10] are used. In the proof of the fourth result, the
solution of Demailly’s strong openness conjecture and Siu’s analyticity theorem
and decomposition theorem are used.
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[13] M. Jonsson and M. Mustaţă, An algebraic approach to the openness conjecture of Demailly
and Kollár, J. Inst. Math. Jussieu (2013), 1–26.

[14] T. Ohsawa and K. Takegoshi, On the extension of L2 holomorphic functions, Math. Z. 195
(1987), 197–204.

[15] Y.T. Siu, Multiplier ideal sheaves in complex and algebraic geometry. Sci. China Ser. A 48
(2005), suppl., 1–31.

L
2-cohomology of isolated singularities, integral representation

formulas and canonical singularities

Jean Ruppenthal

The L2-∂-cohomology of isolated singularities of complex spaces can be described
in terms of a resolution of singularities. This has been achieved recently in [OV]
and [R1], where resolutions of singularities are used to give smooth models for the
L2-cohomology with respect to different ∂-operators. By use of L2-Serre duality
for ∂-cohomology classes, [R2], one obtains an almost complete picture.
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However, several questions remain open. For example, if a ∂-equation is solvable
at an isolated singularity, then it is desirable to give an explicit solution operator.
Here, the L2-methods from [OV], [R1] and [R2] are not really helpful and integral
representation formulas for singular complex spaces come into play. Also in this
area, big progress has been made recently by Andersson–Samuelsson [AS] who
introduced Koppelman formulas (i.e., ∂-homotopy formulas) for singular complex

spaces. Clearly, these ∂-homotopy formulas cannot hold in the L2-sense in general
because we know that there exist obstructions to solving the ∂-equation in the
L2-sense. Actually, the integral operators of Andersson–Samuelsson are defined in
general only as principal value integrals which must be applied to smooth forms
(and something derived from smooth forms, the so-called A-sheaves). They cannot
be applied to L2-forms on arbitrary varieties.

But, if the ∂-equation is solvable in the L2-sense, then there is a good hope
that the solution can be provided explicitly by the Andersson–Samuelsson oper-
ators. Here singularities as appearing in the minimal model program come into
play. It is shown in [R2] that the ∂-equation is solvable in the L2-sense for (0, q)-
forms and (n, q)-forms at canonical singularities (let n be the dimension of the
complex space). Moreover, canonical singularities have also a ”good” influence
on the singularity of the integral kernels in the Andersson–Samuelsson operators.
Besides the BMK-part, ‖ζ−z‖1−2n, the singularity of the integral kernels consists
of the so-called structure form which measures the ”badness” of the singularity.
These structure forms seem to be less harmful for canonical singularities. So, it
appears reasonable to study the mapping properties of the Andersson–Samuelsson
operators for canonical singularities.

In a joint project with Richard Lärkäng, [LR], we pursued this idea for the
A1-singularity, i.e., the isolated singularity at the origin of the cone X = {z2 =
xy} ⊂ C3. For this singularity, it is shown in [LR] that the Andersson–Samuelsson
operators map continuously from Lp(X) to Lp(X) for p > 4/3, and from L∞(X) to
C0(X). Using these (and some even stronger) mapping properties, it is also shown
that the Koppelman formulas from [AS] provide actually ∂-homotopy formulas in

the L2-sense (for all the different ∂-operators we are interested in). It seems
possible to extend the methods from [LR] to treat arbitrary canonical isolated
singularities. That is work in progress with Richard Lärkäng, H̊akan Samuelsson-
Kalm and Elizabeth Wulcan.

All in all, the principle idea behind this research is the following: It seems that
for singularities as appearing in the Minimal Model Program, i.e., canonical singu-
larities, the L2-theory for the ∂-operator could be possible as in the smooth case.
Unfortunately, this cannot be achieved by classical L2-methods at the moment.
But, the gaps could be filled by the Andersson–Samuelsson formulas. Moreover,
as usually, these integral representation formulas have several other applications.
They allow for example to treat other function spaces (Lp for p 6= 2, Cα) besides

just L2, and they could provide further regularity results for the ∂-equation.
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There is research from a completely different direction in Complex Geometry
which substantiates the idea that canonical singularities are nice with respect to
the L2-theory for the ∂-operator. In [GKKP] it is shown that holomorphic p-
forms behave very well on complex spaces with canonical singularities: reflexive
differential forms extend holomorphically over the exceptional set of a resolution
of singularities. From that one can deduce the following statement: Consider a
holomorphic differential form φ on the regular part of a complex projective variety.
A priori, φ could have arbitrary growth at the singular set, but if the variety has
only canonical singularities, then φ is square-integrable.
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The Bergman metric and isoperimetric inequalities

Bo-Yong Chen

Let M be an orientable surface. By means of patching up together local metrics
through a partition of unity, one can construct many Riemannian metrics on M .
Thanks to the famous Korn-Lichtenstein theorem, every Riemannian metric ds2

induces a complex structure on M . Thus there exist two seemingly complete
different theories on the same target, one is Riemannian geometry, the other is
complex analysis, both initiated by Riemann himself. The purpose of this research
is to study complex analysis via Riemannian geometry. More precisely, we are
interested in the following problem:

Problem 1. Let M be an open Riemann surface with a complex structure induced
by some complete Riemannian metric ds2. How does the (Riemannian) geometry
of ds2 influence the behavior of the Bergman kernel or metric?

Popular conditions in Riemannian geometry are curvature, volume, etc. How-
ever, these conditions are not strong enough for studying Bergman analysis, certain
global condition is still needed.

Definition 1. Let M be a complete Riemannian manifold. For each 0 < ν ≤ ∞,
the ν−dimensional isoperimetric constant of M is defined by

Iν(M) = inf |∂Ω|/|Ω|1−1/ν
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where the infimum is taken over all precompact domains Ω ⊂ M with a smooth
boundary, and | · | stands for the volume.

Theorem 1. Let M be a complete Riemannian surface. Let d denote the corre-
sponding distance. Suppose either of the following conditions is verified:

(1) Iν(M) > 0, for some 2 < ν <∞;
(2) I∞(M) > 0, the Gaussian curvature is bounded below by a constant, and

inf
x∈M

|B1(x)| > 0,

where Br(x) stands for the geodesic ball with center x and radius r.

