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Abstract. Control theory is an interdisciplinary field that is located at the
crossroads of pure and applied mathematics with systems engineering and the
sciences. Recently the control field is facing new challenges motivated by ap-
plication domains that involve networks of systems. Examples are interacting
robots, networks of autonomous cars or the smart grid. In order to address
the new challenges posed by these application disciplines, the special focus of
this workshop has been on the currently very active field of Cyber-Physical
Systems, which forms the underlying basis for many network control applica-
tions. A series of lectures in this workshop was devoted to give an overview
on current theoretical developments in Cyber-Physical Systems, emphasizing
in particular the mathematical aspects of the field. Special focus was on the
dynamics and control of networks of systems, distributed optimization and
formation control, fundamentals of nonlinear interconnected systems, as well
as open problems in control.
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Introduction by the Organisers

Control theory is an interdisciplinary field that is located at the crossroads of pure
and applied mathematics with systems engineering and the sciences. Traditionally,
the interaction with systems engineering and signal processing has been particu-
larly strong. More recently, deep interactions are emerging with new application
areas, such as network sciences, robotics and information technology. The field
therefore covers a wide variety of topics, ranging from fundamental mathematical
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aspects and new control paradigms in the sciences to real world engineering appli-
cations of industrial relevance. In particular, it has deep connections to different
branches of pure and applied mathematics, including e.g. ordinary and partial dif-
ferential equations, operator theory, real and complex analysis, probability theory,
numerical analysis, discrete mathematics and graph theory, as well as algebraic
and differential geometry.

The Oberwolfach workshop “Control Theory: A Mathematical Perspective on
Cyber-Physical Systems” brought together 56 internationally active researchers
from Australia, Austria, Canada, China, Germany, Israel, Italy, Japan, The Nether-
lands, Russia, Sweden, Switzerland, United Kingdom, and the United States, with
both a mathematical and systems engineering background. Cyber-Physical Sys-
tems (CPS) is a new field which offers an enormous potential for applications of
pure and applied mathematics. Thus special focus of this workshop has been on the
interaction between mathematical systems and control theory and cyber-physical
systems. This was enhanced by nine survey lectures on recent developments in
CPS and complemented by an open discussion session on mathematical aspects of
cyber-physical systems. Topics of these lectures included the foundational aspects
of cyber-physical systems, algorithmic aspects of cyber-physical networks, control
of rigid formations, chemical reaction networks, distributed optimization, hybrid
control synthesis for multi-agent systems, distributed randomized algorithms in
social and sensor networks, and data-driven cyber-physical model estimation. To
complement these survey talks by challenging mathematical and systems engineer-
ing topics, a series of lectures was devoted to the control of interconnected systems,
another current research topic that is of very strong interest to the systems engi-
neering community. In all these talks, the interaction of mathematical methods
from nonlinear dynamics and control with those from discrete mathematics (esp.
graph and information theory) played a crucial role. Although several fundamen-
tal mathematical questions in cyber-physical systems are still unanswered or even
unasked, it became evident through the workshop that the appropriate combina-
tion of mathematical tools will be instrumental for further success in this area.

The program comprised more than 20 stimulating talks on the theory and ap-
plications of control theory. The survey talks had a length of 45 minutes with
15 minutes discussion time, while the other special topics lectures were thirty-five
minutes long, with at least 5 minutes discussion time. In addition to these lectures
and the very active discussions throughout the workshop there was an open dis-
cussion session on mathematical aspects of cyber-physical systems and a Tuesday
evening open problem session, in which participants presented six open mathemat-
ical problems in control. On Wednesday evening a small informal meeting took
place on four challenging research topics, with focus on broad mathematical issues
in systems and control theory. On Thursday evening there was poster session with
about ten contributions. This session was very well attended and was a great
success. Snow prevented the traditional Wednesday afternoon walk to St. Ro-
man. Thus the excursion went to Wolfach, where we visited the excellent Museum
on Mathematics and Mineralogy and enjoyed the famous black forest cake in a
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nearby Cafe. As an additional social event, Brian Anderson and Matthias Müller
delighted the workshop participants by a performance of works by Georg Philipp
Telemann and Franz Schubert for violin and piano.

Altogether the workshopmust be seen as a great success, in that many new ideas
and solution approaches have been stimulated for the field of control of cyber-
physical systems. A special feature of this workshop was the close interaction
between mathematicians and engineers that has been very fruitful. Oberwolfach
workshops in the area of control theory have the reputation of being the most
prestigious and worthwhile to attend meetings in this field. This is the reason
why this workshop attracted the leading researchers in the field, that have been
brought together with young promising junior scientists. Many of the participants,
including the senior people, commented that this has been the most interesting and
rewarding scientific event they ever(!) attended. Quite a remarkable statement
from researchers who have witnessed hundredth of conferences and workshops in
their life.

The organizers would like to thank the Mathematical Research Institute, and
especially its great staff, for the opportunity to spend a most fruitful week of sci-
entific interaction there, and for the marvelous atmosphere that is being provided.
This institute is a jewel whose positive influence on mathematics and beyond can-
not be emphasized enough.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Brian D.O. Anderson in the “Simons Visiting Profes-
sors” program at the MFO.
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Abstracts

Multi agent formation operations with restricted sensing

Brian D. O. Anderson

(joint work with Bomin Jiang, Mohammad Deghat, Mengbin Ye, Changbin Yu)

Formations of mobile agents, including unmanned airborne vehicles, may often be
used to localize objects in the environment. Typically, simultaneous measurements
of the target?s range and/or bearing are obtained by the agents in the formation,
and the measurements are then aggregated to determine the object?s location.
There are often optimum formation shapes for target localization, depending on
the sensing technologies. Operating formations this way requires an ability not
just to control and maintain their shape, but also to move the agents in the forma-
tion with a common velocity, thereby maintaining the formation shape. In turn,
this requires the agents to be able to sense the relative position (i.e. range and
direction) of other agents in the formation, or at least other agents in close proxim-
ity, known as neighbors. This talk reviews algorithms for formation shape control,
and for achieving velocity consensus of formation agents; in these algorithms, it
is assumed that each agent has access to the range and bearing (relative posi-
tion) of its neighbors in its own coordinate basis. The talk moves on to consider
how these tasks can be achieved when there is limited sensing, i.e. the formation
agents may be able to sense either the bearing of their neighbors, or the range
of their neighbors, but not the relative position of their neighbors. We show that
by superimposing limited periodic motion on top of the general formation motion,
it becomes possible to dispense with much sensing and still achieve both shape
control and velocity consensus.

References
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The Isomorphism problem for Kinematic Chains

Roger Brockett

Central question: Let the variables xi and yi range over the real line. Given
an ordered set of n-by-n matrices A1, A2, · · ·Am characterize the collection of all
ordered sets B1, B2, · · ·Bm such that

ImeA1x1eA2x2 · · · eAmxm = ImeB1y1eB2y2 · · · eBmym

We will assume that Ai is the basis for a Lie Algebra and in that case the image of
a neighborhood of x = 0 in R

m will be a neighborhood of the identity in the group.
If the Bi are also a basis for the same Lie algebra the image of a neighborhood
of y = 0 will also be a neighborhood of I in the group. Thus the issues are of a
global nature. It is possible to refine this question in a number of ways, adapting
it to problems relating to the study of kinematic chains. We give particular results
applicable to the case where there is, or is not, a diffeomorphism f such that

eA1x1eA2x2 · · · eAmxm = eB1f1(x)eB2f2(x) · · · eBmfm(x)

holds globally. In some cases of interest the matrices A1, A2, · · ·Am do not form
a basis for the Lie algebra but do generate under bracketing a m-dimensional Lie
algebra. In this case the existence of a local diffeomorphism f can be investigated
rather easily. It is the global question that presents the main challenge.

Often kinematic studies consider kinematic chains with both prismatic and
rotary joints but in this talk we only consider kinematic chains with rotary joints.
The configuration of a rotary joint is, of course, necessarily a 2π periodic function
of the angle of rotation. Thus we limit discussion to the case where the functions
eAixi are periodic of period 2π.

Lemma (The adjoint action): Let G be a Lie group and let L be the corre-
sponding Lie algebra. Then for G ∈ G and L ∈ L, GLG−1 ∈ L.

Proof: By definition eǫL ∈ G and so GeǫLG−1 ∈ G but

GeǫLG−1 ≈ G(I + ǫL)G−1 = I + ǫGLG−1

Because I + ǫGLG−1 is the first order approximation to an element of G it follows
that GLG−1 must belong to L.

The basic relationship between a Lie group and its Lie algebra is the fact the the
exponential of an element of the algebra gives an element of the group. The algebra
is a vector space and is therefore incorporates all the ideas of linear algebra such
as the existence of a basis, linear span, etc. The exponential map provides a way
to make use of some form of these ideas at the group level. The following lemma
describes a relationship between canonical coordinates of the first kind, appearing
here on the right, to canonical coordinates of the second kind, appearing here on
the left. It is related to the Cambell- Baker-Hausdorff expansion.
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Lemma: (The quadratic approximation) The product eA1x1eA2x2 · · · eAmxm

can be expressed as

eA1x1eA2x2 · · · eAmxm = e
∑

Aixi +
1

2

∑

i<j

[Ai, Aj ]xixj + η(x)

with η being third order in x.

Proof: Correct to second order we have

Φ(x) = eA1x1 · · · eAmxm ≈ (I +A1x1 +
1

2
A2

1x
2
1) · · · (I +Amxm +

1

2
A2

mx
2
m)

Rearranging terms, we have, correct to second order,

Φ(x) ≈ I +
∑

Aixi +
1

2

∑

i,j

AiAjxixj

By comparison,

e
∑

Aixi = I +
∑

i

Aixi +
1

2





∑

ij

AiAjxixi





2

again correct to second order. Comparing these gives the formula of the lemma.

Theorem: (Standard form) Let {A1, A2, · · · , Am} be a set of real n-by-n ma-
trices belonging to a Lie algebra L and let G be the corresponding matrix Lie
group. Assume that Ti ∈ G. Then there exists Bi ∈ L and TB ∈ G such that

eA1x1T1e
A2x2T2 · · · eAmxmTm = eB1x1eB2xx · · · eBmxmTB

The ordered set {B1, B2, · · · , Bm} and the group element TB are unique provided
that for i = 1, 2, · · ·m− 1 the brackets [Bi, Bi+1] are nonzero.

Proof: The rewriting implied by the idendity

eA1x1T1e
A2x2 · · · eAmxmTm = eA1x1eT1A2T

−1
2 eT1T2A3T

−1
2 T

−1
1 · · ·

shows that it is possible to express the product on the left as a product of exponen-

tials with the factor T̂ = T1T2 · · ·Tmon the right. To address the uniqueness ques-
tion, suppose that there are two such representations, eB1x1eB2xx · · · eBmxmT1 =
eC1x1eC2xx · · · eCmxmT2. Letting all the xi = 0 we see that T1 = T2. Letting all
the xis except xa be zero we see that if eBaxa appears on the left, there must be an
identical C term on the right. The ordering of the exponential factors can be fixed
as follows. Using the assumption [Bi, Bi+1] 6= 0 the quadratic expansion identity
shows that the order must be preserved.

We refer this reduction process as the reduction to exponential form.

Theorem: (Shift theorem) Let {A1, A2, · · · , Am} be a set of real n-by-n ma-
trices. belonging to a Lie algebra L and let G be the corresponding Lie group.
Consider Φ(x) = eA1x1 · · · eAmxm . Then there exists Ψ(x) of the form Ψ(x) =
eB1x1 · · · eBmxm such that

Φ(x+ a) = Ψ(x)Φ(a)
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Moreover, for all i = 1, 2, · · · ,m Bi = GiAiG
−1
i for some Gi ∈ G and, in particular,

Bi = Ai for i = 1 and i = m.

Proof: Expand Φ(x+ a) as

Φ(x+ a) = eA1(x1+a1) · · · eAm(xm+am) = eA1x1eA1a1 · · · eAmxmeAmam

Proceeding with the reduction, described in the proof of the standard form the-
orem, B1 = A1, B2 = eA1a1B2e

−A1a1 , etc. Thus Φ(x + a) can be expressed as
eB1x1 · · · eBmxmΦ(a), as required.

