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Introduction by the Organisers

Homotopy theory and algebraic topology have seen tremendous growth and trans-
formation over the past decade, with new points of view, new questions, new
techniques, and—as a result of all this—remarkable progress. Much of this change
has been driven by a new generation of mathematicians, many still within a few
years of their doctoral degrees. The main thrust of this workshop was to highlight
this transformation and the mathematicians responsible, while keeping in mind
some of the classical questions that define the field.

If topology can be defined as the study of phenomena of topological spaces
invariant under invertible continuous transformations, then homotopy theory is
the study of phenomena that remain invariant a weaker notions, such as homotopy
equivalence or even weak homotopy equivalence. In the early postwar period, the
field grew of out the observation that many problems of geometric or topological
interest are best addressed by first solving a homotopy theory question and, indeed,
in some cases the homotopy theory is the deep part of the problem. A recent
example of this was the Kervaire Invariant One problem for framed manifolds
solved by Hill, Hopkins, and Ravenel. Once the field was established, the flow
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information went the other way as well. For example the emergence of derived
algebraic geometry in homotopy theory has given us new ways to think about
manifold invariants with such tools as factorization homology.

The workshop emphasized four themes: the algebraic topology of manifolds,
equivariant stable homotopy theory, chromatic stable homotopy theory, and alge-
braicK-theory, including the algebraicK-theory of structured ring spectra. These
themes have considerable overlap; for example, algebraic K-theory is integral to
the statement of Novikov conjecture, which is a question about manifolds with
group action, which itself leads to equivariant homotopy theory, which in turn is
an important technique in chromatic stable homotopy, which itself leads to the
red-shift conjecture in K-theory.

In the first area, the algebraic topology of manifolds, we had three very differ-
ent presentations. David Ayala talked on his work with John Francis and Nick
Rozenblyum on factorization homology and new ways to construct and think about
invariants. As mentioned above, this theory uses in an integral way the the new
methods from ∞- categories and derived algebraic geometry; indeed, factorization
homology is adapted from the chiral homology developed by Beilinson and Drin-
feld. Wolfgang Lück talked about the Farrell-Jones conjecture, the most basic of
the assembly conjectures, and one with many geometric implications. The results
presented here, joint with Holger Reich, John Rognes, and Marco Varisco, are the
capstone on the work of many people, proving a very general case. We also had a
short talk by Martin Palmer of homological stability for diffeomorphism groups of
high-dimensional manifolds. This an especially active subfield at the moment, as
only recently have researchers developed techniques to get beyond surfaces.

At the core of the results presented by Lück was a discussion of the algebraic
K-theory of group rings, especially of large discrete groups. Algebraic K-theory is
a powerful invariant, containing a great deal of information, but also very hard to
compute. We had a number of talks about K-theory, some discussing its universal
properties, some offering calculations. Andrew Blumberg, for example, talked on
joint work with Michael Mandell that gave a calculation of the K-theory of the
sphere spectrum in terms of the K-theory of the integers and certain Thom spec-
tra. Birgit Richter gave a talk demonstrating that higher topological Hochschild
homology, which quite recently seemed quite mysterious, can now be completely
calculated for the field with p elements. David Gepner reported on joint work with
Antieau and Barthel that effectively disproves the existence of a certain higher
chromatic generalization of Quillen’s localization sequence for algebraic K-theory.
On a related theme, Oliver Röndigs gave a talk in motivic homotopy theory. This
area, which might be called the homotopy theory of smooth schemes, has its origins
in Voevodsky’s solution of some of the famous conjectures in K-theory.

A number of talks centered on equivariant stable homotopy theory, a subfield
undergoing a renaissance. These included the talks developing foundations, es-
tablishing remarkable universal properties and showing the way the framework
can offer great insights into classical problems. Mike Hill explained the intricate
network of equivariant notions of commutativity, bringing clarity where confusion
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has been an obstacle to progress. Thomas Nikolaus showed how orbispectral ap-
proaches to global homotopy theory illuminates the role of stability, and outlined
the vision of how this applies to elliptic cohomology. Niko Naumann gave an ac-
count of stratifications of prime spectra of cohomology theories which elegantly
unifies (through the notion of nilpotence) and considerably extends a collection
of results that were previously only related in form. Irakli Patchkoria showed
how to give a a theory of proper-equivariant stable homotopy theory illuminating
the relationships between various notions of cohomological dimension, with the
foundations established by an elegant and natural model structure on orthogonal
spectra.

Chromatic stable homotopy theory was, in some sense, our most classical topic,
having its roots in the work of Quillen and Morava in the 1970s and with a steady
record since then. Agnès Beaudry talked about her work on the Chromatic Split-
ting Conjecture, a proposal for assembling a homotopy type from its chromatic
layers. In particular, she argued that a strong form of the conjecture cannot be
true at the prime 2. Tyler Lawson and Vesna Stojanoska talked about topological
modular forms and its generalizations and Craig Westerland spoke about higher
chromatic analogs of the J-spectrum.

We did not constrain ourselves to these four themes, and we extended our
scope with talks on other subjects as well. David Benson explained stratification
in modular representation theory and how equivariant homotopy theory allowed
the extension to compact Lie groups. Steffen Sagave gave an account of elegant
foundations of the theory of Thom spectra and its applications to topological
Hochschild homology. Akhil Mathew described the use of ∞-categorical founda-
tions for powerful applications in several areas described by other speakers. Our
speakers came from every career stage, including a graduate student (Mathew)
giving an hour talk.

On Wednesday morning we also had a session of shorter talks. We found this
way for the newer members of our community to introduce themselves not only
quick but also remarkably effective. A list for the speakers in this part of the
program is at the end of the report.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Robert Bruner in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Factorization homology from higher categories

David Ayala

(joint work with John Francis and Nick Rozenblyum)

Abstract: We construct a pairing, which we call factorization homology, between
framed manifolds and higher categories. The essential geometric notion is that of a
vari-framing of a stratified manifold, which is a framing on each stratum together
with a coherent system of compatibilities of framings along links of strata. Our
main result constructs labeling systems on disk-stratified vari-framed n-manifolds
from (∞, n)-categories. These (∞, n)-categories, in contrast with the literature
to date, are not required to have adjoints. The core calculation supporting this
result is a homotopy equivalence between the space of conically smooth diffeomor-
phisms of a disk-stratified manifold and its space of vari-framings. This allows the
following conceptual definition: the factorization homology

∫

M

C

of a framed n-manifoldM with coefficients in an (∞, n)-category C is the classifying
space of C-labeled disk-stratifications overM . This is spiritually similar to the Blob
homology of Morrison and Walker [MW].

The factorization homology of a framed n-manifold M with coefficients in C
should be

∫

M

C ≈
∣

∣

∣
C-labeled disk-stratifications of M

∣

∣

∣
,

the classifying space of a category, an object of which consists of a coherent system
of:

• a stratification of M , each closed component of which is a k-disk;
• a k-morphism of C for k-dimensional component of the stratification ofM .

There are several important classes of morphisms.

(1) refinements/compositions: a stratum is refined away, forgotten, and
the labels are composed.

(2) creations/units: a new stratum is created, labeled by identity mor-
phisms.

(3) coherence: a stratification is moved via diffeomorphism to another strat-
ification.

This template for making factorization is, however, afflicted by the absence of
any known model for (∞, n)-categories which can define such a system of labels.
Most models for (∞, n)-categories are constructed in terms of presheaves on a
combinatorially defined category, such as Θn or the n-fold product ∆n, and none
of these are manifestly suitable for decorating a disk-stratification.
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We solve this issue in our setting in three steps. In the first step, we construct
an∞-category of labeling systems for stratifications on framed n-manifolds. In the
second step, we show that (∞, n)-categories embeds fully faithfully into labeling
systems. In the third step, we define factorization homology with coefficients in
the specified labeling systems. We elaborate on these steps below.

First step: In our antecedent work on striation sheaves [AFR], we constructed
an ∞-category cBun whose objects are compact conically smooth stratified spaces
and whose morphisms include refinements and stratum-creating maps, exactly as
in points (1) and (2) above. Now, starting from cBun, we restrict to the ∞-
subcategory cDisk ⊂ cBun of objects which are disk-stratified, as above. We
then introduce the notion of a variform framing – for short, vari-framing – on
a stratified space. A vari-framing consists of a framing on each stratum together
with compatibilities between these framings in links of strata. From this, we define
cDiskvfrn as the collection of compact disk-stratified manifolds of dimension less or
equal to n and equipped with a vari-framing. Lastly, the ∞-category of labeling
systems is

Fun(cDiskvfrn ,Spaces) ,
space-valued functors on vari-framed compact disk-stratified n-manifolds.

Second step: We use Rezk’s presentation [Re2] of the ∞-category of (∞, n)-
categories Cat(∞,n) as a full ∞-subcategory of PShv(Θn), presheaves on Joyal’s
category Θn of [Jo2]. We construct a cellular realization

Θop
n −→ cDiskvfrn

from Joyal’s category. We prove that this is fully faithful, which is the essential
technical result of this paper. The core calculation underlying this fully faithfulness
is a natural homotopy equivalence

Diff(Dk) ≃ vfr(Dk)

between the space of conically smooth diffeomorphisms of a hemispherically strat-
ified k-disk and the space of vari-framings of the k-disk. The lefthand side is a
manner of pseudoisotopy space, so this result can be interpreted as a cancellation
between pseudoisotopies and vari-framings.

Third step: Lastly, we left Kan extend from cDiskvfrn to cMfdvfrn . That is,
factorization homology is the composite

∫

: Cat(∞,n) −→ Fun(cDiskvfrn ,Spaces) −→ Fun(cMfdvfrn ,Spaces)

where the first functor is the fully faithful embedding of the second step, and
the second functor is left Kan extension along the inclusion cDiskvfrn ⊂ cMfdvfrn .
Equivalently, the factorization homology

∫

M

C
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is the classifying space of the Grothendieck construction of the composite functor

cDiskvfrn/M −→ cDiskvfrn
C−→ Spaces

where the functor C is the right Kan extension of C : Θop
n → Spaces along the

cellular realization functor Θop
n → cDiskvfrn .

We now state the main result of the present work.

Theorem. There is a fully faithful embedding of (∞, n)-categories into space-
valued functors of vari-framed n-manifolds

∫

: Cat(∞,n) →֒ Fun(cMfdvfrn ,Spaces)

in which the value
∫

Dk C is the space of k-morphisms in C, where Dk is the hemi-
spherically stratified k-disk.

In later work, we will apply this higher codimension form of factorization ho-
mology to construct topological quantum field theories.
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The Chromatic Splitting Conjecture at n = p = 2

Agnès Beaudry

Understanding the homotopy groups of the sphere spectrum S is one of the great
challenges of homotopy theory. The ring π∗S is extremely complex; there is no
hope of computing it completely. However, it carries an amazing amount of struc-
ture. A famous theorem of Hopkins and Ravenel states that, for a fixed prime p,
the p-local sphere spectrum S(p) is filtered by “simpler” spectra called the chro-
matic layers. The n’th chromatic layer LnS is the Bousfield localization of the
sphere spectrum at the wedge K(0)∨ . . .∨K(n), where K(m) is the m’th Morava
K-theory. The chromatic convergence theorem of Hopkins and Ravenel [8, §8.6]
states that

S(p) ≃ holimn{. . .→ LnS → Ln−1S → . . .→ L0S}.