Then the Bergman distance dB satisfies

dB(x, y) ≥ const. d(x, y)

for all x, y ∈M with d(x, y) ≥ 2. In particular, M is Bergman complete.

Theorem 2. Let M be a complete Riemannian surface such that the Gaussian
curvature is bounded below by a constant.

(1) If I∞(M) > 0, then for any number α < 1/36 there exists a constant
C > 0 such that

|KM (x, y)| ≤ C√
|B1(x)|

√
|B1(y)|

exp
{
−αI∞(M)2d(x, y)

}

for all x, y ∈M .
(2) If Iν(M) > 0 for some 2 < ν < ∞, then for any number α < 1/16 there

exists a constant C > 0 such that

|KM (x, y)| ≤ C d(x, y)α(2−ν), ∀x, y ∈M.

Finally, recall a fundamental concept from Riemannian geometry as follows:

Definition 2. A sequence (Mj , ds
2
j) of complete Riemannian manifolds is said

to converge in the sense of Cheeger-Gromov to a complete Riemannian manifold
(M,ds2) if there exist

(1) a sequence of points pj ∈Mj and a point p ∈M ;
(2) a sequence of precompact open sets Ωj ⊂ M exhausting M , with p ∈ Ωj

for each j;
(3) a sequence of smooth maps φj : Ωj → Mj which are diffeomorphic onto

their image and satisfy φj(p) = pj;

such that φ∗j (ds2j) → ds2 in the sense that for all compact subsets K ⊂ M , the

tensor φ∗j (ds2j )−ds2 and its covariant derivatives of all orders (with respect to any
fixed background connection) each converge uniformly to zero on K.

Theorem 3. Let (Mj , ds
2
j) be a sequence of complete Riemannian surfaces which

converge in the sense of Cheeger-Gromov to a complete Riemannian surface
(M,ds2) and satisfy

I∞(M) > 0 and inf
j
I∞(Mj) > 0.
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Let ds2B,j (resp. ds2B) denote the Bergman metric of the Riemann surface Mj

(resp. M). Then ds2B,j converges to ds2B in the sense that for all compact subsets

K ⊂ M , the tensor φ∗j (ds2B,j) − ds2B and its covariant derivatives of all orders

(with respect to any fixed background connection) converge uniformly to zero on
K.

Dynamical Expansion and its Geometry

Eric Bedford

First we consider a polynomial p(z) : C → C, and then we consider a polynomial
automorphism (Hénon map) f : C2 → C2. In both cases, the chaotic part of the
dynamics is carried by the Julia set J . We will discuss the philosophical idea that

Dynamical expansion of the iterates of the map on J
can be seen in the geometry of the Julia sets J , J+ and J−.

In dimension one, the most straightforward sort of expansion is uniform ex-
pansion or hyperbolicity, which means that there are c > 0 and λ > 1 such that
|pn(z)′| ≥ cλn for all z ∈ J . In this case, J will have the fractal property that
the general shape of J at large scale is repeated “everywhere” at arbitrarily small
scales. More precisely, if U is a (small) open set with U ∩ J 6= ∅, then there is a
number N = NU such that pN(J ∩ U) = J . By the Koebe Distortion Theorem,
all geometry of J is contained already in the small piece U ∩ J .

Thus uniform expansion on J implies a fractal-like geometry on J . Conversely,
are there geometric properties of J that will imply some sort of expansion? We dis-
cuss a result of [CJY] which brings together expansion properties of a polynomial
p(z) and geometric properties of J .

The first of these is an expansion property called semi-hyperbolicity. For this,
let B(z, r) denote the disk of radius r centered at a point z ∈ J , and let Bn denote
any connected component of p−n(B(z, r). Thus pn|Bn

: Bn → B(z, r) is proper.
The map p is semi-hyperbolic if there is a number M <∞ such that the mapping
degree of pn|Bn

: Bn → B(z, r) is no greater than M .
Let A∞ = {z ∈ C : pn(z) → ∞, as n → ∞} be the basin of infinity. Thus

J = ∂A∞. Let γ be a path in A∞ which lands at a point z0 ∈ ∂A∞. For ǫ > 0, we
define the ǫ-carrot about γ to be C(γ, ǫ) =

⋃
z∈γ B(z, ǫ|z − z0|). We say that A∞

is a John domain if there is an ǫ > 0 such that for each z0 ∈ ∂A∞ there is a path
γ connecting z0 to ∞ and the ǫ-carrot is contained in A∞, i.e., C(γ, ǫ) ⊂ A∞.

In case p has a parabolic fixed point z0, it is known that the Julia set has a
cusp at z0, and there can be no ǫ-carrot inside A∞, landing at z0.

Theorem [CJY]. The following are equivalent:

1. p is semi-hyperbolic.
2. p has no parabolic points, and for each critical point c, c /∈ ω(c), which is

to say that the orbit of c is not recurrent to itself.
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3. A∞ is a John domain.
4. J is fractal.

An essential ingredient is the following result, as formulated in [CJY]:

Theorem (Multi-Valent Distortion). Suppose that D ⊂ C is simply con-
nected, and F : D → ∆ is a proper map to the unit disk, which is M -to-1. If ρ
denotes the Poincaré metric, then there is C depending only on M such that:

{w ∈ ∆ : ρ∆(F (z0), w) ≤ C−1} ⊂ F{z ∈ D : ρD(z, z0) ≤ 1}
⊂ {w ∈ ∆ : ρ∆(F (z0), w) ≤ 1}.

While the conclusion of this result is not as sharp as the Koebe Distortion
Theorem, it may be applied to maps that are not conformal, and may be applied
to semi-hyperbolic maps and is what is needed for Theorem [CJY].

Now we attempt to give a reformulation of all of this in complex dimension 2.
We consider complex Hénon maps, which are polynomial diffeomorphisms of C2.
Familiar objects are the sets K± where forward/backward orbits are bounded and
J± := ∂K±. We use the pluri-complex Green function G+ for the set K+.

A map f is said to be (uniformly) hyperbolic if J := J+ ∩ J− is a hyperbolic
set. This means that there is a splitting Es ⊕Eu of the tangent space over J such
that Df is uniformly contracting/expanding in the stable/unstable directions Es/
Eu. The Stable Manifold Theorem then yields laminations Ws/ Wu of J+/ J−.
Thus we see that:

Uniform expansion and contraction yields
geometric structures (laminations) of J− and J+.

