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Abstract. It is a fundamental challenge for many problems of significant
current interest in algebraic geometry and commutative algebra to under-
stand symbolic powers I(m) of homogeneous ideals I in polynomial rings,
particularly ideals of linear varieties. Such problems include computing War-
ing ranks of polynomials, determining the occurrence of equality I(m) = Im

(or, more generally, of containments I(m) ⊆ Ir), computing Waldschmidt
constants (i.e., determining the limit of the ratios of the least degree of an

element in I(m) to the least degree of an element of Im), and studying major
conjectures such as Nagata’s Conjecture and the uniform SHGH Conjecture
(which respectively specify the Waldschmidt constant of ideals of generic
points in the plane and the Hilbert functions of their symbolic powers).
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Introduction by the Organisers

The mini-workshop, Ideals of Linear Subspaces, Their Symbolic Powers and War-
ing Problems, involved 11 men and 7 women (one of whom, due to medical issues,
did not attend in person but presented her talk by skype). The participants rep-
resented 6 different countries, and were drawn from all career ranks (2 postdocs, 3
early career researchers, 6 midcareer researchers and 7 senior researchers), covering
a range of specialties and expertise. This variety of expertise not only generated
stimulating discussions during the workshop, but the working group sessions have
led to at least three on-going research collaborations which are expected to be the
basis for a number of research articles in the near future.
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The theme of the workshop

Ideals of linear subspaces, and points in particular, have long held a prominent
position in algebraic geometry. They have, in particular, played a prime role in
recent progress on the Waring Problem for forms, which deals with power sum
representations of forms, i.e., expressions of the type F = Ld

1 + . . . + Ld
r , where

F is a form of degree d and the Li are forms of degree 1. A crucial quantity for
this problem is the Waring rank rk(F ) of F , defined as the least r for which F
can be written as such a sum of powers. In the 90s, results of Alexander and
Hirschowitz [1] for ideals of points in projective space gave the dimension of all
secant varieties of Veronese varieties, which in turn determined rk(F ) for generic
forms F of any degree in any number of variables. But the Waring rank for a
specific form can be larger than this generic value; obtaining bounds for rk(F ) is
an active area of research for which ideals of points have played a crucial role. For
example, Carlini, Catalisano and Geramita [9] use the geometry of reduced points
to compute the Waring rank of monomials and of the sum of coprime monomials.
Before this result, the Waring rank was explicitly known only for quadratic forms,
binary forms and cubic ternary forms.

Ideals of linear subspaces have also been a focus of attention in recent research
on the question of which symbolic powers of an ideal are equal to or at least
contained in specific ordinary powers of the ideal. Interest in which powers are
symbolic goes back at least to work of Hochster [28] and more recently has gotten
attention in the work of Morey [32] and Li and Swanson [31]. In a talk in the
late 00s, Huneke asked whether I(m) = Im for all m ≥ 1 if I(c) = Ic, given any
homogeneous ideal I of big height c. Recent work of Guardo, Harbourne and Van
Tuyl [21, 23] has exploited the fact that ideals of arrangements of points in P1×P1

can be regarded as defining arrangements of lines in P3 to give a negative answer
to Huneke’s question.

The question of containment of symbolic powers of an ideal in specific ordinary
powers of the ideal has seen even more explosive growth, starting with a paper
of Swanson [34] which prompted the seminal papers of Ein-Lazarsfeld-Smith and
Hochster-Huneke [16, 29] showing (as one minor consequence) that the symbolic
fourth power I(4) of any radical ideal of points in the projective plane is contained
in I2. (In the case of the radical ideal I of points p1, . . . , ps ∈ Pn, we note that
I(m) = ∩1≤i≤s(I(pi)

m) where I(pi) is the ideal generated by all forms that vanish
at pi.) Further stimulation came from the following question of Huneke.

Question: If I is the radical ideal of points in the projective plane, must it be
true that I(3) ⊆ I2?

While a number of important basic results are now available (see [6, 7, 8, 11, 12,
13, 21]), it was only two years ago that a special configuration of points was dis-
covered giving a negative answer to Huneke’s question [14]. Since then additional
mainly sporadic examples have been found [27, 2, 33] giving counterexamples to
the containment in Huneke’s question (and in the case of [27], also to certain
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related containment conjectures posed in [3, 26]), but many questions and conjec-
tures remain. In addition, new avenues of research have opened up (see, e.g., [26])
and old problems that had become quiescent have been given new life.

One such problem that has been resurrected is that of computing Waldschmidt
constants. In the late 70s, in work related to transcendence questions in num-
ber theory, Waldschmidt introduced an asymptotic quantity α̂(I) [36] for homo-
geneous ideals I, now known as a Waldschmidt constant [15]. It is defined as

limm→∞
α(I(m))

m
, where for any homogeneous ideal J 6= (0), α(J) is the degree

of a generator of J of least degree. Efforts to compute or estimate Waldschmidt
constants started soon after its introduction [10, 17]. The fact that it, and variants
of it, are closely related to the problem of which symbolic powers of an ideal I are
contained in given ordinary powers of I [7, 8, 22] has caused a resurgence of interest
in computing Waldschmidt constants; see for example [3, 15, 19, 18]. Additional
related work [22, 23] which became a focus of discussion at the workshop used
the connection between points in multi-projective spaces and higher dimensional
linear varieties in single projective spaces to study Waldschmidt constants. The
foundation for these papers was understanding points in P1 × P1; previous work
on points in P1 × P1, such as, for example, [20, 24, 25, 35] provided important
tools relied on in [21]. Moreover, the recent attention given to Waldschmidt con-
stants has led to additional new questions, starting with the paper [5] of Bocci
and Chiantini, related to fattenings of linear subvarieties in projective space (see
[4, 30]).

The structure of the workshop

The design of the workshop was successful in prompting a lot of research in-
teraction. Short talks (35 minutes each) by participants were scheduled for the
mornings, with afternoons and evenings reserved for working on specific problems
raised by the participants. Potential problems for workshopping were solicited
from the participants in advance of the meeting. On the first day of the work-
shop, the participants by acclimation settled on three main problems to focus on
during the workshop. Participants were free to move from one discussion group
to another and to change the focus of the discussions, as warranted by individual
interest and by the potential for progress.

The topics selected for focused discussions in the discussion groups were as
follows:

• H-constants and ideal containments;
• Waring rank problems; and
• computing Waldschmidt constants and stability questions (how many pow-
ers of an ideal must be symbolic for all of them to be symbolic).
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Abstracts

Zariski decomposition on surfaces, and its connection to bounded
negativity

Thomas Bauer

(joint work with Mirel Caibăr, Gary Kennedy, Piotr Pokora and David Schmitz)

The Zariski decomposition of divisors plays a well-known fundamental role in the
theory of algebraic surfaces. In the talk I focused on three aspects:

• a simple proof for their existence and uniqueness on surfaces [1],
• a general abstract Zariski decomposition type result [2] valid in the setting
of linear algebra that contains the geometric Zariski decomposition as a
special case, and

• a new surprising connection [4] to the Bounded Negativity Conjecture.

Zariski’s result [6] from 1962 states that for every effectiveQ-divisorD on a smooth
projective surface X , there are uniquely determined effective (possibly zero) Q-
divisors P and N with

D = P +N

such that

(i) P is nef,
(ii) N is zero or has negative definite intersection matrix,
(iii) P · C = 0 for every irreducible component C of N .

Fujita [5] extended the result to pseudo-effective divisors. The geometric sig-
nificance of Zariski decompositions lies in the fact that, given a pseudo-effective
integral divisor D on X with Zariski decomposition D = P +N , one has for every
sufficiently divisible integer m ≥ 1 the equality

H0(X,OX(mD)) = H0(X,OX(mP )) .

In other words, all sections of OX(mD) come from the nef line bundle OX(mP ).

A simple proof, and an abstract version. While Zariski’s original proof uses an
inductive procedure to construct the negative part N , our simple proof [1] is based
on the idea that the positive part P can be constructed as the unique maximal
nef subdivisor of D. In joint work [2] with M. Caibăr and G. Kennedy we showed
that the same basic idea can be used to prove a very general abstract version of
the Zariski decomposition theorem – its setup is as follows: Let V be a vector
space over Q, equipped with a symmetric bilinear form 〈· ·〉. (In the geometric
model, V is the vector space DivQ(X) of Q-divisors, and 〈· ·〉 is the intersection
product.) Let E = (ei) be a fixed basis of V such that 〈ei ej〉 ≥ 0 for i 6= j.
(In the geometric model E is the set of irreducible curves, where this condition
is clearly satisfied.) Surprisingly, one can prove in this abstract setup – where so
little geometry is encoded in the data – that every vector has a unique Zariski
decomposition:
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Theorem on Zariski Decomposition [2]. Every effective vector v ∈ V has a
unique decomposition into effective elements p and n

v = p+ n

with

(i) p is nef
(ii) n = 0 or 〈· ·〉 is negative definite on supp(n)
(iii) 〈p e〉 = 0 for every e in the support of n

Here, the notions effective and nef are defined as follows (again, following the
geometric model): Writing E = {ei | i ∈ I}, a vector v =

∑
viei ∈ V is effective, if

vi ≥ 0 for all i. Its support supp(v) is the set of all ei occurring with vi > 0. And
v is nef, if 〈v w〉 ≥ 0 for all effective elements w ∈ V (or, equivalently, if 〈v ei〉 ≥ 0
for all i). The classical theorem on Zariski decomposition is then clearly a special
case of this abstract version.

It is a quite surprising feature of this result that no further assumptions on the
bilinear form are needed – for instance its signature need not coincide with that of
an intersection form occurring in geometry (in other words, there is no assumption
of Hodge index type).

