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Introduction by the Organisers

The mini-workshop Discrete p-Laplacians: Spectral Theory and Variational Meth-
ods in Mathematics and Computer Science organized by Matthias Hein, Daniel
Lenz, and Delio Mugnolo was involved with a field common to both mathemat-
ics and computer science in recent investigations around the so-called discrete
p-Laplacian. The participants came from various parts of mathematics, including
geometry and analysis, and computer science with a slight majority of participants
from mathematics. A central aim was to make the involved researchers aware of
methods and objectives of the ’other’ community. Accordingly, the talks were
mostly introductory in nature and presented a wide range of topics within the
field. Special attention was paid to

• classical p = 2 theory for graphs (as the starting point for the case of
p 6= 2),

• classical p = 2 and p 6= 2 theory for manifolds,
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• Cheeger cuts in both mathematics and computer science,
• discretization procedures to get from continuum models to discrete models

and vice versa.

By giving a brief introduction into the topic, we will now put these points in
perspective. The p-Laplacian operators

∆pu := ∇ · (|∇u|p−2∇u), p > 1 ,

have been studied since the 1960s in order to model special diffusive systems. One
decade later Yamasaki proposed a discrete version of them: because the signed
incidence matrix I of a directed graph can be seen as a discrete version of the
divergence operator, a discrete p-Laplacian operator is naturally defined by

Lpf := I(|IT f |p−2IT f), p > 1 .

The special case p = 1 where the discrete p-Laplacian becomes multi-valued is of
particular interest.

It was mostly the potential theoretical features of this family of difference op-
erators that initially motivated their study. However, it was observed in the early
1990s by Perona, Malik, P.-L. Lions and other authors that the parabolic equation
associated with ∆p be conveniently used for image processing. Given a picture,
i.e., a function u0 : Ω → Rk (k = 1 or k = 3 for a b/w or rgb picture, respectively),
the rationale behind the choice of parameter p relies upon the modeling purposes,
as diffusion-driven smoothing of input pictures will be stronger in regions of low
gradient for 1 ≤ p < 2, but in regions of high gradient for 2 < p < ∞: this
suggests applications to denoising or segmentation (p ≈ 1) or morphing (p ≈ ∞),
respectively. Observe that

(1)
∂f

∂t
(t, v) = −Lpf(t, v), t ≥ 0, v ∈ V ,

turns into a partial differential inclusion for p = 1, as L1 is multivalued. Plugging
a noisy picture as the initial data of (1) for 1 ≤ p < 2 and letting the system
evolve with respect to the fictive time variable t will expectedly deliver pictures
that are less and less blurry.

These considerations have paved the road for the celebrated Rudin–Osher–
Fatemi model of image denoising, which is essentially an optimization problem
for the energy functional

Ep : u 7→ 1

p

∫

Ω

|∇u|pdx

associated with ∆p, for p ≈ 1. Analogous considerations hold for the discrete
p-Laplacians.

The discrete p-Laplacians are used for similar reasons for clustering purposes:
given a set of data, i.e., of vectors in Rd, a graph is built upon determining an
adjacency structure and hence a graph by means of a similarity function. Mirroring
the structure of Lp for p → 1, its eigenvectors will be strongly localized: the
supports of its positive and negative parts will deliver meaningful clusters of the
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graph and thus is used to detect structures in a graph in an unsupervised way in
machine learning.

If the graph is finite, then 0 is an eigenvalue of Lp for all p ∈ [1,∞). Strictly pos-
itive eigenvalues yield interesting information about the Cheeger constant, which
is defined as

hρ(G) := min
S⊂V

|∂S|
min{|S|, |SC|} ,

where ∂S denotes the set of edges with one endpoint in a subset S of the vertex
set V and the other in its complement SC , and | · | is the measure of a set with
respect to a given node weight ρ. The famous isoperimetric inequality relating
the second eigenvalue of the classical Laplacian (p = 2) has first been established
by Cheeger for Riemannian manifolds and then for graphs by Alon and Milman.
In computer science the so called spectral relaxation of the Cheeger cut problem
– which is known to be NP-hard – has been used for clustering the vertices of a
graph. Subsequently, similar inequalities have been established for the p-Laplacian
both for the continuous and discrete problem. The case p = 1 is particularly
interesting as the second eigenvalue of the discrete 1-Laplacian is equal to the
Cheeger constant and the second eigenvector is the indicator vector of the optimal
partition.

We quickly summarize the talks and their relation to the above subjects.
The relation of discrete and continuous graph Laplacian has been discussed in

talks by Y. Kurylev, M. Gerlach and D. Slepcev. Y. Kurylev showed that eigenval-
ues and eigenvectors of the Laplace-Beltrami operator of a compact Riemannian
manifold can be approximated by the corresponding objects of the discrete graph
Laplacian built on a ǫ-net of the manifold. M. Gerlach showed that this approx-
imation works as well for the case where the discretization is built from an i.i.d.
sample of the manifold. D. Slepcev discussed Gamma-convergence of the Cheeger
cut corresponding to the the second eigenvalue of the 1-Laplacian of a neighbor-
hood graph built from an i.i.d. sample of a compact Riemannian manifold to the
corresponding Cheeger cut of the manifold. J. Giesen gave a talk on spectral em-
beddings via particularly constructed graphs and their application in exploratory
data analysis.

The relation of Cheeger cuts and discrete p-Laplacian and generalizations of the
classical Cheeger inequality were discussed by M. Hein, S. Liu and D. Zhang. M.
Hein discussed the relation of the spectrum of the p-Laplacian and (higher-order)
Cheeger cuts and discussed generalizations to directed graphs and hyerpgraphs
with applications in machine learning. S. Liu discussed generalization of the clas-
sical case p = 2 to signed graphs and more general magnetic Laplacians and gave
Cheeger inequalities both for continuous and discrete case. D. Zhang discussed
the graph 1-Laplacian and its properties in particular also of higher-order eigen-
vectors. M. Keller showed how powerful Cheeger inequalities for general p could
be obtained for infinite graphs with unbounded degree via intrinsic metrics. J.
Kerner extended these ideas to the case of p-Laplacians on quantum graphs, a
possible relaxation of the usual combinatorial graph setting.
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The topic of intrinsic metrics in the description of diffusion processes was taken
up by D. Lenz and put in the context of general Dirichlet forms, which cover
Laplacians on graphs and manifolds. The classical topic of the Feller property
for diffusion was presented for manifolds by A. Setti and for graphs by R. Woj-
ciechowski. S. Golénia showed how rich the theory of such a simple object as the
diagonal matrix of vertex degrees can be and developed a comprehensive opera-
tor theory thereof. D. Mugnolo studied well-posedness, long-time behaviour and
regularity of the solutions of the parabolic differential equation associated with
discrete p-Laplacians on graphs and hypergrahs by means of a nonlinear extension
of the theory of Dirichlet forms. B. Kawohl presented an overview on the theory of
eigenvalues, eigenfunctions and nodal domains of p-Laplacians on domains, while
P. Pucci offered an invitation to recent results on Kirchoff-type evolution equations
associated with the fractional p-Laplacians.

The great atmosphere of Oberwolfach lead to numerous discussions and to a
fruitful mutual exchange of ideas and concepts of the participants which had a
quite heterogeneous background in mathematics and computer science. Thus we
think that the mini-workshop has been very successful in partially initiating and
partially strengthening the interaction between mathematics and computer sci-
ence in all aspects around continuous and discrete aspects of the p-Laplacian. The
organizers would like to thank the administration and staff members of the Ober-
wolfach institute for their hospitality and the great support before and during the
workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Spectral convergence of random geometric graphs

Moritz Gerlach

(joint work with Matthias Hein)

We present a first result on the convergence of the spectrum of an unnormalized
graph Laplacian to the spectrum of the Laplace-Beltrami operator.

Given a finite sequence of samples X = {X1, . . . , Xn} drawn independently and
uniformly at random from an m-dimensional compact submanifold M of Rd, we
construct a graph with vertex set X deterministically by connecting two samples
by an edge if their distance is smaller than a neighborhood parameter h depending
on n. Then each edge (Xi, Xj) is endowed with the weight wi,j = 1/(hm+2n2) and
we consider the unnormalized graph Laplacian

(∆u)(Xi) =
1

nhm+2

∑

Xj∼Xi

(u(Xj) − u(Xi)).

In order to prove convergence of the spectrum of ∆ as the sample size n tends to
infinity while h goes to zero, we make use of a recent work by Burago, Ivanov and
Kurylev [1] on discretization and approximation of the Laplace-Beltrami operator.
Their discretization is based on a partition of the manifold with measurable sets
V1, . . . , Vn such that each Vi is sufficiently close to the sample point Xi. On each
of these sets, a function f ∈ L2(M) is then approximated by its mean

1

vol(Vi)

∫

Vi

fdvol

and, vice versa, a vector u ∈ L2(X) is extended to the piecewise constant function

n∑

i=1

u(Xi)1Xi

on M .
In order to apply this method in our random setting, we need to ensure the

following two conditions with sufficiently high probability.

• The balls of a certain radius ε > 0 centered at the sample pointsX1, . . . , Xn

cover M .
• There exists a partition V1∪· · ·∪Vn of M with measurable sets Vi of equal

volume such that each Vi belongs to the ball of radius ε centered at Xi.

In this talk, we present one possibility to obtain this. Due to [1], this yields
convergence of the spectrum of ∆ to that of the Laplace-Beltrami operator in
probability.
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Exploratory Analysis of Graphs via Spectral Embeddings

Joachim Giesen

(joint work with Claudia Dahl, Philipp Lucas)

Introduction. Given a graph G = (V,E) with a finite vertex set V and edge set

E ⊆
(
V
2

)
, exploratory analysis aims at identifying characteristic features of G like

(1) clusters, i.e., a partitioning of V into dissimilar groups of similar vertices,
(2) central vertices, and
(3) motifs, i.e., subgraphs of G that are more frequent than expected when

compared to some given random graph model.

Starting point for these exploratory tasks is often a similarity matrix S that
stores a similarity value for each pair of vertices. Examples for similarity matrices
include

(1) S = ATA = A2, where A is the adjacency matrix of G. Here two vertices
are considered similar if they have many neighbors in common.

(2) Sij = exp(−λd(i, j)2), where λ > 0 and d(i, j) is the graph distance
between the vertices i and j, i.e., the number of edges on a shortest path
connecting i and j, or ∞ if such a path does not exist.

(3) Sij = exp(−λ c(i, j)2), where λ > 0 and c(i, j) is the min-cut value for the
vertices i and j, i.e.,

c(i, j) = min
V ′ 6=∅,V, i∈V ′, j∈V \V ′

∣∣{{v, u} ∈ E | v ∈ V ′ ∧ u ∈ V \ V ′
}∣∣.

Note that in all three examples the matrix S is symmetric and positive semi-
definite, and the entries of S are non-negative. In the following we assume that
these properties hold for S. Additionally, we assume that S is connected, i.e.,
there is a path with strictly positive edge weights connecting any pair of vertices
if we consider S as a weighted adjacency matrix of a graph on the vertex set V .

Spectral embedding. We want to use well developed Euclidean techniques based
on computing Euclidean distances and angles for exploratory graph analysis. For
doing so we embed the vertex set V into Euclidean space Rk, where k ≤ n = |V |,
such that the Euclidean distance between two points is a good approximation of
the similarity of the corresponding vertices.

Nadler et al. [1] have suggested diffusion maps as an embedding technique where
the Euclidean distance in the embedding space has an interpretation as diffusion
distance in the graph whose weighted adjacency matrix is given by the similarity
matrix S. For the definition of a diffusion map they consider the matrix D−1S,
where D is the diagonal matrix with Dii =

∑n
j=1 Sij . The matrix D−1S is sto-

chastic, i.e., its row sums are 1. The eigenvalues, and left- and right eigenvectors



Mini-Workshop: Discrete p-Laplacians 407

of D−1S can be obtained from the eigenvalues λ0 ≥ . . . λn−1 and the eigenvectors
v0, . . . , vn−1 of the adjoint matrix D−1/2SD−1/2. The left eigenvectors are given
as φi = viD

1/2 and the right eigenvectors are given as ψi = viD
−1/2, respectively,

for the eigenvalues λi. The diffusion map (applied to vertex x) is then given as

ψ
(k)
t (x) =

(
λt1ψ1(x), . . . , λtkψk(x)

)
.

