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Abstract. The philosophy of deformation was proposed by Bayen, Flato,
Fronsdal, Lichnerowicz, and Sternheimer in the seventies and since then,
many developments occurred. Deformation quantization is based on such a
philosophy in order to provide a mathematical procedure to pass from classi-
cal mechanics to quantum mechanics. Basically, it consists in deforming the
pointwise product of functions to get a non-commutative one, which encodes
the quantum mechanics behaviour. In formal deformation quantization, the
non-commutative product (also said, star product) is given by a formal de-
formation of the pointwise product, i.e. by a formal power series in the
deformation parameter which physically play the role of Planck’s constant
̵h. From a physical point of view this is clearly not sufficient to provide a
reasonable quantum mechanical description and hence one needs to overcome
the formal power series aspects in some way. One option is strict deforma-

tion quantization, which produces quantum algebras not just in the space
of formal power series but in terms of C∗-algebras, as suggested by Rieffel,
with e.g. a continuous dependence on ̵h. There are several other options
in between continuous and formal dependence on ̵h like analytic or smooth
deformations.

The Oberwolfach workshop Deformation quantization: between formal to
strict consolidated, continued, and extended these research activities with a
focus on the study of the connection between formal and strict deformation
quantization in their various flavours and their applications in particular those
in quantum physics and non-commutative geometry. It brought together
specialists in differential geometry, operator algebras, non-commutative ge-
ometry, and quantum field theory with research interests in the mentioned
quantization procedures. The aim of the workshop was to develop a coherent
viewpoint of the many recent diverse developments in the field and to initiate
new lines of research.
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Introduction by the Organisers

Formal deformation quantization as introduced by Bayen et al. has reached by now
a very satisfying state: with the highly non-trivial formality theorem of Kontse-
vich the questions on existence as well as on classification of formal star products
on general Poisson manifolds have been settled and answered in the positive in
1997. Alternative approaches to the globalization of Kontsevich’s result were also
obtained by Cattaneo, Felder, and Tomassini in 2002 as well as by Dolgushev
2005. Before, the symplectic case was investigated by various groups. Here the
existence of star products was shown by Lecomte and DeWilde already 1983, later
independently by Fedosov in 1986 and by Omori, Maeda, and Yoshioka in 1991.
The classification of star products in the symplectic case was obtained by Nest
and Tsygan in 1995 and independently by Deligne in 1995 and Bertelson, Cahen,
and Gutt in 1997. The representation theory of the deformed algebras, which is
crucial for a physical application, has been investigated in detail by many people:
among other things, the full classification of the star product algebras up to Morita
equivalence was obtained by Waldmann, Bursztyn and Dolgushev in 2012.

For a physical interpretation of the star product algebras as observable alge-
bras of a quantized physical system, the formal parameter has to be identified
with Planck’s constant h̵. Hence a convergence of the formal series in h̵ is cru-
cial. In the early era of deformation quantization the formal star products have
been constructed by means of asymptotic expansions of other quantizations like
Berezin-Toeplitz quantizations on quantizable Kahler manifolds or symbol calcu-
lus quantizations on cotangent bundles. Beside producing rather explicit examples
like the constructions of Cahen, Gutt and Rawnsley case as well as Karabegov in
the Kahler case or Bordemann, Neumaier, Pflaum and Waldmann in the cotan-
gent bundle case, the good understanding of the formal star products also led to
interesting results on the convergent origins: here the computations of character-
istic classes by Karabegov and Schlichenmaier or the index theorems of Fedosov
as well as Nest and Tsygan should be mentioned. For the whole world beyond
smooth Poisson manifolds the works of Pflaum, Posthuma, and Tang show first
deep results on deformation quantization also in this case.

On a more analytic oriented approach based on a C∗-algebraic formulation
using continuous fields of C∗-algebras, Rieffel showed how an action of Rd on a
C∗-algebra can be used to deform this C∗-algebra in a continuous way. Applied
to the bounded continuous functions on a manifold, this ultimately leads again to
a formal star product by an asymptotic expansion of the continuous deformation
for h̵ Ð→ 0, at least on sufficiently smooth vectors of the action. Ever since,
Rieffel’s paradigma of deformation by group actions was studied in many contexts
and substantially extended recently to other (non-abelian) Lie groups than R

d by
Bieliavsky and Gayral and coworkers. On a more abstract level, Natsume, Nest,
and Peter considered symplectic manifolds with a topological condition (trivial
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second fundamental group) and showed that a strict quantization always exists,
based on the usage of Darboux charts and a Čech cohomological argument.

The relation between formal and strict deformation quantization has been sub-
ject of several studies, but there still remain deep open questions. Since the ap-
proach of formal deformation quantization is universal, as proved by Kontsevich,
it is natural to try to find the way back: from the easy formal situation to the more
complicated convergent one. Since the above mentioned quantization schemes all
use particular geometric features, one can hope to recover not only a convergent
quantization as required by physics, but also interesting information about the
underlying geometry. There are only few examples where this way backwards was
investigated: in the flat case, Beiser, Rmer and Waldmann considered the conver-
gence of the Wick star product on C

n and recovered the full symmetry, coherent
states, and the Bargmann-Fock representation from the convergence conditions.
While this example is still geometrically rather trivial, it already shows a rich
structure beyond the locally multiplicatively convex theory. It can be extended to
infinite dimensions in a rather conceptual way as recently shown by Waldmann.
The relations to the approches of Dito’s star products on Hilbert spaces still re-
main to be investigated. Later, Beiser and Waldmann considered a Wick-type
star product on the Poincaré disk. Here the underlying geometry is topologically
still trivial but enjoys a curved Kahler structure. Again, in this example the full
symmetry of the problem is recovered and the foundations of a representation the-
ory to establish the relations with the Berezin-Toeplitz quantizations are formed.
Bieliavsky, Detournay, and Spindel gave a deformation of the Poincaré disk in a
C∗-algebraic approach thus complementing the picture from the other side. How-
ever, the precise relations between the different versions of convergence remain
unclear. Even though these examples seem to be isolated at the moment,they can
be seen as a proof of concept that investigating the convergence of formal star
products gives both physically relevant and manageable observable algebras and
interesting information about the underlying geometry.

