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Abstract. All currently known construction methods of smooth compact
G2-manifolds have been tied to certain singular G2-spaces, which in Joyce’s
original construction are G2-orbifolds and in Kovalev’s twisted connected
sum construction are complete G2-manifolds with cylindrical ends. By a
slight abuse of terminology we also refer to the latter as singular G2-spaces,
and in fact both construction methods may be viewed as desingularization
procedures. In turn, singular G2-spaces comprise a (conjecturally large) part
of the boundary of the moduli space of smooth compact G2-manifolds, and
so their deformation theory is of considerable interest. Furthermore, singular
G2-spaces are also important in theoretical physics. Namely, in order to
have realistic low-energy physics in M-theory, one needs compact singular

G2-spaces with both codimension 4 and 7 singularities according to Acharya
and Witten. However, the existence of such singular G2-spaces is unknown
at present. The aim of this workshop was to bring reserachers from special
holonomy geometry, geometric analysis and theoretical physics together to
exchange ideas on these questions.
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Introduction by the Organisers

This meeting was about singular G2-spaces and the understanding of the bound-
ary of the moduli space of G2-metrics. Together with the organizers there were
16 participants, from Europe and the United States, forming a nice mixture of
junior and more senior researchers. Their research expertises ranged from special
holonomy geometry through geometric analysis and gauge theory to theoretical
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physics. The programme of the workshop alternated between overview talks, dis-
cussion sessions, informal communications and the more traditional research talks
which are collected in this report. Furthermore, much time was dedicated to in-
teraction between the participants.

Amongst the possible Riemannian holonomy groups appearing on Berger’s list,
the group G2 is distinguished by the fact that it is carried by an odd-dimensional
manifold. A G2-metric on a 7-manifold is often specified through the choice of a
G2-structure which is torsion free, i.e., a special 3-form which satisfies a further
nonlinear PDE. There are basically two known construction methods for com-
pact G2-manifolds: Joyce’s generalized Kummer construction and Kovalev-Corti-
Haskins-Nordström-Pacini’s twisted connected sum construction.

In both constructions, the starting point is a singular or degenerate G2-structure:
a flat G2-orbifold in the first and a pair of noncompact G2-manifolds with cylin-
drical ends in the second. Conversely, both constructions provide a way of degen-
erating a family of non-singular G2-manifolds into a singular one. In both cases
these are noncollapsed limits, i.e. the limiting space is still 7-dimensional. In the
first case, the diameter stays bounded and the family develops orbifold singulari-
ties in codimension 4 or higher. In the second, the manifold is stretched along a
cylindrical neck so that the diameter of the family of metrics goes to infinity. Both
constructions thus yield G2-metrics close to the boundary of the moduli space of
G2-metrics.

The main focus of this workshop was on singular G2-spaces, where by slight
abuse of language we also want to include non-compact smooth ones. As pointed
out above, they naturally appear at the boundary of the moduli space of compact
G2-manifolds, and so are intimately connected with existence and moduli of such.

Singular G2-spaces and geometric analysis. Mark Haskins opened the meeting
with an overview talk, explaining the two known construction methods of compact
smooth G2-manifolds alluded to earlier and setting the stage for the rest of the
week. Jason Lotay introduced the class of compact G2-spaces with isolated conic
singularities and that of complete G2-manifolds with asymptotically conic ends. He
went on to explain his joint results with Spiro Karigiannis about the deformation
theory of these spaces. Rafe Mazzeo gave an overview of techniques in geometric
analysis which are likely to be useful in this context. This was exemplified by
explaining his approach, together with Montcouquiol, to the deformation problem
of hyperbolic conifolds in dimension three. In an informal evening talk, Jason
Lotay explained a new approach to constructing compact smooth G2-manifolds
due to Joyce and Karigiannis, which eventually may also produce compact G2-
spaces with isolated conic singularities.

Nearly-Kähler geometry in dimension six. Compact G2-spaces with isolated conic
singularities are modelled on metric cones over nearly-Kähler 6-manifolds. Hence
the geometry of nearly-Kähler 6-manifolds is of premier importance in this field.
Uwe Semmelmann began by giving an overview over the basic features of nearly-
Kähler 6-manifolds, highlighting the fact that until recently only four examples
(all homogeneous) have been known. In a series of two talks Lorenzo Foscolo
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presented a new construction method for nearly-Kähler 6-manifolds which was
obtained in joint work with Mark Haskins. Their method yields the first non-
homogeneous examples, which are in fact of cohomogeneity one. In a second
talk Uwe Semmelmann explained his joint work with Andrei Moroianu and Paul-
Andi Nagy on the deformation space of a nearly-Kähler 6-manifold. It turns
out that most of the homogeneous examples are rigid. Finally, Eleonora Di Nezza
explained recent work of Martelli and Sparks describing explicit partial resolutions
of 6-dimensional Calabi-Yau cones, the cross-section being a Sasaki-Einstein 5-
manifold. This may have applications towards partial desingularisations of nearly-
Kähler spaces with isolated conic singularities.

Singular G2-spaces and physics. Apart from the interest in G2-manifolds in math-
ematics, they are also of interest in theoretical physics; any G2-metric is Ricci-flat
and moreover such metrics constitute the simplest compactifying spaces in M-
theory consistent with supersymmetry. As Bobby Acharya explained in his talk,
one is interested in constructing G2-manifolds that are solutions toM -theory which
contains the Standard Model of Particle Physics. Since a smooth G2-manifold can-
not possibly provide such a solution – the Standard Model is a non-abelian gauge
theory – one would need to construct singular G2-spaces with singularities in
codimension 4 and 7. He outlined how these singularities give rise to the required
non-abelian gauge fields and chiral fermions that are necessary for this solution,
and sketched a possible procedure for constructing them. In an informal evening
talk, he explained the background of the Standard Model of Particle Physics to
the mathematical audience.

Related topics. Sebastian Goette and Johannes Nordström gave a series of talks
describing a new invariant of G2-structures obtained in joint work with Diarmuid
Crowley. While the initial definition of the ν-invariant due to Nordström and
Crowley required a null bordism of the 7-manifold, an intrinsic definition can
be given using η-invariants. An extension of this invariant is strong enough to
distinguish components of the moduli space of G2-holonomy metrics.

Gauge theory on G2-manifolds is a subject initiated by Donaldson and aims
at defining an invariant for G2-manifolds by counting G2-instantons. Goncalo
Oliveira introduced the subject in an informal evening talk and went on to explain
his results on monopoles on asymptotically conical G2-manifolds the next day.
Andriy Haydys talked about his joint work with Thomas Walpuski on compactness
properties of the moduli space of G2-instantons. This is related to the Seiberg-
Witten equation with multiple spinors.

Frederik Witt explained joint work with Hartmut Weiß on the construction of a
parabolic flow for G2-structures, whose stationary points are the torsion-free ones
which are dynamically stable under the flow. Jan Swoboda finished the meeting
with a talk on joint work with Rafe Mazzeo, Hartmut Weiß and Frederik Witt on
the asymptotic geometry of the hyperkähler metric on the moduli space of Higgs
bundles.
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Abstracts

Introduction to Nearly Kähler manifolds

Uwe Semmelmann

This talk gave a survey on nearly Kähler manifolds with a special emphasis on
nearly Kähler manifolds in dimension 6. We gave several equivalent definitions,
the most important properties and the standard examples.

1. Definition of Nearly Kähler manifolds. Nearly Kähler manifolds (short
NK manifolds) are almost hermitian manifolds (M2n, g, J) with the additional con-
dition (∇XJ)X = 0 satisfied for all tangent vectors X . A nearly Kähler manifold
is called strict, if ∇XJ 6= 0 for all p ∈M and all X ∈ TpM .

Pointwise the tensor ∇J of and almost hermitian manifold belongs to a sum of
4 irreducible U(n)-representations W1, W2, W3,W4. Accordingly one has the 16
classes of almost hermitian manifolds introduced by Gray and Hervella. The NK
condition is equivalent to ∇J ∈W1.

The fundamental 2-form, or Kähler form, is defined as ω(X,Y ) = g(JX, Y ).
The NK condition is equivalent to ∇ω being a 3-form, which can be written as
∇ω = 1

3dω, ie. ω is a so-called Killing 2 form.

Almost hermitian manifolds admit a canonical connection ∇̄ satisfying ∇̄J =
0 = ∇̄g. Its intrinsic torsion is given by T̄ (X,Y ) = J(∇XJ)Y . Hence NK man-
ifolds are characterized by the fact that T̄ is totally skew-symmetric. For NK
manifolds it holds that ∇̄T̄ = 0, which is implicit in the work of A. Gray. Recall
that by a theorem of Ambrose and Singer manifolds admitting a metric connection
∇̄ with ∇̄T̄ = 0 and ∇̄R∇̄ = 0 have to be locally homogeneous.

2. Restriction to dimension 6. Nearly Kähler non-Kähler manifolds in dimen-
sion 6 have many special properties: they are strict NK, they are Einstein (the
scalar curvature is usually normalized to scal = 30), they have c1(TM) = 0 (thus
in particular they are spin) and they are of constant type, ie.

‖(∇XJ)Y ‖2 = α(‖X‖2‖Y ‖2 − g(X,Y )2 − g(JX, Y )2)

for all tangent vectors X,Y and some real constant α, which is 1 if scal = 30.
Nearly Kähler manifolds in dimension 4 are automatically Kähler. Moreover P.-

A. Nagy showed that locally any strict NK manifold is a product of 6-dimensional
NK manifolds, twistor spaces of quaternionic Kähler manifolds or 3-symmetric
spaces. The last two classes of manifolds admit a canonical NK structure. Exam-
ples in dimension 6 are

S6, S3 × S3, F3 = SU(3)/T 2, CP 3

Until the recent construction of NK metrics on S6 and S3 × S3 by M. Haskins
and L. Foscolo, these were the only known examples. Moreover J.-B. Butruille
showed that any homogenous 6-dimensional NK manifold is isometric to one of
these examples.
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From now on we restrict to complete 6-dimensional strict NK manifolds of scalar
curvature scal = 30. The condition of constant type or equivalently the equation
∇̄T̄ = 0 translates in dimension 6 into the equation ∇Xdω = −3X∗ ∧ ω for all
tangent vectors X , ie. the Kähler form ω is a so-called special Killing 2-form and
in particular it holds that ∆ω = 12ω.

One defines Ψ+ := ∇ω = 1
3dω and Ψ− := ∗Ψ+. Then Ψ+ is a 3-form of type

(0, 3)+ (3, 0), ie. Ψ+(X, JY, JZ) = −Ψ+(X,Y, Z) or equivalently Ω := Ψ+ + iΨ−

is a complex volume form. Thus NK manifolds in dimension 6 carry a SU(3)-
structure. It was shown by Reyes-Carrion and N. Hitchin, that a SU(3)-structure
(M6, g, ω,Ψ+) is strict NK iff

dω = 3Ψ+ and dΨ− = −2ω2 .

Since the complex volume form Ω is ∇̄-parallel it follows that the holonomy of
∇̄ is contained in SU(3). F. Belgun and A. Moroianu showed that the holonomy
group is a strict subgroup, ie. the complex holonomy representation is reducible,
only if the NK manifold is homothetic to CP 3 or the flag manifold F3. Moreover
P.-A. Nagy showed that if the holonomy representation is complex irreducible but
reducible as a real representation then the manifold is homothetic to S3 × S3.