The diffusion distance between two vertices is defined as

d2t (xi, xj) = ‖p(t, x|xi) − p(t, x|xj)‖2φ0
=

n∑

x=1

(
p(t, x|xi) − p(t, x|xj)

)2
φ0(x)−1,

where p(t, x|xi) = ei(D
−1S)t, i.e., multiplying the i’th standard basis vector from

the left to the t’th power of the stochastic matrix D−1S, which corresponds to
t steps in Markov chain that corresponds to D−1S with the whole probabil-
ity mass concentrated at vertex i at t = 0. A simple calculation shows that
limt→∞ p(t, x|y) = φ0(x) regardless of y since the Markov chain is irreducible and
aperiodic. The diffusion distance thus compares the probability mass distribution
of the Markov chain for the initial mass distribution concentrated at x0 and x1,
respectively, after t time steps.

Nadler et al. prove that

(1) d2t (xi, xj) = ‖ψ(n−1)
t (xi) − ψ

(n−1)
t (xj)‖2, and

(2)
∣∣∣d2t (xi, xj) − ‖ψ(k)

t (xi) − ψ
(k)
t (xj)‖2

∣∣∣ ≤ λ2k+1

(
1

φ0(xi)
+ 1

φ0(xj)

)
.

That is, the Euclidean distance of the mapped vertices either recovers their diffu-
sion distance, or it is a good approximation if the eigenvalues decay quickly.

Exploratory analysis. Let pi = ψ
(ℓ)
t (xi) be the point that corresponds to the

i’th vertex for some fixed ℓ and t.
Clustering. The well known k-means clustering method now becomes applicable

to graphs. The method determines k cluster centers c1, . . . , ck ∈ Rℓ as the solution
of the following optimization problem,

min
c1,...,ck∈Rℓ

n∑

i=1

‖pi − ĉi‖2,

where ĉi = argminc∈{c1,...,ck}‖xi − c‖. For the clustering each point pi is assigned
to its closest cluster center.

Ordinary and extraordinary vertices. For comparing vertices or local subgraphs
we compute first a local neighborhood of a vertex pi as the set Nk(pi) of its k-
nearest neighbors in the point cloud {p1, . . . , pn}. From the neighborhood we can
compute a local coordinate system by considering the eigenvectors of the covariance
matrix Ci =

∑
p∈Nk(pi)

(p−pi)(p−pi)T . The eigenvalues of Ci are indicative of the

shape of the local neighborhood (spherical, ellipsoidal, disc like). One can identify
the points pi and thus the vertices of the graph with the sorted eigenvalue vectors

(ν
(i)
1 , . . . , ν

(i)
ℓ ), i.e., we assume ν

(i)
j ≥ ν

(i)
j+1. Accumulation points in the space

of these vectors can be considered as (shape-)motifs (or prototypical ordinary
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vertices) and outliers can be considered as extraordinary vertices. In experiments
we have observed that extraordinary vertices often maximize well known centrality
measures.

Approximate symmetries. One can try to approximately match the (eigenvalue
weighted) local coordinate systems at the points pi under Euclidean transforma-
tions (rotations, translations, and reflections). Every approximate match provides
a vote for the corresponding transformation. Accumulation points of the votes
in the space of all possible symmetries can be considered as approximate local or
global symmetries of the point cloud and thus also of the graph.

References
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Eigenvalue asymptotics for Schrödinger operators on sparse graphs

Sylvain Golénia

(joint work with Michel Bonnefont, Matthias Keller)

The spectral theory of discrete Laplacians on finite or infinite graphs has drawn a
lot of attention for decades. One important aspect is to understand the relations
between the geometry of the graph and the spectrum of the Laplacian. Often a
particular focus lies on the study of the bottom of the spectrum and the eigenvalues
below the essential spectrum.

In this talk we focus on sparse graphs to study discreteness of spectrum and
eigenvalue asymptotics. In a moral sense, the term sparse means that there are
not ‘too many’ edges.

The techniques used in [1] owe on the one hand to considerations of isoperimetric
estimates, e.g., [2], as well as a scheme developed in [3] for the special case of trees.
In particular, we show that a notion of sparseness is a geometric characterization
for an inequality of the type

(1 − a) deg−k ≤ ∆ ≤ (1 + a) deg +k

for some a ∈ (0, 1), k ≥ 0, which holds in the form sense. The moral of this
inequality is that the asymptotic behavior of the Laplacian ∆ is controlled by the
vertex degree function deg (the smaller a the better the control).

Furthermore, such an inequality has very strong consequences which follow from
well-known functional analytic principles. These consequences include an explicit
description of the form domain, characterization for discreteness of spectrum and
eigenvalue asymptotics.
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Discrete graph p-Laplacians, Cheeger cuts and Extensions

Matthias Hein

(joint work with T. Bühler, L. Jost, S. Rangapuram, S. Setzer and F. Tudisco)

In computer science the so called Cheeger cut or sparsest cut is a quality measure
to partition an undirected, weighted graph G = (V,E) into two sets (C,C) such
that the cut is small and the size of the sets |C| and |C| is roughly equal. The
optimal Cheeger cut φ∗ is defined as

φ∗ = min∅6=C⊂V
cut(C,C)

min{|C|, |C|} ,

where cut(C,C) =
∑

i∈C,j∈C wij and wij is the non-negative weight of the edge
between vertices i and j.

This problem is known to be NP-hard and thus typically relaxations into contin-
uous problems are used, which can be computed globally optimal. The most often
employed relaxation in machine learning is the spectral one based on the second
eigenvector of the graph Laplacian. In recent years, the nonlinear generalization
based on the graph p-Laplacian has become of great interest as Amghibech [1],
see also [4], has shown that the Cheeger cut φp−SPECTRAL of the partition ob-
tained by optimal thresholding of the second eigenvector of the graph p-Laplacian
satisfies,

φ∗ ≤ φp−SPECTRAL ≤ p(maxidi)
p−1

p (φ∗)
1
p .

The inequality becomes tight as p → 1. An analogous result for the continuous
case has been obtained by Kawohl and Fridman [9]. This has led to the technique
of p-spectral clustering in machine learning [4]. In [5] we could show that in the
case p = 1 the second eigenvalue of the graph 1-Laplacian is equal to the optimal
Cheeger cut and the second eigenvector is the indicator vector of the optimal
partition. Moreover, we propose a nonlinear inverse power method to compute
the second eigenvectors of the 1-Laplacian. While the method is guaranteed to
converge to an eigenvector of the 1-Laplacian, there is not guarantee that one
achieves the second one [8]. However, in practice the results are superior to the
standard relaxation corresponding to the case p = 2, see also [11].

This result can be extended in various ways. From a machine learning point of
view the Cheeger cut is used to find clusters. A cluster is a group of vertices which
is strongly connected inside the group but only weakly connected to the rest of
the graph. In [6, 2] we show how to integrate prior knowledge into the clustering
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via must-link and cannot-link constraints [6] and seed and size constraints [2]. A
very general relaxation of the discrete ratio problem is treated in [2] where the
following theorem is shown.

Theorem 1.1. Let R̂, Ŝ : 2V → R be non-negative set functions and R,S : Rn →
R their Lovasz extensions. Then,

min
C⊂V

R̂(C)

Ŝ(C)
= min

f∈Rn
+

R(f)

S(f)
.

If in addition R̂(V ) = Ŝ(V ) = 0, then min
C⊂V

R̂(C)

Ŝ(C)
= min

f∈Rn

R(f)
S(f) .

Moreover,

R(f)

S(f)
≥ min

i=1,...,n

R̂(Ci)

Ŝ(Ci)
,

where Ci = {j ∈ V | fj > fi}. If R̂(V ) = Ŝ(V ) = 0, the inequality holds for all
f ∈ Rn.

Further constraints can be integrated via a penalty-based approach. This result
allows us also to tackle the Cheeger cut problem for hypergraphs [7] and directed
graphs (work in progress).

Finally, we discuss current work on a nodal domain theorem for the graph
p-Laplacian. We show an analogous result to the one obtained for the graph
Laplacian [3]. Moreover, based on nodal domains one can also obtain a higher-
order Cheeger inequality for a decomposition of the vertices into k non-empty
disjoint sets C1, . . . , Ck according to the criterion,

min
C1,...,Ck

max
l=1,...,k

cut(Cl, Cl)

|Cl|
.

A corresponding higher-order Cheeger inequality becomes tight as p → 1 if there
exists an eigenfunction which has k strong nodal domains.
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First eigenvalues of the indiscrete p-Laplacian

Bernd Kawohl

For Ω ⊂ Rn a bounded domain and nontrivial v ∈ W 1,p(Ω) with p ∈ (1,∞) we
can define the Rayleigh-quotient

Rp(v) :=

∫
Ω |∇v|p, dx∫
Ω
|v|p dx .

Any critical point of this functional satisfies the Euler-equation

(1) −∆pu := −div
(
|∇u|p−2∇u

)
= λ|u|p−2u in Ω.

My lecture treats first eigenvalues of (1) under Dirichlet and Neumann boundary
conditions and some closely related issues.

Dirichlet eigenvalues and eigenfunctions
If we minimize Rp on W 1,p

0 (Ω) \ {0} then a minimizer up exists for any p ∈
(1,∞), and it satisfies Dirichlet’s boundary condition up = 0 on ∂Ω as well as
−div

(
|∇up|p−2∇up

)
= λp|up|p−2up in Ω. Observe that the index p refers to the

exponent of integration, so that λ2 is the first eigenvalue of the (linear) 2-Laplacian,
λ3 the first eigenvalue of the 3-Laplacien etc. Without loss of generality there is a
nonnegative minimizer, since Rp(u) = Rp(|u|). But then the right hand side in 1
is nonnegative and due to a Harnack inequality the solution is positive in Ω. This
observation is crucial in proving the next result.

Theorem 1.1. For any p ∈ (1,∞) the first eigenfunction up is simple, in other
words any eigenfunction of λp is a multiple of up.

Proof. Since [10] is not easily available I present the short proof, which reveals a
hidden convexity of Rp(u) in terms of up. Suppose there are two eigenfunctions u
and w, both positive. Then I set

v :=
[
1
2 (up + wp)

] 1
p
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and calculate

∇v =
1

2p
(up + wp)

1
p−1 (|u|p−2u∇u+ |w|p−2w∇w

)

= v

(
up

up + wp
∇ log u+

wp

up + wp
∇ logw

)
,

where (. . .) is now a convex combination of ∇ log u and ∇ logw. Therefore Jensen’s
inequality and the definition of v implies

|∇v|p ≤ vp
(

up

up + wp
|∇ log u|p +

wp

up + wp
|∇ logw|p

)
=

1

2
(|∇u|p + |∇w|p) ,

so that Rp(v) ≤ λp = inf Rp. Consequently the inequality must be an equality
and ∇ log u = ∇ logw a.e.in Ω or ∇(u/w) = 0, i.e. u = const.w. �

What happens as p→ 1? If we look for nonnegative eigenfunctions in W 1,1
0 (Ω)

we have trouble proving existence of a minimizer, so R1 is extended to functions
of bounded variation. In terms of their level sets Ωt := {x ∈ Ω ; u(x) > t} one
can express the denominator of R1 as

∫

Ω

u dx =

∫ ∞

0

|Ωt| dt

(this is known as Cavalieri’s principle) and the enumerator as
∫ 1

0

|∂Ωt| dt,

by the coarea formula for BV-functions. So level sets try to minimize the Cheeger
quotient |∂A|/|A| of perimeter over area among subsets A of Ω, and any set that
minimizes this quotient will be called Cheeger set of Ω and denoted by Ωc. It
turns out that the Cheeger constant h(Ω) = |∂Ωc|/|Ωc| equals λ1(Ω).

Theorem 1.2. If Ωc is Cheeger set of Ω then the function χΩc
(x) =

{
1 if x ∈ Ωc

0 if x 6∈ Ωc

minimizes R1(v) in BV (Ω). Moreover this function solves the eigenvalue problem

−div
(

∇u
|∇u|

)
= λ1

(
u
|u|

)
in Ω, u = 0 on ∂Ω, in the sense of viscosity solutions.