Understanding the analytic aspects of deformation quantization has led to many
non-trivial and surprising applications beyond the field of deformation quantiza-
tion itself . Here we only want to mention a few: the works of Anderson and
coworkers on the mapping class group where the results of Bordemann, Mein-
renken, and Schlichenmaier on the asymptotic properties of Berezin-Toeplitz quan-
tization enter in a crucial way. The works of Lechner show how one can use Rieffel’s
deformations to construction new examples of quantum field theories as deforma-
tions of free theories. In some sense they can be seen as quantum field theories
on a non-commutative Minkowski spacetime. Quantum deformations of classi-
cal geometries lead to interesting spaces in non-commutative geometry, here the
quantum spheres of Connes and Landi provide a non-trivial and rich class where
concepts of non-commutative geometry can be tested explicitly.

Still many questions remain open: first, the above mentioned examples have to
be investigated further to understand their relations and connections. Moreover,
the quest for convergence of star products in order to produce (ultimately) a
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continuous field of C∗-algebras has to be extended beyond the above examples.
Here one can think of other types of algebras between the formal power series
on the one hand and the C∗-algebras on the other hand: in particular locally
convex algebras and also bornological algebras may provide a good bridge. Here
the techniques developed by Meyer on bornological algebras will play a crucial
role.

The overall goal of the workshop was to develop a coherent viewpoint of the
many recent developments on the analytic aspects of deformation quantization as
described above with particular emphasis on the connection between formal and
strict and their potential applications in physics.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Leibniz algebras: deformation quantization and integration

Martin Bordemann

(joint work with C.Alexandre, S.Benayadi, S.Rivière, F.Wagemann)

1. Let K be a commutative associative unital ring containing the rational numbers
(e.g. a field of characteristic 0), let h be a K-module, and let [ , ] ∶ h× h→ h be a
bilinear map. Recall that the pair (h, [ , ]) is called a (left) Leibniz algebra (over
K) (see [5],[9]) iff the left Leibniz identity holds

(1) [x, [y, z]] − [[x, y], z] − [y, [x, z]] = 0.
for all x, y, z ∈ h. In case (h, [ , ]) satisfies the left Leibniz identity for the opposite
bracket [ , ]opp defined by [x, y]opp = [y, x] for all x, y ∈ h it is called a right Leibniz
algebra: this case is frequently dealt with in the literature, but we shall stick to
left Leibniz algebras and refer to them as Leibniz algebras. They form an obvious
category whose morphisms consist of bracket preserving linear maps.
Every Lie algebra is a Leibniz algebra leading to the obvious inclusion functor.

2. For K = R and (g, [ , ]) a finite-dimensional real Lie algebra it is well-known
that is dual space g∗ becomes a Poisson manifold by means of the so-called linear
Poisson structure πα ∶= α([ , ]) for all α ∈ g∗. Hence the space of all real-valued
smooth functions A = C∞(g∗,R) beomes a Poisson algebra whose commutative
multiplication is the usual pointwise multiplication of functions and the Poisson
bracket { , }π is given by {f, g}π(α) = α([df(α), dg(α)]) for all f, g ∈ A. In 1983,
Simone Gutt [7] has given a simple explicit formula for a formal bidifferential
associative deformation ∗G of A, a so-called star-product, in terms of the Baker-
Campbell-Hausdorff (BCH) series of the Lie algebra g: for any x ∈ g let ex ∈ A be

the exponential function ex(α) = eα(x) for all α ∈ g. Then for all x, y ∈ g

(2) ex ∗G ey = eBCH(x,y)

where BCH(x, y) = x + y + λ
2
[x, y] + . . . is the usual BCH-series.

In 2013, B.Dherin and F.Wagemann succeeded in giving an analogue of Gutt’s
formula on the dual space of a finite-dimensional real Leibniz algebra (h, [ , ]),
[6]: writing adx ∶ h→ h for the linear map y ↦ adx(y) = [x, y] for any x ∈ h, they get
–by analytic techniques– the following nonassociative star-product formula ∗DW

(3) ex ∗DW ey = eeλadx(y).

In the particular case of a Lie algebra h = g it is not hard to see that ex ∗DW ey =

ex ∗G ey ∗G e−x –I owe this important remark to Pierre Bieliavsky–which makes it
more plausible to understand the ‘awkward’ classical limit

(f ∗DW g)(α) = f(0)g(α) + λα([df(0), dg(α)]) +O(λ2).
3. In [8] and [6], the importance of the structure of a pointed Lie rack (M,e,m)

has been emphasized: (M,e) is a pointed manifold, and m ∶ (M,e) × (M,e) →
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(M,e) is a smooth map written m(x, y) = x▷ y and satisfying for all x, y, z ∈M
the equations e▷ y = y, x▷ e = e, x▷ (y▷ z) = (x▷ y) ▷ (x▷ z). The standard
example is a Lie group G with e its unit element and g▷g′ = gg′g−1 for all g, g′ ∈ G,
but for any real finite-dimensional Leibniz algebra (h, [ , ]) the pointed manifold

(h,0) is well-known to become a Lie rack with respect to x▷ y = eadx(y) so that
the exponential functions ex constitute a ‘Lie’ rack with respect to ∗DW .
In [1] we defined a class of nonassociative bialgebras (B,∆, ǫ,1, µ) which we call
rack bialgebras : here (B,∆, ǫ,1) is a coassociative counital coaugmented coalgebra
over K, and µ ∶ B ⊗B → B (written µ(a ⊗ b) = a▷ b is a linear map of counital
coaugmented coalgebras satisfying

(4) 1▷ b = b, a▷ 1 = ǫ(a)1, a▷ (b▷ c) =∑
(a)
(a(1)▷ b) ▷ (a(2)▷ c).

