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Introduction by the Organisers

The mini-workshop was devoted to modern applications of s-numbers and operator
ideals in a various more applied areas. It was attended by 16 mathematicians
from Germany (10), Spain (2), Austria (1), Canada (1), Finland (1) and France
(1), the participants were a mixture of experienced senior scientists and younger
researchers, with different mathematical backgrounds.

The theories of s-numbers and operator ideals, which are both closely related
to geometry and local theory of Banach spaces, and also to probability on Banach
spaces, were already developed in the 1970s and 1980s, with main contributions
due to Albrecht Pietsch. During the last 15 years these by now almost classical
abstract functional-analytic concepts appeared quite naturally in several, more
applied branches of mathematics. In particluar, they have found important appli-
cations in areas such as
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• Compressed Sensing and Image Processing (Gelfand numbers, Johnson-
Lindenstrauss lemma)

• Numerical Analysis and Information-based Complexity (approximation
and entropy numbers, 2-summing operators, Banach spaces of type)

• Function Spaces (various s-numbers, operator ideal techniques)
• Approximation Theory (abstract approximation spaces)
• Small Deviations of Gaussian Processes (entropy numbers)
• Statistical Learning Theory (covering numbers)

The main aims of the Mini-Workshop were to

• bring together experienced functional analysts and younger researchers
from applied areas,

• present some modern applications of s-numbers and operator ideals in the
above-mentioned areas,

• discuss open problems and identify directions for future research,
• initiate exchange and co-operation between different communities.

In order to achieve these goals the mini-workshop was organized as follows.
Each participant gave a 50-minutes talk on her/his field of research, pointing out
in particular the use of s-number and operator ideal techniques, open questions and
relations to other fields. In this way the participants from different communities
could learn from each other, and the ground was laid for further discussions.

The first talk was given by Albrecht Pietsch, who presented an overview over im-
portant problems that have been left open in the area of s-numbers and operator
ideals itself. Let us mention just one, which is related to the famous counter-
example by Enflo, who showed that there are Banach spaces without the approx-
imation property. In the language of operators, the problem is to quantify the
gap between compact and approximable operators, that means to determine the
smallest entropy ideal that contains non-approximable operators.

The four organizers gave survey talks on the role of s-numbers and operator
ideals in the theory of function spaces (Dorothee Haroske), approximation theory
(Fernando Cobos), signal processing and numerical analysis (Tino Ullrich) and
Gaussian processes (Thomas Kühn). In the talks of the remaining participants sev-
eral other interesting topics were presented, e.g. Khintchine-type inequalities (Her-
mann König, Gilles Pisier), entropy inequalities (Nicole Tomczak-Jaegermann),
tractability problems in information-based complexity (Stefan Heinrich), polyno-
mials on Banach spaces (Andreas Defant), entropy numbers in statistical learning
theory (Ingo Steinwart), singular traces (Albrecht Pietsch).

Moreover, apart from these talks which were already scheduled in advance, we
spontaneously organized an informal session on Thursday afternoon, in which Her-
mann König lectured on new developments concerning the famous Grothendieck
constant. Since the works of Krivine in 1975 in the real case and Haagerup in 1986
in the complex case, there has been no progress for many years. Only very recently
Assaf Naor introduced new averaging processes which led to an improvement. But
still the problem of the exact value of the Grothendieck constant is wide open.
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This talk was followed by a problem session, where several really important and
quite challenging problems were presented and discussed. These problems covered
a wide range, e.g. Schur multipliers on Schatten p-classes, cotype of projective ten-
sor products, tractability of star-discrepancy, approximation vs. sampling num-
bers, entropy numbers in learning theory.

During the whole week of the mini-workshop there was an intensive scientific
interaction between the participants from different communities. There were lot of
discussions in smaller groups on specific problems, which led to several new math-
ematical contacts and to first plans for concrete projects of future co-operation.
Throughout the mini-workshop the atmosphere was very inspiring.

As usual, on Wednesday afternoon we had an excursion, this time consisting
of a walk to Oberwolfach and a visit of the MiMa. The guided tour through the
museum with so many beautiful minerals and the interactive mathematics part was
very interesting and enjoyable, thanks to our expert tour guide Stephan Klaus.

Last but not least we would like to thank – on behalf of all participants – the
director, administration and staff of the MFO for their excellent professional work
and kind support before and during the mini-workshop. This made it possible
to create the fruitful scientific atmosphere which is so typical for Oberwolfach
meetings, and to make our mini-workshop a full success, an impression shared by
all participants.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.





Mini-Workshop: Modern Applications of s-numbers and Operator Ideals 373

Mini-Workshop: Modern Applications of s-numbers and Opera-
tor Ideals

Table of Contents

Albrecht Pietsch
Open problems concerning s-numbers and operator ideals . . . . . . . . . . . . . 375

Hermann König
Best constants in the the Khintchine-Steinhaus inequality . . . . . . . . . . . . . 376

Gilles Pisier
The non-commutative Khintchine inequalities for 0 < p < ∞ . . . . . . . . . . 377

Stefan Heinrich
On the use of s-numbers and other functional analytic tools in the theory

of optimal algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Nicole Tomczak-Jaegermann
Metric Entropy Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Andreas Defant
Unconditionality in Spaces of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Dorothee D. Haroske
The benefit of s-numbers in the study of compact embeddings of function

spaces, and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Fernando Cobos
Approximation spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Oscar Domı́nguez
Besov spaces of logarithmic smoothness, characterizations and

embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Ingo Steinwart
Entropy Numbers, Eigenvalues, and the Analysis of Statistical Learning

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

Tino Ullrich
Entropy and s-numbers in numerical analysis and signal processing . . . . 388

Sebastian Mayer (joint with Benjamin Doerr, Daniel Rudolph, Tino
Ullrich, Jan Vyb́ıral)
Reconstruction of ridge functions from function values . . . . . . . . . . . . . . . 389

Winfried Sickel (joint with Kien van Nguyen)
Weyl Numbers of Embeddings of Tensor Product Besov Spaces . . . . . . . . 390



374 Oberwolfach Report 6/2015

Stefan Geiss (joint with Juha Ylinen)
Sliceable numbers and applications to stochastic differential equations . . 391

Thomas Kühn
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Abstracts

Open problems concerning s-numbers and operator ideals

Albrecht Pietsch

Operator ideals on the class of all Banach spaces have been studied since about
50 years. One of the most important methods to construct those object is via
s-numbers. In many ways we can assign to every bounded linear operator T from a
Banach spaceX into a Banach space Y a sequence ‖T ‖ = s1(T ) ≥ s2(T ) ≥ · · · ≥ 0,
which satisfies some axioms and measures the ‘size’ of T . Then, for 0 < p < ∞,
the components of a (quasi-Banach) operator ideal are given by

L
(s)
p (X,Y ) :=

{

T :
∞
∑

n=1

sn(T )
p < ∞

}

.

