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Abstract. Geometric topology has seen significant advances in the under-
standing and application of infinite symmetries and of the principles behind
them. On the one hand, for advances in (geometric) group theory, tools from
algebraic topology are applied and extended; on the other hand, spectacular
results in topology (e.g., the proofs of new cases of the Novikov conjecture or
the Atiyah conjecture) were only possible through a combination of methods
of homotopy theory and new insights in the geometry of groups. This work-
shop focused on the rich interplay between algebraic topology and geometric
group theory.
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Introduction by the Organisers

Geometric topology has seen significant advances in the understanding and appli-
cation of infinite symmetries and of the principles behind them. This workshop
focused on the rich interplay between algebraic topology and geometric group the-
ory. The research fields of the 53 participants of the workshop covered homotopy
theory, manifold topology, low-dimensional topology, geometric group theory, and
geometry of topological groups.

Some of the main topics of the workshop were:

• Variations of hyperbolicity
• Rigidity versus flexibility of geometry and topology
• Homological properties of manifolds
• Bounded cohomology and its applications
• Classification of groups and their representations by geometric means
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This wide range of interests is united on several levels: The type of problems
considered and aspired goals of research are driven by related ideas (e.g., rigid-
ity phenomena). Also the tools and techniques are shared (e.g., the language of
algebraic topology, probabilistic methods). Moreover, the topics listed above are
interrelated in various ways (e.g., classically, hyperbolicity is a strong indicator for
rigidity). The workshop offered the opportunity to strengthen the bonds between
these fields.

The formal part of the programme consisted of twenty regular research talks
and a Gong Show of 10 minutes talks by eleven PhD students and recent postdocs.
This formal part was complemented by a variety of lively discussions in smaller
groups.

On the one hand, the research talks communicated and documented the cur-
rent state of the art. On the other hand, many of the talks also advertised open
problems linking topology and group theory. For example, Ian Leary proposed
further variations of the question by Eilenberg and Ganea on the relation between
cohomological dimension and geometric dimension of groups; and Kevin Schreve
proposed the action dimension conjecture bounding the minimal dimension of a
contractible manifold on which a group acts by twice the L2-cohomological dimen-
sion. This is a relative of the Singer conjecture, which predicts concentration of
L2-cohomology in middle degree of an aspherical manifold. Micha l Marcinkowski
advertised new candidates (constructed via Davis’ asphericalization construction
and surgery) for counterexamples of Gromov’s macroscopic dimension conjecture
(which bounds the macroscopic dimension of an n-dimensional manifold with pos-
itive scalar curvature by n− 2).

We will now describe the main topics and some selected recent achievements
that were discussed during this workshop in more detail:

Extended notions of hyperbolicity. Because of its strong relation with rigidity,
many attempts have been made in the past to vary the notion of hyperbolicity.
A particularly versatile generalisation of hyperbolicity for groups is acylindrical
hyperbolicity, introduced by Denis Osin. Recently, Denis Osin (in joint work with
Hull) showed that acylindrically hyperbolic groups with trivial finite radical are
highly transitive, and hence do not satisfy mixed identities (a notion related to
universal equivalence of groups). Another type of variation of hyperbolicity was
proposed by Bogdan Nica (in joint work with Jan Spakula): They introduced
superbolicity as a concept conveniently interpolating between CAT(−1)-spaces
and Green metrics on hyperbolic groups on the one hand and good hyperbolicity
and strong bolicity on the other hand.

Rigidity versus flexibility of geometry and topology. Rigidity phenomena in
geometry, topology, and group theory have significantly shaped and fused these
fields. A prominent example is the Baum-Connes conjecture connecting these fields
via operator algebras. Using a graphical small cancellation technique and proba-
bilistic tools, Damian Osajda constructed finitely generated groups that contain
isometrically embedded (into specific Cayley graphs) expanders. Topologically,
these groups lead to examples of aspherical manifolds whose fundamental groups
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contain quasi-isometrically embedded expanders. Groups of this type provide an
interesting source of counterexamples, e.g., in the context of the Baum-Connes
conjecture.

Romain Tessera studied a new geometric relation on infinite groups that lies
between the (purely algebraic) commensurability and the (very flexible) quasi-
isometry and showed its success on generalized Baumslag-Solitar groups.

L2-Invariants and their applications. L2-invariants, in particular L2-Betti num-
bers, L2-torsion, and Novikov-Shubin invariants are a powerful and well-established
toolbox of invariants. Many aspects of them, on the other hand, still remain mys-
terious.

 Lukasz Grabowski presented the first counterexamples to a conjecture of Lott
and Lück; showing that there are manifolds such that some of the Novikov-Shubin
invariants are equal to 0. This is particularly important in light of the fact that
their positivity used to be a standard assumption in the treatment of secondary
L2-invariants, in particular the L2-torsion.

On the other hand, by now it is known that this condition can be replaced
by the much weaker condition of “L2-determinant class”, which is known to be
satisfied in many cases. The development and use of L2-torsion therefore remains
meaningful and is vigorously carried out.

Wolfgang Lück reported on a new development here: the twisted L2-torsion
function, which is a powerful invariant. He, and also Stefan Friedl, presented a
host of structural and computational results of this new invariant, in particular
for 3-manifolds. It turns out to recover the hyperbolic volume, also the Thurston
norm, and the information contained in the classical Alexander polynomial and
modern twisted version of it. Stefan Friedl, on the other hand, explained an explicit
and easy combinatorial algorithm to compute the Thurston norm for certain classes
of 3-manifolds; This algorithm is based on associated polyhedra that also play a
role in the calculation of the L2-torsion function.

Bounded cohomology and its applications. Bounded cohomology in higher de-
grees has remained rather mysterious in the past decades. However, in recent
years, a young community has evolved and taken first, promising steps to ap-
proach bounded cohomology in higher degrees. For example, Tobias Hartnick and
Andreas Ott related problems in bounded cohomology to partial differential equa-
tions and proved that continuous bounded cohomology of SL(2,R) in degree four
is trivial, thereby confirming a conjecture of Monod in a special case. Michelle
Bucher-Karlsson (in joint work with Burger and Iozzi) adapted an explicit con-
struction by Goncharov to prove that the comparison map between continuous
bounded cohomology and continuous cohomology of PSL(n,C) is an isomorphism
in degree 3, thereby proving a classical conjecture by Dupont in a special case.
This result is not only interesting in its own right, but also has applications to
rigidity of volume representations of hyperbolic 3-manifolds. Both of the above
approaches to continuous bounded cohomology have the potential to generalise
to further higher degrees. For discrete groups, Roberto Frigerio (in joint work
with Pozzetti and Sisto) extended the framework of quasi-morphisms to higher
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degrees and combined this with hyperbolically embedded subgroups, which gives
interesting inheritance results for bounded cohomology in higher degrees.

All of these topics are also related to the classification of groups and their
representations by geometric means.

The Mathematische Forschungsinstitut Oberwolfach provided an excellent en-
vironment and inspiring atmosphere for this workshop and we are grateful for its
hospitality.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Kazhdan projections in Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Bogdan Nica (joint with Ján Špakula)
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Abstracts

Group laws for finite simple groups

Andreas Thom

(joint work with Gady Kozma)

We provide new bounds for the divisibility function of the free group F2 and
construct short laws for the symmetric groups Sym(n), see [5] for details. The
construction is random and relies on the classification of the finite simple groups.

Let Γ be a finitely generated group and let us consider some subset S ⊂ Γ such
that Γ = 〈S〉 with |S| < ∞ and S = S−1. Each element of Γ can be written as
s1 . . . sk in many different ways. We denote by |γ|S the length of the shortest such
word, i.e., the distance of γ and e in the Cayley graph Cay(Γ, S).

Definition 1 (divisibility function). In the situation above, we set:

(1) dΓ(γ) = inf{|Γ : Λ|
∣∣ γ /∈ Λ ≤ Γ}, where γ ∈ Γ.

(2) DΓ(k) = max{dΓ(γ)
∣∣ |γ|S = k}

An easy consequence of the Prime Number Theorem gives the following:

Observation 2. DZ(m) ≈ logm.

The study of the function DΓ for a different finitely generated groups is usually
considerably more complicated and provides a challanging task. Bogopolski [4]
asked whether DF2(m) ≈ logm also holds. However, this was answered negatively
in work of Bou-Rabee and McReynolds:

Theorem 3 (Bou-Rabee and McReynolds, [1]).

DF2(m) ≥
log(m)2

C log(log(m))
,

where C is a large positive constant.

Throughout, we use the letter C to denote a constant, which is usually large and
might change from statement to statement. We are able to improve this bound
considerably:

Theorem 4 (see [5]). There exist C > 0 such that the following holds for all m:

DF2(m) ≥ exp

((
log(m)

C log(log(m))

) 1
4

)
.

Using the statement of the famous conjecture of Babai (not yet proved), that
the diameter of Sym(n) is polynomial in n, we also proved:

Theorem 5 (see [5]). Babai’s conjecture implies that there exists C > 0 such that
the following holds for all m:

DF2(m) ≥ exp

(
log(m)

C log(log(m))

)
= m

1
C log(log(m)) .
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The study of the functions dF2 and DF2 is closely related to the study of laws
for the symmetric group. Our main result in this direction is the following:

Theorem 6. The length of the shortest non-trivial law for Sym(n) is less than

exp(C log4 n log logn).

A key technical ingrediant is the following result on the diameter of Cayley
graphs of symmetric groups.

Theorem 7 (Helfgott-Seress, see [3]). If σ and τ generate Sym(n), then

diam(Cay(Sym(n), σ±1, τ±1)) ≤ exp(C log4 n log logn).

Babai conjectured that an even better bound can be given for the diameter of
the symmetric group. This polynomial bound can be used to prove our second
theorem. The only nontrivial lower bound for the length of a law for Sym(n) is
2n and was proved by Buskin [2].
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Kazhdan projections in Banach spaces

Piotr W. Nowak

(joint work with C. Druţu)

A Kazhdan projection is a central idempotent p in the maximal group C∗-algebra
C∗

max(G) of G such that for every unitary representation π of G on a Hilbert
space H the image π(p) ∈ B(H) is the orthogonal projection for H onto the
subspace of invariant vectors Hπ ⊆ H . It was proved by Akemann and Walters [1]
that the existence of a Kazhdan projection characterizes Kazhdan’s property (T ).
Another proof of this fact was given by Valette [7]. Kazhdan projections have many
applications, in particular they are the source of the few known counterexamples
to certain versions of the Baum-Connes conjecture. The reason is that K-theory
classes represented by projections of Kazhdan-type usually do not live in the image
of the Baum-Connes assembly map. Nevertheless, Kazhdan projections have been
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considered mysterious objects and no explicit constructions of such projections
were known.