We want to define “semi-hyperbolicity” in dimension 2, but we do not have
“critical points” since f is a diffeomorphism. In fact, “tangencies” will be the
two-dimensional replacement for critical points. We can use the Green function
G+ to define a canonical metric on the unstable subspaces at saddle points.

Let S denote the set of periodic points of saddle type, and let J∗ := S denote
its closure. If q ∈ C2 is a periodic saddle point, we let Wu(q) denote the unstable
manifold of q. There is a uniformization ξq : C → Wu(q) ⊂ C2. We normalize
these maps so that ξq(0) = q and max|ζ|≤1G

+(ξq(ζ)) = 1. For each q ∈ S there is
λq ∈ C such that

f ◦ ξq(ζ) = ξf(q)(λqζ), ζ ∈ C

We define a canonical metric || · ||#q on Eu
q by the condition that ||ξq(0)′||#q = 1.

Theorem [BS8]. The following are equivalent, and if they hold, we say that f is
quasi-expanding:

1. There exists κ > 1 such that |λq| ≥ κ for all periodic points q.
2. The set of normalized maps Ξ = {ξq : q ∈ S} is a normal family of entire

functions.
3. There exists κ > 1 such that ||Df |Eu

q
||#q ≥ κ for all q ∈ S.

We have defined quasi-expansion by the condition that Df is uniformly expanding
with respect to the metric || · ||# in the tangent directions Eu

q . Recall that q runs
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over the countable (non-closed) set S, so it is unclear whether || · ||# is equivalent
to the Euclidean metric.

Now let us consider the (unparametrized) unstable manifolds Wu(q). Let
(Wu(q)∩B(q, r))q denote the connected component of Wu(q)∩B(q, r) which con-
tains q. We say that the family Wu(S) := {Wu(q) : q ∈ S} is locally proper if there
is an r > 0 such that (Wu(q) ∩B(q, r))q is closed in B(q, r) for all q ∈ S. We say
that the family Wu(S) has locally bounded area if Area((Wu(q) ∩B(q, r))q) < M
for all q ∈ S.

If Wu is part of a lamination, then it satisfies both the locally proper and locally
bounded area conditions. The converse is not true.

Theorem [BS8]. f is quasi-expanding if and only if the family Wu(S) satisfies
the proper, locally bounded area condition.

As was the case with [CJY], this result needs a Multi-Valent Distortion Theo-
rem. The version we need is:

Theorem [BS8]. Let A < ∞ and χ > 1 be given. Then there exist ρ > 0
and a > 0 with the following property: If D ⊂ C is a simply connected domain
containing the origin, and if φ : D → B(0, 1) is a proper holomorphic mapping with
φ(0) = 0 and Area(φ(D)) ≤ A, then for some r the component D0 of φ−1(B(0, ρ))
containing the origin satisfies:

{|ζ| < ar} ⊂ D0 ⊂ {|ζ| < r} ⊂ {|ζ| < χr} ⊂ D.
If f is quasi-expanding, then by Bishop’s Theorem and [LP], Wu(S) may be

extended to a family of manifolds {Wu(x) : x ∈ J∗}. These are unstable manifolds,
but they may or may not fit together as part of a lamination. The geometry of
transverse laminar structure in fact yields a dynamical consequence of uniform
hyperbolicity:

Theorem [BS8]. Suppose that Wu/s(S) extend to a laminations of J−/+. If these
laminations are transverse at J , then f is uniformly hyperbolic on J .

We say that f is quasi-hyperbolic if both f and f−1 are quasi-expanding. It
is known that J∗ ⊂ J for all Hénon maps f , but we point out a fundamental
question:

If f is quasi-hyperbolic, is J∗ = J?

The answer is known to be “Yes” when f is uniformly hyperbolic.
The next result says that within the class of quasi-hyperbolic maps, we can see

uniform hyperbolicity by the non-existence of tangencies.

Theorem. Suppose that f is quasi-hyperbolic, then f is uniformly hyperbolic on
J∗ if and only if there is no point of tangency between Wu(S) and Ws(S).

This Theorem is ongoing work with John Smillie.
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Hénon maps, Geom. Funct. Anal. Vol. 24 (2014) 887–915.

Stably-interior points and the Semicontinuity theorems for
Automorphism Groups

Kang-Tae Kim

The semicontinuity phenomenon under consideration is, roughly speaking, as fol-
lows:

If a sequence Ωj of domains converge in some sense to a domain
Ω0 as j → ∞, then there exists N > 0 such that Aut (Ωj) →֒
Aut (Ω0) for every j > N .

The line of study along this has quite a deep root. Perhaps the beginning was
in the following observation in the Euclidean space: when a sequence (Kj) of
compact convex solids in a Euclidean space converges, in the sense of Hausdoff set
convergence for instance, to another compact solid K0, then the symmetry group
of Kj is isomorphic to a subgroup of the symmetry group of the limit solid K0 for
j sufficiently large.

This, in more generality, was handled in the theorem by Montgomery and Zippin
[5] which states: For a Lie group G and a compact subgroup H, there exists an open
neighborhood U of H such that any subgroup K with K ⊂ U admits an element
g ∈ G such that g−1Kg ⊂ H.

Then D. Ebin [1] showed that on a compact Riemannian manifold M , if a
sequence (γj) of C∞-smooth Riemannian metrics converges to a C∞-smooth Rie-
mannian metric γ0 then there exists N > 0 such that, for every j > N , a dif-
feomorphism ψj : M → M exists to satisfy ψ−1

j ◦ Isomγj
(M) ◦ ψj ⊂ Isomγ0

(M).

Then in 1982 and 1985, Greene and Krantz established the following

Theorem 1 ([3], [4]). In the collection of bounded strongly pseudoconvex domains
with C∞ smooth boundary in Cn with n ≥ 2, if a sequence (Ωj) converges in
C∞-topology to Ω0 with a compact holomorphic automorphism group, then there
exists a constant N > 0 such that, for every j > N , there exists a diffeomorphism
ψj : Ω0 → Ωj satisfying ψ−1

j ◦Aut (Ωj) ◦ ψj ⊂ Aut (Ω0).