We present several challenging problems from the following idea groups:

(1) Comparing operator ideals generated from different s-numbers.

(2) Which ideals L
(s)
p contain non-approximable operators?

(3) In which quasi-Banach ideals L
(s)
p are the finite rank operators dense?

(4) Approximation properties with respect to various ideals L
(s)
p .

(5) Traces on quasi-Banach operators ideals.

(6) How many operator ideals are there on the separable infinite-dimensional
Hilbert space?

Here are my favorite problems:

(A) Is it true that Lhilb
q ⊆ Lapp

p whenever 1
q ≥ 1

p + 1?

app: approximation numbers, hilb: Hilbert numbers.

(B) For which p are all operators in Lent
p approximable?

YES: 0 < p ≤ 2
3 , NO: 2 < p < ∞, OPEN: 2

3 < p ≤ 2, ent: entropy numbers.

(C) Let A be any quasi-Banach operator ideal supporting a trace τ that coincides
with the usual trace on the finite rank operators. Then all operators T ∈ A

2(X)
(products of two operators in A) have an absolutely summable sequence of eigen-
values λn(T ). Does the trace formula trace(T )=

∑∞
n=1 λn(T ) hold for those T ’s.
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Best constants in the the Khintchine-Steinhaus inequality

Hermann König

The best constants in the Khintchine inequality have been determined for all
0 < p < ∞ by U. Haagerup [H]. For p = 1 the constant was derived by Szarek
[Sz] before. We consider the complex case of the inequality, i.e. for the Steinhaus
variables: Let Sj : (Ω, P ) → S1 ⊂ C be an i.i.d. sequence of Steinhaus random
variables, i.e. variables which are equally distributed on the circle S1. These are
the complex analogues of the Rademacher variables. We discuss the best constants
ap in the Khintchine-Steinhaus inequality

ap ||x||2 ≤ (E|
n
∑

j=1

xj Sj |p)1/p ≤ bp ||x||2 ; x = (xj)
n
j=1 ∈ C

n

which were not known for 0 < p < 1. They are given by

ap = min

(

Γ(
p

2
+ 1)1/p ,

√
2

(

Γ(
p+ 1

2
)
/

[Γ(
p

2
+ 1)

√
π]

)1/p
)

.

Both expressions are equal for p = p0 ≃ 0.4756. For p = 1 the best constant a1
was given by Sawa [S], for 1 < p < ∞ the constants ap and bp were determined
by König, Kwapien [KK] and independently by Baernstein, Culverhouse [BC]. For
p0 ≤ p < ∞ the vectors 1√

n
(1, · · · , 1) are asymptotically optimal, for 0 < p ≤ p0

equality for ap is attained by the vector 1√
2
(1, 1, 0, · · · , 0).

The result implies for a norm 1 sequence x ∈ Cn, ||x||2 = 1, that

E ln |(S1 + S2)/
√
2| ≤ E ln |

n
∑

j=1

xjSj| ,

answering a question of A. Baernstein and R. Culverhouse [BC]. The proof relies on
Haagerup’s integral formula from [H] and a technique using distributions functions
developed by Nazarov, Podkorytov [NP], using estimates for Bessel functions.
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– 267.

[S] J. Sawa, On the best constant in the Khintchine inequality for complex Steinhaus variables,
the case p = 1, Studia Math. 81 (1985), 107 – 126.

[Sz] S. Szarek, On the best constants in the Khintchine inequality, Studia Math. 58 (1976), 197
– 208.



Mini-Workshop: Modern Applications of s-numbers and Operator Ideals 377

The non-commutative Khintchine inequalities for 0 < p < ∞

Gilles Pisier

This is based on joint work with Éric Ricard (Université de Caen Basse-Nor-
mandie). We give a proof of the Khintchine inequalities in non-commutative Lp-
spaces for all 0 < p < 1. This case remained open since the first proof given
by Françoise Lust-Piquard in 1986 in [7] for 1 < p < ∞. These inequalities are
valid for the Rademacher functions or Gaussian random variables, but also for
more general sequences, e.g. for the analogues of such random variables in free
probability.

The Khintchine inequalities for non-commutative Lp-spaces play an important
rôle in the recent developments in non-commutative Functional Analysis, and
in particular in Operator Space Theory, see [10]. Just like their commutative
counterpart for ordinary Lp-spaces, they are a crucial tool to understand the be-
havior of unconditionally convergent series of random variables, or random vec-
tors, in non-commutative Lp ([13]). The commutative version is closely related to
Grothendieck’s Theorem see [12]. Moreover, in the non-commutative case, Ran-
dom Matrix Theory and Free Probability provide further ground for applications
of the non-commutative Khintchine inequalities. For instance, they imply the re-
markable fact that the Rademacher functions (i.e. i.i.d. ±1-valued independent
random variables) satisfy the same inequalities as the freely independent ones in
non-commutative Lp for p < ∞. See [3] for a recent direct simple proof of the free
version of these inequalities, which extend to p = ∞.