Our main result is a new method to construct Kazhdan projections in the gen-
eral setting of uniformly convex Banach spaces. The main tools are random walks
and the associated Markov operators, for which we provide new estimates and
convergence results. For a locally compact group G consider an (linear) isometric
representation π on a uniformly convex Banach space E. The subspace of invariant
vectors Eπ has a natural π-invariant complement Eπ, so that E = Eπ ⊕Eπ [2, 3].
The Kazhdan constant of π relative to a compact generating set S is the number
infv∈Eπ

sups∈S ‖πsv − v‖ and we say that π has a spectral gap if this constant is
positive. For a certain large class of admissible probability measures µ on G we
consider the Markov operator Aµ

π =
∫
G
πgvdµ.

We first explain the quantitative relation between projections onto invariant
vectors and spectral gaps in the setting of uniformly convex spaces and in particular
prove

Theorem 1. Let µ be an admissible measure. If a representation π as above has
a positive Kazhdan constant then the restriction of the Markov operator to Eπ

satisfies ‖Aµ
π|Eπ

‖ ≤ λ < 1, where λ depends only on the Kazhdan constant of π,
the modulus of uniform convexity of E and the measure µ.

Moreover, the projection Pπ : E → Eπ along Eπ is given by the formula

Pπ = I −

(
∞∑

n=0

(Aµ
π)n

)
(I −Aµ

π).

and Pπ = limn→∞ (Aµ
π)n, where the convergence is uniform for a family F of

isometric representations as long as λ above is uniform for all representations in
F .

A quantitative converse to the above holds as well. From the above theorem we
derive an explicit construction of Kazhdan projections in various group Banach
algebras. Let F be a family of isometric representations of G on a uniformly convex
family of Banach spaces. Let Cc(G) denote the convolution algebra of compactly
supported continuous functions on G. For f ∈ Cc(G) define

‖f‖F = sup
π∈F

‖π(f)‖

and let CF (G) be the Banach algebra obtained as a completion of Cc(G) in the
above norm. A Kazhdan projection in CF (G) is then a central idempotent p ∈
CF (G) such that π(p) = Pπ for every π ∈ F .

Theorem 2. There exists a Kazhdan projection in CF (G) if and only if there is
a uniform positive lower bound on the Kazhdan constants for all π ∈ F .

This construction of Kazhdan projections is new in particular in the setting of
Hilbert space and property (T ), where F is taken to be the collection of all unitary
representations of G. It also allows to give a direct comparison of various versions
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of property (T ) in the context of Banach spaces: properties (TE), FE studied in
[2] and Lafforgue’s reinforced Banach property (T ), introduced in [5].

Kazhdan projections can be viewed as invariant means in the setting of property
(T ). We apply them to show a natural generalization of property (τ) to the context
of a uniformly convex Banach space E and show that it is equivalent to the fact
that the related family of Cayley graphs of finite quotients forms a family of E-
expanders. We also obtain results in ergodic theory, where we apply Kazhdan
projections to a question posed by Kleinbock and Margulis on shrinking target
problems.

Finally, we show a new construction of non-compact ghost projections for
warped cones, a class of metric spaces constructed by Roe using an action of group
on a compact space [6]. Ghosts are certain operators on Hilbert modules, that are
locally invisible at infinity, yet are not compact. Such ghost projections are known
to give rise to K-theory classes that are obstructions to the coarse Baum-Connes
conjecture. Their existence was previously established only for expanders, Willett
and Yu asked for new examples.

Theorem 3. Let G be a finitely generated group acting ergodically on a compact
metric probability space M by measure preserving Lipschitz homeomorphisms. If
the corresponding unitary representation of G on L2(M) has a spectral gap then
the warped cone OG(M) has a non-compact ghost projection, which is a limit of
finite propagation operators.

We conjecture that the coarse Baum-Connes conjecture fails for warped cones
provided by the above theorem. As a particular example consider the action of
certain free subgroups G = F2 on M = SU(2). The spectral gap property for
many such subgroups was established by Bourgain and Gamburd [4].

In relation to the above theorem Guoliang Yu posed the following question: is
there an action with a spectral gap such that the corresponding warped cone does
not contain a coarsely embedded sequence of expanders?
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Enhanced hyperbolicity: why and how

Bogdan Nica

(joint work with Ján Špakula)

Enhanced hyperbolicity. It is a well-known fact that CAT(−1) spaces are
Gromov hyperbolic. Both are metric notions of negative curvature, the difference
being that the CAT(−1) condition is sharp whereas hyperbolicity is coarse. A
simple illustration of this difference is the following: in CAT(−1) spaces, pairs of
points are joined by unique geodesics; in hyperbolic spaces, there may be several
geodesics but they are uniformly close.

Enhanced hyperbolicity is an informal term denoting a middle ground between
the sharp and the coarse. More specifically, though still not entirely precise, we
would like hyperbolic groups to admit geometric actions on hyperbolic spaces
that have additional CAT(−1) features. Our concrete motivations come from the
analytic theory of hyperbolic groups, though somewhere in the background is the
old and still unresolved foundational question whether hyperbolic groups admit
geometric actions on CAT(−1) spaces. Below, we illustrate the analytic uses of
enhanced hyperbolicity in two instances. But before we get to imposing additional
demands, we should be ready to make some concessions. Namely, we give ourselves
the flexibility of working with roughly geodesic hyperbolic spaces. A metric space
X is said to be roughly geodesic if there is a constant C ≥ 0 so that, for any
pair of points x, y ∈ X , there is a (not necessarily continuous) map γ : [a, b] → X
satisfying γ(a) = x, γ(b) = y, and |s− s′| − C ≤ |γ(s), γ(s′)| ≤ |s− s′| + C for all
s, s′ ∈ [a, b].

Why? After the deep and groundbreaking work of Vincent Lafforgue, the res-
olution of the Baum - Connes conjecture for hyperbolic groups hinged on the
following geometric ingredient: every hyperbolic group Γ admits a geometric ac-
tion on a roughly geodesic, strongly bolic hyperbolic space. A roughly geodesic
hyperbolic space is said to be strongly bolic if for every η, r > 0 there exists R > 0
such that |x, y|+|z, t| ≤ r and |x, z|+|y, t| ≥ R imply |x, t|+|y, z| ≤ |x, z|+|y, t|+η.
Mineyev and Yu [5] show that, indeed, every hyperbolic group Γ can be endowed
with an ‘admissible’ metric - that is, a metric which is Γ-invariant, quasi-isometric
to the word metric, and roughly geodesic - which is furthermore strongly bolic.

In a different direction, the geometric ingredient needed in [6] is the following:
every hyperbolic group Γ admits a geometric action on a roughly geodesic, good
hyperbolic space X . One can then obtain a proper affine isometric action of Γ on
an Lp-space associated to the double boundary ∂X × ∂X . Here, we say that a
hyperbolic space X is good if the following two properties hold: i) the Gromov
product (·, ·)o extends continuously from X to the bordification X ∪ ∂X for each
basepoint o ∈ X , and ii) there is some ǫ > 0 such that exp(−ǫ (·, ·)o) is a metric on
the boundary ∂X , again for each basepoint o ∈ X . The concrete X used in [6] is
Γ itself, equipped with an ‘admissible’ metric which is furthermore good. Such a
metric was constructed by Mineyev in [3, 4], and it is a slightly improved version
of the metric used by Mineyev and Yu in [5].
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We note that CAT(−1) spaces are strongly bolic (this can be checked directly,
and it even holds for CAT(0) spaces) and good (this is a theorem of Bourdon [1]).

How? Our main goal in [7] was to find a metric notion, weaker than the CAT(−1)
condition, that guarantees enhanced hyperbolicity, and such that every hyperbolic
group has a natural ’admissible’ metric satisfying it. Here is our metric notion,
and the results that fulfill our wishes.

Definition 1. A metric space X is superbolic if, for some ǫ > 0, we have

exp(−ǫ (x, y)o) ≤ exp(−ǫ (x, z)o) + exp(−ǫ (z, y)o)

for all x, y, z, o ∈ X .

Theorem 2. A roughly geodesic superbolic space is a good, strongly bolic hyperbolic
space.

Theorem 3. CAT(−1) spaces are superbolic.

Theorem 4. The Green metric arising from a random walk on a hyperbolic group
is superbolic.

Theorem 2 is quantitative: ǫ-superbolic implies ǫ-good, (log 2)/ǫ-hyperbolic,
and strongly bolic with exponential control. In Theorem 3, we show that CAT(−1)
spaces are 1-superbolic; as a corollary, we recover Bourdon’s theorem that CAT(−1)
spaces are 1-good. We also find the best constant of hyperbolicity, in the sense of
Gromov’s original definition, for the hyperbolic plane H2. Quite surprisingly, this
was not known before.

Corollary 5. H2 is log 2-hyperbolic, and this is optimal.

In Theorem 4, the random walk is assumed to be symmetric and supported on
a finite generating subset of the hyperbolic group. The random walk metric, or the
Green metric, on a hyperbolic group is given by the formula |x, y|G = − logF (x, y),
where F (x, y) is the probability that the random walk started at x ever hits y.
It turns out that the Green metric is ‘admissible’. A corollary of Theorem 4 is
the fact that the Green metric is good, and this is a positive answer to a question
raised in [6]. As another corollary, we recover the result of Häıssinsky and Mathieu
[2] that the Green metric is strongly bolic. A third corollary is the following.

Corollary 6. On the boundary of a hyperbolic group, the harmonic measure de-
fined by a random walk equals the Hausdorff probability measure defined by any
Green visual metric.

We find the Green metric to be a simple and natural alternative to the metrics
constructed in [5, 3, 4].
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The conjugation invariant geometry of cyclic subgroups.

Jarek Kędra

Let G be a group generated by a set S which is the union of finitely many conjugacy
classes. Let |g| denote the word norm with respect to S. It is conjugation invariant
and its Lipschitz class does not depend on the choice of a finite set of conjugacy
classes. We are interested in the geometry of cyclic subgoups, and more precisely,
in the growth rate of the sequence |gn|, where g is an element of G.

In the paper [1] we observed that for many classes of groups the sequence |gn|
is either bounded or grows linearly. In other words, the cyclic subgroup generated
by g is either bounded or undistorted (this is in contrast with classical geometric
group theory where other types of growth occur). Such a dichotomy holds for
many classes of groups of geometric origin (eg. braid groups, Coxeter groups,
hyperbolic groups, lattices in solvable Lie groups, lattices in some higher rank
semisimple groups, Baumslag-Solitar groups, right angled Artin groups etc). Since
undistortedness is usually detected by evaluating a homogeneous quasimorphism
there is a stronger dichotomy: a cyclic subgroup is either bounded or dectected by
a homogeneous quasimorphism.