For a proof I refer to [5] and [11]. In two dimensions Cheeger sets of convex
polygons are easy to calculate. There ∂Ωc ∩Ω consists of circular arcs with radius
1/λ1(Ω), see [9]. In general Cheeger sets are not unique. Nodal patterns of second
eigenfunctions of the p-Laplacian were calculated in [6]. For higher eigenvalues see
also [1, 12, 13] and [14]

Neumann eigenvalues and eigenfunctions
A minimization of Rp on W 1,p(Ω) \ {0} provides constant functions as eigenfunc-
tions to the eigenvalue zero. The first nontrivial eigenvalue νp > 0 is obtained
by minimizing Rp on W 1,p(Ω) \ {0} ∩ {

∫
|u|p−2u dx = 0}, and the minimizers up

solve −∆pup = νp|u − p|p−2up in Ω, |∇up|p−2 ∂up

∂ν = 0 on ∂Ω. If p = 1 the side
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constraint
∫
Ω u/|u| = 0 implies that the sets Ω+ = {x ∈ Ω | u(x) > 0} and Ω−

have equal area, so Ω is equipartitioned.

Theorem 1.3. For plane convex domains we have ν1(Ω) ≤ ν1(Ω∗), where Ω∗

denotes the disc of same area as Ω.

This theorem answers a conjecture of Pólya from 1958 and is an analogue to
the Szegö-Weinberger inequality ν2(Ω) ≤ ν2(Ω∗) which holds even for nonceonvex
Ω in arbitrary dimension. For details see [3].

What happens for p→ ∞?

Theorem 1.4. As p→ ∞, ν
1/p
p → Λ∞ = 2

diam Ω , and u∞ = limp→∞ up solves





min{|∇u| − Λ∞u,−∆∞u} = 0 in Ω ∩ {u > 0}
−∆∞u = −∑n

i,j=1 uxi
uxixj

uxj
= 0 in Ω ∩ {u = 0}

min{−|∇u| − Λ∞u,−∆∞u} = 0 in Ω ∩ {u < 0}
∂u/∂ν = 0 on ∂Ω

in the sense of viscosity solutions.

This theorem provides the analogue of the Szegö-Weinberger inequality Λ∞(Ω) ≤
Λ∞(Ω∗) in the case p = ∞. For the proof and other consequences see [4]. There
is no smaller eigenvalue than Λ∞, and if Ω is convex, u∞ attains its max and min
over Ω in those boundary points that have maximal distance from each other, e.g.
in diagonal corners of a rectangle. Moreover, along this diameter u∞ has constant
slope. Thus u∞ satisfies the so called “hot spot conjecture”, which states that in
convex domains u2 should attain its max and min on the boundary. But diffusion
equations are a different subject, and I just refer the reader to [2] and [7].
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On Cheeger’s inequality for graphs

Matthias Keller

(joint work with Frank Bauer/Rados law Wojciechowski and Delio Mugnolo)

In 1969 Jeff Cheeger [4] proved his famous inequality

h2M
4

≤ λ1(∆M ),

where λ1(∆M ) is the first non-trivial eigenvalue of the Laplace Beltrami operator
∆M ≥ 0 on L2(M, vol) of a compact manifold M and the Cheeger constant hM is
defined as

hM = inf
Area(∂S)

vol(S) ∧ vol(M \ S)
,

where the infimum runs over all S ⊆ M with sufficiently smooth boundary. On
non-compact manifolds the bottom of the spectrum can also be estimated by h2M/4.

In order to even formulate an analogous inequality for graphs, one has to define
the corresponding quantities first. While for manifolds the area, the volume and
the Laplace Beltrami operator arise in a canonical way from the metric, for graphs
these choices are non-obvious and as it turns out not uniquely determined.

Let us be more specific. Let X be the vertex set of a graph and if x, y ∈ X are
connected by an edge (x, y) we write x ∼ y and assume x ∼ y if and only if y ∼ x.
We denote the degree of a vertex x by d(x) = #{y ∈ X | y ∼ x}.

Let C(X) = {X → R}. We consider the quadratic form

Q(f) =
1

2

∑

x∼y

(f(x) − f(y))2, f ∈ C(X).

To define a Laplacian, we need to restrict Q to a Hilbert space. This boils down
to the question: What is a suitable a volume measure for graphs? Two natural
choices are to count volume by the number of vertices or by the number of edges.

Let us first consider the volume measure vol1 that counts vertices, i.e.,

vol1(W ) =
∑

x∈W

1 = #W, W ⊆ X.
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The positive selfadjoint operator ∆1 on ℓ2(X, vol1) = ℓ2(X) arising from Q re-
stricted to {f ∈ ℓ2(X) | Q(f) <∞} acts as

∆1f(x) =
∑

y∼x

(f(x) − f(y))

on the domain D(∆1) = {f ∈ ℓ2(X) | ∆1f ∈ ℓ2(X)} cf. [12]. Observe that ∆1

is bounded (by 2D) if and only if D := supx∈X d(x) < ∞. Of course, D(∆1) =
ℓ2(X) = C(X) whenever X is finite.

In 1984 the following analogue of Cheeger’s inequality was proven independently
by Alon-Milman [1] for finite graphs and by Dodziuk [5] for infinite graphs

h21
2D

≤ λ1(∆1) with h1 = inf
W⊆X

#∂W

#W ∧ #(X \W )

where λ1(∆1) is the first non-trivial eigenvalue in the case of finite graphs and
the bottom of the spectrum in the case of infinite graphs and ∂W = {(x, y) ∈
W ×X \W | x ∼ y}. However, as Dodziuk/Kendall put it in their paper [6]: “The
results are somewhat unsatisfactory. For example, the lower bound for the bottom
of the spectrum depended not only on the isoperimetric constant (as it does in
Cheeger’s inequality) but also on the number D = supx d(x) [...], it is intuitively
obvious that such a bound is unnecessary.”

Dodziuk-Kendall solved this issue in 1986 by modifying the Hilbert spaces asso-
ciated to a graph, that is they modified the notion of volume. Instead of counting
vertices they considered the measure vold = d which counts edges and is given by

vold(W ) =
∑

x∈W

d(x) = #EW + #∂W,

where E(W ) are the edges in W×W . The form Q is always bounded on ℓ2(X, vold)
= ℓ2(X, d) and the corresponding positive selfadjoint Laplacian ∆d acts as

∆df(x) =
1

d(x)

∑

y∼x

(f(x) − f(y))

on ℓ2(X, d). For this operator, Dodziuk/Kendall [6] proved the inequality

h2d
2

≤ λ1(∆d) with hd = inf
W⊆X

#∂W

d(W ) ∧ d(X \W )

with λ1(∆d) being the first non-trivial eigenvalue in the finite case and the bottom
of the spectrum in the infinite case.

Although this result recovers the original form of Cheeger’s inequality for ∆d,
the problem addressed by Dodziuk/Kendall for ∆1 remained open. In addition
there were various other results, where ∆d provided the correct analogues to the
case of manifolds while the corresponding results for ∆1 failed to be true.

In 2009 Frank/Lenz/Wingert [7] introduced the concept of intrinsic metrics for
general regular Dirichlet forms. For strongly local Dirichlet forms which include
manifolds as a special case, this concept had already been proven very effective, but
it was not available for non-local forms including graphs until 2009. These metrics
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served as a remedy to resolve disparities that appeared in results for manifolds as
opposed to results for general graph Laplacians, see e.g. [10] for a survey.

To introduce these metrics let us consider general weighted graphs. Given a
discrete countable set X , a weighted graph is a symmetric map b : X×X → [0,∞)
with zero diagonal and

∑
y∈X b(x, y) <∞ for all x ∈ X . Consider the form

Q(f) =
1

2

∑

x,y∈X

b(x, y)(f(x) − f(y))2

on the finitely supported functions. For a measure m : X → (0,∞), its closure in
ℓ2(X,m) gives rise to a positive selfadjoint operator L on ℓ2(X,m) acting as

Lf(x) =
1

m(x)

∑

y∈X

b(x, y)(f(x) − f(y)).

For b : X ×X → {0, 1}, we get ∆1 for m ≡ 1 and ∆d for m = d as special cases.
According to Frank/Lenz/Wingert [7] a pseudo metric ρ on X is intrinsic if

∑

y∈X

b(x, y)ρ2(x, y) ≤ m(x), for all x ∈ X.

It can be seen that a pseudo metric is intrinsic if and only if the corresponding
1-Lipshitz functions are included in the set of functions whose “discrete gradient”
is bounded by one. An example of an intrinsic metric was given by Huang [8]

ρ0(x, y) = inf
x=x0∼...∼xn=y

n−1∑

i=0

(Deg(xi) ∨ Deg(xi+1))−1/2 ,

with Deg(xi) = 1
m(xi)

∑
z∈X b(xi, z). Observe that whenever b : X ×X → {0, 1},

we have Deg(x) = d(x) for m ≡ 1 and Deg(x) = 1 for m = d. In particular, ρ0 is
the combinatorial graph distance dcomb in the case of the operator L = ∆d. This
explains why many results for ∆d parallel the results for manifolds directly.

Now, in order to prove a general Cheeger inequality in its original form, one
needs to see where dcomb already enters the definition of hd which yields the correct
result. Clearly, the denominator is determined by the volume, and, hence, is not
subject to change. So, we take a look at the definition of the enumerator

#∂W =
∑

(x,y)∈∂W

1 =
∑

(x,y)∈∂W

dcomb(x, y).

For an intrinsic metric ρ this suggest the following definition of the area

Area(∂W ) =
∑

(x,y)∈∂W

b(x, y)ρ(x, y).

This idea was used in [2] to solve the issue addressed Dodziuk/Kendall in 1986,
[6] and recovered Cheeger’s inequality in its original form

h2

2
≤ λ1(L), with h = inf

W⊆X

Area(∂W )

m(W ) ∧m(X \W )
,
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where λ1(L) is the first non-trivial eigenvalue for finite graphs and the bottom of
the spectrum for infinite graphs.

For the p-Laplacian arising from the convex functional

Ep(f) =
1

2

∑

x,y∈X

b(x, y)(f(x) − f(y))p.

for p ∈ (1,∞), similar considerations can be made. Here, one is interested in λ
(p)
1

being the infimum of Ep(f) for functions ‖f‖p ≤ 1 and f ⊥ 1 for finite graphs and
‖f‖p ≤ 1 only for infinite graphs. Let ρ be a pseudo-metric such that

∑

y∈X

b(x, y)ρq(x, y) ≤ m(x) for all x ∈ X

with q such that 1/p+ 1/q = 1 and define hp with ρ as above. Then,

2p−1
hpp
pp

≤ λp,

which is shown in [11] paralleling the results of Kawohl/Fridman [9] for the p-
Laplacian of manifolds and improving the results of Bühler/Hein [3] for graphs.
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Equitable partitions, clustering and a bit of Cheeger

Joachim Kerner

(joint work with Delio Mugnolo)

In this first part of the talk we restrict ourselves to finite, undirected, unweighted
d-regular graphs G = (V,E). It is well-known that a classical approach to the clus-
tering of such combinatorial graphs employs a Cheeger-type inequality. Namely,
an “optimal” partition π = {Σi} of the vertex set with |π| = k is defined to be a
minimizer of

(1) max
i=1,...,k

|∂Σi|
d|Σi|

,

where |X | refers to the number of vertices in X and |∂X | to the number of edges
with one end point in X and the other in Xc. Its minimal value hG(k) is then
called the Cheeger constant of the graph G, fulfilling (as shown in [3])

(2)
λk
2

≤ hG(k) ≤ c
√
λk ,

where c > 0 is some constant and {λk}k=1,...,|V | are the eigenvalues of the nor-

malised Laplacian L = I − 1
dA. Here A ∈ R|V |×|V | is the adjacency matrix of the

graph. Due to its resemblance to the famous Cheeger inequality for manifolds [1],
(2) is often also called a Cheeger inequality.
However, it seems that at least in some situations, other clusters might seem more
“natural” than the clusters obtained by minimizing (1). For example, imagine
one starts with k disjoint, complete graphs Ck with |Ck| ≫ 1, then adding a few
edges to obtain a connected graph. In this scenario, two immediate question arise:
Under what circumstances is π = {Ck} an optimal partiton in terms of Cheeger?
Also, how is one able to “see” (or measure for that matter) that our graph is
somehow “close” to the initial scenario of k disjoint and complete graphs? Given
one knew this, each Ck would then form a natural cluster.
Generalizing this setting, one is led to the notion of equitable partitions of graphs.
Let π = {Σi}i=1,...,k be a partition such that each vertex v ∈ Σi has exactly cii
neighbours in Σi and cij neighbours in Σj . Then this partition π is called equitable
and one associates a matrix C ∈ Rk×k (the so called quotient matrix) with π, i.e.,
(C)ij := cij . Note that in general, C 6= CT . Now, from a spectral point of view,
the following theorem is crucial and (partly) explains why looking at equitable
partitions is interesting in the first place.