740 Oberwolfach Report 14/2015

How the chromatic layers glue together is mysterious. It is the subject of the
chromatic splitting conjecture. There is a homotopy pull back square

Fn // LnS //

��

LK(n)S

��

Fn // Ln−1S // Ln−1LK(n)S,

where Fn ≃ F (Ln−1S,LnS) denotes the common fiber. The spectrum LnS is thus
built by gluing the spectra Ln−1S and LK(n)S along Ln−1LK(n)S. The chromatic
splitting conjecture is a statement about how these pieces fit together. More
precisely, it stipulates that the map Ln−1S → Ln−1LK(n)S is the inclusion of a
wedge summand, so that

Ln−1LK(n)S ≃ Ln−1S ∨ ΣFn.(1)

Further, it gives an explicit description of the homotopy type of ΣFn as a wedge of
suspensions of various copies of the lower chromatic layers Ln−kS for 0 < k ≤ n.
For example, when n = 2, the decomposition predicted by the conjecture implies
that

L1LK(2)S ≃ L1S ∨ L1S
−1 ∨ L0S

−3 ∨ L0S
−4.(2)

A more general formulation of the conjecture can be found in [7, Conjecture 4.2].
The chromatic splitting conjecture is due to Hopkins. When n = 1, it holds at

all primes, a fact which follows from computations of Adams and Mahowald. The
conjecture is based on computations of Shimomura and Yabe for p ≥ 5 at chromatic
level n = 2, where it is known to hold in its most general form [3, Remark 7.8].
When n = 2 and p = 3, it was proved by Goerss, Henn and Mahowald in [5].

We have shown recently in [2] that the decomposition (2) does not hold at the
prime p = 2. Indeed, the decomposition ΣF2 above is too small. The broad strokes
of the argument are as follows. Let V (0) be the mod 2 Moore spectrum, that is,
the cofiber of multiplication by 2 on S. Since L0 is rationalization, L0V (0) is
contractible. Therefore, it would follow from (1) and (2) that

L1LK(2)V (0) ≃ L1V (0) ∨ Σ−1L1V (0).

This would imply that πkL1LK(2)V (0) = 0 when k is congruent to 5 modulo 8,
a consequence of Mahowald’s computation of π∗L1V (0). (In fact, this vanishing
can be traced back to the fact that πkKO = 0 in degrees k = 5, 6, 7.) However,
we compute in [2] that π5+8tL1LK(2)V (0) 6= 0.

Computations at chromatic level n = 2 for the prime p = 2 are particularly
difficult. A lot of technology is used to prove that π5+8tL1LK(2)V (0) 6= 0. Our
main tool is the duality resolution at the prime p = 2, which is a finite resolution
of spectra of the form ΣkEhG2 , where E2 is Morava E-theory and G is a finite
subgroup of the Morava stabilizer group G2. The duality resolution methods
were first developed at p = 3 by Goerss, Henn, Mahowald and Rezk in [6]. The
duality resolution framework has been partially adapted at the prime p = 2 in [1]
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and [4]. Computations using the duality resolution are difficult, and only partial
information about the homotopy groups of L1LK(2)V (0) is known.

We note that, even though the decomposition (2) of ΣF2 fails when p = 2,
there is good evidence that the map L1S → L1LK(2)S is the inclusion of a wedge
summand. If this is the case, (1) would hold at n = p = 2. We do not yet have
a conjectured description for ΣF2. One expects that the fact that the K(1)-local
Picard group Pic(L1) contains exotic elements at p = 2 will enter the picture.

On the bright side, the decomposition analogous to (2) for n > 2 (see [7,
Conjecture 4.2(v)]) is still expected to hold when p is large with respect to n.
Giving a plausible description of the homotopy type of ΣFn at “bad” primes p
with respect to n is an open problem. We have hope that there is a systematic
description of ΣFn, even if it must be more complicated than the description
originally proposed.
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The derived category of cochains on the classifying space of a compact
Lie group

David Benson

Let G be a compact Lie group and k a field of characteristic p (possibly p = 0).
The goal of this talk is to describe the classification of localising subcategories of
the derived category D(C∗(BG)) of cochains C∗(BG) = C∗(BG; k) in terms of
the prime ideal spectrum of the cohomology ring H∗(BG). This theorem is joint
work with John Greenlees [1], and uses the machinery developed in joint work
with Srikanth Iyengar and Henning Krause [2, 3, 4], building on the work of Mike
Hopkins [5] and Amnon Neeman [6].

If X is a space, we write C∗(X) = C∗(X ; k) for the function spectrum from X
to the Eilenberg–MacLane spectrum of k. This is a commutative ring spectrum,
so its derived category D(C∗(X)) is a tensor triangulated category. The tensor
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structure comes from the derived tensor product, which we denote A ⊗C∗(X) B,
and the derived homs HomC∗(X)(A,B) give the function objects. The category
D(C∗(X)) is compactly generated by the tensor identity C∗(X), and so every
localising subcategory is “tensor ideal.”

The model for classification of localising subcategories is the case of the stable
module category StMod (kG) of a finite group G over k. In this case, not every
localising subcategory is tensor ideal, but it makes sense to limit ourselves to
classification of those that are. In that case, the theorem of [4] states that there
is a natural one to one correspondence between these and sets of non-maximal
homogeneous prime ideals in the cohomology ring H∗(G, k). This correspondence
is described by the theory of support.

Theorem (Benson–Greenlees [1]). The theory of support gives a natural one to
one correspondence between the localising subcategories of D(C∗(BG)) and sets of
homogeneous prime ideals in H∗(BG).

Let us write SpecR for the spectrum of homogeneous prime ideals in a graded
ring R. Then SpecH∗(BG) was explicitly described by Quillen [7, 8]. The Quillen
stratification theorem states that the natural map

lim
→

E∈Ap(G)

SpecH∗(BE) → SpecH∗(BG)

is a bijection (but not an isomorphism at the level of schemes) where Ap(G) is
the category whose objects are the elementary abelian subgroups E ∼= (Z/p)r (or
(S1)r if p = 0) and whose arrows are given by conjugation followed by inclusion
inside G.

Next, we need to discuss restriction and induction. If H is a closed subgroup of
G then we have a restriction homomorphism resG,H : C∗(BG) → C∗(BH), which
gives rise to a restriction map also denoted resG,H : H∗(BG) → H∗(BH), and a
functor

res∗G,H : D(C∗(BH)) → D(C∗(BG)).

This has a left adjoint

indG,H : D(C∗(BG)) → D(C∗(BH))

given by the tensor product C∗(BH)⊗C∗(BG) − and a right adjoint

coindG,H : D(C∗(BG)) → D(C∗(BH))

given by HomC∗(BG)(C
∗(BH),−). These are related by a Wirthmüller isomor-

phism
coindG,H(M) ∼= ΣdindG,H(M)

where d = dim(G/H), provided that the action of H on the tangent space to the
identity eH ∈ G/H by conjugation preserves orientation (or k has characteristic
two). Without this condition, there is still an isomorphism, but with a twist. We
mention that one consequence of this isomorphism is that (with the same mild
condition on G and H) the Hochschild homology and cohomology are related by

HH∗(C∗(BG)) ∼= HH∗+dimG(C
∗(BG)).



Homotopy Theory 743

Note that the right hand side may be computed viaHH∗(C
∗(BG)) ∼= H−∗(ΛBG

∧

p ),
the cohomology of the free loop space on the p-completion of BG.

Our classification of localising subcategories goes via a Chouinard style theorem.
Recall that in the representation theory of finite groups, Chouinard’s theorem says
that a module is projective if and only if its restriction to every elementary abelian
subgroup is projective. Our analogue is the following theorem.

Theorem. If M is an object in D(C∗(BG)), and indG,E(M) ≃ 0 for every E ∈
Ap(G) then M ≃ 0. Similarly, if coindG,E(M) ≃ 0 for every E ∈ Ap(G) then
M ≃ 0.

Our proof is quite different from Chouinard’s, and can be translated into a
proof of Chouinard’s original theorem that avoids the use of Serre’s theorem on
products of Bocksteins.

We remark that in the case where G is a finite p-group, there is an equivalence
of categories

D(C∗(BG)) ≃ KInj (kG),

where the right hand side is the homotopy category of complexes of injective (=
projective) kG-modules. Moreover, there is a recollement

StMod (kG) // KInj (kG) //
oo
oo

D(kG)oo
oo

This allows transfer of information between the stable module category of an
elementary abelian p-group E and D(C∗(BE)). So our version of Chouinard’s
theorem, together with Quillen stratification and information about StMod (kE)
(or rather KInj (kE)) from [4] is the raw input for proving the main theorem. This
raw input is fed into the stratification machinery developed in [2, 3], and we now
describe the basic setup for that machinery.

Let T be a triangulated category with a set of compact generators and having
small coproducts. Write T c for the compact objects in T . Denote by Z(T ) the
graded centre of T , namely in degree n it consists of the natural transformations
η : Id → Σn (where Σ is the shift in T ) such that ηΣ = (−1)nΣη. We assume that
T comes with a Noetherian graded ring R and a map R → Z(T ). Write Spec(R)
for the set of homogeneous prime ideals of R, with the Zariski topology. A subset
U of Spec(R) is said to be specialisation closed if p ∈ U , q ⊇ p imply q ∈ U . If U
is specialisation closed, we set

TU = {X ∈ T | Hom∗
T (C,X)p = 0 ∀C ∈ T c, p 6∈ U}.

This is a localising subcategory of T , and there is a localisation functor LU : T → T
and a natural triangle

ΓUX → X → LUX

such that ΓUX is in TU , and LUX = 0 if and only if X is in TU .
Given p ∈ Spec(R), choose specialisation closed subsets U and V such that

V = U ∪ {p} and p 6∈ U . Then ΓpX is defined to be ΓVLUX = LUΓVX , and this
is independent of the choice of U and V . The support of an object X in T is then
defined to be

supp(X) = {p ∈ Spec(X) | ΓpX 6= 0}.
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The local-global principle says that for X in T , the localising subcategory gen-
erated by X is equal to the localising subcategory generated by the set of ΓpX
with p ∈ Spec(R). We do not know whether the local-global principal holds in
general, but we do know that it holds provided R has finite Krull dimension, which
is enough for our purposes. Provided that the local-global principal holds, there
is a one to one correspondence between localising subcategories of T and choices
of a localising subcategory of ΓpT for each p.

We say that T is stratified by R if the local-global principle holds, and each ΓpT
is either zero or a minimal localising subcategory of T . Under these circumstances,
the localising subcategories of T are in one to one correspondence with subsets
of supp(T ) = {p | ΓpT 6= 0}. The main theorem of [1] states that D(C∗(BG)) is
stratified by the action of H∗(BG), with supp(D(C∗(BG))) = SpecH∗(BG).
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Localization sequences in the algebraic K-theory of ring spectra

David Gepner

(joint work with Benjamin Antieau, Tobias Barthel)

The localization sequence in algebraic K-theory has been extensively studied and
provides, along with trace methods, one of the only known techniques for com-
putation of algebraic K-groups. Apart from results on the level of K0, one of
the earliest and most important instances of the localization sequence is due to
Quillen [5]. Namely, if we fix a prime p, and consider the “localization at p” map
Z(p) → Q, then this induces a fiber sequence of K-theory spectra

K(Fp) → K(Z(p)) → K(Q).

It is the identification of the fiber term which is the difficult part of this theorem,
since the fiber of the map on the level of module categories

Mod(Z(p)) → Mod(Q)
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is not Mod(Fp) but rather the full subcategory of Mod(Z(p)) consisting of those
modules on which p acts nilpotently. The fact that K-theory identifies this with
K(Fp) is a consequence of Quillen’s devissage theorem [5], a key result which has
important, but limited, generalizations in the homotopical setting.