This identity can be obtained from a Lie rack by using the Serre functor which
associates to any pointed manifold (M,e) the real vector space of all distributions
supported in e: being an obvious functor in the category of real vector spaces
it is not hard to see upon using the diagonal map that the functor map into the
category of all coassociative cocommutative counital coaugmented connected coal-
gebras over R.
We show furthermore that for any Leibniz algebra (h, [ , ]) over K its symmetric
algebra S(h) is equipped with such a structure: it already comes with a cocom-

mutative coassociative comultiplication ∆, a counit ǫ and a unit 1. Since g = h

acts on h via ad, it acts on S(h) as derivations of the standard commutative mul-
tiplication. Hence its universal envelopping algebra U(g) acts on S(h), written
u.b for all u ∈ U(g) and b ∈ S(h). The canonical surjection p ∶ h → g induces a
morphism of coalgebras S(p) ∶ S(h) → S(g) which can be followed by the canon-
ical symmetrization map ω ∶ S(g) → U(g) which is an isomorphism of coalgebras

by the Poincaré-Birkhoff-Witt Theorem. Defining a▷ b ∶= (ω(S(p)(a))).b for all

a, b ∈ S(h) we get a rack-bialgebra. It is then not hard to show that in the case of
a real finite-dimensional Leibniz algebra the restriction of the star-product ∗DW

to the subspace of all polynomial functions on h∗ (which is isomorphic to S(h))
coincides with ▷ for λ = 1.

4. Another feature of finite-dimensional real Leibniz algebras is the notorious
integration problem: Lie’s Third Theorem states that there is a functor from the
category of all finite-dimensional real Lie algebras to the category of all simply
connnected connected Lie groups (in fact an equivalence of categories). In gen-
eral, for any category C of ‘structured’ finite-dimensional real vector spaces an
integration functor would be a functor J from C in the category of all pointed
manifolds such that the composition TeM○ J (with TeM(M,e) = TeM) is nat-
urally isomorphic to the forgetful functor of C to the category of all underlying
vector spaces. In the case of the category of all finite-dimensional real Leibniz
algebras one could demand an additional compatibility condition, namely that the
restriction of J to the subcategory of all Lie algebras be naturally isomorphic to
the above-mentioned ‘Lie Three’-integration functor. The question whether such
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a compatible integration functor J exists for the category of all finite-dimensional
real Leibniz algebras is –surprisingly– still open (the coquecigrue according to
J. L. Loday). Wagemann and I could recently show (still unpublished work) that
the pointed manifolds integrating Leibniz algebras in a functorial way have to be
equipped with the structure of a pointed Lie rack.
M.Kinyon [8] found an integration functor for the important subcategory of the
so-called hemi-semi direct product Leibniz algebras: let (g, [ , ]g) be a Lie algebra,
and V be a g-module. On the direct sum V × g the following ‘half’ of the semi-
direct product of Lie algebras is a Leibniz bracket: for all v,w ∈ V and ξ, η ∈ g

define [(v, ξ), (w,η)] = (ξ.w, [ξ, η]g) Morphisms in that subcategory are pairs of
Lie algebra morphisms and module morphisms. In the finite-dimensional real case
it is not hard to see that the association V × g → V ×G (where G is a connected
simply connected Lie group having Lie algebra g) is a compatible integration func-
tor where the pointed manifold (V ×G, (0, e)) carries the structure of a Lie rack

via the map (v, g) ▷ (v′, g′) = (g.v′, gg′g−1).
Another ‘integable’ subcategory is the category of all symmetric Leibniz algebras
(h, [ , ]): these are Leibniz algebras which are at the same time right Leibniz alge-
bras. Upon passing to antisymmetric and symmetric part of the Leibniz bracket,
it was shown (see e.g. [4], [2]) that this category is isomorphic to the category of
all Lie algebras (h−, [ , ]−) carrying a symmetric bilinear map [ , ]+ ∶ h− ×h− → h−

whose image lies in the centre of h− and whose kernel includes its image and
the derived ideal of h−. In [3] we have shown that an integration functor ex-
ists by associating to a symmetric Leibniz algebra h the connected simply con-
nected Lie group H− having Lie algebra (h, [ , ]). The Lie rack structure on

H− is given by h ▷ h′ = hh′h−1χ(h,h′) where χ(h,h′) = exp ([κ(h), κ(h′)]′+),
and κ ∶ H− → a(h) = h/[h,h] is the canonical morphism of Lie groups, and
[ , ]′+ ∶ a(h) × a(h)→ h− is the symmetric bilinear map induced by [ , ]+.
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Symmetries of non-formal deformation quantizations

Axel de Goursac

In this Oberwolfach contribution, we are interested in non-formal deformation
quantizations of the Weyl-type and their symmetries. This kind of deformation
quantization considers noncommutative products ⋆θ on a “regular” subspace of
the smooth functions C∞(M) of a Poisson manifold M , and these star-products
⋆θ depend on a real deformation parameter θ such that we recover the usual
pointwise product for θ = 0. For the existing examples, i.e. the Moyal-Weyl
product for R

2n [6], the Bieliavsky-Gayral product for the Kählerian Lie groups
with negative curvature [3], the product on the hyperbolic plane [1], they are
explicitly given by an integral kernel.

We first mention that these deformation quantization possess a Hilbert algebra
structure, which just correspond to the Hilbert-Schmidt operators L2(H) via the
Weyl-type quantization map. We call them Hilbert deformation quantization [5].
Let us analyze this observation in an heuristic way and go further in this direction.
What are ingredients of a non-formal deformation quantization?

● Basically speaking, this Hilbert algebra structure (Aθ,⋆θ), or more pre-
cisely its associated von Neumann algebra (isomorphic to L(H)) corre-
sponds to the noncommutative measured space underlying the deforma-
tion quantization ⋆θ. In the case of the Moyal-Weyl product, we have
Aθ = L

2(R2n).
● Then come other ingredients of a non-formal deformation quantization,
such as its symmetries: for example, the Moyal-Weyl product is invariant
and covariant under the translation group R

2n,
● the data of a topological *-subalgebra Bθ of Aθ that we can consider as
the data of a “smooth structure” (and a topology) on the noncommuta-
tive space underlying the deformation quantization ⋆θ: for example, the
*-subalgebra Bθ = S(R2n) of Schwartz functions for the Moyal-Weyl prod-
uct,
● the continuity of the family of pre-C*-algebras (Bθ,⋆θ),
● and the commutative limit θ → 0 of the ⋆θ-commutator going to the Pois-
son bracket.

