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Introduction by the Organisers

Quantum groups are well-known objects in representation theory, in the theory of
integrable systems, and in the theory of Hopf algebras. Quantum group analogs of
homogeneous spaces were much slower to develop, mainly because the immediate
definition ((co)invariants with respect to a Hopf subalgebra) turned out to be too
rigid to allow for interesting examples. By now, however, there is ample evidence
that one-sided coideal subalgebras of quantum groups provide a suitable concept
of quantum homogeneous spaces.

The relation between quantum integrable systems with boundary and comodule
algebras for quantum groups was apparent early on. About 15 years ago, explicit
examples of coideal subalgebras of quantum groups in Drinfeld-Jimbo realization
appeared in the investigation of quantum integrable systems with boundary. These
coideal subalgebras provided a tool to construct solutions of the so called reflection
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equation, an integrability condition for systems with boundary. In the 90s, a the-
ory of quantum group analogs of symmetric spaces was developed by M. Noumi et
al. and independently by G. Letzter. The aim of their program was to provide new
interpretations of Macdonald-Koornwinder polynomials as zonal spherical func-
tions on quantum symmetric spaces. The construction of quantum symmetric
pairs has recently been extended to involutive automorphisms of symmetrizable
Kac-Moody algebras by S. Kolb. It includes the examples obtained from integrable
systems.

Very recently, H. Bao & W. Wang and M. Ehrig & C. Stroppel indicated that
much of modern representation theory for quantum groups (Schur-Jimbo duality,
canonical bases, Kazhdan-Lusztig theory, categorification) extends to quantum
symmetric pairs. From the algebraic side, coideal subalgebras of quantum groups
have been classified within the wider context of Nichols algebras, a development
which provides ample new technology.

The workshop brought together experts on coideal subalgebras from different
backgrounds (integrable systems, special functions, quantum symmetric pairs, rep-
resentation theory, Nichols algebras). The aim was to get to know each others
perspective, to analyze the present state of the art, and to pursue avenues of
cross-fertilization.

The workshop started out with three mini lecture series. N. Reshetikhin gave
an introduction to the physics origins of the reflection equation. Starting from the
6-vertex model in statistical mechanics he introduced the boundary q-Knizhnik-
Zamolodchikov equations as the consistency conditions for correlation functions
with reflecting boundary. C. Stroppel gave an overview of categorification of quan-
tum groups in view of recent developments for coideal subalgebras. H.-J. Schneider
delivered a crash course on Nichols algebras. He explained how right coideal subal-
gebras form a potent tool within this general theory and outlined their classification
in terms of the Weyl groupoid.

The talks by the remaining 13 participants gave insight into different aspects
of coideal subalgebras of quantum groups. The recent developments around Bao
& Wang’s program of canonical bases and Ehrig & Stroppel’s categorification for
quantum symmetric pairs generated a lot of enthusiasm. One central ingredient
here is a new bar involution for these coideal subalgebras. This has already been
very fruitful in the construction of a universal K-matrix in the finite setting, see
M. Balagović’s talk. Several talks highlighted the recent important developments
regarding the role of coideal subalgebras in integrable systems with boundaries.

We left the workshop with the impression that this research area has made a
big leap forward and that further developments are to be expected soon.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Universal solutions of the reflection equation

Martina Balagovic

(joint work with Stefan Kolb)

The aim of this project is to construct universal solutions of the reflection equation
(RE) using quantum symmetric pair coideal subalgebras, in a way analogous to
the well known construction of universal solutions of the quantum Yang Baxter
equation (QYBE) using quantum groups.

The QYBE describes constraints in the scattering of three particles. For a
quantum enveloping algebra Uqg, and a pair of representations V1, V2 , the aim is
to find an operator RV1,V2

: V1 ⊗ V2 → V2 ⊗ V1 which commutes with the action
of Uqg. The constraint is RV2,V3

◦ RV1,V3
◦ RV1,V2

= RV1,V2
◦ RV1,V3

◦ RV2,V3
as

operators V1 ⊗ V2 ⊗ V3 → V3 ⊗ V2 ⊗ V1.
The RE describes constraints in the interaction of two particles and a wall.

For V a representation of Uqg, the aim is to find an operator KV : V → V or
KV : V → V twisted, such thatRV2,V1

◦KV2
◦RV1,V2

◦KV1
= KV1

◦RV2,V1
◦KV2

◦RV1,V2

as operators V1⊗V2 → V1⊗V2. Additionally, KV should commute with the action
of some coideal subalgebra of Uqg.

These questions can be stated for any Hopf algebra, but quantum enveloping al-
gebras allow for a construction of a universal solution of the QYBE in the following
way (see [Lus94]):

(1) Construct a bar involution x 7→ x on Uqg.
(2) Find the quasi R-matrix R0 in (a certain completion of) Uqg⊗ Uqg, such

that R0∆(x) = ∆(x)R0.
(3) For κ a certain operator acting as a constant on every tensor product of

weight spaces, consider the operators R = R0 ◦ κ and Ř = R0 ◦ κ ◦ flip.
The operator Ř satisfies:

a) Ř commutes with Uqg;
b) For every pair of (integrable, category O) representations V1, V2 of Uqg,

its action induces a linear operator RV1,V2
= R|V2⊗V1

◦ flip on V1 ⊗ V2;
c) This is consistent with the tensor product of modules, in the sense that

(∆⊗ 1)(R) = R13 ◦ R23 and (1⊗∆)(R) = R13 ◦ R12.

From these properties it quickly follows that

d) Ř is a universal solution of the QYBE, in the sense that R satisfies

R23 ◦ R13 ◦ R12 = R12 ◦ R13 ◦ R23,

and consequently Ř induces a solution of the QYBE for any triple of
modules V1, V2, V3.

The work of [BW13] and [ES13] gave an indication that an analogously defined
bar involution should exist for quantum symmetric pairs. Moreover, [BW13] per-
formed a part of this program (steps (1),(2),(3),(a),(b)) for quantum symmetric
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pair coideal subalgebras corresponding to gln×gln ⊆ gl2n and gln+1×gln ⊆ gl2n+1.
The natural question then is whether it is possible to extend this program to other
quantum symmetric pairs, and whether it is possible to prove (c) and (d) in those
cases as well.

Let Bc,s be a quantum symmetric pair coideal subalgebra of Uqg, as defined in
[Let02] and [Kol14]. It depends on the choice of a finite type subalgebra UqmX ,
an involution τ of the Dynkin diagram, and some parameters c, s. We proceed in
several steps, corresponding to the steps in solving the QYBE above:

(1) In the paper [BK14] we describe the exact values of parameters c, s for
which there is a natural bar involution x 7→ xB on Bc,s. The proof uses the
presentation of Bc,s from [Let02], [Kol14], and extends their description
of the relations to some new cases.

(2) We construct a quasi K-matrix X, which intertwines two different bar
involutions x 7→ xB on Bc,s and x 7→ x on Uqg, in the sense that Xx = xBX
for every x ∈ Bc,s. (A special case of X was constructed in [BW13]).

(3) We construct an element K of a certain completion of Uqg. For instance,
when Uqg is of finite type, K is given by

K = X ◦ ξ ◦ T−1
w0

◦ T−1
wX
,

for ξ a certain operator acting as a constant on every weight space, and
Tw0

, TwX
are the Lusztig braid group operators associated to the longest

element of the Weyl group of Uqg and of UqmX . (Again, this is extending
the work of [BW13]).

The operator K satisfies:

a) K commutes with Bc,s.
b) For every (integrable, category O) representation V of Uqg, its action

induces a linear operator KV , which is an isomorphism between certain
twists of V . For instance, in finite type,

KV : V → V ττ0,

with τ0 the involution of the Dynkin diagram induced by w0 and V ττ0 is
the module with the Uqg-action twisted by the automorphism ττ0.

c) In finite type, this is consistent with the tensor product of modules, in the
sense that

∆(K) = (K ⊗ 1) ◦ Řττ0⊗1 ◦ (K ⊗ 1) ◦ Ř.

From these properties it quickly follows that, for a finite type Uqg,

d) K is a universal solution of the RE, in the sense that it satisfies

(K ⊗ 1) ◦ Řττ0⊗1 ◦ (K ⊗ 1) ◦ Ř = Ř ◦ (K ⊗ 1) ◦ Řττ0⊗1 ◦ (K ⊗ 1),

and induces a solution KV of the reflection equation on every finite di-
mensional representation V .
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Canonical bases arising from quantum symmetric pairs

Huanchen Bao

The discovery of the canonical bases on quantum groups and their integral modules
by Lusztig was a breakthrough in the study of quantum groups. Recently, a theory
of canonical bases arising from quantum symmetric pairs was initiated in joint work
with Weiqiang Wang [2], motivated by a formulation of Kazhdan-Lusztig theory
for the ortho-symplectic Lie superalgebras. The relevant quantum symmetric pair
is (Uq(slr),U

ı
q(slr)). At q = 1, the relevant involution of the Lie algebra slr is the

rotation of the matrices by 180 degrees.
M. Jimbo generalized the classical Schur duality to a duality between Uq(slr)

and HAn−1
(the Hecke algebra of type A). We generalize the Jimbo-Schur duality

using the coideal subalgebra Uı
q(slr).

Theorem 1. Let V be the natural representation of Uq(slr). The coideal subal-
gebra Uı

q(slr) and the Hecke algebra HBn
of type B form double centralizers when

acting on V⊗n.

The actions of the generators of HAn−1
on V⊗n are realized by R matrices.