Their proof depended upon many excellent analytic/geometric theorems con-
cerning the bounded strongly pseudoconvex domains.

The main aim of this presentation is the following theorem. For instance let
F be the collection of bounded pseudoconvex domains in C2 with D’Angelo finite
type boundary.

Theorem 2 (Greene & Kim, [2]). If a sequence (Ωj) in F converges in C∞-
topology to Ω0 with a compact holomorphic automorphism group, then there exists
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a constant N > 0 such that, for every j > N , Aut (Ωj) is Lie isomorphic to a Lie
subgroup of Aut (Ω0)

Then the method of proof is of an elementary nature so that it also yields the
same conclusion for the following collections:

• the collection of bounded strongly pseudoconvex domains in Cn (n ≥ 2)
with C2 boundary equipped with the C2-topology.

• the collection of bounded convex domains in Cn with C1 boundary equip-
ped with the C1-topology.

It is not known whether the theorem holds for the case of domains with finite
type boundary if the dimension is higher than 2.
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A complete complex hypersurface in the ball of CN

Josip Globevnik

In 1977 P. Yang asked whether there exist complete immersed complex submani-
folds ϕ : Mk → CN with bounded image [Y1, Y2]. The first answer was obtained
by P. Jones [J] who constructed a bounded complete immersion ϕ : ∆ → C2 and a
complete proper holomorphic embedding ϕ : ∆ → B4. Since then there has been
a series of results on bounded complete holomorphic curves (k = 1) immersed in
C2 [MUY, AL1, AF] the most recent being that every bordered Riemann surface
admits a complete proper holomorphic immersion to B2 and a complete proper
holomorphic embedding to B3 [AF]. The more difficult complete embedding prob-
lem for k = 1 and N = 2 has been solved only recently by A. Alarcón and F.
J. López [AL2] who proved that every convex domain in C2 contains a complete,
properly embedded complex curve.

In the present talk we are interested primarily in the higher dimensional case
(k > 1) where there are partial answers which are easy consequences of the results
for complete curves. For instance, it is known that for any k ∈ IN there are
complete bounded embedded complex k-dimensional submanifolds of C2k and it
is an open question whether, in this case, N = 2k is the minimal possible dimension
[AL2]. We consider the case where ϕ is a proper holomorphic embedding. In this
case ϕ(Mk) is a closed submanifold. We restate the definition of completeness for
this case:
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Definition A closed complex submanifold M of BN is complete if every path
p : [0, 1) →M such that |p(t)| → 1 as t→ 1 has infinite length.

Note that this coincides with the standard definition of completeness since the
paths p : [0, 1) → M such that |p(t)| → 1 as t → 1 are precisely the paths that
leave every compact subset of M as t→ 1 .

Our main result is Theorem Let N ≥ 2. There is a holomorphic function f

on BN such that ℜf is unbounded on every path of finite length that ends on
bBN . So our function f has the property that if p : [0, 1] → BN is a path of

finite length such that |p(t)| < 1 (0 ≤ t < 1) and |p(1)| = 1 then t → ℜ
(
f(p(t)

)

is unbounded on [0, 1). The following corollary answers the question of Yang

in all dimensions k and N by providing properly embedded complete complex
manifolds. Corollary For each k,N, 1 ≤ k < N, there is a complete, closed,

k-dimensional complex submanifold of BN . Proof. We first prove the corollary

for k = N − 1 (that is, we first prove the existence of the hypersurface, mentioned
in the title). Let f be the function given by Theorem 1.1. By Sard’s theorem
one can choose c ∈ C such that the level set M = {z ∈ BN : f(z) = c} is a
closed submanifold of BN . Let p : [0, 1) → M be a path such that p(t) → bBN

as t → 1. Assume that p has finite length. Then there is a point w on bBN

such that limt→1 p(t) = w. By the properties of f , ℜf is unbounded on p([0, 1)).
On the other hand, f((p(t)) = c (0 ≤ t < 1), a contradiction. So p must have
infinite length. This proves that M is complete and so completes the proof of the
corollary for k = N − 1. Assume now that 1 ≤ k ≤ N − 2. By the first part
of the proof, there is a complete, closed, k−dimensional complex submanifold M
of Bk+1 ⊂ BN . Clearly M is a complete, closed k−dimensional manifold of BN .
This completes the proof. In the talk we describe the proof of Theorem which is

based on an old idea of the speaker and E.L.Stout [GS], and on a new result from
convex geometry obtained by the author which is needed for the proof. The paper
with complete proofs is available on arXiv: 14013135, in a paper with the same
title as the title of this talk.
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Generalized cycles and local intersection numbers

Elizabeth Wulcan

(joint work with M. Andersson, D. Eriksson, H. Samuelsson Kalm, and A. Yger)

Let Z(PN) denote the group of analytic cycles on PN , i.e., formal finite sums

Z =
∑

j

αjZj,

where Zj are irreducible subvarieties of PN . If Z is irreducible itself, then at each
point x ∈ Z there is a well-defined positive integer multx Z, the multiplicity of
Z at x. Roughly speaking one takes a generic plane through x of complimentary
dimension, moves it slightly and counts the number of intersection points close to
x. There is also a positive integer degZ which is the total number of intersection
points with a generic such plane. These two numbers extend to arbitrary cycles
by linearity.

Let Z be the cusp {x31 − x22x0 = 0} in P2. Then p = [1, 0, 0] is the only non-
smooth point. We have that

multx Z = 1, x ∈ Z \ p, multp Z = 2, degZ = 3.

Analytically we can represent the cycle Z by the corresponding Lelong current
[Z]

[Z].ξ =

∫

PN

[Z] ∧ ξ, ξ ∈ E(PN ).

Clearly Z is determined by its Lelong current, and this representation makes it
possible to give analytic definitions of multiplicity and degree: We have that

multx Z = ℓx[Z],

where the right hand side is the Lelong number of the current [Z] at x, this is a
measure of the mass concentration at x. Furthermore,

degZ =

∫

PN

[Z] ∧ ωdimZ

(provided that Z has pure dimension), where ω = ddc log |x|2 is the Fubini-Study
metric form.