Another important property of 6-dimensional NK manifold is that the Riemann-
ian curvature can be written as R = RS6 +RCY , where RS6 is the curvature tensor
of S6 and RCY is a curvature tensor of Calabi-Yau type, ie. RCY ∈ Sym2(su(3)).

3. Killing spinors. . Another equivalent definition of NK manifolds in dimension
6 can be given with Killing spinors. Since c1(TM) = 0, or because of the existence
of a SU(3)-structure, 6-dimensional NK manifolds are spin. Under the assumption
π1(M) = 1 the spin structure is unique. Then there exists a complex rank 8 vector
bundle SM = S+ ⊕ S− over M , the so-called spinor bundle.

A Killing spinor, is a section φ ∈ Γ(SM ) satisfying the equation ∇Xφ = λX · φ
for all tangent vectors X and some real constant λ. Manifolds with Killing spinors
are automatically Einstein, irreducible and non-symmetric.

R. Grunewald showed that the existence of a Killing spinor on a 6-dimensional
manifold is equivalent to the NK condition. Let M6 be a spin manifold not iso-
metric to the standard sphere admitting a Killing spinor φ = φ+ + φ−. Then
the almost complex structure corresponding to φ is defined via the equation
J(X) · φ+ = iX · φ+.

The description of 6-dimensional NKmanifolds in terms of Killing spinors imme-
diately implies the following result of Th. Friedrich. Let (M6, g) be a Riemannian
manifold not isometric to the standard sphere. Then there is at most one almost
complex structure compatible with g and satisfying the NK condition.

A similar result of M. Verbitsky states that an almost complex manifold (M,J)
admits up to scaling at most one NK metric g.

4. The cone construction. The metric cone of a Riemannian manifold (M, g)
is defined as M̄ = C(M) =M×R+ with the warped product metric ḡ = r2g+dr2.
A result of S. Gallot states that for a compact, simply connected manifold M , not
isometric to the standard sphere, the cone M̄ is irreducible.



Mini-Workshop: Singularities in G2-geometry 457

For an even-dimensional spin manifold M the restriction of the spinor bundle
of M̄ to M ⊂ M̄ can be identified with the spinor bundle of M . Under this
identification Ch. Bär showed that Killing spinors onM are in 1-1 correspondence
to parallel spinors on M̄ . This allows a characterization of Riemannian manifolds
admitting Killing spinors. In particular 6-dimensional NKmanifolds can be defined
as manifolds for which the metric cone has holonomy contained in G2.

Note that the first example of a (non-complete) G2-metric was constructed by
R. Bryant on the metric cone of the flag manifold F3.

It is also possible to describe how parallel forms on the metric cone M̄ restrict
to forms on M . If ρ ∈ Ωp+1(M̄). Then ∇̄∂r

ρ = 0 iff there exists forms ω ∈ Ωp(M)
and ψ ∈ Ωp+1(M) with ρ = rpdr ∧ ω + 1

p+1r
p+1ψ Using this decomposition one

can characterize ∇̄-parallel forms as follows: ∇̄ρ = 0 if and only if

∇X = 1
p+1Xyψ and ∇Xψ = −(p+ 1)X ∧ ω

In particular, ψ = dω, ie. parallel forms on M̄ correspond to special Killing forms
on M .

As an application let (M, g, J) be a strict NK manifold, then ρ = r2dr∧ω+ r3

3 dω

is a parallel 3-form on M̄ defining a G2-structure on the metric cone. That ρ is
a generic (or stable) 3-form can be seen using a special frame adapted to the NK
structure. Conversely let ρ ∈ Ω3(M̄) be a parallel generic form (ie. defining a
G2-structure on M̄). Then ω := ∂ryρ is a special Killing 2-form and J defined by
ω(X,Y ) = g(JX, Y ) is an almost complex structure such that (M, g, J) is NK.

Let M ⊂ M̄ be totally umbilic hypersurface, ie. the second fundamental form
is multiple of the metric. E.g. this is the case for a manifold M considered as a
hypersurface in its metric cone M̄ = C(M). Then A. Gray remarked that a weak
G2-structure on M̄ , ie. a G2-structure defined by a generic 3-form ρ ∈ Ω3(M̄)
with dρ = λ ∗ ρ for some constant λ, induces a NK structure on M , defined by
ω := Nyρ, where N is the normal vector of M ⊂ M̄ . Since N = ∂r is the normal
vector in case of the metric cone, this corresponds to the construction above. Note
that weak G2-metrics are automatically Einstein.

However this way it is not possible to obtain new examples of NK manifolds
due to a result of Koiso. In fact, let M ⊂ M̄ be a totally umbilic hypersurface, M̄
complete (which is not the case for the metric cone). Moreover assume the metric
ḡ on M̄ and the induced metric g on M to be Einstein with scalg > 0, then g and
ḡ have constant curvature, ie. S6 ⊂ R7 is the only example obtained this way.

Deformations of G2 manifolds

Jason D. Lotay

(joint work with Spiro Karigiannis)

Given a G2 manifold (M,ϕ) it is natural to ask about its moduli space: is it a
smooth manifold and, if so, what is its dimension? In this talk I will review the
situation when M is compact but focus on the case when M is either asymptoti-
cally conical (AC) (and so non-compact) or essentially the dual picture where M
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is compact but has a conical singularity (CS), highlighting the similarities and
differences which arise.

G2 conifolds. In the AC and CS cases one has a conical model C with a link Σ
and a rate of convergence ν to C: by convention, in the AC case ν < 0 (so that if
r is distance in the cone then rν decays as r → ∞) and conversely in the CS case
ν > 0 (so that rν → 0 as r → 0). Notice that we are always free to increase the
rate in the AC case and decrease the rate in the CS case.

We can give a table for the known AC G2 manifolds of Bryant-Salamon [1]:

Λ2
+S4 Λ2

+CP
2

S(S3)
Σ CP

3 SU(3)/T 2 S3 × S3

ν -4 -4 -3

(Here Σ is a nearly Kähler 6-manifold and S denotes the spinor bundle).
We know of no examples of CS G2 manifolds, but they are expected to exist

because they are natural models for how a family of compact G2 manifolds de-
generates. In particular, it is known [4] that if there is a CS G2 manifold with
a cone model at the singularities as in the table above, then it will arise as a
limit of smooth compact G2 manifolds. There is a proposal, following an idea of
Joyce–Karigiannis [3], for constructing examples which have Σ = CP3: aspects of
this construction are currently being investigated by myself and Karigiannis.

Moduli space. If we let T be the torsion-free G2 structures onM and let D be the
diffeomorphisms isotopic to the identity (with appropriate asymptotic behaviour
for the G2 structures and diffeomorphisms in the AC and CS cases), then the
moduli space of deformations of (M,ϕ) we want to understand is M = T /D.

The idea is to try to show that the ψ ∈ T near ϕ (modulo gauge) are in
one-to-one correspondence with closed and coclosed 3-forms ζ on (M,ϕ). This
correspondence is by identifying M with solutions to a nonlinear PDE, linearising
and then applying the implicit function theorem. Thus the key points in the proof
to look at surjectivity of the linearised operator in the deformation problem and
to gauge-fix for the actions of diffeomorphisms.

Compact deformations. In the compact case, one has surjectivity by Hodge
theory and gauge-fixing is possible, so one obtains the result first given by Joyce
(c.f. [2]).

Theorem. If (M,ϕ) is compact then M is locally diffeomorphic to H3(M).

This result, though important, does not shed light on the global structure of the
moduli space, and so it is natural to ask about the geometry and topology of M.
We now know that M can be disconnected, but we know little else. There are
natural metrics on M so we can ask: what is the curvature of M and is the metric
on M complete or not?

AC deformations. In the AC case we generalise and get a similar result to the
compact case [5], which shows that (under certain assumptions on the rate ν) M
is locally diffeomorphic to the closed and coclosed 3-forms of rate ν on M . Hence,
we can determined dimM from the topology ofM and Σ and the spectrum of the
Laplacian on 2-forms on Σ. The key is that surjectivity of the linearised operator
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still holds but there is some subtlety in the gauge-fixing: roughly speaking, one
can have diffeomorphisms which actually grow (sub-linearly) on the conical end
but still preserve the AC condition.

Using work in [6] on the spectrum on the Laplacian on the nearly Kähler 6-
manifolds appearing in our table, we can deduce some interesting consequences.

Theorem. (a) The Bryant–Salamon AC G2 manifolds are locally unique.
(b) If M is AC to a Bryant–Salamon cone then M is cohomogeneity one. Hence,

the AC holonomy G2 metrics on Λ2
+S4 and Λ2

+CP
2 are unique.

We are therefore left with the open problem: is the AC holonomy G2 metric
on S(S3) unique? Certainly, the torsion-free G2 structure is not unique as there
three cohomologically distinct ones from the Bryant–Salamon construction, but
they give the same metric. This question would be resolved, by our theorem, by a
classification of cohomogeneity one G2 manifolds, which is still open.

We can also ask whether we can extend this result to asymptotically local conical
metrics: these naturally arise in the study of cohomogeneity one G2 manifolds.

CS deformations. In the CS case, the deformation theory is rather different
[5]. We do not find that M is a manifold in general but that it is given by the
zero set of a smooth map π (which we can think of as a projection) from a finite-
dimensional manifold I into a finite-dimensional vector space O. The space O
arises from the possible lack of surjectivity of the linearised operator, and we see
immediately that if O is zero then M is smooth.

Unfortunately, it is not possible to interpret the space I in a satisfactory manner
in general. This is due to issues arising in the gauge-fixing, caused by diffeomor-
phisms which decay sub-linearly at the singularity. It therefore leaves open the
question: can we describe the full space I geometrically?

However, if we take ν near 0 then we can find a submanifold Ǐ ⊆ I corresponding
to the closed and coclosed 3-forms of rate ν plus the deformation arising from
rescaling the identification of the conical singularity in M with the cone C. We
thus obtain a subset M̌ of M given by the zeros of π restricted to Ǐ and whose
expected dimension we can compute explicitly as in the AC case.

Again using the spectral theory calculations from [6] we may deduce some useful
results, including the following.

Theorem. Let M be CS with Σ = CP
3 and let M be the compact G2 manifold

obtained from desingularizing M as in [4].
(a) M = M̌ is smooth.
(b) dimM = b3(M)− 1.

The result (b) shows that we can view the moduli space M as part of the top level
stratum of the boundary of the moduli space of a compact G2 manifold.

We have essentially the same result in the case where Σ = S3 ×S3, except that
we do not know that M and M̌ are equal: it would be interesting to see if there
is a difference between them.

However, it is important to note that we do not have a corresponding result
for the flag manifold Σ = SU(3)/T 2. This is precisely because of the result in [6]
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which shows that this manifold has an 8-dimensional space of infinitesimal nearly
Kähler deformations. These deformations can naturally be identified with the Lie
algebra of SU(3), but there is currently no geometric interpretation for them. It
is still an open question whether these nearly Kähler deformations are obstructed
or not.
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The Physics of G2-manifolds with Singularities

Bobby Samir Acharya

Compact manifolds with G2-holonomy are used as models for the seven extra
dimensions predicted by M -theory and this talk gives an overview of some of
the properties that a G2-manifold should have in order to provide a solution of
M -theory which contains the Standard Model of Particle Physics.