Recall that the Hecke algebra HBn
is generated by the subalgebra HAn−1

together
with one additional generator T . We have constructed in [2] an isomorphism T of
Uı

q(slr)-modules as an analog of the R matrix, whose action on V⊗n realizes the
action of the additional generator T of HBn

.
Both dualities can be described in the following diagram:

V⊗n

Uq(slr) HAn−1

R

HBn

R, T
Uı

q(slr)

Our presentation of the coideal subalgebra Uı
q(slr) (different from existing ones

in the literature [5, 6]) exhibits manifestly a bar involution (q 7→ q−1) on Uı
q(slr).
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(The bar involution has been observed independently in [4].) The bar involution
on Uı

q(slr) allows us to construct a new bar involution (different from Lusztig)
on any integral Uq(slr)-modules (considered as Uı

q(slr)-modules by restriction),
denoted by ψı.

Theorem 2. Simple integrable Uq(slr)-modules and their tensor products admit
ψı-invariant bases, whose transition matrices with respect to Lusztig’s canonical
bases are uni-upper-triangular with coefficients in qZ[q].
(These new bases are called the ı-canonical bases.)

The theory of canonical basis arising from quantum symmetric pairs allows us
to formulate and establish the KL theory for the ortho-symplectic Lie superalgebra
osp(2n+ 1|2m) for the first time. Set r = ∞. Let V the natural representation of
Uq(sl∞) and V∗ be its restricted dual. Let On|m be the BGG category of osp(2n+
1|2m)-modules of integer (or half-integer) weights and denote its Grothendieck
group by [On|m]. There exists a natural isomorphism Φ : V⊗n ⊗ (V∗)⊗m|q=1 →
[On|m] matching the standard basis (consists of simple tensors) with the basis
of Verma modules. By Theorem 2, there exist an ı-canonical basis (and a dual
ı-canonical basis constructed in a similar way) on the tensor space V⊗n⊗ (V∗)⊗m.

Theorem 3. We have the following correspondence of bases via the map Φ:

Φ : V⊗n ⊗ (V∗)⊗m|q=1

∼=

Standard basis

ı-CB

Dual ı-CB

[On|m]

Verma

Tilting

Simple

In other words, the entries of the transition matrix from the standard basis
to the ı-canonical basis play the role of the KL polynomials for osp(2n + 1|2m).
This settles the basic open problem since 1970’s of determining the irreducible
characters for osp(2n+ 1|2m).

When setting m = 0, thanks to the ıSchur duality in Theorem 1, Theorem 3
reformulates the classical KL theory for the Lie algebra so(2n+ 1) (and similarly
for the Lie algebra sp(2n)).

In joint work with Jonathan Kujawa, Yiqiang Li andWeiqiang Wang [3], we also

provided a geometric realization of the modified coideal subalgebra U̇ı
q(glr) and

the ıSchur duality using the partial flag varieties of type B/C. Moreover U̇ı
q(glr)

admits a canonical basis. This generalizes the influential geometric construction
of U̇q(glr) by Beilinson, Lusztig and MacPherson [1].
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The algebra Aq, q−Onsager algebras and coideal subalgebras: two
open problems

Pascal Baseilhac

Introduced in the mathematical physics literature, the Onsager algebra (OA) and
its representation theory has been used to solve different types of quantum inte-
grable systems, i.e. deriving explicit spectrum and eigenstates of the Hamiltonian
for instance. Among these, one finds the Ising, superintegrable chiral Potts, XY
models,... From the point of view of algebra and representation theory, the OA
admits two presentations. The first presentation is given in terms of two genera-
tors A0, A1 which satisfy a pair of relations, the so-called Dolan-Grady relations
[DG]. They read:

[A0, [A0, [A0, A1]]] = 16[A0, A1], [A1, [A1, [A1, A0]]] = 16[A1, A0].

The second presentation which first appeared in Onsager’s work on the exact
solution of the two-dimensional Ising model [Ons] is given in terms of generators
{Ak, Gl|k, l ∈ Z} and relations:

[
Ak, Al

]
= 4Gk−l,

[
Gl, Ak

]
= 2Ak+l − 2Ak−l,

[
Gk, Gl

]
= 0.

In the 90’s, Davies [Dav]: showed that the OA is isomorphic with a fixed-point

subalgebra of ŝl2 under the action of a certain automorphism of ŝl2; established the
isomorphism between the first and second presentation. Using this isomorphism,
generators {Ak, Gl} were systematically written as polynomials in A0, A1. For its
usefulness in mathematical physics, finite dimensional (evaluation) modules of the
OA were constructed. Fundamental generators then satisfy a set of linear relations,
the so-called Davies’ relations [Dav]. According to these, quotients of the Onsager
algebra can be defined.

In the context of quantum integrable systems with boundaries and related spec-
tral parameter dependent reflection equation algebra [Sk], an algebra which can be
seen as a q−deformed analog of the OA (q−OA) with generators W0,W1 appeared
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[Bas]. Corresponding defining relations are given by1:
[
W0,

[
W0,

[
W0,W1

]
q

]
q−1

]
= ρ

[
W0,W1

]
,
[
W1,

[
W1,

[
W1,W0

]
q

]
q−1

]
= ρ

[
W1,W0

]

where ρ is a scalar. These relations describe a special case the so-called tridiagonal
algebra that previously appeared in the mathematical literature [Ter2] in the con-
text of P− and Q−polynomial schemes. Studying in details the algebraic structure
of the most general (non-scalar) solution of the reflection equation algebra - the
so-called Sklyanin operator [Sk] - an infinite dimensional current algebra called Aq

was identified in 2005 [BK], which first modes satisfy the above pair of relations.

Precisely, Aq is defined in terms of generators {Wk,Wk+1,Gk+1, G̃k+1|k ∈ Z+}
and defining relations given in [BK]. Now, considering a vector space of finite
dimension on which Aq’s generators act, using Sklyanin’s q−determinant it is pos-
sible to show that Aq’s generators are polynomials in W0,W1 of the q−OA [BB1].
In the limiting case q = 1, the connection with the polynomials for related the
OA first and second presentation has been checked. This strongly suggests that
the algebra Aq is one candidate for a second presentation of the q−OA, by anal-
ogy with the case q = 1. In addition to these results, an explicit homomorphism

from the q−OA to a certain coideal subalgebra of Uq(ŝl2) has been exhibited in

2004 [Bas]. Let {ei, fi, qhi |i = 0, 1} be Uq(ŝl2) Chevalley generators and k±, ǫ± be

scalars. According to a certain choice of coproduct structure for Uq(ŝl2), it reads

W0 7→ k+e1 + k−q−1f1q
h1 + ǫ+qh1 ,W1 7→ k−e0 + k+q−1f0q

h0 + ǫ−qh0 , ρ 7→ (q + q−1)2k+k−.

For q = 1, one recovers Davies’ homomorphismmapping OA to ŝl2 [Dav]. Studying
finite dimensional modules of the algebra Aq, q−analogs of Davies’ ones were
derived explicitly [BK]. All these facts together with other strong evidences suggest
the following first problem for mathematicians:

Problem 1-a: Show that the infinite dimensional algebra Aq, the q−Onsager

algebra and the above coideal subalgebra of Uq(ŝl2) are isomorphic.
More recently, another object, called the ’augmented q−OA’, independently

appeared in the mathematics [IT] an physics [BB2] literature. This algebra is

generated by K0,K1,Z1, Z̃1 subject to the defining relations:

[K0,K1] = 0, K0Z1 = q−2
Z1K0, K0Z̃1 = q2Z̃1K0, K1Z1 = q2Z1K1, K1Z̃1 = q−2

Z̃1K1,

[
Z1,

[
Z1,

[
Z1, Z̃1

]
q

]
q−1

]
=

(q3 − q−3)(q2 − q−2)3

q − q−1
Z1(K1K1 − K0K0)Z1,

[
Z̃1,

[
Z̃1,

[
Z̃1,Z1

]
q

]
q−1

]
=

(q3 − q−3)(q2 − q−2)3

q − q−1
Z̃1(K0K0 − K1K1)Z̃1.

Remarquably, considering a certain quotient of the reflection equation algebra2

one obtains a new current algebra [BB2]. Let us denote Adiag
q as the algebra

generated by the currents’ modes Kk,Kk+1,Zk+1, Z̃k+1. The defining relations can
be obtained in a straighforward manner. Importantly, an explicit homomorphism

from the augmented q−Onsager algebra to another coideal subalgebra of Uq(ŝl2)

1[X,Y ]q = qXY − q−1Y X, q is assumed not to be a root of unity.
2The structure of the spectral parameter’s power serie expansion of the entries of the Sklyanin

operator are slightly restricted.
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is known [IT, BB2]. It reads:

K0 7→ ǫ+qh1 , K1 7→ ǫ−qh0 ,

Z1 7→ (q2 − q−2)
(
ǫ+q−1e0q

h1 + ǫ−f1q
h1+h0

)
, Z̃1 7→ (q2 − q−2)

(
ǫ−q−1e1q

h0 + ǫ+f0q
h1+h0

)
.

Problem 1-b: Show that the infinite dimensional algebra Adiag
q , the aug-

mented q−OA and the above coideal subalgebra of Uq(ŝl2) are isomorphic; Find
the polynomial formulae which relates Adiag

q to the augmented q−OA.

Remarks: For the Uq(ŝl2) quantum Kac-Moody algebra, two of the coideal
subalgebras considered in [Kol] generate the q−Onsager and augmented q−Onsager
algebra, respectively. For Uq(ĝ) with ĝ a simply or non-simply laced affine Lie al-
gebra, the defining relations associated with one of the coideal were proven in
[BB3].