If Z,W ∈ Z(PN ) have pure dimensions and dim(Z∩W ) = dimZ+dimW −N ,
then there is a well-defined cycle

Z ·W =
∑

αℓVℓ,

called the proper intersection, where Vℓ are the irreducuble components of the set-
theoretical intersection V of Z and W , and αℓ are integers. The classical definition
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is geometric and/or algebraic, but by means of the Lelong current representation
we have

[Z ·W ] = [Z] ∧ [W ],

where the product on right hand side is defined by choosing suitable regularizations
of the currents and go to the limit. For instance, the proper intersection of the
cusp and a generic line through p is equal to 2{p}, whereas the intersection with
the line x2 = 0 is 3{p}.

In the classical non-proper case, see [4], the intersection product Z · W is a
certain Chow class on V of dimension dimZ + dimW − N ; this means that it is
represented by a cycle on V that is determined only up to rational equivalence. In
particular, it has a well-defined degree and the Bezout equality

deg(Z ·W ) = degZ · degW

holds, provided that dimZ + dimW ≥ N ; otherwise Z ·W is zero.
For instance, the self-intersection of the cusp Z above is represented by the set

of 9 points obtained by taking one of the Z and move it slightly so that one gets
a proper intersection. (More precisely any divisor of a generic section of the line
bundle O(3) restricted to Z is a representative.)

In the 90’s Tworzewski, [6], Gaffney-Gassler, [5], and Achilles-Manaresi, [1],
independently introduced integers

ǫk(Z,W, x), k = 0, 1, . . . , dimV,

called the local intersection numbers or Segre numbers at x, where k describes the
complexity of the local intersection at x on dimension k. The definition in [6]
and [5] is geometric and relies on a local variant of the so-called Stückrad-Vogel
procedure, [7], whereas the definition in [1] is algebraic. In [3] we found an analytic
definition as the Lelong numbers of certain currents.

If the intersection is proper, then ǫk(Z,W, x) = multx(Z ·W ) for k = dimV
and 0 otherwise. If Z = W is the cusp, then

ǫ(Z,Z, x) = (0, 1), x ∈ Z \ {p}, ǫ(Z,Z, p) = (3, 2),

that is, at the point p we have the local intersection number 3 on dimension 0 and
2 on dimension 1.

It is clear that no representative of the self-intersection Z · Z of the cusp can
represent the local intersection numbers. Tworzewski, [6], proved however that
there is a unique analytic cycle Z ◦W such that (lower index denotes component
of dimension k) ∑

k

multx(Z ◦W )k =
∑

ℓ

ǫℓ(Z,W, x).

For instance, if Z is the cusp, then

Z ◦ Z = Z + 3{p}.
Notice however that deg(Z ◦Z) = 6 6= 9 = 3 · 3 = (degZ)2 so the Bezout equality
is not fufilled (and clearly there is no cycle at all with the right multiplicities that
also satisfies the Bezout equality in this case).
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We introduce, for any subvariety X of PN , a group B(X) of currents that we call
generalized cycles on X . If we identify classical cycles with the associated Lelong
currents we get an inclusion Z(X) ⊂ B(X). We also have a natural inclusion
B(X) ⊂ B(X ′) if X ⊂ X ′, and B(X) is precisely the subgroup of the µ in B(PN)
whose support |µ| is contained in X . Each generalized cycle µ has a natural
decomposition µ = µ0 + µ1 + · · · , where µk has dimension k. It turns out that
multx µ := ℓxµ and

degµ :=

∫
µ ∧ ωdegµ

are integers. Intuitively generalized cycles are obtained as certain mean values of
classical cycles. For instance,

ωp := ddc log(|x1|2 + |x2|2)

is a generalized cycle that is singular only at the point p. It has degree 1 and the
multiplicity at p is 1; at each other point the multiplicity is zero. In fact, ωp is a
mean value of all lines through p.

Our main result is the following:

Theorem 1. There is a bilinear pairing B(X) × B(X ′) → B(X ∩X ′), (Z,W ) 7→
Z •W with the following properties:

(i) multx(Z •W )k = ǫ(Z,W, x) for all x and k

(ii) deg(Z•W ) = degZ ·degW provided that dim(|Z|∩|W |) ≥ dimZ+dimW−N ,

(iii) Z •W coincides with Z ·W on ”cohomology level”.

It follows that Z •W = Z ·W if the intersection is proper. If ℓ is a line, then
ℓ • ℓ = ℓ. If Z is the cusp above in P

2, then

Z • Z = Z + 3{p} + µ,

where µ is a generalized cycle on Z of dimension 0 and total mass 3, intuitively
meaning 3 points that move around on Z. Notice that the total degree of Z •Z is
9 as expected.

The formal definition of B(X) is the following: Let f : Y → X be any proper
holomorphic mapping and let α be a product of Chern forms of Hermitian line
bundles over Y . Then µ = f∗α defines a generalized cycle with support on X and
B(X) is defined so that the element is independent of the choice of Chern forms
(Hermitian metrics). For instance, if i : Z → X is an inclusion, then [Z] = i∗1.
Let π : P2 be the blow-up of P2 at p and let α be minus the Chern form of the
exceptional divisor. Then ωp = π∗α.
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On pluripolarity of cores of pseudoconvex domains

Tobias Harz

(joint work with N. Shcherbina and G. Tomassini)

In [1] the following notion of the core of a complex manifold is introduced.

Definition. Let M be a complex manifold and let Ω ⊂ M be a domain. The set

c(Ω) :=
{
z ∈ Ω : every smooth plurisubharmonic function on Ω that is

bounded from above fails to be strictly plurisubharmonic in z
}

is called the core of Ω.

It is well-known that for every bounded strictly pseudoconvex domain Ω ⊂ C
n

with smooth boundary there exists a smooth strictly plurisubharmonic function ϕ
defined on an open neighbourhood of Ω̄ such that Ω = {ϕ < 0} and dϕ 6= 0 on bΩ.
The function ϕ is called a global defining function for Ω. Easy examples show that
in general it is not possible to extend the same result to the case of unbounded
domains.