Open problem: Find a finitely presented group which violates either dichotomy.

Muranov found a group generated by two elements with an unbounded but dis-
torted cyclic subgroup. In the paper [2] we proved that the commutator subgroup
of the infinite braid group has an undistorted cyclic subgroup and it is well known
that this group does not admit undbounded quasimorphisms. So this example
violates the stronger dichotomy. This example is a byproduct of the existence of
a quasihomomorphism from braid groups to the concordance group of knots.

The plan of the talk:

• introduction of conjugation invariant word norms and basic facts.
• examples of bounded cyclic subgroups and a trick showing their bounded-

ness (the nicest examples are in braid groups).
• stating the dichotomies, the list of groups satisfying them and the open

problem.
• definition of the quasihomomorphism Ψn : Bn → Conc and its main prop-

erties (it is a quasihomomorphism with respect to the slice genus and it
is Lipschitz with respect to the slice genus and the conjugation invariant
word norm on Bn).
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• examples and applications:
– the example of an unbounded cyclic subgroup in the infinite braid

group (with a proof);
– replation between stable commutator length and the stable slice genus;
– applications to knot theory.
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The Thurston norm via Fox calculus

Stefan Friedl

(joint work with Kevin Schreve and Stephan Tillmann)

Let N be a compact orientable 3-manifold. The Thurston seminorm of a class
φ ∈ H1(N ;Z) = H2(N, ∂N ;Z) is defined as

x(φ) := min
{
χ−(Σ) |Σ ⊆ N properly embedded surface dual to φ

}
.

Here, given a surface Σ with connected components Σ1 ∪ · · · ∪ Σk, we define its

complexity to be χ−(Σ) =
∑k

i=1 max{−χ(Σi), 0}. A class φ ∈ H1(N ;R) is called
fibered if it can be represented by a non-degenerate closed 1-form. By [19] an
integral class φ ∈ H1(N ;Z) = Hom(π1(N),Z) is fibered if and only if there exists
a fibration p : N → S1 such that p∗ = φ : π1(N) → π1(S1) = Z.

Thurston [18] showed that x is a seminorm on H1(N ;Z) which extends to a
seminorm on H1(N ;R). He also considered the norm ball

NN := {φ ∈ H1(N ;R) : x(φ) ≤ 1}

and the corresponding dual norm ball

PN := {v ∈ H1(N ;R) : φ(v) ≤ 1 for all φ ∈ NN}.

He showed that PN is a polytope with integral vertices, i.e. with vertices in
Im{H1(N ;Z)/torsion → H1(N ;R)}. Furthermore, Thurston showed that we can
turn PN into a marked polytope MN which has the property that a cohomology
class φ ∈ H1(N ;R) is fibered if and only if it pairs maximally with a marked
vertex, i.e. if and only if there exists a marked vertex v of MN such that

φ(v) > φ(w) for all v 6= w ∈ PN .

Now let π = 〈x, y | r〉 be a presentation with two generators and one relator,
such that r is cyclically reduced and such that b1(π) = 2. In [9] we associated to
such a presentation π a marked polytope Mπ in H1(π;R) as follows:

(1) We start at the origin and walk across H1(π;Z) = Z2 as dictated by the
word r which we start reading from the left.
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(2) We take the convex hull of all the points reached in (1). We furthermore
mark all vertices which get hit only once by the path in (1).

(3) We take the midpoints of all the squares in the convex hull that touch
a vertex of the polytope defined in (2). We mark a midpoint if all the
corresponding vertices in (2) are marked.

(4) We take the marked polytope corresponding to the set of points in (3) and
denote it by Mπ.

An alternative, more formal definition of Mπ is given in [9] in terms of the Fox
derivatives of r. The main result of [10] says the following.

Theorem 1. Let N be an irreducible, compact, orientable 3-manifold that admits
a presentation π = 〈x, y | r〉 as above. Then

MN = Mπ.

The following corollary gives the statement of the theorem in a slightly more
informal fashion. The method for reading off the fibered classes in H1(N ;R) from
r is closely related to Brown’s algorithm [5].

Corollary 2. If N is an irreducible, compact, orientable 3-manifold that admits a
presentation π = 〈x, y | r〉 as above, then the Thurston norm and the set of fibered
classes can be read off from the relator r.

In the proof of Theorem 1 we use the definition of Mπ in terms of Fox deriva-
tives. This makes it possible to relate the polytope Mπ to the chain complex of
the universal cover of the 2-complex corresponding X to the presentation π. This
makes it possible to study the ‘size’ of Mπ using twisted Reidemeister torsions of
X . These twisted Reidemeister torsions agree with twisted Reidemeister torsions
of N since X is simple homotopy equivalent to N .

In the following we denote by PN and Pπ the polytopes MN and Mπ without
the markings. At this point the proof of Theorem 1 breaks up into three parts:

(1) We first show that PN ⊂ Pπ. Put differently, we need to show that Pπ is
‘big enough’ to contain PN . We show this using the main theorem of [11]
which says that twisted Reidemeister torsions detect the Thurston norm
of N . This result in turn relies on the work of Agol [1], Liu [14], Przytycki-
Wise [16, 15] and Wise [21] which says in this context that Agol’s virtual
fibering theorem [1] applies.

(2) Next we need to show the reverse inclusion Pπ ⊂ PN . This means that
we need to show that Pπ is ‘not bigger than necessary’. At this stage it is
crucial that r is cyclically reduced. By [20] this implies that all summands
in the Fox derivative ∂r

∂x
are distinct elements in the group ring Z[π]. Using

the fact that π1(N) is residually torsion-free elementary-amenable (which
is a consequence of the aforementioned papers [1, 2, 14, 16, 15, 21] and a
result of Linnell–Schick [13]) and using the non-commutative Reidemeister
torsions of [6, 8, 12] we show that indeed Pπ ⊂ PN .

(3) Finally we need to show that the markings of MN and Mπ agree. We
prove this using Novikov-Sikorav homology [4, 17].
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Extension of higher cocycles and higher degree bounded cohomology

Roberto Frigerio

(joint work with Maria Beatrice Pozzetti, Alessandro Sisto)

Bounded cohomology of discrete groups is very hard to compute. For example,
as observed in [6], there is not a single countable group G whose bounded coho-
mology (with trivial coefficients) is known in every degree, unless it is known to
vanish in all positive degrees (this is the case, for example, of amenable groups).
Nevertheless, since Gromov’s foundational paper [4] appeared in 1982, bounded
cohomology has proven to be a powerful tool in several areas, from rigidity theory
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for representations to the study of topological invariants of manifolds, from the
study of characteristic classes to geometric group theory (see e.g. [6] for a survey).

Let us briefly recall the definition of bounded cohomology. Let G be a (discrete)
group. We denote the complex of cochains on G (with trivial coefficients) by
(C∗(G), δ), where Cn(G) =

{
ϕ : Gn+1 → R

}
and δ is the usual differential. If

ϕ ∈ Cn(G), we say that ϕ is G-invariant if ϕ(g0, . . . , gn) = ϕ(g−1g0, . . . , g
−1gn)

for every (g0, . . . , gn) ∈ Gn+1, g ∈ G. Moreover, the norm of ϕ is defined by

‖ϕ‖∞ = sup{|ϕ(g0, . . . , gn)| | (g0, . . . , gn) ∈ Gn+1} ∈ [0,∞] .

We denote by Cn
b (G) ⊆ Cn(G) the subspace of bounded cochains, and by Cn(G)G,

Cn
b (G)G the subspaces of invariant (bounded) cochains. Then, the (bounded)

cohomology of G is just the cohomology of the complex C∗(G)G (resp. C∗
b (G)G),

and it is denoted by H∗(G) (resp. H∗
b (G)). The inclusion of bounded cochains

into ordinary cochains induces a map in cohomology, whose kernel is called exact
bounded cohomology of G, and denoted by EH∗(G).

Of course H0
b (G) = H0(G) = R for every group G, while H1

b (G) may be iden-
tified with the spaces of bounded homomorphisms of G into R, so H1

b (G) = 0
for every group G. Several interesting phenomena already occur in degree 2:
roughly speaking, degree-2 bounded cohomology seems to vanish in non-negative
curvature, while tends to be infinite-dimensional in negative curvature. We have
already mentioned that H2

b (G) = 0 for every amenable group, while a recent result
by Hull and Osin [5] ensures that dimH2

b (G) = ∞ whenever G is acylindrically
hyperbolic. Notice that acylindrically hyperbolic groups provide a very large class
of groups displaying a negatively curved behaviour: for example, non-elementary
(relatively) hyperbolic groups, mapping class groups of compact hyperbolic sur-
faces and Out(Fn), n ≥ 2, are acylindrically hyperbolic. We refer the reader
to [7] for the definition and a discussion of the main properties of acylindrically
hyperbolic groups.

In degree 2, non-trivial bounded cohomology classes may be constructed by
combinatorial and geometric methods by explicitly exhibiting quasi-morphisms
(see below). This is no more true in degree 3, where negative curvature plays an
even more explicit role. Let M be a complete pinched negatively curved Riemann-
ian n-manifold. The volume form of M defines a bounded coclass in Hn

b (M), that
translates in turn into an element ωM ∈ Hn

b (π1(M)): bounded cohomology may be
defined also for topological spaces, and the isomorphism Hn

b (X) ∼= Hn
b (π1(X)) still

holds for any aspherical space X (thanks to the very same argument which works
in the case of ordinary cohomology) and even for any possibly non-aspherical CW-
complexes (thanks to a deep result by Gromov). Recall that the n-manifold M is
closed at infinity if, for every ε > 0, there exists a compact n-submanifold with
boundary Mε ⊆ M such that vol(∂Mε)/vol(M) < ε (i.e. if the Cheeger constant
of M vanishes). It is a remark by Gromov that, if M is pinched negatively curved
and closed at infinity, then ωM ∈ Hn

b (M) is non-trivial. This applies for example
when M is the infinite cyclic covering of the figure-eight knot complement: in this
case, M is 3-dimensional, negatively curved and closed at infinity, and π1(M) is
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isomorphic to the free group F2: therefore, H3
b (F2) 6= 0. In fact, an argument

by Soma [8] shows that by suitably perturbing the volume form of M many lin-
early independent bounded coclasses may be exhibited, so that dimH3

b (F2) = ∞.
Notice that Hn

b (F2) is unknown for every n ≥ 4. A recent result by Bowen [1],
however, shows that F2 cannot occur as the fundamental group of any complete
hyperbolic n-manifold which is closed at infinity, provided that n is even and big-
ger than 3. Therefore, Soma’s strategy does not seem too promising in order to
prove non-vanishing results for Hn

b (F2), n ≥ 4. Our main result generalizes Soma’s
result to the wide class of acylindrically hyperbolic groups mentioned above:

Theorem 1 ([3]). Let G be acylindrically hyperbolic. Then dimEH3
b (G) = ∞.