Bounded Zariski denominators and bounded negativity. It is an interesting prob-
lem, posed by A. Küronya, to find out whether on a given surface X , the denomi-
nators appearing in the Zariski decompositions D = N +P of all integral divisors
D (i.e., in the coefficients of the Q-divisors P and N) are bounded. If that is the
case on X , then we say for short that X has bounded Zariski denominators. In
joint work with P. Pokora and D. Schmitz we recently showed that there is a sur-
prising connection between this condition and the condition that X has bounded
negativity:

Theorem [4]. For a smooth projective surface X over an algebraically closed field
the following two statements are equivalent:

(i) X has bounded Zariski denominators.
(ii) X has bounded negativity, i.e., there is a bound b(X) such that for every

irreducible curve C on X one has

C2 ≥ −b(X)

The Bounded Negativity Conjecture (see [3]) is the conjecture that condition (ii)
is satisfied for every smooth projective surface over the field of complex numbers.
The exact origin of this conjecture is unclear, but it has a long oral tradition that
can be traced back via Ciro Ciliberto and Alfredo Franchetta to Federigo Enriques.
The conjecture is open in general. By contrast, it is known that bounded negativity
does not hold in general in positive characteristics; so, according to the theorem,
unbounded Zariski denominators must appear in positive characteristics – and in
fact examples of those can be explicitly constructed (see [4]).
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Hadamard Powers of Points and Lines

Cristiano Bocci

(joint work with Enrico Carlini, Joe Kileel)

The concept of Hadamard product, as matrix entry-wise multiplication, is well
known in linear algebra: it has nice properties in matrix analysis ([3, 4]) and has
applications in both statistics and physics ([3, 5]). Recently, in the papers [1, 2], the
authors use this entry-wise multiplication to define a Hadamard product between
projective varieties.

Definition 1. Let p, q ∈ Pn be two points of coordinates respectively [a0 : a1 : . . . :
an] and [b0 : b1 : . . . : bn]. If aibi 6= 0 for some i, their Hadamard product p ⋆ q of
p and q, is defined as

p ⋆ q = [a0b0 : a1b1 : . . . : anbn].

If aibi = 0 for all i = 0, . . . , n then we say p ⋆ q is not defined. Let X,Y ⊂ Pn be
two varieties, then their Hadamard product X ⋆ Y is

X ⋆ Y = {p ⋆ q : p ∈ X, q ∈ Y, p ⋆ q is defined}.

For any projective varietyX , we may consider its Hadamard squareX⋆2 = X⋆X
and its higher Hadamard powers X⋆r = X ⋆ X⋆(r−1). In [1], the authors use this
definition to describe the algebraic variety associated to the restricted Boltzmann
machine which is the undirected graphical model for binary random variables
specified by the bipartite graph Kr,n. This variety is the r−th Hadamard power
of the first secant variety of (P1)n. Note that [2] concerns the case r = 2, n = 4.

Since in [1] and [2] only the definition of Hadamard product of varieties X,Y
is given, it is surely interesting to study properties of X ⋆ Y , also in terms of the
properties of X and Y . This paper is a first step in that direction.

We start by giving a different definition of the Hadamard product of varieties
in terms of projections of Segre products.
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Definition 2. Given varieties X,Y ⊂ Pn we consider the usual Segre product

X × Y ⊂ PN

([a0 : · · · : an], [b0 : · · · : bn]) 7→ [a0b0 : a0b1 : . . . : anbn]

and we denote with zij the coordinates in PN . Let π : PN
99K Pn be the projection

map from the linear space defined by equations zii = 0, i = 0, . . . , n. The Hadamard
product of X and Y is

X ⋆ Y = π(X × Y ),

where the closure is taken in the Zariski topology.

Before two state our results we need a preliminary definition.

Definition 3. Let Hi ⊂ Pn, i = 0, . . . , n, be the hyperplane xi = 0 and set

∆i =
⋃

0≤j1<...<jn−i≤n

Hj1 ∩ . . . ∩Hjn−i
.

In other words, ∆i is the i−dimensional variety of points having at most i + 1
non-zero coordinates. Thus ∆0 is the set of coordinates points and ∆n−1 is the
union of the coordinate hyperplanes. Note that elements of ∆i have at least n− i
zero coordinates. We have the following chain of inclusions:

∆0 = {[1 : 0 : . . . : 0], . . . , [0 : . . . : 0 : 1]} ⊂ ∆1 ⊂ . . . ⊂ ∆n−1 ⊂ ∆n = Pn.

As a first important result we give a Hadamard version of Terracini’s Lemma.

Lemma 4. Consider varieties X,Y ⊂ Pn. If p ∈ X and q ∈ Y are general points,
then

Tp⋆q(X ⋆ Y ) = 〈p ⋆ Tq(Y ), q ⋆ Tp(X)〉.
Moreover, if p1, . . . , pr ∈ X are general points and p1 ⋆ . . . ⋆ pr ∈ X⋆r is a general
point, then

Tp1⋆...⋆pr
(X⋆r) = 〈p2 ⋆ . . . ⋆ pr ⋆ Tp1(X), . . . , p1 ⋆ . . . ⋆ pr−1 ⋆ Tpr

(X)〉.

Then we fix our attention on two distinct cases. First, we study the Hadamard
products of linear spaces, analyzing, in particular, the case of a line, where we find
explicit equations for all Hadamard powers.

Let L ⊂ Pn be a linear space of dimensionm. If p ∈ Pn, then p⋆L is either empty
or it is a linear space of dimension at most m. If p 6∈ ∆n−1, then dim(p ⋆ L) = m.

Theorem 5. Let L ⊂ Pn, n > 1, be a line. If L ∩∆n−2 = ∅, then L⋆r ⊂ Pn is a
linear space of dimension min{r, n}.

Second, we study the r-th square-free Hadamard power Z⋆r of a finite set Z of
projective points.

Definition 6. Let Z ⊂ Pn be a finite set of points. The r−th square-free
Hadamard power of Z is

Z⋆r = {p1 ⋆ . . . ⋆ pr : pi ∈ Z and pi 6= pj for i 6= j}.
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The two cases are glued together in the following theorem which gives a complete
classification of the r−th square-free Hadamard power of a set of collinear points.

Theorem 7 Let L ⊂ Pn be a line, Z ⊂ L be a set of m points and r ≤ min{m,n}.
If L∩∆n−2 = ∅ and Z ∩∆n−1 = ∅, then Z⋆r is a star configuration in M = L⋆r.

In contrast with the standard approach to construct star configurations as in-
tersections of a set of randomly choosen planes, which can give points with com-
plicated coordinates, Theorem 7 permits a different construction, easily imple-
mentable in computer algebra software.
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Waringology

Enrico Carlini

Let F be an homogeneous degree d element in S = C[x0, . . . , xn], also called
a degree d form. A sum of powers decomposition of F is an expression of the
following type

F = Ld
1 + . . .+ Ld

r

where the forms Li have degree one. The Waring rank of F , or simply the rank of
F , is denoted with rk(F ) and denotes the smallest r for which there exists a sums
of powers decomposition of F .

The rank of a form is an important, but elusive quantity, and a great deal
of research focuses on efficient way to characterize, and hopefully to compute,
rk(F ). At the moment, we know the Waring rank of binary forms, quadratic
forms, monomials, the sum of coprime monomials, cubic in three variable and
reducible cubics in any number of variables. Beside these families, there are only
sparse examples for which we know the rank.

The most relevant tool in the study of the Waring rank is the Apolarity Lemma,
which states that,

F = Ld
1 + . . .+ Ld

r

if and only if

F⊥ ⊃ IX,
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where IX is the ideal of r distinct points and F⊥ is the ideal of differential operators
vanishing on F ; usually F⊥ is considered as an ideal in T = C[X0, . . . , Xn], where
Xi =

∂
∂xi

.
The Apolarity Lemma exposes the deep geometrical nature of the Waring rank

and of sums of powers decompositions. Thus, it is not a surprise that geometric
tools can be successfully employed. One of the most recent and promising geomet-
rical ideas is the one of e-computable forms; this is contained in a joint work with
M.V.Catalisno, L.Chaintini, A.V.Geramita and Y.Woo, see [1]. A form F is said
to be e-computable, if there exists an ideal I and a general degree e form q ∈ I
such that

rk(F ) =
1

e
ℓ

(
T

F⊥ : I + (q)

)

where ℓ denotes the length of an Artinian ring. We can prove that several families
of forms are e-computable, and hence we can compute their rank, using subtle
geometric argument based on the inequality

rk(F ) ≥ 1

e
ℓ

(
T

F⊥ : I + (q)

)
.

The notion of e-computable forms also plays a role in the study of Strassen’s
additivity conjecture. The conjecture states that, if we are given forms Fi in
independent sets of variable, than the Waring rank is additive, that is

rk(
∑

i

Fi) = rk(F1) + . . .+ rk(Fr).

This conjecture is known since 1973 and not much progress has been made on
it till recently when we proved that Strassen’s additivity conjecture holds for e-
computable forms in [1].
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Waring Rank of Forms and Strassen’s Additivity Conjecture

Maria Virginia Catalisano

(joint work with Enrico Carlini, Luca Chiantini, Anthony V.Geramita, and
Youngho Woo)

The problem of determining the Waring rank of homogeneous polynomials (forms)
is motivated by questions arising in signal processing, computational complexity,
and other areas. The Waring rank of a degree d form F ∈ S = C[x0, . . . , xn] is

rk (F ) = min{r ∈ N | F = Ld
1 + · · ·+ Ld

r},
where the Li are linear forms of S.
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From a geometric point of view, if V ⊂ PN , (N =
(
n+d
n

)
− 1), is the Veronese

variety, since F ∈ Sd corresponds to a point [F ] in PN , then the rank of F is the
minimum value of r for which [F ] is in the r-secant variety of V .

The problem of finding the rank of F is solved in few cases: if F has degree
two; if F is a binary form (Sylvester 1886; Comas Seiguer 2001; Brachat, Comon,
Mourren,Tsigaridas 2009); if F is a generic form (Alexander - Hirschowitz , 1995);
if some algorithms work (Buczynska, Buczynski; Brachat, Comon, Mourrain, Tsi-
garidas; Oeding, Ottaviani).

In [1] we compute the rank of any polynomial which is the sum of pairwise
coprime monomials. In particular, we determine the rank of any monomial. In [3]
we introduce the notion of linear computability. By this notion we find the rank
of infinitely many examples of reducible forms.

Our main tools are the Apolarity Lemma and a new method to find a lower
bound for the rank of F .

The Apolarity Lemma says that, given L1, ..., Lr pairwise linearly independent
linear forms, with Li corresponding to the point Pi, and X = {P1, ..., Pr}, then
F = Ld

1 + · · ·+ Ld
r if and only if IX ⊂ F⊥ ⊂ T = C[X0, ..., Xn].