The earliest results in this direction are due to Blumberg-Mandell [3], who use
a homotopical version of devissage to construct a localization sequence

K(BP 〈0〉) → K(BP 〈1〉) → K(E(1)).

Here BP 〈n〉 denotes the truncated Brown-Peterson spectrum and E(n) the nth
Johnson-Wilson spectrum; that is,

π∗BP = Z(p)[v1, v2, v3, . . .]

where |vi| = 2(pi − 1),

π∗BP 〈n〉 = π∗BP/(vn+1, vn+2, . . .) ∼= Z(p)[v1, . . . , vn],

and

E(n) ≃ BP 〈n〉[v−1
n ].

Based on this (the n = 1 case) and Quillen’s localization sequence (the n = 0
case), this led Rognes and others to expect a localization sequence

K(BP 〈n− 1〉) → K(BP 〈n〉) → K(E(n))

for all n ≥ 0.
Inspired by work of Lurie [4] on the existence of localizations of ring spectra, the

spectral Morita theory of Schwede-Shipley [6], and a result of Antieau-Gepner [2]
on the existence of compact generators for certain stable∞-categories, we establish
the following result: Let R be a ring spectrum and let f ⊂ π∗R be a homogeneous
element. Then the fiber of the localization map

Mod(R) → Mod(R[f−1])

is generated by a single compact object K ≃ R/f . In particular, the fiber is
equivalent to Mod(A), where A ≃ EndR(K) is the endomorphism algebra of K.
It then follows from the general K-theoretic machinery that we obtain a fiber
sequence of K-theory spectra

K(A) → K(R) → K(R[f−1]).

Specializing to R = BP 〈n〉, f = vn, and A〈n − 1〉 = EndBP 〈n〉(BP 〈n − 1〉), we
obtain a localization sequence

K(A〈n− 1〉) → K(BP 〈n〉) → K(E(n)).

One then hopes that, as in the n = 0 and n = 1 cases, devissage comes to the
rescue in order to obtain a K-equivalence K(A〈n − 1〉) ≃ K(BP 〈n − 1〉), thus
verifying Rognes’ conjecture.
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Unfortunately, this turns out not the case; rather, the map K(BP 〈n〉) →
K(A〈n〉) is not a homotopy equivalence for any n > 0 (at any prime p). Us-
ing the commutative diagram

BGL1(BP 〈n〉) //

��

K(BP 〈n〉) //

��

THH(BP 〈n〉)

��

BGL1(A〈n〉) // K(A〈n〉) // THH(A〈n〉)

and the fact that π∗A〈n〉 ∼= Z(p)[v1, . . . , vn, ǫ] is a square-zero extension of π∗BP 〈n〉
by a class ǫ in degree −2(pn− 1)− 1, and therefore gives (again for n > 0) classes
in π∗BGL1(A〈n〉) which are not in the image of π∗BGL1(BP 〈n〉), it suffices to
show that such a class maps to a class in THH(A〈n〉) which is not in the image
of THH(BP 〈n〉). In fact we only need to compute the rationalization of these
topological Hochschild homology spectra to see this, and rationally, both BP 〈n〉
and A〈n〉 are equivalent to graded symmetric algebras.
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Flavors of Equivariant Commutativity

Michael A. Hill

(joint work with Andrew J. Blumberg and Michael J. Hopkins)

In this talk, I discussed joint work with Blumberg and with Hopkins which con-
tinues the study of what sort of structure Bousfield localization preserves in equi-
variant stable homotopy.

Localizations

Theorem (H.-Hopkins, McClure [6]). If R is an equivariant commutative ring
spectrum and E is an arbitrary equivariant spectrum, then LE(R) need not be
commutative.
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The problem is that if Z is an E-acyclic, then we do not know the E-acylicity
of

Symn(Z) = Z∧n/Σn ≃ (Z∧n)hΣn = EGΣn+ ∧Σn Z
∧n,

where EGΣn is the universal space for principal Σn-bundles in G-spaces. In EGΣn,
we have cells of the form

G× Σn/Γ+ ∧Dk,

where Γ = {(h, f(h))|h ∈ H ⊂ G, f : H → Σn}. Understanding what localization
does amounts to understanding

(1) G× Σn/Γ+ ∧Σn Z
∧n,

but this is essentially the norm functor studied in Hill-Hopkins-Ravenel [4].
The subgroup Γ above is the graph of a homomorphism H → Σn. This is

equivalent to an H-set structure T on the set {1, . . . , n}, and Hill-Hopkins-Ravenel
identify the orbit space in Equation 1 as

G× Σn/Γ+ ∧Σn Z
∧n ≃ G+ ∧H NT i∗HZ,

where NT (−) is the indexed smash product over the H-set T . This immediately
gives sufficient (and in fact, necessary) conditions for localization to preserve com-
mutative rings.

Theorem. If for all acyclics Z for a localization L and for all subgroups H, NG
HZ

is acylic, then for all commutative G-ring spectra R, L(R) is a commutative G-ring
spectrum.

This is a condition on the category of acyclics: if it is not just a symmetric
monoidal category, but also one closed under certain norm maps, then the cor-
responding localization preserves commutative ring objects. In other words, the
category of E-acyclics should be a G-symmetric monoidal category. This concept
originated in this work, and it has been greatly expanded by work of Bohmann-
Osorno and of Barwick [2, 1]. The prototype is a symmetric monoidal Mackey
functor (namely a Mackey functor object in symmetric monoidal categories).

The category of modules over an equivariant commutative ring spectrum has
the same structure.

Definition. If R is an equivariant commutative ring spectrum and M is an i∗HR-
module, then let

RN
G
HM = R ∧NG

H i
∗
HR

NG
HM,

where the NG
H i

∗
HR-module action on R is via the counit of the norm-restriction

adjunction.

By choosing an orbit decomposition of any finite G-set, this immediately gives
us a kind of multiplicative tensoring operation with any finite G-set T , and we will
denote that RN

T .

Theorem. If R and E are equivariant commutative ring spectra, then LE(R) is
also an equivariant commutative ring spectrum.
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This follows immediately from the condition on localizations using this internal
norm in R-modules.

N∞ Operads

Since the condition that the category of acyclics be a G-symmetric monoidal sub-
category of G-spectra is a rather harsh one, we can ask what structure is preserved.
We define a weakening of the notion of a G E∞ operad.

Definition. An operad O in G-spaces is an N∞ operad if (1) On is a universal
space for a family of subgroups of G× Σn which all intersect Σn trivially, (2) O1

and O0 are G-equivariantly contractible, and (3) OG
n is contractible for all n.

Ordinary G E∞ operads satisfy this, where for each n, On is the universal space
for the family of all subgroups which intersect Σn trivially. At the other extreme is
the trivial N∞ operad where On is the universal space for the family of subgroups
of G.

As described above, associated to any subgroup Γ of G × Σn which intersects
Σn trivially is a subgroup H of G and an H-set structure T on {1, . . . , n}.

Definition. We say that an H-set T is admissible for an N∞ operad O if the
graph of its defining homomorphism is in the family for O|T |.

The assignment G/H to the full subcategory of finite H-sets spanned by the ad-
missible sets for O gives a symmetric monoidal category valued coefficient system
CO. The fact that O is an operad shows that CO(G/H) is closed under disjoint
unions, products, inductions indexed by elements of itself, and subobjects. The
structure of O shows that it contains all trivial sets. We call a full sub-coefficient
system of the coefficient system of finite sets that satisfies these properties an
indexing system.

Theorem (Blumberg-H.). The symmetric monoidal coefficient system CO deter-
mines O up to homotopy. The functor C− is a full-faithful embedding of the ho-
motopy category of N∞ operads into the poset of all indexing systems.

The prototypes for N∞ operads are the little disks operads D(U) and the linear
isometries operads L(U) built on a G-universe U .

Proposition. A finite G set T is admissible for D(U) iff T equivariantly embeds
into U .

A finite G set T is admissible for L(U) iff R{T }⊗U isometrically embeds into
U , where R{T } is the permutation representation with basis T .

The admissible sets also play a vital role in understanding what operations show
up.

Proposition. If T is an admissible G-set and R is an O-algebra, then there is a
contractible space of maps

NT (R) → R.
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In particular, for T = ∗ ∐ ∗, we have a coherently commutative multiplication
on R, and for T = G/H , we have norm maps like the counit adjunction.

If R is an O-algebra for an N∞ operad O, then we can mirror many of the
earlier constructions.

Theorem. If R is an O-algebra and E is any equivariant spectrum, then LE(R)
is an O-algebra if for every admissible H-set T and for every E-acyclic Z, we have
NT i∗HZ is i∗HE-acyclic.

In particular, for the trivial N∞ operad, the only admissible sets are the sets
with trivial action, and thus localization always preserves this structure.

More excitingly, when O is the linear isometries operad for some universe U ,
then we have a good theory of S-modules in orthogonal spectra.

Theorem. If O = L(U), then there is a symmetric monoidal category of S-
modules built out of L(U) for which the commutative monoids are exactly the
O-algebras. The category of modules over an O-algebra R is therefore symmetric
monoidal and has as many norms as O provided.
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Modular surfaces and chromatic height 3

Tyler Lawson

A monic degree-4 polynomial f(z) with no repeated roots determines an equation

w3 = f(z).

The set of solutions to this is a plane curve, and the closure inside projective space
P2 (which adds one point at ∞) is a smooth curve C of genus 3. Moreover, there is
an action of the third roots of unity on C by (w, z) 7→ (ζw, z). These curves have
isomorphisms between them determined by maps of the form z 7→ z + t.

Being of genus 3, the curve C has a 3-dimensional basis of the space of differential
forms. In this case, they are

dz

w
,
zdz

w2
,
dz

w
.
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There is an induced action of the third roots of unity on these: the first two forms
are acted on by ω 7→ ζ2ω, while the third is acted on by ω 7→ ζω. As a result, the
curve with its action determines a canonical 1-dimensional split summand of its
space of differential forms.

These curves were originally studied by Picard [5], who studied the abelian
integrals

∫

dz
3
√

f(z)
.

Near any point p ∈ C (in particular, the point at ∞) with a coordinate function u,
this differential form has a power series expression ℓ′(u)du, and “integration from
p to u” determines a uniformizing function ℓ to C.

The power series ℓ(u) =
∫

ℓ′(u)du is the logarithm for a 1-dimensional formal
group law G(C). More, if we choose the point p to be the point at infinity, the
coefficients of the formal group law are polynomials in the coefficients of f(z). This
provides a source of algebraic formal group laws, whose heights can vary between
0 and 3.

We can, instead, describe what is happening from the eyes of algebraic geometry.
Each such curve C has a Jacobian variety J(C), which is a 3-dimensional abelian
variety. The action of the third roots of unity on C extend to the Jacobian, where
they factor through an action of the Eisenstein integers Z[ζ]/(ζ2 + ζ + 1) — the
ring of integers in Q(

√
−3). As the Jacobian of a curve, the resulting object has

a canonical structure called a polarization, essentially capturing the intersection
pairing on H1(C;Z). The 1-dimensional formal group law G(C) described is a
canonical split 1-dimensional summand G(J)+ of the formal group law G(J) of
the Jacobian, determined by the action.

In short, this assignment from monic degree-4 polynomials (mod isomorphism)
to formal group laws factors through a moduli of polarized abelian 3-folds with
action of a ring of integers (a PEL Shimura variety).

The significance for homotopy theory is this: in joint work with Behrens [1],
many maps to these moduli were shown to produce functorial E∞ ring spectra
realizing their formal group laws. The necessary conditions are satisfied in this
case when p ≡ 1 mod 3. For such primes, any of the degree-4 polynomials described
above can be brought into the canonical form z4 + a2z

2 + a3z+ a4, whose quartic
discriminant ∆ is assumed to not vanish.