A result by Dahmani, Guirardel and Osin ensures that any acylindrically hy-
perbolic group contains a hyperbolically embedded copy of F2 ×K for some finite
group K (see [2] for the definition of hyperbolically embedded subgroup). There-
fore, we may deduce Theorem 1 from the following:

Theorem 2 ([3]). Let H be a hyperbolically embedded subgroup of G. Then the
restriction EHn

b (G) → EHn
b (H) is surjective for every n.

Let us briefly describe the proof of Theorem 2. For every group G, we define
the space of n-quasi-cocycles as follows:

QZn(G) = {ϕ ∈ Cn(G) | δnϕ ∈ Cn+1
b (G)} .

Roughly speaking, quasi-cocycles are those cochains whose differential is quasi-
null. By the very definitions, any element in EHn

b (G) is represented by the
coboundary of an invariant quasi-cocycle, and it is an easy exercise to show that
the kernel of the map QZn(G) → EHn+1

b (G) is given by Zn(G) + Cn
b (G). There-

fore, we say that a quasi-cocycle is trivial if it belongs to Zn(G) + Cn
b (G), and

we observe that EHn+1
b (G) is isomorphic to the space of n-quasi-cocycles, modulo

the trivial ones.
In degree 2, quasi-cocycles are usually called quasi-morphisms, and have been

widely studied. As mentioned above, many non-vanishing results concerning the
second bounded cohomology of negatively curved groups were obtained by various
authors via the construction of non-trivial quasi-morphisms.

We deduce our Theorem 2 from the following result, which generalizes to higher
degrees an analogous statement proved by Hull and Osin in the case of quasi-
morphisms [5]:

Theorem 3 ([3]). Let H be hyperbolically embedded in G. Then any alternating
quasi-cocycle on H may be extended to an alternating quasi-cocycle on G.

Our proof exploits several results regarding the geometric properties of suitably
defined projections on the lateral classes of H in G. It is maybe worth mention-
ing that such projections may be reconstructed from our extension of a suitably
chosen 2-quasi-cocycle on H (which has coefficients in a non-trivial Banach H-
module). In a sense, this means that our extension captures the fact that H is
hyperbolically embedded in G, and seems to suggest that it should be possible
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to provide a characterization of hyperbolically embedded subgroups in terms of
bounded cohomology.
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Geometry of random Coxeter groups

Jason Behrstock

Divergence, thickness, and relative hyperbolicity are three geometric properties
which determine aspects of the quasi-isometric geometry of a finitely generated
group. We start with a discussion of the basic properties of these notions and some
of the relations between them. We then survey how these properties manifest in
right-angled Coxeter groups and, using random graphs, describe the geometry of
a “random right-angled Coxeter group”.

Thickness is an N–valued quasi-isometric invariant property due to Behrstock–
Drutu–Mosher which, when it holds for a group, roughly quantifies the extent to
which the group can be built out of subgroups which are direct products [1]. Two
key properties of this notion for the present talk are that it is an obstruction to
relative hyperbolicity and that if this invariant is n then the group has divergence
at most xn+1.

The first results discussed was:

Theorem 1 (Behrstock–Hagen–Sisto; [2]). Any right-angled Coxeter group is
either thick, or else it is hyperbolic relative to a (possibly empty) collection of
thick subgroups, further, such a collection is canonical.

The proof of the above them uses the following result which shows that the
collection of graphs whose corresponding right-angled Coxeter group is thick ad-
mits a purely combinatorial description. Moreover, we note that this result yields
a polynomial-time algorithm to check whether a right-angled Coxeter group is
relatively hyperbolic or thick.
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Theorem 2 (Behrstock–Hagen–Sisto; [2]). The collection, τ , of simplical graphs
for which the corresponding right-angled Coxeter group is thick is the smallest
set of graphs which contains the square and is closed under the following two
constructions:

• Coning: Given any graph Γ ∈ τ and any induced subgraph Λ ⊂ Γ which
is not a clique, then the graph obtained by taking the disjoint union of Γ
and a new point x together with all edges from vertices of Λ to x is in τ .

• Thick unions: Given any graphs Γ1,Γ2 ∈ τ and any graph Λ which is not
a clique, and which is isomorphic to induced subgraphs Λi ⊂ Γi, then the
graph Γ′ obtained by taking the disjoint union of the Γi and identifying
Λ1 with Λ2 is in τ . Further, any graph obtained from Γ′ by adding edges
connecting vertices of Γ1 \ Λ1 to vertices of Γ2 \ Λ2 is in τ as well.

Erdös–Renyi introduced a model for the systematic study of random graphs
[4, 6]. The G(n, p) model of random graphs is a probability space consisting of all
graphs with n vertices and where each pair of vertices is independently declared to
span an edge with probability p. One says that a given graph-theoretic property
holds for graphs in G(n, p), if as n approach infinity the probability that a random
graph with n vertices possesses that property approaches 1. Propeties of graphs
in G(n, p) are widely studied by combinatorialists. Since to any graph Γ, one
naturally associates a right-angled Coxeter group WΓ, we use the G(n, p) model
to study random right-angled Coxeter groups.

We announced the following, which we recently obtained:

Theorem 3 (Behrstock–Hagen–Susse; [3]). For every fixed constant 0 < p < 1
and random graph Γ ∈ G(n, p), the corresponding right-angled Coxeter group WΓ

is thick of order 1.

This result, in particular, implies that the random right-angled Coxeter group
has quadratic divergence. This is particularly interesting since it is known that
there exist right-angled Coxeter groups exhibiting polynomial divergence of arbi-
trary degrees as well as ones with exponential divergence [2, 5]. It is also in contrast
to the situation for “random groups” which Gromov proved are hyperbolic and,
thus have, exponential divergence.
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[1] J. Behrstock, C. Druţu, and L. Mosher. Thick metric spaces, relative hyperbolicity, and
quasi-isometric rigidity. Math. Ann. 344(2009), 543–595.

[2] J. Behrstock, M. Hagen, and A. Sisto. Thickness, relative hyperbolicity, and randomness in

Coxeter groups. arXiv:1312.4789, 2013.
[3] J. Behrstock, M. Hagen, and T. Susse. In preparation, 2015.
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Action dimension of Right-Angled Artin Groups

Kevin Schreve

(joint work with Grigori Avramidi, Michael Davis, Boris Okun)

If a group G has a finite dimensional classifying space BG, then its geometric
dimension, denoted gd(G), is the minimum dimension of a model for BG. Its
action dimension, denoted actdimG, is the minimum dimension of a contractible
manifold M which admits a proper G-action. If G is torsion-free, then any proper
G-action is free, so M/G is a finite dimensional model for BG.

For example, if G is the fundamental group of a closed, aspherical n-manifold,
then actdim(G) = n. Therefore, we are mostly interested in group actions where
the action is not cocompact or the manifold admits some sort of boundary.

Interestingly, actdim(G) has an upper bound of 2 gdG, at least for groups of
type F . To see this, note that if some BG embeds into RN , then a regular
neighborhood of BG in RN is an aspherical manifold; its universal cover is a
contractible manifold on which G acts properly. By a theorem of Stallings [8], we
can choose a model for BG that embeds into R2 gdG.

We compute the action dimension for a large class of right-angled Artin groups.
Recall that for any flag complex L there is a right-angled Artin group AL which
has generators corresponding to vertices and two generators commute if and only
if there is an edge between them.

The standard classifying space BAL for AL is a subcomplex of a torus which
has one S1 factor for each vertex of L. The space BAL is a locally CAT(0) cube
complex of dimension equal to dimL+1. Since this is the cohomological dimension
of AL we have gdAL = dimL + 1.

Our main result relates actdimAL to the homology groups of the flag complex.

Main Theorem. Suppose L is a k-dimensional flag complex.

(1) If Hk(L;Z/2) 6= 0, then actdimAL = 2k + 2 = 2 gdAL.
(2) If Hk(L;Z/2) = 0, and k 6= 2 then actdimAL ≤ 2k + 1.

Remark. For k = 1, this was proved previously by Droms [5].

The motivation for this result comes from L2-cohomology. The ℓ2-Betti numbers

b
(2)
i (G) are well-defined invariants of a group G. The ℓ2-dimension of G, denoted
ℓ2dimG, is defined by

ℓ2dimG := sup{i | b
(2)
i (G) 6= 0}.

In [3], Davis and Okun conjectured that ℓ2-Betti numbers of a group G should
give lower bounds for its action dimension. More precisely, we have the following.

Action Dimension Conjecture. actdimG ≥ 2 ℓ2dimG.

The ℓ2-Betti numbers of AL were computed by Davis–Leary in [2] as follows:

b
(2)
i+1(AL) = bi(L),

where bi(L) denotes the ordinary reduced Betti number, dimQ Hi(L;Q).
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Therefore, our main theorem comes close to providing a proof of the Action
Dimension Conjecture for general right-angled Artin groups.

The proof of the theorem relies on the obstructor dimension methods of Bestv-
ina, Kapovich, and Kleiner [1]. This method relates the action dimension to the
minimum dimension m in which certain finite simplicial complexes can embed
piecewise linearly in Sm, specifically the mod 2 van Kampen obstruction to em-
bedding K into Sm. We quickly review this obstruction.

Let C(K) denote the configuration space of unordered pairs of distinct points
in K, i.e., if ∆ denotes the diagonal in K × K, then C(K) is the quotient of
(K × K) − ∆ by the involution which switches the factors. The double cover
(K ×K) − ∆ → C(K) is classified by a map c : C(K) → RP∞. The van Kampen
obstruction in degree m is the cohomology class νmZ2

(K) ∈ Hm(C(K);Z/2) defined
by

νmZ2
(K) = c∗(wm

1 ),

where w1 ∈ H1(RP∞;Z/2) is the first Stiefel–Whitney class of the canonical line
bundle over RP∞. The class νmZ2

(K) is an obstruction to embedding K in Sm.
We say K is an m-obstructor if νmZ2

(K) 6= 0. The van Kampen dimension of K,
denoted by vkdimK, is the maximum m such that νmZ2

(K) 6= 0.
Here is a special case of the main theorem from [1].

Theorem 1. Let G be a group that admits a Z-structure, and let Z be a Z-
boundary of G. If K embeds into Z, then actdimG ≥ vkdimK + 2.