Finally, recall that for finite dimensional irreducible modules ofAdiag
q , q−analogs

of Davies’ relations were exhibited in some examples [BK]. From a general point
of view, these relations are such that certain polynomials of total degree 2N + 1

in W0,W1 are vanishing on the module. Let A[2N+1]
q denote the quotient of Adiag

q

by such relations. For N = 1, it is isomorphic with the Askey-Wilson algebra
AW (3) [Zhedanov,1991]. In addition, recall that there exists an homomorphism
from AW (3) to the double affine Hecke algebra of type C1, C

∨
1 [Terwilliger,2010].

Problem 2-a: Is there an homomorphism from A[2N+1]
q to an algebra that

generalizes the double affine Hecke algebra of C1, C
∨
1 ?

Recall that the Askey-Wilson polynomials provide an infinite dimensional basis
of AW (3). Recently, it is shown that some mutlivariable polynomials introduced
by Gasper and Rahman in 2006 provide an infinite dimensional basis of the q−OA
[BM].

Problem 2-b: Classify finite dimensional irreducible modules of A[2N+1]
q ;

Study in details finite dimensional modules associated with Gasper-Rahman mul-
tivariable polynomials.
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(—-), 2010 unpublished notes.

[BB2] P.Baseilhac and S.Belliard, The half-infinite XXZ chain in Onsager’s approach,
Nucl.Phys. B 873 (2013) 550-583, arXiv:math-ph/1211.6304.

[BB3] P. Baseilhac and S. Belliard, Generalized q-Onsager algebras and boundary affine Toda

field theories, Lett. Math. Phys. 93 (2010) 213-228, arXiv:0906.1215.
[BK] P. Baseilhac and K. Koizumi, A new (in)finite dimensional algebra for quantum integrable

models, Nucl. Phys. B 720 (2005) 325-347, arXiv:math-ph/0503036.
[BM] P. Baseilhac and X. Martin, A q−hypergeometric formulation for a class of quantum

integrable systems, in preparation.
[Dav] B. Davies, Onsager’s algebra and superintegrability, J. Phys. A 23 (1990) 2245-2261;

B. Davies, Onsager’s algebra and the Dolan-Grady condition in the non-self-dual case, J.
Math. Phys. 32 (1991) 2945-2950.



544 Oberwolfach Report 10/2015

[DG] L. Dolan and M. Grady, Conserved charges from self-duality, Phys.Rev. D 25 (1982)
1587.

[IT] T. Ito and P. Terwilliger, The augmented tridiagonal algebra, Kyushu Journal of Mathe-
matics, 64 (2010) No. 1, 81-144, arXiv:0904.2889v1.

[Kol] S. Kolb, Quantum symmetric Kac-Moody pairs, arXiv:12067.6036.
[Ons] L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder

Transition, Phys. Rev. 65 (1944) 117-149.
[Ter2] P. Terwilliger,Two relations that generalize the q−Serre relations and the Dolan-Grady

relations, Proceedings of the Nagoya 1999 International workshop on physics and combi-
natorics. Editors A. N. Kirillov, A. Tsuchiya, H. Umemura. 377-398, math.QA/0307016.

[Sk] E.K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988)
2375-2389.

Coideal subalgebras and three dualities

Michael Ehrig

(joint work with Catharina Stroppel)

In this talk we want to investigate the coideal subalgebra B(m) of type AIII (see [4]
and [5]) from the viewpoint of categorification and the ideas of Schur-Weyl duality
and skew Howe duality. It is based on the papers [2] and [3]. The main tool for
this is the graded version of the BGG category O for the classical semi-simple Lie
algebra of type D as well as its parabolic analogues.

Denote by g = so2n the even orthogonal complex Lie algebra. Furthermore
denote by X the lattice of integral weights, which in this case can be decom-
posed into a copy of Zn and (Z + 1

2 )
n. By O(g) we denote the graded BGG

category O of g, assuming that the weights of all modules are integral and in-
side (Z + 1

2 )
n. The graded version is defined via the results from [1]. It de-

composes into blocks O(g) =
⊕

χOχ, where the blocks are labelled by orbits of

the Weyl group W of g inside (Z + 1
2 )

n. In this case W acts by permutations
as well as even number of sign changes on the elements in X . We denote by
X(n,m) = {λ ∈ (Z + 1

2 )
n| 12 ≤ |λi| ≤ m− 1

2} a subset of X which is stable under
the action of the Weyl group and by O≤m the sum of those blocks of O(g) whose
W -orbits are contained in X(n,m).

The Grothendieck group of O≤m extended to the field Q(q) for generic q is natu-
rally isomorphic to the vectorspace V ⊗n

2m , where V2m is a vector space of dimension
2m.

After a choice of a basis in V2m we identify the standard basis in V ⊗n
2m with the

classes of Verma modules. We define an endofunctor B of O≤m as the graded
analogue of the functor pr≤m ◦ (? ⊗ L(ω1)) which first takes the tensor product
with the vector representation of so(2n) and afterwards projects onto the blocks
in O≤m. By pre- and postcomposing with suitable projections onto blocks one can

decompose the functor B = B0 ⊕
⊕m−1

i=1 B±i. Using these functor one obtains:

The endofunctors Bi of the category O≤m give a categorification of the action of
B(m) ⊂ Uq(gl2m) on V ⊗n

2m .
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Using in addition derived Zuckerman or twisting functors one obtains a cate-
gorification of the action of the Hecke algebra Hq(Dn) of type D on Db(O≤m).
Adding in an additional easily defined autoequivalence this extends to an action
of Hq,1(Bn), a specialization of the two parameter version of the Hecke algebra of
type B. This categorifies a Schur-Weyl type duality between this algebra and the
coideal subalgebra B(m). The set-up gives a natural notion of a bar involution

compatible with the B(m)-action on the module V ⊗d
2m via the graded duality of

the category, as well as a notion of a canonical respectively dual canonical basis
in the form of the classes of simple respectively indecomposable projective mod-
ules. This is further extended to a skew Howe type duality on the vector space∧n

(V2m ⊗ Vr) ∼=
∧n

(Vm ⊗ V2r) between B(m) and B(r). This is accomplished by
decomposing this vector space in two different ways, with respect to the action of
both Uq(gl2m) and Uq(gl2r). Each of these decompositions in turn is categorified
by parabolic versions of category O as in the set-up above. It is argued that, after
passing to the bounded derived categories on both sides, the categorifications are
equivalent via Koszul duality, allowing us to transfer functors from one categorifi-
cation to the other. Let us denote by C the category used for the categorification
with respect to the decomposition for Uq(gl2m).

There are families of endofunctors Bi, −(m− 1) ≤ i ≤ m− 1, and B′
j, −(r− 1) ≤

j ≤ r− 1, of the category Db(C) giving a categorification of the commuting actions
of B(m) and B(r) on

∧n
(V2m ⊗ Vr).

The endofunctors are defined in complete analogy to the Schur-Weyl duality case.
Finally we discuss how the Koszul duality can be described combinatorially to
check whether the categorified action coincide with the restriction of the actions
of the quantum groups.
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Matrix-valued orthogonal polynomials associated to an explicit
quantum symmetric pair

Erik Koelink

(joint work with Noud Aldenhoven, Pablo Román)

It is well-known that several families of orthogonal polynomials of hypergeomet-
ric type, i.e. polynomials in the so-called Askey scheme, occur as zonal spherical
functions on compact symmetric spaces of rank 1. Matrix-valued orthogonal poly-
nomials were originally introduced by M.G. Krĕın, see e.g. references in [3], and
matrix-valued orthogonal polynomials have been studied from the analytic point
of view in several contexts. It is natural to ask for a group-theoretic interpretation
of matrix-valued orthogonal polynomials and use group theory to derive explicit
families of matrix-valued orthogonal polynomials and its properties. In [1] a spe-
cial class of matrix-valued orthogonal polynomials has been introduced using the
compact symmetric space (SU(3), U(2)), where the derivation heavily relies on
differential operators.

In [3, 4] another approach has been developed for the group G = SU(2)×SU(2)
with the diagonal subgroup K = SU(2) motivated by [5]. Then the zonal spher-
ical functions are the characters, which are Chebyshev polynomials of the second
kind Un(cos θ) = sin((n+ 1)θ)/ sin θ. In particular, the matrix-valued orthogonal
polynomials introduced and studied in [3, 4] can be considered as matrix-valued
analogues of the Chebyshev polynomials.

The Chebyshev polynomials can also be considered as a special case of the
Askey-Wilson polynomials, and they occur as characters on the quantum SU(2)
group [7]. More generally, the zonal spherical functions for rank 1 quantum sym-
metric spaces can be expressed in terms of Askey-Wilson polynomials [6].