In the most classical setting, the non-commutative Khintchine inequalities deal
with Rademacher series of the form

S =
∑

k
rk(t)xk

where (rk) are the Rademacher functions on the Lebesgue interval (or any inde-
pendent symmetric sequence of random choices of signs) where the coefficients
xk are in the Schatten q-class or in a non-commutative Lq-space associated to a
semifinite trace τ . Let us denote simply by ‖.‖q the norm (or quasi-norm) in the
latter Banach (or quasi-Banach) space, that we will denote by Lq(τ). When τ is
the usual trace on B(ℓ2), we recover the Schatten q-class. By Kahane’s well known
results, S converges almost surely in norm iff it converges in Lq(dt;Lq(τ)). Thus
to characterize the almost sure norm-convergence for series such as S, it suffices
to produce a two sided equivalent of ‖S‖Lq(dt;Lq(τ)) when S is a finite sum, and
this is precisely what the non-commutative Khintchine inequalities provide:
For any 0 < q < ∞ there are positive constants αq, βq such that for any finite set
(x1, . . . , xn) in Lq(τ) we have

(βq)
−1|||(xk)|||q ≤

(
∫

‖S(t)‖qqdt
)1/q

≤ αq|||(xk)|||q
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where |||(xk)|||q is defined as follows:
If 2 ≤ q < ∞

(1) |||(xk)|||q def
= max

{

∥

∥

∥

∥

(

∑

x∗
kxk

)
1
2

∥

∥

∥

∥

q

,

∥

∥

∥

∥

(

∑

xkx
∗
k

)
1
2

∥

∥

∥

∥

q

}

and if 0 < q ≤ 2:

(2) |||x|||q def
= inf

xk=ak+bk

{

∥

∥

∥

∥

(

∑

a∗kak
)

1
2

∥

∥

∥

∥

q

+

∥

∥

∥

∥

(

∑

bkb
∗
k

)
1
2

∥

∥

∥

∥

q

}

.

Note that βq = 1 if q ≥ 2, while αq = 1 if q ≤ 2 and the corresponding one sided
bounds are easy. The difficulty is to verify the other side.

The inequalities (1) (2) actually hold for more general sequences than the
Rademacher functions, for instance, for free Haar unitaries in the sense of [14]
or to the “Z(2)-sequences” considered in [5].

As we already mentioned, the case 1 < q < ∞ goes back to [7]. The case q = 1
was proved (in two ways) in [8], together with a new proof of 1 < q < ∞. This
also implied the fact (independently observed by Junge) that αq = O(

√
q) when

q → ∞, which yielded an interesting subGaussian estimate. Later on, Buchholz
proved in [1] a sharp version valid when q > 2 is any even integer, the best αq

happens to be the same as in the commutative (or scalar) case.
The case q < 2 of the Khintchine inequalities has a more delicate formula-

tion, but this case can be handled easily when 1 < q < 2 using a suitable dual-
ity argument. The case q = 1 is closely related to the “little non-commutative
Grothendieck inequality” in the sense of [12] (first proved in [9]): actually, one of
the proofs given for that case in [8] shows that it is essentially “equivalent” to it.
More recently, Haagerup and Musat ([4]) gave a new proof that yields the best
constant (equal to 2) for q = 1 for the complex analogue (namely Steinhaus ran-
dom variables) of the Rademacher functions. Their proof starts from the analysis
of the (rather easy) case q = 4 and then deduces q = 1 from it.

In [11] the first named author proved by an extrapolation argument that the
validity of this kind of inequalities for some 1 < q < 2 implies their validity for all
1 ≤ p < q, but the case q < 1 remained open. However, very recently Éric Ricard
noticed that the method proposed in [11] actually works in this case too. The latter
method reduced the problem to a certain form of Hölder type inequality which
could not be verified because the arguments (duality or triangular projection)
that proved it became seemingly unavailable for 0 < q < 1. In [11] a certain
very weak form of the required Hölder type estimate was identified as sufficient to
complete the case q < 1. It is this form that Ricard was able to establish by an a
priori ultraproduct argument. Although his argument failed to produce explicitly
a quantitative estimate, it showed that some estimate does exist. In this talk
we describe an explicit estimate, and a reasonably self-contained proof of the case
q < 1. In fact, it turns out that a certain version of Hölder’s inequality (perhaps of
independent interest) does hold, thus we can produce an explicit estimate, similar
to the case q ≥ 1 but with unexpected exponents.
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Theorem. Let 0 < p < q < s ≤ ∞. Let α = 1/p− 1/s and let 0 < θ < 1 be such

that 1
q = (1−θ)

p + θ
s . Then for any 0 < R < p there is a constant C such that for

any x ∈ Ls(τ) and f ∈ L1(τ)
+ with ‖f‖1 = 1, for any choice of sign ±1 we have

(3) ‖xfα(1−θ) ± fα(1−θ)x‖q ≤ C‖xfα ± fαx‖
R
2 (1−θ)
p ‖x‖1−

R
2 (1−θ)

s .

This inequality is related to the theory of means developed in [6].
The proof uses crucially estimates for the complex uniform convexity of Lp(τ)

for 0 < p ≤ 2, a notion that originates in [2].
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On the use of s-numbers and other functional analytic tools in the
theory of optimal algorithms

Stefan Heinrich

In the first part of this talk we give a short introduction to information-based
complexity theory (IBC) - a branch of (theoretical) numerical analysis, that is
concerned with optimal algorithms, see [3, 4] for details. We discuss the basic
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quantities of this theory – the n-th minimal errors – in various settings: nonadap-
tive, adaptive, deterministic, randomized, linear information, standard informa-
tion. We explain the connection of these quantities to s-numbers: either they are
s-numbers themselves, or they exhibit very similar features - which turns out to
be useful for their analysis in IBC. More details on the relation of minimal errors
and s-numbers can be found in [1].

In the second part we survey some recent results on the n-th minimal errors
for definite and indefinite integration, as well as for initial value problems for sys-
tems of ordinary differential equations. We also discuss the parameter-dependent
versions of these numerical problems and view them as Banach space valued prob-
lems. Here further functional analytic tools - the notion of type and related ones
- turn out to be useful. We illustrate this by presenting a recent result on the
complexity of Banach space valued definite integration:

Let d ∈ N, r ∈ N ∪ {0}, Q = [0, 1]d be the d-dimensional unit cube, let
BCr(Q,X) be the unit ball of the space of r-times continuously differentiable func-
tions with values in a Banach space X . For f ∈ BCr(Q,X) we want to compute

(approximately) Sint,Xf =
∫

Q f(t)dt using X-valued information {δt, t ∈ Q}. Let
erann (Sint,X , BCr(Q,X)) denote the n-th minimal error in the randomized setting.
The following was shown in [2].

Theorem. Let 1 ≤ p ≤ 2. Then the following are equivalent:

(i) X is of equal norm type p.

(ii) There is a constant c > 0 such that for all n ∈ N

erann (Sint,X , BCr(Q,X)) ≤ cn−r/d−1+1/p.

I am happy to mention that this paper [2] is dedicated to one of the participants
of the workshop – Albrecht Pietsch – on the occasion of his 80th birthday.
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Academic Press, New York, 1988.