Example: Say m = 4 and observe that if eA1a1eA2a2eA3a3eA4a4 = I then

eA1(x1+a1)eA2(x2+a2)eA3(x3+a3)eA4a(x4+a4) =

eA1x1(eA1a1eA2x2e−A1a1)(eA1a1eA2a2eA3x3e−A2a2e−A1a1)((eA1a1eA2a2eA3a3eA4x4

so that

B1 = A1, B2 = eA1a1A2e
−A1a1 , B3 = eA1a1eA2a2A3e

−A2a2eA1a1 ,

which can also be written as

B1 = A1, B2 = eA1a1A2e
−A1a1 , B3 = e−A4a4A3e

A3a3 , B4 = A4

Definition: We will say that the expressions Φ(x) = eA1x1 · · · eAmxmTA and
Ψ(x) = eB1x1 · · · eBmxmTB are shift equivalent if for some r ∈ Rm the expres-
sion eB1x1 · · · eBmxmTB is the reduced form of Φ(x + r). Clearly this defines an
equivalence relation on expressions of the form eA1x1 · · · eAmxmTA.
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Dynamic coupling design for nonlinear output agreement and
time-varying flow control

Claudio De Persis

(joint work with Mathias Bürger)

We consider a network of dynamical systems defined on a connected, undirected
graph G = (V,E). Each node represents a nonlinear system

(1)
ẋi = fi(xi, ui, wi)
yi = hi(xi, wi), i = 1, 2, . . . , n,

where xi ∈ Rri is the state, and ui, yi ∈ Rp are the input and output, respectively.
Each system (1) is driven by the time-varying signal wi ∈ Rqi , representing, e.g., a
disturbance or reference. We assume that the exogenous signals wi are generated
by systems of the form

ẇi = si(wi), wi(0) ∈ Wi,(2)

where Wi is a compact set. The dynamics of the exosystems (2) satisfy

Assumption 1. The vector field si(wi) satisfies for all wi, w
′
i the inequality

(wi − w′
i)

T (si(wi)− si(w
′
i)) ≤ 0.(3)

Vectorizing the systems above, the overall system

(4)
ẇ = s(w)
ẋ = f(x, u, w)
y = h(x,w)

is obtained, with state space W ×X and X a compact subset of Rr1 × . . .× Rrn .
The control objective is to reach output agreement of all nodes in the network,
independent of the exact representation of the time-varying external signals. We
aim to achieve this control objective by a suitable design of dynamic couplings
between any pair of neighboring nodes, i.e., on any edge of G, a dynamical system
(in the following called “controller”) is placed, taking the form

(5)
ξ̇k = Fk(ξk, vk)
λk = Hk(ξk, vk), k = 1, 2, . . . ,m,

with state ξk ∈ Rlk , input vk ∈ Rp and output λk ∈ Rp. Together, the controllers
(5) give raise to the overall controller

(6)
ξ̇ = F (ξ, v)
λ = H(ξ, v),

where ξ ∈ Ξ, a compact subset of Rl1 × . . . × Rlm . Systems (5) and (6) are
interconnected via the relations

(7) v = −(BT ⊗ Ip)y, u = (B ⊗ Ip)λ,

where B is the (n×m) signed incidence matrix of the graph G.
We are now ready to formally introduce the output agreement problem.



608 Oberwolfach Report 12/2015

Definition 1 (Output Agreement Problem). The output agreement problem is
solvable for the process (4) under the interconnection relations (7) if there exists
controllers (6), such that every solution (w(t), x(t), ξ(t)) originating from W×X ×
Ξ is bounded and satisfies limt→∞ (BT ⊗ Ip) y(t) = 0.

For the problem to be solvable, the following must hold:

Proposition 1. If the output agreement problem is solvable, then, for every w
solution to ẇ = s(w) originating in W, there must exist solutions (xw, uw, ξw)
such that the equations

(8)
ẋw = f(xw, uw, w)
0 = (BT ⊗ Ip)h(x

w , w)

and

(9)
ξ̇w = F (ξw,0)
uw = (B ⊗ Ip)H(ξw,0).

are satisfied.

In the most general form, the existence of a feedforward controller (9) is equiv-
alent to the constraint that there exist an integer d and maps τ : W → Rd,
φ : Rd → Rd and ψ : Rd → Rmp satisfying

∂τ

∂w
s(w) = φ(τ(w))

λwp + λw0 = ψ(τ(w)), λw0 ∈ N
(

B ⊗ Ip
)

.
(10)

To design a controller that decomposes into controllers on the edges of G, we
introduce a vector ηk ∈ Rd for each edge k = 1, . . . ,m, and denote with ψk the
entries of the vector valued function ψ corresponding to the edge k. Each edge is
now assigned a controller of the form

(11) η̇k = φ(ηk), λk = ψk(ηk), k = 1, 2, . . . ,m.

With the stacked vector η = [ηT1 , . . . , η
T
m]T , and vector valued functions φ̄(η) =

[φ(η1)
T , . . . , φ(ηm)T ]T , ψ̄(η) = [ψ1(η1)

T , . . . , ψm(ηm)T ]T , the overall controller
(11) is η̇ = φ̄(η), λ = ψ̄(η).
We can now introduce the following result which characterizes sufficient conditions
for the solvability of the output agreement problem.

Theorem 1. Consider the network G with dynamics on the nodes (4). Suppose
all exosystems satisfy (3), the regulator equations (8) hold, and all node dynamics
are incrementally passive. Consider the controllers

(12)
η̇ = φ̄(η, v)
λ = ψ̄(η) + ν

where φ̄ and ψ̄ are the stacked functions of φk(ηk, vk) and ψk(ηk), and ν is an
additional input to be designed. Suppose the controllers have the internal model
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property and are incrementally passive when ν = 01. Then, the controller (12)
with the interconnection structure (7) and ν := v = −(BT ⊗ Ip)y solves the output
agreement problem, that is every solution starting from W×X ×Ξ is bounded and
limt→+∞(BT ⊗ Ip)y(t) = 0.

This result has a number of important implications in problems of optimal
time-varying flow control ([1]), possibly in the presence of constraints ([2]), and
in problems of optimal frequency regulation in power networks with time-varying
voltages ([3]).
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Formal methods based planning and control of distributed hybrid
systems

Dimos V. Dimarogonas

(joint work with Jana Tumova, Meng Guo, Dimitris Boskos)

Current control applications necessitate in many cases the consideration of systems
with multiple interconnected components. These components/agents may need to
fulfill high-level tasks at a discrete planning layer and also coupled constraints at
the continuous control layer. Towards this end, the need for combined decentral-
ized control at the continuous layer and planning at the discrete layer becomes
apparent. While there are approaches that handle the problem in a top-down
centralized manner, decentralized bottom-up approaches have not been pursued
to the same extent. We present here some of our initial results for the prob-
lem of combined, hybrid control and task planning from high-level specifications
for multi-agent systems in a bottom-up manner. In the first part, we consider a
purely discrete setup where agents are assigned individual tasks in the form of Lin-
ear Temporal Logic (LTL) formulas. These are enriched with coupled constraints
in the second part where a combined decentralized continuous control and task
planning strategy is presented. In the last part we present some initial results on
extending the necessary notion of abstractions to multi-agent systems.

The first part of the talk involves the introduction of an efficient, iterative
limited horizon planning technique in the context of bottom-up control strategy
synthesis for multi-agent systems from local LTL specifications. To our best knowl-
edge, such an approach has not been taken to address the distributed multi-agent

1For a definition of incrementally passive systems and of the internal model property, we refer
the interested reader to [1].
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planning problem and its extreme computational demands before. In our solu-
tion, we repetitively build a finite discrete plan fragment, i.e., several next steps
to be taken and services to be provided by the individual agents, using ideas
from automata-based verification. We discuss the correctness of the solution and
find assumptions, under which the proposed iterative algorithm leads to provable
eventual satisfaction of the desired specifications. The solution was designed un-
der the assumption that the agents synchronize after every discrete step, however
we show that it is enough to synchronize and recompute the finite plan fragments
only upon certain events. This allows the agents to execute their finite plans to
a large extent independently, in an asynchronous manner. As a result, although
each agent follows its finite plan, the real collective team behavior might deviate
from the planned one due to different time durations of agents’ discrete steps. Our
algorithm is adaptive in that sense that even if the real behavior of the team is
not as planned, the event-based synchronization and replanning still guarantees
the satisfaction of all the missions. This feature can be especially beneficial in
heterogeneous multi-robot motion and task planning problems, where individual
robots traverse their common environment at different speeds.

We next tackle the multi-agent control problem under local LTL tasks from
the bottom-up perspective under continuous-time constraints. Even though the
local tasks are assumed here to be mutually independent, the agents within a
multi-agent group are often more than a collection of stand-alone systems. In-
stead, they are subject to dynamic constraints with their neighboring agents and
in such a case, integration of the continuous motion control with the high-level
discrete network structure control is essential. Particularly, the agents are sub-
ject to relative-distance constraints that need to be satisfied at all times, which is
closely related to the connectivity of the multi-agent network in robotic tasks. In
particular, maintaining this connectivity is of great importance for the stability,
safety and integrity of the overall team. Very often the connectivity of underlying
interaction graphs is imposed by assumption rather than treated as an extra con-
trol objective. By adding this coupling constraint in our formulation, the team of
agents becomes competitive as each agent has to satisfy its local task and at the
same time cooperative as they have to maintain the relative distance within the
team. We propose a fully decentralized and communication-free solution that is
applicable, e.g., to low-cost robotic systems equipped with range and angle sensors,
but without communication capabilities. This solution consists of four ingredients:
an initial discrete plan synthesis algorithm, a decentralized potential-field-based
motion controller with two different control modes, a switching strategy between
these two control laws and finally a real-time plan adaptation algorithm. Three
different cases are considered where the agents have their local task specifications
given as syntactically only co-safe or general LTL formulas, or a mix of these two.

The last part of the talk focuses on distributed abstractions of the multi-agent
system. In particular, in order to accomplish high-level plans, we need to specify
a finite abstraction of our original system, namely a system that preserves some
properties of interest of the initial system, while ignoring detail. In our framework,
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we are interested in multi-agent systems and assume that the agents’ dynamics
consist of feedback interconnection terms, which ensure that certain system prop-
erties as for instance connectivity or (and) invariance are preserved, and free input
terms, which provide the ability for motion planning under the coupled constraints.
Towards this goal, we aim at quantifying admissible space-time discretizations of
our system’s behaviour which enable us to capture reachability properties of the
original system. In these first results we provide sufficient conditions which estab-
lish that the abstraction of our original system is well posed. The latter implies
that the finite transition system which serves as an abstract model of the multi-
agent system has at least one outgoing transition for each discrete state.
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From Algorithms to Architectures in Cyber-Physical Networks

Magnus Egerstedt

Cyber-physical systems (CPS) are, at their core, characterized by fundamentally
different models of computation. On the physical side, the Laws of Physics apply,
i.e., differential equations describe the dynamics of the systems. On the cyber
side, discrete models dictate the evolution of the computations. The result is a
hybrid dynamic system, and, by now, a rich body of work exists for characterizing,
modeling, designing, and analyzing such systems, thus providing a general model
for CPS. (For a representative sample, see [5, 10] and references therein.)

However, one aspect of CPS that has not yet received the same systematic
treatment is the fact that such systems are oftentimes interconnected, e.g., as
is the case in power grids, precision agriculture infrastructure, smart building
controls, and mobile sensor and communication networks, just to name a few,
[1, 4, 8]. There certainly is a vast literature on networked systems in terms of
coordinated controls, e.g., [3, 7, 9], but an explicit focus on what the cyber and
what the physical aspects of such networks entail has been somewhat absent. The
purpose of this paper is to highlight one key feature of such networks, where
physical interconnections between physical nodes have to co-exist with an overlaid
computational, information-exchange network, thus creating a network (or really
a network of networks) that also must be characterized by different computational
models. We call such networks Cyber-Physical Networks, or CPN, and this short
paper is to be understood as a small step towards a general theory of CPN, as



612 Oberwolfach Report 12/2015

opposed to a complete treatment of the subject; such a treatment does not yet
exist.

A CPN is comprised of (at least) two interacting networks, GP and GC , where
GP = VP × EP , with VP being the set of physical nodes, and EP ⊆ VP × VP
encodes the existence of physical couplings between the nodes. The cyber-part of
the network, GC = VC × EC , encodes the information flow among computational
nodes, i.e., the edges in this graph denotes communication channels between cyber
agents – as opposed to dynamical coupling terms. The way these two networks
come together to form a CPN, GCP , is through the coupling between cyber-nodes
and physical nodes. And, there are two distinctly different ways in which these two
types of nodes can interact, namely through sensing and actuation. As such, we
define two more edge sets, Ẽa ⊆ VC ×VP and Ẽs ⊆ VP ×VC , where the subscripts
denote sensing and actuation, respectively. The interpretation is that cyber-node
i can influence (directly) physical node j if and only if (i, j) ∈ Ẽa, while it can

sense physical node j if and only if (j, i) ∈ Ẽs. The resulting CPN is obtained
through the union of these constituent components, i.e.,

GCP = (VP ∪ VC , EP ∪EC ∪ Ẽa ∪ Ẽs).

Now, associate a state xi, i = 1, . . . , NP , (|VP | = NP ), with each physical
node and use xP = [x1, . . . , xNP

]T to denote the aggregate. Moreover, let uj , j =
1, . . . , NC , (|VC | = NC), be a decision variable/control signal associated with the
cyber nodes, the physical constraints can be written on the form

ẋ = F (x, u), G(x, u) = 0.

But, the differential coupling constraints must respect the sparsity pattern of the
underlying network, since they encode pairwise dynamic couplings, and we denote
this physical sparsity pattern by

F ∈ sparseP (GCP ),

which means that the phsyical nodes can only “affect” each other directly if they
form an edge in EP , while the decision variables can only “affect” the physical node
states if they form an edge in Ẽa. Examples of such couplings are the Kuramoto
coupled oscillator models [6] or the Bergen-Hill power exchange model [2], just to
name a few.