Example. Let f : C → C be an entire function and

Ω :=
{

(z, w) ∈ C
2 : log |w − f(z)| + C1

(
|z|2 + |w|2

)
< C2

}
⊂ C

2,

where C1 and C2 are constants and C1 > 0. For almost all constants C2, Ω is an
unbounded strictly pseudoconvex domain with smooth boundary in C2 containing
the complex line L := {(z, f(z)) ∈ C2 : z ∈ C}. Let ϕ be a plurisubharmonic
function defined on a neighbourhood of Ω̄ such that Ω = {ϕ < 0}. Then ϕ is
subharmonic and bounded from above on L, hence it is a constant by Liouville’s
theorem. In particular, ϕ is not strictly plurisubharmonic at the points of L.

Thus, in the setting of unbounded domains Ω ⊂ Cn, it is necessary to allow
for some degenerecies of the Levi form of global defining functions inside Ω. This
is the initial motivation for introducing the concept of the core. The Main The-
orem from [1] states that the core is the only obstruction for existence of strictly
plurisubharmonic defining functions of unbounded strictly pseudoconvex domains.

Main Theorem. Every strictly pseudoconvex domain Ω with smooth boundary in
a complex manifold M admits a bounded global defining function that is strictly
plurisubharmonic outside c(Ω). Moreover, c(Ω) is closed in M.
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By the above theorem, the study of global defining functions is reduced to the
study of the core. Much of the work in [1] is devoted to study properties of the
core. In particular, questions on existence of analytic structure and of Liouville
type properties of c(Ω) are addressed. The strongest general result that is obtained
is the following.

Theorem 1. Let M be a complex manifold and let Ω ⊂ M be a domain. Then
c(Ω) is 1-pseudoconcave in Ω. In particular, c(Ω) is pseudoconcave in Ω if dimC M
is two.

However, there are many natural questions on the structure of the core which
are still open. For example, a general open problem is to understand how proper-
ties of Ω are related to properties of c(Ω). One instance of this problem, which is
motivated by the structure of available examples, is to understand if, and if appli-
cable how, pseudoconvexity of Ω is related to pluripolarity of c(Ω). The goal of this
talk is to present a partial result on this question, namely, under the additional
assumption that the core possesses a certain product structure. In particular, we
discuss the following theorem.

Theorem 2. Let n ≥ 2. The following assertions hold true for domains Ω ⊂ Cn

with coordinates (z1, z2, . . . , zn), zj = xj + iyj:

(1) There exists a domain Ω ⊂ C
n such that c(Ω) = E × C

n−1, where E ⊂ C

is the set E = [0, 1] × Ry1
.

(2) Let Ω ⊂ Cn be a pseudoconvex domain such that c(Ω) = E ×Ck for some
k ∈ {1, 2, . . . , n − 1} and some set E ⊂ Cn−k. Then either E is locally
complete pluripolar or E is open. In the later case Ω = E × Ck.

(3) Let k ∈ {1, 2, . . . , n− 1} be arbitrary but fixed. Then there exists a strictly
pseudoconvex domain Ω ⊂ Cn such that c(Ω) = E×Ck for a set E ⊂ Cn−k

if and only if E is closed and complete pluripolar.
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An estimate of the Squeezing function on Strictly Pseudoconvex
Domains

Erlend F. Wold

1. Introduction

Let Ω be a bounded domain in Cn. The squeezing function, which was introduced
in [1], inspired by [5], [6] and [8], measures how much a domain looks like the unit
ball observed from a given point z. More precisely it is defined as follows: For a
given injective holomorphic map f : Ω → B

n satisfying f(z) = 0 we set

SΩ,f (z) := sup{r > 0 : rBn ⊂ f(Ω)},
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and then we set

SΩ(z) := sup
f
{SΩ,f (z)},

where f ranges over all injective holomorphic maps f : Ω → Bn with f(z) = 0.
Using the method of exposing points from [2] and the method from [3], it was
proved in [1] that

lim
z→bΩ

SΩ(z) = 1

if Ω is a C2-smooth strictly pseudoconvex domain, and it was proved in [4] that
the squeezing function is bounded on any bounded convex domain. Our goal is
to improve this estimate when the boundary has higher regularity, and to give an
application to invariant metrics.

Theorem 1. Let Ω = {δ < 0} ⊂ Cn be a strictly pseudoconvex domain with a
defining function δ of class Ck for k ≥ 3. The squeezing function SΩ(z) for Ω
satisfies the estimate

SΩ(z) ≥ 1 − C ·
√
|δ(z)|

for a fixed constant C. If we even have k ≥ 4, then there exists a constant C > 0
such that the squeezing function SΩ(z) for Ω satisfies

SΩ(z) ≥ 1 − C · |δ(z)|
for all z

Combining with a theorem due to D. Ma [7] and a result of Deng, Guan and
Zhang [1], an immediate consequence is a sharp estimate for invariant metrics near
the boundary of a strictly pseudoconvex domain. Before we state the result, we
briefly recall the definitions of some invariant metrics. Let ∆ denote the unit disc,
and let O(M,N) denote the holomorphic maps from M to N.

• Kobayashi metric KΩ(p, ξ). We define

KΩ(p, ξ) = inf{|α|; ∃f ∈ O(∆,Ω) f(0) = p, αf ′(0) = ξ}.
• Carathéodory metric CΩ(p, ξ). We define

CΩ(p, ξ) = sup{|f ′(p)(ξ)|; ∃f ∈ O(Ω,∆) f(p) = 0}.
• Sibony metric SΩ(p, ξ). We define

SΩ(p, ξ) = sup{(
∑

i,j
∂2u(p)
∂zi∂zj

ξiξj)
1/2, u(p) = 0, 0 ≤ u < 1, u is C2 near p

and lnu is plurisubharmonic in Ω}.
• Azukawa metric AU (p, ξ). We define

AΩ(p, ξ) = sup
u∈PΩ(p)

{lim sup
λց0

1

|λ|u(p+ λξ)}

where

PΩ(p) = {u : Ω → [0, 1), lnu is plurisubharmonic and

∃ Mu > 0, ru > 0 such that

B
n(p, r) ⊂ Ω, u(z) ≤M‖z − p‖, z ∈ B

n(p, r)}
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Theorem 2. Let Ω ⊂ C
n be a strictly pseudoconvex domain of class C3, let p ∈ bΩ,

and let δ be a defining function for Ω near p, such that ‖∇δ(z)‖ = 1 for all z ∈ bΩ.
Then if FΩ(z, ζ) is either the Carathéodory, Sibony or Azukawa metric, there exists
a constant C > 0 such that

(1 − C
√
|δ(z)|)

[
Lπ(z)(ξT )

|δ(z)| +
‖ξN‖
4δ(z)2

]1/2
≤ FΩ(z, ξ)

≤ (1 + C
√

|δ(z)|)
[
Lπ(z)(ξT )

|δ(z)| +
‖ξN‖
4δ(z)2

]1/2

for all z near p, and all ξ = ξN + ξT , where π is the orthogonal projection to bΩ,
ξN is the complex normal component of ξ at π(z) and ξT is the complex tangential
component, and L is the Levi form of δ.