In general, it is not easy to find an adapted topological *-subalgebra of (Aθ,⋆θ)
with interesting properties. In the work [5], for an arbitrary Hilbert deformation
quantization, we found a way to construct such topological *-subalgebras, as gener-
alized Schwartz or Sobolev spaces, from its covariant symmetries. So we claim here
that ingredient 3 of the above list can be seen as a consequence of the ingredient
2: the symmetries determine the topology and the smoothness of the noncommu-
tative space. This reflects the well-known fact in the commutative setting that for
a homogeneous space M acted by a Lie group G, the smooth structure of M is
totally determined by the one of G.

Applications of this result are the concrete determination of various topologi-
cal *-subalgebras of the deformation quantizations [6, 3, 1], but also the explicit
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computation of non-formal star-exponentials [2, 4] and their relations with these
topological *-subalgebras.
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Completions of group algebras, growth and nuclearity

Simone Gutt

(joint work with Michel Cahen and Stefan Waldmann)

The results presented here the object of the joint work [2]. We study several
completions of the group algebra C[G] of a finitely generated group G. The norms
are inspired by those constructed by Beiser andWaldmann in [1] to get convergence
of deformation quantization. We relate nuclearity of such a completion to a growth
property of the group.

1. Growth and submultiplicative functions

Let G be a finitely generated infinite group with a finite set S of generators. The
choice of S defines a length L∶GÐ→ N0 by counting the minimal number L(g) of
generators needed to write g ∈ G as a product of generators. By convention, L(e) =
0 for the group unit e ∈ G and we assume that S = S−1 so that L(g) = L(g−1) and
L(gh) ≤ L(g)+L(h) for all g, h ∈ G. If L′ is another word length corresponding to
a different set of generators S′ then we have constants c, c′ ∈ N with L(g) ≤ cL′(g)
and L′(g) ≤ c′L(g) for all g ∈ G. Using the word length one defines the surface
growth and the volume growth of the group G by

σG(n) =#{g ∈ G ∣ L(g) = n} and βG(n) =#{g ∈ G ∣ L(g) ≤ n},
where we omit the dependence on L in the notation. Clearly σG(n) ≤ βG(n) and
βG(n) grows at most exponentially in n. Since we assume G to be infinite, we
have σG(n) ≥ 1 for all n and βG is strictly increasing. In particular βG(n) > n.
Moreover, we have

σG(n +m) ≤ σG(n)σG(m) and βG(n +m) ≤ βG(n)βG(m)
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for all n,m ∈ N0. We define a class of functions to which we can compare the
functions σG and βG. We will not use the standard way of comparing growth
functions, as usually done in geometric group theory. Instead, we use a slightly
coarser notion. A map σ∶N0 Ð→ [0,∞) is submultiplicative if

σ(n +m) ≤ σ(n)σ(m)
for all n,m ∈ N0 and almost submultiplicative if for every ǫ > 0 there is a constant
c > 0 such that

σ(n +m) ≤ cσ(n)1+ǫσ(m)1+ǫ
for all n,m ≥ N0. The almost submultiplicative functions will allow for a slightly
greater flexibility. A map σ∶N0 Ð→ [1,∞) is called a growth function if it is
monotonically increasing and unbounded; monotonic meaning σ(n) ≤ σ(n + 1).
Let σ,σ′∶N0 Ð→ [1,∞) be two maps. We define a relation < by σ < σ′ if there are
constants c, k ≥ 1 with σ(n) ≤ cσ′(cn)k for all n ∈ N0.

2. Completions of the group algebra

The group algebra C[G] of the group G is the complex vector space spanned by
the set G; we denote a basis of C[G] by { eg ∣g ∈ G}; it is a cocommutative Hopf
∗-algebra , with the associative algebra multiplication inherited from G :

ab = (∑
g∈G

ageg)(∑
h∈G

bheh) = ∑
g,h∈G

agbh egh = ∑
h∈G
(∑
g∈G

agbg−1h)eh,

where only finitely many of the coefficients ag and bh are different from zero,.
the unit element given by ee, the

∗-involution is given by a∗ = ∑g∈G ageg−1 , the
antipode S(a) = ∑g∈G ageg−1 , the counit ǫ(a) = ∑g∈G ag, and the coproduct ∆(a) =
∑g∈G ag eg⊗eg. Note that the tensor product C[G]⊗C[G] is canonically isomorphic
as algebra to C[G ×G] where G ×G has the product group structure.

We consider completions of this albebra in the space of formal power series in
G which we denote by C[[G]] = {∑g∈G ageg where now ag is unrestricted}. Given
a submultiplicative or an almost submultiplicative growth function σ, given a set
of generators with corresponding word length L on G, and given R ≥ 0, we define

∥a∥L,σ,R = ∑
g∈G
∣ag ∣σ(L(g))R

for a ∈ C[[G]], allowing for the value +∞ and we set

ℓ1L,σ,R(G) = {a ∈ C[[G]] ∣ ∥a∥L,σ,R <∞} ,
Aσ(G) = {a ∈ C[[G]] ∣ ∥a∥L,σ,R <∞ for all R ≥ 0} = ⋂

R≥0
ℓ1L,σ,R(G),

equipped with the projective locally convex topology of all the seminorms ∥ ∥L,σ,R.
We prove:

(1) The projective limit Aσ(G) of the Banach spaces ℓ1L,σ,R is independent of
the chosen word length L.

(2) The group algebra C[G] is dense in Aσ(G) and all algebraic structures
are continuous yielding a Fréchet-Hopf ∗-algebra structure on Aσ(G).
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(3) If σ is submultiplicative then Aσ(G) is a locally multiplicatively convex
algebra: the norms ∥ ∥L,σ,R are submultiplicative.

Our main result is the following crucial relation with the growth of the group :
Let (1 + n) < σ be an almost submultiplicative growth function. Then Aσ(G) is
nuclear iff βG < σ.
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Deformation of fibred manifolds and related Hochschild cohomologies

Benedikt Hurle

We consider the situation of a fibred manifold, i.e. a surjective submersion p ∶ P →
M between two manifolds M,P . We assume that M is equipped with a (differ-
ential) ⋆-product on C∞(M)⟦λ⟧. Now we want to deform the classical module
structure given by a ⋅ f = p∗af . Especially the case of fibre bundles is interesting
in theoretical physics, where one tries to deform a classical gauge theory into a
noncommutative (quantum) field theory.