This CPN model captures the ways in which a physical network interacts with
a cyber-network through actuators and sensors. The dynamic coupling constraints
as well as the physical interaction network are typically given a priori since the
Laws of Physics are what they are, and the design task is to construct effective ways
of controlling and coordinating such networks, i.e., design the cyber part. But,
one can easily include other, more architectural questions, and what this means
is really that we have only begun to scratch the surface of CPN, and significant
work remains to be done in order to fully harness their expected utilities.
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The Beurling-Lax theorem and the control of networks of linear
systems

Paul A. Fuhrmann

The purpose of this paper is to outline a, seemingly new, approach to a wide va-
riety of optimal control problems for linear, causal, time-invariant systems. This
approach has the advantages of not being restricted to finite-dimensional systems,
and has extensions to optimization problems for various classes of transfer func-
tions, including positive real and bounded real functions. The technique used is
based on translation semigroups and their Fourier transforms, invariant subspaces,
intertwining maps and realizations based on model operators. In the rational case,
the Beurling-Lax theorem is used to derive state space formulas based on solutions
to various Riccati equations. It is a pleasure to acknowledge that the circle of ideas
exposed here owes much to cooperations with R. Ober, of which [7] is but one ex-
ample, and one with U. Helmke, culminating in [6].

The setting in which we work is as follows: For the input and output function
spaces, we take the Hilbert spaces L2(−∞,∞;Cm) and L2(−∞,∞;Cp) respec-
tively. The space of past inputs is L2(−∞, 0;Cm) while the space of future outputs
is L2(0,∞;Cp). Denote by P−, P+ the orthogonal projection of L2(−∞,∞;Cm)
onto L2(−∞, 0;Cm) and L2(0,∞;Cm) respectively. The external description of
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our system is given by the input/output map Φ : L2(−∞,∞;Cm) −→
L2(−∞,∞;Cp) is given by the convolution integral

y(t) = (Φ(u))(t) =

∫ t

−∞

K(t− τ)u(τ)dτ, t ≥ 0.

Causality is expressed by having K(t) = 0 for t < 0 or, equivalently, by
ΦL2(0,∞;Cm) ⊂ L2(0,∞;Cp). The p × m matrix function K(t), which we as-
sume to be in L1(−∞,∞)p×m, is called the impulse response of the system. The
restricted input/output map φ : L2(−∞, 0;Cm) −→ L2(0,∞;Cp) is given by

y(t) = (K ∗ u)(t) =
∫ 0

−∞

K(t− τ)u(τ)dτ, t ≥ 0.

In L2(−∞,∞;Cm), we have the unitary group {U(t)}∞−∞ acting as (U(t)f)(x) =
f(x − t). We refer to U(t) as the left translation group. The adjoint of U(t) is
given by the right translation group (U(t)∗f)(x) = f(x+ t). The orthogonal direct
sum decomposition L2(−∞,∞;Cm) = L2(0,∞;Cm)⊕L2(−∞, 0;Cm)) transforms
into L2(iR) = H2

−⊕H2
+, where H

2
± are the Hardy spaces of the left and right half

planes. There are two ways of looking at these Hardy spaces. We can think of
H2

+ as the space of analytic functions in the open left half plane equipped with

the norm ‖f‖2 = supx>0

∫∞

−∞
‖f(x + it)‖2dt, or as the subspace of L2(iR;Cp) of

non-tangential boundary values, which, by a theorem of Fatou, exist a.e. on the
imaginary axis. Similarly for H2

−. The analytic representation of elements of H2
+

are given by

F̂ (s) =
1√
2π

∫ ∞

−∞

f(t)e−stdt, ℜs > 0.

The translation group transforms, under the Fourier-Plancherel transform, into

(U(t)f̂)(iω) = eiωtf̂(iω). Since F(K ∗u)(s) = G(s)u(s), where G(s) =
∫

∞

0
K(t)e−stdt

∈ H∞, the input/output map transforms into the map Φ : L2(iR,Cm) −→
L2(iR,Cp), given by Φf = Gf , for f ∈ L2(iR,Cm), whereas the restricted
input/output map is given, in the frequency domain, by the Hankel operator
HG : H2

+ −→ H2
−, defined, for f ∈ H2

+, by HGf = P+Gf . Using Hardy space
analogs of polynomial techniques, described and developed in [6], opens up the
possibility of addressing control problems of networks of a class of infinite dimen-
sional systems whose transfer functions are strictly noncyclic analytic functions.
Functions of this class are ”close” to rational functions and can be characterized by
the Hankel operators induced by them having ”large” kernels and ”small” range,
all these in a sense that can be made precise. This class of functions was studied
in [2] in the scalar case and was extended in [3] to the multivariable case. Strictly
noncyclic analytic functions can also be characterized by having special coprime
factorizations over H∞

+ of the form

(1) G(s) = Nr(s)Mr(s)
−1 =Mℓ(s)

−1Nℓ(s),

where Mr(s),Mℓ(s) ∈ H∞
+ are square inner functions. There are two notions of

coprimeness we can use. Weak left coprimeness of Mℓ(s), Nℓ(s) is defined by the
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nonexistence of a nontrivial, common left inner factor, whereas strong left co-
primeness ofMℓ(s), Nℓ(s) is defined by the existence of Vr(s), Ur(s) ∈ H∞

+ solving
the Bezout equationMℓ(s)Vr(s)+Nℓ(s)Ur(s) = I. Similarly for right coprimeness.

Note that, by the assumption of causality, the kernel of the restricted I/O map
is invariant under the translation semigroup {U(t)}∞0 , restricted to L2(0,∞). In
frequency domain terms, this means that KerHG is invariant under multiplication
by all est, t ≥ 0, hence invariant under multiplication by all H∞

+ functions. Such
invariant subspaces have been characterized in [1] in the discrete time case and in
[8] for the continuous-time case. The Beurling-Lax theorem states that a subspace
of full range V ⊂ (H2

+)
m is H∞

+ -invariant and only if it hs a representation V =
MH2

+, whereM(s) ∈ H∞
+ is an inner function, that is it is analytic and contractive

in the right half-plane and its nontangential limiting boundary values are unitary
a.e., i.e., M(iω)∗ = M(iω)−1. Assuming weak coprimeness, the factorizations (1)
are equivalent to

(2)

{

KerHG =MrH
2
+

ImHG = H−(M
∗
ℓ ) = H2

− ⊖M∗
ℓH

2
−,

with the invariant subspacesMrH
2
+ and M∗

ℓH
2
− having full range. However, if the

factorizations (1) are strongly coprime, then the second equality in (2) is replaced
by the stronger statement ImHG = H−(M

∗
ℓ ) = H2

− ⊖M∗
ℓH

2
−.

The coprime factorizations (1) can be rewritten as the intertwining relation
Nℓ(s)Mr(s) = Mℓ(s)Nr(s), and assuming the strong coprimeness conditions are
satisfied, there exists a doubly unimodular embedding:

(3)

(

Vℓ Uℓ

−Nℓ Mℓ

)(

Mr −Ur

Nr Vr

)

=

(

I 0
0 I

)

.

Now, the solutions to the two Bezout equations

(4) Vℓ(s)Mr(s) + Uℓ(s)Nr(s) = I,Mℓ(s)Vr(s) +Nℓ(s)Ur(s) = I,

are anything but unique. This nonuniqueness is parametrized by an H∞
+ function

Q(s). In fact, if U0, V0 solves the second Bezout equation, then the general solution
is given by

(

−Ur

Vr

)

=

(

−U0

V0

)

+

(

Mr

Nr

)

Q.

Multiplying on the left by
(

M∗
r 0

)

, we obtain M∗
rU =M∗

rUr−Q. Denoting
by QS the proper stable part of M∗

rUr, and defining

(5)

(

−US

VS

)

:=

(

−Ur

Vr

)

+

(

Mr

Nr

)

QS,

it follows that R∗
S :=M∗US is indeed in H∞

− and strictly proper. Since the Hankel
operator, induced by an H∞

+ is trivial, it follows that the Hankel operator HM∗

r U

is independent of the particular solution of the Bezout equation, and thus depends
only on the normalized coprime factorization, which is essentially unique.
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Using shift based realization theory, as in [4], we obtain a, not necessarily finite
dimensional, state space model. The model we take uses H(Mℓ) as state space.
Rather than using the infinitesimal generator A of the semigroup, we use the
semigroup itself, i.e., for f ∈ H(Mℓ), defined by eAtf = PH(Mℓ)e

tsf . To this

system, we can associate a reachability map R(Mℓ,Nℓ) : H
2
+ −→ H(Mℓ) that has

the frequency domain representation in the form

(6) R(Mℓ,Nℓ)u = PH(Mℓ)Nℓu.

This shows that it is closely related to the Hankel operator HG. In fact, we have
R(Mℓ,Nℓ) = MℓHG. The reachability map is not only linear but actually is, as is
easily checked, an H∞

+ -homomorphism. It is not invertible as it has a large kernel
given by KerR(Mℓ,Nℓ) = MrH

2
+. In case we assume that Mℓ, Nℓ are strongly

left coprime it follows that the reachability map is surjective. Using R(Mℓ,Nℓ) =
MℓHG, it follows that KerHG = KerR(Mℓ,Nℓ) and from (2), we conclude that

KerR(Mℓ,Nℓ) = MrH
2
+. The reachability map R(Mℓ,Nℓ) induces the intertwining

map Z : H(Mr) −→ H(Mℓ) which is actually invertible. Using any unimodular
embedding (3), the inverse of Z is computed, for g ∈ H(Mℓ), to be

(7) u∗ = Z−1g = PH(Mr)Urg.

Thus, u∗(s) is the Fourier-Plancherel transform of the time control function that
steers the system from rest in the remote past to the state g at time zero. Any
other steering controller u(s) has the representation u = u∗+Mrf , for f ∈MrH

2
+.

The orthogonal, direct sum representation H2
+ = H(Mr) ⊕MrH

2
+ now implies,

using the fact that Mr(s) is inner, the following equality:

‖u‖2 = ‖u0‖2 + ‖Mrf‖2 = ‖u0‖2 + ‖f‖2 ≥ ‖u0‖2.
This shows that u∗ is the optimal, minimum norm, controller that steers to g(s).

In the infinite dimensional case, the solvability of the Bezout equation, although
existing by a theorem of Carleson, is a formidable task. However, in the rational
case, the unimodular embedding of the coprime factorizations (3) can be computed
by solving a homogeneous Riccati equation or, an equivalent, Lyapunov equation.
This leads directly to the solution of the optimal control problem. This has been
done in [7] and we quote the result. Assume that G(s) ∈ H∞

− is strictly proper and

has a minimal realization G(s) = C(sI − A)−1B, with C ∈ Cp×n, A ∈ Cn×n, B ∈
Cn×m, then a state space realization of the normalized right coprime factors in (3)
is given by

(8)

(

Mr −Ur

Nr Vr

)

=





A−BB∗X B Y C∗

−B∗X I 0
C 0 I





where X is the unique positive definite solution of the homogeneous Riccati equa-
tion A∗X +XA = XBB∗X , and Y is the unique positive definite solution of the
homogeneous Riccati equation AY + Y A∗ = Y C∗CY .

We end this outline by indicating some directions for future work. Of course, the
case of systems with a strictly noncyclic, antistable transfer function G(s) ∈ H∞

−
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is rather special. In order to address other classes of optimal control problems, one
can use coprime factorizations normalized with respect to different metrics, see [7],
in conjunction with associated characteristic functions to reduce the analysis to the
case we handled. For characteristic functions, see [5]. Our intention is to extend
the method described here to some optimal control problems, like LQG control as
well as more specialized problems for the classes of positive real and bounded real
functions. The assumption that a realization is strongly reachable, namely that
the Hankel operator HG has closed range, is rather restrictive. However, our hope
is that by using model reduction techniques, (AAK, balanced truncation, rational
approximation), in combination with unimodular embedding, one can solve the
problem of steering optimally to a prescribed neighborhood of a required state.

Key words: Beurling-Lax theorem, optimal control, realization theory, Bezout equa-
tion and invertibility of intertwining maps.
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Detection of coordinated cyber attacks on state estimationin power
systems

Hideaki Ishii

Cyber security is of critical importance in large-scale control systems in view of
the growing roles that communication networks play in such systems. In this
talk, we focus on security issues in power systems and introduce system theoretic
approaches for detection of cyber attacks. The class of attacks considered are data
manipulation in the measurement signals transmitted over networks.

First, we introduce the classic problem of static state estimation at the trans-
mission grid level. The phase angles and voltage magnitudes of the buses in the
grid are to be estimated based on measurements of power flows over transmission
lines and power injections at the buses. Due to the large size of the problem, least
squares techniques are often employed after linearization. It has however been
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noticed that the bad data detection algorithms, typically relying on the residues
in the estimation, are not useful if data manipulations are carried out in a coordi-
nated manner (see, e.g., [1] and references therein).

We extend this problem setting and study the scenario of malicious attacks on
the data of grid topology and/or transmission line parameters [2, 3]. Such attacks
may be realized if the attacker has access to the database at the control center
with sufficient knowledge of the grid. The consequence of such attacks is changes
in the Jacobian matrix or the measurement function of the state estimation, which
are even more difficult to handle than measurement manipulations. We approach
this problem based on the robust estimation technique of least trimmed squares
(LTS). Attack scenarios are outlined considering the number of attacked Jacobian
elements and decomposition of the grid to maximize robustness. Stealthy attacks
that stay undetected with respect to the robust LTS are also studied.

State estimation and fault detection in power systems have become active re-
search topics in the controls area. We present our work on distributed randomized
algorithms on state estimation where the estimators communicate to each other
based on gossip protocols [4]. Moreover, recent advances in the sensors in power
grids have motivated us to apply fault detection and identification techniques to
the dynamic model of the grid [5].