The physical Universe is described, with a high degree of precision by Einstein’s
equations, Maxwell’s equations, the Yang-Mill’s equations and the Dirac equation.
On the other hand all of these equations have played a distinguished role in ge-
ometry, analysis and topology over the last century. I described how superstring
theories give rise to all of these equations and how the five consistent superstring

theories (Type IIA, Type IIB, Type I, Heterotic E8 × E8 and Heterotic Spin(32)
Z2

)
arise as limits of an eleven dimensional theory called M theory.

Next I went on to explain that smooth compact G2-manifolds can not give rise
to the Standard Model of Particle physics which is a non-Abelian gauge theory
on R3,1 with fermions transforming in a complex representation of the GSM ≡
SU(3)× SU(2)× U(1) gauge group.

I first explained the origin of non-Abelian gauge fields: if a compactG2-manifold
(X, g) has a codimension four orbifold singularity along a three dimensional sub-
manifold Q3 ⊂ X then one obtains non-Abelian gauge fields supported on Q3.
This picture can be derived by considering hyperkahler metrics on desingularisa-
tions of R4/ΓADE where ΓADE is a finite subgroup of SU(2) ⊂ SO(4) acting on
R4. The gauge fields obtained in this way correspond to the gauge symmetry
group of type A or D or E – corresponding to the ADE classification of the finite
subgroups of SU(2). One can see this by noting that physically a gauge field for a
gauge group G corresponds to dimG massless particles transforming in the adjoint
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representation of G. These are represented by M theory membranes (M2-branes)

which wrap 2-cycles in H2(R̃
4/ΓADE ,Z) – which is isomorphic to the root lattice

of the ADE Lie Algebra. These have zero mass in the singular orbifold R4/ΓADE .
I then described the origin of the chiral fermions, which, in the Standard Model

are described by Dirac spinors transforming in a complex representation of GSM .
These arise from ”more singular” ADE singularities in which the rank of the ADE
type increases by one unit. A simple example illustrates this:

Example: Bryant-Salamon metric on R+ ×CP3.
Bryant and Salamon wrote an explicit, metric cone on the 7-manifold Y =

R+ × CP3 with holonomy group G2. We will describe this space as a three
dimensional family of smooth 4-manifolds parametrised by R3. Identify Y with
C4/U(1) in the standard way. Then, viewing C4 as H2 the hyperkahler moment
map of the U(1) action is a map µ : C4 → R3 which commutes with U(1). We
therefore have: µ : Y → R3. The fibres of this map are, topologically T ∗S2

(which we imagine as a family of Eguchi-Hanson manifolds). At the origin of R3

the S2 in the fibres collapses as T ∗S2 → R4/Z2 = R4/ΓA1. In other words, the
normal bundle of R3 in Y has generic fibre a smooth R4 (which we think of as
R4/ΓA0), but at one point on the three manifold, the fibre is R4/ΓA1. So, in this
example the rank of the ADE singularity increases from zero to one as we approach
the origin. One interesting, open problem here is to re-write the Bryant-Salamon
metric in coordinates which are compatible with this fibration.

By generalising this picture one conjectures the existence of G2-holonomy coni-
cal metrics on other U(1) quotients of C4. For instance, writing C4 as C2×C2 we
can consider a U(1) action with degree (or charge) (N,−1) on the two factors for
positive integers N . The quotient is, topologically, R+ ×WCP3

N,N,1,1. Again,
the hyperkahler moment map provides a map to R3, where, now the fibres are
partial resolutions of R4/AN in which one S2 has been resolved, leaving every
generic fibre with an AN−1 singularity. At the origin of the R3 the S2 collapses
making the fibre at that point R4/AN . If such a G2-holonomy metric existed it
would give rise to an SU(N) gauge field with a chiral fermion transforming in the
fundamental representation. Proceding in this fashion one conjectures that there
exists a G2-holonomy metric on R+ ×WCP3

p,p,q,q.
These ideas were first formulated in [1] and [2]
The recent new constructions of compact G2-manifolds given in [3] produce of

order 109 compact holonomy G2 manifolds which are topologically K3-fibrations
over the 3-sphere. These are produced from a twisted gluing construction starting
with non-compact K3-fibered Calabi-Yau threefolds. The generic fibers of this
fibration are smooth K3’s. We proposed a modification of this construction in
which the generic K3-fibers have orbifold singularities. Though technically more
difficult, this might potentially produce compact G2 manifolds with codimension
four ADE singularities.
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Aspects of linear elliptic theory on singular spaces

Rafe Mazzeo

This talk surveyed some techniques from geometric microlocal analysis which have
been quite useful for understanding elliptic theory on singular and noncompact
spaces. These ideas focus on understanding the pointwise polyhomogeneous be-
havior of the Schwartz kernels of parametrices for various types of degenerate linear
elliptic operators, and on the analytic consequences following from such a descrip-
tion of these parametrices. The second part of the talk described one particular
application, concerning the infinitesimal rigidity of three-dimensional hyperbolic
conifolds; this illustrates how detailed knowledge about asymptotics of solutions
can be used in practice.

There is a dictionary between various types of complete geometries, e.g. asymp-
totically locally Euclidean (or asymptotically conic), asymptotically hyperbolic,
asymptotically cylindrical, etc., and various classes of degenerate elliptic opera-
tors which are modeled on the behaviors of the natural geometric operators on
these spaces. There is a similar correspondence for certain incomplete geometries,
including iterated edge metrics on stratified spaces. All of these types of spaces
appear in the study of metrics with special holonomy, and it is expected that the
ideas described here should be useful in the study of noncompact and/or singular
G2 spaces.

We give here only a few examples of these correspondences, but comment that
many more complicated types of geometries have been handled by similar methods.
The first setting is a set of three examples: metrics which are complete and either
asymptotically cylindrical or asymptotically conical, or incomplete with isolated
conic singularities. Suppose Mn is a compact manifold with boundary. Let x be
a boundary defining function, so 0 ≤ x ∈ C∞, ∂M = {x = 0}, and dx 6= 0 there.
Let h be a metric on ∂M . Then consider three types of metrics:

gb =
dx2

x2
+ h, gac =

dx2

x4
+

1

x2
h, gc = dx2 + x2h.

These are defined only near ∂M , but we assume they are extended to the rest of
M . The first two are complete, i.e., ∂M is at infinite distance, while the third is
incomplete. The first is a metric with a cylindrical end, as can be seen by setting
t = − log x, so gb = dt2 + h, t → ∞; the second is a metric on the large end of
a cone, which we see by setting r = 1/x, so that gac = dr2 + r2h, r → ∞; the
third is a conic metric near the vertex of the cone (x→ 0). We also consider such
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metrics which include ‘lower order’ terms. Note that these metrics are conformal
to one another: gac = x−2gb, gc = x2gb, so the underlying linear theories for each
of these are closely related. Since this was not the main emphasis of the talk, we
do not describe any of these results further.

Among the many other complete examples, we mention asymptotically hyper-
bolic (conformally compact) metrics, asymptotically complex hyperbolic metrics,
QALE metrics, etc.

In the realm of incomplete spaces, conic metrics can be generalized to metrics
with incomplete edges; these are stratified spaces with one singular stratum B
which is itself a smooth closed manifold. A neighborhood of B is identified with a
bundle of cones over B, and in this neighborhood,

ge = dx2 + h+ x2k,

where h is a metric pulled up from B and dx2 + x2k restricts to a conic metric
on each fiber. We may also consider spaces obtained by iterating the processes of
taking cones or bundles of cones. From a differential topological perspective, these
are the stratified spaces and one class of natural metrics on them are the iterated
edge metrics. We illustrate with a ‘depth 2’ example: suppose that M is a space
where the singular set decomposes into a simple edge, as above, and an isolated
set of points near which M is identified with a cone over a space with conic points
or simple edges. Thus if M is identified locally as a cone C(Y ) where Y itself has
conic or edge singularities, and if x2 is the radial function at the vertex, then

gic = dx22 + x22(dx
2
1 + x21h) = dx22 + x22dx

2
1 + x21x

2
2h,

where x1 is a radial function near the cone point of Y and dx21+x
2
1h is conic metric

on Y .
We now write out the model Laplacians for any one of these metrics:

∆b = (x∂x)
2 +∆h, ∆ac = (x2∂x)

2 + x2∆h + l.o.t.

∆c = ∂2x+
n− 1

x
∂x+x

−2∆h, ∆ic = ∂2x2+
n2

x2
∂x2

+
1

x22

(
∂2x1

+
n1

x1
∂x1

+
1

x21
∆h

)
.

This hierarchy of geometries and the correspondence with degenerate differential
operators fits into the general framework of boundary fibration structures, see
[5]. Many different boundary fibration structures, and numerous applications to
geometric analysis, have been studied and used by many authors, starting with
Melrose’s pioneering work in the early 1980’s.

The rest of the talk focused on the problem of rigidity and deformations of hy-
perbolic metrics with iterated conic singularities (the class of so-called hyperbolic
conifolds). This setting was introduced by Thurston in the 1970’s, and studied
by many authors since that time; the results here appeared in joint work with
Montcouquiol [4]. We suppose that M is a 3-dimensional space with a singular
iterated conic hyperbolic metric. Thus each singular point of M either lies on an
edge or else at a singular vertex; the metric in these two cases, takes the form

dr2 + β2 sinh2 rdθ2 + cosh2 rdy2, or g = dρ2 + ρ2h,
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where h is a metric of curvature +1 on a sphere with isolated conic singular points
corresponding to the singular edges which meet at that singular vertex. The infin-
itesimal rigidity problem asks whether an infinitesimal variation ġ of these struc-
tures which leaves the dihedral angles along the singular edges fixed is necessarily
trivial, i.e., arises by linearizing a one-parameter family of pullbacks F ∗

ǫ g. We
regard ġ as a symmetric 2-tensor on M ; the infinitesimal angle-fixing hypothesis
means that ġ is bounded, and we may also assume that it is polyhomogeneous (i.e.,
admits a complete asymptotic expansion) at the singular set. The assertion that ġ
is infinitesimally equivalent to a family of ‘trivial’ deformations F ∗

ǫ g is equivalent
to finding a bounded 1-form ω such that ġ = (δg)∗ω (or equivalently, showing that
ġ = LXg for some bounded vector field X).

A hyperbolic metric g′ = g+ h near to g (so h is small) is said to be in Bianchi
gauge if

Bg(h) := δgh+ 1
2 tr

gh = 0.

Given any g′ near to g, there exists a unique diffeomorphism F so that Bg(F ∗g′−
g) = 0. Our main result asserts that if we first ‘gauge’ ġ by finding ω such that
κ = ġ − (δg)∗ω satisfies Bgκ = 0, and then proving that necessarily κ = 0.