Theorem 1.1. [2] Let π be an equitable partition of a graph G with corresponding
quotient matrix C. Then the characteristic polynomial of C divides the character-
istic polynomial of A. In particular, σ(C) ⊂ σ(A).

Note that, for any partition π = {Σi ⊂ V }, one can define a characteristic
matrix P ∈ R|V |×|π| whose entries are either zero or one. More precisely, (P )ij = 1
if and only if the vertex i is Σj . Regarding the existence of an equitable partition,
one then has the following result.
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Theorem 1.2. [2] Let π be any partition of a graph with characteristic matrix
P ∈ R|V |×|π|. Then π is equitable if and only if there exists a matrix C ∈ R|π|×|π|

such that AP = PC. In this case, C is the quotient matrix associated with π.

As shown in [2], equitable partitions can also be identified as those partitions
for which the interlacing of eigenvalues is tight. More precisely, for each partition
π, one can define the (symmetric) matrix B := (PTP )−1PTAP ∈ R|π|×|π|. This
matrix is then shown to interlace the eigenvalues of the adjacency matrix A, i.e.,
λ|V |−|π|+j(A) ≤ λj(B) ≤ λj(A) for j = 1, ..., |π|. Note that the eigenvalues are
ordered here in a descending manner. Furthermore, the interlacing is called tight
if there exists an index i such that λj(B) = λj(A) for all j ≤ i and λj(B) =
λ|V |−|π|+j(A) for j > i.

Theorem 1.3. [2] Let π be any partition of a graph with characteristic matrix P .
Then the eigenvalues of B = (PTP )−1PTAP interlace the eigenvalues of A. If
the interlacing is tight, the partition π is equitable.

Further results regarding relaxed notions of equitability can be found in [4].
Finally, it is interesting to note that Theorem 1.2 can be strengthened for a par-
ticular class of graphs that allow for equitable partitions, namely, the class of
distance-regular graphs. They are defined by the fact that for any pair of vertices
x, y ∈ V at a given distance d, the number of z ∈ V that have distance dx to x
and dy to y, is independent of x and y. One can show that each distance-regular
graph allows for an equitable partition which is obtained as follows: one picks any
vertex v0 which then constitutes Σ1. The set Σn+1 is then defined to contain all
vertices which are at distance n from v0.

Theorem 1.4. [5] Let G be a finite, connected, distance-regular graph with corre-
sponding quotient matrix C. Then σ(C) = σ(A).

Based on Theorem 1.4 and Theorem 1.1 we ask the following question: is it
possible to define a “meaningful” spectral distance function µσ(A),σ(C) : Xd → R

on the set Xd of d-regular graphs which measures “how far” the graph is away from
having an equitable partition with associated quotient matrix C? For example,
one is aiming at estimates of the form

(3) F1[µσ(A),σ(C)(G)] ≤ Nmin ≤ F2[µσ(A),σ(C)(G)] ,

where Fi : R+ → R+ are (possibly) continuous and strictly positive for x > 0 with
Fi(0) = 0. Also, Nmin is defined to be the minimal number of edges that have
to be removed or added to yield the desired property. Note that, by definition,
µσ(A),σ(C)(G) = 0 if and only if the property is fulfilled.

In the second part of the talk, we want to discuss a Cheeger-type inequality for
finite metric graphs Γ = (V,E) as obtained in [6] for p = 2 and provide an ex-
tension to the nonlinear setting, i.e., the case of general p ∈ (1,∞) . Intuitively,
a metric graph is obtained from a combinatorial graph by associating an interval
Ie := [0, le] to each edge e ∈ E which then allows to define functions and hence
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differential operators on graphs. More precisely, in this talk we are interested in
the p-Laplacian which acts (on suitably regular functions) component-wise via

(4) (−∆pf)e = −∇(|∇fe|p−2∇fe) .
On a variational level, the p-Laplacian is associated with the functional

(5) Ep[f ] :=

∫
Γ |∇f |p dx∫
Γ
|f |p dx

,

defined for all f ∈ W 1,p(Γ). Note that W 1,p(Γ) consists of all functions whose
components are elements of W 1,p(Ie).
Also, for a metric graph, the connectivity can be expressed in analogy to the
combinatorial setting via a Cheeger constant h(Γ). For this, let Y ⊂ Γ be an open
subset with Y 6= {∅,Γ}. Denoting the number of points in the boundary as |∂Y |
and the volume of Y as |V | =

∫
Γ

1Y dx, one defines

h(Γ) := inf
Y

|∂Y |
min{|Y |, |Y c|} .(6)

The main result then reads as follows.

Theorem 1.5. For p ∈ (1,∞), let Γ be a connected metric graph and f ∈W 1,p(Γ)
a function that is continuous across the vertices. If f changes sign, one has

(7) Ep[f ] ≥ p−php(Γ) .

The key ingredient in the proof is to consider the positive part of f (this defines
the corresponding open set Y ), then using Hölder inequality and finally the coarea
formula (see also [7]).
Finally we want to mention that the p-Laplacian is interesting concerning spectral
clustering tasks as discussed in [8]. In particular, recognizing that the estimates
(2) are usually rather crude, one concludes from (7) that the p-Laplacian in the
limit p→ 1 might present better estimates on the connectivity of the graph.
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ρ−Laplacian on metric-measure spaces

Yaroslav Kurylev

(joint work with D. Burago and S. Ivanov)

1. Definition

Let (X, d, µ) be a compact metric-measure space (we sometimes write µ = µX , d =
dX .) For any ρ > 0 define the associated ρ-Laplacian,

∆ρ
Xu(x) =

1

µ(Bρ(x))ρ2

∫

d(x,y)<ρ

[u(x) − u(y)]dµ(y).(1)

This is a (bounded) non-negative self-adjoint operator in L2(X,µρ) :

〈u, v〉L2(X,µρ) =

∫

X

[
µ(Bρ(x))ρ2

]
u(x)v(x)dµ(x).(2)

The Dirichlet form corresponding to (1) is given by

D[u] =

∫ ∫

d(x,y)<ρ

|u(x) − u(y)|2dµ(x)dµ(y).(3)

In this talk, we discuss some spectral properties of this operator, in particular,
its approximation of the Laplacian on a compact Riemannian manifold and the
spectral stability under proper variation of distance and measure.

2. Approximation of a Riemannian Laplacian

Let (M, g) be a compact Riemannian manifold with ∆M its Laplacian. Assume
that X = {xn}N1 ⊂M be an ε−net. Let µn be discrete measures associated with
xn which enjoy the following

Condition A There is subdivision M = ∪Vn, µ(Vn ∩ Vk) = 0, k 6= n such that
µn = µ(Vn).

Consider ρ−Laplacian associated to (X,µn) and assume that ρ > 3i, i−being
the injectivity radius of M .

Theorem 2.1. Denote by λk(x), λk(M) the eigenvalues of ∆ρ
X , ∆M , respectively.

There are Cd, cd > 0 such that if λk(M)ρ < cd, Kρ
2 < cd,

|λk(M) − 2(d+ 2)λk(X)| ≤ Cd(ε/ρ+Kρ2)λk(M) + Cdρλk(M)3/2.(4)

Here d is the dimension of M and K is the bound for its sectional curvature.

Moreover, the corresponding eigenfunctions, φk and φρk of ∆M and ∆ρ
X are also

close. For simplicity, we consider only a non-degenerate λk(M) and the projection
of φk in L2(X) (see [1] for the general result).

Let

(Pφk)(xn) =
1

µnρ(d+2)/2

∫

Vn

φk(x)dµ.

Then

||Pφk − φρk||L2(X) ≤ CM,kδ
−1(ε/ρ+ ρ).(5)
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Here M is the Gromov class of d−dimensional Riemannian manifolds with sec-
tional curvature and diameter uniformly bounded and injectivity radius uniformly
bounded below while δ = min{λk(M) − λk−1(M), λk+1(M) − λk(M)}.

3. Spectral stability of ρ−Laplacians

Definition 1. (X, dx, µx) and (Y, dy, µy)) are (ε, δ)− Gromov-Prohorov close if
there are µ̃x, µ̃y with

ε−δ <
µ̃x

µx
,
µ̃y

µy
< εδ,

such that (X, dx, µ̃x), (Y, dy, µ̃y) are ε−Gromov-Wassertein close. The last con-
dition means that (X, dx), (Y, dy) are ε−Gromov-Hausdorff close and, denoting
by Z the corresponding disjoint union of X and Y , the Wasserstein distance,
W∞(µ̃x, µ̃y) < ε. Here we treat µ̃x, µ̃y as push-forwards to Z of µ̃x, µ̃y.

Theorem 3.1. Let (X, dx, µx), (Y, dy, µy) are (ε, δ)−Gromov-Prohorov close.
There is a constant C, which depends on the volume growth conditions for X
and Y such that

1

1 + C(ε/ρ+ δ)
≤ λk(X)

λk(Y )
≤ 1 + C(ε/ρ+ δ), λk < C−1ρ−2.

Here λk(X,Y ) are the eigenvalues ∆ρ
X,Y .

We note that, up to cρ−2, the spectra of ∆ρ
X,Y is the discrete one.
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Intrinsic metrics for regular Dirichlet forms

Daniel Lenz

(joint work with Rupert Frank, Daniel Wingert)

Regular Dirichlet forms provide an analytic way to describe symmetric Markov
processes with ‘nice’ paths in continuous time. As such they serve as a common
umbrella for the study of Laplacians on manifolds and of Laplacians on graphs
(and many more Laplacians). In fact, in this context the study of the Laplacian
on manifolds can be generalized to the study of strongly local Dirichlet forms. In
the corresponding investigations the concept of an intrinsic metric has played a
major role starting with the seminal work of Sturm [4]. Recently, various similar
results could successfully be proven for graphs as well due to the tool of intrinsic
metrics for general regular Dirichlet forms provided in [2]. A survey on results
on graphs obtained using intrinsic metrics is given in [3]. Here, we discuss the
background on intrinsic metrics from [2].
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Let X be a locally compact metric space and m a Radon measure on X and
L2(X,m) the real Hilbert space of square integrable real-valued functions on X .
Then, a non-negative form over (X,m) is a bilinear map

Q : D ×D −→ R with Q(f) := Q(f, f) ≥ 0

for all f in the subspace D of L2(X,m). If D is complete with respect to the norm

‖f‖Q :=
(
‖f‖2 +Q(f)

)1/2

such a form is closed. To any closed form there corresponds a unique selfadjoint
operator L ≥ 0 with domain contained in D and

〈f, Lg〉 = Q(f, g)

for all g in the domain of L and all g ∈ D. A closed form is called a Dirichlet form
if it furthermore satisfies

Q(Cf) ≤ Q(f)

for all f ∈ D and all normal contractions C (i.e all C : R −→ R with C(0) = 0
and |C(x) −C(y)| ≤ |x− y|). Such a form corresponds to a Markov Process (Xt)
via the formula

e−tLf(x) = Ex(f(Xt)).

A Dirichlet form is called regular if D ∩ Cc(X) is dense in D w.r.t. ‖ · ‖Q and
in Cc(X) w.r.t. ‖ · ‖∞. Regular Dirichlet forms are in one-to-one correspondence
to Markov processes whose paths are right continuous and have limits from the
left (cadlag processes). For details on the preceding considerations and general
background on Dirichlet forms we refer to [1].