In studying the quantum analogue of [3, 4], we consider the quantum symmetric
pair (Uq(g),B) with g = sl(2)⊕ sl(2) and B the right coideal subalgebra generated
by K±1, B1, B2, essentially following [2]. Using the results of [2] we see that
B ∼= Uq(sl(2)) as an algebra, so that we can use standard results on representation
theory. In particular, the type 1 representations of Uq(g), respectively B, are
labeled by two spins (ℓ1, ℓ2), respectively one spin ℓ, for ℓ, ℓ1, ℓ2 ∈ 1

2N. Using
this identification, the Clebsch-Gordan decomposition governs the branching rule:
the multiplicity [π(ℓ1,ℓ2)|B : πℓ] = 1 if and only if |ℓ1 − ℓ2| ≤ ℓ ≤ ℓ1 + ℓ2 and
ℓ1 + ℓ2 − ℓ ∈ Z. Moreover, the intertwiners are explicitly known. Let Hℓ ∼= C2ℓ+1

be the representation space of πℓ and define for (ℓ1, ℓ2) satisfying the condition
above, the matrix-valued spherical function

Φℓ
ℓ1,ℓ2 : Uq(g) → End(Hℓ), X 7→ β∗ ◦ π(ℓ1,ℓ2)(X) ◦ β

where β is a B-intertwiner fromHℓ into the representation space of π(ℓ1,ℓ2). By con-
struction, Φℓ

ℓ1,ℓ2
(XY Z) = πℓ(X)Φℓ

ℓ1,ℓ2
(Y )πℓ(Z) for X,Z ∈ B, Y ∈ Uq(g). Then

the case ℓ = 0, implying ℓ1 = ℓ2, corresponds to the spherical case, and we put ϕ =
Φ0

1/2,1/2. Using the coideal property of B one can show that ϕΦℓ
ℓ1,ℓ2

satisfies the

same transformation property. Here
(
ϕΦℓ

ℓ1,ℓ2

)
(X) =

∑
(X) ϕ(X(1))Φ

ℓ
ℓ1,ℓ2

(X(2)) by
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definition. By uniqueness and tensor product decomposition we obtain ϕΦℓ
ℓ1,ℓ2

=∑
i,j=±1/2 Ai,jΦ

ℓ
ℓ1+i,ℓ2+j , where A1/2,1/2 6= 0. This gives an explicit recursion rela-

tion where the coefficients Ai,j can be given explicitly in terms of Clebsch-Gordan
coefficients, i.e. the matrix entries of β.

We now fix ℓ. We label (ℓ1, ℓ2) = ξ(n, k) = (12 (n + k), ℓ + 1
2 (n − k)) for the

representation labels for Uq(g) for which the multiplicity in the branching rule is 1.
The recursion can be iterated, and this proves the existence of polynomials rℓ,kn,m

with n ∈ N, 0 ≤ m, k ≤ 2ℓ+ 1 so that Φℓ
ξ(n,m) =

∑2ℓ+1
k=0 rℓ,kn,m(ϕ)Φℓ

ξ(0,k). We then

define Pn to be the matrix-valued polynomial with entries
(
Pn(x)

)
i,j

= rℓ,in,j(x).

So Pn(x) is a (2ℓ+ 1)× (2ℓ+ 1)-matrix.
Now that the matrix-valued polynomials have been introduced we can exploit

the quantum group theoretic interpretation in order to obtain various properties
of the matrix-valued polynomials. First of all, the Schur orthogonality relations
give rise to the matrix-valued orthogonality relations

∫ 1

−1

(Pn(x))
∗W (x)Pm(x)

√
1− x2 dx = δn,mGn

where for −1 < x < 1 the matrix W (x) is strictly positive definite. The integrand
is a matrix and the integral is taken entrywise. The ‘squared norm’ matrix Gn

is strictly positive definite. Up to a simple action, the matrix entries of W can
be expressed as a spherical function, hence as an expansion in Chebyshev polyno-
mials. Moreover, the Pn’s satisfy a matrix-valued three-term recurrence relation
from the recursion relation for the matrix-valued spherical function. They are
also eigenfunctions for two different Askey-Wilson-type matrix-valued q-difference
operators, by considering Casimir operators in Uq(g). Using analytic techniques
we can also obtain the LDU-decomposition of W and study the entries of the
matrix-valued polynomials in terms of scalar valued orthogonal polynomials from
the q-Askey scheme.

All the results mentioned above will appear in a forthcoming preprint.
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Coideal subalgebras of quantum groups

Stefan Kolb

The talk aims to present main classes of examples of right coideal subalgebras
(RCSA) of Uq(g) for semisimple g. Here k is a field, q ∈ k is not a root of unity,

and Uq(g) is a Hopf algebra over k with generators Ei, Fi,K
±1
i for i ∈ I and

coproduct ∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei.

1. Koornwinder’s twisted primitive element in Uq(sl2). For α, β ∈ k the
element B = F + αEK−1 + βK−1 generates a RCSA of Uq(sl2). This was the
first example for which the program of harmonic analysis on quantum symmetric
spaces was performed [Koo93].

2. Noumi’s construction. We restrict to the symmetric pair (g, k) with g =
gl(2m) and k = gl(2m)× gl(2m) which has been considered in the recent work by

Bao & Wang and Ehrig & Stroppel. Set N = 2m and J =
∑N

i=1Ei,N−i+1 where
Ei,j denotes the elementary N × N matrix with entry 1 in the (i, j)-th position.

For E =
∑N

i,j=1 Ei,j ⊗ Ei,j ∈ g ⊗ End(CN ) the Lie subalgebra k is generated by
the coefficients of EJ + JE where J is multiplied in the second tensor entry.

This construction translates to Uq(g) for k = C using L-operators L−, L+ ∈
Uq(g) ⊗ End(CN ), see [FRT89]. A q-analog of k is obtained as the span of the
matrix coefficients of

L−Jq + JqL
+ ∈ Uq(g)⊗ End(CN )

for a suitable q-deformation Jq of J which satisfies the reflection equation. The
subalgebra of Uq(g) generated by the matrix coefficients of

S(L−)JqL
+

is a RCSA of Uq(g) which we call the Noumi coideal subalgebra corresponding to
the symmetric pair (g, k). See [DS99, Section 6] for details of this example and
[NS95] for other classical symmetric pairs.

3. Letzter’s quantum symmetric pairs. A comprehensive theory of quantum
symmetric pairs was developed by G. Letzter. Her theory includes classification
results and subsumes Noumi’s coideal subalgebras. See Letzter’s talk for details.

4. Quantum homogeneous spaces. A RCSA C of a Hopf algebra H is called
a quantum homogeneous space for H if H is faithfully flat as a right C-module.
This notion goes back to work by M. Takeuchi, A. Masuoka, and H.-J. Schneider.
Masuoka showed that if H is pointed then C is a quantum homogeneous space
for H if and only if the intersection C ∩ H0 of C with the coradical H0 is a
Hopf algebra. All examples of RCSA appearing in Sections 1, 2, 3 are quantum
homogeneous spaces.

The classification of quantum homogeneous spaces for Uq(g) is still open, but
important subclasses of RCSAs of Uq(g) have been classified. In a much broader
context of bozonisations of Nichols algebras, I. Heckenberger and H.-J. Schneider
established a one-to-one correspondence between elements of the Weyl group W
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and RCSAs of Uq(g) which contain the coradical U0, [HS13]. See [HK11] for
subsequent classification results. The following problem seems natural.

Problem. Relate the classification results for quantum homogeneous spaces and
for quantum symmetric pairs to the classification of Poisson homogeneous spaces
in terms of Lagrangian Lie subalgebras of the double D(g) given in [Dri93].

5. Shift of base point. Let C ⊆ H a RCSA and let χ : C → k be a one-
dimensional representation. Then Cχ = {χ(c(1))c(2) | c ∈ C} is a RCSA of H . We
say that Cχ is obtained from C by shift of base point. Essentially all quantum
homogeneous spaces for Uq(b

+) are obtained in this way, see [HK11].

6. The locally finite part Fr(Uq(g)). Any Hopf algebra H acts on itself by the
right adjoint action given by (ad)(h)(x) = S(h(1))xh(2). The right locally finite
part of H is defined by Fr(H) = {x ∈ H | dim(adr(H)(x)) <∞}. The proof of the
following result is a recommendable exercise in the use of the Sweedler notation.

Proposition. The right locally finite part Fr(H) is a RCSA of H .

It follows from results by Joseph and Letzter that Fr(Uq(g)) is not a quantum
homogeneous space as defined in Section 4. However, shift of base point can be
used to obtain the Noumi coideal subalgebra in Section 2 from the locally finite
part. Indeed, as an algebra Fr(Uq(slN )) is generated by the matrix entries of
S(L−)L+. Suitably normalized, the solution Jq of the RE gives rise to a one-
dimensional representation χJ of Fr(Uq(slN )). It follows from ∆(L±) = L± ⊗ L±

that Fr(Uq(slN ))χJ
is the Noumi coideal subalgebra described in Section 2. Details

can be found in [KS09].
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Different types of quantum groups and the Frobenius homomorphism

Simon D. Lentner

In this talk I review the definition of Lusztig’s quantum group of divided powers
in [Lusz90a], accompanied by some own results that complete the picture. Then
I discuss briefly the representation theoretic significance of this Hopf algebra and
discuss applications to the construction of logarithmic conformal field theories:

Lusztig’s construction consist of several steps and associates quantum groups
over various rings to a (semi-)simple finite-dimensional complex Lie algebra g:

a) Already the rational form of the quantum groups U
Q(q)
q (g,Λ) comes with a

choice of a lattice ΛR ⊂ Λ ⊂ ΛW , so the coradical of the quantum group is the
group algebra Q(q)[Λ] (actually the relations even allow to take up to ⊂ ΛW∨).
The significance of the choice Λ is as follows:

• From a Hopf algebra perspective, the choice of Λ is almost trivial, the usual
case Λ = ΛR is “link-indecomposable”, larger Λ are just group extensions.

• From a geometric perspective, the choice corresponds to the choice of a
complex Lie group associated to g, which is precisely parametrized by a
subgroup of the fundamental group π0 := ΛW /ΛR. For example, the usual
choice Λ = ΛR is the “adjoint form” (e.g. PSLn(C)), while the maximal
choice ΛW is “simply-connected form” (e.g. SLn(C)).