In this case, we obtain the following result. For primes p ≡ 1 mod 3, there exists
a complex oriented E∞ ring spectrum with graded coefficient ring Z[a2, a3, a4,
∆−1]∧p , where |ai| = 6i, whose formal group law is that determined by the above
assignment. (This cohomology theory, without the ring structure, could also have
been constructed using the Landweber exact functor theorem.) The resulting
cohomology theory bears a formal similarity to the cohomology theories eop−1

studied by Gorbunov–Mahowald [2].
However, this result is not optimal. It turns out that, while the curve C degen-

erates to a singular curve when ∆ = 0, the associated Jacobian J(C) is perfectly
well-behaved unless f(z) has triple roots; this corresponds to the degeneration of
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the curve C to a singular stable curve obtained by joining a string of curves of
genus 1 or genus 2 at points. This allows us to extend to a larger moduli of stable
curves, capturing a larger portion of the Shimura variety.

In this next case, we obtain the following more refined result. For primes
p ≡ 1 mod 3, there exists a complex oriented E∞ ring spectrum whose coefficient
ring is a square-zero extension of Zp[a2, a3, a4], and whose formal group law is the
same. (The resulting spectrum does not come from the Landweber exact functor
theorem.)

Unfortunately, in this case the square-zero portion is the module

Z[a2, a3, a4]/((a
2
2 + 12a4)

∞, (27a32 + 8a23)
∞)∧p

which introduces a great deal of noise into both positive and negative degrees,
making computations less practical. This, in some sense, is a consequence of the
fact that the moduli of “degree-4 polynomials without triple roots” is not compact.

However, the situation is very closely similar to that with the ordinary moduli of
elliptic curves, where there is a compactification allowing elliptic curves to become
degenerate objects. There exist several compactifications of these PEL Shimura
varieties, and it seems likely that the methods of [3] might extend to this context.
This represents ongoing research.

If so, we would obtain the following. For primes p ≡ 1 mod 3, there would
exist a complex oriented E∞ ring spectrum whose coefficient ring is a square-
zero extension of Zp[a2, a3, a4] by Z[a2, a3, a4]/(a

∞
2 , a

∞
3 , a

∞
4 )∧p . In particular, the

“noise” would be concentrated in negative degrees, and the resulting spectrum
would admit a well-behaved connective cover with coefficient ring Zp[a2, a3, a4].

This geometric moduli of curves is the first example of a Picard modular surface,
classifying abelian 3-folds with a certain type of action of a ring of integers, which
have played an important role as examples in the Langlands program [4]. It
is special among the Picard modular surfaces: most of them don’t have such a
compact description because of the difficulty in describing abelian 3-folds with
explicit equations, and it does not yet appear to be easy to describe such 3-folds
with action as the Jacobians of curves.

However, even in the absence of such concrete models there are still tools to
get at calculations. These surfaces, complex-analytically, are quotients of the ball
D4 in C2 by explicit groups; the Arthur trace formula gives a concrete expression
for the dimensions of cohomology groups; and there is an abundance of special
algebraic points with extra symmetry which can serve to help identify appropriate
rational and integral points. Our ongoing program is to understand what con-
structions in homotopy theory are made possible by these and employ them to
illustrate calculations at chromatic height 3.
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K-theory of group algebras and topological cyclic homology

Wolfgang Lück

(joint work with Holger Reich, John Rognes, Marco Varisco)

We prove that the Farrell-Jones assembly map for connective algebraic K-theory
is rationally injective, under mild homological finiteness conditions on the group
and assuming that a weak version of the Leopoldt-Schneider conjecture holds for
cyclotomic fields. This generalizes a result of Bökstedt, Hsiang and Madsen [7],
and leads to a concrete description of a large direct summand of Kn(ZG) ⊗Z Q

in terms of group homology. Since the number theoretic assumption holds in low
dimensions, this also computes a large direct summand of Wh(G) ⊗Z Q. The
proof uses the cyclotomic trace to topological cyclic homology, the functor C due
to Bökstedt-Hsiang-Madsen, new general injectivity results about the assembly
maps for THH and C and equivariant Chern characters.

The Farrell-Jones Conjecture for a group G and an associative ring with unit
R predicts that a certain assembly map

EGVCYC ∧Or(G) KR → K(RG)

is a weak equivalence, where K refers to non-connective algebraicK-theory. There
is also an L-theory version. The original version is due to Farrell-Jones [9, 1.6 on
page 257]. The Farrell-Jones Conjecture has many applications, for instance, it
implies the famous Novikov Conjectures about the homotopy invariance of higher
signatures and the Borel Conjecture about the topological rigidity of aspherical
manifolds in dimensions greater or equal to five. For a survey about it and its
applications we refer for instance to [4, 10, 15, 16].

There is a more general version with coefficients in additive categories and with
finite wreath products which allows to consider twisted group rings and orientation
characters in L-theory. This general version has nice inheritance properties. In
the recent years there was tremendous progress in enlarging the class of groups
for which this general version is known, it contains hyperbolic groups, CAT(0)-
groups, arithmetic groups, lattices in virtually connected locally compact second
countable Hausdorff groups, fundamental groups of (not necessarily compact) 3-
manifolds (possibly with boundary). See for instance [1, 2, 3, 5, 12, 20].

In this paper we will not be able to consider this general version, we have to
restrict our attention to the ring R = Z and to K-theory. Notice, however, that all
the papers above treat groups with a flavor of being non-negatively curved and the
proofs are rather geometric using controlled topology and flows. We will achieve
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results which do only need some homotopy theoretical finiteness conditions (be-
sides the number theoretic assumptions) and the methods of proof are completely
different. We will cover prominent groups such as mapping class groups, Out(Fn)
and Thompson groups for which nothing was known beforehand.

Here is our main technical result which we, for simplicity, do not state in its
most general form:

Theorem. Let G be a group. Assume that the following two conditions hold:

• For every finite cyclic subgroup C ⊆ G and natural number s the integral
group homology Hs(BZGC;Z) of the centralizer of C in G is a finitely
generated abelian group.

• For every finite cyclic subgroup C ⊆ G and natural number t the natural
homomorphism

Kt(Z[µ|C|])⊗Z Q →
∏

p prime

Kt

(

Zp ⊗Z Z[µ|C|];Zp

)

⊗Z Q

is injective, where µ|C| is the primitive |C|-th roots of unity.

Then the restriction of the rationalized Farrell-Jones assembly map
⊕

(C)

⊕

s+t=n

Hs(BZGC;Q)⊗Q[WGC] ΘC

(

Kt(Z[C]) ⊗Z Q

)

→ Kn(Z[G]) ⊗Z Q

to the summands for t ≥ 0 is injective for all n ≥ 0. Here (C) runs through
the conjugacy classes of finite cyclic subgroups of G, ΘC is an idempotent in the
rationalized Burnside ring A(C)⊗Z Q which operates on Kt(Z[C])⊗Z Q thanks to
the Mackey structure, and WGC := NGC/ZGC for NGC the normalizer of C in
G.

The Farrell-Jones Conjecture implies that the rationalized Farrell-Jones assem-
bly map is bijective.

The following two corollaries illustrate the generality of our main result:

Corollary. Let G be a group. Assume that for every finite cyclic subgroup C
of G the abelian groups H1(BZGC;Z) and H2(BZGC;Z) are finitely generated.
Then the map

colimH⊆G,|H|<∞ Wh(H)⊗Z Q → Wh(G)⊗Z Q

is injective.

Corollary. Let G be a group. Assume that there is a cocompact model for the
classifying space of proper actions. Then there is a natural number N depending
on its dimension and the order of the finite cyclic subgroups of G such that the
K-theoretic assembly map induces for all n ≥ N an injection

⊕

(C)

⊕

s+t=n

Hs(BZGC;Q)⊗Q[WGC] ΘC

(

Kt(Z[C]) ⊗Z Q

)

→ Kn(Z[G]) ⊗Z Q
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For more information about topological cyclic homology we refer for instance
to [8]. More information about the Conjectures due to Leopoldt and Schneider can
be found in [19]. A survey on classifying spaces is given in [14]. Equivariant Chern
characters are discussed in [13]. Basic input for the proofs of the Main Theorem
comes also from [6, 11, 17, 18].
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[5] A. Bartels, W. Lück, H. Reich, and H. Rüping. K- and L-theory of group rings over GLn(Z).

Publ. Math., Inst. Hautes Étud. Sci., 119:97–125, 2014.
[6] A. J. Blumberg. Continuous functors as a model for the equivariant stable homotopy cate-

gory. Algebr. Geom. Topol., 6:2257–2295, 2006.
[7] M. Bökstedt, W. C. Hsiang, and I. Madsen. The cyclotomic trace and algebraic K-theory

of spaces. Invent. Math., 111(3):465–539, 1993.
[8] B. I. Dundas, T. G. Goodwillie, and R. McCarthy. The local structure of algebraic K-theory,

volume 18 of Algebra and Applications. Springer-Verlag London Ltd., London, 2013.
[9] F. T. Farrell and L. E. Jones. Isomorphism conjectures in algebraic K-theory. J. Amer.

Math. Soc., 6(2):249–297, 1993.
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[19] P. Schneider. Über gewisse Galoiscohomologiegruppen. Math. Z., 168(2):181–205, 1979.
[20] C. Wegner. The Farrell-Jones conjecture for virtually solvable groups. Preprint,

arXiv:1308.2432 [math.GT], 2013.



Homotopy Theory 755

Descent and nilpotence in stable homotopy theory

Akhil Mathew

Let A be a commutative ring, and let B be a commutative A-algebra. Suppose B
is faithfully flat over A. In this case, the classical theory of faithfully flat descent
enables one to describe an A-module as a B-module (its base-change) together
with an extra piece of structure known as a descent datum.

Recall this construction. If M is an A-module, then B⊗AM is a B-module N .
However, N has an additional structure: the two-base changes of N to B ⊗A B
are canonically isomorphic. That is, there is an isomorphism of B ⊗A B-modules

φ : N ⊗A B ≃ B ⊗A N,
because both are base-changes (to B⊗AB) of the A-moduleM . In addition, φ sat-
isfies a natural cocycle condition, which states that the two natural isomorphisms
that φ determines from N⊗AB⊗AB to B⊗AB⊗AN (in B⊗AB⊗AB-modules)
are equal.

We say that a descent datum on a B-module N is an isomorphism φ as above
which satisfies the cocycle condition. Then the theory of faithfully flat descent,
due to Grothendieck, states that there is an equivalence between the category of
A-modules and the category of B-modules equipped with a descent datum.

Suppose now that A → B is a morphism of E∞-ring spectra. One wishes to
study module spectra over A and B, and to set up an analogous theory of descent
in suitable situations. The above definition of a descent datum is not suited to
homotopy theory, where higher coherences will naturally be required. The theory
of ∞-categories enables one to solve these problems. It is possible to define a
homotopy coherent version of the category (now an ∞-category) of descent data.

Definition (Lurie). The ∞-category of descent data is given by a totalization

DescA→B = Tot
(

Mod(B) ⇒ Mod(B ⊗A B)
→
→
→
. . .

)

.

The cosimplicial diagram of module ∞-categories arises from the cosimplicial E∞-
ring

B ⇒ B ⊗A B
→
→
→
. . . ,

which is the classical cobar construction (e.g., which arises in the Adams spectral
sequence).

When one takes A and B to be discrete rings and one takes discrete modules,
the above totalization recovers the classical category of B-modules with descent
data. As in the classical setting, one has a natural functor

Mod(A) → DescA→B,

and the basic descent question asks when this functor is an equivalence.