At a formal level, both of these steps are straightforward. To find ω, we recall
the Weitzenböck formula

Bg(δg)∗ = (∇∗∇− Ric) ,

and denote this operator by P g. Thus to put ġ into gauge, we choose omega to
satisfy P gω = Bgġ, and consider the equivalent gauged infinitesimal deformation
κ = ġ − (δg)∗ω. This lies in the nullspace of the operator

Lg =
1

2
(∇∗∇− 2R) ,

which is the differential of the Bianchi gauged Einstein operator. Here R is the full
curvature tensor regarded as a symmetric endomorphism on symmetric 2-tensors.
That κ = 0 can then be proved by a Bochner argument.

The subtlety in all of this is showing that these steps can be carried out in this
singular geometric setting. This involves choosing a proper (functional analytic)
domain on which to define P g, then proving a sharp regularity theorem for the
solution ω, and then using this information to carry out the integration by parts
needed to conclude that κ = 0. We use the Friedrichs domain, which has the
property that the solution ω is bounded at the singular set (the key point is
that it does not have logarithmic growth there). The microlocal structure of the
generalized inverse shows that in fact ω is polyhomogeneous at the singular set
since the same is true of ġ. Along the way, we use a characterization of elements of
the Friedrichs domain in terms of a certain partial regularity statement; this relies
on an inductive procedure for defining the domains along the successive strata.
This last step was later generalized considerably to a complete theory of iterated
boundary conditions on stratified spaces [1].
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This hyperbolic conifold example was chosen to illustrate how to handle iterated
conic singularities (which also appear in the G2 theory), and the role of paramet-
rices and sharp regularity theory. There are many other closely related settings
where these geometrical microlocal ideas have been useful in understanding met-
rics with special holonomy. We mention some recent examples: the existence of
Kähler-Einstein edge metrics [3] and the regularity and deformation theory for
asymptotically cylindrical Calabi-Yau metrics [2].
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New nearly Kähler 6-manifolds I and II

Lorenzo Foscolo

(joint work with Mark Haskins)

It is well known that the 6–sphere carries a non-integrable almost complex struc-
ture J defined by octonionic multiplication via the embedding S6 ⊂ ImO. Since
the almost complex structure J is compatible with the round metric g, it defines
a (1, 1)–form ω(·, ·) = g(J ·, ·). The almost Hermitian manifold (S6, g, J, ω) has
many remarkable properties. In particular,

(1)

{
dω = 3ReΩ,
dImΩ = −2ω2,

for a complex volume form Ω.
More in general, a 6–manifold M endowed with an SU(3)–structure (ω,Ω) sat-

isfying (1) is called a (strict) nearly Kähler 6–manifold. The defining equations
(1) are equivalent to the requirement that the Riemannian cone C(M) overM has
holonomy contained in the exceptional Lie group G2. Here the Riemannian cone
over (M, g) is R+×M endowed with the incomplete Riemannian metric dr2+r2 g.

Since holonomy G2–metrics are Ricci-flat, nearly Kähler 6–manifolds are Ein-
stein with positive scalar curvature. In particular a complete nearly Kähler 6–
manifold M is compact with finite fundamental group and by passing to the uni-
versal cover one can always assume that M is simply connected.

Besides the round 6–sphere, only three examples were known until now: CP3,
the flag manifold F3 and S3 × S3. These examples are all homogeneous (for a
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homogeneous metric distinct from the standard one) and were constructed in 1968
by Gray and Wolf as part of their classification of 3–symmetric spaces [1].

The scarcity of examples of nearly Kähler 6–manifolds is surprising when com-
pared with geometries related to other special holonomy groups: there are infinitely
many Calabi–Yau, hyperkäler and Spin(7)–cones [2].

In a recent joint work with Mark Haskins [3] we found the first inhomogeneous
examples of complete nearly Kähler manifolds by constructing a cohomogeneity
one nearly Kähler structure on S6 and on S3 × S3.
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G2-Gauge Theory I: Compactness property for G2-instantons

Andriy Haydys

(joint work with Thomas Walpuski)

In this talk I discuss the compactness property for the moduli space G2-instantons.
This turns out to be closely related to certain generalization of the Seiberg–Witten
equations.

To understand why the moduli space of G2-instantons may fail to be compact,
it is instructive to consider the four-dimensional case first. Let an be a sequence of
anti-self-dual instantons on a closed oriented Riemannian four-manifold X . Then
either this sequence converges to an anti-self-dual instanton, or the energy of an
concentrates near a finite set of points and the sequence converges to an “ideal
instanton” [1]. In the latter case one says that the sequence an develops a bubble.
A model for the bubble is an anti-self-dual instanton on TxX ∼= R4, where x is a
point of energy concentration.

Let Y be a manifold of dimension bigger than 4. We concentrate on manifolds
of dimension 7 in this talk, more specifically on those manifolds, which admit a
Riemannian metric with holonomy group contained in G2. Since G2 is a subgroup
of SO(7), we can realize g2 = Lie(G2) as the subalgebra of so(7). Hence, we
obtain a splitting Λ2(R7)∗ = g2 ⊕ g

⊥
2 , where dim g2 = 14 and dim g

⊥
2 = 7. A

global version of this decomposition is the splitting

Λ2T ∗Y = Λ2
14T

∗Y ⊕ Λ2
7T

∗Y

of the bundle of 2-forms on a G2-manifold, where rkΛ2
14T

∗Y = 14 and rkΛ2
7T

∗Y =
7. Let π7(ω) denote the Λ2

7T
∗Y –component of ω.

Definition 1.1 ([3]). Given a principal G-bundle P → Y , a connection A on P
is called a G2-instanton, if π7(FA) = 0, where FA denotes the curvature of A.
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Let An be a sequence of G2-instantons over a closed G2-manifold Y . Assume
An does not converge. Then by the work of Uhlenbeck, Nakajima and Tian we
know that An develops either a bubble along a subset M of Hausdorff-dimension
at most 3 or an unremovable singularity. In this talk unremovable singularities
are ignored. If the bubbling set M is smooth and three-dimensional, then M is
associative. Moreover, for any m ∈ M we obtain an anti-self-dual instanton am
on the normal fiber NmM ∼= R4. Besides, the family {am | m ∈M} conjecturally
yields [2, 4] a Fueter-section, which we describe in some details momentarily.

In the simplest case a Fueter-section is a map u from R
3 to a hyperKähler

manifold (M, I1, I2, I3) satisfying

I1
∂u

∂x1
+ I2

∂u

∂x2
+ I3

∂u

∂x3
= 0.

For the case of bubbles of G2-instantons the relevant codomain is Masd(R
4) the

framed moduli space of anti-self-dual instatons on R4. It is well known that
Masd(R

4) has a natural hyperKähler structure. Notice that Masd(R
4) is equipped

with an action of R>0 commuting with each complex structure Ij . This means
that Fueter-sections always appear in 1-parameter families. Hence, existence of
Fueter-sections is expected to be a codimension one phenomenon (say, in the space
of all Riemannian metrics on M).

Another place where one meets Fueter-sections is a generalization of the Seiberg-
Witten equations. To explain, let M be a closed oriented Riemannian three-
manifold. Denote by S a spinor bundle of M . Fix also a U(1)–bundle L over M ,
a positive integer n and a SU(n)–bundle E together with a connection B.

We consider pairs (A,Ψ) ∈ A(L)×Γ(Hom(E, S⊗L)) consisting of a connection
A on L and an n–tuple of twisted spinors Ψ satisfying the Seiberg–Witten equation
with n spinors:

DA⊗BΨ = 0,

FA = µ(Ψ).
(1)

Here µ : Hom(E, S ⊗ L) → isu(S) is defined by

(2) µ(Ψ) := ΨΨ∗ − 1

2
|Ψ|2 idS

and we identify Λ2T ∗M with su(S).

Theorem 1.2 ([5]). Let (Ai,Ψi) be a sequence of solutions of (1). Denote λi =
‖Ψi‖L2(M). If lim inf λi <∞, then after passing to a subsequence and up to gauge
transformations (Ai,Ψi) converges smoothly to a limit (A,Ψ). If limλi = ∞, then
after passing to a subsequence the following holds:

• There is a closed nowhere-dense subset Z ⊂ M , a flat connection A on
L|M\Z with monodromy in Z2 and Ψ ∈ Γ(M \Z,Hom(E, S⊗L)) such that
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(A,Ψ) solves

‖Ψ‖L2 = 1,

DA⊗BΨ = 0,

µ(Ψ) = 0.

(3)

Moreover, |Ψ| extends to a Hölder continuous function on all of M and
Z = |Ψ|−1(0).

• On M \ Z, up to gauge transformations, Ai converges to A in C∞
loc and

λ−1
i Ψi converges to Ψ in C∞

loc.

Equations (3) were studied in [4] in detail. In particular, it was established
that there is a one-to-one correspondence between gauge equivalence classes of
solutions of (3) and Fueter-sections with values in Masd(R

4).

Returning to the G2-instantons, it is expected that for generic metric with
holonomy in G2 the moduli space of G2-instantons is compact. However, in a 1-
parameter family of such metrics there should be a finite number of points for which
a G2-instanton develops a bubble and dies leaving a trace, namely an associative
submanifold M3 ⊂ Y 7 and a Fueter section with values in Masd(R

4). These data
can be conjecturally used to give a birth to a Seiberg–Witten monopole on M .
Conversely, a Seiberg–Witten monopole on an associative submanifold of Y may
degenerate to Fueter-section and by a result of Walpuski will be reborn as a G2-
instanton on Y . Consequences of these phenomena for invariants of G2-manifolds
will be discussed elsewhere.
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The extended Crowley-Nordström ν-invariant

Sebastian Goette

(joint work with D.Crowley, J. Nordström)

This talk and the following one by Johannes Nordström together show that there
are manifolds whose G2-moduli space is disconnected. Here, we present an invari-
ant that can detect components of the G2-moduli space.
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1. The Crowley-Nordström ν-invariant

We represent aG2-structure on a 7-manifoldM by nonvanishing spinor σ ∈ Γ(SM)
up to homotopy and diffeomorphism. There exists a compact spin manifold W
with ∂W = M . Extend σ to σ̄ ∈ Γ(S+W ) transversal to 0. Then the Crowley-
Nordström ν-invariant [2] is defined as

ν(σ) = χ(W )− 3 sign(W )− 2#σ̄−1(0) ∈ Z/48 .

It is independent of W and σ̄, and it detects all 24 different G2-structures on M
if the topology of M is sufficiently simple.

2. The extended ν-invariant

We consider the Mathai-Quillen current ψ(S+W ), which satisfies

d
(
σ̄∗ψ(S+W )

)
= e(S+M)− δσ̄−1(0) .

LetDM denote the Dirac operator on spinors, and let BM denote the odd signature
operator on M . Combining the Atiyah-Patodi-Singer index theorem with the
above, one gets an intrinsic description

ν(σ) = 2

∫

M

σ∗ψ(SM)− 24(η + h)(DM ) + 3η(BM ) ∈ Z/48 .

Now assume that (M, g) has holonomy G2, and let σ be the associated parallel
spinor. Then the Mathai-Quillen term vanishes. Moreover, the η-invariants now
depend continuously on g if g varies in the set of G2-metrics. Hence we can define
the refined invariant

ν̄(M, g) = −24η(DM ) + 3η(BM ) ∈ Z .