• From a representation theory perspective, the choice of Λ makes a huge
difference, especially for the later-on considered small quantum group
uq(g,Λ): E.g. it has already been known to several authors, that uq(sl2,ΛR)

does not have a braided representation category, while some quadratic ex-
tension has. In [LN14b] I have with a PhD student constructed braided
structures (sometimes several different!) for suitable choices of Λ. The
message of this calculation is: While the most difficult part of the braid-
ing is encoded in Lusztig’s “quasi-R-matrix” Θ from the Drinfel’d double
construction D(U≥0

q (g)), in the end also the toral part R0 ∈ K[Λ]⊗K[Λ]
matters: We parametrize possible R0-matrices by subgroups |H1| = |H2|
of Λ/ΛR and a pairing ω, then R0 =

∑
µ̄∈H1,ν̄∈H2

ω(µ, ν)q(µ,ν)Kµ ⊗ Kν

This is proven using additive combinatorics in [LN14a]. Which choices of
H1, H2, ω then really admit an R-matrix depends on the root of unity. On
the other hand, choosing a too large Λ usually destroys modularity!

b) Then, one chooses an integral form U
Z[q,q−1]
q (g,Λ) such that ⊗Z[q, q

−1] is an
isomorphism to the rational form. We take Lusztig’s choice of divided powers.
Another choice due to DeConcini-Kac-Procesi appears more directly for Nichols
algebras (see below) and is related by a simple dualization procedure.

c) Finally the specialized form UL
q (g,Λ), a complex Hopf algebra for a concrete

value q ∈ C× is obtained by tensoring the integral form with the 1-dimensional
Z[q, q−1]-module Cq, where the the indeterminant q acts by the concrete value.

Let especially q be a primitive ℓ-th root of unity and ℓα := ord(q(α,α)). Note
that we have a vector space basis of PBW-type also in any specialization, but the
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algebra structure can be modified significantly. For example Eℓα
α = 0, and the

specialization includes a finite-dimensional Hopf algebra uLq .

Under the nowadays common restriction ord(q2) > (α, α)/2, Lusztig proves
that uLq is generated by the Ei, Fi and Λ (and the usual relations) and there is a
short exact sequence of Hopf algebras:

uq(g) → UL
q (g) → U(g)

In [Len14a][Len14b] I have completed this picture by calculating the remaining
degenerate cases, reversing Lusztig’s proof order: First we identify uLq , which may
not be generated by the Ei, Fi, but for some other uq(g

′). Then we show it is
normal and the quotient must be some universal enveloping algebra U(g′′), which
we finally identify case-by-case. So we find in general short exact sequences, e.g.

q =
4
√
1 : uq(A1 ×A1 × · · · )+ → UL

q (Bn)
+ → U(Cn)

+

uq(Dn)
+ → UL

q (Cn)
+ → U(Bn)

+

uq(A3)
+ → UL

q (G2)
+ → U(G2)

+

We conclude by explaining several intriguing conjectures by Feigin, Semikha-
tov, Tipunin relating uq → UL

q → U to new logarithmic conformal field theories,
and more general approaches for arbitrary Nichols algebras, see e.g. [FT10, ST12].
Our results above seem to give new cases, that nicely show the different roles of
the sequence terms. For example, for Bn, q = 4

√
1 we expect to yield well-known

vertex algebra of n pairs of symplectic fermions, with global symplectic symme-
try U(Cn), invariant sub-VOA B̂n and representation category equivalent to that
of uq(A1 × A1 × · · · ), which is essentially a Clifford algebra. Hence we repeat
a question from Oberwolfach workshop 2014 (Infinite-dimensional Hopf algebras)
and [Len14a] Problem 7.4, where we give several sources of examples:

Find all extensions of finite-dimensional pointed Hopf algebras by uni-
versal envelopings u→ H → U(g′′) and then corresponding CFT’s!
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An Overview of Quantum Symmetric Pairs

Gail Letzter

The theory of quantum symmetric pairs began shortly after the discovery of quan-
tum groups in the 1980’s. Since then, many interesting applications to mathe-
matical physics, q-special functions and representation theory have emerged. We
present here an overview of the special one-sided coideal subalgebras used to form
quantum symmetric pairs.

Our starting point is a simple complex Lie algebra g with triangular decom-
position g = n− ⊕ h ⊕ n+. All results carry over easily to the semisimple case.
There are also generalizations to Kac Moody Lie algebras (see [6]). Let e1, . . . , en,
h1, . . . , hn, f1, . . . , fn denote a standard Chevalley basis with respect to this tri-
angular decomposition. A classical (infinitessimal) symmetric pair is a pair g, gθ

where gθ is a Lie subalgebra of g fixed by an involution θ. Conjugating by a Lie
algebra automorphism if necessary we may assume that θ is maximally split with
respect to the given triangular decomposition ([10]). The Lie algebra gθ is gener-
ated by the two Lie subalgebras m = 〈ei, fi, hi| θ(hi) = hi〉, hθ = 〈h ∈ h| θ(h) = h〉
and the elements fi + θ(fi) for fi /∈ m. Note that θ(fi) is a root vector in n+.

The quantized enveloping algebra U = Uq(g) is the Hopf algebra generated

over C(q) (q an indeterminate) by Ei,K
±1
i , Fi, i = 1, . . . , n with relations and

Hopf structure as in [10]. A quantum symmetric pair is a pair U,Bθ where Bθ is a
left coideal subalgebra of U that specializes to U(gθ) as q goes to 1. As an algebra,
Bθ has generators very similar to those of gθ. In particular, Bθ is generated by
the two Hopf subalgebras M = Uq(m), C(q)[Ku1

1 · · ·Kun
n |∑i uihi ∈ hθ] and the

elements Bi = FiKi + θ̃(Fi)Ki for Fi /∈ M. Here, θ̃ is a lift of θ to the quantum

setting (see for example [10]) such that θ̃(Fi) is a quantum version of the root
vector θ(fi).

When gθ has a nontrivial center, there is actually a one parameter family of
coideal analogs of U(gθ) inside of U . The extra degree of freedom shows up in
the definition of one of the Bi and is based on two distinguished subsets S and D
(which depend on θ) of the set of simple roots of g (see [10], [11]). Both S and D
are empty if gθ is semisimple. On the other hand, if gθ has a nontrivial center, then
either |S| = 1 or |D| = 1 and the other set is empty. The quantum analog Bθ,s,d

of U(gθ) inside U is the left coideal subalgebra generated by the same two Hopf

subalgebras stated for Bθ above, the elements Bi = FiKi + θ̃(Fi)Ki for Fi /∈ M
and αi /∈ S∪D, Bi = FiKi+ θ̃(Fi)Ki+sKi for αi ∈ S, and Bi = FiKi+dθ̃(Fi)Ki

for αi ∈ D. Note that Bθ = Bθ,s,d where s = 0 and d = 1.
Relations satisfied by the generators of Bθ,s,d are given in [10] and [11] (see

also [6]). Perhaps the only complicated relations are those for the Bi, i = 1, . . . , n
which look like the quantum Serre relations up to terms of “lower degree” where
Bi = FiKi for Fi ∈ M. For example, if aij = −1, θ(αi) = −αi and θ(αj) = −αj ,
then

B2
iBj − (qi + q−1

i )BiBjBi +BjB
2
i = q−1

i Bj
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where qi = q(αi,αi)/2.
Using a quantum version of the Iwasawa decomposition, we obtain a uniqueness

result ([10]): Any maximal left coideal subalgebra of U that specializes to U(gθ) as
q goes to 1 is isomorphic to Bθ,s,d for some choice of s and d up to a Hopf algebra
automorphism of U . As a consequence, the NSD (Noumi-Sugitani-Dijkhuizen [14],
[16], [17]) construction of quantum symmetric pairs via reflection equations yields
the same left coideal subalgebras. It should be noted that some authors prefer
to use right coideal subalgebras instead of left ones. The theories are equivalent.
Indeed, it is easy to convert a left coideal subalgebra into a right one via an algebra
automorphism of U that transforms the Hopf structure appropriately.

For good choices of s and d, one checks that B = Bθ,s,d is preserved by a
conjugate linear antiautomorphism of U that gives U the structure of a Hopf
∗ algebra. It follows that B acts semisimply on any finite-dimensional simple
U -module. A general theory of finite-dimensional simple B-modules is yet to
be developed. A smattering of partial results can be found in [9], [3], [4], and
[15]. New constructions of B canonical bases compatible with Lusztig’s basis for
finite-dimensional U -modules and special choices of θ ([2], [1]) suggest this is an
interesting avenue for further exploration.

There has been extensive work analyzing various algebras of B-invariants which
we summarize here. The center Z of a slight extension of B is a polynomial
ring ([7]). Certain central elements yield solutions to reflection equations, thus
providing another connection to the NSD construction of quantum symmetric pairs
([5], see also [8]). Quantum zonal spherical functions, which are B-biinvariants of
the quantized function algebra, also form a polynomial ring and can be identified
with Macdonald polynomials ([11], [12]). Using a Harish-Chandra type projection
map, one obtains a quantum version of a theorem of Helgason: B-invariants of the
simply connected quantized enveloping algebra project onto the restricted Weyl
group invariants of a particular polynomial ring ([13]).
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K-matrices: from twisted Yangians to quantum loop algebras

Vidas Regelskis

(joint work with Bart Vlaar)

K-matrices are solutions of the matrix reflection equation (RE) that play a key
role in quantum integrable models with open boundary conditions [Sk, GZ]. Two
classes will address in this talk are rational and trigonometric K-matrices.