Definition (Lurie). The morphism A → B of E∞-ring spectra is said to be
faithfully flat if:

(1) π0(A) → π0(B) is a faithfully flat morphism of commutative rings.
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(2) The map π∗(A) ⊗π0(A) π0(B) → π∗(B) is an isomorphism.

In this case, one has the following derived version of faithfully flat descent.

Theorem (Lurie). Suppose A → B is a faithfully flat morphism of E∞-rings.
Then the natural functor Mod(A) → DescA→B is an equivalence of symmetric
monoidal ∞-categories.

The purpose of this circle of ideas is to use descent-theoretic statements such
as the above to study rings and modules in stable homotopy theory, and more
generally in a symmetric monoidal ∞-category.

However, faithfully flat descent has a certain shortcoming here. Let A be an
E∞-ring and let M be an A-module. Then π∗(M) is a graded π∗(A)-module,
and it holds significant (though partial) information about M : if N is another
A-module, then there is a spectral sequence

Exts,tπ∗(A)(π∗(M), π∗(N)) =⇒ πt−s(HomA(M,N)).

It is clear that if π∗(A) is homologically simpler (e.g., has finite homological di-
mension) then that will make the above spectral sequence easier to calculate with.
More generally, one should expect that the theory of A-modules will be more “alge-
braic” if π∗(A) is homologically simpler. However, many of the E∞-rings that one
hopes to work with (e.g., KO,TMF ) have quite complicated homotopy rings and,
furthermore, homological “complications” on π∗ will be inherited by any faithfully
flat extension of ring spectra. Instead, one wants a type of descent that works for
morphisms of ring spectra that are not necessarily faithfully flat.

Definition. Let (C,⊗,1) be a symmetric monoidal, stable ∞-category and let
R ∈ CAlg(C) be a commutative algebra object. Let I = fib(1 → R) be the
fiber of the unit map. We say that R is descendable if the map I → 1 is smash
nilpotent, i.e., if there exists n such that I⊗n → 1 is nullhomotopic. If A→ B is a
morphism of E∞-ring spectra, we say that it is descendable if B ∈ CAlg(Mod(A))
is descendable.

The above definition is by no means new; it dates back in various forms to
Bousfield, and has been explored by many authors, for instance recently by Balmer
[1]. Our main result is an ∞-categorical descent theorem in this setting.

Theorem. If R ∈ CAlg(C) is descendable, then we have an equivalence of sym-

metric monoidal ∞-categories C ≃ Tot
(

ModC(R) ⇒ ModC(R ⊗R)
→
→
→
. . .

)

.

It turns out that there are numerous examples of descendable morphisms of
E∞-rings which are far from faithfully flat. For instance:

• The map LnS
0 → En is descendable by the Hopkins-Ravenel smash prod-

uct theorem.
• Any faithful Galois extension of E∞-rings in the sense of Rognes is de-
scendable. Given a faithful Galois extension A → B, one obtains an
equivalence of symmetric monoidal ∞-categories Mod(A) ≃ Mod(B)hG,
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which has been previously observed by Gepner, Lawson, and Meier and
probably others.

• If G is a finite group, then the map kBG → ∏

A⊂G k
BA, as A ranges over

the elementary abelian p-subgroups of G, is descendable.

Suppose given a descendable morphism A → B of E∞-ring spectra, where
π∗(B) is simpler homologically than π∗(A). A basic example of this occurs from the
complexification map KO → KU , which is actually a faithful C2-Galois extension.
The decompositions given by descent theorems actually offer a practical tool for
calculating certain invariants of A-modules, when combined with techniques (such
as the Bousfield-Kan spectral sequence) for manipulating large totalizations.

An example of these techniques is found in the calculations of Picard groups
using descent-theoretic methods, in joint work with V. Stojanoska. Suppose A→
B is a faithful G-Galois extension of E∞-rings, so that we have an equivalence
Mod(A) ≃ Mod(B)hG. As a result, one obtains that the Picard spectrum pic(A)
(whose π0 records the Picard group of A) is obtained, up to connective covers, as

pic(A) ≃ τ≥0pic(B)hG.

If π∗(B) is homologically simple, so that one can compute the Picard group of B
directly, this yields an often practical technique for computing the Picard group
of A. Using these and similar techniques, one can obtain:

Theorem (M.-Stojanoska; Hopkins). The Picard group of integral TMF is cyclic,
given by Z/576 generated by the suspension. The Picard group of Tmf is Z⊕Z/24.

There are also “coarser” invariants of ring spectra that one can study using
these constructions, such as the thick subcategories of perfect modules and the
Galois group. We refer to [3] and [4] for some instances of this.
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Descent and nilpotence in equivariant stable homotopy theory

Niko Naumann

(joint work with Akhil Mathew, Justin Noel)

We report on joint work in progress with A. Mathew (Berkeley) and J. Noel (Re-
gensburg) which puts into a general context classical results like Quillen’s Theorem
on the mod p cohomology of finite groups and certain results from the character
theory of Hopkins-Kuhn-Ravenel.

Fix a finite group G and a family F of subgroups of G. The key notion is the
following.

Definition. The thick tensor ideal FNil ⊆ SpG of the category of (genuine) G-
Spectra generated by {G/H+}H∈F is called the subcategory of F -nilpotent spectra.

Our first result provides various characterizations of these F -nilpotent spectra.

Theorem. For M ∈ SpG, the following are equivalent:

i) We have M ∈ FNil.
ii) For every subgroup K ⊆ G not in F , there is an n ≥ 0 such that

enρ̃K ∧ResGK(M) ≡ ∗,

where eρ̃K denotes the Euler class of the reduced regular representation of
K.

iii) The canonical map M → limH∈F M
G/H+ is an equivalence, and for every

X ∈ SpG, the resulting holim spectral sequence

Es,t2 = lim
H∈F

s πGt (F (X,M
G/H+)) ⇒ πGt−s(F (X,M)) ≃M s−t

G (X)

has a horizontal vanishing line at a finite page, uniformly in X.

Item ii) is what generates all our examples while item iii) is what reproduces
results like Quillen’s Theorem mentioned above.

We gave a list of examples and applications in the spirit of those classical results.
We ended the talk by explaining how these ideas, when coupled with the recent
solution by the authors of May’s nilpotence conjecture, leads to the following result
generalizing previous work of Thomason.

Theorem. Assume G is a finite group and A→ B is a G-Galois extension in the
sense of Rognes satisfying 1 ∈ im(K0(B)⊗Q → K0(A)⊗Q). Then the canonical
map of K-theory spectra K(A) → K(B)hG is an Ln-equivalence for all primes and
all n ≥ 0.
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The Universal Property of Global Spectra and Elliptic Cohomology

Thomas Nikolaus

(joint work with David Gepner)

The talk was about an ongoing research project together with David Gepner.
The main goal of this project is to understand variants of elliptic cohomology as
equivariant cohomology theories. It turns out that for this purpose it is important
to understand global spectra in the sense of Schwede [4] from another angle. To
sketch the idea let us start by looking at ordinary cohomology theories differently.
We define that a twisted cohomology theory E on spaces consists of

• abelian groups EV (X) for every vector bundle V → X with metric;

• morphisms f∗ : EV (Y ) → Ef
∗V (X) for every morphism f : X → Y ;

• morphisms g∗ : EV (X) → EW (X) for every affine morphism V → W of
vector bundles over X ;

satisfiying a list of axioms. For such a cohomology theory E and vector bundles
V,W → X we set

EV−W (X) := ker
(

Ep
∗V (SW )

s∗→ EV (X)
)

where SW is the fibrewise one point compactification, p : SW → X the projection
and s : X → SW the section at ‘infinity’. Then the most important axiom states
that a certain canonical morphism EV (X) → EV⊕W−W (X) is an isomorphism.
An example of such a twisted cohomology theory on spaces is given for every spec-
trum E by setting EV (X) = E0(X−V ) = π0 map(X−V , E) where X−V is the
Thom spectrum of the virtual bundle −V over X . For many examples of coho-
mology theories one can give more geometric descriptions of the groups EV (X),
for example for K-theory or bordism theories.

Proposition. Every twisted cohomology theory on (finite) spaces is represented
by a spectrum. There are canonical Gysin maps

p! : E
TM/N⊕p∗V (M) → EV (N)

for p :M → N a smooth, proper submersion.

We now want to generalize this description to the equivariant setting. There-
fore we replace spaces by stacks. In this context a stack is just a contravariant
(pseudo)functor from the category of topological spaces to the (2-)category of
groupoids, which satisfies descent. Examples include the stack BG of G-bundles
and quotient stacks [X/G] for a G-space X . Stacks posses an interesting homo-
topy theory first studied by Gepner-Henriques [1] which generalizes equivariant
homotopy theory. The main result of [1] is that the homotopy theory of stacks
is equivalent to the homotopy theory of Orbispaces SOrb. An Orbispace is a
space-valued presheaves on the global orbit category Orb which is a topologically
enriched category whose objects are BG for G a compact Lie group.

There is a notion of vector bundles V → X for stacks and every such vector
bundle has a fibrewise one point compactification SV → X . Then a cohomology
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theory on stacks is defined exactly as a twisted cohomology theory for spaces, i.e.
we have groups EV(X ) for every vector bundle V over a stack X together with
the respective functorialities and the same axioms. Geometric examples of such
cohomology theories can for example be obtained for K-theory.

We define a topologically enriched category Orbrep whose objects are pairs con-
sisting of a compact Lie group G and an orthogonal G-representation V . Then the
category of pre-Orbispectra is defined to be the category of space valued presheaves
on Orbrep. Among these pre-Orbispectra there are those which satisfy the ana-
logue of being an Ω-spectrum, and these we call Orbispectra. The homotopy
theory of Orbispectra can now be represented by a Quillen model category SpOrb

or alternatively as a presentable ∞-category. For every stack X together with a
vector bundle V → X there is a certain Thom-Orbispectrum X−V . Thus every
Orbispectrum E gives us a cohomology theory for stacks by setting

EV(X) := π0 mapSpOrb(X−V , E)

Theorem (Gepner, N.). (1) Every cohomology theory on (finite) stacks is
represented by an Orbispectrum.

(2) There are canonical Gysin morphisms for p : M → N a representable,
smooth proper submersion of stacks

p! : E
TM/N⊕p∗V (M) → EV (N)

(3) The Picard group of Orbispectra (i.e. the objects which admit a tensor
inverse) is given by Z represented by the ordinary sphere spectra.

Theorem (Hausmann, N.). The model category SpOrb of Orbispectra is Quillen
equivalent to Schwede’s global spectra, i.e. orthogonal spectra with the global model
structure.

This shows that Schwede’s global spectra model cohomology theories on stacks.
Now the question remains, what the abstract role played by this global stable
homotopy theory is. In other words, which universal property the process which
passes from the homotopy theory of stacks SOrb to the homotopy theory of Or-
bispectra SpOrb enjoys. The fact that the ∞-category of Orbispectra has almost
no tensor invertible elements shows that it can not be described by universally
‘inverting’ spheres as for ordinary spectra. The correct description is that one
has to ‘relatively invert’ spheres of vector bundles V → X . To describe that less
informally we need some definitions. Let C be the ∞-category describing the ho-
motopy theory of stacks (i.e. the ∞-category underlying SOrb) or more generally
any presentable, locally cartesian closed ∞-category. For another presentable ∞-
category D which is tensored over C (such as the ∞-category underlying SpOrb)
and an object X ∈ C we define

D/X := C/X ⊗C D
Here the tensor product is the tensor of presentable ∞-categories introduced by
Lurie [3, Section 4.8.1]. For example if C is the ∞-category of spaces and D is the
∞-category of spectra then D/X is equivalent to the ∞-category of parametrized
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spectra over X . If D is pointed (i.e. has an object which is initial and terminal)
then for every vector bundle V → X we obtain an endofunctor

− ∧ SV : D/X → D/X
induced from the the smash product with SV on (C/X )∗.