Definition. In this situation we call a (C∞(M)⟦λ⟧,⋆)-left module structure
● on C∞(P )⟦λ⟧, such that a ● f = (p∗a)f + ∑∞k=1 λkLk(a, f) where the Lk ∈

DiffOp●(C∞(M),C∞(P );C∞(P )) are bidifferential operators, a (left) module de-

formation of P
pÐ→M . It is called fibre preserving, if a ● p∗b = p∗(a ⋆ b)

A bimodule deformation of a fibred manifold is a left and right module defor-
mation, both denoted ●, such that

(1) (a ● f) ● b = a ● (f ● b)
for all a, b ∈ C∞(M) and f ∈ C∞(P ), i.e. C∞(P )⟦λ⟧ becomes a (C∞(M)⟦λ⟧,⋆)-
bimodule. It is called fibre preserving if both module structures are fibre preserv-
ing.

For the module case the problem of existence and uniqueness up to equivalence
was solved in [1].

Given a bimodule deformation we define the semi-Poisson bracket [3, 4] by
{a, f ∣} = i

2λ
(a ● f − f ● a)∣λ=0 for a ∈ C∞(M) and f ∈ C∞(P ), so it is the semi-

classical limit of the bimodule. This bracket has the following properties:

(1) {ab, f ∣} = p∗a{b, f ∣} + p∗b{a, f ∣}
(2) {a, p∗bf ∣} = p∗{a, b}f + p∗b{a, f ∣}
(3) {a,{b, f ∣} ∣} − {b,{a, f ∣} ∣} − {{a, b}, f ∣} = 0,
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for all a, b ∈ C∞(M) and f ∈ C∞(P ). It is called natural if it is a derivation in the
second argument. In particular it is a Poisson module of C∞(M).

If M is symplectic and the semi-Poisson bracket is natural, one can define a
horizontal lift byXh

a (f) = {a, f ∣}, whereXa(b) = {a, b} is the symplectic vectorfield
of a ∈ C∞(M). This can be shown to be well defined. It turns out that the
corresponding connection is flat.

So we get that in this case we can only get a bimodule deformation, if the fibre
bundle admits a flat connection, which is a quite strong obstruction.

Given a flat lift it is even possible to get a ⋆-product on C∞(P )⟦λ⟧, s.t.
(C∞(M)⟦λ⟧,⋆) is a subalgebra, by lifting the differential operators in ⋆. Note
that in this case the Poisson bracket on P in fibre direction is trivial.

In the general Poisson case it would be interesting to know if the existence of a
semi-Poisson bracket is enough to get a bimodule deformation. Another problem
is their classification up to equivalence.

The obstruction for an order by order construction of a module structure
is in the Hochschild cohomology HH2(C∞(M),DiffOp(P )) for the bimodule in

HH2(C∞(M ×M),DiffOp(P )).
So we consider the differential Hochschild cohomologyHH●diff(C∞(M),C∞(N))

and HH●diff(C∞(M),DiffOp(N)), where we have a map p ∶ N →M , s.t. p(N) is a
submanifold of M and the bimodule structure on C∞(N) is given by the pullback
along p.

This cohomology can be computed using an explicit homotopy to the Koszul
complex [2, 1], for the local situation p ∶ Rn → R

m, and then gluing things together
using a partition of unity.

We get the following result:

Theorem. [3, 4] In the above situation

(2) HH●diff(C∞(M),C∞(N)) ≅ X●(M)∣p(N) ⊗C∞(M) C
∞(N)

and

(3) HH●diff(C∞(M),DiffOp(N)) ≅ Λ●(TM/Tp(N))⊗C∞(M) DiffOpver(N)
as C∞(M)-bimodules. One can also show that these are isomorphic to vector
bundles over N .
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Deformation quantization with separation of variables of an
endomorphism bundle

Alexander Karabegov

During the mini conference “Deformation quantization: from formal to strict”
held at MFO in February 2015 I gave a talk “Deformation quantization with
separation of variables of an endomorphism bundle” on a graph-theoretic formula
for a star product with separation of variables on endomorphism-valued symbols.
Since the introduction of deformation quantization in [1] in 1978 until the work of
Kontsevich [3] in 1997 explicit formulas were known for a very limited number of
invariant star products on homogeneous symplectic manifolds. For non-invariant
star products there are explicit formulas expressed in terms of directed graphs. The
first such formula is the celebrated Kontsevichs formula for a star product on Rn
equipped with an arbitrary Poisson structure (see [3]). There are several explicit
graph-theoretic formulas for star products with separation of variables on K?ahler
manifolds by Reshetikhin and Takhtajan [4], Gammelgaard [2], and Hao Xu [5].
In my talk I gave a generalization of Gammelgaards graph-theoretic formula to
the star products with separation of variables on the sections of the endomorphism
bundle of a holomorphic Hermitian vector bundle on a Kahler manifold.
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Representations of Rieffel-deformed C
∗-algebras and deformations of

nets

Gandalf Lechner

In deformation quantization, one is usually interested in deformations of some
“global” algebra A – such as the algebra of all observables of a system in classical
mechanics – by some formal or strict procedure, typically involving a change in the
(associative) product of A. The material presented in this talk is motivated by a
different situation, inspired by QFT, where one is rather interested in deformations
of “local” subalgebras of A. In the first part, I reviewed this motivation and
stated the aims. In the second part, I described representations of Rieffel-deformed
C∗-algebras and discussed some additional results that are available in concrete
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representations. In the last part, I applied this technique to certain situations of
the type introduced in the first part. This talk touches upon various joint projects,
with H. Grosse [4, 5], D. Buchholz and S. J. Summers [3, 2], and S. Waldmann [9].

1) Motivation/Introduction. We consider an algebra A with subalgebras:
There is a partially ordered index set I, and for each i ∈ I, a subalgebra Ai ⊂ A such
that i↦ Ai is inclusion preserving (net). The set I also carries a complementation
⊥, and for i ⊥ j we require that Ai and Aj commute. Finally, we typically have a
group G acting on I and A such that αg(Ai) = Agi in obvious notation.