RationalK-matrices describe a reflection process in quantum integrable models
with the underlying symmetry of the twisted Yangian type (see [Ma2] and refer-
ences therein). Let us recall that the Yangian Y(g) is a flat deformation of the
current algebra Ug[λ], where g is a simple, complex Lie algebra and λ is a formal
parameter ([Dr1, Dr2], see also [MNO], Section 1). Let θ be an involution θ : g → g

and let gθ denote the θ-fixed subalgebra of g. The pair of Lie algebras (g, gθ) is
called a symmetric pair. Set θ : λ → −λ and let g[λ]θ denote the θ-fixed subalge-
bra of g[λ]; its enveloping algebra Ug[λ]θ is called a twisted current algebra. The
twisted Yangian Y(g, gθ) is a flat deformation of Ug[λ]θ and is a coideal subalgebra
of the Yangian Y(g). Twisted Yangians are known to have two different presenta-
tions: the Drinfeld J-basis ([Ma1, BeRe]) and the RTT -presentation ([FRT, Ol],
see also [MNO], Section 3). Constructing twisted Yangians in the Drinfeld J-basis
(also called MacKay twisted Yangians) requires only a knowledge of the symmet-
ric pair (g, gθ) and the structure constants of g. However this is not true for the
RTT -presentation: twisted Yangians in the RTT -presentation are defined by the
reflection equation and its rational solution, the K-matrix K(u). In particular,
for Lie algebras of classical types, they are in one-to-one correspondence with the
compact symmetric pairs (see e.g. [He], Section X.6). Let us give the explicit form
of the corresponding K-matrices.

We must first introduce the necessary notations and definitions. Choose (N ≥
2) ∈ N and let n ∈ N be such that N = 2n or N = 2n + 1. Let gN denote
the general Lie algebra glN , the orthogonal Lie algebra soN or the symplectic Lie
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algebra spN (only when N = 2n). Let i, j ∈ {−n, . . . ,−1, 1, . . . , n} if N = 2n and
i, j ∈ {−n, . . . ,−1, 0, 1, . . . , n} if N = 2n+ 1. Let V be an N -dimensional vector
space and let Eij ∈ EndV denote the usual matrix units. Set I =

∑n
i,j=−n Eii⊗Ejj

to be the identity operator, P =
∑n

i,j=−n Eij⊗Eji to be the permutation operator

and Q = P t1 = P t2 to be the one-dimensional projector satisfying PQ = QP =
±Q and Q2 = NQ, where ti denotes the transposition in the i-th tensor space
given by (Eij)

t = θijE−j,−i; θij = sign(i) · sign(j) if gN = spN , and θij = 1
otherwise, for all i, j; similarly, the lower sign in ± corresponds to the symplectic
case and the upper sign otherwise.

It is known that the R-matrices R(u) ∈ End(V ⊗2) with u ∈ C\{0} given by
[AMR, MNO]

(1) R(u) = I − P

u
and R(u) = I − P

u
+

Q

u− κ
,

where κ = N/2∓ 1, are rational solution of the (quantum) Yang Baxter equation

(2) R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u).

Here Rij(u) ∈ End(V ⊗3) with legs in i-th and j-th tensor spaces. The first R-
matrix in (1) is called of glN type, the second one is of soN or spN type, depending
on the choice of the transposition t defining Q.

Consider the following REs (the second equation is called the twisted RE):

R12(u− v)K1(u)R21(u+ v)K2(v) = K2(v)R21(u+ v)K1(u)R12(u− v),(3)

R12(u− v)K1(u)R
t
21(−u− v)K2(v) = K2(v)R

t
21(−u− v)K1(u)R12(u− v),(4)

where K1(u) = K(u) ⊗ I, K2(v) = I ⊗ K(v), R21(u) = PR12(u)P and Rt(u) =
Rt1(u) = Rt2(u). An important question to ask is how to find K-matrices K(u)
satisfying (one of the) equations above? There is no universal method known to
find general solutions of the REs given above. One could restrict to K-matrices
associated with the compact symmetric pairs of classical types in which case the
answer is known. Consider matrix G given by:

• AI (glN , soN ) and AII (glN , spN ): G = I;

• AIII (glN , glp ⊕ glN−p), p < N/2: G = I − 2
∑n

i=n−p Eii;

• CI (spN , glN/2), N even: G =
∑N

2

i=1(Eii − E−i,−i);

• DIII (soN , glN/2), N even: G =
∑N

2

i=1(Eii − E−i,−i);

• CII (spN , spp ⊕ spq), N , p and q are even and > 0, N = p+ q:

G = −∑ q
2

i=1(Eii + E−i,−i) +
∑N

2

i= q
2
+1(Eii + E−i,−i);

• BDI (soN , sop ⊕ soq): g = soN , gρ = sop ⊕ soq where p > q > 0 if N
is odd, and p ≥ q > 0 if N is even. (If q = 1, then soq is the zero Lie
algebra.) When N is even, p and q have the same parity and G is given

by G =
∑ p−q

2

i=1 (Eii + E−i,−i) +
∑N

2

i= p−q

2
+1

(E−i,i +Ei,−i). When N is odd,

p− q is odd and G =
∑ p−q−1

2

i=− p−q−1

2

Eii +E−i,−i)+
∑N−1

2

i= p−q+1

2

(E−i,i +Ei,−i).
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Then the K-matrix satisfying (3) (or (4) for AI and AII cases) is:

• K(u) = G for cases AI, AII, AIII, CI, DIII and DI, CII when p = q;

• K(u) = (I− c uG)(1− c u)−1 with c = 4
p−q for cases BDI, CII when p > q.

Knowing this data one can construct twisted Yangians in the RTT -presentation
[Ol, MNO, MR, GR]. Moreover, one can also construct boundary KZ equations
[EFK], or solve the spectral problem for the corresponding integrable model with
open boundaries [BeRa]. (Note that there are many more rational K-matrices
known that do not fit into this classification.)

We will obtain an analogous classification of trigonometric K-matrices that
are solutions of the trigonometric REs and are in one-to-one correspondence with
quantum symmetric pairs of the non-twisted affine type classified by Kac [Kac].
Many trigonometric K-matrices are already known (see e.g. [DG, LS, NS]). How-
ever, to our knowledge, prior to this work there was no attempt to give a uniform
classification. We want to explain a method that allows for the possibility of
obtaining such a classification.

Quantum symmetric pairs can be graphically represented by Satake diagrams
[BBBR]. Moreover, for each quantum symmetric pair one can construct an asso-
ciated coideal quantum group [Ko, Le]. As explained in the talks by Stefan Kolb
and Gail Letzter, these quantum groups (denoted by Bd,s with {d, s} being a set
of parameters) are coideal subalgebras of quantum groups of Drinfeld-Jimbo type.
Given a Satake diagram it is then straightforward to “read” the associated coideal
quantum group. The corresponding trigonometric K-matrix is then obtained by
solving the boundary intertwining equation

(5) K(u)Tηu(b) = (Tηu−1(b))inv K(u)

for the matrix entries kij(u) of K(u) with all b ∈ Bd,s. Here Tηu is the N -
dimensional vector representation of the corresponding Drinfeld-Jimbo quantum
group, u is the evaluation parameter, η ∈ C\{0} is the reflection phase, and inv
denotes either the identity map id or a quantum analogue τ of the transposition
t. Solving (5) defines K(u) uniquely up to an overall constant (this follows from
the fact that Tηu is an irreducible representation of Bd,s) and defines η in terms
of the parameters in the set {d, s}. Let us give a simple example:

Consider the following Satake diagram: . The corresponding coideal sub-
algebra Bd,s is generated by the elements

(6) b0 = x−0 k
+
0 + qd0k

−
1 x

+
1 k

+
0 , b1 = x−1 k

+
1 + d1k

−
0 x

+
0 k

+
1 , t± = k±0 k

∓
1 ,

where x±i , k
±
i are the standard Chevalley generators of Uq ŝl2 and di ∈ C\{0}.

Solving (5) with inv = id gives

K(u) = (u + ρ)E−1,−1 + (u−1 + ρ)E11, ρ = (d0/d1)
1/2, η = (d0d1)

1/2.

This is a solution of the trigonometric analogue of (3). The algebra Bd,s generated
by elements (6) is also known as the augmented tridiagonal algebra [IT] or the
augmented q-Onsager algebra [BB].
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The complete classification of trigonometric K-matrices associated with quan-
tum symmetric pairs will be presented in [RV]. This data is the first step towards
a classification of the RTT -presentation of coideal quantum groups in the spirit of
[MRS, CGM]. Moreover, this will allow for the future studies of the q-KZ equa-
tions for generic boundaries [RSV], boundary TQ-relations [BR], and many other
unanswered questions related to quantum integrable systems with open bound-
aries.
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Boundary reflection equation (physics origins)

Nicolai Reshetikhin

The talk is an overview of works in statistical mechanics of the 6-vertex models.
The first part is an overview of the 6-vertex model and of how the q-Knizhnik-
Zamolodchikov (qKZ) equation appears in the analysis of correlation functions.
In the second part the boundary qKZ equation is introduced as the equation for
correlation functions with reflecting boundary conditions.

Nichols algebras and their right coideal subalgebras

Hans-Jürgen Schneider

(joint work with István Heckenberger)

I first gave a survey on Nichols algebras. The idea of Nichols algebras goes back
to Nichols (1978) and Woronowicz (1983). Let H be a Hopf algebra with bijective
antipode over a field k. The Drinfeld center of the monoidal category of left H-
modules is a braided monoidal category which can be described as the category
H
HYD of Yetter-Drinfeld modules over H . An object of H

HYD is a left H-module
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V which is a left H-comodule with coaction δ : V → H ⊗ V such that δ(hv) =
h(1)v(−1)S(h(3))⊗ h(2)v(0) for all h ∈ H, v ∈ V (Sweedler notation). If H is finite-

dimensional, then H
HYD can be identified with the modules over the Drinfeld double

of H . Let V ∈ H
HYD. The tensor algebra T (V ) is a Hopf algebra in the braided

category H
HYD where elements of V are primitive. Let I(V ) be the largest coideal

of T (V ) which is contained in
⊕

n≥2 T
n(V ). The Nichols algebra of V is defined

as B(V ) = T (V )/I(V ). It is an N0-graded Hopf algebra quotient of T (V ) whose
primitive elements are exactly the elements in degree 1. Nichols algebras have been
used intensively in the classification theory of (finite-dimensional) pointed Hopf
algebras (a Hopf algebra is pointed if its simple subcoalgebras are 1-dimensional),
see for example [2]. It follows from the construction in Lusztig’s book on quantum
groups that U+

q (g), g a Kac-Moody algebra, q generic, is a Nichols algebra. Also
the plus-parts of the small quantum groups and of the multiparameter variations
of quantum groups are Nichols algebras.