Definition. We say that D is C-stable if

(1) D is pointed
(2) For every vector bundle V → X the induced functor

− ∧ SV : D/X → D/X
is an equivalence of ∞-categories.

This notion really depends on the notion of vector bundles in C, or more precisely
on the spherical fibrations associated to vector bundles. One can more generally
define C-stability for a locally cartesian closed ∞-category equipped with a notion
of ‘spherical fibrations’.

Theorem (Gepner, N.). The functor Σ∞
+ : SOrb → SpOrb exhibits the ∞-category

of Orbispectra as the universal SOrb-stable ∞-category obtained from SOrb.

Finally, after we have obtained that universal description of Orbispectra we
can use it to show that variants of equivariant elliptic cohomology as discussed in
the literature fit in our framework. For example the equivariant elliptic cohomol-
ogy discussed by Lurie [2] based on ideas of Gronjowski, Ando and many others.
Therefore let us fix an oriented derived elliptic curve E → S over a derived stack
S. For example if S is given by Spec(R) for an E∞-ringspectrum R then the
datum of E is a highly structured refinement of endowing R with the structure of
an elliptic spectrum. Another important example is where S is the derived stack
of elliptic curves (Mell,Otop) and E the universal elliptic curve (Muniv,Otop).

Theorem (Gepner, N.). There is an Orbispectrum EllE which describes global
equivariant elliptic cohomology for E. The value for S1 is given by global sections
of E and the underlying non-equivariant spectrum by global sections of S.

For example for the universal elliptic curve this gives a global equivariant version
of TMF.
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Proper equivariant stable homotopy and virtual cohomological
dimension

Irakli Patchkoria

Let G be a discrete group unless stated otherwise. We denote by EG a universal
proper G-space, i.e. a universal G-space for the family of finite subgroups of G. It
is characterized up to G-homotopy equivalence by the following properties:

(i) EG admits the structure of a G-CW complex.
(ii) The H-fixed point space (EG)H is contractible if H is a finite subgroup of

G, and empty otherwise.

The existence of EG follows for example from [8]. We say that a G-space X is a
model for EG if X satisfies the conditions (i) and (ii). Any two models for EG
are G-homotopy equivalent.

An important question in geometric group theory is to find the smallest CW-
dimension that a model for EG can have. More formally, one is interested in the
geometric dimension for proper actions of G which is defined as follows:

gd(G) = inf{dim(X) | X is a model for EG}.
In order to be able to compute this number, it is useful to consider a certain

abelian category and do homological algebra inside it. Let OFG denote the orbit
category of G with finite isotropy. The objects of OFG are the cosets G/H with
H finite and morphisms are G-equivariant maps. The category of contravariant
functors from OFG to the category of abelian groups is denoted by Mod-OFG.

The category Mod-OFG is an abelian category with enough projectives. Con-
sider the constant functor Z ∈ Mod-OFG which sends every coset to Z. By
classical homological algebra, the projective dimension of Z in Mod-OFG is equal
to

sup{n ∈ N | ∃M ∈ Mod-OFG : ExtnOFG(Z,M) 6= 0}.
This number is called the Bredon cohomological dimension of G and is denoted by
cd(G). Note that the group ExtnOFG(Z,M) is isomorphic to the Bredon cohomol-
ogy group Hn

G,F(EG,M), hence the name.
The Bredon cohomological dimension is closely related to the geometric dimen-

sion for proper actions.

Theorem (Lück, Meintrup [10]). For any discrete group G, the inequalities hold

cd(G) ≤ gd(G) ≤ max{3, cd(G)}.

Since, gd(G) = 0 if and only if cd(G) = 0 (and if and only if G is finite), and
cd(G) = 1 if and only if gd(G) = 1 by [3], it follows that the invariants cd(G)
and gd(G) coincide, except for the possibility that one could have cd(G) = 2 but
gd(G) = 3. That this exception actually occurs in the torsion setting is shown in

[1].
Another important algebraic invariant which is related to the Bredon cohomo-

logical dimension is the Mackey cohomological dimension of a group. Let BFG
denote the Burnside category (or the dual of the Mackey category as defined in
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[13]). This category is pre-additive. Its objects are all G-sets of the form G/H ,
whereH is finite. We do not give a detailed definition here but point out that there
is an obvious inclusion of categories OFG →֒ BFG and for any inclusion of finite
subgroups H ≤ K, there are transfer maps G/K → G/H in BFG. These satisfy
certain natural relations. Most notably, the Mackey double coset formula holds.
The category of G-Mackey functors MackFG is the category of contravariant addi-
tive functors from BFG to abelian groups (see [13]). It is an abelian category with
enough projectives. Consider the Burnside ring Mackey functor A which assigns
to every coset G/H the Burnside ring A(H). The projective dimension of A in
MackFG is called the Mackey cohomological dimension of G and is denoted by
cdM(G). Again classical homological algebra tells us that the following holds:

cdM(G) = sup{n ∈ N | ∃M ∈ MackFG : ExtnBFG(A,M) 6= 0}.
Now suppose G is virtually torsion free, i.e. there exists a finite index torsion

free subgroup Γ ≤ G. Then the virtual cohomological dimension of G, denoted
by vcd(G), is defined to be the classical cohomological dimension of Γ. This
definition does not depend on the choice of Γ. The virtual cohomological dimension
is an important invariant in geometric group theory. The following theorem by
Mart́ınez-Pérez and Nucinkis relates vcd(G) and cdM(G) [13]:

Theorem (Mart́ınez-Pérez, Nucinkis). If G is virtually torsion free, then

vcd(G) = cdM(G).

The inclusion OFG →֒ BFG induces the induction functor ind: Mod-OFG →
MackFG which is left adjoint to the forgetful functor MackFG → Mod-OFG.
Since the induction functor sends a projective resolution of Z to a projective res-
olution of A [13], it follows that the Bredon cohomological dimension cd(G) is
always greater or equal than the Mackey cohomological dimension cdM(G). Hav-
ing in mind the theorem by Lück and Meintrup, a natural question arises whether
there is any geometric interpretation for cdM(G). In other words, we would like
to have a certain geometrically defined invariant gd

st
(G) which will coincide with

cdM(G) and will be less or equal than the geometric dimension gd(G). By the
theorem of Mart́ınez-Pérez and Nucinkis, defining such a geometric invariant will
also provide a geometric interpretation of the virtual cohomological dimension for
virtually torsion free groups.

For G a finite group, the geometry behind G-Mackey functors is the theory of
genuine G-spectra ([7], [12]). So we need a theory of genuine G-spectra with finite
isotropy, for G an infinite discrete group.

Definition. Let G be a Lie group (for example a discrete group). An orthogonal
G-spectrum is an orthogonal spectrum X together with a continuous G-action.

The category of orthogonal G-spectra is denoted by SpG. For any orthogonal
G-spectrum X and any compact subgroup H ≤ G, one can consider X as an
orthogonal H-spectrum by restricting the G-action to H . Let πHn X denote the
n-th H-equivariant homotopy group of this restricted H-spectrum. A morphism
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f : X → Y of orthogonal G-spectra is called a π∗-isomorphism if πHn (f) : : πHn X →
πHn Y is an isomorphism for any integer n and any compact subgroup H of G. The
following theorem is part of a joint project with D. Degrijse, M. Hausmann, W.
Lück and S. Schwede.

Theorem (joint with D. Degrijse, M. Hausmann, W. Lück and S. Schwede). Let
G be a Lie group.

(i) The monoidal category SpG of orthogonal G-spectra admits a cofibrantly gen-
erated stable monoidal model structure with π∗-isomorphisms as weak equiv-
alences.

(ii) The triangulated homotopy category Ho(SpG) is compactly generated by the
set of compact generators {Σ∞

+G/H : H ≤ G, H compact}. The object

Σ∞
+ G/H corepresents πH∗ (−).

(iii) If G is discrete and H,K are finite subgroups of G, then [Σ∞
+G/H,Σ

∞
+ G/K]G∗

is isomorphic to the direct sum
⊕

g∈H\G/K

πH∩gK
∗ (S)

over H-K double cosets, where πH∩gK
∗ (S) are classical equivariant stems

for finite groups. In particular, the Burnside category BFG fully faithfully
embeds into the homotopy category Ho(SpG).

Here Σ∞ is the suspension spectrum functor from the category of pointed G-
spaces to orthogonal G-spectra and [−,−]G∗ stands for the graded abelian group
of maps in Ho(SpG). We are in particular interested in the trivial G-spectrum
S = Σ∞S0. This spectrum is not cofibrant in general and its cofibrant replacement
in our model structure is for example Σ∞

+ EG.
Note that if G is finite, then our stable model structure is Quillen equivalent

to the one from [12]. Note also that the paper [4] constructs a stable model
structure on the category of orthogonal G-spectra via an abstract Bousfield lo-
calization procedure. It is different from ours but Quillen equivalent and has the
π∗-isomorphisms as weak equivalences. We have a better control over the stable
fibrations and in particular, the stably fibrant objects in our model structure are
the obviously defined G-Ω-spectra. Note that [4] does not develop any further
theory.

Next, we say that a discrete group G has enough bundle representations if
the following condition holds: For every finite subgroup H of G and every finite
dimensional H-representation V there exists a G-vector bundle ξ over EG such
that for some (hence any) H-fixed point x ∈ (EG)H the representation V is
isomorphic to an H-subrepresentation of ξx. By a theorem of Lück and Oliver
[11], a discrete group has enough bundle representations if it has bounded torsion.

Proposition (joint with D. Degrijse, M. Hausmann, W. Lück and S. Schwede).
Let G be a discrete group with enough bundle representations and X a proper
finite G-CW complex. Then [Σ∞

+X, S]
G
n is isomorphic to Lück’s equivariant stable

cohomotopy π−n
G (X) defined in [9].



Homotopy Theory 765

In the joint work with D. Degrijse, M. Hausmann, W. Lück and S. Schwede
we also show existence of Eilenberg-MacLane spectra for G-Mackey functors and
prove that these represent Bredon cohomologies.

Now we go back to our original question of a geometric interpretation of the
Mackey cohomological dimension and hence of the virtual cohomological dimen-
sion. Let G be a discrete group. We define a stable decomposition of S in Ho(SpG)
to be a homotopy colimit presentation

S ≃ hocolimnX
n,

where Xn = ∗ if n < 0 and such that one has distinguished triangles in Ho(SpG)

Xn−1 → Xn →
∨

i∈In

ΣnΣ∞
+ G/Hi → ΣXn−1

with Hi finite for all i ∈ In. The smallest number n, for which Xl−1 → Xl

is an isomorphism in Ho(SpG) for all l ≥ n + 1 is called the dimension of the
decomposition. A priori this dimension can be infinite. The stable geometric
dimension for proper actions of G, denoted by gd

st
(G), is by definition the smallest

number m such that there exists an m-dimensional stable decomposition of S.
Again gd

st
(G) can be infinite.

Any model X for EG provides a stable decomposition for S by applying the
suspension spectrum functor. The dimension of this decomposition is clearly less
or equal than the CW-dimension of X . Hence, we have gd

st
(G) ≤ gd(G). This

inequality can be sharp as illustrated in the example below. In fact, the difference
gd(G)− gd

st
(G) can be arbitrarily large.