Metric Entropy Inequalities

Nicole Tomczak-Jaegermann

For lack of space we do not recall standard definitions or notations, which can be
found in all our references.

We prove “entropy extension-lifting theorem”. It consists of two inequalities for
covering numbers of two symmetric convex bodies. The first inequality, provides
upper estimates in terms of entropy of sections of the bodies. To emphasize a
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similarity to the extension property of ℓ∞ (which follows from the Hahn-Banach
theorem) it is natural to see it as “entropy extension theorem.” The second esti-
mate, which can be called “entropy lifting theorem”, provides estimates in terms
of entropies of projections. These results were strongly motivated by a result from
[4], and proved in [3].

In the second part of the talk we discuss the duality conjecture formulated by
A. Pietsch (1972): Do there exist numerical constants a, b ≥ 1 such that for any

dimension n and for any two symmetric convex bodies K,L in Rn one has

b−1 logN(L◦, aK◦) ≤ logN(K,L) ≤ b logN(L◦, a−1K◦)?

(Here K◦ and L◦ denote the polar bodies for K and L respectively.) Studies of
this conjecture gave rise (in [2]) to a new concept of “convexified separation” which
clarified the concept of duality.

For a set K and a symmetric convex body L we define

M̂(K,L) := sup{N : ∃ x1, . . . , xN ∈ K such that

∀j (xj + intL) ∩ conv{xi, i < j} = ∅},

where “int” is the interior of a set. The main result in this direction is ([2]):
For any pair of convex symmetric bodies K,L ⊂ Rn one has

M̂(K,L) ≤ M̂(L◦,K◦/2)2.

Therefore, to prove for example the result that establishes the duality when one
of spaces is a Hilbert space (see [1]), it is enough to show that:

Let K ⊂ Rn be a convex symmetric body and let Bn
2 be the unit Euclidean ball.

Then one has:

logM(Bn
2 ,K) ≤ β log M̂(Bn

2 ,K/2),

where β > 0 is a universal constant.

These and other results can be found in [2, 1] and references therein.
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Unconditionality in Spaces of Polynomials

Andreas Defant

Let X be a Banach sequence space (i.e., ℓ1 ⊂ X ⊂ c0 such that the ek’s form a
1-unconditional basis) and Λ a finite subset of multi indices (finite sequences α =
(α1, . . . , αN , 0, . . .) with entries in N0). As usual the αth monomial on X is given
by zα(x) = xα1

1 . . . xαN

N , x ∈ X . Define χ ((zα)α∈Λ;X) to be the best constant
c > 0 such that for every finite choice of cα ∈ C, α ∈ Λ we have ‖∑Λ |cα|zα‖∞ ≤
c‖∑Λ cαz

α‖∞ , where ‖ ·‖∞ stands for the sup norm with respect to the unit ball
BX of X . In other words, χ ((zα)α∈Λ;X) is the unconditional basis constant of
the monomial basic sequence (zα)α∈Λ within the Banach space C(BX). Our main
interest is to find “good” constants C1, C2 > 0 and an “optimal” exponent λ > 0
such that

C1|Λ|λ ≤ χ ((zα)α∈Λ;X) ≤ C2|Λ|λ .
Our motivation and orientation comes from four concrete projects originally initi-
ated by the four authors Sean Dineen, Harold Boas, Hervé Queffélec, and Harald
Bohr:

• Dineen: Can the Banach space P(mX) of all m-homogeneous polynomials
on X ever have an unconditional basis?

• Boas: What is the precise asymptotic order of the n-dimensional Bohr
radius of the unit ball in ℓnr ?

• Queffélec: What is the precise asymptotic order of the Sidon constant of
all finite Dirichlet polynomials

∑x
n=1 an

1
ns of length x?

• Bohr: How big is the set in BX on which every holomorphic function on
BX is represented by its monomial series expansion?

For information on the historical background, as well as complete and partial
solutions see [4], [1, 6, 7], [6], and [2, 3, 5], respectively. The techniques used
involve local Banach space theory (operator ideals), complex analysis, probability
theory, and number theory.
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The benefit of s-numbers in the study of compact embeddings of
function spaces, and applications

Dorothee D. Haroske

An essential motivation to study entropy and certain s-numbers, like approxima-
tion numbers, of embeddings of function spaces comes from spectral theory: one
would like to estimate the asymptotic behaviour of eigenvalues, say, of a fractal
drum in the sense of [12], or describe the negative spectrum of appropriate opera-
tors, cf. [4, 6]. This is based on asymptotically sharp estimates for the entropy or
approximation numbers of corresponding compact embeddings of function spaces,
either on bounded domains or in the weighted setting, and on the famous Carl’s
inequality [1, 2]. Nowadays the study of compact embeddings of quite general
function spaces has gained some life of its own: one wants to determine the ‘ de-
gree of compactness’ characterised by the behaviour of entropy or s-numbers.
In this survey talk we illustrate the nowadays standard approach to such questions
by an example related to entropy numbers and weighted Besov spaces,

ek
(

id : Bs1
p1,q1(R

n, w) → Bs2
p2,q2(R

n)
)

,

where s1 ≥ s2, 0 < p1, p2, q1, q2 ≤ ∞, δ = s1 − n
p1

− s2 + n
p2

> 0, and w an

appropriate weight function like w(x) = (1 + |x|2)β/2, β > 0. While the used de-
composition techniques in [3] essentially admitted complete results in non-limiting
cases δ 6= β/p1 merely (though first promising new phenomena were detected for
δ = β/p1 already), the remaining gaps could be sealed in [9] only. The approach in
[9, 10], based on wavelet decomposition techniques and operator ideal arguments,
cf. [11], can be seen as standard method nowadays.
In [5, 7] we followed the described scheme and studied weights from the Mucken-
houpt class A∞, whereas very recent questions concern compact embeddings of
so-called smoothness spaces of Morrey type like N s

p,u,q or Bs,τ
p,q . Some first partial

results were obtained in [8, 13].

References

[1] B. Carl. Entropy numbers, s-numbers and eigenvalue problems. J. Funct. Anal., 41:290–306,
1981.

[2] B. Carl, H. Triebel. Inequalities between eigenvalues, entropy numbers and related quantities
in Banach spaces. Math. Ann., 251:129–133, 1980.