3. Twisted connected sums

Let M = M+ ∪M− be a twisted connected sum [4], [1], with M± ∼= V ± × S1

for Calabi-Yau manifolds V ± with cyclindrical ends, and let X ∼= ∂M± ∼= Σ× T 2

denote the gluing hypersurface. By the Kirk-Lesch gluing theorem [3], one can
decompose

η(BM ) = ηAPS(BM+ , L+) + ηAPS(BM− , L−) +m(L+, L−)

for appropriate boundary conditions determined by

L± = im(H•(V ±;R) → H•(X ;R)) .

Both M± admit reflexions that anticommute with BM± , hence the η-invariants
vanish. The situation for DM is similar. The Maslov index m(L+, L−) depends
on certain “angles” between L+ and L−. These vanish for all twisted connected
sums, hence ν̄(M, g) = 0.

In certain examples, one can replace one or both halves by quotients M±/Z2.
Now, one can glue with an angle ϑ ∈ {±π

6 ,±π
4 ,±π

3 } between the images of the
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external circle factors. The positions of L± allow one to determine an integer k
such that

ν̄(M, g) = 72
2ϑ− π

π
+ 3k .

There are now examples of G2-structures on diffeomorphic manifold with different
values of ν̄(M, g). In particular, their G2-moduli spaces are disconnected.

Currently, the value of ν̄ for Joyce’s examples is unknown, except for those that
are representable as twisted connected sums.
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Disconnecting the G2 moduli space

Johannes Nordström

(joint work with Diarmuid Crowley, Sebastian Goette)

The twisted connected sum construction studied by Kovalev [5] and Corti, Haskins,
Pacini and the speaker [2] yields many examples of holonomy G2 metrics on closed
7-manifolds. The simplest way to solve the “matching problem” that appears in the
construction results in at least 108 examples on 7-manifolds that are 2-connected
with torsion-free H4(M).

The only obvious remaining topological invariants of such 7-manifolds are the
third Betti number b3(M) and the greatest integer d(M) that divides the first
Pontrjagin class p1(M) ∈ H4(M). According to Wall and Wilkens [6], closed
2-connected 7-manifolds with torsion-free H4(M) are classified up to homeomor-
phism by (b3(M), d(M)) ∈ N × 4N. Further, one can obtain a diffeomorphism
classification by adding an invariant µ(M) of the smooth structure (Crowley-N
[3]), a generalisation of the Eells-Kuiper invariant, but µ(M) can be non-zero only
when d(M) is divisible by 7 or 16.

Twisted connected sums realise hundreds of pairs (b3(M), d(M)) with

61 ≤ b3(M) ≤ 239, b3(M) odd, d(M) | 48.
The analytic invariant ν̄ of the G2-metric defined in Sebastian Goette’s talk van-
ishes for all twisted connected sums. This talk describes the “extra-twisted con-
nected sum construction”, which produces a much smaller number of examples,
but with non-zero ν̄. If we find some 2-connected extra-twisted connected sum M
with torsion-free H4(M) and odd b3(M), then we have a good chance of finding
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a diffeomorphic ordinary twisted connected sum, and hence a closed 7-manifold
with disconnected G2 moduli space.

1. Basic picture of extra-twisted connected sums

Let V be a Calabi-Yau 3-fold with a single end, asymptotic to a product cylinder
R × S1 × Σ, for Σ a K3 surface. Then V × S1 is a G2-manifold, asymptotic to
R× T 2 × Σ.

Suppose V has an involution τ whose restriction the boundary at infinity S1×Σ
is a × IdΣ, for a : S1 → S1 the antipodal map. Then V × S1 / τ × a is an
asymptotically cylindrical G2-manifold, with end R×T 2×Σ. However, this T 2 =
S1×S1/a×a need not be isometric to a product S1×S1; that would only happen
if the circumferences are chosen equal.

We want to construct closed G2-manifolds M by gluing two asymptotically
cylindrical G2-manifolds of the above types using a product isometry f × r :
T 2 × Σ+ → T 2 × Σ−, where

• r : Σ+ → Σ− is a “hyper-Kähler rotation”,
• f : T 2 → T 2 is an orientation-reversing isometry.

The key parameter of f is the angle θ between the “external S1 directions”, i.e.
the directions in T 2 coming from the S1 factor in V × S1. To get π1M finite,
which is necessary for M to admit metrics of full holonomy G2, we need θ 6= 0, π.

• Without involutions, i.e. in the ordinary twisted connected sum construc-
tion, the only possibility is θ = ±π

2 .
• With an involution on one side, we can get θ = ±π

4 (set circumferences of

internal and external S1s to be equal to get a square T 2).
• With involutions on both sides we can get θ = ±π

6 ,±π
3 (set ratio of circum-

ferences of internal and external S1s to be
√
3 to get a hexagonal T 2).

The latter two cases give rise to what we call extra-twisted connected sums.

2. Hyper-Kähler rotations

The parallel SU(3)-structure on the asymptotically cylindrical Calabi-Yau 3-fold
V can be described in terms of

• a holomorphic (3, 0)-form Ω, asymptotic to (−idt + du) ∧ (ωJ + iωk) on
R× S1 × Σ; here ωJ + iωk is a holomorphic (2, 0)-form with respect to a
unique complex structure I on the K3 surface Σ.

• a Kähler form ω, asymptotic to dt ∧ du + ωI , where ωI is a Kähler form
on Σ with respect to I.

The “hyper-Kähler triple” (ωI , ωJ , ωK) is equivalent to an SU(2)-structure on Σ.
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The product G2-structure on V ×S1, where the external circle factor has coor-
dinate v and circumference ℓ, is defined by the 3-form

ϕ := ℓdv ∧ ω +Re Ω

∼ ℓdv ∧ dt ∧ du + ℓdv ∧ ωI + du ∧ ωJ + dt ∧ ωK

= dt ∧
(
ωK − i

2dz ∧ dz̄
)
+Re

(
dz ∧ (ωI − iωJ)

)
,

where z := ℓv + iu. For a pair V+, V− we can write an orientation-reversing
isometry T 2 → T 2 as z 7→ eiθz̄, where θ corresponds to the angle between the
external S1 factors. We need r : Σ+ → Σ− such that

R× T 2 × Σ+ → R× T 2 × Σ−,

(t, z, x) 7→ (−t, eiθ z̄, r(x))
is an isomorphism of the cylindrical G2-structures. This is equivalent to

(1)
r∗(ωI

− + iωJ
−) = eiθ(ωI

+ − iωJ
−),

r∗ωK
− = −ωK

− .

If r satisfies this condition we call it a hyper-Kähler rotation with angle θ.

3. Matching problem

We can produce Calabi-Yau 3-folds V asymptotic to a cylinder R×S1×Σ by solving
the complex Monge-Ampère equation on complex manifolds obtained by blow-up
of a Fano or weak Fano 3-fold Y with an anticanonical divisor Σ (Haskins-Hein-N
[4], Corti-Haskins-N-Pacini [1]). We can also produce asymptotically cylindrical
Calabi-Yau 3-folds with the type of involution demanded for the extra-twisted
connected sum construction from the (rather smaller) collection of Fano 3-folds
with index 2, using branched double covers. But how can we find pairs (Y+,Σ+),
(Y−,Σ−) with a hyper-Kähler rotation r : Σ+ → Σ−?

Given r, we can identify both Σ+ and Σ− with a standard K3 Σ, and consider
the sublattices N± := Im H2(V±) ⊂ H2(Σ) of the K3 lattice. A priori

[ωI
±] ∈ N± ⊗ R

while the “period” of Σ±, i.e. the 2-plane in H2(Σ;R) spanned by [ωJ
±] and [ωK

± ],
is orthogonal to N±. Let π± : N±⊗R → N∓⊗R denote the orthogonal projection
(with respect to the intersection form). Then (1) implies

π[ωI
±] = (cos θ)[ωI

∓].

We have the most degrees of freedom of finding appropriate triples of classes
[ωI

±], [ω
J
±], [ω

K
± ] ∈ H2(Σ;R) when N+ and N− are “at pure angle θ”, i.e.

(2) π± ◦ π∓ = (cos θ)2Id.

For θ 6= π
2 , the existence a pair of primitive isometric embeddings N± →֒ H2(Σ)

such that (2) holds imposes non-trivial arithmetic conditions on the pair of lattices
N+ and N− (which are determined by the Fanos Y+ and Y−).
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Generalising from the case θ = π
2 [2, Proposition 6.18], we can use the Torelli

theorem and deformation results for Fano manifolds to find hyper-Kähler rotations
for asymptotically cylindrical Calabi-Yau manifolds with involution constructed
from Fano 3-folds with index 2.

For extra-twisted connected sums whose hyper-Kähler rotation satisfies (2), the
angles appearing in the computation of ν̄ in Goette’s talk are all ±θ or 0.
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G2-Gauge Theory

Goncalo Oliveira

Yesterday Andriy Haydys explained that in order to define an invariant of G2-
manifolds by countingG2-instantons one needs to understand the limiting behavior
of instatons along associative submanifolds. Then, Andryi explained that one
may then hope to define a joint weighted count of G2-instatons and associatives
instead. There are other interesting special submanifolds of G2-manifolds, namely
coassociative submanifolds and Dominic Joyce [3] conjectured that one may try
to define an invariant of a G2-manifold by counting rigid, compact coassociative
submanifolds. On noncompact G2-manifolds Donaldson and Segal, in [2] propose
an invariant counting monopoles instead. They further suggest that this might be
easier to define and possibly related to a direct coassociative count. In this talk
we will report on the results of [4] for asymptotically conical (AC) G2-manifolds.

Let (X,ϕ) be an AC G2-manifold with asymptotic cone ((1,+∞)r × Σ, gC =
dr2+r2gΣ). For future reference recall that (Σ

6, gΣ) comes equipped with a Nearly
Kähler structure. Then, we shall consider a principal bundle P which at the conical
end is modeled on P∞ over Σ. Moreover, we equip gP , gP∞

with Ad-invariant inner
products h, h∞ which in combination with gC are used to measure the growth rate
of sections of Λ∗ ⊗ gP . For example, if a denotes a section of Λ∗ ⊗ gP we shall by
abuse of notation along the conical end pull it back to cone and still write a. Then
we say it has rate δ ∈ R with derivatives if along the conical end |∇ja| = O(rδ−j)
for all j ∈ N0; where | · | denotes a combination the norm gC with h∞, ∇ the
connection obtained by twisting the Levi-Civita connection of gC with ∇∞.
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Definition 1.1. Let P be a principal G-bundle as above. A monopole (A,Φ) on
P is said to have finite mass if there is a connection A∞ on P∞ such that at the
end A−A∞ has rate −1− ǫ with derivatives, for some ǫ > 0 and

(1) m(A,Φ) = lim
ρ→∞

|Φ|,

is well defined and constant. In this case m(A,Φ) ∈ R+ is the mass of the mono-
pole.