Now, if X is a set of rk(F ) points apolar to F , in [3] we prove that

|X| ≥ ℓ(T/F⊥ : I + (q)),

where I ⊂ T is the ideal of a linear space and q ∈ I is a generic linear form. This
inequality gives us a lower bound for the rank of F . If |X| = ℓ(T/F⊥ : I + (q)) we
say that F is linearly computable.

We show that the following forms are linearly computable: monomials, forms
in two variables, and forms of the following types: F = xa

0(x
b
1 + · · · + xb

m) with
a + 1 ≥ b, F = xa

0(x
b
0 + xb

1 + · · · + xb
m) with a + 1 ≥ b, F = xa

0(x
b
1 + xb

2),
F = xa

0(x
b
0 + xb

1 + xb
2).

Moreover, we consider the Strassen additivity conjecture for forms, which states
that if F and G are forms in disjoint sets of variables, then rk(F +G) = rk(F ) +
rk(G). We show that the Strassen additivity conjecture is satisfied for several
classes of forms (see [2] and [3]). In particular Strassen’s conjecture holds for
linearly computable forms, that is, if F1, ..., Fm are linearly computable forms in
different sets of variables, then rk(F1 + · · ·+ Fm) = rk(F1) + · · ·+ rk(Fm).

Natural questions arise.
Are all forms linearly computable? Unfortunately the answer is no, and we

show that F = x(y3 + z3 + w3) is a non-linearly computable form.
There are examples of forms F + G for which the Strassen conjecture holds,

even if F is non-linearly computable ? The answer is yes. For instance, for
F (x0, ..., xn) + yd the Strassen conjecture holds, even if F is non-linearly com-
putable.

The following question remains open: is the sum of two linearly computable
forms, still linearly computable?
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Simplifying Fat Points via Partial Intersections

Susan M. Cooper

(joint work with Elena Guardo)

The behaviour of fat point schemes plays a key role in many unanswered questions.
However, properties of non-reduced fat point schemes in Pn can be difficult to
characterize. In particular, characterizing the graded Betti numbers and Hilbert
functions of non-reduced fat points are open and very difficult problems. One
approach is to compare the properties of these non-reduced schemes to those of
well-known families of reduced point sets. In this project we connect minimal free
resolutions of fat points supported inside grid complete intersections with those of
reduced point sets called partial intersections.

Our project focuses on a very structured setting. A grid complete intersection

of type {a, b}, denoted X
a,b
grid, is a complete intersection in P2 supported on the

intersection of two sets of generically chosen lines (where there are a lines in one
set and b lines in the other aand we assume 1 ≤ a ≤ b). We can then consider

the homogeneous fat point scheme X
a,b
grid,m obtained by adding multiplicity m

to each point. Buckles-Guardo-Van Tuyl [1] showed that X
a,b
grid,m has the same

minimal free resolution as a partial intersection in P2 of type {p, q}, where p =
(mb, (m− 1)b, (m− 2)b, . . . , b) and q = (a, a, . . . , a). This partial intersection is a
special reduced set of points which consists of mb points each on a lines, (m− 1)b
points each on a lines, etc. In turn, this fact gives us the minimal free resolution

of Xa,b
grid,m via a theorem of Maggioni-Ragusa [2] which characterizes the minimal

free resolutions of partial intersections in P2 in terms of the type {p, q}.
It is natural to want to take this program further. To this end, we consider fat point
schemes supported on a grid complete intersection minus a point, with multiplicity

m attached to each point. We denote this scheme by {Xa,b
grid,m \ P ;m} where P is

the point removed from X
a,b
grid. Our main result is:

Theorem: Let b ≥ a + 1 and m ≤ b − 1. Then {Xa,b
grid,m \ P ;m} and the partial

intersection of type {p, q} where

p = (mb,mb−m, (m− 1)b, (m− 1)b− (m− 1), (m− 2)b, . . . , b, b− 1)

q = (a− 1, 1, a− 1, 1, a− 1, . . . , a− 1, 1)

have the same minimal free resolution.
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Using the characterization of the minimal free resolutions of partial intersections,
this gives us an explicit formula for the minimal free resolution (and hence the

Hilbert function) of the fat point scheme {Xa,b
grid,m \ P ;m}. It should be noted

that this was proven for m = 2 by Buckles-Guardo-Van Tuyl [1]. Our work in
progress includes: (1) generalizing the above theorem by relaxing the constraints
on the multiplicity m and the degree b; and (2) applying the above theorem and

its generalizations to connect the minimal socle degree of {Xa,b
grid,m \ P ;m} with

the minimum Hamming distance of an associated linear code.
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Naive, homogeneous, geometric and real Waldshmidt constants

Marcin Dumnicki

Let L be a set of s generic lines in P3. By α(s,m) we denote the least degree of a

non-zero form in I
(m)
L . Define Waldshmidt constant to be

α̂(s) = lim
m→∞

α(s,m)

m
.

This invariant is very hard to compute, so we define several bounds. Let eα denote
the expected “alpha”,

eα(s,m) = min{d :

(
d+ 3

3

)
− s

(3d− 2m+ 5)m(m+ 1)

6
> 0}.

This invariant can be computed as the (positive) root of a polynomial t3−3st+2s.
Define also the expected Waldshmidt constant and the homogeneous Waldshmidt
constant to be:

êα(s) = lim
m→∞

eα(s,m)

m
,

ĥα(s) = inf
m

eα(s,m)

m
.

Considering also arbitrary multiplicities of lines, we can define

eα(m1, . . . ,ms) = min{d :

(
d+ 3

3

)
−

s∑

j=1

(3d− 2mj + 5)mj(mj + 1)

6
> 0}.

The above helps us to define the geometric Waldshmidt constant:

ĝα(s) = inf
m1,...,ms

s · eα(m1, . . . ,ms)

m1 + . . .+ms

.
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The values for few lines are presented in table:

s α̂(s) ĝα(s) ĥα(s)
1 1 1 1
2 2 2 2
3 2 2 2
4 8/3 8/3 3
5 10/3 10/3 45/13
6 72/19 42/11 27/7
7 21/5 eα(7) eα(7)

The value 72/19 is computed by the hypersurface of degree 12 vanishing along lines
with multiplicities 4, 3, 3, 3, 3, 3, while 21/5 by a hypersurface of degree 12 vanish-
ing with multiplicities 3, 3, 3, 3, 3, 3, 2. Both of these hypersurfaces are irreducible.
I will also explain the existence of the second hypersurface.

Unions of linear subspaces

Giuliana Fatabbi

(joint work with Brian Harbourne and Anna Lorenzini)

We work in the n− dimensional projective space over an arbitrary field K but
some results will require the characteristic to be 0. We will consider a collection
of linear subvarieties L0, L1, . . . , Lr, H0, H1, . . . , Hs ⊂ Pn such that the following
conditions hold:

(C1) H0, H1, . . . , Hs are distinct hyperplanes;
(C2) Li ⊆ H0 for i > 0, but L0 6⊆ H0;
(C3) if Li ⊆ Lj, then i = j; and
(C4) for all i ≥ 0 and j > 0 we have Li 6⊆ Hj .

If s = 0 and each Li is a point, then we have r points Li, 0 < i ≤ r, on the
hyperplane H0 and one point L0 that is not in H0.

Another special case is related to what we call a galaxy. We start with a star
configuration S(n, e, u). We recall that the star configuration S(n, e, u) is defined
by a set of u ≥ n distinct hyperplanes A1, . . . , Au

∼= Pn−1 in Pn such that, for
each 1 ≤ i ≤ n, the intersection of any i of the hyperplanes has dimension at most
n− i. The star configuration of codimension e ≤ n is the set S(n, e, u) of the

(
u
e

)

linear varieties arising as intersections of e arbitrary distinct choices Ai1 , . . . , Aie

of the hyperplanes. Let N ≥ 1 be an integer and regard Pn as a linear subvariety
of Pn+N . The galaxy G = G(n,N, e, h) = G(n,N, e, h;S(n, e, u),H) consists of
S(n, e, u) and a choice of h general points H = {P1, . . . , Ph} ∈ Pn+N ; in particular,
for each i, Pi+1 is not in the span of Pn and P1, . . . , Pi.

Assigning a multiplicty to each subspace we can consider schemes of the form
X =

∑
i≥0 liLi +

∑
j>0 hjHj , by which we mean the scheme defined by the ideal

IX = (∩i≥0I
li
Li
)
⋂
(∩j>0I

hj

Hj
), where li and hj are non-negative integers.
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We are interested in the study of:

• Hilbert Function of X
• α(IX) which is defined to be the least degree t such that IX is not 0.
• A minimal free resolution of IX

• The Waldscmidt constant α̂(IX) = limm→∞
α(I

(m)
X

)

m
.

In [1] we prove that it is possible to recover the Hilbert Function and the
minimal free resolution of IX from those of several ideals of subschemes whose
supports are contained in H0 . We also prove that if W =

∑
i≥0 liLi and X =∑

i≥0 liLi +
∑

j>0 hjHj for non-negative integers li and hi, l
′ = max(l1, . . . , lr)

and h = h1 + · · · + hs, then α(X) = h + α(W ) and max(l′, l0) ≤ α(W ) ≤ l′ + l0.
Moreover, we can suitably define an integer d such that

α(W ) ≤ l0 + d,

with α(W ) = l0 + d if char(K) = 0. Furthermore, we apply these results to the
case of fat points with all but one point having support in a hyperplane and to
compute galactic Waldschmidt constants in the reduced case.
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Symbolic powers versus regular powers of ideals of points in P1
× P1

Elena Guardo

(joint work with Brian Harbourne, Adam Van Tuyl)

Recent work of Ein-Lazarsfeld-Smith and Hochster-Huneke raised the problem of
which symbolic powers of an ideal are contained in a given ordinary power of
the ideal. Most of the work done up to now has been done for ideals defining
0-dimensional subschemes of projective space.

We focus on certain subschemes given by a union of lines in P3 which can also
be viewed as points in P1 × P1. We work over an algebraically closed field k of
arbitrary characteristic.

The multi-homogeneous coordinate ring k[Pn1 × · · · × Pnt ] of Pn1 × · · · × Pnt is

k[x1,0, . . . , x1,n1 , . . . , xt,0, . . . , xt,nt
].