Examples of this structures are given by taking a Lorentzian manifold M , the
index set as (some subset of) the open subsets ofM , partially ordered by inclusion,
with i ⊥ j denoting the spacelike complement, and G the isometries of M . Under
further conditions, the algebras Ai can then be interpreted as the observables of a
local QFT on M [6].

The aim is to find some strict deformation procedure which takes the data
Ai ⊂ A, I,G,α and produces “deformed” data which still satisfy the same properties

as before. As shown in examples, this typically involves deformations Ai → A
(ai)
i

of the “local” algebras Ai with deformation parameters ai depending on i, i.e.,
several different deformations appear at the same time, and their interplay has to
be studied. Furthermore, the assumptions listed above are in many cases so strong
that one expects the internal algebraic structure of each Ai to be (essentially) fixed.

That is, in the situation considered here each “local” deformation Ai → A
(ai)
i is

expected to be trivial, whereas the net structure changes in a non-trivial manner.

2) Representations of Rieffel-deformed C∗-algebras and warped convo-
lutions. This part reviewed the notion of “warped convolution”, which amounts
to covariant representations of Rieffel-deformed C∗-algebras in concrete Hilbert
space situations. The precise relation to Rieffel’s approach was explained together
with some further results, involving in particular a “spectral commutator theorem”
which states commutativity of two operators, deformed with opposite deformation
parameters, under certain assumptions of spectral nature.

During this workshop it also become apparent that recent work of S. Neshveyev
on a crossed product formulation of Rieffel’s procedure is closely related to the
warped convolution [11], see also [8].

A generalization in the direction of considering suitable locally convex algebras
or modules with polynomially bounded R

n-actions instead of C∗-algebras with
isometric actions was also briefly mentioned [9].

3) Applications to deformations of nets. In the last part the deformation
was applied to a particular situation of the type outlined in 1). Namely, M is
taken to be R

n, n ≥ 2, and I the family of all wedges, i.e. all Poincaré transforms
of W ∶= {x ∈ Rn ∶ x1 > ∣x0∣}. Since I is just a single orbit, it is sufficient to
consider as local algebra the one corresponding to W . This algebra, denoted M

and taken here to be a von Neumann algebra, is assumed to satisfy three natural
conditions w.r.t. a unitary positive energy representation of the Poincaré group U

on the space M acts on: 1) AdUg acts by endomorphisms on M for all g preserving
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W , 2) AdUg maps M into its commutant M′ for all g mapping W into its causal
complement, and 3) there exists a vector which is invariant under U and cyclic
separating for M.

In this setting, it was explained how M can be deformed by warped convolution
to another von Neumann algebra Mθ so that all three conditions (with unchanged
U and cyclic separating vector) are still satisfied for Mτ instead of M. Since the
stated conditions imply that M (and its deformed version) are type III1 factors
[10], this demonstrates the effect that the internal structure of the local algebras
is typically (essentially) fixed. The net structure can in this example be shown to
depend on the deformation parameters by scattering theory.

The participants then discussed in particular the questions if/how to conclude
injectivity ofMτ from injectivity ofM (since the injective type III1 factor is unique
[7]), and how the setting could be generalized to non-abelian group actions such
as the ones studied by Bieliavsky and Gayral [1].
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Cocycle deformation of operator algebras

Sergey Neshveyev

Let A be a C∗-algebra and α be a continuous action of a vector group V ≅ R
d

on A. Denote by A ⊂ A the algebra of smooth vectors for this action. Fix a scalar
product ⟨⋅, ⋅⟩ on V . Consider the space S(V ;A) of A-valued Schwartz functions
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on V . It can be made into a Fréchet algebra by defining the convolution product by

(f ∗ g)(x) = ∫
V
f(y)αy(f(x − y))dy.

The space S(V ;A) with this product is denoted by V ⋉αA and called the smooth
crossed product of A by the action of V .

Let J be a skew-symmetric operator on V . Then Rieffel’s deformation AJ of A
is the Fréchet space A equipped with the new product

a ×J b = ∫
V ×V

αJx(a)αy(b)e(x ⋅ y)dxdy,
where e(x ⋅ y) stands for e2πi⟨x,y⟩ and the integral is understood in the oscillatory
sense [5]. The automorphisms αx of A remain automorphisms of AJ and define
an action of V on AJ , which we denote by αJ .

The algebra AJ completes to a C∗-algebra AJ as follows. We have a repre-
sentation πJ of AJ on S(V ;A) defined by πJ(a)ξ = α(a) ×J ξ, where α(a) is
the A-valued function on V given by α(a)(x) = α−x(a), and the deformed prod-
uct ×J for A-valued functions is defined using the action of V on itself by left
translations. The space S(V ;A) is a dense subspace of the Hilbert A-module
L2(V ) ⊗ A. The operators πJ(a) extend by continuity to bounded operators
on this Hilbert module, and we let AJ to be the norm-closure of πJ(AJ) in
EndA(L2(V )⊗A) =M(K(L2(V ))⊗A).

Although Rieffel’s deformation procedure is highly nontrivial, there is a simple
relation between the crossed products ofA and AJ . In order to describe it, consider
the Fourier transform on S(V ;A),

ξ̂(x) = ∫
V
ξ(y)e(−x ⋅ y)dy,

and define an operator ΘJ on S(V ;A) by
ΘJ(f)(x) = ∫

V
αJy(f̂(y))e(x ⋅ y)dy.

Note that this operator is invertible, with inverse equal to Θ−J .

Theorem 1. The operator ΘJ , viewed as a map S(V ;AJ) → S(V ;A), is an
algebra isomorphism of the smooth crossed products V ⋉αJ AJ ≅ V ⋉αA. It extends
by continuity to an isomorphism of the C∗-algebra crossed products V ⋉αJ AJ ≅

V ⋉α A.

The existence of an isomorphism V ⋉αJ AJ ≅ V ⋉α A was proposed by Kasp-
rzak [2], who checked it in some cases. A complete proof was first given in [1],
while the above simple form of this isomorphism was found in [3].