[3] D. Haroske, H. Triebel. Entropy numbers in weighted function spaces and eigenvalue distri-
bution of some degenerate pseudodifferential operators I. Math. Nachr., 167:131–156, 1994.

[4] D. Haroske, H. Triebel. Entropy numbers in weighted function spaces and eigenvalue distri-

bution of some degenerate pseudodifferential operators II. Math. Nachr., 168:109–137, 1994.
[5] D.D. Haroske, L. Skrzypczak. Entropy and approximation numbers of embeddings of function

spaces with Muckenhoupt weights, I. Rev. Mat. Complut., 21(1):135–177, 2008.
[6] D.D. Haroske, L. Skrzypczak. Spectral theory of some degenerate elliptic operators with local

singularities. J. Math. Anal. Appl., 371(1):282–299, 2010.
[7] D.D. Haroske, L. Skrzypczak. Entropy and approximation numbers of embeddings of func-

tion spaces with Muckenhoupt weights, II. General weights. Ann. Acad. Sci. Fenn. Math.,
36(1):111–138, 2011.



384 Oberwolfach Report 6/2015

[8] D.D. Haroske, L. Skrzypczak. Embeddings of Besov-Morrey spaces on bounded domains.
Studia Math., 218:119–144, 2013.
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Approximation spaces

Fernando Cobos

Let (X, ‖ · ‖X) be a quasi-Banach space and let (Gn)n∈N∪{0} be a sequence of
subsets in X satisfying that G0 = {0}, Gn ⊆ Gn+1, λGn ⊆ Gn and Gn + Gm ⊆
Gn+m for any n,m ∈ N and any scalar λ. Given any f ∈ X and n ∈ N, we put
En(f) = inf{‖f − g‖X : g ∈ Gn−1} for the error of best approximation to f by
the elements of Gn−1. For 0 < α < ∞ and 0 < q ≤ ∞, the approximation space
Xα

q consists of all f ∈ X such that the sequence (En(f)) belongs to the Lorentz
sequence space ℓ1/α,q. The quasi-norm on Xα

q is given by

‖f‖Xα
q
= ‖(En(f))‖ℓ1/α,q

=
(

∞
∑

n=1

(nαEn(f))
qn−1

)1/q

(as usual, the sum should be replaced by the supremum if q = ∞). See the papers
[1, 7, 5, 8, 9].

Spaces Xα
q are modeled on the operator ideals L(a)

1/α,q defined by the approxi-

mation numbers and the sequence space ℓ1/α,q. In fact, if we take X = L(E,F ),
the space of all bounded linear operators T from the Banach space E into the
Banach space F , and Gn = Fn(E,F ), the subset of operators with rank less than
or equal than n, then En(T ) coincides with the n-th approximation number of T

and Xα
q = L(a)

1/α,q(E,F ). If X = Lp(T), the Lebesgue space of periodic measurable

functions defined on the unit circle T, and Gn is the set Tn of all trigonometric
polynomials of degree less than or equal to n, then Xα

q is the Besov space Bα
p,q.

In the papers by Pietsch [8, 9], the theory of approximation spaces is developed
and applications are given to distribution of Fourier coefficients and eigenvalues,
as well as to tensor products of sequences, functions and operators.

Limiting approximation spaces X
(0,γ)
q have been also studied (see [4, 3, 6]).

They are defined as Xα
q but taking α = 0 and inserting the weight (1 + logn)γ

with the sequence (En(f))

X(0,γ)
q =

{

f ∈ X : ‖f‖
X

(0,γ)
q

=
(

((1 + logn)γEn(f))
qn−1

)1/q

< ∞
}

.
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Here −1/q ≤ γ < ∞ because if −∞ < γ < −1/q then X
(0,γ)
q = X . Note that if

γ = 0 then the space X
(0,0)
q corresponds to the choice α = 0 in Xα

q , but even in

this simple case, the theory of spaces X
(0,0)
q does not follow by taking α = 0 in

the theory of spaces Xα
q (see, for example, [4]). If X = Lp(T) and Gn = Tn then

X
(0,γ)
q coincides with the Besov space B0,γ

p,q which has zero classical smoothness
and logarithmic smoothness with exponent γ (see [5]).

In the talk we review all these notions, describing also some recent results with
O. Domı́nguez [2] on reiteration of approximation constructions and their appli-
cations to problems on Besov spaces. In particular we show that if 1 ≤ p ≤
2, 1/p′ + 1/p = 1, 0 < q ≤ ∞ and γ > −1/q, then the sequence of Fourier
coefficients of any f ∈ B0,γ

p,q belongs to the Lorentz-Zygmund sequence space
ℓp′,q(log ℓ)γ+ 1

max{p′,q}
, which improves a previous result of DeVore, Riemenschnei-

der and Sharpley [5, Corollary 7.3/(i)].
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Besov spaces of logarithmic smoothness, characterizations and
embeddings

Oscar Doḿınguez

Besov spaces Bs
p,q arise in a natural way in approximation theory. However, to

solve some natural questions as compactness in limiting embeddings or sharp
embeddings, we need to consider Besov spaces of generalized smoothness where
smoothness of functions is considered in a more delicate manner than in Bs

p,q.
In particular, if we take classical smoothness s ≥ 0 and additional logarithmic
smoothness with exponent b ∈ R, we are dealing with Besov spaces of logarith-
mic smoothness Bs,b

p,q. These spaces which are defined via differences were al-
ready introduced by DeVore, Riemenschneider and Sharpley [6] in 1979. In this
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talk, we consider characterizations of Besov spaces in terms of approximation er-
rors in the periodic case which complement previous results by Pietsch [8]. If
0 < p, q ≤ ∞, s ≥ 0 and b ∈ R, then

‖f‖
B

s,b
p,q(T)

∼
( ∞
∑

n=1

[ns(1 + logn)bEn(f)p]
qn−1

)1/q

where En(f)p denotes the error of approximation of f ∈ Lp(T) by trigonometric
polynomials of degree less than or equal to n−1. We also show characterizations of
Besov spaces as real interpolation spaces. Given 0 ≤ θ < 1, 0 < p, q, r ≤ ∞, s > 0
and b ∈ R, we have that

(Lp,B
s
p,r)(θ,b),q = Bθs,b

p,q

with equivalence of quasi-norms and for 1 ≤ p ≤ ∞, 0 < q ≤ ∞, 0 ≤ s < k ∈ N

and b ∈ R, then

(Lp,W
k
p )(s/k,b),q = Bs,b

p,q

with equivalence of quasi-norms, where (·, ·)(θ,b),q is the real interpolation space
(limiting if θ = 0) considered by Gomez and Milman [7] and Cobos, Fernández-
Cabrera, Kühn and Ullrich [5].