The idea here is as follows. Suppose that G is of type F and that EG, the
universal cover of BG, has a Z-set compactification. Denote the boundary of this
compactification by ∂∞G. Suppose further that G acts properly on a contractible
n-manifold M which has a Z-set compactification with boundary ∂∞M and that
the equivariant map EG → M extends to an inclusion of Z-set boundaries. (For
example, this is the case, if M is a proper CAT(0)-space and EG is a convex
subspace.) To further simplify the discussion, suppose ∂∞M is homeomorphic to
Sn−1. If K is a finite complex embedded in ∂∞G, then K ⊂ ∂∞G ⊂ ∂∞M = Sn−1.
So, one expects actdimG ≥ vkdimK + 2.

We concentrate on computing the vkdim of a certain finite simplicial complex
OL called the octahedralization of L. The complex OL is constructed by “dou-
bling the vertices of L.” Essentially, OL replaces each n-simplex of L with an
n-octahedron.

It turns out that OL ⊂ ∂∞AL, so we can use vkdimOL to give a lower bound
on actdim(AL). On the other hand, we show that if OL piecewise linearly embeds
in Sm (and if the codimension is not 2), then AL acts on a contractible (m + 1)-
manifold, which means that computing vkdimOL also gives us an upper bound
on actdimAL.
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[4] A.N. Dranǐsnikov, D. Repovš, Embeddings up to homotopy type in Euclidean space, Bull.
Austral. Math. Soc. 47 (1993), 145-148.

[5] C. Droms, Graph groups, coherence, and three-manifolds, J. Algebra 106 (1987), 484-489.
[6] C. McA. Gordon, Artin groups, 3-manifolds and coherence, Bol. Soc. Mat. Mexicana (3) 10

(2004), 193-198.
[7] E. R. van Kampen Komplexe in euklidischen Räumen, Abh. Math. Sem. Univ. Hamburg 9
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Exotic l
2-invariants

 Lukasz Grabowski

In the talk I described some examples of CW-complexes (or, equivalently, group
ring elements which appear as Laplacians in such CW-complexes) with interesting
asymptotics of the number of eigenvalues around 0. They are taken from the
preprints [3] and [4].

The most important technical problem in the general theory of l2-invariants
is establishing bounds on the spectral density of group ring elements. Let us
illustrate it with three examples. For an introduction to l2-invariants see [2] or [6]
for a more comprehensive treatment.

(i) The celebrated Lück approximation theorem states that the l2-Betti numbers
of a normal cover of a finite CW-complex are limits of the ordinary Betti numbers
of intermediate finite covers, normalized by the cardinality of the fibers. This is an
easy corollary of the following statement. For every C > 0 there exists a function
f : R+ → R+ such that f(ε) → 0 when ε → 0, and such that for every residually
finite group G, and every self-adjoint T in the integral group ring Z[G] whose
l1-norm is bounded by C, we have

(1) µT ((0, ε)) < f(ε).

In other words, Lück approximation follows from having any uniform bound at all

on the spectral density around 0. Lück [7] showed that one can take f(ε) := C′

| log(ε)| ,

where C′ depends on C.

(ii) Another l2-invariant, the l2-torsion, is not known to be well-defined for
arbitrary normal covers. It is well-defined for all normal covers with a given deck
transformation group G if and only if for every self-adjoint T ∈ Z[G] the integral

∫ 1

0+
log(x) dµT (x)
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is convergent. This is clearly a statement about the density of µT around 0. The
convergence of the integral above was established by Clair [1] and Schick [8] for
a large class of groups G, including all residually-finite ones. As a consequence,
using the little-o notation, we have

(2) µT ((0, ε)) = o

(
1

| log(ε)|

)
,

which is the best general upper bound known.

(iii) A major open problem, known as the determinant approximation conjec-
ture, is the analog of Lück approxination for the l2-torsion. It is currently known
only when G has the infinite cyclic group Z as a subgroup of finite index (see [6,
Lemma 13.53]). It is not difficult to show that if, under the assumption stated in
the example (i), for some δ > 0 we had

µT ((0, ε)) <
C′

| log1+δ(ε)|
,

then the determinant approximation conjecture would be true.

For a long time it has not been known if there actually exist group ring elements
whose spectral density is as large as the best known general bound (2) suggests.
This is reflected in the following conjecture made by Lott and Lück.

Conjecture 1 (Lott-Lück [5]). Let G be a discrete group. For a self-adjoint
T ∈ Z[G] there exist C, η > 0 such that for sufficiently small ε we have

µT ((0, ε)) < Cεη.

Note that the bound in Conjecture 1 is very far away from the best known
bound (2): for every η > 0 and sufficiently small ε we have εη < 1

| log(ε)| . However,

in this note we show that (2) is not too far away from an optimal bound.

Theorem 2. For every δ > 0 there is a group Gδ and a self-adjoint element
Sδ ∈ Z[Gδ] such that for some constant C > 0 we have

(3) µSδ
((0, εi)) >

C

| log(εi)|1+δ

for some sequence of positive εi converging to 0. In particular, Conjecture 1 is
false for Sδ.

However, in view of how we construct Sδ, we state the following conjecture,
whose content essentially is that the Clair-Schick bound (2) is optimal. We say a
function g : R+ → R+ is computable if there is an algorithm which given ε ∈ Q

computes g(ε).

Conjecture 3. For every continuous computable function g : R+ → R+ such that
g(ε) → 0 when ε → 0 there exists a group G and S ∈ Z[G] such that

µS((0, εi)) >
g(εi)

| log(εi)|

for some sequence of positive εi converging to 0.
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For our second result let us recall the definition of the Novikov-Shubin invariant.
It measures the growth of the number of eigenvalues around 0 of a given group
ring element T . More precisely, given a self-adjoint T ∈ C[Γ], the Novikov-Shubin
invariant of T is defined as

(4) α(T ) := lim inf
λ→0+

log(µT ((0, λ]))

log(λ)
,

where µT is the spectral measure of T (see [6, Chapter 2] for more details).

Remarks 4. (i) It is irrelevant whether we take µT ((0, λ]) or µT ((0, λ)) in (4).
However, it is important that we do not include 0, since otherwise α(T ) would be
equal to 0 whenever the spectral measure of T has an atom at 0.

(ii) Both the numerator and the denominator are negative when λ is sufficiently
small, so α(T ) ∈ [0,∞].

It is easy to see that Conjecture 1 is equivalent to saying that α(T ) > 0.
However, Lott and Lück [5] proposed also the following conjecture.

Conjecture 5. When T ∈ Q[Γ] then α(T ) ∈ Q.

We show the following.

Theorem 6. There is a family T (b) ∈ R[Z2 ≀Z], b ∈ (1,∞) such that for b ∈ Q we
have T (b) ∈ Q[Z2 ≀ Z] and α(T (b)) = 1

2 log2(b)
. In particular Conjecture 5 is false.

Note that the Novikov-Shubin invariant of T and kT is the same for k > 0,
and so we also obtain examples of T ∈ Z[Z2 ≀ Z] with irrational Novikov-Shubin
invariants.

Thereom 6 has an interesting consequence that the set of the Novikov-Shubin
invariants of all the elements of Q[Z2 ≀Z], which is countable, is different than the
set of the Novikov-Shubin invariants of all the elements of R[Z2 ≀Z]. The analogous
question has been asked among the experts for l2-Betti numbers, since there are
classes of torsion-free groups for which the Atiyah conjecture is known for Q[Γ]
but not for R[Γ].
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Volume and homology growth

Roman Sauer

Let M be a manifold whose fundamental group Γ = π1(M) is residually finite.
That is, Γ possesses a decreasing sequence – called a residual chain – of normal
subgroups Γi < Γ of finite index whose intersection is trivial. By covering theory
there is an associated sequence of finite regular coverings . . . → M2 → M1 → M
of M such that π1(Mi) ∼= Γi and deg(Mi → M) = [Γ : Γi], which we call a residual
tower of finite covers.

How does the size of the homology of Mi grow as i → ∞?

What do we mean by size? If we measure size by Betti numbers bk(Mi) =
rkZ Hk(Mi;Z), there is a general answer: the limit of bk(Mi)/[Γ : Γi] is the k-th
ℓ2-Betti number of M by a result of Lück [2]. If we measure size by mod p Betti
numbers or in terms of the cardinality of the torsion subgroups torsHk(Mi;Z) ⊂
Hk(Mi;Z), no general answer is available but a conjectural picture was presented
for arithmetic locally symmetric spaces in the work of Bergeron-Venkatesh [1].

Our aim is to establish upper bounds for the homology and the homology growth
of aspherical Riemannian manifolds under geometric conditions. We prove the
following two statements.

Theorem. For every n ∈ N and V0 > 0 there is C(n, V0) > 0 with the following
property: Let M be an n-dimensional closed connected aspherical Riemannian

manifold such that every 1-ball of the universal cover M̃ has volume at most V0.
Assume that the fundamental group is residually finite, and let (Mi) be a residual
tower of finite covers. Then for every k ∈ N

lim sup
i→∞

dimFp
Hk(Mi;Fp)

deg(Mi → M)
< C(n, V0) vol(M) and

lim sup
i→∞

log
(
| torsHk(Mi;Z)|

)

deg(Mi → M)
< C(n, V0) vol(M).

Theorem. For every n ∈ N there is a constant ǫ(n) > 0 with the following prop-
erty: Let M be a closed connected aspherical n-dimensional Riemannian mani-
fold M such that Ricci(M) ≥ −1 and the volume of every 1-ball in M is at most
ǫ(n). Assume that the fundamental group is residually finite, and let (Mi) be a
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residual tower of finite covers. Then for every k ∈ N

lim
i→∞

dimFp
Hk(Mi;Fp)

deg(Mi → M)
= 0 and

lim
i→∞

log
(
| torsHk(Mi;Z)|

)

deg(Mi → M)
= 0.
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On the definition of the volume of a representation of hyperbolic
3-manifolds

Michelle Bucher

(joint work with Marc Burger and Alessandra Iozzi)

We study the volume of a representation ρ : Γ → PSL(n,C) that we will rename
as the Borel invariant of ρ. Indeed, the continuous cohomology of PSL(n,C) in
degree 3 is generated by a specific class called the Borel class β(n). When M is
compact, the definition of the Borel invariant of ρ is straightforward as it is the
evaluation on the fundamental class [M ] of the pullback by ρ of the Borel class. If
M has cusps, the definition of this invariant presents interesting difficulties which
we overcome by the use of bounded cohomology. More precisely, β(n) can be
represented by a bounded cocycle, which gives rise to a bounded continuous class

βb(n) ∈ H3
c,b(PSL(n,C),R).