Whenever Q is a Dirichlet form then there exist a unique bilinear map

Γ : D ×D −→ Radon measures on X

and a unique measure k on X with

Q(f, g) =

∫

X

dΓ (f, g) +

∫

X

fgdk

for all f, g ∈ Cc(X) ∩ D. The map Γ is called the energy measure. As shown in
[2] the map Γ can be extended to a certain space D∗

loc. This extension will also
be denoted by Γ . With this extension comes the set

Am := {f ∈ C(X) ∩ D∗
loc : Γ (f, g) ≤ m}

and the function d : X ×X −→ [0,∞] defined by

d(x, y) := sup{f(x) − f(y) : f ∈ Am}.
Clearly, d is symmetric, vanishes on the diagonal and satisfies the triangle inequal-
ity.

Example - Riemannian manifold M . The Laplace Beltrami ∆ operator on a
Riemannian manifold M is associated to the regular Dirichlet form

QM (f, g) :=

∫

M

〈∇f,∇g〉dx
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on D = H1
0 (M). In this case

Γ (f, g) = 〈∇f,∇g〉dx
and (under suitable completeness assumptions) d is the geodesic distance.

Example - Graph. A weighted graph (b, c) graph over the discrete measure space
(X,m) gives rise to the regular Dirichlet form Qb,c with

Qb,c(f, g) =
1

2

∑

x,y

b(x, y)(f(x) − f(y))(g(x) − g(y)) +
∑

x

c(x)f(x)g(x)

for f, g ∈ Cc(X). Then D is the closure of Cc(X) with respect to ‖ · ‖Q and the
associated operator is the graph Laplacian. Here, Γ (f, g) is the measure whose
mass at the point x ∈ X is given as

Γ (f, g)(x) =
1

2

∑

y∈X

(f(x) − f(y))(g(x) − g(y)).

Definition. A symmetric function ̺ : X × X −→ [0,∞] which vanishes on the
diagonal and satisfies the triangle inequality is called an intrinsic metric if

Lip1,̺ ⊂ Am

holds, where Lip1,̺ denotes the set of Lipshitz functions with constant not exceed-
ing one with respect to ̺.

Remarks. (a) This definition is slightly more general than the definition in [2].
However, for the applications to strongly local forms and graphs it agrees with the
definition given there.

(b) Note that an intrinsic metric is automatically continuous as

[̺(x, y) − ̺(x′, y′)| ≤ ̺(x, x′) + ̺(y, y′)

and both ̺(x, ·) and ̺(y, ·) are continuous (as they are Lipshitz functions with
constant 1 and hence belong to Am by definition of an intrinsic metric).

Example - Strongly local forms. A Dirichlet form is called strongly local if
Q(f, g) = 0 holds whenever f is constant on the support of g. Obviously, the
example of Dirichlet form on a manifold given above is strongly local. For a
strongly local form the function d is an intrinsic metric if it is continuous [4, 2]. It
is this intrinsic metric that has been successfully employed starting with the work
of Sturm [4].

Example - jump processes. Graphs are special case of jump processes. For a
jump process with absolutely continuous kernel j on the measure space (X,m) the
map ̺ is an intrinsic metric if and only if

∫
̺(x, y)2j(x, y)dm(y) ≤ 1

holds for m-almost every x ∈ X [2].

There is a clear distinction between local and non-local Dirichlet forms in terms
of intrinsic metrics [2]: In the strongly local case the metric d is the maximal
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intrinsic metric (if it is continuous). For a non-local Dirichlet form on the other
hand there is in general no maximal intrinsic metric. In fact, for rather general
regular Dirichlet forms Q with d as above the following assertions are equivalent:

(i) There exists a maximal intrinsic metric.
(ii) The function d is an intrinsic metric.

(iii) The equality Lip1,d = Am holds.
(iv) The set Am is closed under taking suprema.

This can essentially be inferred from [2]. Details will be discussed elsewhere.
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Parabolic p-Laplace equations on graphs

Delio Mugnolo

Let G be a graph with node set V, edge set E, and node and edge weights µ, ν,
respectively. I consider the evolution equation

(1)
df

dt
(t, v) = −Lpf(t, v), t ≥ 0, v ∈ V ,

associated with the discrete p-Laplacian Lp on a graph G, formally defined by

Lpf :=
1

ν
IM(|IT f |p−2If), p ≥ 1 ,

where I is the signed incidence matrix of an arbitrary orientation of G defined by

ιve :=






+1 if v ∈ V is terminal endpoint of e ∈ E

−1 if v ∈ V is initial endpoint of e ∈ E

0 otherwise

and M is the diagonal matrix whose e-th entry is the weight µ(e). A simple
computation shows that while I depends on the orientation of G, Lp does not.

The operator Lp is nonlinear: existence and uniqueness of a solution of the
Cauchy problem for (1) can be deduced from the Picard–Lindelöf Theorem if the
graph is finite. More advanced methods are needed in the case of infinite graphs:
they have been the topic of my talk, which is based on the results in [6, 5].
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My analysis is based on the properties of the convex energy functional

(2) Ep : f 7→ 1

p

∑

e∈E

µ(e)|IT f(e)|p

for all p > 1. If the graph is infinite, defining the domain of Ep becomes of utmost
importance. The largest possible domain is the discrete Sobolev space

w1,p,2
µ,ν := {f ∈ ℓ2ν(V) : IT f ∈ ℓpµ(E)} .

We consider Sobolev spaces of mixed order in order to enforce the embedding

w1,p,2
µ,ν (V) →֒ ℓ2ν(V) .

In this way we can study (1) as a gradient flow in the Hilbert space ℓ2ν(V), applying
a well developed abstract theory.

One may define Ep on smaller Banach spaces as well, as long as their norm is
equivalent to

f 7→
(
Ep(f) + ‖f‖2ℓ2ν(V)

) 1
p

,

and hence to the norm of w1,p,2
µ,ν (V); in particular, one may close up the space of

finitely supported functions c00(V) in the norm of w1,p,2
µ,ν (V) and restrict Ep to this

closure ẘ1,p,2
µ,ν (V). Depending on the geometry of the graph, and in particular on

the weights µ, ν, the two spaces ẘ1,p,2
µ,ν (V) and w1,p,2

µ,ν (V) may coincide; this is e.g.
the case if the weighted degree function

degµ,ν : v 7→
∑

e∈E
µ(e)|ιve|
ν(v)

is bounded. (Observe that degµ,ν(v) is the number of neighbours of v in the
unweighted case of µ ≡ 1 and ν ≡ 1.)

We study the p-Laplacian Lp as the Fréchet derivative of Ep in the Hilbert
space ℓ2ν(V) for p > 1; in fact, any restriction of Ep to a closed subspace D(Ep) of
w1,p,2

µ,ν (V) that contains ẘ1,p,2
µ,ν (V) induces a different Fréchet derivative: one may

thus find different versions of the p-Laplacian which can, like in the classical case
of the Laplacian on bounded domains, be regarded as realisations of the same
operator with different boundary conditions – the boundary of a graph consisting
of its points at infinity, in a certain sense made precise in [4].

(In the case of p = 1 the same holds for the multivalued operator L1, which is
well-defined as the subdifferential of the convex functional E1: this is not Fréchet
differentiable, but still lower semicontinuous.)

The general theory of gradient systems [1] yields that under boundedness as-
sumptions on µ, ν the Cauchy problem associated with (1) is well-posed, i.e., for
each initial data f0 ∈ D(Ep) there is a unique solution f . This can be found both
by a time discretisation based on the Crandall–Liggett Theorem or by a space ex-
haustion scheme that boils down to the classical Galerkin scheme. Due to a strong
maximum principle satisfied by (1), the solutions of the localised equations are
monotonically increasing as the underlying graphs grow and eventually exhaust
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the original graph. The theory of nonlinear Dirichlet forms [2] can be applied
and yields that the solutions are given by nonlinear sub-Markovian semigroups,
i.e., strongly continuous families of nonlinear ℓ2ν(V)-contractions that satisfy the
semigroup law, are positivity preserving and, as long as infv∈V ν(v) > 0, are also
contractive with respect to all ℓqν(V)-norms, 1 ≤ q ≤ ∞.

We can a priori only deduce from the general theory that the unique solu-
tion is of class W 1,2(R+; ℓ2ν(V)) ∩ L∞(R+;D(Ep)), but in our discrete setting the
atomic nature of the measure space V allows for much better regularity results:
(1) is solved not only almost everywhere like in the case of the p-Laplacians on
domains, but in fact pointwise. Accordingly, a bootstrap argument based on the
differentiability properties of the function x 7→ |x|p−2x yields that for any v ∈ V

• f(·, v) ∈ C∞(R+) if p is an even integer,
• f(·, v) ∈ Cp−1,1(R+) if p is an odd integer, and
• f(·, v) ∈ C⌊p⌋,p−⌊p⌋(R+) if p ∈ (1,∞) \ N.

This is remarkable in the light of the available regularity results for the counterpart

(3)
∂u

∂t
(t, x) = ∆pu(t, x), t ≥ 0, x ∈ Ω ,

of (1) on domains Ω ⊂ Rd, for whose solutions only Hölder-Cα-regularity for α < 1
is known, no matter how large p is [3]. Unfortunately, no convergence schemes of
−Lp towards the p-Laplacian ∆p on a domain are currently available, so that it is
impossible to deduce higher regularity of solutions of (3) by space discretisation,
solving (1) and the letting the corresponding mesh become finer and finer.

Several qualitative properties of solutions of (1) are known that strongly resem-
ble analogous features of (3). As a rule of thumb, defining Ep on the maximal space
w1,p,2

µ,ν (V) (as in the case of finite graphs) leads to the discrete counterpart of (3)
with Neumann boundary conditions, whereas Dirichlet boundary conditions can
be reproduced on fast growing graphs by defining Ep on ẘ1,p,2

µ,ν (V); by fast growing
we mean that a d-dimensional isoperimetric inequality

(ISd) ν(V0)
d−1

d ≤ Cdµ(∂V0) ∀ V0 ⊂ V finite,

is satisfied for some d > 2 and 0 < Cd < ∞, where ∂V0 is the set of edges of G
with exactly one endpoint in V0, ν(V0) :=

∑
v∈V0

ν(v) and µ(∂V0) :=
∑

e∈∂V0
µ(e).

In this way, conservation of mass and convergence to a constant function can be
proved for “Neumann boundary conditions” and p > 2, whereas extinction in finite
time holds for “Dirichlet boundary conditions” and p ∈ (1, 2).

Finally, I have briefly considered p-Laplacians on hypergraphs. A hypergraph
H = (V,E) consists of a set V of vertices and a set E of hyperedges, i.e., of subsets
of V: unlike in the case of a graph’s edges, no restriction on the cardinality of
hyperedges is imposed. An orientation of a hypergraph is imposed by partitioning
each hyperedge e into a set einit of initial endpoints and a set eterm of terminal
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endpoints. In this way a signed incidence matrix I = (ιve) can be defined by

ιve :=





+1 if v ∈ V belongs to the terminal endset eterm of e ∈ E

−1 if v ∈ V belongs to the initial endset einit of e ∈ E

0 otherwise ,

A convex, Fréchet differentiable energy functional can again be defined by (2)
upon replacing the incidence matrix of a graph by that of a hypergraph. Again,
for all p > 1 this functional can be differentiated in ℓ2ν(V) and yields a p-Laplacian
Lp. The associated evolution equation (1) is well-posed again, with its solutions
being given by a semigroup of nonlinear ℓ2ν(V) contractions. However, as soon as
H is a genuine hypergraph, i.e., as soon as it contains at least one hyperedge with
cardinality larger than 2, this semigroup will not be sub-Markovian.
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Combined effects in Kirchhoff fractional elliptic problems
with lack of compactness

Patrizia Pucci

Recently, a great attention has been drawn to the study of fractional and non-
local operators of elliptic type. These operators arise in a quite natural way in
many different applications, such as, continuum mechanics, phase transition phe-
nomena, population dynamics and game theory, as they are the typical outcome
of stochastically stabilization of Lévy processes, see e.g. [1, 5]. The literature on
nonlocal operators and on their applications is interesting and quite large, we refer
the reader to the references given in [15].