Sobolev-type embeddings from Bs,b
p,q into Lorentz-Zygmund spaces were consid-

ered in [6] but their method only works for the Banach case. Using the previous
characterizations and the limiting real interpolation method, we extend to the
quasi-Banach setting the embeddings given in [6] in the critical case when s = 1/p
and in the subcritical case 0 < s < 1/p. The limiting case when s = 0 has been
studied by Caetano, Gogatishvili and Opic [1], however the restriction 1 ≤ p < ∞
is essential in their approach. To overcome this obstruction, we consider the class
Yp,r,b, 0 < p < ∞, 0 < r ≤ ∞ and b > −1/r, formed by all measurable functions f
having a finite quasi-norm

‖f‖Yp,r,b
=

(

∫ 2π

0

[

(1 + | log t|)b
(
∫ t

0

f∗(s)pds

)1/p
]r

dt

t

)1/r

.

Let 0 < p < ∞, 0 < q ≤ ∞, b > −1/q, q ≤ r and γ = b+ 1/q − 1/r. Then

B0,b
p,q →֒ Yp,r,γ .

Our method not only allows us to deal with the quasi-Banach case but also im-
proves the result given in [1] in the setting of r.i. spaces. We also compare B0,b

p,q

with the corresponding spaces B0,b
p,q defined by using the Fourier transform. In

particular, we show that B0,b
2,2 = B

0,b+1/2
2,2 for b > −1/2.

The talk is based on joint work with F. Cobos [2, 3, 4].
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Entropy Numbers, Eigenvalues, and the Analysis of Statistical
Learning Algorithms

Ingo Steinwart

Statistical learning algorithms become increasingly important for the analysis of
high-dimensional, complex data. One of the currently most successful classes
of learning algorithms is based on a reproducing kernel Hilbert space (RKHS)
approach. To be more precise, given a data set D = ((x1, y1), . . . , (xnyn)) ∈
(X × R)n, these learning algorithm obtain their decision function fD,λ by solving
the optimization problem

(1) fD,λ = argmin
f∈H

λ||f ||2H +RD,L(f) .

Here, H is an arbitrary RKHS over X , λ is a user-specified regularization param-
eter, and L is a convex loss, e.g. the least squares loss.

For the analysis of these learning algorithms, see e.g. [2, 6] for a detailed account,
various properties of the used RKHS H and the data generating measure P on
X × R have to be understood. We discuss a few of these aspects including the
entropy numbers of the embedding Ik : H → L2(PX) and eigenvalues of the
integral operator Tk : L2(PX) → L2(PX), where k denotes the reproducing kernel
of H . In particular, we present a result from [5] that established a relationship
between these two quantities and expected entropy numbers of the form

ED∼Pnei(Ik : H → L2(D)) ,

where L2(D) denotes the L2-space with respect to the empirical measure described
by D. We further show how this result in combination with interpolation spaces
between H and L2(PX) was used in [7] to obtain minimax-optimal learning rates
for the learning algorithms (1) and compare these rates with those found by [4, 1, 3]

Finally, we discuss a few open questions regarding entropy numbers and eigen-
values for the so-called Gaussian RBF kernels.
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Entropy and s-numbers in numerical analysis and signal processing

Tino Ullrich

In recent years sparsity has become an important concept in applied mathematics,
especially in mathematical signal and image processing. The key idea is that many
types of functions and signals arising naturally in these contexts can be described
by only a small number of significant degrees of freedom. The novel theory of
Compressive Sensing takes advantage of this observation and predicts, quite sur-
prisingly, that sparse high-dimensional signals x ∈ RN can be recovered accurately
and efficiently from what was previously considered as highly incomplete linear
measurements. In practice, signals are not perfectly sparse. A reasonable sparsity
model is given by the non-convex unit ball K = BN

p := {x ∈ RN : ‖x‖p ≤ 1}
where p < 1. The concept of Gelfand numbers

cm(K,X) := inf
A∈Rm×N

sup
v∈K∩kerA

‖v‖X , , m < N ,

represent a natural frontier of what is possible with “m linear measurements”.
In other words, for a fixed measurement matrix A we ask for the maximal error
between two instances which can not be distinguished by A. In this talk we will
present a sharp lower estimate for cm(BN

p , ℓN2 ) which complements the celebrated
results by Kashin [4], Garnaev, Gluskin [3] and Carl, Pajor, Tomczak-Jaegermann
[1], [8] from the 1970/80s. The proof techniques rely on modern methods from
Compressive Sensing. These results are based on a joint work with Foucart, Pajor
and Rauhut [2].

In the second part of the talk we aim at approximating N -variate functions
from the periodic Sobolev classes

‖f‖2Hs,p(TN ) :=
∑

k∈ZN

(1 +
N
∑

j=1

|kj |p)2s/p|f̂(k)|2 .
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The parameter s represents the smoothness, whereas the parameter p induces a
“sparse variable dependency”. We are interested in the approximation numbers of
these classes embedded in L2(T

N ) and observe the behavior

(1) an(H
s,p(TN ), L2(T

N )) ≍ e⌊logn⌋(B
N
p , ℓN∞)s ,

where the numbers ek represent the dyadic entropy numbers of the embedding ℓNp
in ℓN∞. Entropy in this situation is completely understood [9, 5] and with (1) we
determine the behavior of the approximation numbers an explicitly in N and n.
This is joint work with Mayer and Kühn [6]. In addition, in [6, 7] we were able to
determine the “asymptotic constants” via the identity

lim
n→∞

ns/N an(H
s,p(TN ), L2(T

N )) = vol(BN
p )s/N ≍ N−s/p .
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Reconstruction of ridge functions from function values

Sebastian Mayer

(joint work with Benjamin Doerr, Daniel Rudolph, Tino Ullrich, Jan Vyb́ıral)

We are interested in reconstructing an unknown multivariate ridge function f : Ω ⊆
Rd → R, x 7→ g(a · x) from a limited number of function values. The univariate
function g is called the profile and the vector a ∈ Rd the ridge direction.