We also demonstrate how cyber security brings new perspectives to the area. In
multi-agent consensus problems, malicious agents which behave arbitrarily with
malicious intentions to prevent other agents to form consensus can be harmful
[6]; this problem has interesting ties with studies in computer science. Privacy
of measurement data is another issue closely related to security. In [7], we have
studied an observability problem of an ensemble of linear dynamical systems whose
outputs are anonymous in the sense that they are not indexed and hence not linked
to the individual systems.
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Boundary Value Filtering in Discrete Time

Arthur J. Krener

The Aegis Combat System [1] is used to protect US Navy vessels from planes
and missiles. to counter short- and medium-range ballistic missiles threats of the
variety typically employed by a number of potential opponent states. It works
by firing projectiles to intercept the incoming missiles. Critical to the success of
this system are real time accurate estimates of the trajectories of the incoming
missiles. This requires filtering of the noisy measurements but what distinguishes
it from standard filtering is that we know where the missiles are heading. (If they
are not heading toward the ship or the target that the ship is protecting then we
don’t care about them.) In effect we are interested in filtering a system that has
boundary constraints. Hence we consider the problem of filtering a linear system
that satisfies boundary conditions rather than initial conditions.

Consider the discrete time boundary value linear system

x+ = A(t)x +B(t)u, y = C(t)x +D(t)w, v = V 0x(0) + V Tx(T )

where t = 0, 1, 2, . . . , T , x+(t) = x(t+ 1), x ∈ IRn×1, u ∈ IRm×1, y ∈ IRp×1, w ∈
IRp×1, v ∈ IRn×1 and the matrices are sized compatibly. We assume that A(t)
and D(t) are invertible.

Such systems in continuous time were introduced in [3]. We assume that this
system is well-posed, i.e., for every input sequence u(t) and every vector v, there
exists a unique solution to the boundary value problem.

If u(t), w(t) are independent standard white Gaussian noises and v is an inde-
pendent Gaussian vector with mean v̂ and covariance P then the solution x(t) to
(1) is the Gaussian process.. In general this process is not Markov but it is recip-
rocal in the sense of S. Bernstein [2], that is, if t ∈ (t1, t2) and τ is not in [t1, t2]
then x(t) is conditionally independent of x(τ) given x(t1), x(t2). Every Markov
process is reciprocal but not vice versa. In general the measurement process y(t) is
neither Markov nor reciprocal. . The optimal unbiased filter for continuous time
boundary value systems was presented in [4] and preliminary results for discrete
time processes can be found in [5].

Consider a simple example of a double accumulator process

x+ =

[

1 1
0 1

]

x+

[

0
1

]

u, y =
[

1 0
]

x+ w

where u and w are standard white Gaussian noise processes.
We can impose the deterministic boundary conditions

x1(0) = 0, x1(20) = 10

or deterministic initial conditions

x1(0) = 0, x2(0) = 0.5

Figure 1 shows ten sample paths of the x1 coordinate of the two processes. The
mean trajectories of these processes are the same, µ(t) = [t/2, 1/2]′ but their
distributions are very different. Which is a better model for one space coordinate
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Figure 1. Ten Sample Paths of the Boundary Value and the
Initial Value Processes
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Figure 2. Ln Variances of the Boundary Value (blue, solid) and
the Kalman (red, dotted) Filters on the Boundary Value Process

of missile that is launched from x1 = 0 under the control of an intelligent adversary
who wishes to attack a ship at x1 = 10?

We derived the optimal unbiased filter for this boundary value process and the
Kalman filter for the initial value process and compared their performance on
the boundary value process. Figure 2 show the natural logarithm of their vari-
ances in estimating x1(t). As you can see the boundary value filter substantially
outperformed the Kalman filter.
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Fundamental Challenges in Mechanisms and Applications of
Cyber-physical Systems

Panganamala R. Kumar

The first two generations of control systems were analog control and digital control
[1]. Due to advances in computing, both hardware and software, and communi-
cation, a third generation platform is emerging – cyber-physical systems [2]. This
new technology integrates communication, control and computing, and poses many
mathematical challenges both for operation of these systems and applications. We
present three illustrative mathematical results in the hope that this will stimulate
further work on important emerging problems.

First we address the problem of communication over a probabilistic environment
between one central node and several peripheral nodes, with hard deadlines [3].
At every discrete time instant, one packet may be sent from the central node to
some one of the peripheral nodes. Such a packet, if sent to node i, will reach
its intended destination with probability pi or fail to do so with probability (1-
pi). Packets arrive to the central node, one for each peripheral node, with period
T. If such a packet is not successfully delivered to its destination within T time
units, then it is dropped. Each node i requires a throughput of qi packets per
unit time of over the infinite time horizon. What tuples (pi,qi for 1 ≤ i ≤ N),
T are feasible? We provide a sharp characterization. This addresses the problem
of real-time communication with deadline guarantees over an unreliable medium
such as wireless.

The second problem addresses the problem of hybrid systems. These are sys-
tems consisting of interacting differential controlled equations and boolean dy-
namical systems. The goal is to design control laws and provably possess desired
properties. As an exemplar, we consider the problem of automated transportation
systems with provable safety [4]. There is a system of roadways, each road con-
sisting of multiple lanes, and traffic intersections. Cars are modeled as unicycles.
Cars can communicate with each other and with the intersection infrastructure.
How should the cars be controlled so that all cars are safe in that they do not
collide with each other or run off the roadway, and traverse intersections safely?
We develop control laws at several levels for which it is provable that the overall
system behaves correctly and safely. This theory allows for unbounded numbers of
cars, each with a continuum state space, in contrast to approaches such as model
checking that allow only a finite total number of states.

The third problem we consider is a provable theory of security [5]. We consider
a finite number of nodes, labeled good or bad. The good nodes announce a set of
rules that they follow, with the goal of forming a functioning multi-hop wireless
communication network where the flows optimize a given utility function. The
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bad nodes wish to disrupt both the formation of such a network as well as its
operation. The bad nodes know who the good nodes are and are also capable of
perfect cooperation with each other. The good nodes do not know which other
nodes are good. They only start with a published protocol for their operation.
This gives rise to a dynamic zero-sum game between protocols followed by the
good nodes and Byzantine behaviors of the bad nodes. The fundamental result
is that this problem admits a saddle point, more precisely sup-inf = inf-sup. We
describe an epsilon optimal max-min protocol. This formulation and result can
be contrasted with traditional approaches to secure systems that plug holes as
vulnerabilities are discovered, and do not offer any provable guarantees.
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Decision making under uncertainty: Using scenarios in power systems

John Lygeros

Uncertainty is very often an important element in decision making problems for
large scale cyber-physical systems. More often than not, this uncertainty is only
partially characterised, for example through historical data of its past realisations.
One then has to decide how to work these uncertainty samples in the decision
making process. Several methods for doing this have been proposed in recent
years; some have exposed interesting connections to other classes of sample-based
decision making problems, for example in machine learning. This talk attempted
to explore one such connection, between randomised optimisation through scenario
programs and compression learning theory. It also provided an application of the
resulting methods to complex optimisation problems that arise in the procurement
of reserves in electrical energy transmission networks. The results presented were
inspired by and draw on joint work with Kostas Margellos and Maria Prandini for
the theoretical developments [1] and with Kostas Margellos, Maria Vrakopoulou,
and Goran Andersson for the application to power networks [2].

Optimal decision making in the presence of uncertainty is important for the
efficient and economic operation of systems affected by endogenous, or exogenous
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uncertainties. One approach to deal with uncertainty is through robust optimisa-
tion. In this case a decision is made such that the constraints are satisfied for all
admissible values of the uncertainty [3]. In many cases, however, we are only pro-
vided with data, e.g. historical values of the uncertainty, requiring the development
of a data driven decision making paradigm. Under such a set-up, an alternative
to robust optimisation is the so-called scenario based optimisation, which involves
solving an optimisation problem that makes use of only a finite number of uncer-
tainty instances, as opposed to information about the uncertainty distribution, or
its support. Interestingly, even though scenario programs do not require specific
assumptions on the distribution of the uncertainty, the decisions that result from
their solution come with probabilistic performance guarantees that generalise their
properties to unseen uncertainty instances. For problems that are convex with re-
spect to the decision variables the so called scenario approach offers an already
mature theoretical framework for analysing the properties of the optimal solution
in terms of constraint satisfaction [4, 5], or optimal value [6]. In the non-convex
case, tools from statistical learning theory [7] offer guarantees on the probability
that any feasible solution of a scenario program satisfies the constraints of the
original program [8, 9].

The talk explored the links between an area in learning theory known as com-
pression learning [10] and scenario based optimisation. Compression learning al-
gorithms rely on an assumption known as consistency of the learning problem.
Consistency requires that, when one applies the learning algorithm to a large
number of samples, the final result can be characterised through a sub-sample
of fixed cardinality; the remaining samples are automatically consistent with the
decision. In other words, for problems that enjoy the consistency property, if one
draws a large number of samples and makes a decision based on them, they can
then keep only a handful of the samples to encode the decision and throw the rest
away! The catch of course is that one cannot know a-priori which samples will
be contained in this essential subsample and which not. Even though drawing
samples only to discard them at a later stage may seem like wasted effort it is not:
These additional samples are what provides confidence about the performance of
the final decision.

Our results show that many optimisation problems based on scenarios enjoy
such consistency properties. The classical example is the scenario approach [4, 5];
here the role of the compression scheme is taken over by the so-called Helly dimen-
sion (that bounds the number of support constraints for the optimal decision) or
variants such as the S-rank [11, 12]. However, the link we forge between compres-
sion learning and randomised optimisation offers a way to unify the treatment of
a number of randomised optimisation methods (for example, enclosing set meth-
ods [13]) and can inspire the development of novel methods (for example, methods
for cascades problems treated in [1]).
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Control of Rigid Formations

A. Stephen Morse

The use of the classical concept of graph rigidity [1, 2, 3] for maintaining forma-
tions of mobile autonomous agents {eg robots} was proposed in [4] more than a
decade ago. Much has happened since then. We will review several results based
on graph rigidity theory which overview the state of the art. We will talk briefly
about certain special classes of “directed” formations for which there is a mod-
erately complete methodology. Noteworthy among these, are findings for graphs
with cycles which explain the behavior of directed triangular formations [5]. Un-
fortunately for graphs with cycles, existing results are quite limited. For acyclic
formations, the situation is much better. We will briefly summarize several results
concerned with acyclic formations in which each agent has at most two co-leaders
[6, 7, 8].
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Next we turn to “undirected” formations which is the main focus of this pre-
sentation. By an undirected rigid formation of mobile autonomous agents is meant
a formation based on “graph rigidity” in which each pair of “neighboring” agents
i and j is responsible for maintaining the prescribed distance dij between them.
Recent research by several different groups has led to the development of an ele-
gant potential function based theory of formation control which provides gradient
laws for asymptotically stabilizing a large class of rigid, undirected formations in
two-dimensional space assuming all agents are described by kinematic point mod-
els [9]. This particular methodology is perhaps the most comprehensive currently
in existence for maintaining undirected formations based on graph rigidity. The
main purpose of this talk is to explain what happens if neighboring agents i and j
using such gradient controls have slightly different understandings of what the de-
sired distance dij between them is suppose to be [10, 11]. The question is relevant
because no two positioning controls can be expected to move agents to precisely
specified positions because of inevitable imprecision in the physical comparators
used to compute the positioning errors. The question is also relevant because it is
mathematically equivalent to determining what happens if neighboring agents have
differing estimates of what the actual distance between them is. In either case,
what one would hope for would be a gradual distortion of the formation from
its target shape as discrepancies in desired or sensed distances increase. While
this is observed for the gradient laws in question, something else quite unexpected
happens at the same time. In this talk we will describe what occurs and explain
why. The robustness issues raised here have broader implications extending well
beyond formation maintenance to the entire field of distributed optimization and
control. In particular, this research illustrates that when assessing the efficacy
of a particular distributed algorithm, one must consider the consequences of dis-
tinct agents having slightly different understandings of what the values of shared
data between them is suppose to be. For without the protection of exponential
stability/convergence, it is likely that such discrepancies will cause significant mis-
behavior to occur.

Finally we will talk about several recent efforts to fix the robustness problem
identified in [10, 11]. Among these is recent work reported in [12, 13] which tries
to estimate the distance errors and then to take corrective action. This particular
approach is very much in the spirit of classical parameter adaptive control.
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A Nonstochastic Theory of Information for Networked Estimation and
Control

Girish Nair

In 1948, Shannon proposed a theory of information based on a probabilistic descrip-
tion of uncertainty [1]. In his framework, the mutual information shared by two
random variables (rv’s) X,Y, with joint probability density function (pdf) fX,Y

and marginal pdf’s fX , fY , is defined as I [X;Y ] :=
∫

fX,Y (x, y) log2

(

fX,Y (x,y)

fX(x)fY (y)

)

dxdy

bits.
This construct possesses many natural properties, but it became important in

communications theory mainly because it yielded an intrinsic characterisation of
(ordinary) channel capacity C. The ordinary capacity is defined in operational
terms, as the highest block coding rate that permits arbitrarily small probability
of decoding errors, and Shannon showed in the channel coding theorem that this
coincided with the maximum mutual information rate across the channel, max-
imised over all input distributions.