In the second part of my talk I discussed some recent results of joint work with
I. Heckenberger. Let θ ≥ 1, and M = (M1, . . . ,Mθ) a tuple of finite-dimensional
and irreducible objects Mi ∈ H

HYD, and B(M) = B(M1 ⊕ · · · ⊕Mθ). Under some
finiteness assumptions the Weyl groupoid W(M) is defined. This was done in the
diagonal case in [1], and in the general case in [3]. Its points are the isomorphism
classes [N ] of all (N1, . . . , Nθ) of the form

Ri1 · · ·Rim(M),m ≥ 0, 1 ≤ i1, . . . , im ≤ θ,

where Ri is a reflection operator on the tuples M . Assume that W(M) is finite.
The Hopf algebra B(M) has a natural Nθ

0 -gradation. In this general context we
show in [5] that there is a bijection between the morphisms in the Weyl groupoid
ending in [M ] and the set of all Nθ

0-graded right coideal subalgebras of B(M). In
particular, we prove that there are finite-dimensional and irreducible subobjects
Mβl

⊆ B(M) of degree βl ∈ Nθ
0, 1 ≤ l ≤ m, such that the multiplication map

k[Mβm
]⊗ · · · ⊗ k[Mβ1

] → B(M)

is bijective, and k[Mβl
] ∼= B(Mβl

)] for all l. The Mβl
generalize Lusztig’s root

vectors. A similar isomorphism holds for the right coideal subalgebras. In the
special case of U+

q (g), g a semisimple Lie algebra, q generic, we obtain Lusztig’s
PBW-basis without case by case considerations, and we prove a conjecture of
Kharchenko [4] saying that the number of right coideal subalgebras of U≥

q (g) is
the order of the Weyl group of g. In very recent work (which will appear in a book
we are writing), we gave more transparent proofs of some results in [3], [5] and [6]
in the framework of abstract braided monoidal categories.
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Integrable systems from the classical reflection equation.

Gus Schrader

A large and well-studied class of integrable Hamiltonian systems consists of those
whose phase space can be realized as a Poisson submanifold of a coboundary
Poisson-Lie group G. In this situation, the conjugation invariant functions IG ⊂
C(G) form a Poisson commutative subalgebra, and particular integrable systems
arise by restricting these functions to symplectic leaves in G, see [RSTS], [STS].

In our talk, based on the paper [Sc], we outlined a construction of integrable sys-
tems on Poisson homogeneous spaces of the form G/K, where (G, r) is a cobound-
ary Poisson Lie group and K is a Lie subgroup of G which arises as the fixed point
set of a Lie group automorphism σ : G → G. In this setting, the condition for
G/K to inherit a Poisson structure from G is equivalent to the requirement that
the Lie subalgebra k = Lie(K) be a Lie bialgebra coideal in the Lie bialgebra g,
i.e.

δ(k) ⊂ g⊗ k+ k⊗ g(1)

where δ : g → g ⊗ g, δ(x) = x · r is the cobracket defining the Lie bialgebra
structure on g. In terms of the r-matrix, the coideal condition is equivalent to the
requirement that the quantity

Cσ(r) = (σ ⊗ σ) (r) + r − (σ ⊗ 1 + 1⊗ σ)(r)(2)

be a k-invariant in g ⊗ g. In the special case Cσ(r) = 0, we say that the triple
(g, r, σ) is a solution of the classical reflection equation (CRE). In this case, one
can construct a classical reflection monodromy matrix T with the property that
the classical reflection transfer matrices obtained by taking the trace of T in finite
dimensional representations of G form a Poisson commuting family of functions in
C(G/K) ⊂ C(G). These functions are no longer AdG-invariant, but are instead
bi-invariant under the action of K ×K on G by left and right translations.

At the quantum level, one may pass to the quantized enveloping algebra Uq(g)
together with its dual Hopf algebra Cq(G) of quantized regular functions on G.
Then the quantum version of the situation discussed above amounts to the fact
given a subalgebra A = Cq(G/K) in Cq(G), its annihilator A⊥ in Uq(g) is a
(double sided) Hopf coideal in Uq(g).

The motivation for our construction comes from the quantum spin chains with
reflecting boundary conditions introduced by Sklyanin [Sk]. We show that the
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semiclassical limit of Sklyanin’s quantum reflection equation coincides with the
CRE for an appropriate choice of group G and automorphism σ, and explain how
to derive local Hamiltonians for the corresponding homogeneous classical spin
chain.

We conclude by mentioning some possible directions for future work. Firstly,
it would be interesting to understand the quantization problem for solutions of
the classical reflection equation,in the sense of Etingof-Kazhdan [EK]: given a
solution (g, σ, r) of the CRE, it is possible to lift it to construct a corresponding
coideal in Uq(g)? Secondly, in our construction, there is no requirement that the
automorphism σ be an involution. It will be interesting to study the integrable
systems obtained from arbitrary finite order solutions of the CRE (in particular
when g is of affine type), and to understand whether, at the quantum level, one
can obtain quantum symmetric pair-type coideals generalizing those constructed
by Letzter [L] in this fashion.
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Boundary quantum Knizhnik-Zamolodchikov equations

Jasper V. Stokman

Boundary quantum Knizhnik-Zamolodchikov (bqKZ) equations were introduced
by Cherednik [3, §4] in 1992 as a particular class of consistent systems of difference
equations

(1) Ai(z)f(z + ǫi) = f(z), i = 1, . . . , n

for V ⊗n-valued meromorphic functions f(z) in z ∈ Cn. Here V is a complex vector
space, ǫi is the ith standard basis vector of Cn, and the End(V ⊗n)-valued mero-
morphic functions Ai(z) in z ∈ Cn, called transport operators, are determined by
factorized scattering data for particles on a line segment. The scattering data are
described by a solution R(x) : V ⊗V → V ⊗V of the quantum Yang-Baxter equa-
tion and solutions K(x),K(x) : V → V of the associated left and right reflection
equation respectively.
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BqKZ equations have important applications in the theory of integrable one-
dimensional quantum spin chains with boundaries (see, e.g., [6, 11]) and are closely
related to quantum harmonic analysis [10].

Important examples of quantum integrable spin chains with boundaries can be
described in terms of representation theory of quantum affine symmetric pairs
(U,B) [7]. The quantum affine algebra U plays the role of the quantum symme-
try algebra at the bulk sites of the quantum spin chain, while the right coideal
subalgebra B of U , called the boundary quantum group, encodes the quantum
symmetries at the boundary (see, e.g., [5, §2.2]). In this setup the vector space
V = V (z) is an evaluation representation of U with evaluation parameter z ∈ C×,
and intertwiners

Ř(z1/z2) ∈ HomU

(
V (z1)⊗V (z2), V (z2)⊗V (z1)

)
, K(z) ∈ HomB

(
V (z), V (z−1)

)

produce the scattering data (R(x),K(x),K(x)), where R(x) = PŘ(x) with P the
permutation operator, and with K(x) a solution of the right reflection equation
naturally associated to K(x), see [6, §2.1]. The bqKZ equations appear as consis-
tency conditions for the associated quantum correlation functions (see, e.g., [6] in
case of the semi-infinite Heisenberg XXZ spin- 12 chain).

The connection to quantum harmonic analysis arises as follows. Cherednik [3]
attached to a double affine Hecke algebra and a representation M of the under-
lying (extended) affine Hecke algebra a consistent system of difference equations
for M -valued meromorphic functions, called quantum affine KZ equations. BqKZ
equations arise as special examples of quantum affine KZ equations [12, 10]. As-
ymptotic techniques have led to the construction of a basis of solutions of the
quantum affine KZ equations for principal series modules M [11]. The differ-
ence Cherednik-Matsuo correspondence relates these solutions to solutions of the
spectral problem of the family of commuting scalar Macdonald-Koornwinder dif-
ference operators, whose Laurent polynomial eigenfunctions are the celebrated
Macdonald-Koornwinder polynomials (see, e.g., [4, 11]). The spectral problem
of this family of commuting scalar difference operators naturally appears in the
harmonic analysis of Letzter’s quantum symmetric pairs [8].

In particular cases the bqKZ equations can be studied from both the quantum
group and the Hecke algebra perspective. In these cases the two representation
theoretic contexts are related by a Schur-Weyl type duality. The resulting possibil-
ity to mix the insights and techniques from the two different viewpoints provides
a particularly rich playground for obtaining new insights.