For a finite mass monopole (A,Φ) the Intermediate energy EI on a precompact
U ⊂ X is defined by EI(U) = 1

2

∫
U
|∇AΦ|2 + |FA ∧ψ|2 and we proved that it may

be rewritten as

EI(U) =

∫

∂U

〈Φ, FA〉 ∧ ψ +
1

2
‖FA ∧ ψ − ∗∇AΦ‖2L2(U).(2)

The Intermediate Energy is indeed the relevant Energy for finite mass monopoles
and in fact if (A,Φ) is a finite mass, irreducible monopole on P , then:

• ∇AΦ ∈ L2 and there is Φ∞ ∈ Ω0(X, gP∞
), such that ∇A∞

Φ∞ = 0 and
Φ − Φ∞ has rate −5 with derivatives. In particular, the intermediate
energy EI(X) is finite.

• If we further suppose [A − A∞,Φ∞] has rate −6− ǫ for some ǫ > 0 with
derivatives, then A∞ is a pseudo-Hermitian-Yang-Mills connection for the
nearly Kähler strucre on Σ, i.e. FA ∧ ω2 = FA ∧Ω2 = 0.

If we are interested in studying finite mass monopoles we may as well just
suppose that (A,Φ 6= 0) is a pair (not necessarily a monopole) satisfying the
conclusion of the two previous bullets. We shall now suppose that G is either
SO(3) or SU(2), then as ∇A∞

Φ∞ = 0, the connection A∞ is reducible to an
HYM connection on a S

1-sub1bundle Q∞ ⊂ P∞, and

EI = −2πm〈c1(L) ∪ [i∗ψ], [Σ]〉+ 1

2
‖FA ∧ ψ − ∗∇AΦ‖2L2,(3)

where [i∗ψ] ∈ H4(Σ,R) denotes the restriction of [ψ] to any cross section ϕ−1({r}×
Σ) over the conical end X\K and L denotes the complex line bundle associated
with Q∞ with respect to the standard representation. Moreover, if one further
supposes that c1(L) ∪ [i∗ψ] = 0 or (X, g) has rate ν < −4, then there are no such
finite mass, irreducible monopoles on P .
The classes c1(L) ∈ H2(X,Z) are called monopole classes. Given a coassociative
N ⊂ X , Poincaré duality gives a class PD[N ] ∈ H3

cs(X,Z) and the long exact
sequence

...→ H2(Σ,Z)
i−→ H3

cs(X,Z)
j−→ H3(X,Z) → ...,

shows that if PD[N ] ∈ ker(j), then there is a monopole class α such that i(α) =
PD[N ]. In the rest of the talk I shall try to convince you that there is a rela-
tion between monopoles on principal SO(3) or SU(2)-bundles P asymptotic to a
line bundle with class α ∈ H2(Σ,Z) and coassociative submanifolds N , such that
PD[N ] = i(α). We will do this by looking to the 3 examples of AC G2 manifolds
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we currently have at hand, namely the Bryant-Salamon manifolds [1].

The first example is the spin bundle over the 3-sphere S(S3), which has no
compact coassociative submanifolds. As for monopoles, we can use the energy
formula above to prove a vanishing theorem for monopoles.

Theorem 1. Let P be an SU(2) or SO(3) bundle over S(S3). Then, there are no
finite mass m 6= 0, irreducible monopoles (A,Φ) such that |∇j (ϕ∗A− π∗A∞) | =
O(r−5−ǫ−j), for some ǫ > 0 and all j ∈ N0.

This is an immediate consequence of the energy formula 3 and the fact that
S(S3) is asymptotic to a cone over S3 × S3 which has no second cohomoly. Hence,
for any such monopole EI = 0 and so ∇AΦ = 0 and A is reducible (as m 6= 0).
Alternatively, notice that S(S3) retracts onto S3, hence H4(S(S3),R) = 0 and so
[ψ] = 0.

Now turn to the other Bryant-Salamon manifolds, namely Λ2
−M , i.e. the total

spaces of the bundle of anti-self-dual 2-forms on M = CP or S
4. Notice that in

both cases These examples are very symmetric, in each case there is a compact
Lie group K acting on Λ2

−(M) with cohomogeneity 1. Let P be a K-homogeneous
principal G-bundle, i.e. the K-action on Λ2

−(M) lifts to the total space P . Then
there is a notion of K-invariant connections and G=Higgs fields on P . Let Ginv

denote the K-invariant gauge transformations, the moduli space of finite mass,
invariant monopoles on P → Λ2

−(M) is defined as

(4) Minv(Λ
2
−(M), P ) = {finite mass, K-invariant, irreducible monopoles}/Ginv.

The main result of [4] is

Theorem 2. On M = S
4 (respectively M = CP

2) there are K-homogeneous prin-
cipal SU(2) (respectively SO(3)) bundles P , such that the moduli spaces
Minv(Λ

2
−(M), P ) are non empty and the following hold:

(1) For all (A,Φ) ∈ Minv, Φ
−1(0) is the zero section, and the mass gives a

bijection
m : Minv(Λ

2
−(M), P ) → R

+.

(2) Let R > 0, and {(Aλ,Φλ)}λ∈[Λ,+∞) ∈ Minv(Λ
2
−(M), P ) be a sequence

of monopoles with mass λ converging to +∞. Then there is a sequence
η(λ,R) converging to 0 as λ→ +∞ such that for all x ∈M

exp∗η(Aλ, ηΦλ)|Λ2
−
(M)x

converges uniformly to the BPS monopole (ABPS ,ΦBPS) in the ball of
radius R in (R3, gE). Here expη denotes the exponential map along the

fibre Λ2
−(M)x ∼= R3.

(3) Let {(Aλ,Φλ)}λ∈[Λ,+∞) ⊂ Minv be the sequence above. Then the trans-
lated sequence (

Aλ,Φλ − λ
Φλ

|Φλ|

)
,
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converges uniformly with all derivatives to a reducible, singular monopole
on Λ2

−(M) with zero mass and which is smooth on Λ2
−(M)\M .

The main thing we should infer from this result is that for each fixed mass
m ∈ R+, there is a unique invariant monopole (A,Φ) on P and that for this mono-
pole Φ−1(0) is the zero sectionM . This is a very promising result, indeed there is a
unique compact coassociative submanifold on Λ2

−(M) and this is precisely the zero
section M . Hence, in these examples a monopole count on P agrees with a count
of rigid, compact, coassociative submanifolds. The remaining items investigate
the large mass limit of finite mass monopoles. Combined these state that large
mass monopoles concentrate on the coassociative submanifold M , with one BPS
monopole bubbling off along the transverse directions toM and a reducible mono-
pole left behind on Λ2

−(M)\M . More precisely, on a tubular neighborhood of M
a large mass monopole (A,Φ) is close to a family of BPS monopoles on the trans-
verse directions to M and outside such a neighborhood (A,Φ) is approximately
reducible.
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Explicit “partial resolution” of Ricci-flat Kähler cones

Eleonora Di Nezza

This talk is based on the results in [2] and [3].
Let (L, gL) a Sasaki-Einstein manifold of real dimension dimR L = 2n + 1. A
Sasaki-Einstein manifold (L, gL) is a complete Riemannian manifold whose metric
cone

(1) gC(L) = dr2 + r2gL, C(L) = R
+ × L

is a Calabi-Yau manifold (i.e. Kähler and Ricci-flat). The metric in (1) is singular
at r = 0 unless L = S2n+1 and in that case L is the complex space.
The question we wonder about is whether there exists a resolution, namely a
complete Ricci-flat Kähler metric on a non-compact manifold X that is asympto-
tically conical to the cone C(L). In the following I will give an explicit construction
of partial resolutions, where the word “partial” stands for the fact that X will still
have singularities but at most orbifold singularities.
I will first present a countable infinite number of explicit quasi-regular and irregular
Sasaki-Einstein manifolds, denoted by Y p,q. Then, I will give an explicit expression
of Kähler Ricci-flat metrics that asymptote to the metric cone C(Y p,q).
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The starting point is an explicit local metric depending on a parameter a ∈ R
+

that expresses as

g =
1− y

6
(dθ2 + sin2 θdφ2) +

1

w(y)q(y)
dy2 +

q(y)

9
[dγ − cosθdφ]2

(2) +w(y)

[
dα +

a− 2y + y2

6(a− y2)
(dγ − cos θdφ)

]2

where

w(y) =
2(a− y2)

1− y
q(y) =

a− 3y2 + 2y3

a− y2
.

One can check that this metric is Einstein and locally Sasaki. Let me observe that
since we want g be a metric we work in the range y ∈ [y1, y2], y1 < 0 < y2 < 1,
where yi are the zeros of the cubic 2y

3+3y2−a. What we want to show is that the
local expression of the metric extends to a global metric on a compact manifold,
that will be topologically S2 × S3 and furthermore we want to insure that the
Sasaki structure extends globally.
The first step is to choose θ ∈ [0, π], φ, γ ∈ [0, 2π] and to show that the four-
dimensional basis B4 (we forget the coordinate α) is topologically S2 ×S2. Then,
we look at the coordinate α and we rewrite the metric as

g = gB4
+ w(y)[dα +B]2

where B = a−2y+y2

6(a−y2) (dγ − cos θdφ). In order to get a compact manifold we want α

to describe an S1-bundle over B4. Thus, we set α ∈ [0, 2πl] and we ask l−1B to
be a connection on a U(1)-bundle over S2×S2. Let us recall that an U(1)-bundle
over S2 × S2 is characterised by the generators of H2(S2 × S2,Z) = Z⊕ Z, say p
and q. Therefore, the fact of having a U(1)-bundle over S2 × S2 turns out to be
equivalent to require

(3)
P1

P2
=
p

q

where Pi :=
1
2π

∫
Ci
dB are the periods of the two curvature form dB over a basis

of cycles Ci. Observe that Pi depends on the parameter a since B does. It can
be proven that there is a countable infinite number of values of a ∈ (0, 1) such
that condition (3) is satisfied. Thus, for any such value of a, the Sasaki-Einstein
manifold Y p,q is the total space of a U(1)-bundle over S2 × S2.
Furthermore, the case when the two roots yi are rational corresponds to a quasi-
regular Sasaki-Einsteinmanifold, while when yi are not rational the Sasaki-Einstein
manifold is irregular. Let me point out that these are the first examples of irre-
gular Sasaki-Einstein manifolds, which had been conjectured by Cheeger-Tian [1]
not to exist. To summerize, we have the following result:

Theorem 1.1. There exist a countably many Sasaki-Einstein manifolds on S2×S3

labelled by two positive integers p, q ∈ Z, q < p, given explicitely in local coordinates
by (2). The manifolds are cohomogeneity one. Furthermore, the Sasaki structeures
are qquasi-regular if and only if 4p2 − 3q2 ∈ Z; otherwise they are irregular.
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Now, consider the cone over these Sasaki structures, C(Y p,q). We want to
look at Ricci-flat Kähler metrics that are asymptotic to the metric cone gC(Y ) =

dr2 + r2gSE.
Once again the starting point is an explicit local expression of a Kähler metric

g = (1− x)(1 − y)gP1 +
y − x

4X(x)
dx2 +

y − x

4Y (y)
dy2 +

X(x)

y − x
[dτ + (1− y)(dψ +A)]2

(4) +
Y (y)

y − x
[dτ + (1− x)(dψ +A)]2

and dA = 2ωFS, where ωFS denotes the Fubini-Study form on CP
1 and gCP1 is

the standard metric on CP
1. Such a Kähler metric is Ricci-flat if and only if the

metric functions are given by

X(x) =
p1(x)

(x− 1)
, p1(x) = (x− 1)2 +

2

3
(x− 1)3 + 2µ, µ ∈ R

Y (y) =
p2(y)

(1− y)
, p2(x) = (1− y)2 − 2

3
(1− y)3 − 2ν, ν ∈ R.