Probabilistic concepts of uncertainty and information are natural in commu-
nications, for several good reasons. Firstly, communication systems are largely
electrical or photonic, and disturbances in these domains, such as thermal and
shot noise, are well-modelled by statistical physical laws. Furthermore, in most
digital communication systems, the bit periods Tb are of the order of 10−5s or
less, and in this regime the standard deviation of these noise terms (∝ √

Tb) after
lowpass or matched filtering can be noticeable compared to detected signal am-
plitudes (∝ Tb). Finally, system performance is often specified in an average or
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high-probability sense, since the occasional dropped call or corrupted data packet
is acceptable in most consumer applications.

In contrast, in parts of control engineering there is a long tradition of modelling
disturbances as deterministic unknowns, and the justifications are equally good.
Most obviously, control systems often feature mechanical or chemical components,
and the dominant disturbances may not be governed by known, well-defined sta-
tistical laws. For instance in mechanical systems, the main disturbance may be
vibrations at frequencies determined by machine dimensions and material prop-
erties. Even if electrical or photonic components are present, the sampling/bit
periods are typically of the order of 10−3s or larger, and in this regime shot and
thermal noise may be negligible compared to detected signal amplitudes. Finally,
for safety or mission objectives, control systems are often required to satisfy hard
performance guarantees every time they are used, not just most times.

Consequently, mutual information has not been as central a concept in control as
it is communications. However, both communications and control are key features
in the area of cyber-physical systems. It is therefore natural to ask whether there is
an operationally relevant analogue of Shannon’s theory for cyber-physical systems
subject to nonrandom disturbances and worst-case performance criteria.

In this talk, several pre-existing concepts are combined with new ones to yield
an operationally meaningful theory of nonstochastic information that possesses
several natural properties [2]. While other non-probabilistic theories of information
have been proposed previously [3, 4, 5], their operational relevance for systems with
noisy communication channels has not been established.

To begin, define an uncertain variable (uv) X to be a mapping from an under-
lying, uncountable space Ω to a space X. Each ω ∈ Ω may represent a specific
combination of noise/input signals into a system, and X may represent a state or
output variable. For a given ω, the realisation of X is X(ω) ≡ x. This matches
the textbook definition of an rv, except that no measure is imposed on Ω. Con-
sequently any subset of Ω is a valid event, i.e. the σ-algebra is the full power-set
2Ω.

As uv’s have no distributions, prior uncertainty is captured by their ranges.
Let the range of uv X be denoted JXK := {X(ω) : ω ∈ Ω} ⊆ X. Similarly,
JX,Y K ⊆ X × Y denotes the joint range of the uv pair (X,Y ), and JX |yK de-
notes the conditional range {X(ω) : Y (ω) = y, ω ∈ Ω}. In the absence of statisti-
cal structure, the joint range fully characterises the relationship between X & Y .
Note JX,Y K =

⋃

y∈JY KJX |yK×{y}, i.e. the joint range is given by the conditional

and the marginal.
Call uv’s X,Y (mutually) unrelated if JX,Y K = JXK×JY K, i.e. if the joint range

is a Cartesian product of the marginals. Equivalently, JX |yK = JXK, ∀y ∈ JY K, i.e.
conditioning does not change the marginal. Unrelatedness is a weaker condition
than statistical independence. It is equivalent to X and Y inducing qualitatively
independent partitions [6] of Ω, when Ω is finite.
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Next, let X,Y, Z be said to form a Markov uncertainty chain X − Y − Z if
JX |y, zK = JX |yK, ∀(y, z) ∈ JY, ZK. Equivalently, JX,Z|yK = JX |yK × JZ|yK, ∀y ∈
JY K, i.e. X and Z are conditionally unrelated given Y .

Finally, a nonstochastic information index is constructed. Let JX |Y K :=
{JX |yK : y ∈ JY K} be the conditional range family ofX given Y . Two points x, x′ ∈
JXK are called JX |Y K-overlap-connected if ∃ a sequence of sets B1, . . . ,Bn ∈ JX |Y K
s.t. i) x ∈ B1 and x′ ∈ Bn, and ii) Bi ∩ Bi+1 6= ∅, ∀i ∈ [1 : n− 1]. It is easy to see
that overlap connectedness is an equivalence relation on JXK, induced by JX |Y K.
Let the overlap partition JX |Y K∗ of JXK denote the equivalence classes, and define

I∗[X ;Y ] := log2 |JX |Y K∗| ≥ 0.

(Interestingly, in the definition of topological entropy for dynamical systems, the
information gained about X from Y is instead essentially measured by the minimal
subcover log-cardinality of JX |Y K; this would generally yield a larger value than
above.)

It can be shown that I∗ is monotonic, i.e. I∗[X ;Y ] ≤ I∗[X ;Y, Z]; this is almost
trivial, because the conditional range family JX |Y, ZK refines JX |Y K. Less obvious
properties are symmetry, i.e. I∗[X ;Y ] = I∗[Y ;X ], and data processing: I∗[X ;Z] ≤
I∗[X ;Y ] for any Markov uncertainty chain X − Y − Z.

The intuitive meaning of I∗ arises because it can be shown that there is an
indexing JX |Y K∗ ≡ {Bw}w and JY |XK∗ ≡ {Cw}w, of the overlap partitions so
that X ∈ Bw iff Y ∈ Cw, ∀w. In other words, the index W ≡ f(X) ≡ g(Y ) is
a common variable, on which two agents observing X and Y separately can both
agree. Furthermore, it can be shown that W is the maximal common variable, in
the sense that if W ′ ≡ f ′(X) ≡ g′(Y ) is any other common variable, then there is
a mapping h such that W ′ = h(W ). In summary, I∗[X ;Y ] is the log-cardinality
of the range of the maximal variable common to both X and Y . It is worth
remarking that this is not equivalent to assuming uniform distributions in I[X ;Y ],
or to extremising I[X ;Y ] over all joint distributions with given support. Note also
that the notion of a maximal common (random) variable was first proposed by
Shannon himself, in a much-overlooked brief paper [7]. However, the context was
probabilistic, and it was not observed that this notion could be used to define a
nonstochastic information measure.

The operational relevance of I∗ arises in two ways. Firstly, in analogy with the
channel coding theorem, it gives an intrinsic, nonstochastic information-theoretic
characterisation of the zero-error capacity C0 of a discrete memoryless noisy chan-
nel. The zero-error capacity C0 is defined operationally as the highest rate over
all block codes that yield exactly zero decoding errors [8], and is typically smaller
than C. In the uv framework, it can be shown that

C0 = sup
n≥0,X

I∗[X0:n;Y0:n]

n+ 1
= lim

n→∞
sup
X

I∗[X0:n;Y0:n]

n+ 1
,

where the supremum is over all uv sequences X going into the channel.
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Secondly, by using this characterisation it can be shown that a necessary and
sufficient condition to be able to uniformly estimate an unstable linear time-
invariant plant via a noisy communication channel is that C0 exceed the sum
of the logarithm of the unstable eigenvalue magnitudes of the open-loop plant.
This condition had been previously derived in [9], using volume-partitioning argu-
ments and a law of large numbers that relied on a random initial state and channel.
In the present work, no randomness is assumed, and the same bound is derived
using nonstochastic information. See [10] for preliminary results that connect the
recently introduced notion of nonstochastic directed information to the zero-error
feedback capacity and the problem of uniform stabilisation over a noisy channel.

Future work will focus on handling disturbances that are bounded not in mag-
nitude but in (time-averaged) power, and formulating a nonstochastic network
information theory for three or more users.
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Distributed Optimization over Networks

Angelia Nedić

We will overview some of the distributed optimization frameworks developed over
the recent years for optimizing in time-varying networks, where the network agents
have limited access to information. Each agent has an objective function, which
is private information not to be directly accessed by any other agents. The com-
munications between nodes are described by a time-varying sequence of (directed)
graphs, which is uniformly strongly connected over time. For such communication
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networks, we will discuss distributed algorithms for solving a network problem,
whereby the agents want to solve the sum of their objective functions under the
limited access to the information about their individually own objectives. Several
algorithmic approaches will be discussed for optimizing over undirected and di-
rected networks in both static and time-varying scenarios, including ADMM [3, 10]
and consensus-based approaches [1], [2], [4]–[7]. The efficiency of the algorithms
will also be discussed in terms of their scaling with number of iterations and the
size of the network. (The related list of literature is substantially abbreviated.)
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Synchronization and scaling in networks with time-delay coupling

Henk Nijmeijer

(joint work with Isaac Castanedo Guerra)

We consider networks of time-delayed diffusively coupled systems and relate con-
ditions for synchronization of the systems in the network to the topology of the
network. First we present sufficient conditions for the solutions of the time-delayed
coupled systems to be bounded. Next we give conditions for local synchronization
and we show that the values of the coupling strength and time-delay for which
there is local synchronization in any network can be determined from such con-
ditions for a network of two bi-directionally coupled systems[1]. In doing so, all
eigenvalues of the Laplacian of the connection graph appear in the conditions for
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network synchronization. In addition we present results on global synchronization
in relation to the network topology for networks of a class of nonlinear systems. We
illustrate our results with examples of synchronization in networks with FitzHugh-
Nagumo model neurons and Hindmarsh-Rose neurons. In the second part of the
paper we consider the converse problem, namely to what extend is it possible to
extract conditions for synchronization of two bi-directionally time-delayed coupled
cells given that a network of time-delayed coupled cells exhibits synchronization.
This converse problem is potentially much harder and only for a few particular
cases- that is, simply structured networks- so far an answer has been obtained.
On the other hand, from a experimental point of view a solution of the problem
is relevant, as in most cases slices of brain tissue containing (a few) hundred cells
provide measured data[2].
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Discrete variational formulations for the optimal control and multirate
integration of dynamical systems

Sina Ober-Blöbaum

Discrete variational formulations can be used to construct variational integrators.
These form a special class of geometric integrators with the goal to capture the
dynamical system’s behavior in a most realistic way. Their use for solving optimal
control problems ensures that there is no accuracy loss in the approximated optimal
solution in contrast to, for example, the use of Runge-Kutta methods.

Discrete variatonal formulations. Let Q be an n-dimensional configuration
manifold with tangent bundle TQ and cotangent bundle T ∗Q. Consider a system
with time dependent configuration q(t) ∈ Q and velocity q̇(t) ∈ Tq(t)Q, t ∈ [0, T ],
whose dynamical behavior is described by the Lagrangian L : TQ→ R and a force
f : TQ × U → T ∗Q that depends on a time dependent control u(t) ∈ U ⊆ R

m.
The equations of motion can be derived via the Lagrange-d’Alembert principle
that seeks curves q with fixed initial and final values q(0) and q(T ) satisfying

(1) δ

∫ T

0

L(q, q̇) dt+

∫ T

0

f(q, q̇, u) · δq dt = 0

for all variations δq. This yields the forced Euler-Lagrange equations

(2)
∂L

∂q
(q, q̇)− d

dt

(

∂L

∂q̇
(q, q̇)

)

+ f(q, q̇, u) = 0.

For a discrete variational formulation the state space TQ is replaced by Q×Q
and a time step h and the discrete positions and controls qk ∈ Q and uk ∈
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U , k = 0, . . . , N (Nh = T , N ∈ N) are approximations to q(kh) and u(kh),
respectively. The two integrals in (1) are approximated by a discrete Lagrangian

Ld : Q × Q → R, Ld(qk, qk+1) ≈
∫ (k+1)h

kh
L(q(t), q̇(t)) dt, and by discrete forces

f−
k · δqk + f+

k · δqk+1 ≈
∫ (k+1)h

kh
f(q(t), q̇(t), u(t)) · δq(t) dt, where f±

k depend on
(qk, qk+1, uk). The discrete Lagrange-d’Alembert principle seeks discrete paths
{qk}Nk=0 such that for all variations {δqk}Nk=0 with δq0 = δqN = 0, it is true that

(3) δ

N−1
∑

k=0

Ld(qk, qk+1) +

N−1
∑

k=0

(

f−
k · δqk + f+

k · δqk+1

)

= 0.

This results in the forced discrete Euler-Lagrange equations

(4) D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+
k−1 + f−

k = 0

with k = 1, ..., N − 1 and Di denotes the derivative w.r.t. the i-th argument.
Note that (4) provides a discretization scheme for the Euler-Lagrange equations

(2) which is called variational integrator [3] and belongs to the class of geometric
integrators. In particular, variational integrators are symplectic and momentum
consistent, i.e. the symplectic structure and the momentum maps induced by sym-
metries are consistent with the control forces in the discrete solution [3, 4].

Variational Integrators and Optimal Control. In optimal control, a control
u(t) for (2) is searched for such that a given objective functional is minimized

(5) J(q, u) =

∫ T

0

C(q(t), q̇(t), u(t)) dt+Φ(q(T), q̇(T))

with C : TQ×U → R and Φ : TQ→ R being continuously differentiable. For the
numerical solution of optimal control problems, direct methods are based on a dis-
cretization of the differential equations (2) which serve as equality constraints for
the resulting finite dimensional nonlinear optimization problem. It is well known
that discretization and optimization (i.e. the fulfillment of necessary optimality
conditions, see diagram) do not commute in general. In particular for Runge-
Kutta discretizations, the approximation order of the optimal control solution,
which depends on the approximation order of the state and the adjoint scheme, is
reduced compared to the order of the Runge-Kutta method applied to the state
system [1]. However, using special classes of variational integrators for the dis-
cretization of the state equation yields the same discrete variational scheme for
the adjoint equation due to its symplecticity and thus guarantees the same approx-
imation order for the optimal control solution [4]. That means that discretization
and optimization commute for this class of symplectic schemes. For general classes
of variational integrators, the commutation property is still an open question.