It has a multi-grading given by

deg(xi,j) = ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nt,

where the 1 is in the ith position. The ring k[Pn1 × · · · × Pnt ] is a direct sum
of its multi-homogeneous components k[Pn1 × · · · × Pnt ](a1,...,at), where k[Pn1 ×
· · · × Pnt ](a1,...,at) is the k-vector space span of the monomials of multi-degree
(a1, . . . , at).
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An ideal I ⊆ k[Pn1 × · · · × Pnt ] is multi-homogeneous if it is the direct sum
of its multi-homogeneous components (i.e., of k[Pn1 × · · · × Pnt ](a1,...,at) ∩ I). A

multi-homogeneous ideal I can be regarded as a homogeneous ideal in k[PN ],
N = n1 + · · · + nt + t − 1, where a monomial of multi-degree (a1, . . . , at) has
degree d = a1 + · · · + at and the homogeneous component of I of degree d is
Id =

⊕
∑

i ai=d I(a1,...,at).

When t > 1, a multi-homogeneous ideal I when regarded as being homogeneous
never defines a 0-dimensional subscheme of PN , even if I defines a zero-dimensional
subscheme of Pn1 × · · · × Pnt .

Example: the multi-homogeneous ideal I of a finite set of points in P1×P1 defines
a finite set of lines in P3, which are skew (and thus not a cone) if no two of the
points lie on the same horizontal or vertical rule of P1 × P1 and not a complete
intersection unless the points comprise a rectangular array in P1 × P1.

Let I be the ideal of a set Z of s distinct reduced points of P1 × P1, i.e.,
Z = {P1, . . . , Ps}. A point has the form P = [a0 : a1]× [b0 : b1] ∈ P1 × P1 and its
defining ideal I(P ) = (F,G) where degF = (1, 0) and degG = (0, 1). The ideal of
a set of points is I(Z) =

⋂s

i=1 I(Pi).

The m-th symbolic power of I(Z) has the form I(Z)(m) =
⋂s

i=1 I(Pi)
m. The

scheme defined by I(Z)(m) is sometimes referred to as a (homogeneous) fat point
scheme, and denoted mP1 + · · ·+mPs.

Correspondence between points in P1 × P1 and lines in P3.
Consider a bigraded ideal I of a point in P1×P1. Since k[P1×P1] = k[P3] as rings,
it defines a line in P3 when regarded as a singly graded ideal in the usual grading
on k[P3]. Thus the ideal of a finite set of points in P1 × P1 is simultaneously (but
with respect to a different grading) the ideal of a finite set of lines P3.

The point P = [a0 : a1] × [b0 : b1] ∈ P1 × P1 corresponds to a pair of points
P1 = [a0 : a1] ∈ L1 and P2 = [b0 : b1] ∈ L2. The ideal I(P ) defines the line LP in
P3 through the points P1 and P2. Given distinct points P,Q ∈ P1 × P1, the lines
LP and LQ meet if and only if either P1 = Q1 or P2 = Q2; i.e., if and only if P
and Q are both on the same horizontal rule or both on the same vertical rule of
P1 × P1.

Vice versa, given any single line L ⊂ P3, we can found lines L1
∼= P1 and

L2
∼= P1 in P3 such that I(L) is the ideal of a single point in P1 × P1.

Problems involving fat points Z =
∑

imiPi with support at distinct
points Pi ∈ P1×P1 can be translated into problems involving divisors on
X.

• Given I = I(Z) and (i, j), then as a vector space I(Z)(i,j) can be identified

with H0(X, iH + jV −∑
imiEi), which itself can be regarded as a vector

subspace of the space of sections H0(P1 × P1,OP1×P1(i, j)).
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Reinterpretation of the problems involving points of P1×P1 as problems
involving points of P2.

• H0(X, aH + bV − m(E1 + · · · + Es)) = H0(X, (a + b)L − m(E1 + · · · +
Es)− aEs+1 − bEs+2).

• If I is the ideal of the fat points mP1 + · · ·+mPs, we note that α(I(m))
is then the least t such that t = a+ b and h0(X, (a+ b)L−m(E1 + · · ·+
Es)− aEs+1 − bEs+2) > 0.

On the Waldschmidt constant
Let k[PN ] denote the polynomial ring k[x0, . . . , xN ] with the standard grading (so
each variable has degree 1). Given any homogeneous ideal (0) 6= I ⊆ k[PN ], then
α(I) denotes the least degree of a nonzero form (i.e., homogeneous element) in I.
The limit limm→∞ α(I(m))/m is known to exist and is denoted by γ(I) or α̂(I).

• Let I be an ideal of a complete intersection. If I(m) = Im for all m ≥ 1
then α(I(m)) = α(Im) = mα(I), hence γ(I) = α(I).

When I is not a complete intersection?

• We showed that I(m) = Im for all m ≥ 1 whenever I is the ideal of two
skew lines in PN .

• Let I = I(X) be the ideal of a finite reduced ACM subschemeX in P1×P1.
Then I(m) = Im for all m ≥ 1 if and only if I(3) = I3 (see [2]).

• Let I be the ideal of a set Z of s general points in P1×P1. Then Im = I(m)

for all m > 0 if and only if s is 1, 2, 3 or 5. Moreover, I(3) 6= I3 if s = 4
and I(2) 6= I2 if s ≥ 6 (see [3]).

The Waldschmidt constant for general points of P1 × P1

Theorem. [1] Let I be the ideal of s ≥ 1 general points of P1 × P1. Let γ(I) =
α̂(I) = limm→∞ α(I(m))/m be the Waldschmidt constant of I. Then

• If s = 1, then γ(I) = 1.
• If s = 2 or 3, then γ(I) = 2.
• If s = 4, then γ(I) = 8/3.
• If s = 5, then γ(I) = 3.
• If s = 6, then γ(I) = 24/7.
• If s = 7, then γ(I) = 56/15.
• If s = 8, then γ(I) = 4.

• If 9 ≤ s, then
√
s− 1 < α(I)/2 ≤ γ(I) ≤

√
2s and also 4 ≤ γ(I).

Asymptotic resurgence of I
Bocci and Harbourne introduced ρ(I) = sup{m/r : I(m) 6⊆ Ir} called the resur-
gence of I. For a homogeneous ideal (0) 6= I ⊂ k[PN ], we define the asymptotic
resurgence of I ρ̂(I) = ρa(I) = sup{m/r : I(mt) 6⊆ Irt for all t ≫ 0},
Theorem. [1] Consider a homogeneous ideal (0) 6= I ⊂ k[PN ]. Let h = min(N, hI)
where hI is the maximum of the heights of the associated primes of I.

(1) We have 1 ≤ α(I)/γ(I) ≤ ρa(I) ≤ ρ(I) ≤ h.
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(2) If I is the ideal of a (non-empty) smooth subscheme of PN , then

ρa(I) ≤
ω(I)

γ(I)
≤ reg(I)

γ(I)

where ω(I) is the largest degree in a minimal homogeneous set of gen-
erators of I and where reg(I) is the Castelnuovo-Mumford regularity of
I

Corollary. [1] Let I be the ideal of s general lines in PN for N ≥ 3, where

s =
(
t+N
N

)
/(t+ 1) for any integer t ≥ 0 such that s is an integer (there are always

infinitely many such t; for example, let t = p − 1 for a prime p > N). Then
ρa(I) = (t+ 1)/γ(I).

Theorem. [1] Let I be the ideal of s general lines in PN for N ≥ 2 and s ≤
(N + 1)/2. Then ρ(I) = ρ′a(I) = ρa(I) = max(1, 2 s−1

s
). Moreover, if 2s < N + 1,

then γ(I) = 1, while if 2s = N + 1, then γ(I) = N+1
N−1 .

Open problems

(1) What can one say for ideals of other arrangements of lines?
(2) Can one extend this to higher dimensional linear spaces using products of

other projective spaces?
(3) What kinds of upper bounds are there for resurgences (asymptotic or not)

for ideals of particular subschemes in multiprojective spaces?
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H-constants and the containment problem

Brian Harbourne

The point of this talk is to provide background and context for working on two
seemingly unrelated problems. For simplicity, assume the ground field is the com-
plex numbers.

The Containment Problem

Recall that the symbolic power I(m) of an ideal I of points p1, . . . , ps ∈ P2 in the
projective plane is defined by I(m) = (I(p1)

m) ∩ · · · ∩ (I(ps)
m). In this situation,

as a special case of a much bigger theorem we have:
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Theorem([6, 7]): Let I be the ideal of distinct points p1, . . . , ps ∈ P2. Then
I(4) ⊆ I2.

This raises the following question [3]:

Question (C. Huneke, 2003): Let I be the ideal of distinct points p1, . . . , ps ∈ P2.
Is it always true that I(3) ⊆ I2?

After 10 years an answer was found:

Answer ([4]): No!

But examples of points whose ideal I gives I(3) 6⊆ I2 so far are rare.

H-constants

Now we recall H-constants [2, 8]: given a reduced plane curve C of degree d with
s distinct points p1, . . . , ps ∈ C, we define

H(C; p1, . . . , ps) =
d2 −∑

im
2
i

s
,

where mi = multpi
(C) is the multiplicity of C at pi. We write H(C) when the

points pi are the singular points of C.

Examples with H(C) ≤ −2 are rare: none are yet known with C irreducible, and
none of any kind are known with H(C) ≤ −4. If C is a union of a finite number of
lines we say C is a nontrivial configuration of lines if not all of the lines go through
the same point, and we say it has no simple crossings if there is no point which is
on exactly two lines.

Observed Fact: Every known nontrivial example C of a finite configuration of
lines in the plane with no simple crossings has both H(C) < −2 and I(3) 6⊆ I2

where I is the ideal of the singular points of C.

Question: Is this a coincidence or an indication of a deeper connection?

Example 1: Let C be (x − y)(x − z)(y − z) = 0 where C[P2] = C[x, y, z]. Take
the points p1, p2, p3, p4 to be the coordinate vertices [0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0]

and the point [1 : 1 : 1]. This has H(C; p1, p2, p3, p4) =
32−3(12)−1(32)

4 = − 3
4 and

I(3) ⊆ I2. We get what is known as the the Fermat configuration [11] of lines by
mapping P2 to P2 via [a : b : c] 7→ [an : bn : cn]. Pull C back via this map to get C′

defined by (xn−yn)(xn−zn)(yn−zn) = 0. There are n2+3 singular points of C′;

they are the inverse images of the points pi. Then H(C′) = (3n)2−n232−3n2

n2+3 = −3n2

n2+3

and I(3) 6⊆ I2 holds for each n ≥ 3 [4, 5]. The first known example of I(3) 6⊆ I2

[4], was this one with n = 3.