The Borel invariant of ρ : Γ → PSL(n,C) is then defined as

B(ρ) = 〈ρ∗(βb(n)), [N, ∂N ]〉,

where N is a compact core of M . This definition does not use any triangulation,
it is independent of the choice of compact core and can be made for any compact
oriented 3-manifold whose boundary has amenable fundamental group.

The bounded cocycle entering the definition of βb(n) is constructed by means
of an invariant

Bn : F(Cn)4 −→ R

of 4-tuples of complete flags, which on generic 4-tuples has been defined and studied
by A.B. Goncharov, [4]. It generalizes the volume function in the case F(C2) =
P 1C = ∂H3. This invariant can also be used to give an efficient formula for B(ρ).
To this end assume that M has toric cusps. Let ϕ : C → F(Cn) be a decoration,
that is any Γ-equivariant map from the set of cusps C ⊂ ∂H3 into F(Cn), and let



214 Oberwolfach Report 3/2015

P1, . . . , Pr be a family of oriented ideal tetrahedra with vertices in C forming an
ideal triangulation of M . If (P 0

i , P
1
i , P

2
i , P

3
i ) are the vertices of Pi, then

(1) B(ρ) =
r∑

i=1

Bn(ϕ(P 0
i ), ϕ(P 1

i ), ϕ(P 2
i ), ϕ(P 3

i )).

The right hand side of the previous equation is the definition of the volume in [3, 1]
upon passing to a barycentric subdivision of the ideal triangulation or restricting
to generic decorations.

Our main result is that on the character variety Γ into PSL(n,C), the invariant
B attains a unique maximum at [πn|Γ].

Theorem 1. Let Γ = π1(M) be the fundamental group of a finite volume real
hyperbolic 3-manifold and let ρ : Γ → PSL(n,C) be any representation. Then

|B(ρ)| ≤
n(n2 − 1)

6
Vol(M) ,

with equality if and only if ρ is conjugate to πn|Γ or to its complex conjugate πn|Γ.

We refer to [2] for more details.
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Bordism of L2-bettiless manifolds

Jim Davis

(joint work with Sylvain Cappell and Shmuel Weinberger)

Let X be a finite complex and Γ a discrete group. Then one can define the L2-

betti numbers b
(2)
i (X → BΓ) ∈ R. A map X → BΓ is L2-bettiless (or L2-acyclic)

if b
(2)
i (X → BΓ) = 0 for all i. L2-bettiless manifolds are of interest analytically.

Here are some properties of L2-betti numbers (see [2]):

• χ(X) =
∑

(−1)ib
(2)
i (X → BΓ).

• b
(2)
0 (X → BΓ) = 0 when Γ is infinite.

• If H is a subgroup of Γ of finite index, then

b
(2)
i (X → BΓ) =

b
(2)
i (X → BH)

|Γ: H |
.
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• Let F = Q(t1, . . . , tn) be the quotient field of the integral group ring Z[Zn].

b
(2)
i (X → BZn) = dimF Hi(X ;F )

Here Hi(X ;F ) is homology with local coefficients Hi(S∗(X) ⊗Z[Zn] F )

where X is the induced Zn-cover of X . (This fits with the still open
Atiyah conjecture that when Γ is torsion free the L2-betti numbers are
integers.)

We are interested in computing the bordism group Ω
(2)
k (BΓ) of closed oriented

k-manifolds mapping to BΓ which are L2-bettiless. This seems fruitless in the
case of the trivial group (where there are no L2-bettiless manifolds) and in the

case of the free group on two letters (where b
(2)
1 (X → BΓ) 6= 0 if π1X → BΓ is an

epimorphism), but seems quite interesting in the case where Γ is virtually abelian.
In particularly we prove:

Theorem 1. Let n ≥ 1. There is a long exact sequence

· · · → Ω
(2)
k (BZn) → Ωk(BZn)

σ
−→ Lk(Q(t1, . . . , tn))

∂
−→ Ω

(2)
k−1(BZn) → . . .

where Ωk(BZn) is the bordism group of closed oriented k-manifolds mapping to BΓ,
where Lk(Q(t1, . . . , tn)) is the algebraic L-group which vanishes for k not divisible
by four and which is the Witt group of nonsingular Hermitian forms when k is
divisible by four. Furthermore σ is given by the Witt class of the intersection form
with Q(t1, . . . , tn)-coefficients.

Corollary 2. Let n ≥ 1. A manifold M → BZn is cobordant to an L2-bettiless
manifold if and only if its signature is zero.

To prove the theorem and corollary one follows the classical surgery program
of Milnor [3] and Kervaire-Milnor [1] together with two extra tricks. In the sit-
uation of the corollary, one first represents a bordism class by M → BZn with
an isomorphism on the fundamental group. One then inductively uses the tech-
nique of surgery (together with the two tricks), to represent a bordism class
by M → BZn inducing an isomorphism on the fundamental group and so that
Hi(M ;Q(t1, . . . , tn)) vanishes for i < [n/2]. One then uses the signature hypoth-
esis to do surgery so that Hi(M ;Q(t1, . . . , tn)) vanishes for i ≤ [n/2]. Poincaré
duality then guarantees that M is Q(t1, . . . , tn)-acyclic as desired.

The tricks are needed to deal with two well-known obstructions to surgery –
one needs the relative Hurewicz Theorem to represent homology classes by spheres
and one need spheres with trivial normal bundle to do surgery on. There was not
time enough in the talk to cover the first trick (the “kill and kill again trick”), but
second trick is given by the Embedding Lemma below.

Lemma 3 (Embedding Lemma). Let M be a connected n-manifold, 1 ≤ p < n−1,
and g ∈ π1M . Suppose α ∈ πpM is represented by an embedded sphere with a
nowhere zero normal vector field. If p > 1, then (g− e)α ∈ πpM is represented by
an embedding Sp ×Dn−p →֒ M . If p = 1, then gαg−1α−1 ∈ π1M is represented
by an embedding S1 ×Dn−1 →֒ M .
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Finally the talk discussed the case of a virtually abelian group. Let Γ be a group
with a finite index subgroup of the form Z[Zn] with n ≥ 1. Let S = Z[Zn]−0. The
properties of L2-betti numbers mentioned above show that X → BΓ is L2-acyclic
if and only if H∗(X ;S−1Z[Γ]) = 0.

Theorem 4. There is a long exact sequence

· · · → Ω
(2)
k (BΓ) → Ωk(BΓ)

σ
−→ Lk(S−1Z[Γ])

∂
−→ Ω

(2)
k−1(BΓ) → . . .

Here the L-groups are more interesting, for example they can be nonzero in
every dimension and they can have arbitrarily large torsion.

The audience had intriguing suggestions for extending these results to more
general groups.
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Transitivity degrees of countable groups and acylindrical hyperbolicity

Denis Osin

An action of a group G on a set Ω is k-transitive if |Ω| ≥ k and for any two k-tuples
of distinct elements of Ω, (a1, ..., ak) and (b1, ..., bk), there exists g ∈ G such that
gai = bi for i = 1, ..., k. The transitivity degree of a countable group G, denoted
td(G), is the supremum of all k ∈ N such that G admits a k-transitive faithful
action. For finite groups, this notion is classical and fairly well understood. It
is easy to see that td(Sn) = n, td(An) = n − 2, and it is a consequence of the
classification of finite simple groups that any finite group G other than Sn or An

has td(G) ≤ 5. Moreover, if G is not Sn, An, or one of the Mathieu groups M11,
M12, M23, M24, then td(G) ≤ 3 (see [2]).

For infinite groups, however, very little is known. For example, we do not
know the answer to the following basic question: Does there exist an infinite
countable group of transitivity degree k for every k ∈ N? There are examples for
k = 1, 2, 3, and ∞, but the problem seems open even for k = 4. There is also
a new phenomenon, which does not occur in the finite world: highly transitive
actions. Recall that an action of a group is highly transitive if it is k-transitive for
all k ∈ N. We say that a group is highly transitive if it admits a highly transitive
faithful action; it is easy to see that a countably infinite group is highly transitive
if and only if it embeds as a dense subgroup in the infinite symmetric group
Sym(N) endowed with the topology of pointwise convergence. Obviously td(G) =
∞ whenever G is highly transitive, but we do not know if the converse is true.
Yet another interesting question is whether there exists a reasonable classification
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of highly transitive groups (or, more generally, groups of high transitivity degree).
The main goal of this paper is to address these questions in certain geometric and
algebraic settings.

We prove that every countable acylindrically hyperbolic group admits a highly
transitive action with finite kernel. This theorem uniformly generalizes many
previously known results and allows us to answer a question of Garion and Glasner
on the existence of highly transitive faithful actions of mapping class groups. It also
implies that in various geometric and algebraic settings, the transitivity degree of
an infinite group can only take two values, namely 1 and ∞. Here by transitivity
degree of a group we mean the supremum of transitivity degrees of its faithful
permutation representations. For the definition and details about acylindrically
hyperbolic groups we refer to [1, 3].

Further, for any countable group G admitting a highly transitive faithful ac-
tion, we prove the following dichotomy: Either G contains a normal subgroup
isomorphic to the infinite alternating group or G resembles a free product from
the model theoretic point of view. We apply this theorem to obtain new results
about universal theory and mixed identities of acylindrically hyperbolic groups.
Finally, we discuss some open problems.
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Universal L2-torsion, Twisted L
2-Euler characteristic, Thurston norm

and higher order Alexander polynomials

Wolfgang Lück

(joint work with Stefan Friedl)

We want to investigate and compare the following four invariants of 3-manifolds
which are of rather different nature: the Thurston norm, the degree of higher or-
der Alexander polynomials in the sense of Cochrane and Harvey, see [1, 3], the
degree of the L2-torsion function and a version of the L2-Euler characteristic. We
explain that the L2-Euler characteristic encompasses the degree of higher order
Alexander polynomials. We relate all these invariants by inequalities and equal-
ities. In particular we show that they agree for the universal coverings and (for
many other coverings) of a compact connected irreducibel orientable 3-manifold
with infinite fundamental group and empty or toroidal boundary. We will explain
universal L2-torsion which encompasses all the invariants above and is based on
localizations techniques applied to group rings and K1. Some of these results have
been conjectured in [2]. For basic introduction to L2-invarians we refer to [4].
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Behind all these invariants is the universal L2-torsion ρ2u(M ;N (G)) ∈ Whw(G)
of a G-covering X → X of a finite connected CW -complex X such that all its L2-

Betti numbers b
(2)
n (X ;N (G)) vanish. Here Whw(G) is a variation of the classical

Whitehead group, where one considers instead of matrices A ∈ Mn,n(ZG), which
are invertible, those ones, for which the induced G-operator rA : L2(G)n → L2(G)n

is a weak isomorphism. In the sequel we assume that the torsionfree group G sat-
isfies the Atiyah Conjecture about the integrality of L2-Betti numbers. This is for
instance the case if G is residually torsionfree elementary amenable or the funda-
mental group of an irreducible 3-manifold which is not a closed graph manifold.