The talk is focused on recent results concerning existence, multiplicity and
asymptotic behavior of positive solutions of some Kirchhoff type problems, involv-
ing fractional integro-differential elliptic operators and presenting also difficulties
due to intrinsic lacks of compactness, which arise from different reasons. The
problems presented are highly nonlocal because of the presence of the fractional
integro–differential elliptic operators and of the Kirchhoff coefficients. The proof
techniques should therefore overcome the nonlocal nature of the problems as well
as the lack of compactness, and the suitable strategies adopted depend of course
on the problem under consideration.
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First, we discuss the existence of entire solutions of the stationary Kirchhoff
type equations driven by the fractional p–Laplacian operator

M
(
[u]ps,p

)
(−∆)spu+ V (x)|u|p−2u = λω(x)|u|q−2u− h(x)|u|r−2u in RN ,

[u]ps,p =

∫∫

R2N

|u(x) − u(y)|p
|x− y|N+ps

dxdy,

where (−∆)sp is the fractional p–Laplacian operator, which (up to normalization

factors) may be defined along any ϕ ∈ C∞
0 (RN ) as

(−∆)spϕ(x) = 2 lim
ε→0+

∫

RN\Bε(x)

|ϕ(x) − ϕ(y)|p−2(ϕ(x) − ϕ(y))

|x− y|N+ps
dy

for x ∈ RN and Bε(x) := {y ∈ RN : |x−y| < ε}. Furthermore, 0 < s < 1 < p <∞,
ps < N , 0 < λ < ∞, 1 < q < r, M : R+

0 → R+
0 is a continuous Kirchhoff

function and V, ω, h : RN → R+ are three weights, as assumed in [15]. We prove
multiplicity results depending on λ and according to the integrability properties of
the ratio ω(r−1)/(r−q)/h(q−1)/(r−q). The existence of infinitely many pairs of entire
solutions {±uk}∞k=1 in which the critical values Iλ(±uk) < 0 is also obtained.
Obviously, Iλ denotes the underlying energy functional of the variational problem
under consideration. The results of [15] extend the previous recent work of [16]
from the case of variable exponent elliptic problems to the case of fractional p–
Laplacian problems of Kirchhoff type. The main theorems of [15] also generalize
the works [12, 3, 4]. In particular, they weaken the condition 2 < q < min{r, 2∗},
2∗ = 2N/(N − 2), assumed in [12, 3, 4] into the simple request that 1 < q < r,
as first treated and extended in [16]. More interestingly, the results in [15] cover
a main feature of Kirchhoff type problems which is the fact that the Kirchhoff
function M can be zero at zero, that is that the Kirchhoff problem is degenerate.
Hence the results are completely new.

On one hand, in the context of fractional quantum mechanics, a nonlinear
fractional Schrödinger equation was first proposed by Laskin in [9, 10] as a result
of expanding the Feynman path integral, from the Brownian–like to the Lévy–like
quantum mechanical paths. In the last years, there has been a great interest in
the study of the fractional Schrödinger equation

(−∆)su+ V (x)u = f(x, u) in RN ,

where (−∆)s = (−∆)s2 and the nonlinearity f satisfies some general conditions.
For standing wave solutions of fractional Schrödinger equations in RN we men-
tion e.g. [6, 4] and the references therein. Models governed by the fractional p–
Laplacian and unbounded potentials are investigated e.g in [17, 13, 14]. For basic
properties on the first eigenvalue and eigenfunction of the fractional p–Laplacian
we refer to [11], while of the classical p–Laplacian to [8] and to the references
in [8, 11], as well as to the Abstract in this volume, First eigenvalues of the indis-
crete p–Laplacian, by B. Kawhol.

In the second part of the talk, we present the main results given in [14], that is
the existence of multiple solutions for the nonhomogeneous fractional p–Laplacian
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equations of Schrödinger–Kirchhoff type

M
(
[u]ps,p

)
(−∆)spu+ V (x)|u|p−2u = f(x, u) + g(x) in RN ,

where 0 < s < 1 < p < ∞ and ps < N , the coefficient M : R+
0 → R+

0 is a
continuous Kirchhoff function, f : RN × R → R is continuous and satisfies the
Ambrosetti–Rabinowitz type condition, V : RN → R+ is a potential function and
g : RN → R is a perturbation term. In particular, in [14] we first establish
Batsch–Wang type and Strauss–Lions type compact embedding theorems for the
fractional Sobolev spaces. Then multiplicity results are obtained by using the
Ekeland variational principle and the Mountain Pass Theorem.

In the very recent paper [7], Fiscella and Valdinoci provide a detailed discussion
about the physical meaning underlying the fractional Kirchhoff problems and their
applications. Indeed, they construct in the Appendix of [7] a stationary Kirchhoff
variational problem, which models, as a special significant case, the nonlocal aspect
of the tension arising from nonlocal measurements of the fractional length of the
string. In [7] the problem

(Pλ) M
(
[u]2s,2

)
(−∆)su = λf(x, u)+|u|2

∗

s−2
u in Ω, u = 0 in RN \Ω,

was introduced for the first time in the literature. Here Ω ⊂ RN is a bounded do-
main, 2s < N , s ∈ (0, 1), the number 2∗s = 2N/(N − 2s) is the critical exponent of
the fractional Sobolev space Hs(RN ), the function f is a subcritical term and sat-
isfies the Ambrosetti–Rabinowitz condition, and finally λ is a positive parameter.
Fiscella and Valdinoci prove in Theorem 1 of [7] the existence of a nontrivial non-
negative solution of (Pλ) for any λ ≥ λ∗, where λ∗ > 0 is an appropriate threshold.
They assume that the continuous Kirchhoff function M is also increasing in R+

0 ,
with M(0) > 0.

Finally, in the third part of the talk we comment the main results contained
in [2]. The first goal of [2] is to complete the picture given in [7] and to cover
in Theorem 1.1 the degenerate case M(0) = 0, without requiring any monotonicity
assumption on M , but under natural and general growth conditions on M . In
Theorem 1.2 of [2] we treat the non–degenerate case of (Pλ), in other words we
assume that inft∈R

+

0

M(t) := a > 0. Theorem 1.2 of [2] extends Theorem 1 of [7]

in the non–degenerate case. Indeed, the Kirchhoff function

M(t) = (1 + t)m + (1 + t)−1, t ∈ R+
0 , m ∈ (0, 1),

for which M(0) = 2 and a = m−m/(m+1)(1 + m) < 2 shows that Theorem 1.2
of [2] can be applied even when neither M is increasing in R+

0 , nor M(0) = a, as
required in Theorem 1 of [7].
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Stochastic properties of weighted Laplacians and PDEs

Alberto G. Setti

(joint work with G. Pacelli Bessa, Stefano Pigola)

We consider a weighted Riemannian manifold Mf = (M, 〈, 〉 , f) where (M, 〈, 〉) is
a Riemannian manifold, and f : M → R is a smooth function on M , which induces
a weighted measure dvolf = e−fdvol, dvol being the Riemannian measure of M ,
a Dirichlet energy form

Ef (u) =

∫

M

|∇u|2dvolf .

and the associated f -Laplacian ∆fu = divf (∇u) := ef div
(
e−f∇u

)
= ∆u −

〈∇f,∇u〉, which is self adjoint on L2 (M,dvolf ) and essentially selfadjoint on
C∞

c (M).
The asymptotic behavior of the heat kernel of a Riemannian manifold gives rise

to the classical concepts of parabolicity, stochastic completeness (or conservative
property) and Feller property (or C0-diffusion property).
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Both parabolicity and stochastic completeness have been the subject of a sys-
tematic study, which led to discovering sharp geometric conditions for their valid-
ity and to a rich array of tools, techniques and equivalent concepts ranging from
maximum principles at infinity, function theoretic tests (Khas’minskii criterion),
comparison techniques etc....

Our aim is to describe a similar apparatus for the Feller property for the semi-
group generated by the weighted Laplacian, to review geometric conditions that
imply its validity, and to describe the consequences of the Feller property on the
behavior of solutions of PDE’s involving the weighted Laplacian. We say that the

Feller property holds for ∆f is the heat semigroup P f
t generated by ∆f maps the

space C0 of continuous functions which tend to zero at infinity into itself.
The best know geometric condition implying the validity of the Feller property

for the standard Laplacian is due to E. Hsu, [5], and it is expressed in terms of
Ricci curvature lower bounds. It uses a probabilistic approach that relies on a
result by R. Azencott, [1], according to which M is Feller if and only if, for every
compact set K and for every t0 > 0, the probability that Brownian motion Xt

issuing from x0 enters K before the time t0 tends to zero as x0 → ∞.
There are several notions of curvature in the context of weighted manifolds that

play the role of the Ricci curvature for unweighted manifolds. In particular, we
have the family of Bakry-Emery modified Ricci curvatures

Ricf,q = Ric + Hess(f) − 1

q
df ⊗ df q ∈ (0,∞)

and the limit case for q → +∞
Ricf = Ric + Hess (f) .

Imposing lower bounds on the modified Ricci curvature one has the following
generalizations of Hsu’s results.

Theorem 1.1. Let Mf be a complete weighted Riemannian manifold. Then Mf

is Feller provided one of the following conditions holds:
(i) ([5], [6]) Ricf,q(x) ≥ −G2(r(x)) where G is a positive, continuous increasing

function satisfying
∫ +∞ 1

G(r) = +∞.

(ii) ([9]) Ricf ≥ −k2 for some constant k ≥ 0 ,
(iii) ([9]) Ricf (x) ≥ −k21(r(x)), |∇f |(x) ≤ k2, where ki(r) are continuous non-

decreasing functions satisfying ki(r) → +∞ as r → +∞ and 1/
√
k21(t) + k22(t) 6∈

L1(+∞).

Note also that (i) above is precisely the condition on the Ricci curvature that
ensures the stochastic completeness of M . So one may be led to believing that,
as in the case of stochastic completeness, “big volumes”are an obstruction to the
Feller property. This is not the case, and, in some sense, the obstruction is given
by “small volumes”. Indeed we have the following:

Theorem 1.2 ([1]). If M is a Cartan-Hadamard manifold (complete, simply con-
nected with nonpositive sectional curvature), then M is Feller.
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Moreover, a model manifolds M = Rm with metric g = dt2 + ρ(t)2dθ2, is Feller
if and only if either
(1)

(a)
1

vol (∂Br)
∈ L1 (+∞) or (b)

1

vol (∂Br)
/∈ L1 (+∞) and

vol (M \ ∂Br)

vol (∂Br)
/∈ L1 (+∞)

([1], [8]). In particular, an infinite volume model manifold is always Feller.
Finally, using results by A. Grigor’yan, [4], and G. Carron, [3], one shows ([8])

that a manifold which supports an L2 Sobolev inequality of the form of the form

(2) ||∇u||L2 ≥ S2,p||u||
L

2p
p−2

, ∀u ∈ C1
c (M)

is Feller. In particular minimal submanifolds of Cartan-Hadamard manifolds are
Feller.

The connection between the Feller property and PDEs is given by the following
equivalent characterization obtained by Azencott [1]: Mf is Feller if and only if
unique the minimal solution to the exterior problem

(3)






∆fh = λh on M\Ω̄
h = 1 on ∂Ω
h > 0 on M\Ω,

,

which is obtained by an exhaustion procedure and satisfies 0 ≤ h ≤ 1 by the
maximum principle, tends to zero at infinity.

Combining this with stochastic completeness, in the equivalent form of the
validity of the weak maximum principle at infinity, namely, for every function u
bounded above and every ǫ > 0, inf{∆fu(x) : u(x) > supu− ǫ} ≤ 0, one obtains

Theorem 1.3 ([2]). Let Mf be stochastically complete, and let u ≥ 0 be a bounded
solution of

∆fu ≥ λu

outside a smooth domain Ω ⊂⊂ M If h > 0 is the minimal solution of (3), then
there is a constant c > 0 such that

u (x) ≤ ch (x) , on M\Ω.