Example 2: The Fermat configuration of lines has n2 triple points and 3 ad-
ditional points of multiplicity n. The following construction was considered in a
working group at the Workshop on Recent advances in Linear series and Newton-
Okounkov bodies, February 9–14, 2015 at the University of Padua (i.e., last week).
Perform a linear change of coordinates so that the coordinate vertices are on the
branches of one of these new triple points and the triple point is [1 : 1 : 1]. The
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pull-back the Fermat configuration under the map P2 → P2 where [a : b : c] 7→
[ak : bk : ck] for some k to get C′′. For k ≥ 2, let tk denote the number of points
of C of multiplicity exactly k. Then the data for C, C′ and C′′ are:
C: deg(C) = 3, t1 = 3, t3 = 1, H(C) = −3

4 ;

C′: deg(C′) = 3n, tn = 3, t3 = n2, H(C′) = −3n2

3+n2 , thus H(C′) < H(C) for n > 1;

C′′: deg(C′′) = 3nk, tn = 3k2, t3 = n2k2, tk = 3, H(C′′) = −3n2−3
3+n2+ 3

k2
. Thus

H(C′′) < H(C′) for k ≫ 0.

Question: If I is the ideal of the singular points of C′′, does I(3) 6⊆ I2 hold?

Example 3: There are configurations of cubics, due to Roulleau-Urzúa [9, 10],
depending on a parameter n. In the case that 3 divides n, the Roulleau-Urzúa
configuration of cubics is a configuration of 4(n2−3)/3 cubics. If Cn is the union of
the cubics, then we have: deg(Cn) = 4(n2−3), tn2−3 = 12 (these are the 12 singular
points of the 9 lines of the n = 3 Fermat configuration), t4 = (n2 − 3)(n2 − 9)/3,
t3 = 4(n2−3) and otherwise tk = 0. Note that the 4(n2−3) triple points come in 12
sets of (n2− 3)/3 triple points each, corresponding to the 12 points of multiplicity
n2 − 3, and the points in each set are infinitely near the corresponding point of
multiplicity n2 − 3, thus accounting for the 12 points of multiplicity n2 − 3. We

have −2 = H(C3) ≥ H(Cn) =
−4(n4−3n2)

n4+27 , and H(Cn) decreases to −4 as n grows.

The 4(n2− 3)/3 cubics consist of 4 sets of (n2− 3)/3 cubics, each set consisting
of members of a different isotrivial linear pencil of cubics whose smooth elements
are isomorphic to x3 + y3 + z3 = 0. Each of these four isotrivial linear pencils
of cubics has 3 singular elements, all isomorphic to xy(x-y)=0. The union over
all four pencils of the components of the singular elements are the 9 lines of the
n = 3 Fermat configuration. In fact, there are 4 ways to choose 3 of the 12 points
of multiplicity n2 − 3 so that there is exactly one point on each of the 9 lines. For
each such way, we get a set of 9 = 12 − 3 points complementary to the 3 chosen
points. Each such set of 9 points defines a pencil of cubics from which a fourth of
the cubics for the configuration are chosen, and each of the four pencils of cubics
arises this way.

Question: If I is the ideal of the singular points of Cn, does I
(3) 6⊆ I2 hold?

[Interpolated comment: By the end of the MFO workshop for which this talk was
given the only case worked out was C3. In this case it turns out that I(3) ⊆ I2

holds. Here the only points are the 24 infinitely near triple points and the 12
proper points of multiplicity 6. Thus I is the ideal of the 12 points taken with
multiplicity 2 and the 24 infinitely near points taken with multiplicity 1. By direct
calculation we get α(I(3)) = 24 but reg(I) = 12, where α denotes the degree of a
nonzero element of least degree and reg is Castelnuovo-Mumford regularity, so by
a criterion of [3], we have I(3) ⊆ I2.]

Question (Szemberg): Are there interesting somehow analogous configurations of
conics?
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Question: Are there irreducible C with H(C) ≤ −2? (The general rational
plane curve of degree d is an example pointed out by J. Roé at an MFO Bounded
Negativity workshop in 2010 which gives H(C) approaching −2 as d increases.)

Question: What about other surfaces? (It was noted at the Padua workshop
mentioned above that [1] gives a construction of a curve C on a degree d surface

in P3 with H(C) = d−(d−1)2

1 = −d2 + 3d− 1.)
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On the fattening of lines in P3

Michael Janssen

Let Z ⊆ PN be a finite set of points. The celebrated result of [7] classifies the
possible Hilbert functions of Z. Little, in fact, is known about the so-called double
point scheme, 2Z (but see [6, 8]), which is defined by the symbolic square of
the ideal I = I(Z), denoted I(2). For a general homogeneous I ⊆ k[PN ] =
k[x0, . . . , xN ], I(m) is defined to be

I(m) = R ∩


 ⋂

P∈Ass(I)

(ImRP )


 .
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However, when I is the ideal of points p1, . . . , pr ∈ PN , this simplifies to I(m) =
∩r
i=1I(pi)

m, where I(pi) denotes the ideal generated by all homogeneous polyno-

mials (forms) vanishing at pi. The m-th symbolic power I(m) is then the ideal
generated by all forms vanishing to order at least m at the points of Z.

We also define the initial degree of I, denoted α(I), to be the degree of a nonzero
form of least degree in I, and define α(I(2)) analogously. The invariant α(I) is
closely related to the Hilbert function of I; in fact, for subsets of double points Z of
PN supported at generic points, the problem of determining the Hilbert function
of the points is equivalent to determining the initial degree α(I(2)). Additionally,
the invariant α is related to questions of containment of symbolic powers I(m) in
ordinary powers Ir, a question of study which has received a great deal of attention
recently (see [9, 5, 3]).

Recent results of [1, 2, 4] take a different approach to such questions. They
determine the geometry of a set of points Z by examining the growth of the
sequence (α(I(m)))m. This study was initiated in [2], where the authors postulate
values for the initial difference t = α(I(2)) − α(I) and classify the geometry of
the underlying points set Z. Specifically, when t = 1 and Z ⊆ P2, they use
Bezout’s Theorem to show that Z is either collinear or a star configuration (i.e.,

a configuration of all
(
d
2

)
pairwise intersection points of d lines, no three of which

meet in a point).
We instead consider the geometric impact of minimal growth in the first step of

the sequence (α(I(m)))m when I is the ideal of a configuration of lines in P3. Addi-
tionally, as the definition of a codimension 2 star configuration in P3 as defined in
[6] is too restrictive for our needs, we relax the definition and consider pseudostar

configurations of lines; that is, we consider
(
d
2

)
lines formed by pairwise intersec-

tions of d planes such that no three planes contain a line. As all sets of points
in P2 are arithmetically Cohen-Macaulay (ACM; i.e., k[x, y, z]/I(Z) is a Cohen-
Macaulay ring), we only consider arithmetically Cohen-Macaulay arrangements of
lines in P3.

Our main result is the following.

Theorem ([10]). Let L be a union of lines ℓ1, ℓ2, . . . , ℓs and let I = I(L).

(1) If L is ACM with α(I(2)) − α(I) = 1, then either L is a pseudostar or
coplanar.

(2) If L is either a pseudostar or coplanar, then L has the property that
α(I(2))− α(I) = 1.

The general idea of the proof is to make use of the ACM hypothesis to reduce to
the theorem of Bocci and Chiantini [2]. Our methods raise the following questions
regarding additional work in this direction:

Question. Does there exist a non-ACM configuration of lines L in P3 with I =
I(L) and α(I(2))− α(I) = 1?

Question. More generally, which configurations of lines in P3 are ACM?
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Question. Which reduced (possibly irreducible) curves C in P3 have I = I(C)
and α(I(2))− α(I) = 1?
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The Weak Lefschetz property and ideals generated by powers of
general linear forms

Juan Migliore

(joint work with Rosa Miró-Roig, Uwe Nagel)

Let A = R/I be a standard artinian graded algebra, where R = k[x1, . . . , xr]
is the homogeneous polynomial ring over a field of characteristic zero and I is a
homogeneous ideal. Let ℓ be a linear form. For each i, ℓ induces a homomorphism

Ai
×ℓ−→ Ai+1.

For a general choice of ℓ, one might hope that this homomorphism is either injective
or surjective, i.e. that ×ℓ always has maximal rank:

rk (×ℓ) = min{dimAi, dimAi+1}.
We say that A has the Weak Lefschetz Property (WLP) if this condition holds for
all i. We say, furthermore, that A has the Strong Lefschetz Property (SLP) if the
homomorphisms

(×ℓd) : Ai → Ai+d

induced by powers of a general linear form all have maximal rank, for all choices of i
and d. This talk will describe some known results on the Weak Lefschetz Property,
state some of the important open problems in the field, and then describe some
results obtained jointly with Rosa Miró-Roig and Uwe Nagel [6] on when the WLP
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property holds for an ideal generated by powers of general linear forms; this latter
class of ideals is of great interest in this workshop. The bridge between the two
parts of the talk will be via the famous Fröberg conjecture for the Hilbert function
of general forms of prescribed degrees.

In the paper [4], the authors provided some of the first important facts about the
WLP in general. Among these results are a complete classification of the possible
Hilbert functions of algebras with the WLP, the fact that all artinian quotients
of k[x, y] have the WLP, and the fact that all complete intersection quotients of
k[x, y, z] have the WLP. This leads to the first open question:

Question 1: Do all complete intersection quotients of k[x1, . . . , xr] have the WLP
for r ≥ 4?

The next two questions concern Gorenstein algebras.

Question 2: Do all Gorenstein quotients of k[x, y, z] have the WLP?

It is known that not all Gorenstein quotients of k[x1, x2, x3, x4] have the WLP,
but their Hilbert functions are all of the sort arising from Gorenstein algebras with
the WLP, namely the so-called Stanley-Iarrobino (SI) sequences.

Question 3: Do all Gorenstein quotients of k[x1, x2, x3, x4] have Hilbert functions
that are SI-sequences?