If D(G) is the division closure of ZG in the algebra U(G) of operators affiliated
to the group von Neumann algebra N (G), then D(G) is a skewfield and there is
an isomorphism

Whw(G) ∼= Wh(D(G)) = K1(D(G))/{±g | g ∈ G}.

The Dieudonne determinant yields an isomorphism

Whw(D(G)) ∼= D(G)×/[D(G)×,D(G)×] · {±g | g ∈ G}.

Let P(H1(G;R)) be the Grothendieck group of the abelian monoid of polytopes
in H1(G;R) under the Minkowski sum. We define a group homomorphism

P ′ : D(G)× → P(H1(G;R)).

From these data we obtain a homomorphism

P : Whw(G) → P(H1(G;R)).

Hence we can consider P (ρ
(2)
u (X)) ∈ P(H1(G;R)).

One of our main theorems says
Theorem. Let M be a compact connected orientable irreducible 3-manifold with
infinite fundamental group π and empty or incompressible torus boundary which
is not a closed graph manifold.

Then there is a virtually finitely generated free abelian group Γ, and a factoriza-

tion π1(M)
α
−→ Γ

β
−→ H1(M)f := H1(M)/ tors(H1(M)) of the canonical projection

into epimorphisms such that the following holds:

For any factorization of α : π → Γ into group homomorphisms π
µ
−→ G

ν
−→ Γ for

a torsionfree group G satisfying the Atiyah Conjecture the composite

Whw(G)
P
−→ P(H1(G;R))

P(H1(β◦ν;R)
−−−−−−−−→ P(H1(M ;R))

sends ρ
(2)
u (M ;N (G)) to the class of the Thurston polytope of M .

Notice that it applies in particular to the universal covering, i.e., G = π1(M),

µ = id and M = M̃ .
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Topological characterization of boundaries of free products of groups

Jacek Świa̧tkowski

This report describes some results from [1].

Recall that Gromov boundary of a hyperbolic group is a compact metrisable space.
Not much is known about explicit topological spaces that can occur as Gromov
boundary of a hyperbolic group.

Each hyperbolic group splits over finite subgroups into a graph of groups with
all vertex groups finite or 1-ended hyperbolic. Such a splitting is called terminal
since its factors do not split further. In view of this, the problem of understanding
Gromov boundaries of hyperbolic groups consists of the following two parts:

(1) to understand boundaries of 1-ended hyperbolic groups (this class coin-
cides with trhe class of hyperbolic groups whose Gromov boundaries are
connected);

(2) to understand boundaries of ∞-ended hyperbolic groups in terms of bound-
aries of factors (i.e. vertex groups) in their terminal splittings.

The results presented below provide a satisfactory answer to part (2) of the above
problem.

Theorem 1. Let X = (Xi)i∈I be a nonempty countable (finite or infinite) fam-
ily of nonempty metric compacta. Suppose that a space Y satisfies the following
conditions:

(1) Y is compact metrisable;
(2) Y contains a family of pairwise disjoint subspaces Xi,λ : i ∈ I, λ ∈ Λi such

that each index set Λi is countable infinite, and for each i ∈ I and any
λ ∈ Λi the subspace Xi,λ is homeomorphic to Xi;

(3) the family (Xi,λ)i,λ is null, i.e. diameters of the sets converge to 0;
(4) each subspace xi,λ is boundary in Y , i.e. its complement is dense;
(5) any two distinct points of Y not contained in the same Xi,λ can be sepa-

rated by a closed-open subset H ⊂ Y which is (Xi,λ)i,λ-saturated, i.e. for
each i ∈ I and each λ ∈ Λi either Xi,λ⊂H or Xi,λ ∩H = ∅.

Then Y exists, and is unique up to homeomorphism.

Notation: denote the unique space Y as above with ⊔̃X or ⊔̃(Xi : i ∈ I) and call
it the dense amalgam of the family X .

Theorem 2. Let G be a graph of groups with finite edge groups and with hyperbolic
vertex groups, at least one of which is infinite. Suppose also that the fundamental
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group Γ = π1(G) is ∞-ended. Then Γ is hyperbolic, and ∂Γ ∼= ⊔̃X , where ⊔̃X is
the family of Gromov boundaries of infinite vertex groups of G.
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Embedding expanders into groups and applications

Damian Osajda

I describe here my recent construction of finitely generated groups containing an
infinite family of finite connected graphs of bounded degree [10]. It provides first
examples of groups containing isometric copies of expanding families of graphs,
and other exotic finitely generated groups.

Let Θ = (Θn)n∈N be a family of disjoint finite connected graphs of bounded
degree. We assume that there exists a constant A > 0 such that diam Θn ≤
A girth Θn, where diam denotes the diameter, and girth is the length of the short-
est simple cycle. We fix a small cancellation constant λ ∈ (0, 1/6], and we assume
that 1 < ⌊λ girth Θn⌋ < ⌊λ girth Θn+1⌋.

Theorem 1. There exists a C′(λ)–small cancellation labeling of (Θn)n∈N over a
finite set S of labels.

With such labelled graph family Θ we associate a graphical small cancellation
presentation:

P = 〈S | Θ〉.(1)

Theorem 2. For every n, the graph Θn embeds isometrically into the Cayley
graph Cay(G,S) of the group G defined by the presentation (1).

For Θ being an expander family, as an immediate corollary we obtain the fol-
lowing.

Corollary 1. There exist finitely generated groups with expanders embedded iso-
metrically into Cayley graphs.

These are the first examples of such groups. In particular, they are not coarsely
embeddable into a Hilbert space and do not satisfy the Baum-Connes conjec-
ture with coefficients. The only other groups with such properties are the Gro-
mov monsters [7] (see [1] for an explanation of the construction). The Gromov
construction uses a graphical presentation with much weaker ‘small cancellation’
properties. Consequently, only a weak embedding of expanders is established for
those examples. The isometric embedding of expanders for the groups from Corol-
lary 1 is useful for analyses of the failure of the Baum-Connes conjecture – see e.g.
[13],[5],[6],[8].

Using Sapir’s [12] version of Higman embedding we obtain the first examples of
groups as follows.
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Corollary 2. There exist closed aspherical manifolds with expanders embedded
quasi-isometrically into their fundamental groups.

The group G defined by the presentation (1) is the limit of finitely presented
groups Gi defined by presentations 〈S | (Θn)in=1〉. For Θ being a family of d–
regular graphs with d > 2, we obtain the first examples of groups as follows.

Corollary 3. There exists a sequence G1 ։ G2 ։ G3 ։ · · · of finitely presented
groups with the following properties. For all i, asdim(Gi) = 2, and the asymptotic
dimension of the limit group G is infinite.

Note that despite the group G above has infinite asymptotic dimension, it be-
haves in many ways as a two-dimensional group – see e.g. [11].

Using the construction of the small cancellation presentation (1) provided by
Theorem 1, and the method of constructing walls for small cancellation groups
developed in [14], [15], [3], and [4], we obtain the following.

Theorem 3. There exist finitely generated groups acting properly on CAT(0)
cubical complexes and not having property A.

In particular, such groups have the Haagerup property, and thus admit an
equivariant coarse embedding into a Hilbert space. This answers in the negative
the well known question whether, for groups, Yu’s property A (equivalent e.g. to
the exactness of the reduced C∗–algebra of the group) implies coarse embedding
into a Hilbert space. For spaces, the answer to the corresponding question was
already known by [9] and [2].
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Brown’s question for cocompact actions

Ian Leary

(joint work with Nansen Petrosyan)

The question of K. S. Brown referred to in the title concerns properly discontinuous
actions of virtually torsion-free discrete groups [3, page 32]. There are a number
of slightly different versions of this question; we use right-angled Coxeter groups
to give answers to two variants.

For a flag complex L, the associated right-angled Coxeter group WL is the group
given by the presentation in which the generators are the vertices of L, subject
only to the relations that each generator has order two, and each pair of generators
that spans an edge in L commutes. Denote this generating set for WL by SL. The
Davis complex Σ(WL, SL) is a CAT(0) cube complex on which WL acts properly
discontinously by cellular isometries [4]. WL acts vertex transitively, and the link
of each vertex in Σ is isomorphic to L.

For a discrete group G, a model for EG is a G-CW-complex X in which all
stabilizer subgroups are finite and such that for every finite F ≤ G, the fixed
point set XF is contractible. The minimal dimension of any model for EG is
denoted by gdG. There is an algebraic analogue cdG of gdG. It is known that
cdG = gdG, except that for some groups cdG = 2 < gdG = 3 [9, 7, 2]. The virtual
cohomological dimension vcdG of a virtually torsion-free group G is by definition
the cohomological dimension of a finite-index torsion-free subgroup of G.

For the first theorem, we let L be a finite contractible 3-dimensional flag com-
plex, with an admissible action of a cyclic group Cp such that the fixed point set
LCp is a mod-q Moore space; here p and q are distinct primes. Let G be either the
semidirect product of WL and the cyclic group Cp, or its normal subgroup con-
sisting of the semidirect product of the commutator subgroup WL and the cyclic
group Cp. The action of WL on the Davis complex Σ = Σ(WL, SL) extends to an
action of G, and Σ is a cocompact model for EG.

Theorem 1. For this G, vcdG = 3 while cdG = 4. Similarly, for any n ≥ 1,
vcdGn = 3n while cdGn = 4n.

In contrast, it has been shown that vcdW = cdW for any Coxeter group W [6].
Examples of groups for which vcdG < cdG were known previously [8, 10, 5].
However, the earlier examples are all based on Bestvina-Brady groups [1], rather
than Coxeter groups, and they do not admit cocompact models for EG.

For our second theorem, we let L be a flag triangulation of a finite acyclic 2-
dimensional complex such that the fundamental group π1(L) admits a non-trivial
unitary representation ρ : π1(L) → U(n). For example L could be the 2-skeleton
of the Poincaré homology sphere, whose fundamental group has order 120 and
admits a faithful representation into U(2). We let G be the right-angled Coxeter
group WL.

Theorem 2. For this G, vcdG = cdG = 2 but there does not exist any contractible
2-dimensional proper G-CW-complex.
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It was known previously that for this group cdG = 2 but gdG = 3 [2]; what is
new is an argument that rules out all equivariant homotopy types of contractible
proper G-CW-complex.