The following theorem which is joint with N. Bárcenas and D. Degrijse answers
the question of a geometric interpretation of the virtual cohomological dimension:

Theorem (joint with N. Bárcenas and D. Degrijse). Let G be a discrete group.
Then

gd
st
(G) = cdM(G).

In particular, if G is virtually torsion free, then

gd
st
(G) = vcd(G).

Example. Let A5 be the alternating group on 5 elements. Let L denote a 2-
dimensional acyclic simplicial flag complex constructed by Floyd and Richardson
with an admissible simplicial A5-action and without a global fixed point (see [5],
[1]). The 1-skeleton of L is a finite graph whose vertex set is denoted by S and
whose set of edges is denoted by E(L). The right angled Coxeter group WL asso-
ciated to L is the group defined by the presentation

WL = 〈S | s2 for all s ∈ S and [s, t] if (s, t) ∈ E(L)〉.
The action of A5 on L induces an action of A5 on WL and hence we can form
a semi-direct product Γ = WL ⋊ A5. Using the Davis complex of WL one can
see that gd(Γ) = 3 [1]. A recent result by Leary and Petrosyan [6] shows that

cd(G) = 3. On the other hand, it follows from standard results on Coxeter groups
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(see [2]) that cdM(Γ) = vcd(Γ) = 2. Hence gd
st
(Γ) = 2. In the joint work

with N. Bárcenas and D. Degrijse we construct an explicit two dimensional stable
decompostion of S in Ho(SpΓ). Note that there are nontrivial stable attaching
maps in this decomposition which do not exist unstably.
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Higher topological Hochschild homology of rings of integers in number
fields

Birgit Richter

(joint work with Bjørn Dundas, Ayelet Lindenstrauss)

For any strictly commutative ring spectrum A and for any simplicial set X one can
define the simplicial commutative ring spectrum A⊗X as (A⊗X)n =

∧

x∈Xn
A.

Similarly, if M is an A-module spectrum and X is a pointed simplicial set, we
define (M,A)⊗X by placingM at the basepoint of X and A at all other simplices
of X . Important examples of this construction are
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• topological Hochschild homology of A with coefficients in M , THH (A,M),
given by (M,A)⊗ S1,

• higher topological Hochschild homology of order n of A with coefficients in
M ,

THH [n](A,M) = (M,A)⊗ Sn, n ≥ 1, and

• torus homology where we tensor with (S1)n = Tn.

Ordinary topological Hochschild homology is the target of a trace map from
algebraic K-theory. This trace map factors via topological cyclic homology, TC ,
and the latter is often a very good approximation of algebraic K-theory.

If we consider iterated algebraic K-theory, then we can use an iteration of the
trace map and obtain torus homology as the natural target of such a trace map.
Using the standard cell structure of an n-dimensional torus gives us a method of
calculating torus homology from higher topological Hochschild homology.

An important class of examples are rings of integers in number fields. As a
starting point we consider higher THH of the integers with coefficients in the

residue field Fp, THH
[n](Z,Fp). Bökstedt [2] calculated

THH ∗(Z,Fp) ∼= Fp[x2p]⊗Fp ΛFp(x2p−1).

There is a well-known description of iterated Tor-algebras due to Cartan [4]:
If we start with a polynomial algebra over Fp generated by an element w of even
degree, then we call this algebra B1

Fp
(w). Iteratively, we define

Bn+1
Fp

(w) := Tor
Bn

Fp
(w)

(Fp,Fp)

for all n. The case n = 2 immediately gives

B2
Fp
(w) = Tor

B1
Fp

(w)
(Fp,Fp) ∼= ΛFp(εw)

where the degree of εw is one higher than the degree of w.

B3
Fp
(w) = Tor

B2
Fp

(w)
(Fp,Fp) ∼= ΓFp(̺

0εw)

where the latter denotes a divided power algebra. As the base field is of character-
istic p this algebra splits into a tensor product of truncated polynomial algebras

ΓFp(̺
0εw) ∼=

⊗

k

Fp[̺
kεw]/(̺kεw)p;

here ̺kεw corresponds to the pkth divided power of ̺0εw. For each of the tensor
factors we obtain again a periodic resolution and we get

B4
Fp
(w) = Tor

B3
Fp

(w)
(Fp,Fp) ∼=

⊗

k

ΓFp(ϕ
0̺kεw)⊗ ΛFp(ε̺

kεw).

From here on the iteration process yields terms of a form that already occurred
before.

Theorem (Dundas-Lindenstrauss-R). For all n ≥ 1 and for all primes p:

THH [n]
∗ (Z,Fp) ∼= BnFp

(x2p)⊗Fp B
n+1
Fp

(y2p−2).
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A crucial ingredient in the proof is the following

Lemma. Let C be a commutative augmented HFp-algebra and assume that there
is an isomorphism of graded commutative Fp-algebras π∗C ∼= ΛFp(x) where |x| =
m > 0. Then there is a zigzag of equivalences of commutative augmented HFp-
algebras between C and HFp ∨ ΣmHFp.

This Lemma was suggested by Mike Mandell. Our proof uses a Postnikov
argument in the world of commutative HFp-algebras. With the help of this result
we can split off the bottom Postnikov piece of THH (Z,Fp) and obtain an iterated

homotopy pushout diagram for THH [2](Z,Fp):

THH (Z,Fp) //

��

HFp ∨ Σ2p−1HFp

f

��

// HFp

��

HFp // E // THH [2](Z,Fp)

A Tor-spectral sequence calculation yields that E has the exterior algebra
ΛFp(z2p+1) as π∗(E) and hence we know that E ∼ HFp ∨ Σ2p+1HFp. The map
f factors via the augmentation and unit and this yields with another Tor-spectral
sequence calculation that

π∗THH
[2](Z,Fp) ∼= ΛFp(z2p+1)⊗Fp ΓFp(a2p).

For the iteration of this argument we use that we can express higher THH via an

iterated bar construction. For instance THH [3](Z,Fp) is equivalent to the diagonal
of the bisimplicial commutative augmented HFp-algebra B(HFp, B(HFp, HFp ∨
Σ2p−1HFp, E), HFp) and as the module structure of E over HFp ∨ Σ2p−1HFp
reduces to the HFp-module structure this bar construction splits as a bisimplicial
commutative augmented HFp-algebra into

B(HFp, B(HFp, HFp ∨ Σ2p−1HFp, HFp), HFp) ∧HFp B(HFp, E,HFp)

where E denotes the constant simplicial commutative augmented HFp-algebra on

E. For higher n there is a similar splitting and we get that THH [n+1](Z,Fp) is
equivalent to the diagonal of an n-fold reduced iterated bar construction on HFp∨
Σ2p−1HFp smashed with an (n−1)-fold iterated bar construction on E. The square
zero extensions E andHFp∨Σ2p−1HFp can be modelled as the Eilenberg MacLane
spectra on a simplicial commutative algebra and this allows for a comparison of
the above iterated bar constructions with iterated algebraic bar constructions on
exterior algebras. The homology groups of such bar constructions were determined
in [1] and this gives the proof of Theorem 1.

Let O denote the ring of integers in a number field and let P be a non-trivial
prime ideal in O with residue field O/P = Fq where q = pℓ for some prime p.
Higher THH detects ramification:
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Theorem (Dundas-Lindenstrauss-R). For all n ≥ 1:

THH [n]
∗ (O∧

P ,O/P ) ∼= BnFq
(x)⊗Fq B

n+1
Fq

(y)

where

(i) |x| = 2 and |y| = 0 if A is ramified over Z at P , and
(ii) |x| = 2p and |y| = 2p− 2, if A is unramified over Z at P .

Lindenstrauss and Madsen determined the topological Hochschild homology
groups of rings of integers in [6].

In the unramified case we show that we have an isomorphism

THH [n]
∗ (O∧

P ,O/P ) ∼= THH [n]
∗ (Z∧

p ,Fp)⊗Fp Fq.

This uses the Lindenstrauss-Madsen result and an iterative spectral sequence ar-
gument. In the ramified case the important input is that the first Hochschild
homology group (and therefore also the first THH -group) is isomorphic to Fq.
This fact ensures that the differentials in the Brun spectral sequence [3, p. 30]

THH ∗(O∧
P /P,Tor

O∧
P

∗,∗ (O∧
P /P,O∧

P /P )) ⇒ THH ∗(O∧
P ,O∧

P /P )

have to vanish and we obtain that

THH ∗(O∧
P ,O/P ) ∼= Fq[u]⊗Fq ΛFq(τ)

with |u| = 2 and |τ | = 1. From this point on the argument is the same as in the
case of the rational integers.
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Slices and stable motivic homotopy groups

Oliver Röndigs

(joint work with Markus Spitzweck, Paul Arne Østvær)

In joint work with Markus Spitzweck and Paul Arne Østvær, we study the spec-
tral sequence based on Voevodsky’s slice filtration. This filtration on the stable
homotopy category of P1 = S2,1-spectra over a field F measures the amount of
Gm = S1,1-suspensions or “Tate twists” which are necessary to construct a given
P1-spectrum. More precisely, the localizing subcategory SHeff

F generated by sus-
pension P1-spectra of smooth F -schemes defines the slice filtration:

· · · →֒Σ2,1SHeff
F →֒SHeff

F →֒Σ−2,−1SHeff
F →֒· · · →֒SHF

The associated graded for E ∈ SHF are the slices s∗E.
Work of Levine and Voevodsky shows that the unit maps for the P1-ring spectra

1 (sphere spectrum), MGL (algebraic cobordism), KGL (algebraic K-theory), and
MZ (motivic cohomology) induce an isomorphism on the zeroth slice. Moreover,
also the other slices can be described. In the case of the sphere spectrum, the
higher slices are determined by the E2-page of the topological Adams-Novikov
spectral sequence.

We use this input to obtain information on the first stable motivic homotopy
groups of spheres over fields of characteristic zero, which is compatible with con-
jectures of Asok and Fasel on unstable motivic homotopy groups of punctured
affine spaces. More precisely, we obtain a short exact sequence

0 → KMilnor
−n+2 /24 → πn+1,n1

∧
η → πn+1,nKQn+1,n

in which the last homomorphism (induced by the unit map 1 → KQ for hermitian
K-theory) is surjective for n ≥ −3 (but not always). The proof requires essentially
two ingredients. The first ingredient is a convergence result for the slice spectral
sequence of cellular P1-spectra of finite type. It is based on a comparison of the
slice completion with the η-completion, where η : S1,1 → S0,0 is the first Hopf map.
The second ingredient concerns the identification of the first slice differential in
terms of motivic Steenrod operations, which in turn employs corresponding results
for hermitian K-theory.

Graded units of ring spectra and R-module Thom spectra

Steffen Sagave

(joint work with Samik Basu and Christian Schlichtkrull)

Classically one can form the Thom spectrum associated with a continuous map
f : X → BO to the classifying space of the orthogonal group O =

⋃

n∈NO(n) or
with a continuous map f : X → BF to the classifying space of stable spherical
fibrations. In the language of structured ring spectra, BF may be identified with
BGL1S, the classifying space of the units of the sphere spectrum, and a spectrum
may be viewed as an S-module spectrum. Replacing the sphere spectrum S by
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a general A∞ ring spectrum R, Ando, Blumberg, Gepner, Hopkins, and Rezk [1]
generalized the classical construction of Thom spectra by building R-module Thom
spectra associated with continuous maps f : X → BGL1R. They also provide a
variant of their Thom spectrum functor that respects actions of E∞ operads.