Ma’s result is the corresponding statement for the Kobayashi metric, and the
result is sharp in the sense that one cannot in general do better than the square
root of the boundary distance. Theorem 2 is a direct consequence of Ma’s result
combined with Theorem 1 in the light of the fact that

(1) SΩ(z) ·KΩ(z, ξ) ≤ FΩ(z, ξ) ≤ KΩ(z, ξ).
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A survey on effective and noneffective extension theorems

Takeo Ohsawa

The theory of extending functions from S to Y to those from X to Y has developed
since Newton and Langange, for (X,S, Y ) = (R,Z,R) until Cartan and Oka for
(Stein manifolds, closed analytic subsets,C). Induction on dimension works often
in virtue of extension theorems of this kind. Extensions with growth conditions,
whose instance is as follows, yielded more applications recently.



Geometric Methods of Complex Analysis 275

Theorem 1 (cf. [O-T]) Let D be a pseudoconvex domain in {z ∈ C
n; |zn| <

1} and let D′ = D ∩ {zn = 0}. Then there exists a constant C(≤ 1620π) such
that, for any plurisubharmonic function ϕ and for any holomorphic function f on
D′ satisfying

∫

D′

e−ϕ|f |2 <∞,

there exists a holomorphic function f̃ on D satisfying f̃ |D′ = f and

∫

D

e−ϕ|f̃ |2 ≤ C

∫ ′

D

e−ϕ|f |2.

One can see from this theorem an estimate for the Bergman kernel KD(z) &

δ(z)−2 for bounded and C1-smooth D (a conjecture of S. Bergman). Other im-
portant applications appeared since 1992 (cf. [D]).

After the remarkable solution of a conjecture of Suita [S], first by B locki [B] and
later by Guan and Zhou [G-Z] in a more general formulation on Riemann surfaces,
further effective versions of Theorem 1 have been obtained.

In [O-1], a simple proof of such an extension theorem in [G-Z] is given, by
exploiting the Poincaré metric on the punctured disc.

For the case (X,S, Y ) = (compact manifold M, support of effective divisor D,
holomorphic vector bundle overM), a noneffective extension theorem was obtained
in [O-2] by refining an L2 estimate of Hörmander [H].
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The weak Kähler-Ricci flow

Chinh H. Lu

(joint work with Eleonora Di Nezza)

Let X be a compact Kähler manifold of dimension n and α0 ∈ H1,1(X,R) a Kähler
class. The Kähler-Ricci flow is the following:

(1)
∂ωt

∂t
= −Ricci(ωt) , ωt|t=0 = T0,

where T0 is a fixed closed positive (1, 1)-current in α0. When T0 is a Kähler form,
it is well-known (see [1], [5], [4]) that the flow admits a unique smooth solution on
a maximal interval [0, Tmax), where

Tmax := sup{t ≥ 0 | tKX + t{η} + α0 is nef}.
One can rewrite the Kähler-Ricci flow at the level of potentials. Fix ω a Kähler

form in α0. Let ϕ0 be a global potential of T0, i.e. T0 := ω + ddcϕ0. Set

χ := −Ricci(ω), θt := ω + tχ,

and consider the following equation

(2)
∂ϕt

∂t
= log

[
(θt + ddcϕt)

n

ωn

]
, ϕt → ϕ0 as t→ 0.

If ϕt solves (2) then a straightforward computation shows that ωt := θt + ddcϕt

solves the flow (1). Conversely, if ωt solves the flow (1) then it follows from the
ddc-lemma that we can write

ωt = θt + ddcϕt,

where ϕt solves the parabolic Monge-Ampère equation (2).

The maximal Kähler-Ricci flow. Fix T0 = ω + ddcϕ0 a closed positive (1, 1)
current in the class α0. The integrability index of T0 (or ϕ0) is defined by

c(T0) = c(ϕ0) := sup
{
λ > 0

∣∣ e−2λϕ0 ∈ L1(X)
}
.

Assume that 1/2c(T0) < Tmax. Let ϕ0,j be a sequence of smooth ω0-psh functions
decreasing to ϕ0. Let ϕt,j be the unique solution of the parabolic equation (2)
with initial data ϕ0,j . As shown by Guedj and Zeriahi in [2], as j → +∞ the
sequence ϕt,j decreases to ϕt which satisfies the following:

• For each t > 0, ϕt is a θt-psh function. Moreover, if t > 1/2c(T0), ϕt is
smooth on X and solves (2) in the classical sense.

• ϕt converges in capacity to ϕ0 as t→ 0.

The assumption 1/2c(ϕ0) < Tmax is necessary to insure that the maximal scalar
solution ϕt is well-defined. Without this condition the sequence ϕt,j could decrease
to −∞. The flow ϕt constructed as above is called the maximal Kähler-Ricci flow.

The regularity of this flow was obtained for t not too small and nothing was
known when t < 1/2c(T0). Example 6.4 in [2] suggests that there might be no
regularity at all due to the presence of positive Lelong numbers. However, as



Geometric Methods of Complex Analysis 277

in Demailly’s regularization theorem, one can expect that the regularizing effect
happens outside some analytic subset. Our first result shows that it is indeed the
case.

Theorem 1. [3] Assume that 1/2c(T0) < Tmax. Then the maximal Kähler-Ricci
flow starting from T0 is smooth in a Zariski open subset of X.

The Zariski open subset in Theorem 1 is described by the complement of Lelong
superlevel sets of T0:

Ds := {x ∈ X
∣∣ ν(T0, x) ≥ s}, s > 0.