Observe that the metric is symmetric in x and y but we break this symmetry by
choosing x to be the “radial” coordinate and y the “polar” one. It can be proved,
by changing variables (x = ±r2), that g → dr2 + r2gY as x → ±∞, where gY is
the Sasaki-Einstein metric we considered above.
The goal is to extend the local metric in (4) to a metric on a non-compact manifold.
In this case we fix the range y ∈ [y1, y2] and x < x− or x > x+, y1 ≤ x− < 0 <
y2 < 1 ≤ x+ where yi and x± are roots of p2(y) and p1(x) respectively. In a similar
way of what we have described above it can be shown that, for any fixed x < x−
or x > x+, the local metric can be extended to the total space of a U(1)-bundle
over S2×S2, that we will denote by Lp,k. Here p, k are positive integers such that
p < k < 2p.
And, since the analysis was independent of x, the kähler Ricci flat metric g extends
to a asymptocically conical metric on R+ × Lp,k and the link of the cone is the
Sasaki-Einstein Y p,k.
The last step is to examite the regularity of such a metric at {x = x±, y = yi},
locus of orbifold singularities. The generic situation that will happen is the conical
singularity replaced by a divisor M with at most orbifold singularities. It can be
also shown (thanks to the explicit description of the metric) that M is a the total
space of a WCP

1
[r,p−r]-fibration over CP

1, 0 < r < k/2, where WCP
1
[r,p−r] is the

weighted projective space with singularities at y = y1 and y = y2.

Theorem 1.2. For every p, k, r ∈ N with p < k < 2p, 0 < r < k/2, there is an
explicit Ricci-flat Kähler orbifold metric on the total space of the canonical line
bundle KM over the Fano orbifold

M = O(−m)×U(1) WCP
1
[r,p−r]

where m = k − 2r. The metrics asymptotes to a cone over the Sasaki-Eisntein
manifold Y p,k.
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This construction can be actually generalised to any dimension, namely one can
start from any complete Fano manifold (V, gV ) of complex dimension n instead of
(P1, gP1). For some particular choice of the parameters p and k the partial resolu-
tion will be smooth and can be thought as a generalisation in higher dimension of
the small resolution O(−1)⊕O(−1) → P1 of the conifold {(z0, z1, z2, z3) :

∑
i z

2
i =

0} in complex dimension 3.
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Deformations of Nearly Kähler manifolds

Uwe Semmelmann

(joint work with Andrei Moroianu, Paul-Andi Nagy)

In this talk we presented the results of [1], [2] and [3] on the infinitesimal defor-
mations of 6-dimensional nearly Kähler manifolds.

Let M6 be a complete 6-dimensional nearly Kähler manifolds, ie. we have a
SU(3)-structure (J, g, ω,Ψ+), consisting of a Riemannian metric g, a compatible
almost complex structure J , the fundamental 2-form ω, defined by ω(X,Y ) =
g(JX, Y ) and a 3-form Ψ+, which is the real part of a complex volume form
Ω = Ψ+ + iΨ−, with Ψ− := ∗Ψ+. Moreover these tensors satisfy the equations

dω = 3Ψ+ and dΨ− = −2ω ∧ ω .

The existence of such a structure implies that (M, g) is a compact Einstein mani-
fold of scalar curvature scal = 30. A direct consequence of the structure equations
are in particular the additional equations

dΨ+ = 0, d∗Ψ− = 0, ∆ω = 12ω .

In the following we want to derive equations characterizing the tangent vectors
to curves (gt, Jt, ωt.Ψ

±
t ) of nearly Kähler structures, ie. infinitesimal deformations.

From results of Friedrich and Verbitsky it is clear that one has to deform J and g
simultaneously.

We first describe the infinitesimal deformations of a SU(3)-structure. For this
we have to decompose the space of endomorphisms and forms as U(3)-represen-
tations. We write End(TM) = End+(TM) ⊕ End−(TM), where End+(TM) is
the space of endomorphisms commuting with J and End−(TM) are the endomor-
phisms anit-commuting with J . Corresponding to the decomposition

End(TM) = Sym2(TM)⊕ Λ2(TM)
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into symmetric and skew-symmetric endomorphisms. We have the splittings

End+(TM) = Sym+(TM)⊕ Λ11(TM)

and
End−(TM) = Sym−(TM)⊕ Λ(2,0)+(0,2)(TM)

Here Λ11(TM) are the skew-symmetric endomorphisms commuting with J , or
equivalently the J-invariant 2-forms. This space is isomorphic to the Lie algebra
of U(3). Moreover the space Λ(2,0)+(0,2)(TM) of skew-symmetric endomorphisms
anti-commuting with J , or equivalently 2-forms anti-commuting with J , is isomor-
phic to TM , via the isomorphism ξ 7→ Ψ+

ξ = ξyΨ+. Finally we have the following
decomposition of the space of 3-forms

Λ3(TM) = Λ(3,0)+(0,3)(TM)⊕ [Λ1(TM) ∧ ω ⊕ Λ
(2,1)+(1,2)
0 (TM)]

The first summand is spanned by Ψ+ and Ψ−. The summand Λ
(2,1)+(1,2)
0 (TM),

of primitive 3-forms of type (2, 1)+ (1, 2), is isomorphic to Sym−(TM) under the
isomorphism S 7→ S∗Ψ

+ :=
∑
S(ei) ∧ eiyΨ∗, for some ortho-normal frame {ei}.

Let ġ, J̇ , ω̇, Ψ̇± denote the derivative of the gt, Jt, ωt,Ψ
±
t at t = 0. Then corre-

sponding to the decompositions introduced above we have ġ = g((h+ S)·, ·) with
h ∈ Sym+(TM) and S ∈ Sym−(TM), J̇ = J ◦ S + Ψ+

ξ for some ξ ∈ TM and

ω̇ = φ+Ψ+
ξ for φ ∈ Λ11(TM), with φ(X,Y ) = g(h ◦ J ·, ·). Moreover we have the

splitting

Ψ̇+ = λΨ+ + µΨ− − 1

2
S∗Ψ

+ − ξ ∧ ω
and

Ψ̇− = −µΨ+ + λΨ− − 1

2
S∗Ψ

+ − Jξ ∧ ω
where µ is some function and λ = 1

4 tr(h) = 1
4 tr(ġ). Hence infinitesimal defor-

mations of SU(3)-structures are parametrized by a vector field ξ, a symmetric
endomorphism S, anti-commuting with J , a J-invariant (11)-form φ and a func-
tion µ. Assuming that we have a family of nearly Kähler structures we obtain the
additional equations:

dω̇ = 3Ψ̇+ and dΨ̇− = −4ω̇ ∧ ω .

As usual we only consider deformations transversal to the action of the diffeomor-
phism group and we consider a family of metrics with a fixed volume. This gives
the further equations δġ = 0 and trg(ġ) = 0, which immediately leads to λ = 0.
Using all these equations we obtain

Ψ̇+ = − 1
2S∗Ψ

+, Ψ̇− = − 1
2S∗Ψ

−, ω̇ = φ ∈ Ω11
0 (M) .

It follows that φ is a primitive, co-closed (1, 1)-form with ∆φ = 12φ and that such
forms completely describe infinitesimal deformations of nearly Kähler structures.
Indeed given such a form φ ∈ Ω11

0 (M) with d∗φ = 0 and ∆φ = 12φ. We can show

that dφ ∈ Ω
(12)+(21)
0 (M). Thus there exists a uniquely determined endomorphism

S ∈ Sym−(TM) with dφ = − 3
2S∗Ψ

+. Then λ = µ = 0, ξ = 0, ω̇ = φ, Ψ̇± =

− 1
2S∗Ψ

± is a nearly Kähler deformation satisfying the set of linearized structure
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equations. Let V be the space of infinitesimal deformations of nearly Kähler
structures, ie.

V = {φ ∈ Ω11
0 (M) | d∗φ = 0, ∆φ = 12φ} .

We want to show how to compute the space V for the homogeneous examples.
All these examples are 3-symmetric spaces M = G/K with a compact group G.
The metric is given as g = − 1

12B, where B is the Killing form of G. Hence these
spaces are in particular natural reductive.

Let π : K → Aut(E) be any complex representation ofK and let EM := G×πE
be the associated vector bundle then one has the following isomorphism of G-
representations

L2(EM) ∼= ⊕γ∈ĜVγ ⊗HomK(Vγ , E) .

Here Ĝ is the set of isomorphism classes of irreducible G-representations and Vγ
denotes the irreducible G-representation with highest weight γ. The group G acts
on the space L2(EM) of square-integrable sections of EM via the left-regular
representation.

We introduce the Hermitian Laplace operator ∆̄ defined as ∆̄ = ∇̄∗∇̄ + q(R̄),
where q(R̄) is a certain endomorphism of EM linear in the curvature R̄ of the
connection ∇̄.

It is well-known that 3-symmetric spaces have a canonically defined almost-
complex structure and it is a remarkable fact that in the case of a naturally
reductive metric the canonical hermitian connection coincides with the canonical
homogeneous connection. In consequence the action the operator ∆̄ on sections of
EM is given by the action of the Casimir operator CasGπ under the identification
above. Let {Xi} be a ortho-normal basis of the Lie algebra g. Then CasGπ :=∑

i π∗(Xi)
2 and it is well known that CasGVγ

= − < γ, γ + 2ρ >, where ρ is half

the sum of positive roots of g. This allows to compute spectrum of the Hermitian
Laplace operator on sections of any homogeneous vector bundle EM . To compute
the space of infinitesimal nearly Kähler deformations we further need the surprising
fact that ∆ and ∆̄ coincide on co-closed, primitive (11)-forms.

The method introduced above allows to compute the ∆̄ eigenspace Ω11
0 (12) of

primitive (11)-forms for the eigenvalue 12. But some of the eigenforms could be
non co-closed. Indeed let f ∈ Ω0(12) be any ∆-eigenfunction for the eigenvalue
12 and let ξ be any Killing vector field. Then the projections of dξ and of dJdf
to the space of primitive (11)-forms are non-vanishing, non-coclosed ∆̄ eigenforms
for the eigenvalue 12. It follows that

dimV ≤ dimΩ11
0 (12)− dim Iso(M,G)− dimΩ0(12) .

Using the inequality and the computation of the spectrum of ∆̄ it follows that there
are no infinitesimal deformations on the nearly Kähler spaces S6,CP 3, S3×S3 and
that dimV ≤ 8 for the flag manifold F3.