In [2] we studied the reconstruction of ridge functions which are defined on the
Euclidean unit ball Ω = Bd

2 := {x ∈ Rd : ‖x‖2 ≤ 1}. For α = s + β, s ∈ N,
0 < β ≤ 1 and 0 < p ≤ 2, consider the class of ridge functions

Rα,p
d := {x ∈ Ω 7→ g(a · x) : g ∈ Lipα([−1, 1]), ‖g‖α ≤ 1, ‖a‖p ≤ 1},

where ‖g‖α := max{‖g‖∞, ‖g(1)‖∞, . . . , ‖g(s)‖∞, |g(s)|β} and | · |β denotes the
Hölder constant with exponent β. Let Sdet

n be the class of all deterministic, adap-
tive sampling algorithms using at most n function values. For the deterministic
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worst-case error errα,p(n, d) := infS∈Sdet
n

supf∈Rα,p
d

‖f − Sf‖∞ we established the

following characterization in terms of the entropy numbers.

Theorem 1 ([2, Section 4, Prop. 4.1, 4.2]). Let α > 0, 0 < p ≤ 2 and p′ =
1

1−1/max{1,p} . Then we have

εn(S
d−1
p , ℓd2)

2α . errα,p(n, d) . εn/(d+s
s )(B

d
2 , ℓ

d
p′)α,

Let Ω = [−1, 1]d be the unit cube. In [1] we consider the class of ridge functions

Rα,p
d := {x ∈ Ω 7→ g(a · x) : g ∈ Lipα([−1, 1]), ‖g‖α ≤ 1, ‖a‖p ≤ 1}

and the probabilistic worst-case error errprobα,p(n, d) := infS∈Sn supf∈R
α,p
d

eprob(S, f)

where eprob(S, f) = inf{ε > 0 : P (‖f − Sf‖ ≤ ε) ≥ 1/2} and Sn is the class of all
randomized, adaptive algorithms using at most n function values.

Theorem 2. Let α > 1 and 0 < p ≤ 1. For

errprobp,α(n, d) .

{

[

1/ log(n)
]α(1/p−1)

: n ≤ 2d,

(2d/n)α : n > 2d.

Theorem 3. Let α > 0 and 0 < p ≤ 1. Then we have

errprobp,α(n, d) &
[

1/ log(n)
]α(1/p−1)

for n ≤ 2d/8/4.
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Weyl Numbers of Embeddings of Tensor Product Besov Spaces

Winfried Sickel

(joint work with Kien van Nguyen)

Weyl numbers have been introduced by Pietsch [4]. They belong to the fam-
ily of s-numbers as, e.g., Kolmogorov, Gelfand and approximation numbers. In
[5] Pietsch started to investigate the asymptotic behaviour of Weyl numbers of
the embedding operator id : Bt

p1,q1(0, 1) → Lp2(0, 1) if 1 ≤ p1, p2, q1 ≤ ∞ and

t > max(0, 1/p1 − 1/p2). As usual, Bt
p1,q1(0, 1) denotes the Besov space with

smoothness t, integrability p1 and fine index q1 on the interval (0, 1). Finally, it was
proved by Lubitz [2], but see also König [1], that there exists some α = α(p1, p2, t)
(explicitly known but we omit details) such that

(1) xn(id : Bt
p1,q1(0, 1) → Lp2(0, 1)) ≍ n−α , n ∈ N ,

(except two limiting situations in which the behaviour of the xn is still unknown).
Hence, the behaviour is polynomial in n. We continue this program by replacing
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the Besov space Bt
p1,q1(0, 1) by a certain tensor product of Bt

p1,p1
(0, 1). More

exactly, we define

St
p1,p1

B((0, 1)d) := Bt
p1,q1(0, 1)⊗δp1

. . .⊗δp1
Bt

p1,q1(0, 1) (d-fold) ,

where in case 1 < p1 < ∞ the symbol δp1 refers to the p1-nuclear norm and in
case p1 = 1 the symbol δp1 stands for the projective norm. It turns out that there
exists some β = β(p1, p2, t) such that

xn(id : St
p1,p1

((0, 1)d) → Lp2((0, 1)
d)) ≍ n−α log(d−1)β n , n ≥ 2 .

(as in (1) except some limiting situations). Here α and β are always explicitly
known and in addition, α is as in (1). By switching from the space Bt

p1,p1
(0, 1) to

the tensor product space St
p1,p1

B((0, 1)d) the main term in the behaviour of the
xn remains unchanged, the dimension d shows up in the exponent of the logarithm
only. For all details we refer to the recent preprint [3].
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Sliceable numbers and applications to stochastic differential equations

Stefan Geiss

(joint work with Juha Ylinen)

We introduce general Besov spaces BΦ
p on the Wiener space and investigate vari-

ational properties of Backward Stochastic Differential Equations (BSDEs). The
Besov spaces are based on decoupling of the underlying Gaussian structure. A
BSDE is a stochastic differential equation of the form

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs

where W = (Wt)t∈[0,T ] is a standard Brownian motion, and the generator f :
[0, T ]× Ω× R× R → R is predictable and satisfies

|f(s, ω, y0, z0)− f(s, ω, y1, z1)| ≤ LY |y0 − y1|+ LZ [1 + |Z0|+ |Z1|]θ|Z0 − Z1|
where θ ∈ [0, 1] is the degree of being non-Lipschitz. Given a terminal condition
ξ ∈ L2, one looks for adapted processes (Yt)t∈[0,T ] and (Zt)t∈[0,T ] as solution
processes. Lipschitz BSDEs (θ = 0) were initiated in [1] and [5], quadratic BSDEs
(θ = 1) in [4]. The knowledge of the Lp-variation, p ∈ [2,∞), of (Yt)t∈[0,T ] is
important for various reasons. To obtain bounds for this variation, we proceed in
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[3] as follows: (a) Firstly we check the fractional smoothness of (ξ, f) in terms of
spaces of type BΦ

p , (b) secondly we deduce the fractional smoothness of the solution
processes Y and Z, (c) and finally we deduce upper bounds for the Lp-variation of
Y . In case of non-Lipschitz BSDEs, i.e. θ > 0, one can estimate the Lp-variation
of Y from above by the fractional smoothness of (ξ, f), measured in Lp as well,
only for large p ∈ (p0,∞), where p0 ∈ [2,∞) is some threshold. Estimates for
small p are unknown. To obtain estimates for this threshold p0 sliceable numbers
are used. The concept of sliceable BMO-martingales in connection with BSDEs
was used in [2]. For a BMO-martingale M we define the n-th sliceable number as

sln(M) := inf
0=τ0≤···≤τn=T

‖τi−1M τi‖BMO,

with the infimum taken over sequences of stopping times, and obtain general-
ized s-numbers. It turns out that the sliceable numbers of the fractional process