In recent years, much effort has been put into the analysis and the further
development of variational integrators to make them applicable to a broad class
of dynamical systems, including systems with dynamics on different time scales
resulting in variational multirate integrators [2].
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Optimal control
problem
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discretization

state and adjoint
system

optimization problem

discrete state and
adjoint system

Pontryagin Maximum Principle Karush-Kuhn-Tucker equations

order of
approximation
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Data-Driven Cyber-Physical Model Estimation from Observed
Equilibria

Ioannis Ch. Paschalidis

(joint work with Dimitris Bertsimas, Vishal Gupta, Qi Zhao, Arion Stettner,
Daniel Segrè)

Equilibrium modeling is common in a variety of fields such as game theory, trans-
portation science, and systems biology. The inputs for these models, however, are
often difficult to estimate, while their outputs, i.e., the equilibria they are meant to
describe, are often directly observable. By combining ideas from inverse optimiza-
tion with the theory of variational inequalities, we develop an efficient, data-driven
technique for estimating the parameters of these models from observed equilibria.

In essence, we propose to leverage a cyber infrastructure associated with such
cyber-physical systems which enables measuring equilibrium quantities and using
these measurements to estimate unknown user preferences. These can in turn
be used to alter system parameters and steer the system to a more desirable
equilibrium.

A distinguishing feature of our approach is that it supports both parametric
and nonparametric estimation by leveraging ideas from statistical learning (kernel
methods and regularization operators). Specific applications we described include:
(i) estimating the utility functions of players in a game (Nash Equilibrium), (ii) es-
timating the unknown demand or congestion function in a transportation network
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(Wardrop equilibrium), and (iii) estimating the cellular objective in a bacterial
metabolic network.

To define the problem more formally, consider a function f : Rn → Rn and a
non-empty set F ⊆ Rn. The Variational Inequality problem, denoted VI(f ,F), is
to find an x∗ ∈ F such that

f(x∗)′(x− x∗) ≥ 0, ∀x ∈ F ,
where prime denotes transpose. Assume now that F can be represented as the
intersection of a small number of conic inequalities, that is, F = {x : Ax = b,x ∈
C}, for some cone C, and that F has at least one interior point (Slater-condition).

The inverse variational inequality problem can now be formulated as follows.
We are given observations (xj ,Aj ,bj , Cj) for j = 1, . . . , N , which give rise to sets
Fj = {x ∈ Rn : Ajx = bj ,x ∈ Cj}. We seek a function f such that xj is an
approximate solution to VI(f ,Aj ,bj , Cj) for each j, namely,

f(xj)
′(x− xj) ≥ −ǫj, ∀x ∈ Fj , ∀j.

Letting ǫ = (ǫ1, . . . , ǫN ), we can formulate this inverse VI problem as

min
f ,ǫ

‖ǫ‖

s.t. xj is an ǫj-approximate solution to VI(f ,Aj ,bj , Cj), j = 1, . . . , N.

We have developed parametric and non-parametric methods for estimating f . In
the parametric case, we assume that f belongs to a specific parametric family and
solve the problem above to find the parameters. It turns out that the corresponding
optimization problem is conic, hence, efficiently solved. In the non-parametric case,
we assume f belongs to a Reproducing Kernel Hilbert Space (RKHS) and solve a
problem that minimizes the norm of f subject to a norm-constraint on ǫ. We show
that the corresponding problem reduces to a quadratic optimization problem and
can be solved for any positive semi-definite kernel of the RKHS.

We discussed three specific applications of this framework. In the first appli-
cation we are given a directed network of nodes and arcs (V ,A), representing the
road network of some city. Let N ∈ {0, 1}|V|×|A| be the node-arc incidence matrix.
For certain pairs of nodes w = (ws, wt) ∈ W , we are also given an amount of flow
dw that must flow from ws to wt. The pair w is referred to as an origin-destination
pair. Let dw ∈ R

|V | be the vector which is all zeros, except for a (−dw) in the
coordinate corresponding to node ws and a (dw) in the coordinate corresponding

to node wt. We say that a vector of flows x ∈ R
|A|
+ is feasible if x ∈ F where

F = {x : ∃xw ∈ R
|A|
+ s.t. x =

∑

w∈W xw, Nxw = dw, ∀w ∈ W}. Let now

ca : R
|A|
+ → R+ be some “cost” function for arc a ∈ A. Denote by c(·) the vector-

valued function whose a-th component is ca(·). A feasible flow x∗ is a Wardrop
equilibrium if for every origin-destination pair w ∈ W , and any path connecting
(ws, wt) with positive flow in x∗, the cost of traveling along that path is less than
or equal to the cost of traveling along any other path that connects (ws, wt). It is
well-known that a Wardrop equilibrium is a solution to VI(c,F) and we can use
our inverse VI setting to estimate congestion functions from observed equilibria.
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A second application focused on estimating the utility functions of players in a
game (Nash Equilibrium). The third application considered the “reverse engineer-
ing” of bacterial metabolic networks. A metabolic network is used to describe the
process of thousands of enzymatic reactions used to convert nutrients into metabo-
lites and energy. Organisms have different optimal performances (e.g., maximizing
growth rate, or ATP generation) under a range of growth conditions. One of the
most important methodologies to analyze the metabolic network in steady-state
is Flux Balance Analysis (FBA) [4]. FBA formalizes the system of equations de-
scribing a metabolic network as the dot product of a matrix of the stoichiometric
coefficients and the vector of the unsolved fluxes. The optimal performances un-
der different growth conditions are defined as the objective functions in the FBA
formulation. One can write this problem as a VI problem. Solving the inverse VI
problem allows us to leverage experimental cellular flux measurements to infer the
cell’s objective function – an important problem in metabolic engineering.

To the best of our knowledge, we are the first to consider inverse variational
inequality problems. Previous work has examined the problem of estimating pa-
rameters for systems assumed to be in equilibrium, most notably the structural
estimation literature in econometrics and operations management ([5], [2], [1]).
These techniques, however, assume a detailed parametric model for the system in
question and often require restrictive probabilistic assumptions on random quanti-
ties while leading to non-convex optimization problems for parameter estimation.

By contrast, in our paradigm, we make no assumptions (parametric or nonpara-
metric) about the true mechanics of the system; we treat it is as a “black-box.”
Our objective is to fit a model – in fact, a VI – that can be used to predict the be-
havior of the system. We make no claim that this fitted model accurately reflects
“reality,” merely that it has good predictive power.

In addition to tractable formulations of the inverse VI problem, we also provided
generalization probabilistic guarantees (sample complexity results) on the quality
of the estimated function f and the quality of the equilibrium predicted by using
this estimated function. A full paper version of the inverse VI theory and discussion
of some of the applications can be found in [3].
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Complex stochastic systems admitting a flocking structure

Giorgio Picci

(joint work with Giulio Bottegal)

We propose a new modeling paradigm for large dimensional aggregates of stochas-
tic systems by Generalized Factor Analysis (GFA) models. These models describe
the data as the sum of a flocking plus an uncorrelated idiosyncratic component.
The flocking component describes a sort of collective rigid motion which admits
a much simpler mathematical description than the whole ensemble while the id-
iosyncratic component describes weakly correlated noise. The extraction of the
dynamic flocking component can be achieved by an operation of space averaging
on the whole ensemble which filters out the idiosyncratic component.

Consider an infinite aggregate of random “agents” indexed by a discrete space
variable k ∈ Z+ each described by a scalar output variable1 y(k, t), which evolves
randomly in (discrete) time. The overall evolution of the ensemble is then de-
scribed by an infinite dimensional random process y := {y(t) ; t ∈ Z} with com-
ponents y(k, t), an infinite column vector of zero mean random variables of finite
variance. We shall assume that the infinite covariance matrix,

Σ(τ) := Ey(t+ τ)y(t)⊤

is well-defined, independent of t and of positive type. We shall call y a time-
stationary random field. Let F ∈ R∞×q; we shall say that the q columns of F are
strongly linearly independent if the n× n, (n ≥ q) upper left corner of FF⊤ has q
nonzero eigenvalues which tend to infinity as n → ∞. This concept is introduced
in [1] and cannot be discussed further here for reasons of space.

Definition 1. A time-stationary random field has a dynamic GFA representation
of rank q if it can be written as

(1) y(t) = Fx(t) + ỹ(t)

where the q columns of F are strongly linearly independent, the q dimensional
process x(t), with Ex(t)x(t)⊤ = Iq, is uncorrelated and jointly (weakly) stationary

with ỹ(t) and the covariance matrix Σ̃(τ) := Eỹ(t+τ)ỹ(t)⊤ is, for all τ , a bounded
linear operator in ℓ2.

Similarly, we shall say that an infinite covariance matrix function Σ(τ) has a
GFA decomposition of rank q if it can be decomposed as

(2) Σ(τ) = FP (τ)F⊤ + Σ̃(τ)

where F ∈ R∞×q has strongly linearly independent columns, P (τ) is a q × q

covariance matrix normalized so that P (0) = Iq and Σ̃(τ) is, for all τ , a bounded
operator in ℓ2.

The overall covariance of the observed process y can then be decomposed in
the sum of two contributions.

1This assumption is done for ease of notation; finite dimensional output variables can be
treated in the same way.
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• A long range correlation structure which describes the component of y
driven by the latent vector x(t); this is the flocking component. The long
range property means that the covariance of two variables ŷ(k) and ŷ(j),
say σ̂(k, j) does not go to zero when |k − j| → ∞.

• A short range correlation structure which corresponds to the idiosyncratic
component ỹ. The short range property means that the covarinace of any
two variables y(k) and y(j), say σ̃(k, j) → 0 when |k − j| → ∞.

We discuss this decomposition for linear dynamic systems restricting to the case of
processes which are stationary with respect to the time variable which is a natural
assumption to make in view of statistical inference.
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Disagreement dynamics within co-operative multi-agent control
systems

Roy S. Smith

Implementing co-operative multi-agent systems in practice requires careful analy-
sis of the information belonging to individual agents. If multiple agents’ actions
depend on common variables (physical or otherwise), one must consider how these
variables are obtained for each agent. In practice this is usually via estimators and
agents’ estimates of identical variables can no longer be assumed to be identical.
One must also consider the disagreement between the agents’ estimators. These
disagreements will also have dynamics which can exhibit behaviours not present
in the nominal, zero estimation error, system. Graph theory is used to derive the
disagreement dynamics for a high performance co-operative control system. This
gives insights into stability, performance, and communication reliability as well as
the relationship between disagreement and communication topology.

To illustrate how such dynamics arise we consider a formation of N agents,
each capable of controlling its own location. In problem domains where the preci-
sion of the formation is critical—for example, space-based formations for science
instruments—the optimal control will be a function of the positions and velocities
of all of the agents. Once a control algorithm has been specified, implementation
requires that every agent has knowledge of the positions and velocities of all other
agents. Such an assumption is reasonable for small formations. If we assume that
every agent is capable of measuring and estimating the positions and velocities of
all of the others, then one can easily implement these estimators in parallel and
use a certainty equivalent approach to implement the optimal control.
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This control and estimation structure contains disagreement dynamics and this
can be seen by studying the simplified case where every agent can measure and
estimate, via a Kalman filter, the full system dynamic state. In [1] we show that
the closed-loop eigenvalues are the union of the eigenvalues of: a) the designed
optimal closed-loop system; b) the designed Kalman estimation error eigenvalues;
and c) N−1 copies of the open-loop controller dynamics. These N−1 copies of the
controller open-loop are in fact disagreement dynamics; each agents’ measurements
have different noise corruption leading to differences between the estimates of
ostensibly identical quantities in each agent. The eigenvalues corresponding to the
differences in agents’ estimates are those of the open-loop controllers, which are
not explicitly accounted for in most estimator/state-feedback design methods.

Explicitly handling such disagreement requires communication between the
agents. We model the communication network via a directed graph and give
an expression relating the eigenvalues of the graph Laplacian to the disagreement
eigenvalues of the parallel estimator configuration. It immediately follows that
one cannot remove the disagreement unless the communication topology contains
a rooted spanning tree. This has the implication that communication receivers are
critical to the control of disagreement in cooperative control networks.

In [2] we provide a design formulation that enables one to pose an optimization-
based design problem that explicitly accounts for the disagreement dynamics as
well as the closed-loop system dynamics. This gives a way of designing the receiver
and transmitter gains, as well as the state feedback gains and Kalman estimator
gains for the complete system. The formulation also gives mean-square stability
results for the case where communication links suffer from packet loss. Both simple
probabilistic models as well as Markov chain driven models (Gilbert communica-
tion models) can be used to describe the packet loss.
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Randomization and Gossiping in Techno-Social Networks

Roberto Tempo

Abstract

In this study, we consider two specific applications: opinion formation in social
networks and centrality measures in technological networks. These applications
fall under a general framework which aims at the construction of algorithms for
distributed computation over networks. The key ingredients of randomization and
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time-averaging are exploited, together with a local gossiping communication pro-
tocol, to obtain convergence of these distributed algorithms to the global synchro-
nous dynamics. The connections with the mathematics of cyberphysical systems
are also outlined.

Opinion Formation and Centrality Measures

We consider opinion formation in social networks and centrality measures in com-
plex networks, with specific attention to the PageRank computation in the Google
search engine. Both applications fall under a general framework we have studied
in [1], which has the objective to provide ergodicity properties of distributed algo-
rithms based on a combination of randomization and time-averaging techniques.