The aim of the present project is to implement an R-module Thom spectrum
functor in the context of symmetric spectra and to define more general R-module
Thom spectra associated with continuous maps to a suitable classifying space of
the graded units of a symmetric ring spectrum R. The graded units GLJ

1 R of a
commutative symmetric ring spectrum R were introduced in [3]. By definition,

GLJ
1 R is a a space-valued symmetric monoidal functor on a certain symmetric

monoidal indexing category J . The diagram GLJ
1 R is built from the loop spaces

Ωn2Rn1
on the levels of the symmetric spectrum R. In contrast to the ordinary

units GLI
1R of R which are indexed by the category of finite sets and injections I,

the graded units GLJ
1 R also detect units of non-zero degree in the graded ring of

homotopy groups π∗(R) of R.

Symmetric R-module Thom spectra. (joint with C. Schlichtkrull) If R is a

commutative symmetric ring spectrum, we define classifying spaces BGLI
1R and

BGLJ
1 R of the units and the graded units. These are E∞ spaces over the Barratt–

Eccles operad. Building on this we define R-module Thom spectrum functors

T : S/BGLI
1R → R-Mod and T : S/BGLJ

1 R → R-Mod

on the categories of spaces augmented over these classifying spaces. These functors
have many desirable properties: They send weak equivalences over the classify-
ing spaces to stable equivalences of R-module spectra, they preserve homotopy
colimits, and they preserve actions of operads augmented over the Barratt–Eccles
operad. In particular, the Thom spectrum associated with a map of topological
monoids inherits an associative R-algebra structure.

The Thom spectrum functor for graded units extends the one for ordinary units:
There is a natural morphism ι : BGLI

1R → BGLJ
1 R such that the restriction of

the Thom spectrum functor for maps to BGLJ
1 R along ι coincides with the one

for maps to BGLI
1R. The map ι turns out to be a 0-connected cover map. The

extra information about the non-zero degree units of π∗(R) in GLJ
1 R is reflected

in BGLJ
1 R by the fact that its monoid of path components is Z/dZ, where d is

the periodicity of R, i.e., d is the smallest positive degree of a unit in π∗(R) if
there exists a unit of positive degree, and zero otherwise. If for example R is
the sphere spectrum, then BGLJ

1 S has the homotopy type of Z × BF and may
be viewed as a classifying space of virtual spherical fibrations. Hence our work
provides a Thom spectrum functor defined on maps that classify virtual spherical
fibrations. Its advantage over a naive extension of the classical Thom spectrum
functor by shifting to the zero component and suspending or desuspending the
resulting spectrum accordingly is that it preserves E∞ structures.
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Topological Hochschild homology of Thom spectra. (joint with S. Basu
and C. Schlichtkrull) Our Thom spectrum functors are set up in a way that al-
lows for an immediate generalization of the main result of Blumberg, Cohen, and
Schlichtkrull [2] to R-based topological Hochschild homology: If f : A→ BGLJ

1 R
is a map of topological monoids with A grouplike and well based, then the R-
based topological Hochschild homology THHR(T (f)) of T (f) is stably equivalent
to the Thom spectrum associated with a certain morphism Lη(Bf). If f is in ad-

dition assumed to be a 3-fold loop map, then THHR(T (f)) is stably equivalent to
T (f) ∧ (BA)+. This provides a new tool for computations of R-based topological
Hochschild homology groups.
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Invertible Tmf-modules

Vesna Stojanoska

(joint work with Akhil Mathew)

This talk is based on the preprint [1].
An E∞-ring spectrum R has an associated symmetric monoidal ∞-category

of modules Mod(R), which in turn has well-behaved invariants of algebraic or
algebro-geometric type. One such invariant is the Picard group Pic(R), i.e. the
group of isomorphism classes of invertible R-modules (and ∧R as its operation).
Employing descent-theoretic techniques in the study of Picard groups naturally
leads to the notion of a Picard spectrum. Namely, the space of invertible objects
in Mod(R) and equivalences between them is a group-like infinite loop space under
the smash product, hence it is the zeroth space of a connective spectrum pic(R).
The zeroth homotopy group π0pic(R) is the Picard group of R, while the higher
homotopy groups are determined by the equivalence Ω pic(R) ≃ gl1(R).

The functor pic from symmetric monoidal ∞-categories to connective spectra
satisfies descent, i.e. commutes with homotopy limits. This can be practically
very useful since

(1) even-periodic ring spectra have algebraic Picard groups, by work of Baker-
Richter [2], and

(2) many ring spectra of interest are built as homotopy limits of even-periodic
ones, for example, as homotopy fixed points or global sections.
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For example, if A→ B is a G-Galois extension of E∞-rings in the sense of Rognes
[3], there is an equivalence pic(A) ≃ τ≥0(pic(B))hG, and an associated homotopy
fixed point spectral sequence

Hs(G, πtpic(B)) ⇒ (pic(B))hG,

whose abutment for t = s is the Picard group of A.
The spectra of topological modular forms do not have non-trivial Galois ex-

tensions integrally, but nonetheless are given as homotopy limits of even-periodic
rings. From the point of view of Picard groups, the most interesting version is
Tmf , the global sections spectrum of the Goerss-Hopkins-Miller sheaf Otop on
the compactified moduli stack Mell of elliptic curves. Descent in this situation
gives a spectral sequence

Es,t2 (pic) =



















Hs(Mell,Z/2), t = 0,

Hs(Mell,O×), t = 1,

Hs(Mell, ω
t−1
2 ), t ≥ 3 odd,

0, else,

whose abutment is πt−sΓ(pic(Otop)). For t = s we get the Picard group of Tmf .
Note that in the range t > 1, this E2(pic)-page coincides with a shift of the E2-page
of the well-known descent spectral sequence

Es,t2 = Hs(Mell, ω
t) ⇒ πt−sTmf.

To effectively work with these spectral sequences, we need tools to understand
the differentials. We develop two such general tools: comparison with the “addi-
tive” descent spectral sequence (i.e. the one before applying the pic functor) in a
range, and a universal formula for the first differential outside of the comparison
range. Specifically, the comparison tool tells us that

2 ≤ r ≤ t− 1 implies ds,tr (pic) = ds,t−1
r .

The universal formula concerns dt(pic) on Et,tt (pic) ∼= Et,t−1
t . If x ∈ Et,t−1

t , let

xpic denote the corresponding element of Et,tt (pic). Then, we show,

dt(pic)(xpic) = (dt(x) + x2)pic.

These tools give us a number of non-zero differentials in the pic-spectral se-
quence, and an upper bound on the Picard groups we are studying. The suspen-
sion ΣR determines a lower bound; namely ΣR always generates a cyclic subgroup
of Pic(R), of order equal to the periodicity of R (which is infinity when R is not
periodic). Sometimes these bounds coincide, but in the case of Tmf they do not,
and we need to work more to show that the upper bound is realized. Namely,
we construct an explicit invertible Tmf -module unequivalent to any suspension of
Tmf , and whose 24-th smash power is a suspension.

Theorem. The Picard groups of KO and TMF are cyclic of order equal to the
respective periodicities, i.e. 8 and 576. By contrast, the Picard group of Tmf is
not cyclic and equals Z⊕ Z/24.
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We hope our methods can be employed in many other examples of interest.
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Higher chromatic Thom spectra for (n − 1)-gerbes, and their
orientations

Craig Westerland

This talk was based upon work of the speaker in [3]. A theorem of Snaith [2]
identifies the K-theory spectrum as the localisation K ≃ Σ∞CP∞

+ [β−1] of the
suspension spectrum of CP∞ at the Bott class. In [3], we extended these results
into the higher-chromatic setting1:

Theorem (W). There is an equivalence of E∞ ring spectra

LK(n)Σ
∞K(Zp, n+ 1)+[ρ

−1
n ] ≃ E

hSG±
n

n .

Here En denotes the (Lubin-Tate) Morava E-theory associated to the Honda
formal group law, SG±

n < Gn is the special Morava stabiliser group, and ρn is a
certain K(n)-local Picard-graded homotopy element which we regard as an ana-
logue of the Bott class. This recovers the p-completion of Snaith’s theorem when
n = 1.

For brevity, we notate the common ring spectra in this theorem as Rn. The
theorem suggests that we may regard Rn as being a cohomology theory analogous
to K-theory, wherein the role of line bundles is played by (n − 1)-gerbes (which
are classified, up to isomorphism, by maps into K(Z, n+ 1)). The purpose of this
talk, then, was to explore several analogues of K-theoretic constructions (Thom
spectra, cannibalistic classes, and the J-homomorphism) in this setting.

The description of Rn as a homotopy fixed point spectrum equips it with a
residual action of Z×

p = Gn/SG
±
n . We regard this as an analogue of Adams

operations. As p is odd, this group is topologically cyclic, with generator ψk; then
there is a fibre sequence

S
η

//Rn
ψk−1

//Rn

1Throughout, we are working at an odd prime, p.
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where S = LK(n)S
0, and η is the unit of the ring spectrum. Examining the units

of these spectra, we construct the diagram whose top row is a cofibre sequence:

gl1 S
gl1 η // gl1Rn

ψk/1 %%❏
❏

❏

❏

❏

❏

❏

❏

❏

// b(S,Rn)
γ

//

c(ψk)

��

Σgl1 S

gl1Rn

Here maps X → B(S,Rn) = Ω∞b(S,Rn) consist of Rn-oriented S-Thom spectra
over X , and γ is the map which forgets the orientation (the set of choices of which
is a GL1Rn-torsor). The map c(ψk) then computes the associated kth cannibalistic
class of such an oriented Thom spectrum.

Theorem (W). The map c(ψk) is an equivalence on connected covers.

We may therefore define a map e : K(Z, n+ 1) → B(S,Rn)>0 uniquely by the
requirement

c(ψk) ◦ e = k−1ψ
k(j − 1)

j − 1
∈ R0

n(K(Z, n+ 1))×

where j : Σ∞K(Z, n+1)+ → Rn is the localisation map in the first theorem. This
is defined in analogy with the cannibalistic class of the tautological line bundle over
CP∞ in the case n = 1. Consequently, for any (n− 1)-gerbe on X with Dixmier-
Douady type characteristic class H ∈ Hn+1(X), we may define an associated Rn
oriented Thom spectrum XH over X by the composite

X
H //K(Z, n+ 1)

e //B(S,Rn)

Alternatively, if E → X is the principal K(Z, n+1)-bundle over X corresponding
to the (n− 1)-gerbe, we may define the Thom spectrum XH as

LK(n)(Σ
∞E+ ∧Σ∞K(Z,n)+ S)

where K(Z, n) acts on S via the composite Ω(γ ◦ e) : K(Z, n) → GL1 S.
We conclude with an analogue of the J-homomorphism in this context. The

standard notion of the (complex) J-homomorphism is the map J : ku→ b(S0, ku)
which carries a complex vector bundle to its associated Thom spectrum with stan-
dard ku-orientation. The analogue in our setting should be a map J from a
connective cover of Rn to b(S,Rn). Further, this should extend the construction
described above; that is, the composite

Σ∞K(Z, n+ 1)+
j

// (Rn)>0
J // b(S,Rn)

should equal e. We have been unable to construct such a function J at this stage.
However, if Rn is replaced by a suitable connective cover of its monochromatisa-
tion, MnRn, constructing such a map is possible, using a result of Ando-Hopkins-
Rezk [1] on the coconnectivity of the “discrepancy spectrum.”

As one defines the complex bordism spectrum as the Thom spectrum associated
to the usual J : BU → B(S0,K), we may in turn define an analogue MXn
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as the Thom spectrum of the monochromatic J-homomorphism in the previous
paragraph.
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Département de Mathématiques
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