In particular, if Mf is Feller, u(x) → 0 as x→ ∞.

This results has applications to solutions of PDEs defined in exterior domains.
For example, we have the following generalization of the classical result asserting
that there are no bounded minimal submanifolds in Rn.

Theorem 1.4. Let (M, 〈 , 〉) be a stochastically complete and Feller Riemannian
manifold. Assume that, outside a compact set Ω ⊂ M , there exists a bounded
isometric immersion f : M\Ω → BR (O) ⊂ Rn. Then the mean curvature H of f
satisfies

sup
M\Ω

|H|R ≥ 1.

Finally, using results of P. Pucci, M. Rigoli and J. Serrin, [7], we obtain
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Theorem 1.5. Let (M, 〈, 〉) be a complete and stochastically complete, Cartan-
Hadamard manifold. Let u ≥ 0 be a bounded solution of

(4) ∆u ≥ f(u), on M\Ω

for some domain Ω ⊂⊂ M and for some non-decreasing function f : [0,+∞) →
[0,+∞) satisfying the following conditions:

(5) (a) f (0) = 0; (b) f (t) > 0 ∀t > 0; (c) lim inf
t→0+

f (t)

tξ
> 0,

for some 0 ≤ ξ < 1. Then u has compact support.
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Cheeger constants with signatures and spectral clustering via quotient
space metrics

Shiping Liu

(joint work with Carsten Lange, Norbert Peyerimhoff, Olaf Post)

We propose a Cheeger constant on a finite graph G = (V,E) with a signature
σ and prove the related (higher order) Cheeger inequalities [4]. In this process,
we develop multi-way spectral clustering algorithms via metrics in lens spaces
and complex projective spaces. Such discussions on discrete graphs help us to
further establish the corresponding estimates for magnetic Laplacians on closed
Riemannian manifolds.

A signature σ of G is a map σ : Eor → Γ from the set of oriented edges to a
group Γ, such that

σuv = (σvu)−1, (u, v) ∈ Eor.
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We restrict ourselves to the case that Γ is the cyclic group S1
k of order k, and the

case that Γ is the unitary group U(1). We consider the following operator ∆σ: for
any function f : V → C and any vertex u ∈ V ,

∆σf(u) =
1

du

∑

v,v∼u

(f(u) − σuvf(v)),

where du is the vertex degree of u. This operator is an extension of the discrete
2-Laplacian. Note that when Γ = U(1), it is the so-called discrete magnetic
Laplacian. It has N := ♯V real eigenvalues

0 ≤ λσ1 ≤ λσ2 ≤ · · · ≤ λσN ≤ 2.

For any nonempty subset S ⊆ V , we define the frustration index ισ(S) as

ισ(S) := min
τ :S→Γ

∑

{u,v}∈E,u,v∈S

|1 − τ(u)−1σuvτ(v)|.

We denote

φσ(S) :=
ισ(S) + |E(S, S)|

vol(S)
,

where |E(S, S)| is the number of edges connecting S with its complement, and
vol(S) is the summation of all du, u ∈ S.

Definition 1 ([4]). The n-way Cheeger constant hσn is defined as

hσn := min
{Si}k

i=1

max
1≤i≤k

φσ(Si),

where the minimum is taken over all possible nontrivial n-subpartitions {Si}ki=1 of
V .

It is the 2-way Cheeger constant hσ2 that extends the classical Cheeger constant.
The above definition is motivated by a joint work of Atay and the speaker [1]

about a spectral perspective of Harary’s structural balance theory [2] on a signed
graph, i.e. a graph G with a signature σ : Eor → {+1,−1}. In that case, the
constants {hσn}Nn=1 reduce to the so-called signed Cheeger constants [1] defined via
Harary’s blance theorem. In particular, the index ισ(S) reduces to twice of the
minimal number of edges that need to be removed from the induced subgraphs
of S to make it balanced, which is the original definition of frustration index of
Harary [3]. We remark that the constants {hσn}Nn=1 unify the multi-way Cheeger
[5] and dual Cheeger constants [6] on an unsigned graph.

Theorem 1 ([4]). There exists an absolute constant C > 0 such that for any finite
graph G with a signature σ and all 1 ≤ n ≤ N , we have

(1)
1

2
λσn ≤ hσn ≤ Cn3

√
λσn.
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For any nonzero function f : V → C, we denote V f (t) := {u ∈ V | |f(u)| ≥ t}.
When n = 1, this estimate is essentially the following coarea inequality related to
the frustration index:∫ ∞

0

(ισ(V f (
√
t)) + |E(V f (

√
t), V f (

√
t)))dt ≤ 2

∑
{u,v}∈E

|f(u) − σuvf(v)|(|f(u)|+ |f(v)|).

For the proof of the higher order Cheeger inequalities, we have to employ a
multi-way spectral clustering algorithm via quotient space metrics, extending pre-
vious ideas in [6, 1]. We first map the set V to the sphere S2n−1 via the first n
eigenfunctions of ∆σ. The traditional spectral clustering algorithms then use the
Riemannian metric on the sphere to cluster the vertices in order to find out useful
substructures [5]. But here for our purpose, we need to use the quotient metric of
S2n−1/Γ, where Γ ⊂ C acts on S2n−1 by scalar multiplication. Recall that S2n−1/Γ
is the lens space when Γ = S1

k, and the complex projective space when Γ = U(1).
On a closed Riemannian manifold, we can define the analogue Cheeger constants

via a proper frustration index and prove the higher order Cheeger inequalities (ana-
logue to the upper bound estimates of the Cheeger constants in (1)) for magnetic
Laplacians [4], by observing a terminology dictionary between Harary’s structural
balance theory [2, 3] and the gauge invariance of magnetic potentials (see e.g. [7]).
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Variational problems on graphs and their continuum limits

Dejan Slepčev

(joint work with Xavier Bresson, James von Brecht, Nicolás Garćıa Trillos,
Thomas Laurent)

We discuss variational problems arising in analysis of data clouds. One of the
standard approaches to machine learning tasks such as clustering, classification,
dimensional reduction is to introduce an objective functional which encodes the de-
sirable properties of the object sought and then develop and implement algorithms
to find a minimizer. A large class of the approaches, relevant to high-dimensional
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data, relies on creating a graph by connecting nearby points of the data cloud (see
[5] and references therein). This allows one to explore and utilize the geometry of
the data set.

An important and desirable property of an machine learning approach is its
consistency as the number of data points available increases. To be precise consider
problems for which there exists an (unknown) ground truth given by a probability
measure ν, supported on a compact domain D, such that the available data points
Xn = {x1, . . . , xn} are random i.i.d. samples of the measure ν. It is highly
desirable if a procedure is such that if more data become available it converges
to some well defined ideal object, which corresponds to full information being
known. For example if one is interested in partitioning data into two clusters a
consistent procedure converges to a ideal continuum partitioning of the measure ν.
In other words minimizers of the discrete objective functionals describing discrete
partitioning should converge to a minimizer of an objective functional describing
the ideal partitioning in the continuum setting. While consistency is one of the
key properties of machine learning algorithms relatively few results are available
(see [1, 2, 3, 4, 6, 10], and references therein).

To address consistency questions we approach them using tools of applied anal-
ysis and calculus of variations. Namely we show Γ-convergence of the discrete
functionals considered on random geometric graphs towards their continuum coun-
terparts. Along with a compactness result this implies the desired convergence of
minimizers and thus the consistency of the algorithms studied. A key element
is identifying the proper topology with respect to which the Γ-convergence takes
place. Let us denote by νn the empirical measure associated to the n data points:

(1) νn :=
1

n

n∑

i=1

δxi
.

The issue is then how to compare functions in L1(νn) with those in L1(ν). More
generally we consider how to compare functions in Lp(µ) with those in Lp(θ) for
arbitrary probability measures µ, θ on D and arbitrary p ∈ [1,∞). We set

TLp(D) := {(µ, f) : µ ∈ P(D), f ∈ Lp(D,µ)},
where P(D) denotes the set of Borel probability measures on D. For (µ, f) and
(ν, g) in TLp we define the distance

dTLp((µ, f), (ν, g)) = inf
π∈Γ(µ,ν)

(∫∫

D×D

|x− y|p + |f(x) − g(y)|pdπ(x, y)

) 1
p

where Γ(µ, θ) is the set of all couplings (or transportation plans) between µ and θ.

An important consideration when investigating consistency of algorithms is how
the graphs on Xn are constructed. In simple terms, when building a graph on
Xn one sets a length scale εn such that edges between vertices in Xn are given
significant weights if the distance between vertices is εn or less. Taking smaller εn is
desirable because it is computationally less expensive and gives a better resolution,
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but there is a price. If εn is too small the resulting graph may not represent the
geometry of D well and consequently the discrete graph cut may be very far from
the desired one. We worked on determining precisely how small εn can be taken
for the consistency to hold. More precisely consider a kernel η : Rd → [0,∞) to
be radially symmetric and decaying to zero sufficiently fast. Let ηε(z) = 1

εd
η
(
z
ε

)
.

The edge weights are

(2) wi,j = ηε(xi − xj).

Given a function un : Xn → R its (appropriately scalled) graph total variation is
defined as

(3) GTVn,ε(un) =
1

ε

1

n2

∑

i,j

wi,j |un(xi) − un(xj)|.

The role of the perimeter of Y ⊂ Xn on the graph is played by the graph cut,
that is the sum of weights of all edges between Y and Y c, which is nothing but (a
multiple of) the graph total variation of the characteristic function of Y .

To prove consistency of machine learning approaches to clustering, the key
ingredient is the variational behavior of graph total variation as n→ ∞. This was
investigated in [7]:

Theorem [Γ-convergence and Compactness] Let D ⊂ Rd, d ≥ 2 be a domain
with Lipschitz boundary. Let ν be a probability measure on D with continuous
density ρ, which is bounded from below and above by positive constants. Let
x1, . . . , xn, . . . be a sequence of i.i.d. random points on D chosen according to
measure ν. Let εn → 0 as n→ 0 be such that

lim
n→∞

(log n)p

n

1

εdn
= 0.(4)

where pd = 1 if d ≥ 3 and p2 = 3
2 . Then, GTVn,εn , defined by (3), Γ-converges

with respect to TL1 topology to a constant (explicitly given) multiple of total
variation (weighted by ρ2) on D.

Furthermore for any sequence of functions un ∈ L1(D, νn): If

sup
n∈N

‖un‖L1(νn) +GTVn,εn(un) <∞

then {un}n∈N is TL1-relatively compact.

In [9] this result was used to obtain strong results on consistency of graph-based
clustering algorithms. Namely given a weighted graph Gn = (Xn,Wn) consider
balanced graph cuts. For simplicity, here the attention is restricted to the two-class
case and a particular balanced cut, corresponding to Cheeger cuts:
(5)

En(Y ) =
Cutn(Y, Y c)

min(|Y |, |Y c|) :=

∑
xi∈Y

∑
xj∈Y c wij

min(|Y |, |Y c|) over all nonempty Y ( Xn.
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The continuum partitioning problem that corresponds to the discrete problem
is the following: Minimize the continuum balanced cut objective functional

(6) E(A) =
(A : D)

min(ν(A), ν(D\A))
, A ⊂ D ; with 0 < ν(A) < 1,

where (A : D) is the relative perimeter of A in D, weighted by ρ2. We show that
under assumptions of the Theorem above, almost surely, the minimizers, {Yn, Y c

n},
of the balanced cut (5) of the graph Gn , converge in the TL1 sense (applied to the
characteristic functions of the sets) to {A,Ac}, the minimizer of the problem (6),
if such minimizer is unique. Otherwise convergence holds up along subsequences.

In addition to techniques of calculus of variations and analysis the results rely
on sharp estimates on the ∞-transportation distance between the measure ν and
the empirical measure νn of the i.i.d sample {x1, . . . , xn}, [8, 11, 12].
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Aspects of the Feller Property on Graphs

Rados law Krzysztof Wojciechowski

Introduction. We present some aspects related to the vanishing of solutions
of the heat equation at infinity for the discrete Laplacian on infinite weighted
graphs. We mostly summarize the results found in [8] which follows the recent
work of Pigola and Setti on Riemannian manifolds [7].
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The Feller property and general criteria. Let G = (X, b,m) denote an
infinite, weighted, locally finite, connected graph. In particular, X is the set of
vertices, b : X ×X → [0,∞) is the edge weight and m : X → (0,∞) is the vertex
measure. The edge weight is symmetric, has zero diagonal and, for every x ∈ X ,
b(x, y) is non-zero for only finitely many y. The vertex measure, which can be
extended to all subsets by additivity, will play a crucial role as will be seen below.
See [6] for more details on definitions.