These are analytic subsets as follows from Siu’s theorem.
The result in Theorem 1 is optimal in the sense that any maximal Kähler-

Ricci flow starting from currents with positive Lelong numbers has positive Lelong
numbers in short-time.

Our second result is the stability of the weak Kähler-Ricci flow starting from
currents with zero Lelong numbers.

Theorem 2. [3] Assume that c(T0) = +∞. Then the following holds:

• Uniqueness: Any weak Kähler-Ricci flow starting from T0 is maximal.
In other words the flow is unique.

• Stability: Assume that T0,j is a sequence of positive closed (1, 1)-currents
converging to T0 in the L1 topology. Then the corresponding maximal
Kähler Ricci flow ωt,j converges to ωt in the following sense: for each
t ∈ (0, Tmax), ωt,j converges in C∞(X) to ωt as j → +∞.
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Minimal hulls of compact sets in R3

Franc Forstnerič

(joint work with Barbara Drinovec Drnovšek)

When discussing hulls in various geometries, one typically deals with dual sets of
objects. Given a set P of real functions on a manifold X , the P-hull of a compact
subset K ⊂ X is

(1) K̂P = {x ∈ X : f(x) ≤ sup
K
f ∀f ∈ P}.
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Suppose that G is a class of geometric objects in X (for example, submanifolds
or subvarieties) such that the restriction f |C satisfies the maximum principle for

every f ∈ P and C ∈ G. Then C ⊂ K̂P for every C ∈ G with boundary bC ⊂ K,
and the main question is how closely is the hull described by such objects. A basic
example is the convex hull Co(K) of a compact set in an affine space X ∼= Rn; here
P is the class of all affine linear functions on X and G is the collection of straight
line segments in X . A classical example is that of the polynomially convex hull of
a compact set in Cn; this is the hull with respect to the set of plurisubharmonic
functions.

We introduce and study a suitable notion of the minimal hull, K̂M, of a compact

set K in Rn. The idea is that K̂M should contain every bounded 2-dimensional
minimal surface M ⊂ R

n with boundary bM contained in K and hopefully not
much more. Any such minimal surface is a solution of the Plateau problem with
free boundary in K; for a closed Jordan curve K we have the classical Plateau

problem. We define K̂M by using the class of minimal plurisubharmonic functions.
We obtain three characterizations of the minimal hull in R3: by sequences of
conformal minimal discs, by minimal Jensen measures, and by Green currents. The
only reason for restricting to R3 is that the main technical tool (the approximate
solution of the Riemann-Hilbert boundary value problem for conformal minimal
discs) is currently only available in dimension 3.

An upper semicontinuous function u : ω → R ∪ {−∞} on a domain ω ⊂ Rn

is said to be minimal plurisubharmonic if the restriction of u to any affine 2-
dimensional plane L ⊂ Rn is subharmonic on L ∩ ω (in any isothermal coordi-
nates on L). The set of all such functions is denoted by MPsh(ω). For every
u ∈ MPsh(ω) and every conformal minimal disc f : D → ω the composition u ◦ f
is a subharmonic function on D, so minimal surfaces form a class of objects which
is dual to the class of minimal plurisubharmonic functions. It is easily seen that
a C 2 function u is minimal plurisubharmonic if and only if the sum of the two
smallest eigenvalues of its Hessian is nonnegative at every point; hence C 2 mini-
mal plurisubharmonic functions are exactly 2-plurisubharmonic functions studied
by Harvey and Lawson (p-convexity, p-plurisubharmonicity and the Levi problem,
Indiana Univ. Math. J. 62 (2013) 149–169.)

We define the minimal hull, K̂M, of a compact set K ⊂ Rn as the hull (1) with
respect to the family P = MPsh(Rn).

In analogy with the classical theorem of E. Poletsky (Holomorphic currents, In-
diana Univ. Math. J., 42 (1993) 85–144) and Bu-Schachermayer (Approximation of
Jensen measures by image measures under holomorphic functions and applications,
Trans. Amer. Math. Soc. 331 (1992) 585–608) we characterize the minimal hull of
a compact set K ⊂ R3 by sequences of conformal minimal discs whose boundaries
converge to K in the measure theoretic sense; here is the precise result.

Theorem 1. Let K be a compact set in R3, and let ω ⋐ R3 be a bounded open

convex set containing K. A point p ∈ ω belongs to the minimal hull K̂M of K
if and only if there exists a sequence of conformal minimal discs fj : D → ω such
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that for all j = 1, 2, . . . we have fj(0) = p and
∣∣{t ∈ [0, 2π] : dist(fj(e

ıt),K) < 1/j}
∣∣ ≥ 2π − 1/j.

Theorem 1 is also used to characterize the minimal hull by limits of Green
currents supported on conformal minimal discs.

Theorem 1 is a corollary to the following main result which gives an effective
way of constructing minimal plurisubharmonic functions on domains in R3. Given
a domain ω ⊂ Rn and a point x ∈ ω we denote by M(D, ω, x) the set of all
conformal minimal immersions f : D → ω with f(0) = x.

Theorem 2. Let ω be a domain in R3 and let φ : ω → R ∪ {−∞} be an upper
semicontinuous function on ω. Then the function

(2) u(x) = inf
{∫ 2π

0

φ(f(eıt))
dt

2π
: f ∈ M(D, ω, x)

}
, x ∈ ω,

is minimal plurisubharmonic on ω or identically −∞; moreover, u is the supremum
of the minimal plurisubharmonic functions on ω which are not greater than φ.

To obtain Theorem 1 we apply Theorem 2 to the function φ which equals −1
in a small open neighbourhood U of K and equals 0 elsewhere. Clearly we have

u = −1 on K̂M. Given a point p ∈ K̂M, Theorem 2 provides a conformal minimal
disc centered at p which has most of its boundary contained in U .

The original paper is available at http://arxiv.org/abs/1409.6906v3.

Reporter: Nikolay Shcherbina
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Université Paris Sud (Paris XI)
Batiment 425
91405 Orsay Cedex
FRANCE

Prof. Dr. Berit Stensones

Department of Mathematics
The Norwegian University of Science &
Techn.
Sentralbygg 2
Alfred Getz vei 1
7491 Trondheim
NORWAY

Prof. Dr. Alexander Sukhov

U. F. R. Mathématiques
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Institut de Mathématiques de Toulouse
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