Finally an explicit calculation shows that F3 has a 8-dimensional space of infin-
itesimal nearly Kähler deformations. It is isomorphic to the Lie algebra of SU(3).
In fact, let h1, h2, h3 be the standard basis of the Lie algebra of the maximal
torus in U(3) and let e1, . . . , e6 be the usual real root vectors of su(3). Then
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ω := e12 − e34 + e56 and Ψ+ := e136 + e246 + e235 − e145 define left-invariant forms
which project to the flag manifold F3 = U(3)/T 3 and define the standard nearly
Kähler structure of F3. For any ξ ∈ su(3) let X be the right-invariant vector field
defined by ξ. Then the functions vi := g(X,hi), i = 1, 2, 3, where g is minus the
Killing form of U(3), project to F3 and it can be shown by direct calculations that

φ := v1e56 − v2e36 + v3e12

is a co-closed, primitive (1, 1)-form satisfying ∆φ = 12φ. Hence φ defines an
infinitesimal nearly Kähler deformation.
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Evolution of G2-structures

Frederik Witt

(joint work with Hartmut Weiß)

Following [7] and [8] we discuss the evolution of G2-structures along the negative
gradient flow of a natural energy functional.

The Dirichlet functional. We assume throughout that M is compact, oriented
and spin. Then Ω+, the subset of G2-forms inside Ω3(M) which are compatible
with the given orientation, is non-empty. The quantities associated with the choice
of ω ∈ Ω+ such as a Riemannian metric will be written as gω etc.. We define the
Dirichlet functional by

D : Ω+ → R, ω 7→ 1
2

∫

M

(|dω|2gω + |δωω|2gω)volgω ,

where δω denotes the formal adjoint of d. This functional is invariant under
Diff(M)+, the orientation preserving diffeomorphisms. Since Ω+ is open, D can
be differentiated. The only critical points are absolute minimisers, that is, the
torsion-free forms characterised by dω = 0 and δωω = 0.

A natural way of deforming G2-structures is to consider their evolution under
the negative gradient flow of D to which we refer as the Dirichlet flow. The
Diff(M)+-invariance gives rise to a non-trivial kernel of the principal symbol of
the linearised gradientDωgradD. However, the symbol is non-negative with kernel
tangent to the Diff(M)+-orbits. Along the lines of deTurck’s trick for Ricci flow [1],
we define a geometrical perturbation Pω̃ of −gradD depending on a fixed form
ω̃ ∈ Ω+. This new operator is strongly elliptic so that standard parabolic theory
applies to give
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Theorem 3 (Short-time existence and uniqueness). Given a G2-form ω0 in Ω+

there exists ǫ > 0 and a smooth family ωt ∈ Ω+ for t ∈ [0, ǫ] such that

∂

∂t
ω = −gradD(ω), ω(0) = ω0.

Furthermore, for any two solutions ωt and ω̃t we have ωt = ω̃t whenever defined.

The moduli space. Next let ω̃ be a torsion-free G2-form, and assume for sim-
plicity thatM satisfies in addition H1(M,R) = 0. Then Pω̃(ω) = 0 if and only if ω
is torsion-free and ω is perpendicular to the tangent space of the orbit of ω̃ under
Diff(M)0, the diffeomorphisms isotopic to the identity. Put differently, P−1

ω̃ (0)
defines a slice near ω̃ for the Diff(M)0-action on X = {ω ∈ C∞(Λ3

+M) | dω =
0, δωω = 0}. Hence the G2-analogon of Teichmüller space MG2

= X/Diff(M)0 is
a smooth manifold. Further, a Hodge theoretic argument shows that Tω̃P

−1
ω̃ (0) is

isomorphic with H3(M,R). In this way we recover the

Theorem 4 (Joyce [5]). The moduli space of torsion-free G2-structures MG2
is

a smooth manifold of dimension b3.

Stability. Let us now examine the question of long-time existence and conver-
gence. One can show that if ωt exists for all times then limt→∞ D(ωt) = 0, but ωt

might not converge (cf. [8, Corollary 2.3] and the discussion thereafter). On the
other hand, consider a so-called G2-soliton which is a G2-form Ω such that

−gradD(ω) = µω + LXω

for µ ∈ R and X ∈ Γ(TM). Examples are provided by so-called weak holonomy
or nearly parallel G2-manifolds [2, 3] which are characterised by dω = c ⋆gω ω for
a constant c 6= 0. One can show that if Ω is not torsion-free, then a G2-soliton is
necessarily a shrinker, i.e. LXΩ = 0 and µ < 0. The Dirichlet flow starting in such
a soliton necessarily dies in finite time since the total volume of (M, gωt

) shrinks
to zero. However, in the vicinity of a torsion-free form, we can show:

Theorem 5 (Stability). Let ω̃ ∈ Ω+ be a torsion-free G2-form. For initial condi-
tions sufficiently C∞-close to ω̃ the Dirichlet flow exists for all times and converges
modulo diffeomorphisms to a torsion-free G2-form.

The key properties of the flow we use here are “linear stability”, i.e. D2
ω̃D ≥ 0

and the smoothness of the moduli space. Unlike for similar stability theorems for
Ricci flow (cf. [6]) these properties hold automatically and need not to be imposed.
A main ingredient for longtime existence is uniform existence of the Dirichlet flow
on [0, 1] for starting points close to ω̃. This is done by an implicit function theorem
argument in the vein of [4]. Convergence modulo diffeomorphisms comes from the
analysis of the perturbed flow ∂tω = Pω̃ωt and parabolic regularity.
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The asymptotic geometry of the Higgs bundle moduli space over a

Riemann surface

Jan Swoboda

(joint work with Rafe Mazzeo, Hartmut Weiß, and Frederik Witt)

The moduli space of Higgs bundles, introduced by Hitchin [5] and Simpson [10],
is a well investigated object in algebraic geometry and topology. In our talk
we discussed our recent results in [7, 8] which concern aspects of its large scale
Riemannian geometry. Hitchin showed that there exists a natural hyperkähler
metric on the smooth locus of the moduli space; in many cases the moduli space
has no singularities and the metric is complete. However, its asymptotics are still
not well understood. We explained our results concerning the degeneration profile
of points in the moduli space representing configurations with large Higgs field.

There are several reasons to study this metric carefully. The first is to under-
stand the L2-cohomology of this space. Hausel proved [3] that the image of the
compactly supported cohomology in the ordinary cohomology vanishes, leading
him to conjecture that the L2-cohomology of the Higgs bundle moduli space must
vanish. This was made in analogy with Sen’s conjecture about the L2-cohomology
of the monopole moduli spaces [9]. Hitchin proved a rather general result [6] show-
ing that under conditions satisfied in both these cases, the L2-cohomology vanishes
outside the middle degree. Hausel’s conjecture remains open. Following, for ex-
ample, the approach of [4], an understanding of this middle-degree cohomology
relies on some finer knowledge of the metric structure at infinity.

However, this is part of a much broader picture concerning hyperkähler metrics
on algebraic completely integrable systems. Indeed, the work of Gaiotto, Moore
and Neitzke [1, 2] hints at an asymptotic development of this hyperkähler metric
g, where the leading term is a so-called semiflat metric and the correction terms
decay at increasingly fast exponential rates. The exponents and coefficients of
these correction terms are described in terms of expressions coming from a wall-
crossing formalism, but these are unfortunately a priori divergent. Clarifying this
circle of ideas is a high priority.
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The goal of this talk was to discuss the main results of [7], which constructs
a dense open subset near infinity in the moduli space of Hitchin’s self-duality
equations. The degeneration behavior of generic solutions is captured by the notion
of limiting configurations. These constitute a family of singular solutions to the
self-duality equations (1) below which give a geometric realization of the elements
of the top stratum in the compactification of the moduli space. As a second result,
we presented a desingularization theorem for limiting configurations.

Let Σ be a closed Riemann surface, i.e. a compact (orientable) surface endowed
with a complex structure. We assume that the genus γ of Σ is at least 2. We also fix
a complex vector bundle E → Σ of rank r = r(E) and degree d = d(E). The pair
(r, d) determines E as a smooth bundle. We furthermore fix a hermitian metric
h on E and consider the system of nonlinear PDEs, called Hitchin’s self-duality
equations

{
∂̄AΦ = 0,

F⊥
A + [Φ ∧ Φ∗] = 0,

(1)

where A is a unitary connection on (E, h) inducing a fixed connection on the
determinant of E, F⊥

A denotes the pure-trace part of its curvature, and Φ ∈
Ω1,0(Σ,End0(E)) is a so-called Higgs field. Clearly, solutions (A,Φ) of (1) are
invariant under special unitary gauge transformations g ∈ G(E, h). To explain our
results, we specialize to the case r = 2 and odd degree d and define the moduli
space

Md = {(A,Φ) | (1)}/G(E, h).
It is a noncompact smooth manifold of dimension 12(γ − 1). The map

det: Md → H0(Σ,K2
Σ), [(A,Φ)] 7→ detΦ

to the vector space H0(Σ,K2
Σ) of holomorphic quadratic differentials on Σ is

proper. It gives rise to the so-called Hitchin fibration, the typical fibre being
a half-dimensional complex torus. To motivate the kind of behaviour one should
expect of solutions with large Higgs field, we replace Φ in the second equation of
(1) by tΦ, where t > 0 is a large parameter. The limit of solutions where t → ∞
is described by the decoupled limiting equations

{
∂̄AΦ = 0,

F⊥
A = [Φ ∧Φ∗] = 0.

(2)

Theorem 6 (Limiting configurations). For a holomorphic quadratic differential
q ∈ H0(Σ,K2

Σ) with only simple zeroes , let Σ× = Σ \ q−1(0). Then there exists
a 6(γ − 1)-torus of solutions (A,Φ) of (2) such that detΦ = q, (A,Φ) is smooth
on the punctured surface Σ×, and A has a pole of order 1 in the points of q−1(0).
After a modification by a unitary gauge transformation if necessary, (A,Φ) equals
in a neighborhood of q−1(0) the singular model solution

(3) Afid
∞ =

1

8

(
1 0
0 −1

)(
dz

z
− dz̄

z̄

)
, Φfid

∞ =

(
0 |z| 12
z

|z|
1
2

0

)
dz.
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To explain our next result, we point out that the singular local solution in (3)
can be desingularized; i.e. there exists a family of smooth solutions (Afid

t ,Φfid
t )

on the unit disk D ⊆ C which converges to (Afid
∞ ,Φfid

∞ ) as t → ∞. Rescaling

ρ = 8
3 t|z|

2
3 , it admits a rather explicit description in terms of a single function

ψ(ρ) : [0,∞) → R which arises as solution to a Painlevé III equation. By gluing
in these special solutions (Afid

t ,Φfid
t ) to a limiting configuration (A,Φ) we obtain

smooth solutions to Eq. (1) with “large” Higgs fields.

Theorem 7 (Glueing). For each limiting configuration (A∞,Φ∞) as in Theorem
6 and sufficiently large parameter t > 1, there exists a solution (At, tΦt) of Eq. (1)
such that

(At,Φt) → (A∞,Φ∞)

at an exponential rate, locally uniformly on Σ×. Conversely, any solution (A, tΦ)
of (1) such that detΦ has only simple zeroes is of this form, provided t > 1 is
sufficiently large.

We furthermore explained an extension of this last theorem to the case of a
general holomorphic quadratic differential q using a related family of model solu-
tions as obtained in [8]. Finally, it was described how these results may help in
understanding asymptotic properties of the hyperkähler metric on Md.
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