Any torsion-free finite-index subgroup H of this G will have cohomological
dimension two. M. Bestvina and M. Davis proposed these groups H as potential
counterexamples to the Eilenberg-Ganea conjecture. Our work sheds no new light
on this question.
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The rational homology of generalised Thompson groups

Brita Nucinkis

(joint work with Conchita Mart́ınez-Pérez and Marco Varisco)

Thompson’s group V is an infinite group of homeomorphisms of the Cantor-set
that is finitely presented and simple. K.S. Brown [3] showed that Thompson’s
group V is rationally acyclic.

Generalisations of this group are due to Higman [5], Stein [9] and Brin [1] and
these were shown to be of type F∞ by Brown [2], Stein [9] and Fluch-Marschler-
Witzel-Zaremsky [4] respectively. Using a description analogously to Higman via
Cantor-algebras, one can further generalise these constructions to automorphism
groups Vr(Σ) of these Cantor-algebras, and show that under some mild hypotheses
on the Cantor algebra, these are also of type F∞, see [6, 7]. The proofs all use
very similar methods by constructing a contractible complex, on which the groups
act with finite stabilisers, and which has a filtration by G-finite complexes. One
now needs to show that these complexes are highly connected. The strongest
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such construction is due to Stein [9], called the Stein-complex, and using Morse-
theoretic methods [4, 7] one can show that the Stein-complex has the desired
connectedness properties.

In his proof that V is rationally acyclic, Brown [3] used a truncated version of
the Stein-complex, Xp,q, and showed that for each n and q ≥ p + n, Xp,q is an
n-dimensional, (n − 1)-connected simplicial complex such that V acts with finite
stabilisers and with an n-simplex as a fundamental domain.

We use a similar construction for the general case. In particular, for Brin’s
group sV , where s ≥ n is an integer we have:

Proposition.[8] Let G = sV . For all integers n ≥ 1 there is an integer p0
depending on n such that Xp,q is n-connected for p ≥ p0 and q ≥ p + 2sn.

Let Yp,q = Xp,q/G. We show that there is a long exact sequence in homology:

· · · → Hj(Yp+1,q) → Hj(Yp,q) → H̃j−1(Zp+1,q) → . . . ,

where Zp+1,q is a complex which is contractible for q−(p+1) big enough. This now
yields that the rational homology of Vr(Σ) vanishes in sufficiently high dimensions.
For example:

Theorem.[8] Let s ≥ 2 be an integer and let G = sV . Then for all n ≥ 3s − 2s,

Hn(G,Q) = 0.
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A Dehn-Nielsen-Baer theorem for surfaces with boundary

Tobias Hartnick

(joint work with Gabi Ben Simon, Marc Burger, Alessandra Iozzi, Anna
Wienhard)

The classical Dehn-Nielsen-Baer theorem states that if Σ1,Σ2 are closed oriented
surfaces with respective fundamental groups Γ1,Γ2, then every isomorphism Γ1 →
Γ2 is induced by a homeomorphism Σ1 → Σ2. We establish a variant for surfaces
with boundary as follows:

Let Σ be a compact surface with boundary, Γ = π1(Σ) and ρ : Γ → PSL2(R)
the holonomy representation of a complete hyperbolic structure on the interior of
Σ. Then ρ induces an action of Γ on the circle, which (since Γ is free) in turn lifts
to an action on the real line. If Λ denotes the commutator subgroup of Γ, then the
action of Λ on R is independent of the choice of lift, and we obtain a bi-invariant
partial order on Λ by declaring that

(1) g > h :⇔ ∀x ∈ R : g.x > h.x.

It turns out that the order on Λ depends only on Σ, but not on the choice of
hyperbolization ρ, whence we will denote it by <Σ. We refer to the triple (Γ,Λ, <Σ)
as the ordered fundamental group of Σ. A morphism (Γ1,Λ1, <Σ1) → (Γ2,Λ2, <Σ2)
between ordered fundamental groups is defined as a group homomorphsm Γ1 → Γ2

which is order preserving when restricted to Λ1 → Λ2.

Theorem 1 (Dehn-Nielsen-Baer theorem for surfaces with boundary, [1]). Ev-
ery homeomorphism Σ1 → Σ2 of compact surfaces with boundary induces an
isomorphism (Γ1,Λ1, <Σ1) → (Γ2,Λ2, <Σ2) of ordered fundamental groups, and
conversely every isomorphism of ordered fundamental groups is induced from a
homeomorphism.

Theorem 1 is a geometric consequence of the following purely representation
theoretic result. Every representation ρ : Γ → G gives rise to an action of the
commutator subgroup Λ on the real line, and hence defines a partial order <ρ on
Λ via (1).

Theorem 2 (Characterization of Teichmüller space, [1]). Let Γ := π1(Σ). A
homomorphism Γ → PSL2(R) is the holonomy representation of a complete hy-
perbolic structure on the interior of Σ if and only if <ρ=<Σ. In this case, ρ is
faithful with discrete image.

The proof of Theorem 2 is based on a geometric study of the bounded Euler
class. The full relevance of the order <Σ becomes clear in the study of representa-
tions of Γ := π1(Σ) into more general Hermitian Lie groups. To formulate a result
analogous to Theorem 2 for representations into a more general target group we
introduce the following notation. Let

Homeo+Z (R) := {f : R → R | f or.-pr. homeomorphism, f(x + 1) = f(x) + 1}
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and recall that the translation number T : Homeo+Z (R) → R is defined by

Tf := lim
n→∞

fn(0)

n
.

Then the condition g > h as defined by (1) can be written as T (h−1g) > 0.
This motivates the following definition. Let Σ, Γ, Λ as in Theorem 1 and let
ρ : Γ → PSL2(R) be a hyperbolization as above. As before this induces an action
of Λ on R and we define

g >Σ,n h :⇔ T (h−1g) > n,

so that <Σ=<Σ,0. The whole family of orders <Σ,n depends only on Σ. It can
be used to detect higher Teichmüller representations in the sense of the following
theorem:

Theorem 3 (Discrete-faithfulness criterion, [1]). Let G be a Hermitian simple

Lie group with finite center, G̃ its unique cyclic covering and � a continuous bi-

invariant partial order on G̃. Every homomorphism ρ : Γ → G induces a unique

homomorphism ρ̃ : Λ → G̃. If ρ̃ is order-preserving with respect to one of the

orders ≤Σ,n on Λ and the order � on G̃, then ρ is discrete and faithful.

It turns out that Theorem 2 can be deduced from Theorem 3. The proof of the
latter is again based on techniques from continuous bounded cohomology.
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Gong show for junior participants

PhD students and recent postdocs were offered the opportunity to present them-
selves and their research in a 10 minutes talk, as part of a so-called Gong Show.
Eleven junior participants of the workshop engaged in the Gong Show and created
a mathematical mosaic ranging from index theory to quasi-morphisms. The Gong
Show was well received by junior and senior participants and helped the different
scientific generations to grow closer together.

In the gong show, the following speakers presented their work as specified.

• Rudolf Zeidler (Göttingen): Secondary index theory and product for-
mulas. We exhibit product formulas for higher ρ-classes associated to
metrics of positive scalar curvature (PSC). These are spin bordism invari-
ants of PSC metrics. On the product of a closed spin PSC manifold with
an arbitrary closed spin manifold, the higher ρ-invariant is computed as
an external product of the higher ρ-invariant on the first factor and the
K-homological fundamental class of the second factor.
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• Christopher Wulff (Augsburg): Ring and module structures in K-
theory of leaf spaces. A new K-theory model for the leaf space of a foliation
is introduced. It is a ring and Connes’s K-theory model is a module over
this ring. Ring and module structure are motivated by longitudinal index
theory of twisted operators.

• Markus Steenbock (Wien): Rips construction without unique products.
Given a finitely presented group Q, we produce a short exact sequence
1 → N →֒ G ։ Q → 1 such that G is a torsion-free hyperbolic group
without the unique product property and N has Property (T). Varying
Q, we obtain a wide diversity of new concrete examples of groups without
the unique product property. Kaplansky’s zero-divisor conjecture is open
for our groups. This is a joint work with Goulnara Arzhantseva. M.
Steenbock is recipient of the DOC fellowship of the Austrian Academy
of Sciences, and partially supported by the ERC grant ANALYTIC no.
269527 of Goulnara Arzhantseva.

• Henrik Rüping (Bonn): On the Farrell-Jones conjecture. In my talk I
mentioned the Definition of the Farrell-Jones conjecture, stated the prop-
erties of the class of Groups for which the Farrell-Jones conjecture is known
and asked whether specific Groups are in this class.

• Christina Pagliantini (Zürich): Quasi-morphisms and bounded coho-
mology. We discuss the second bounded cohomology H2

b (Γ, H ;R) of a free
group Γ of finite rank relative to a subgroup H of finite rank by means of
the theory of relative quasimorphisms. This is a joint work with P. Rolli.

• Andreas Ott (Heidelberg): Bounded cohomology and partial differen-
tial equations. We present a new technique that employs partial differential
equations in order to compute bounded group cohomology. This is joint
work with Tobias Hartnick.

• Christoforos Neofytidis (Binghamton): Groups presentable by prod-
ucts and maps of non-zero degree. We discuss obstructions to the existence
of maps of non-zero degree from direct products to rationally essential
manifolds, with special emphasis to aspherical manifolds whose funda-
mental groups have non-trivial center. As an application, we obtain an
ordering of all non-hyperbolic 4-manifolds possessing a Thurston aspheri-
cal geometry.

• Michal Marcinkowski (Wroclaw): Gromov’s positive scalar curvature
conjecture and macroscopically large rationally inessential manifolds. We
show examples of macroscopically large (in the sense of Gromov) but ratio-
nally inessential manifolds. In spin case they do not admit positive scalar
curvature metrics, thus support a conjecture of Gromov.

• Robert Kropholler (Oxford): Non-hyperbolic subgroups of hyperbolic
groups. In this talk I give an infinite family of hyperbolic groups each of
which has a finitely presented not hyperbolic subgroup. The key technique
used is Bestvina-Brady Morse theory.
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• David Kielak (Bonn): Nielsen realisation for right-angled Artin groups.
We will discuss the recent development in realising finite subgroups of outer
automorphism groups of RAAGs as groups acting on cube complexes.

• Matthias Blank (Regensburg): Relative bounded cohomology for
groupoids. We discuss bounded cohomology for (pairs of groupoids). First,
we extend results about amenable groups to the groupoid case. Second, we
present an extension of Gromov’s mapping theorem, relating under some
conditions the bounded cohomology of a pair of (not necessarily connected
spaces) to the bounded cohomology of the pairs of fundamental groupoids.

Reporter: Rudolf Zeidler
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d’Informatique
Aix-Marseille Université
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