Part of the importance of the WLP lies in its amazing and surprising connections
to unexpected mathematical topics. These include a connection to the dimension of
osculating planes of certain projective varieties, to the g-theorem in combinatorics,
to certain enumerative problems in combinatorics, and to Fröberg’s conjecture. We
now consider the latter.

Fröberg’s conjecture can be stated inductively by saying that if I = (F1, . . . , Ft−1)
is an ideal generated by general forms of prescribed degrees d1, . . . , dt−1, and if Ft

is a general form of degree dt then the map

(1) [R/I]i
×Ft−→ [R/I]i+dt

has maximal rank for all i. This allows for a formula for the Hilbert function of
any ideal generated by general forms of prescribed degrees. We call this the Hilbert
function predicted by Fröberg’s conjecture. A result from [6] is that if Fröberg’s
conjecture holds for ideals generated by general forms in r variables then ideals
generated by general forms in r + 1 variables have the WLP.

Note that in the multiplication (1), if we replace Ft by Ldt

t , where Lt is a
general linear form, then this multiplication was part of the definition of the SLP.
Extending this idea, we can ask:

Question 4: Does an ideal generated by powers of general linear forms have the
Hilbert function predicted by Fröberg for general forms of the same degrees?

A result from [7] and [8] implies that the answer is yes for general almost complete
intersections, i.e. for ideals generated by r + 1 powers of general linear forms.
What about more than r + 1 forms? It has been known for many years that the
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answer is not always yes, with the simplest example (due to A. Iarrobino) being
an ideal of cubes of five general linear forms in r = 3 variables.

The paper [6] gave results that can be applied to give a large class of new
examples of this phenomenon. This is enabled by the following result.

Theorem. Let R = k[x1, . . . , xr+1], let ℓ ∈ R be a general linear form, and
let S = R/(ℓ) ∼= k[x1, . . . , xr ]. Fix integers d1, . . . , dr+2. If an ideal of powers of

general linear forms (Ld1
1 , . . . , L

dr+2

r+2 ) ⊂ R fails to have the WLP then the restricted

ideal of powers of general linear forms (L̄d1
1 , . . . , L̄

dr+2

r+2 ) ⊂ S fails to have the Hilbert
function predicted by Fröberg’s conjecture.

So our focus now is to study ideals of general linear forms and ask when they
have the WLP. In two variables it was already noted above that all ideals have
the WLP, so there is nothing to check. A surprising result of [9] is that for three
variables, all ideals of powers of linear forms have the WLP. This is in stark
contrast to the situation for SLP, where Iarrobino’s example above provides a
counterexample.

This brings us to four or more variables. An example in [5] gave computer
evidence that the ideals IN = (xN

1 , xN
2 , xN

3 , xN
4 , LN) fail the WLP forN = 3, . . . , 12

and L a general linear form. (Higher exponents were not checked.) This clearly
showed that something interesting is going on, and this example inspired the papers
[3] and [6] at the same time.

The paper [3] gave results about uniform powers of general linear forms, but
they allowed more than r + 1 forms. The results of [6] instead allowed mixed
exponents, but focused on the case of r + 1 forms. In this way the papers nicely
complement each other.

The best result from [6] gives an almost complete classification of when an ideal
(La1

1 , La2
2 , La3

3 , La4
4 , La5

5 ) generated by powers of five general linear forms in four
variables has the WLP, in terms of the degrees of the exponents. Another result
gives a complete description of when an almost complete intersection ideal in five
variables generated by “almost uniform powers” of general linear forms, i.e. an
ideal of the form (Ld

1, L
d
2, L

d
3, L

d
4, L

d
5, L

d+e
6 ), has the WLP. Finally, the paper gives

a collection of results about almost complete intersection ideals of uniform powers,
i.e. ideals of the form (Ld

1, . . . , L
d
r , L

d
r+1) ⊂ k[x1, . . . , xr]. The bottom line is that

more often than not, the WLP fails.
The main tools used in [6] are:

1. A theorem of Emsalem and Iarrobino from [2] that translates the Hilbert
function of an ideal of powers of general linear forms to the dimensions of
linear systems in projective space defined by certain unions of fat points.

2. A reduction to a smaller projective space.
3. Cremona transformations to compute the dimensions of the linear systems

mentioned above.

Hiding in the background, one of the most difficult parts of the proofs is the
determination of the degree in which to prove that R/I fails the WLP. This was
made possible by extensive computations on the computer system CoCoA [1].
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[6] J. Migliore, R.M. Miró-Roig, and U. Nagel, On the weak Lefschetz property for powers of
linear forms, Algebra Number Theory 6 (2012), no. 3, 487–526.

[7] R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J.
Algebraic Discrete Methods 1 (1980), 168–184.

[8] J. Watanabe, The Dilworth number of Artinian rings and finite posets with rank function, in:
Commutative Algebra and Combinatorics, in: Adv. Stud. Pure Math., Vol. 11, Kinokuniya,
North-Holland, Amsterdam, 1987, pp. 303–312.

[9] H. Schenck and A. Seceleanu, The weak Lefschetz property and powers of linear forms in
K[x, y, z], Proc. Amer. Math. Soc. 138:7 (2010), 2335–2339.

Dimensions of Some Secant Varieties

Uwe Nagel

(joint work with M.V. Catalisano, A.V. Geramita, A. Gimigliano, B. Harbourne,
J. Migliore, and Y.S. Shin)

Recently, secant varieties have attracted lot of attention. This is partially due to a
variety of applications. However, often the most basic invariant of a secant variety,
its dimension, is not known. This is even true for classical examples.

Let X ⊂ Pn be an irreducible and reduced variety, where Pn = Pn
K is the n-

dimensional projective space over an algebraically closed field K of characteristic
zero. The secant variety of (ℓ − 1)-dimensional spaces to X is the closure of the
union of the linear spans of all subsets of ℓ distinct points of X . It is denoted by
σℓ(X). Thus, σ1(X) = X , and σ2(X) is called the secant line variety of X .

Since ℓ points span at most a linear space of dimension ℓ − 1, one obtains the
following estimate

(1) dimσℓ(X) ≤ min{n, ℓ · dimX + ℓ− 1}.
One typically refers to this upper bound as the expected dimension of σℓ(X), that
is,

exp.dim σℓ(X) = min{n, ℓ · dimX + ℓ− 1}.
If Inequality (1) is strict, then σℓ(X) is called defective. One says that σℓ(X) is
filling its ambient space if σℓ(X) = Pn.

We often expect equality in Estimate (1) and that σℓ(X) is filling if ℓ is suffi-
ciently large. However, this is certainly not always the case.
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Example 1. (i) If X is a line, then σℓ(X) = X for all ℓ. In particular, σℓ(X) is
defective for all ℓ ≥ 2, unless n = 1.

(ii) Consider the Veronese suface X ⊂ P5. It is defined by the ideal that is
generated by the 2-minors of the generic symmetric matrix

M =



x0 x1 x2

x1 x3 x4

x2 x4 x6


 .

Note that X is parametrized by squares of linear forms. Thus, the secant line
variety σ2(X) is parametrized by sums of two squares of linear forms. Since
their ranks are at most two, σ2(X) is defined by detM , that is, σ2(X) is a cubic
hypersurface. In particular,

dim σ2(X) = 4 < 5 = min{5, 2 · 2 + 2− 1} = exp.dim σ2(X),

i.e., σ2(X) is defective.

The basic tool for the calculation of dimensions of secant varieties is the follow-
ing well-known result:

Proposition 1. (Terracini’s Lemma [6]) Let P1, . . . , Pℓ be general points on X,
and let TPi

(X) be the projectivized tangent space to X at the point Pi.

The dimension of σℓ(X) is the dimension of the linear span of
⋃ℓ

i=1 TPi
(X).

Consider now a Segre variety X = Pn1 × · · · × Pnt ⊂ PN , where N = (n1 +
1) · · · (nt + 1) − 1. Recently, there have been many attempts to determine the
dimensions of the secant varieties toX . Using vector spaces of suitable dimensions,
X is the image of the map

P(V1)× · · · × P(Vt) → P(V1 ⊗ · · · ⊗ Vt),

[v1]× · · · × [vt] 7→ [v1 ⊗ · · · ⊗ vt].

Thus, X is parametrized by decomposable tensors, and σℓ(X) is the Zariski closure
of the set of sums of ℓ decomposable tensors. The existence of such decompositions
is of interest in various applications.

The case of t = 2 factors is well understood. To this end observe that each
decomposable tensor v1 ⊗ v2 can be identified with a (n1 + 1) × (n2 + 1) matrix
of rank one. Hence, in this case σℓ(X) is parametrized by sums of ℓ rank one
matrices. The rank of each such sum is at most ℓ. It follows that σℓ(X) is defined
by the ideal that is generated by the (ℓ+1)-minors of a generic (n1+1)× (n2+1)
matrix. Thus, the dimension of σℓ(X) is known for all ℓ. It is often defective.

The problem of finding dimσℓ(X) becomes much more difficult if X has t ≥ 3
factors. The problem is that then the Zariski closure of the set of sums of ℓ
decomposable tensors can contain vectors that do not arise as such a sum. Indeed,
there are rather few general results.
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Remark.

(i) The dimension of σℓ(X) is known if n1 = · · · = nt = 1 by [3];
(ii) Assume n1 ≥ · · · ≥ nt ≥ 2 and n1 > (n2 +1) · · · (nt +1)− (n2 + · · ·+ nt).

Then σℓ(X) is defective for some ℓ (see [2] or [3]).

If the assumptions in (ii) are satisfied, then X is called unbalanced ; otherwise
balanced. Abo, Ottaviani, and Peterson proposed the following intriguing conjec-
ture:

Conjecture 1 ([2]). If X is balanced, then σℓ(X) is not defective for all ℓ ≥ 2.

Let us now turn attention to a different class of varieties. In [5], secants to a
variety of hypersurfaces with a fixed factorization pattern have been investigated.
More precisely, fix a partition λ = [d1, d2, . . . , dr] of d with r ≥ 2 positive parts,
that is, d1 ≥ · · · dr ≥ 1 and d = d1 + · · · + dr. Forms of degree d in S =
K[x1, . . . , xn] are parametrized by P([S]d) = PN , where N =

(
d+n−1

d

)
− 1. The

variety Xn−1,λ ⊂ P([S]d) = PN of λ-reducible forms is

Xn,λ = {[f ] ∈ PN | f = f1 · · · fr for some fi ∈ [S]di
}.