This isomorphism led Kasprzak to develop a new approach to Rieffel’s defor-
mation. His idea was that instead of trying to define a new product on A ⊂ A,
we can just consider V ⋉α A and then try to recover AJ as a subalgebra of the
multiplier algebra M(V ⋉α A). This is possible to do using a twisted dual action
on V ⋉α A and the theory of Landstad algebras [2]. A different way has been
proposed in [1, 4]. It relies on certain ‘quantization maps’ A→ AJ .
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In order to define these maps, consider first the action of V by translations
on A = C0(V ). It is known that C0(V )J is isomorphic to the twisted group C∗-
algebra C∗(V ;ΩJ), where the 2-cocycle ΩJ is given by ΩJ(x, y) = e(x ⋅ Jy). This
C∗-algebra can be defined using the projective representation γJ ∶V → B(L2(V )),
(γJ(x)f)(y) = e(x ⋅ y)f(y + Jx). The genuine representation γJ ⊗ γ−J is quasi-
equivalent to the regular representation, hence any normal state ν on W ∗(V ;Ω−J)
defines a normal ucp map (ι ⊗ ν)(γJ ⊗ γ−J)∶W ∗(V ) → W ∗(V ;ΩJ). Identifying
W ∗(V ) with L∞(V ) we get a ‘quantization map’ Tν ∶C0(V ) → C0(V )J , which
extends to a normal ucp map L∞(V ) → W ∗(V ;ΩJ) of the corresponding von
Neumann algebras. Explicitly,

Tν(f) = ∫
V
ν(γ−J(x))f̂(x)γJ(x)dx, if f ∈ L∞(V ) ∩L1(V ), f̂ ∈ L1(V ).

Turning to the case of a general C∗-algebra A equipped with an action α of V ,
we can now consider the maps

(Tν ⊗ ι)α∶A →M(C0(V )J ⊗A) ⊂M(K(L2(V ))⊗A).
We then have the following description of AJ .

Theorem 2. The Rieffel deformation AJ of A coincides with the norm closure of
the subspace of M(K(L2(V ))⊗A) spanned by the elements of the form (Tν⊗ι)α(a)
for all a ∈ A and ν ∈W ∗(V ;Ω−J)∗. Explicitly, for any ν ∈W ∗(V ;Ω−J)∗ such that
the function x ↦ ν(γ−J(x)) lies in the Fourier algebra of V , so it is the Fourier
transform of a function gν ∈ L

1(V ), we have

(Tν ⊗ ι)α(a) = ∫
V
gν(x)πJ(αx(a))dx.

One advantage of this picture of Rieffel’s deformation is that its ingredients,
such as the twisted group algebras and the quantization maps, make sense in a
much greater generality. Namely, it is possible to develop a deformation procedure
for any action of a locally compact group G on a C∗-algebra A and a unitary 2-
cocycle Ω on the dual quantum group Ĝ [4].
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A convergent star-product on the symmetric tensor algebra over a
Hilbert space

Matthias Schötz

In a recent work [1] it was shown how to construct a topology on the symmetric
tensor algebra S●(V ) over an arbitrary locally convex space V such that the usual
star-products of exponential type are continuous. This can be achieved by extend-
ing all the continuous semi-norms on V in a suitable manner to S●(V ) by means
of projective tensor products. In my talk I have shown that for the special case of
a Hilbert space H, a similar construction yields slightly better results: By using
not projective tensor products but Hilbert tensor products, the resulting topology
is in general coarser and can be shown to be the coarsest possible under some
additional assumptions. This is a results from [2] and is to be published in [3].

The topology on S●(H) can be constructed as the topology that is defined by a
suitable extensions of all the equivalent inner products (in the topological sense)
on H: For a bounded, positive-definite and invertible linear operator A on H we
define an inner product ⟨ ⋅ ∣ ⋅ ⟩●A on the tensor algebra over H by demanding that
the subspaces of k- and ℓ-fold tensors are orthogonal if k ≠ ℓ, that ⟨ ξ ∣η ⟩●A = ξ̄ η
for ξ, η ∈ C and that

⟨x1 ⊗ ...⊗ xk ∣ y1 ⊗ ...⊗ yk ⟩●A = k!Πk
i=1 ⟨xi ∣Ayi ⟩

holds for all k ∈ N and x1, ..., xk, y1, ..., yk ∈ H, where ⟨ ⋅ ∣ ⋅ ⟩ denotes the inner
product of H.

Let b ∶ H ×H → C be a continuous bilinear form, then one can define a star-
product ⋆b on S●(H) – interpreted as a subspace of the tensor algebra – that
satisfies x ⋆b y = x ∨ y + b(x, y) for all x, y ∈ H. Here ∨ denotes the symmetric
tensor product, see [1] for details. It can now be shown that ⋆b is continuous
under the locally convex topology defined by the Hilbert norms induced by all the
above inner products with A running over all bounded, invertible and self-adjoint
linear operators on H (or equivalently, with A running over all multiplications
with natural numbers).

Conversely, it is possible to reconstruct a sufficiently many inner products
⟨ ⋅ ∣ ⋅ ⟩●A out of suitable star-products: Therefore, assume that H is additionally

equipped with an antilinear involution ⋅ that fulfills ⟨x ∣y ⟩ = ⟨x ∣y ⟩. We can ex-
tend ⋅ to a ∗-involution of the symmetric tensor algebra by demanding that x∗ = x
holds for all x ∈ H. This is also a ∗-involution with respect to the product ⋆b if b

fulfills b(x, y) = b(y, x). For a bounded, invertible and self-adjoint linear operator

A on H that fulfills Ax = Ax for all x ∈ H, define the continuous bilinear form
a(x, y) ∶= ⟨x ∣Ay ⟩. Then ⋅ ∗ is a ∗-involution with respect to ⋆a and

⟨X ∣Y ⟩●A = π0(X∗ ⋆a Y )
holds for all X,Y ∈ S●(H) where π0 ∶ S●(H) → C denotes the projection on the
0-component of a tensor.
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From Formal to Strict Deformation Quantization

Stefan Waldmann

In this first talk of the workshop, the main aim was to find a common language
and a suitable platform to launch the various other talks: thus I presented some
historical overview on deformation quantization focusing on the questions of the
workshop.