(
∫ t

0 |Zs|θdWs)t∈[0,T ] give an explicit expression for this threshold p0.
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Metric entropy and Gaussian processes

Thomas Kühn

This is a survey talk on relations between Gaussian measures on Banach spaces
(resp. Gaussian processes), operator ideals and metric entropy. In particular, the
following topics will be discussed:

• Description of Gaussian measures by operators
• Relations between γ-summing operators and entropy ideals
• Small ball probabilities via metric entropy

In 1974 Linde and Pietsch [7] introduced the ideals Pγ of γ-summing and Rγ of
γ-Radonifying operators, see also [8]. These operator ideals can be used to char-
acterize Gaussian measures on Banach spaces. By Dudley’s and Sudakov’s famous
inequalities there is a close connection between Gaussian measures/processes and
metric entropy; a proof in the language of operator ideals was given in [4]. Com-
bined with Tomczak-Jaegermann’s result on duality of entropy numbers [10] this
implies, for any Hilbert space H and any Banach space E,

L(e)
2,1(H,E) ⊂ Rγ(H,E) ⊂ Pγ(H,E) ⊂ L(e)

2,∞(H,E)
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where L(e)
p,q denotes the ideal of operators whose entropy numbers belong to the

Lorentz space ℓp,q. The fine indices 1 and ∞ of the entropy ideals in the above
inclusions are optimal. More results on Gaussian measures and Banach space
geometry can be found in Pisier’s monograph [9].

In 1993 Kuelbs and Li [3] discovered a tight relation between small ball probabili-
ties of Gaussian measures and metric entropy, further results in this direction are
contained in [6] and [2]. As examples of this relation, I will describe two recent
applications concerning small deviation probabilities of certain smooth Gaussian
processes, see [5] and [1]. The motivation of [5] was to improve a result of Zhou
[11] on covering numbers, which is important in learning theory. This is related to
Ingo Steinwart’s talk on the use of entropy numbers in statistical learning theory.
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dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 299–301.
[11] D. X. Zhou, The covering number in learning theory, J. Complexity 18 (2002), 739–767.

Complexity of Multivariate Integration

Aicke Hinrichs

In this talk we discuss results on the deterministic and randomized complexity of
multivariate integration.

In particular, we discuss negative tractability results from [2, 3] for some small
classes of smooth functions in the deterministic setting. An exemplary result is
the following theorem for functions from the unit ball of r times continuously
differentiable functions

Cr
d = {f ∈ Cr(Rd) | ‖Dβf‖ ≤ 1 for all |β| ≤ r},
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where β = (β1, β2, . . . , βd), with non-negative integers βj , |β| =
∑d

j=1 βj , and Dβ

denotes the operator of βj times differentiation with respect to the jth variable
for j = 1, 2, . . . d. By ‖ · ‖ we mean the sup norm, ‖Dβf‖ = supx∈Rd |(Dβf)(x)|.
The information complexity n(ε, F ) of the integration problem for a class F of
continuous functions is the minimal number n of points needed to approximate
the integral of all f ∈ F with a deterministic algorithm using n function values
with an error at most ε.

Theorem 1. The curse of dimensionality holds for the classes Cr
d with the super-

exponential lower bound on the information complexity

n(ε, Cr
d) ≥ cr (1− ε) d d/(2r+3) for all d ∈ N and ε ∈ (0, 1),

where cr ∈ (0, 1] depends only on r.

We also discuss positive tractability results from [1] for the randomized setting
in a rather general reproducing kernel Hilbert space context based on the domina-
tion theorem for 2-summing operators. Using change of density arguments from
Banach space theory it is shown that the integration problem on reproducing ker-
nel Hilbert spaces with a nonnegative kernel is strongly polynomial tractable, that
is the information complexity does not depend on the dimension and only depends
polynomially on ε−1. The importance sampling density is derived from a Pietsch
measure via the Pietsch Domination Theorem.

Since the proof of the general Pietsch Domination Theorem uses a Hahn-Banach
argument, the question arises how the density can be found explicitly. We show
how in some important cases of tensor product spaces this can be done via sharp
Sobolev type inequalities.
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Traces and residues of pseudo-differential operators on the torus

Albrecht Pietsch

Let A(H) be an ideal in the ring L(H) constituted by all bounded linear operators
S on the separable infinite-dimensional complex Hilbert space H . A linear form
τ on A(H) is called a trace if τ(SA) = τ(AS) for all S ∈ A(H) and A ∈ L(H).
Using techniques from Banach space theory, we are able to construct those traces
quite easily. This new approach is demonstrated in the case of Dixmier traces on
the ideal L1,∞(H), which can be obtained as follows:
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Recall that the Hilbert–Schmidt norm of any finite rank operator S is given by

‖S|L2‖ :=
(

∞
∑

m=1

‖Sem‖2
)1/2

and does not depend on the underlying orthonormal basis (em). By definition, the
ideal L1,∞(H) consists of all operators S ∈ L(H) admitting a representation

S =
∞
∑

k=0

Sk such that rank(Sk) ≤ 2k and ‖Sk|L2‖ = O(2−k/2).

If trace(Sk) denotes the usual trace of the finite rank operator Sk, then we have
|trace(Sk)| ≤ 2k/2‖Sk|L2‖. Hence

(

trace(Sk)
)

is a bounded scalar sequence, and
it follows that, for any shift-invariant linear form λ on ℓ∞, the expression

τ(S) := λ
(

trace(Sk)
)

is well-defined and yields a trace on the ideal L1,∞(H). The map λ 7→ τ is one-
to-one, and all traces can be obtained in this way.

We apply the construction above to classical pseudo-differential operators living
on the d-dimensional torus and prove an extended version ofConnes’ trace theorem,
which relates normalized traces of those operators to their Wodzicki residues. The
same approach works in the setting of closed Riemannian manifolds.
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