More precisely, Xn,λ is the image of the map

P([S]d1)× · · · × P([S]dr
) → P([S]d),

[f1]× · · · × [fr] 7→ [f1 · · · fr].
This is a finite morphism. Thus,

dimXn,λ =

r∑

i=1

[(di + n− 1

n− 1

)
− 1

]
.

Example 2.

(i) If n = 2, then Xn,λ = PN .
(ii) The case d = 2 corresponds to reducible quadrics and forces λ = [1, 1].

Thus, Xn,λ is defined by the ideal that is generated by the 3-minors of a
generic symmetric n× n matrix.

Excluding these well-known cases, we assume n ≥ 3 and d ≥ 3. Besides some
sporadic results, the dimension of the secant variety σℓ(Xn,λ) was known only for
two broad families of examples until very recently:

(i) n = 3, λ = [1, . . . , 1], and ℓ arbitrary. The dimensions are due to Abo [1].
In particular, σℓ(Xn,λ) is not defective for all ℓ.

(ii) n = 3, ℓ = 2, and λ arbitrary. In this case, the dimension is given by a
rather complicated formula in [4].

There was not even a conjecture for the dimension of σℓ(Xn,λ) in other cases,
nor was it clear if the two above results share a common explanation. This changed
with the appearance of [5]. The main conjecture in this paper proposes a formula
for dimσℓ(Xn,λ) for all n, ℓ, and λ. It gives a unifying framework subsuming all
known results. In particular, it suggests:
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Conjecture 2.

(a) If d1 < d2 + · · ·+ dr = s, then σℓ(Xn−1,λ) is not defective.
(b) If d1 ≥ s, then the secant variety σℓ(Xn−1,λ) is defective if and only if it

does not fill its ambient space.

Several special cases of the main conjecture are established in [5]. In each of
these cases Conjecture 2 is true as well.

Theorem ([5]). The main conjecture is true if:

(a) ℓ ≤ n
2 or ℓ ≥

(
s+n−1
n−1

)
;

(b) r = 2 and either
(i) ℓ ≤ n+1

2 , or
(ii) λ = [d− 1, 1], or
(iii) n = 3; or

(c) r ≥ 3 and n ≤ ℓ ≤ 1 + d1+n−1
s

.

This result has also consequences for Conjecture 1. These are based on the
following result:

Proposition 2 ([5]). Set ni =
(
di+n−1
n−1

)
+ 1 and Yn,λ = Pn1 × · · · × Pnt .

If σℓ(Xn,λ) = ℓ · dimXn,λ + ℓ− 1 (so, in particular, σℓ(Xn,λ) is not defective),
then σℓ(Yn,λ) is not defective.

This statement implies Conjecture 1 in many new instances.

Our approach in [5] starts with a description of the tangent spaces to Xn,λ. They
are given by Cohen-Macaulay codimension two ideals. In order to study the Hilbert
function of the sum of these ideals we modify a method from intersection theory,
the so-called diagonal trick. It gives us complete results if the intersections are
proper. In order to study improper intersections we suggest to establish Lefschetz
properties. We conjecture that the relevant algebras always have enough Lefschetz
elements.
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Curves with imposed gonality in linear systems

Joaquim Roé

(joint work with Xavier Xarles)

Given an algebraic curve C defined over the perfect field k, the gonality of C is
the minimal integer γ such that there is a morphism C → P1

k of degree γ. Brill-
Noether theory guarantees that, if k is algebraically closed and the genus of C is
g ≥ 1,

(1) 2 ≤ γ ≤ g + 3

2
,

and all values of γ allowed by (1) are obtained as gonalities of curves of genus
g defined over k. However, for k non algebraically closed, the situation is very
different, and we are very far from knowing which pairs (g, γ) are possible over a
given field k (where the cases k = Q and k = Fq are the most interesting) or even
which pairs (g, γ) are possible over some field. It is clear that for g > 1, γ ≤ 2g−2
(thanks to the existence of the canonical linear series) and it is known that over
appropriate fields, curves of gonality 2g − 2 exist.

Denoting k̄ the algebraic closure of k, one can bound the gonality of a curve C
below by the gonality γ̄ of its base change Ck̄, which must satisfy (1). In [1] we
proved that, when γ̄ is small with respect to the genus, there are strong constraints
on γ:

(1) If there is only one morphism Ck̄ → P1
k̄
of degree γ̄ then there is a morphism

C → D of degree γ̄ with D a genus 0 curve, and γ ≤ 2γ̄.
(2) If (γ̄ − 1)2 < g and one morphism Ck̄ → P1

k̄
of degree γ̄ is simple (i.e.,

does not factor as the composition of two maps of degree > 1) then it is
the only morphism of its degree.

(3) If (γ̄ − 1)2 < g, one morphism Ck̄ → P1
k̄
of degree γ̄ is simple, and γ̄ ≡ g

(mod 2), then γ = γ̄.

We are interested in giving sufficient conditions for the pair (g, γ) to be realizable
as the genus and gonality for some curve, and if possible, give explicit examples
of such curves. A few facts are known, which we summarize next:

• As a corollary of the results above, if p is a prime, there are over every
field curves of genus g and gonality p as soon as g > (p− 1)2.

• In genus 1, there are curves of gonality 2 over all fields, and of all gonalities
≥ 2 over Q and over finite fields. Over finite fields, the gonality is bounded
in terms of the size of the field. In genus 2, all curves have gonality 2.

• For 3 ≤ g ≤ 5, the possible gonalities (over some field) are as follows:
g 3 4 5
γ̄ 2 3 2 3 2 3 4

possible γ 2,4 3,4 2 3,4,5,6 2,4 3 4,5,6,8
• For g ≤ 15, there are over every infinite field curves with maximal geo-
metric gonality γ̄ = ⌊(g + 3)/2⌋ (but it is not known whether they can be
constructed with γ = γ̄ over Q, for instance).
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This last result follows from the fact that the corresponding moduli space is unir-
uled, and so there are “general” curves over infinite fields. If g ≤ 10 the proof
is due to Severi, and it leads to a general method using linear systems on curves
which can be used to obtain curves with smaller gonalities as well:

Fixing d ≥ 2g/3+2, all curves of genus g can be obtained as plane nodal curves
of degree d and δ = (d− 1)(d− 2)/2− g nodes. If 3δ < (d+1)(d+2)/2, the nodes
can be chosen in general position (in particular, they can be chosen over a given
infinite field); both inequalities match for g ≤ 10. If g < 10, the gonal maps to P1

are obtained by projection from one node, and so they are defined over the base
field (so γ = ⌊(g + 3)/2⌋ is achieved over the rational field for g < 10).

Similar methods, exploiting plane curves with higher singularities, or general
curves on toric surfaces, possibly with nodes, allow to construct curves with given
genus and gonality, as long as g ≥ f(γ), where f is a function of quadratic growth.

Open problem. Is there an affine linear function f such that for all g ≥ f(γ)
there are algebraic curves defined over the rational numbers with genus g and
gonality γ? Note that necessarily f(γ) ≤ 2γ − 3 by (1).
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A homological criterion for the (failure of) containment between
symbolic and ordinary powers of ideals of points

Alexandra Seceleanu

Containments between ordinary and symbolic powers remain a source for many
open questions, despite the recent surge of interest the topic has received. The
starting point for our report is the first (no longer open) question in this series,
proposed by Craig Huneke:

Question 1. Does the containment I(3) ⊆ I2 hold for any radical ideal I defining
a finite set of points in P2?

It is now well known that the answer to the question above is negative. Several
examples of configurations of points have arisen that exhibit a non-containment
I(3) 6⊆ I2, where I is the defining ideal of the set of points. The point configurations
presently known to witness the non-containment are: the Fermat family (indexed
by integers s ≥ 3), given by s2 + 3 points that arise as the singular locus of an
arrangement of 3s lines [4, 5], the Klein configuration consisting of 49 points which
form the singular locus of an arrangement of 21 lines, the Wiman configuration
which consists of 201 points that arise as the singular locus of an arrangement of 45
lines [1], and the orchard configuration of 19 points that occur at the intersection of
the 12 lines in a certain arrangement in the real projective plane [2]. Understanding
these counterexamples constitutes the main motivation of this note.
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We propose below a homological approach meant to verify the failures of con-
tainment mentioned above from a theoretical perspective. It is a common fea-
ture of the point configurations mentioned above that their defining ideals are
three-generated. Motivated by this, we restrict our attention in Theorem 4 to
three-generated ideals of height two, with minimal generators of the same degree.
However, as pointed out by the workshop participants, it is not the case that every
ideal that satisfies I(3) 6⊆ I2 is there-generated [3].

The first step in our approach to the study of containments of the form I(m) ⊆ Ir

is to translate them in the language of homological functors:

Proposition 2. Let I be a homogeneous ideal and let m ≥ r > 0 be integers.
Consider the canonical surjection R/Im → R/Ir. Applying the local cohomology
and extension functors respectively to this homomorphism yields natural induced
maps. The following statements are equivalent:

(1) I(m) ⊆ Ir;
(2) the induced map H0

m(R/Im) → H0
m(R/Ir) is the zero map;

(3) the induced map Ext3R(R/I
r,R) → Ext3R(R/I

m,R) is the zero map.

Next, we give a more concrete interpretation of the homological criterion above
in the terms of the differentials in the resolutions of Im and Ir.

Let I ⊂ K[x, y, z] be a homogeneous ideal and let m ≥ r > 0 be integers.
Consider the minimal free resolutions for Im and Ir and the map between these
two complexes induced by the natural inclusion Im →֒ Ir. These maps are depicted
below by vertical arrows:

0 −→ Rb2 X−→ Rb1 −→ Rb0 −→ Im −→ 0

↓Y ↓ ↓
0 −→ Rb′2 −→ Rb′1 −→ Rb′0 −→ Ir −→ 0

Let XT and Y T denote the dual maps to the homomorphisms X and Y appearing
in the diagram above, obtained by applying the Hom(−,R) functor, i.e. XT =
Hom(X,R) and Y T = Hom(Y,R). With this notation and writing Im(φ) for the
image of a homomorphism φ, we have:

Proposition 3. Let I be a homogeneous ideal and let m ≥ r > 0 be integers. The
containment I(m) ⊆ Ir holds if and only if Im(YT) ⊆ Im(XT).