In a first step, I recalled the motivations for deformation quantization arising
from the quest for a construction of a quantum mechanical description of a given
mechanical system. The starting point is the Hamiltonian point of view where
the phase space of the mechanical system is modeled as a symplectic or Poisson
manifoldM while the dynamics is implemented as a Hamiltonian time evolution for
a specific Hamiltonian. The basic idea of deformation quantization then consists
in finding a star product for this situation: a formal power series of bidifferential
operators Cr such that

(1) f ⋆ g =
∞
∑
r=0

h̵rCr(f, g)

turns to be a C[[h̵]]-bilinear associative deformation of C∞(M,C)[[h̵]] into the
direction of the Poisson bracket, i.e. one wants C0(f, g) = fg and C1(f, g) −
C1(g, f) = i{f, g} for all f, g ∈ C∞(M,C). In the formal power series setting, the
existence and classification of such star products is by now well-understood. I
recalled the basic results like the existence proofs of DeWilde and Lecomte in the
early eighties, Fedosov’s beautiful construction, as well as Kontsevich’s general
solution to existence and classification by means of his formality theorem. In the
symplectic case the classification was obtained more easily by Nest and Tsygan as
well as by Bertelson, Cahen, Gutt and many others. Furthermore, I commented on
several particular constructions where additional properties of the star products
like e.g. symmetries can be implemented.

From a physical point of view such a formal star product is of course far from
being the end of the story: the deformation parameter h̵ has to be Planck’s con-
stant, not a formal parameter, in order to have a physically reasonable quantum
theory. Moreover, one needs to implement enough analytic structure to guaran-
tee that the resulting quantum observable algebra has a reasonable representation
theory by operators on a Hilbert space. This is required for physical reasons as one
needs to implement the super-position principle for states. The states themselves
can be implemented as positive functionals on the algebra itself.
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This physical demand then provides the core of the workshop, the understanding
of the analytic properties of the formal deformations and an implementation of
convergence results in one or the other way.

Thus, in a second step I recalled several ideas to approach this convergence issue.
Here the situation is less clear concerning the existence and classification. In fact,
several competing definitions of what a strict deformation quantization should be
are on the market. I tried to give an overview on the various possibilities: most
notably, Rieffel suggested to replace the formal deformation by a C∗-algebraic
deformation using the language of continuous fields of C∗-algebras. This was
further developed by Landsman and exemplified in several works by Bieliavsky.
General results on the existence of such strict deformation quantizations were
obtained by Natsume and Nest, both construction were discussed in later talks in
detail.

In a last part, I reported briefly on some recent work on the convergence of the
prototype of every star product: the Weyl star product on a vector space V . Here
the new aspect was to investigate the convergence of the formal series directly
from the point of view of locally convex algebras. To this end, I established a
locally convex topology on the symmetric algebra over V , which was assumed to
be locally convex and equipped with a continuous constant Poisson bracket. Such
a Poisson bracket is encoded in a continuous bilinear form on V . Then for this
locally convex topology on the symmetric algebra, the Weyl star product becomes
continuous. It therefore extends to the completion of this polynomial algebra. The
completion contains several interesting entire functions like exponentials but not
all of them.

Deformation of algebras by group 2-cocycles

Makoto Yamashita

We consider the deformation problem for algebras graded by a discrete group Γ.
More precisely, let A be an associative algebra admitting a compatible grading by
Γ, so that A = ⊕g∈ΓAg and AgAh ⊂ Agh. If ω(g, h) is a 2-cocycle on Γ into the
multiplicative scalar group, one may define a new associative product structure
∗ω on by setting x ∗ω y = ω(g, h)xy if x ∈ Ag and y ∈ Ah. In the framework of

∗-algebras, the exponentiation ωt(g, h) = exp(√−1ω0(g, h)) of R-valued 2-cocycle
ω0 on Γ leads to the smooth deformation of Γ-graded algebras (A,∗ωt)t∈R.

Carrying out this deformation scheme in the framework of C∗-algebras, we
obtain a generalization the Rieffel deformation of torus actions to reduced Fell
bundles over discrete groups. Varying the parameter t in ωt on an interval I, we
obtain a C(I)-algebra with fibers (A,ωt). We show that this C(I)-algebra has a
structure of KK-fibration if Γ satisfies the strong Baum–Connes conjecture. The
proof is based on the idea of Echterhoff–Lück–Phillips–Walters: namely, inter-
preting the Γ-grading as a C∗r (Γ)-coaction, we can replace the algebras (A,ωt) by
the double crossed products (A,ωt) ⋊ C0(Γ) ⋊ Γ by Takesaki–Takai duality. The
key observation is that (A,ωt) ⋊ C0(Γ) does not depend on t, so the problem is
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reduced to the continuous deformation of the dual Γ-actions. In order to apply
the Baum–Connes conjecture one must show that crossed products by finite sub-
groups of Γ give KK-fibration, but that follows from the triviality of the R-valued
2-cohomology of finite groups.

In the purely algebraic framework, we consider the analogous problem for cyclic
cohomology groups. Here, the fibration structure is described by Getzler’s Maurer–
Cartan connection on periodic cyclic theory. Using the coaction map correspond-
ing to the Γ-grading, we have the action of group cohomology to the periodic cyclic
cohomology of algebras, denoted by ξ ⊳ φ for ξ ∈ H∗(Γ;C) and φ ∈ HP∗(A). The
action of the Maurer–Cartan form on cyclic cohomology is shown to be cohomol-
ogous to the cup product action of the group cocycle. This allows us to compute
the monodromy of the Gauss–Manin connection in the strict deformation setting.
Moreover, the cyclic cocycles which are invariant under the coaction naturally in-
duce cyclic cocycles on the deformed algebras. Denoting this induction φ ↦ φ(t),
the action of φ(t) on the K-group of (A,∗ωt) is shown to be equal to the action of

e
√
−1[ω0] ⊳ φ on the K-group of A.
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Université Catholique de Louvain

Chemin du Cyclotron, 2

1348 Louvain-la-Neuve

BELGIUM

Prof. Dr. Martin Bordemann

Laboratoire de Mathématiques
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