This happens for instance for the quantum affine symmetric pair (U,B) with U

the quantum affine algebra associated to ŝl(2), B ⊆ U the q-Onsager algebra [1],
and V = C2(z) the two-dimensional evaluation representation. The underlying
quantum spin chain is the Heisenberg XXZ spin- 12 chain with reflecting bound-
ary [12, 11]. The associated bqKZ equations are quantum affine KZ equations
associated to the double affine Hecke algebra of type C∨Cn and the spin rep-

resentation
(
C2

)⊗n
of the underlying affine Hecke algebra of type Cn (see, e.g.,

[12]). For this example the quantum group approach has led to special solutions of
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the bqKZ equations as quantum correlation functions [6] and as (q-)integrals for
special choices of K-matrices K(x),K(x) (see, e.g., [2, 9]), while the affine Hecke
algebra perspective has led to a basis of solutions of the bqKZ equations defined in
terms of their asymptotic behaviour deep in a fixed Weyl chamber. Understand-
ing the relation between these different types of solutions is an interesting open
problem.
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Quantum groups and coideals and categorification

Catharina Stroppel

Lusztig’s theory of canonical bases and integral forms of quantum groups allows
the question if there is a categorification of these structures and of the finite
dimensional representations. We review Lusztig’s construction, connect it with
representations of Hecke algebras and their Kazhdan-Lusztig bases. Finally we
describe some examples of categorified representations. The second talk deals
with quantum symmetric pairs, certain coideal subalgebras of quantum groups
and canonical bases. We provide categorification of certain representations. All
this relies on an interesting Schur-Weyl duality between the coideal subalgebra (of
type AIII) and the type B or D Hecke algebra. As an application we mention new
results on characters of Lie superalgebras and (non-semismiple) branching rules
for Brauer algebras. In this context representations of quantum symmetric pairs
appear naturally.
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Boundary quantum KZ equations – integral solutions

Bart Vlaar

(joint work with Nicolai Reshetikhin and Jasper V. Stokman)

Let N ∈ Z≥1. The quantum Knizhnik-Zamolodchikov (qKZ) equations are linear
difference equations for functions meromorphically depending on N parameters
and taking values in V ⊗N for some complex vector space V . Cherednik [2] in-
troduced them depending on so-called quantum R-matrix datum (solutions to the
quantum Yang-Baxter equation and associated identities), associated to an arbi-
trary affine root system. If this is of type A one recovers difference equations
which were already known and motivated in terms of mathematical physics [11]
and representation theory [4]. Taking instead an affine root system of type B, C or
D one obtains the boundary qKZ equations, satisfied by matrix elements of vertex
operators with respect to so-called boundary states [6]. In this case the R-matrix
datum contains up to two K-matrices, solutions of quantum reflection equations.

In [10] Sklyanin used R- and K-matrices in a different way, namely to con-
struct (double-row) boundary monodromy matrices. In terms of these the asso-
ciated commuting transfer matrices are defined, of importance in 2-dimensional
statistical models and 1-dimensional quantum integrable systems with reflecting
boundary conditions. In the corresponding version of the algebraic Bethe ansatz,
one may use these monodromy matrices also to define boundary Bethe vectors,
distinguished elements of V ⊗N depending on a tuple (x1, . . . , xM ) ∈ CM with
0 ≤ M ≤ N . These can be made into eigenvectors of the boundary transfer ma-
trices by imposing equations on the xi, known as the (boundary) Bethe ansatz
equations. We briefly discuss a recent research result [12] establishing a direct
connection between boundary transfer matrices and the boundary qKZ equations,
thus providing another motivation for the study of these equations.

The main topic of the talk is the construction of solutions of the boundary qKZ
equations as bilateral series [8] and integrals [9] of weighted boundary Bethe vec-
tors, which is part of joint work with N. Reshetikhin and J. Stokman. Instead of
satisfying Bethe ansatz equations, the xi play the role of integration/summation
variables. What makes this work in essence is that both the boundary qKZ equa-
tions and the boundary Bethe vectors are given in terms of R- and K-matrices,
so that we have the Yang-Baxter equation and the reflection equation at our dis-
posal to simplify expressions. The construction pertains to a special case when

the R-matrix itself is the image of the universal R-matrix of Uq(ŝl2) acting in the
tensor square of its fundamental (2-dimensional) representation V = C2, and the
K-matrices are the general diagonal solutions to the reflection equation for this

R-matrix. These K-matrices are associated to the coideal subalgebra of Uq(ŝl2)
prescribed by the admissible pair (∅, 0 ↔ 1) in the framework of [7], also known as
the augmented q-Onsager algebra [1, 5]. In this setting it is possible to make ev-
erything explicit: the domain of integration/summation, the weight function and,
we expect, the boundary Bethe vector (this latter point is work in progress). In
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the case of integrals, it leads to a basis of solutions of the boundary qKZ equations
in (C2)⊗N .

A natural open question would be whether the coideal subalgebra may be re-
placed by the q-Onsager algebra, which is the one given by the admissible pair
(∅, id), yielding the general non-diagonal solution of the reflection equation for the
R-matrix under consideration, and see if and how the construction of the solutions
could be modified - this would likely require the use of certain transformations to
return the K-matrix to a diagonal form (thus allowing Sklyanin’s boundary Bethe
vectors to remain available, in modified form, for our construction) at the cost of
introducing a dynamical parameter, cf. [3].
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Borelsubalgebras of quantum groups

Karolina Vocke

This talk is about goal and results of my PhD thesis: The classification of all right
coideal subalgebras C ⊂ Uq(g) of a quantum group with generic q, where C has
the additional property that all irreducible representations are 1-dimensional and
C is maximal with this property.
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We call such a right coideal subalgebra a Borel subalgebra. This is due to a
theorem of Sophus Lie stating that the Borel subalgebras of a semisimple Lie
algebra have only 1-dimensional representations and are maximal with this prop-
erty. We shall see that indeed there are the so-called standard Borel subalgebras,
among them U≥0

q (g) and U≤0
q (g), and their reflections which are parametrized by

an element of the Weyl group. But there are more examples, already in Uq(sl2)
appears a family of Weyl algebras generated by two elements EK−1 + λK−1 and

F + λ′K−1 with λλ′ = q2

(1−q2)(q−q−1) . So the question arises, which other kinds

of Borel subalgebras exist. My goal is to give a complete classification of Borel
subalgebras for q generic.

Borel subalgebra and subgroups are in the theory of algebraic groups, semisim-
ple Lie algebras and representation theory the basic components of many standard
constructions (flag varieties, spherical varieties, Verma modules and their irre-
ducible quotient, etc.). The interesting question was discussed during the work-
shop to understand the induced Verma modules for Uq(g) obtained from these
alternative Borel subalgebras C, maybe even study a respective category O.

In the following my approach and results are discussed in more detail:
The classification of all right coideal subalgebras (RCSA) C ⊂ Uq(g) made

significant progress in the recent years. A major result in [HS09] (more generally
for Nichols algebras), classifies all RCSA with the additional properties U0 ⊂ C
(called homogeneous) and C ⊂ Uq(g)

≥0 to be in 1 : 1 correspondence to elements in
the Weyl group C = U+[x]U0, x ∈W . By the results in [HK11a] all homogeneous
RCSA have a triangular decomposition, hence C = U+[x]U0U−[y] for some x, y ∈
W . On the other hand, all possibly inhomogeneous RCSA that still satisfy C ⊂
Uq(g)

≥0 (assume the additional technical condition that C ∩ U0 =: L is a Hopf
algebra) were classified in [HK11b] to be so-called character shifts

C = (U+[x]L)χ := {a(1)χ(a(2)) | a ∈ U+[x]L}
where χ is any 1-dimensional representation of the already known RCSA U+[x]L,
which they describe explicitly. The general case is open:

RCSA C ⊂ Uq(g)
≥0 C ⊂ Uq(g)

U0 ⊂ C C = U+[x]U0 C = U+[x]U0U−[y]
U0 ∩ C =: L (U+[x]L)χ general case ?

Now we turn our attention to RCSA which are Borel subalgebras: First, C cannot
contain both Eα, Fα for some root α, since this implies a (suitably nice contained)
subalgebra Uq(sl2) which has irreducible representations of dimension > 1. Sec-
ond, the maximality forces any Borel subalgebra B to automatically satisfy the
condition B ∩U is a Hopf algebra, hence any Borel subalgebra lies in the diagram
above. Also the maximality forces any C ⊂ Uq(g)

≥0 to already be the full posi-
tive part. Hence in the three solved cases above, the Borel subalgebras are only
the full positive part Uq(g)

≥0 resp. all Borel subalgebras obtained by reflections
Tx(Uq(g)

≥0).
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Our classification for Borel subalgebras of C ⊂ Uq(g) in the general case pro-
ceeds now as follows: We first assume that C is triangular i.e. C = C+LC−,
use the classification of C+, C− by character shifts and work out the observations
above:

Theorem 4. Each triangular Borel subalgebra of Uq(g) is as an algebra isomorphic
to (more precisely a reflection of) some C = U+[w0]φ+LU−[sαi1

, . . . sαik
]φ− . Here

w0 is the maximal element in the Weylgroup, αi1 , . . . αik is some coclique in the
Dynkin diagram of g, the characters φ+,φ− vanish outside a support supp(φ−) =
{α1, . . . αi} = supp(φ+) and L is generated by the Kα with α ∈ supp(φ−)⊥.

For example, in Uq(sl3) we find apart from standard Borel subalgebras and up to
reflections and diagram automorphisms a single family of Borel subalgebras for
αi1 = α1 with a free parameter, containing a Weyl algebra for α1 as well as Eα2

.

Then we want to show that each Borel subalgebra of Uq(g) is in fact triangular.
This is much harder than for homogeneous RCSA and failes without the assumed
maximality. For the proof I developed the following much more general theorem
to construct generating elements of an arbitrary RCSA. The proof of this theorem
consists of an elaborate induction in an explicit PBW-basis

Theorem 5. Let C ⊂ Uq(g) be a RCSA such that U0 ∩C =: L is a Hopf algebra.
Then we can choose for C a generating set consisting of elements of the form

EφE

α K−1
α + λFK

−1
α−βF

φF

β + λKK
−1
α

For roots α ∈ Φ and constants λF , λK ∈ k and some characters φE, φF on subal-

gebras of U− resp. U+, such that EφE
α , FφF

β are some kind of character shifts of
Eα resp. Fβ.
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