Recently, randomization has been shown to be a very effective tool when dealing
with control of uncertain systems [2]. In the context of networks, randomization
has the goal to improve the overall performance of the system. This objective is
achieved, for example, when designing distributed and asynchronous algorithms.
On the other hand, time-averaging techniques have been widely used to improve
the convergence speed of stochastic approximation algorithms. In this study, we
consider network dynamics where the nodes interact in randomly chosen pairs,
following a so-called gossip protocol. This protocol is particularly natural when
dealing with social networks, where agents may discuss various topics in pairs.
The combination of randomization, time-averaging and gossiping techniques, in a
suitable way and in a unified setting, provides iterative algorithms which enjoy
asymptotic convergence properties in mean-square and almost sure sense.

The first application we consider arises in social sciences and it is focused on
the underlying mechanisms of opinion formation, which play a key role in many
other areas such as economy, finance, biology and epidemiology. The model we
consider, denoted as the Friedkin-Johnsen model [3], is based on the concept of
stubborn agents, which may lead to a disagreement of opinions. This model is an
alternative to other models available in the literature, where, on the contrary, the
objective is to reach a consensus of opinions between several individuals [4].

In particular, in this study we consider pairwise randomized dynamics, which
represent the interactions between individuals. At each time instant, a randomly
chosen pair of agents update its opinion as a convex combination of its own opinion,
the opinion of one of its neighbors (randomly selected), and the so-called prejudice
(which is the a priori opinion that an individual has). We show that, even though
the resulting dynamics oscillates, its average is a stable opinion profile. However,
this opinion profile is not a consensus of opinions, but the opinions of individuals
may aggregate into clusters.

The second application we analyze deals with the computation of centrality
measures. In particular, we discuss various classical measures often used in com-
plex networks: degree centrality, closeness, betweenness and eigenvector centrality
[5]. A comparison of these centrality measures has been provided using a simple
illustrative example [6]. We remark that the eigenvector centrality is closely re-
lated to the notion of PageRank, which has been introduced in the Google search
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engine for ranking websites in order of importance [7]. To alleviate the difficulties
to compute PageRank in a centralized fashion, various distributed randomized al-
gorithms have been developed [8, 9]. Numerical results testing the performance of
these algorithms are provided using a benchmark consisting of 3,756 Web pages
and 31,718 links [10].

Conclusions: Research Directions

Two research directions are currently carried on:

1. The development of a new class of randomized algorithms, called incremental
diffusion algorithms, for the PageRank computation, and other centrality mea-
sures, of temporal networks.
2. Extensions of the Friedkin-Johnsen model to multidimensional correlated opin-
ions, and analysis of their stability properties.
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A network dynamics approach to chemical reaction networks

Arjan van der Schaft

(joint work with Shodhan Rao, Bayu Jayawardhana)

Network dynamics has been the subject of intensive research in recent years due
to the ubiquity of large-scale networks in various application areas. While many
advances have been made in the analysis of linear network dynamics, the study of
nonlinear network dynamics still poses many challenges, especially in the presence
of in- and outflows.

In this talk, we revisit the analysis of chemical reaction networks as a prime
example of nonlinear network dynamics, playing an important role in systems biol-
ogy, (bio-)chemical engineering, and the emerging field of synthetic biology. Apart
from being large-scale (typical reaction networks in living cells involve several
hundreds of chemical species and reactions) a characteristic feature of chemical
reaction network dynamics is their intrinsic nonlinearity. In fact, mass action
kinetics, the most basic way to model reaction rates, leads to polynomial differ-
ential equations. On top of this, chemical reaction networks, in particular in a
bio-chemical context, usually have inflows and outflows.

The foundations of the structural theory of (isothermal) chemical reaction net-
works (CRNs) were laid in a series of seminal papers by Horn, Jackson, and Fein-
berg in the 1970s. The basic starting point of e.g. [9, 8, 5] is the identification of
a graph structure for CRNs by defining the chemical complexes, i.e., the combi-
nation of chemical species appearing on the left-hand (substrate) and right-hand
(product) sides of every reaction, as the vertices of a graph and the reactions as
its edges. This enables the formulation of the dynamics of the reaction network as
a dynamical system on the graph of complexes. Furthermore, in these papers the
philosophy was put forward of delineating, by means of structural conditions on
the graph, a large class of reaction networks exhibiting the same type of dynam-
ics, irrespective of the precise values of the (often unknown or uncertain) reaction
constants. This ’normal’ dynamics is characterized by the property that for every
initial condition of the concentrations there exists a unique positive equilibrium
to which the system will converge. Other dynamics, such as multi-stability or
presence of oscillations, can therefore only occur within reaction networks that
are violating these conditions. For an overview of results on CRNs, and current
research in this direction including the global persistence conjecture, we refer to
[1] and the references quoted therein. An important step in extending the frame-
work of CRNs towards feedback stabilization has been made in [12]; also setting
the stage for further regulation questions.

In this talk, the formulation and analysis of mass action kinetics chemical re-
action networks is revisited from the point of view of consensus dynamics and its
nonlinear versions [2, 3, 17]. The consideration of concepts from algebraic graph
theory, such as the systematic use of weighted Laplacian matrices, provides a
framework for (re-)proving many of the previously obtained results on CRNs in a
much simpler and insightful manner. In particular, as shown in [13, 10, 16], under
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the assumption of existence of a detailed-balanced equilibrium, or the weaker as-
sumption of existence of a complex-balanced equilibrium (a concept dating back to
Horn & Jackson [9]), the weights of the graph of complexes can be redefined in such
a way that the resulting Laplacian matrix becomes symmetric (detailed-balanced
case) or balanced (complex-balanced case). As a result, the characterization of
the set of positive equilibria and their stability as originating in [9, 8, 5] follows
in a simple way. Moreover, this formulation allows for a direct port-Hamiltonian
interpretation [14], linking CRNs to thermodynamical theory, and leads to new de-
velopments such as a theory of structure-preserving model reduction of chemical
reaction networks, based on Kron reduction of the Laplacian matrix [13, 10, 11].

As mentioned above, our approach is based on the assumption of existence of
a complex-balanced equilibrium, generalizing the classical notion of a detailed-
balanced equilibrium. Based on [15] a necessary and sufficient condition is dis-
cussed for the existence of a complex-balanced equilibrium based on the Ma-
trix Tree theorem (a theorem going back to the work of Kirchhoff on electrical
circuits), which extends the classical Wegscheider conditions for existence of a
detailed-balanced equilibrium. We also make a connection with the property of
mass conservation. Furthermore, we discuss how these results can be ’dualized’ to
consensus dynamics, providing new insights.

Finally, we discuss how the dynamical analysis can be extended to chemical
reaction networks with inflows and outflows. The extension of the stability theory
of equilibria for reaction networks without inflows and outflows to that of steady
states for reaction networks with inflows and outflows (called open networks) is far
from trivial, due to the intrinsic nonlinearity of the reaction dynamics. By revisit-
ing the classical idea of extending the graph of complexes by a ‘zero’ complex [9, 7],
we will show how the results based on complex-balancedness for closed CRNs can
be fully extended to CRNs with constant inflows and mass action kinetics out-
flows. Moreover, it allows to extend the model reduction techniques of [13, 10, 11]
to CRNs with constant inflows and mass action kinetics outflows. From a control
perspective the steady state analysis of open CRNs opens the possibility of apply-
ing the internal model principle (see e.g. [4]) to achieve output regulation for such
systems with constant reference signals using proportional-integral controllers, for
example, in the control of CSTR or gene-regulatory networks as in [18].
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An asynchronous distributed optimization algorithm

Fabian Wirth

(joint work with Martin Corless, Robert Shorten, Sonja Stüdli, Jia Yuan Yu)

In this talk we discuss a fully distributed algorithm for the approximation of the
optimal point of a specific convex optimization problem. This type of problems
occurs in particular in distributed resource allocation problems that are charac-
teristic of smart cities applications. Here we will not discuss the motivation or
related work in detail. For this we refer to [2].

We stress that the purpose of our study is not to invent a numerical scheme. The
problem we will address can be solved much more efficiently. The idea is to have
an algorithm that can be implemented on independent agents in such a manner
that the agents approach a common optimum with minimal communication and
simple rules.
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Let n ∈ N, C > 0 and fi : [0, C] → R be strictly convex and continuously
differentiable, i = 1, . . . , n. Consider the optimization problem

(1) min

n
∑

i=1

fi(xi) subject to

n
∑

i=1

xi = C , xi ≥ 0 .

It is well-known that by compactness of the feasible space an optimal solution
x∗ exists; it is unique by strict convexity. We assume that there exist constants
0 < λmin < 1 and Γ > 0 such that for all r ∈ [0, C] and all i = 1, . . . , n

(2) λmin ≤ Γ
f ′
i(r)

r
≤ 1 ,

where for r = 0 (2) is interpreted for the continuous extension in x = 0. In this
case x∗ is characterized by the existence of a constant µ∗ ∈ R such that

(3)

n
∑

i=1

x∗i = C, x∗i > 0, f ′
i(x

∗
i ) = µ∗, i = 1, . . . , n .

In our approach we will employ a variant of the AIMD (additive increase, multi-
plicative decrease) algorithm, that we describe now.

Let e =
∑n

i=1 ei, the vector of all ones and β ∈ (0, 1). In continuous time the
AIMD dynamics are determined by the slope of linear increase α > 0 used in the
AI phase and the multiplicative decrease parameter β used at congestion. For us
congestion occurs at a time instant when the constraint

∑

xi = C is met. At this
time a central station will send this information and the agents will reduce their
individual xi; with a certain probability.

It is known that the evolution of the AIMD algorithm from congestion event to
congestion event can be described by a discrete-time linear positive system. This
system is of the form

(4) x(k + 1) = A(k)x(k)

where A(k) takes values in the set of AIMD matrices A, for details see [1]. Here
we describe a simplified version of these matrices.

At congestion event k each agent i updates its value to βi(k)xi(k), where βi(k) ∈
{β, 1}. The choice between these two options will happen in a random fashion
that still needs to be determined. At each congestion event there are therefore 2n

different possibilities for the future evolution. Let

B :=
{

β̃ ∈ R
n
∣

∣

∣ β̃i ∈ {β, 1} , i = 1, . . . , n
}

.

The set of AIMD matrices is then given by

(5) A :=

{

diag (β̃) +
1

n
e(e− β̃)⊤

∣

∣

∣

∣

β̃ ∈ B

}

.

Define the long-term average of a solution x(·) by

(6) x̄(k) =
1

k + 1

k
∑

ℓ=0

x(ℓ) .
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The algorithm is then described in the following manner: at every congestion event
k agent i chooses

(7) βi(k) :=

{

β with probability Γ
f ′

i (x̄i(k))
x̄i(k)

1 else.

All choices have to be independent of all other events. This induces a probability
for the choice of the matrix A(k) in (4) that depends on the complete history of
the process, namely on x̄(k). By augmenting the state to include x̄ we arrive at a
non-homogeneous Markov chain which has a remarkable convergence property.

Theorem. Consider the optimization problem (1) and let x∗ be the optimal point.
Consider the stochastic system described by (4) and the probability functions (7).
For any initial condition (x0, x̄0) we have that

lim
k→∞

x̄(k) = x∗ almost surely Px0 .

Our result says that by local modification of the individual probabilities the
agents can ensure almost sure convergence to the optimum. Note that agent i
only requires knowledge of its own evolution in order to perform the update of
the probability (7). Inter-agent communication is not necessary; rather the only
information needed is 1-bit intermittent message to all agents that congestion has
occurred. This suffices for convergence.

The proof relies on a detailed analysis of the deterministic set-valued system
underlying the Markov chain. The Hilbert metric on the relative interior of the
constraint set can be employed as Lyapunov function with nice robustness prop-
erties in a neighborhood of x∗. Globalization requires different arguments.
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Uncertain Consensus Networks: Robustness and its Connection to
Effective Resistance

Daniel Zelazo

(joint work with Mathias Bürger)

The consensus protocol has recently emerged as a canonical model for the study
of networked dynamic systems. In the linear setting, the consensus protocol, com-
prised of a collection of single integrator dynamic agents interacting over an in-
formation exchange network (the graph), has been studied from both dynamic
systems and graph theoretic perspectives [1]. The most basic setting considered
in consensus networks assumes an undirected connected graph with non-negative
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weights on the edges of the graph. In such a setting, it is well known that the
trajectories of all agents in the network converge to a common value. On the
other hand, the study of consensus networks with negative weights has received
less attention. Such networks can exhibit rich behaviour including trajectories
that synchronise, cluster, or are unstable. It is thus of interest to understand how
robust consensus networks are to uncertainties in the edge weights.

In this work, we study the robustness of the linear weighted consensus protocol
for n agents over the undirected and weighted graph G = (V , E ,W), corrupted by
a finite energy exogenous disturbance signal w ∈ Ln

2 [0,∞],

ẋi =
∑

j∼i

wij(xj − xi) + wi.