Finally, applying this version of our criterion to the particular case of three-
generated ideals defining points yields the most concrete version of our result.

Theorem 4. Let I = (f, g, h) ⊂ K[x, y, z] be a three-generated reduced ideal
defining a finite sets of points in P2 over a field K of characteristic not equal to
3. Consider the minimal free resolutions for I3. This is a complex of the form :

0 −→ R3 X−→ R12 −→ R10 −→ I3 −→ 0
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Then the contanment I(3) ⊆ I2 holds if and only if



f
g
h


 ∈ Im(XT).

Furthermore, the homomorphism X in Theorem 4 can be described explicitly
in terms of the Hilbert-Burch matrix of I, rendering the criterion in Theorem 4
effective. Proofs of the results above can be found in [6], along with applications
to the case of the Fermat and Klein configurations mentioned in the introduction.
To our knowledge, this provides the only theoretical proof for the failure of con-
tainment of the symbolic cube in the ordinary square for the case of the Klein
configuration.
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On the effect of points fattening on surfaces and in higher dimensions

Tomasz Szemberg

(joint work with Thomas Bauer, Sandra Di Rocco, Elena Guardo, Zach Teitler)

Let X be a smooth variety and let L be a very ample (or just ample and spanned)
line bundle on X . For a suvariety (reduced scheme) Z ⊂ X we define (α(mZ))m≥1

the initial sequence of Z as

α(mZ) := min
{
d : there exists s ∈ H0(X, dL) vanishing to order ≥ m along Z

}
.

Bocci and Chiantini initialized in [3] the program of studying how the growth
of the initial sequence influences the geometry of Z. Passing from (m−1)Z to mZ
is the fattening mentioned in the title, and its effect is expressed in the difference
between α((m − 1)Z) and α(mZ). Bocci and Chiantini worked with Z being a
finite set of points in the projective plane P2. Their results have been generalized
and extended in several ways.

In [6] we studied further properties of the initial sequence of points in P2. The
case of X = P1 × P1 and L = OP1×P1(1, 1) has been investigated in [1]. In [4]
we studied the effect of fattening for points on Hirzebruch surfaces. This effect
for higher dimensional varieties has been studied by Jannsen in [8] and somewhat
indirectly in [5]. Points in P3 have been studied in turn in [2].
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In my talk I have presented two open conjectures in the field motivated by results
from [2] and [1]. See [7] for a very enjoyable introduction to star configurations.

Conjecture 1.
Let Z be a finite set of points in projective space Pn. If

d := α(nZ) = α(Z) + n− 1 ,

then either

α(Z) = 1, i.e., Z is contained in a single hyperplane H in Pn

or

Z consists of all intersection points (i.e., points where n hyperplanes meet)
of a general configuration of d hyperplanes in Pn, i.e., Z is a star configura-
tion. Moreover for any polynomial of degree d vanishing along Z to order
≥ n, the corresponding hypersurface decomposes into d such hyperplanes.

In the multiprojective setting we have the following.

Conjecture 2.
Let Z be a finite set of points in (P1)n. If

d = α(nZ) = α(Z) ,

then Z is a grid of size d × . . . × d, i.e. there are subsets Zi ⊂ P1 consisting of d
points each such that

Z = Z1 × . . .× Zn.
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On linear Harbourne constants

Justyna Szpond

In recent years, there has been growing interest in negative curves on algebraic
surfaces. The Bounded Negativity Conjecture (BNC for short) is probably the
most interesting open question in this area. The BNC predicts that for any smooth
complex surface X there exists a lower bound for the selfintersection of reduced
divisors on X . It is not known if the Bounded Negativity property is invariant in
the birational class of a surface, i.e. given birational surfaces X and Y , it is not
known if curves on X have bounded negativity if and only if they do on Y . As
the first step towards understanding this question, in [1] the authors introduced
and studied Harbourne constants. The purpose of this talk is to compute these
constants for a low number of lines (up to 10) defined over an arbitrary field. This
is a problem of combinatorial flavor and we hope that these results might be of
interest also from this point of view.

Let K be an arbitrary field. Let L = {L1, . . . , Ld} be a configuration of lines in
the projective plane P2(K), let P(L) = {P1, . . . , Ps} be the set of all singular points
of the configuration. Then the linear Harbourne constant of L at P is defined as

HL(K,L) = d2 −∑s

k=1 mL(Pk)
2

s

Similarly, we define the linear Harbourne constant of configurations of d K-lines
as the minimum

HL(K, d) := minHL(K,L)

where the minimum is taken over all configurations of d lines in P2(K).
Going over all fields K, we introduce the absolute linear Harbourne constant as

HL(d) := min
K

HL(K, d).

As the main result of this talk we establish the values of the absolute linear Har-
bourne constants of up to ten lines. Since the case K = C is of particular interest
from the point of view of BNC, we compute separately also the complex Harbourne
constants.

Theorem [2]
The values of the absolute Harbourne constants are

d 2 3 4 5 6 7 8 9 10

HL(d) 0 −1 −1 1
3 −1, 5 −1 5

7 −2 −2 −2, 25 −2 5

12

Over C we obtain the following values

d 2 3 4 5 6 7 8 9 10

HL(C, d) 0 −1 −1 1
3 −1, 5 −1 5

7 −18

9
−2 −2, 25 −2 4

15
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Fat lines in P3

Adam Van Tuyl

(joint work with Elena Guardo, Brian Harbourne)

Given a homogeneous ideal I of a polynomial ring R = k[x0, . . . , xn], there has
been a lot of interest in determining when Im = I(m), where I(m) denotes the m-th
symbolic power of I. It has long been known that if I is a complete intersection,
then Im = I(m) for all m ≥ 1. However, there are examples of ideals I that are not
complete intersections, but also have the property that Im = I(m) for all m ≥ 1.
It is then natural to ask if there is an integer M such that if Im = I(m) if m ≤ M ,
then Im = I(m) for all m ≥ 1. In other words, how many comparisons do we need
to make to guarantee that all regular powers of an ideal always equals its symbolic
powers?

For some classes of ideals, we can determine M . For example, let J(G) be the
cover ideal of a finite simple graph G = (VG, EG). That is,

J(G) :=
⋂

{xi,xj}∈EG

〈xi, xj〉.

Then it follows from [1, 6] that J(G)m = J(G)(m) for all m ≥ 1 if and only if
J(G)m = J(G)(m) for 1 ≤ m ≤ 2, i.e., M = 2. Susan Morey [5] also was able
to determine M for perfect ideals in a local ring R that were also generically a
complete intersection and under some codimension hypotheses.

In a talk in Lincoln around 2008, Craig Huneke suggested that M might be
the big height of I, denoted bight(I), where bight(I) := max{ht(P ) | P ∈ Ass(I)}.
Note that for any cover ideal J(G), bight(J(G)) = 2, so M is indeed the big height
of the ideal in this situation.

It turns out that there exists ideals I with bight(I) < M . The first example of
such an ideal was found in [3] by considering a union of lines in P3. In particular,
we build our union of lines as follows. Let R = k[x0, x1, y0, y1] = k[P3], and let L1

be the line defined by I(L1) = 〈y0, y1〉 and L2 the line defined by I(L2) = 〈x0, x1〉.
Note that L1 and L2 are two skew lines in P3. On the line L1, pick any h points
A1, . . . , Ah and on L2 pick any v points B1, . . . , Bv. We then set Li,j = AiBj .
The ideals considered in [3] where ideals of the form

I(X) =
⋂

(i,j)∈D

I(Li,j)
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for some subset D ⊆ {(i, j) | 1 ≤ i ≤ h, 1 ≤ j ≤ v}. That is, X is a union of lines
in P3 where every line of X meets the two skew lines L1 and L2.

If we give R = k[x0, x1, y0, y1] a bigraded structure by setting deg xi = (1, 0)
and deg yi = (0, 1) for i = 0, 1, then the ideal I(X) is also a bihomogeneous ideal
in this new grading. In fact, I(X) is the defining ideal of a set of points in P1×P1.
So, instead of studying lines in P3, we can take the point-of-view that I(X) defines
a set of points X ⊆ P1×P1 (we abuse notation to let X also represent the points).
By taking this perspective, we can exploit some known results about points in
P1×P1. For example, due to work of Giuffrida, Maggioni, and Ragusa [2], we can
determining when a set of points in P1 × P1 is Cohen-Macaulay. Also key for our
work is a result of the author and Guardo [4] that if X ⊆ P1×P1 has the property
that R/I(X) is Cohen-Macaulay, then I(X)2 = I(X)(2).

For these special unions of lines in P3, or equivalently for points in P1 × P1, we
were able to prove the following result (see [3]):

Theorem. Let X ⊆ P1 × P1 be an arithmetically Cohen-Macaulay set of points.
Then I(X)m = I(X)(m) for all m ≥ 1 if and only if I(X)3 = I(X)(3).

Because the big height of I(X) is two, this theorem gives a negative answer to
Huneke’s question because you need to check the third regular and symbolic power
of I(X) to determine if I(X)m = I(X)(m) for all m ≥ 1. As a specific example,
consider the ideal of points in P1 × P1 (or union of lines in P3) given by

I(X) = I(L1,1) ∩ I(L1,2) ∩ I(L1,3) ∩ I(L2,1) ∩ I(L2,2) ∩ I(L3,1).

This ideal has I(X)2 = I(X)(2), but I(X)3 6= I(X)(3).

There are at least two questions that are suggested by the above theorem.
First, is there a geometric characterization of the set of points X that are Cohen-
Macaulay in P1×P1 (alternatively, lines in P3) that satisfy the condition I(X)3 =
I(X)(3). A conjectured answer is given in [3], along with some supporting evidence.

Second, for any positive integer t, does there exist an ideal It such that Imt = I
(m)
t

for all m ≤ bight(It) + (t − 1) but Imt 6= I
(m)
t for m = bight(It) + t. In other

words, can we show that we may need to check powers arbitrarily larger than the
big height of an ideal. The main example of [3] can been seen as an example for
the case t = 1.
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