We let L̃ denote the formal Laplacian which acts on real-valued functions de-
fined on vertices as

L̃f(x) =
1

m(x)

∑

y

b(x, y)(f(x) − f(y))

and let L denote the minimal self-adjoint restriction of this operator to the Hilbert
space ℓ2(X,m). L is called the Dirichlet Laplacian. Under some additional con-
ditions, such as completeness with respect to an intrinsic path metric, it can be

shown that L is the only self-adjoint restriction of L̃, see [4] for more details.
For t ≥ 0, let Pt = e−tL denote the heat semigroup acting on ℓ2(X,m) which

can also be seen to act on ℓ∞(X). Furthermore, let Cc(X) denote the space of

finitely supported functions on X and C0(X) = Cc(X)
‖·‖∞

denote the space of
functions vanishing at infinity.

Definition 1.1. G is called Feller if Pt : C0(X) → C0(X) for all t ≥ 0.

Note, by general principles, that it suffices to check that the heat kernel pt(x, y)
which is connected to the semigroup via Ptf(x) =

∑
y pt(x, y)f(y)m(y) satisfies

pt(x, ·) ∈ C0(X) for all x ∈ X and t ≥ 0.
We now present the first general criterion which involves only the measure.

Theorem 1.2. If
∑

nm(xn) = ∞ for all sequences satisfying xn → ∞ as n→ ∞,
then G is Feller.

Here, xn → ∞ means that the sequence of vertices leaves every finite set, never
to return. In particular, we see that the measure must decay at infinity in some
direction for the graph to be non-Feller.

A second general criterion can be stated in terms of the weighted degree which is
defined as Deg(x) = 1

m(x)

∑
y b(x, y). This criterion can be seen to be a counterpart

to a result of Yau [9] stating that if the Ricci curvature on a Riemannian manifold
is uniformly bounded from below, then the manifold is Feller. It can be proven
using standard maximum principle arguments as developed by Dodziuk in the
setting of Riemannian manifolds, see [2].

Theorem 1.3. If Deg(x) ≤ K for all x ∈ X, then G is Feller.

Note that the assumption above is equivalent to the boundedness of the oper-
ator L, see [5].

The weakly spherically symmetric case. For x0 ∈ X , let ρ(x) = d(x, x0)
where d denotes the combinatorial graph metric which counts the number of edges



Mini-Workshop: Discrete p-Laplacians 441

in the shortest path connecting two vertices and let Sr(x0) = {x | ρ(x) = r}. We
can then define the outer and inner curvatures with respect to x0 as follows:

κ±(x) =
1

m(x)

∑

ρ(y)=ρ(x)±1

b(x, y).

That is, κ+(x) is the weighted outer degree of x and κ−(x) is the weighted inner
degree of x with respect to x0. The connection of these two quantities to the

Laplacian is that L̃ρ(x) = κ−(x) − κ+(x).
We call a weighted graph weakly spherically symmetric or model if it contains a

vertex x0 such that κ±(x) = κ±(ρ(x)). That is, if the inner and outer curvatures
are constant on Sr(x0). We call, x0 the root for the model and denote quantities
such as Sr(x0) by Sr.

In this case, we can characterize the Feller property by giving an analogue to
results of Azencott [1] as follows. Let

∂B(r) =
∑

x∈Sr

∑

y∈Sr+1

b(x, y) = κ+(r)m(Sr)

and let Bc
r = {x | ρ(x) > r}.

Theorem 1.4. If G is model, then G is Feller if and only if either

(1)
∑

r
1

∂B(r) <∞
or

(2)
∑

r
1

∂B(r) = ∞ and
∑

r
m(Bc

r)
∂B(r) = ∞.

Note that the first condition is equivalent to the transience of models, see [3].
Therefore, all transient models are Feller. From the preceding results, one can see
that a graph can be Feller for two distinct reasons: strong growth of the graph, as
in the case of transient models, which forces the heat to infinity where it dissipates
and slow growth, as in the case of the bounded Laplacian, which prevents the heat
from getting too far.

Comparison results. We use standard maximum principle techniques to give
comparison results for the Feller property. Namely, we compare a general graph
to a model one as in the work of Pigola and Setti [7].

We say that a graph has stronger curvature growth than a model if the outer
curvature is greater and the inner curvature is smaller than that of the model.

More specifically, let κ̃± denote the curvatures of the model G̃ with root x̃0 and
let κ± denote the curvatures on the general graph G. We say G has stronger

curvature growth than the model G̃ if there exists a vertex x0 in G such that the
curvature defined with respect to x0 satisfy κ+(x) ≥ κ̃+(r) and κ−(x) ≤ κ̃−(r) for

all x ∈ Sr(x0). We say that G has weaker curvature growth than G̃ if the opposite
inequalities hold.

Theorem 1.5. If G has stronger curvature growth than a model graph G̃ which
is Feller, then G is Feller. If G has weaker curvature growth than a model graph

G̃ which is not Feller, then G is not Feller.
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Stability. In general, the Feller property is not very stable. For example, the
result of gluing together a Feller and a non-Feller model graph at a single vertex
will not be Feller as the heat kernel will not vanish on the non-Feller part and,
hence, not on the entire graph. A more subtle question is if the gluing of infinitely
many graphs to a non-Feller graph can produce a Feller graph. Here we only
mention an example.

Example 1.6. Let X = N0 with b(x, y) = 1 if and only if |x − y| = 1 and 0
otherwise. Choose m such that m(n) ∼ n−3 so that

∑
rm(Bc

r) <∞ where the ball
is centered at 0 so that the resulting graph is a non-Feller model.

Now, create a new graph by attaching to each vertex n ∈ N0 a single vertex xn.
It turns out that the new graph can either be Feller or non-Feller. For example, if
b(n, xn) ∼ cn−1 for a constant c ≥ 2 and m(xn) ∼ n−2, then the graph is Feller.
On the other hand, if 0 ≤ c < 2 and m(xn) ∼ n−(2+ǫ) for any ǫ > 0, then the
resulting graph is not Feller.
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Some remarks on the 1-Laplacian and Cheeger Cut

Dong Zhang

Let G = (V,E) denote an undirected and unweighted graph with vertex set V :=
{1, 2, · · · , n} and edge set E. Let A and A′ be two nonempty subsets of V . We
use

E(A,A′) = {{i, j} ∈ E : i ∈ A, j ∈ A′}
to denote the set of edges between A and A′. The edge boundary of A is ∂A :=
E(A, V \A) and the volume of A is defined to be vol(A) =

∑
i∈A

di. The number

h(G) = min
S⊂V,S 6∈{∅,V }

|∂S|
min{vol(S), vol(Sc)}
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is called the Cheeger constant, where Sc = V \S and |∂S| is the cardinality of
the set ∂S. A partition (S, Sc) of V is called a Cheeger cut of G if

|∂S|
min{vol(S), vol(Sc)} = h(G).

An interesting result about the connectedness of each part of a Cheeger cut is
as follows.
Theorem [5] If G = (V,E) is connected, then the following statements hold.

• If (A,Ac) is a Cheeger cut, and A is a disjoint union of two nonempty sets
A1 and A2 satisfying E(A1, A2) = ∅, then vol(A) ≤ vol(Ac), and (A1, A

c
1)

and (A2, A
c
2) are also Cheeger cuts with |∂Ai|

vol(Ai)
= h(G), i = 1, 2.

• If (A,Ac) is a Cheeger cut, then one of A and Ac is connected.
• There exists a Cheeger cut (A,Ac) such that A and Ac are both connected.

Now we turn to the definition of 1-Laplacian. LetB be the incidence matrix ofG
and D = diag(d1, d2, · · · , dn) be the diagonal matrix of degrees di, i = 1, 2, · · · , n.
For each x ∈ Rn, the set-valued map:

∆1 : x 7→ BTSgn(Bx),

is called the 1-Laplacian on G, where Sgn : Rn → (2R)n is a set-valued mapping:

Sgn(y) = (Sgn(y1), Sgn(y2), . . . , Sgn(yn)), ∀y = (y1, y2, . . . , yn) ∈ Rn,

and

Sgn(t) =






1, if t > 0,

−1, if t < 0,

[−1, 1], if t = 0.

Let

S(G) := {x ∈ Rn \ {0} : ∃µ ∈ R s.t. ∆1x ∩ µDSgn(x) 6= ∅}
be the set of eigenvectors of ∆1, andK be the set of critical points of the nonsmooth
Dirichlet function:

I(x) =
∑

i∼j

|xi − xj |,

under the nonsmooth constraint:

X :=

{
x ∈ Rn

∣∣∣∣∣

n∑

i=1

di|xi| = 1

}
.

The relationship between the set S(G) of eigenvectors and the set K of critical
points is
Theorem [1] The eigenvectors of ∆1 are the critical points of I under the con-
straint X , i.e., S(G) = K.

The Liusternik-Schnirelmann theory is extended to study the multiplicity of the
critical points for the even function I(x). The notion of genus due to Krasnoselski
is introduced, see for instance, [2] and [3].
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Let T ⊂ Rn\{0} be a symmetric set, i.e., −T = T satisfying 0 /∈ T . The genus
of T is defined to be:

γ(T ) =

{
0, if T = ∅,
min{k ∈ Z+ : ∃ odd continuous h : T → Sk−1}, otherwise.

Obviously, the genus is a topological invariant.
Let us define

ck = inf
γ(T )≥k

max
x∈T⊂X

I(x), k = 1, 2, · · ·n.

It can be proved that these ck’s are critical values of I under the constraint X .
One has

c1 ≤ c2 ≤ · · · ≤ cn,

and if

c = ck+1 = · · · = ck+l, 0 ≤ k ≤ k + l ≤ n,

then γ(Kc) ≥ l.
Lee [4] studied the relationship between the k-th eigenvalue of the standard

Laplacian and the higher-order Cheeger constant

hk = min
S1,S2,··· ,Sk disjoint

max
i=1,2,··· ,k

|∂Si|
vol(Si)

.

An important result in [4] is λk

2 ≤ hk ≤ O(k2)
√

2λk for k = 1, 2, · · · .
As an analogue of ck and hk, we have

Theorem. ck ≤ hk, k = 1, 2 · · · , n.
In the above theorem, the equalities c1 = h1 = 0 and c2 = h2 always hold. But

for k ≥ 3, the equality ck = hk may not hold. A counterexample for k = 3 is as
follows:

Example. Let Kn be the complete graph with n vertices. Then c3(K5) = 3
4 <

1 = h3(K5).
At last, we provide a connectedness property of another definition of graph cut.

Theorem. For k ∈ {1, 2, 3}, if A1, · · · , Ak satisfy

(A1, A2, · · · , Ak) = argmin(A1,A2,··· ,Ak)∈Pk

k∑

i=1

|∂Ai|
|Ai|

,

then A1, · · · , Ak are all connected.
The above result is not true for k ≥ 4. A counterexample for k = 4 is as follows:

Example. For given integers m > 2n > 20, we define 5 sets Vi = {vi1, · · · , vin},
i = 1, 2, and Vj = {vj1, · · · , vjm}, j = 3, 4, 5. Let V = ∪5

i=1Vi, and

E ={{u, v} : u 6= v, ∃i ∈ {1, 2, 3, 4, 5} such that {u, v} ⊂ Vi}∪
{{v11, v31}, {v11, v41}, {v11, v51}, {v21, v31}, {v21, v41}, {v21, v51}}.
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Consider the connected graph G = (V,E). We can easily verify that

(V1 ∪ V2, V3, V4, V5) = argmin(A1,A2,A3,A4)∈P4

4∑

i=1

|∂Ai|
|Ai|

.

However, V1 ∪ V2 is not connected.
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50923 Köln
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