Here, wij is the real valued weight assigned to the edge {i, j} ∈ E , and the notation
j ∼ i indicates that {i, j} ∈ E . In vector notation, this is expressed using the
weighted Laplacian matrix, L(G) := E(G)WE(G)T , where E(G) is the incidence
matrix of the graph. We also introduce a controlled variable z, representing the
relative states of the system, to quantify the performance of the system, leading
to

Σ(G) :
{

ẋ = −L(G)x+w
z = E(G)Tx .(1)

We now introduce a notion of uncertainty into the edge agreement protocols. We
assume that the exact weights of a subset of edges are an uncertain but bounded
perturbation about some nominal value. In this direction, let E∆ ⊆ E denote the
set of uncertain edges. The nominal edge weight for an edge k ∈ E∆ is determined
by the weight function W ; i.e., the nominal weight of edge k is W(k) = wk. The
uncertainty of the weight on edge k is modelled as an additive perturbation to
the nominal edge weight as wk + δk with |δk| ≤ δ for some finite positive scalar δ.
Thus, we can define the uncertainty set as

∆ = {∆ : ∆ = diag{δ1, . . . , δ|E∆|}, ‖∆‖ ≤ δ}.
The uncertain consensus network can now be expressed as

Σ(G,∆) :

{

ẋ = −E(G)(W + P∆PT )E(G)Tx+w
z = E(G)Tx .(2)

The stability margins of the uncertain consensus network can now be under-
stood in the context of the celebrated small-gain theorem. While this can lead to
conservative results in general, we find that for certain graph structures, and in
particular for the case of uncertainties in only a single edge, the condition becomes
exact. Furthermore, it turns out that this condition relates to the notion of the
effective resistance of a graph [2]. The main result is summarized in the following
theorem.

Theorem 1 ([4]). Assume the unperturbed consensus network Σ(G) is stable and
let E∆ = {{u, v}} (i.e., |E∆| = 1). Then the uncertain consensus network Σ(G,∆)
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in (2) is robustly stable for all ‖∆‖∞ < R−1
uv (G), where Ruv is the effective resis-

tance between nodes u and v.

Theorem 1 has the physical interpretation of two resistors connected in parallel.
The effective resistance between nodes u and v, Ruv, represents a single resistance,
and the uncertainty in the edge connecting the nodes is a second resistor in parallel.
If the second resistance has a negative resistance exactly matched to the value of
Ruv, then the parallel interconnection creates an effective open-circuit. From a
graph-theoretic point-of-view, this is analogous to creating a cut in the graph
separating nodes u and v.

This talk explores the algebraic and graph-theoretic interpretations of the effec-
tive resistance of a network and its relationship to the definiteness of the weighted
Laplacian and the uncertain consensus network (2). Results are presented for the
case of a single uncertain edge. These results are also shown to lead to insights on
the clustering phenomena in consensus networks. Non-linear extensions including
edges with sector-bounded nonlinearities are also discussed.
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Open problem: Is there global convergence to a four-vehicle formation
shape?

Brian D. O. Anderson

We record below the equations governing motion of four point agents in the plane,
tasked with having to assemble into a certain shape that is defined by prescribed
inter-agent distances. The open problem is to show that the attractive convergence
properties of the algorithm which apply when the desired shape is rectangular
continue to hold for non rectangular shapes, i.e for a general quadrilateral shape
or a shape comprising a triangle together with an interior agent.

To be more precise, let p = [p1, p2, p3, p4]
⊤ ∈ R8 be a vector of the four agent

positions in the plane. Let d̄ = [d̄12, d̄13, d̄14, d̄23, d̄24, d̄34]
⊤ be a vector of desired

interagent distances that define the desired formation shape, while the vector d =
[d12, d13, d14, d23, d24, d34] with dij = ||pi−pj|| defines the instantaneous formation
shape. Note that six distances between four agents cannot be independent. In
fact, for generic positions pi, knowledge of five distances determines the remaining
distance up to a binary ambiguity.



648 Oberwolfach Report 12/2015

Reference [1] proposes a control law to achieve the desired shape. Each agent
compares its actual distance from each neighbour with the desired distance and
then moves to correct the value (if correction is needed) using the direction of the
neighbor. It is convenient to define errors using squares of the relevant distances:

(1) eij = d2ij(p)− d̄2ij .

The motion equation for agent i is then

(2) ṗi =
∑

j 6=i

eij(pj − pi)

This algorithm is actually a gradient descent law: with e(p) denoting the vector
of eij(p), define the function

(3) V (p) =
1

2
||e(p)||2

which quantifies the overall error between the actual and desired formations. Then
there holds

(4) ṗ = −∇V (p)

Because the law is a gradient law, there is always convergence to some stationary
point at which the gradient vector is zero.

Reference [1] included several examples of the use of this law, including one
where the desired formation was rectangular. From many initial conditions, the
desired rectangular shape was reached. However, an equilibrium point correspond-
ing to a rectangular shape with different side lengths and different ordering of
agents around the boundary of the rectangle was also exhibited.

The later work [2] (itself drawing on two intervening works) showed or sum-
marised facts derived in these works that

(1) Associated with a generic desired rectangular shape there are generically
two incorrect rectangular shapes, but they always correspond to saddle
points of the gradient algorithm;

(2) There can be incorrect equilibria in which agents are collocated or are
collinear, but these are also saddle points;

(3) There can be further incorrect equilibria again (in which the agent posi-
tions span two dimensions), but these are saddle points.

The upshot is that, provided one starts from an initial condition in which the agents
are not collinear, in practice one will always converge to the desired equilibrium
shape. (Of course, the orientation of the rectangle and the position of its centroid
are not encompassed in such a statement).

The open question is: suppose that the desired formation shape is not a rectan-
gle, but a general quadrilateral or an arrangement of the agents with three agents
forming a triangle and the fourth agent inside the triangle. Are all incorrect equi-
libria again saddle points?

By way of additional remarks, we note
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(1) Four agent formations with five rather than six defining edges are straight-
forward to handle. However, with prescribed distances, there are gener-
ically two noncongruent shapes consistent with the distances. (Imagine
a quadrilateral with a diagonal, and then observe one can flip one of the
triangles across the diagonal axis to get a noncongruent shape with the
same interagent lengths). The ambiguity might be undesirable in practice.
Specification of all six distances rather than five means there is a unique
shape i.e. all formations with the desired lengths are congruent.

(2) There is an extensive analysis of equilibrium points for four agent forma-
tions constrained to be collinear in [3] and of four agent formations in R3,
corresponding to a tetrahedron, in [4].

(3) There are elegant formulas for the Hessian matrix and alternative ways of
viewing the gradient descent equations which are set out in [2]
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Open problem: Languages for Hybrid Systems

Roger Brockett

Inspired by the idea going back to Rabin and Scot [1] of finite state languages
defined in terms of accepting states for suitable finite state automaton, the problem
posed here is that of specifying suitable languages for controlling hybrid systems.
Hybrid systems are a formalization of a wide class of real world systems whose
inputs are pairs (u, v) with u being a (possibly vector valued) function defined on
a finite interval an v being a symbol string. The following example of a hybrid
system is taken from my 1993 paper [2], is gaining new currency in view of the
interest in driverless cars.

Example. Consider a simplified model for the engine-transmission system of an
automobile with a manual transmission. We view the system as having a throttle
position (u) and gear shift lever position (v) as inputs and engine rpm and ground
speed as outputs. The throttle position and the gear shift position are “analog”
and “digital”, respectively. The gear shift is necessary because the torque-speed
relationship of an engine is such that little power can be developed at very low, or
very high, engine rpm. To circumvent this difficulty the system is equipped with
an accelerator that controls engine speed and a finite set of gear configurations that
determine the gear ratio between the engine and the drive wheels. The function
of the (discretely) variable gear ratio transmission is to let the driver get adequate
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power from the motor at a given ground speed by making it possible to operate
the engine at an advantageous segment of the speed-torque curve. A crude, but
illustrative (completely nondimensionalized) hybrid model is provided by

ẋ1(t) = x2(t)
ẋ2(t) = (−a(x2(t)) + u(t))/(1 + v⌊p⌋)
ṗ(t) = k

This can be thought of as a system that satisfies Newton’s second law of motion
in rotational form. The a( ) term models the relationship between engine speed
and engine torque. The term (1 + v⌊p⌋) represents the fact that the effective
inertial seen by the engine changes when the gear ratio changes.

An important practical question that arises in treating hybrid systems involves
the tradeoff between the complexity of the input signals and the expressiveness
of the language. Because the language must be interpreted it should not be too
complex; but because the system is to be flexible language restrictions should not
impose too many constraints on the expressiveness. Can one find a limited set of
input strings based on an instruction set (U, V ) that will allow a good approxima-
tion to any desired set of motions with adequate robustness. A regulation problem
might involve finding a string of instructions that will maintain a desirable rela-
tionship between inputs and outputs without requiring more information than is
available through the observations.

Because the elements of v are used directly in the evolution equation, the achiev-
able resolution in the space of x-trajectories is directly related to the cardinality
of the set V . At the same time, The real-valued inputs represented by u may be
limited as would be the case, for example, if they were required to be third order
splines with 16 bit coefficients. Our idea here is that one may specify a language
for hybrid systems by asking that elements of the language should transfer the hy-
brid system to a particular state, or set of states while satisfying some variational
principle such as a combination of minimum length and minimum L2 norm. The
set of accepting states might, for example, be the set of all equilibrium states of
the system.
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Open problem: Strict Dissipativity and the Turnpike Property

Lars Grüne

This open problem considers discrete time optimal control problems of the form

minimize
u(·)

JN (x(0), u(·)), JN (x(0), u(·)) =
N−1
∑

k=0

ℓ(x(k), u(k))

s.t.
x(k + 1) = f(x(k), u(k)), x(k) ∈ X, u(k) ∈ U.

Here f : X × U → R
n is the dynamics, ℓ : X × U → R is the stage cost and

X ⊂ Rn and U ⊂ Rm are the state and control constraint set, respectively, which
for siplicity of exposition we assume to be compact. Optimal trajectories (which
we neither assume to exist nor to be unique) will be denoted by x∗(·)

The turnpike property now demands that there exists a point xe ∈ X such that
any optimal trajectory, regardless of its initial value, stays in a neighborhood of
this point xe ∈ X for a time which is independent of N . Formally this can be
expressed as follows.

Turnpike Property. There exists xe ∈ X such that for any ε > 0 there exists
P ≥ 0 such that for all N ≥ P and all optimal trajectories x∗(·) of length N the
inequality

‖x∗(k)− xe‖ > ε

holds for at most P time indices k = 0, . . . , N .

Turnpike properties have been investigated at least since the seminal work by
von Neumann in [7]. The name “turnpike property” goes back to Dorfman et al.
[3] and the form presented here is the discrete time variant of the version found
in Carlson et al. [2]. They have recently gained renewed interest in the context of
economic model predictive control [4, 5].

The second property we are investigating goes back to Willems [8, 9].

Strict Dissipativity. There exists an equilibrium xe ∈ X with corresponding
control value ue ∈ U (i.e., f(xe, ue) = xe) and a storage function λ : X → R and
ρ ∈ K∞ such that the inequality

(1) ℓ(x, u)− ℓ(xe, ue) + λ(x) − λ(f(x, u)) ≥ ρ(‖x− xe‖)
holds for all x ∈ X and all u ∈ U.

Like the turnpike property, strict dissipativity has also turned out to be very
useful for analysing economic model predictive control schemes [1, 4, 5]. Partic-
ularly, it was shown in Theorem 5.3 of [4] (which is essentially a discrete time
version of a result in [2]), that under a suitable controllability assumption and if
λ is bounded on X, then the implication

(2) strict dissipativity ⇒ turnpike property

holds. The open problem now is:

Under which assumptions does the converse implication to (2) hold?
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It should be noted that a partial answer can possibly be obtained using the
results from chapter 4 of [6], however, this reference does not use the turnpike
property but the related notion of optimal operation at steady state and it does
not show that this property implies strict dissipativity but only dissipativity, i.e.,
(1) with “0” in place of “ρ”. Nevertheless, the techniques used in this reference
might also be useful for answering the open problem.
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Open problem: Stabilization of nonlinear controllable systems by
using trigonometric polynomials

Alexander Zuyev

This talk addresses the stabilization problem for nonlinear control systems of the
form

(1) ẋ = f(x, u), x ∈ D ⊂ R
n, u ∈ U ⊂ R

m,

where x is the state, u is the control, f(x, u) is smooth in the domain D × U ,
(0, 0) ∈ D × U , and f(0, 0) = 0.

In contrast to the theory of linear control systems, it is a well-known fact that
the controllability of system (1) does not imply its stabilizability by a regular state
feedback law. In particular, the equilibrium x = 0 of a nonholonomic system

(2) ẋ =

m
∑

j=1

ujfj(x), x ∈ D ⊂ R
n, u ∈ R

m, m < n

cannot be made asymptotically stable by a differentiable feedback law u = k(x),
k(0) = 0 if the vectors f1(0), f2(0), ..., fm(0) are linearly independent [2]. This
negative result also holds for the class of discontinuous state feedback laws provided
that the solutions of the closed-loop system are defined in Filippov’s sense [7].
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Thus, two main strategies can be used to prove stabilizability of general con-
trollable systems. In the first strategy, the equilibrium of controllable system (1)
can be stabilized by means of discontinuous feedback laws by specifying “exit
rule” on the singular set [8] (in the analytic case) or by defining the solutions
(“π-trajectories”) in the sense of sampling [3]. The second strategy is based on
the use of time-varying feedback laws u = k(x, t). It was shown by J.-M. Coron [4,
Theorem 11.28] that if system (1) satisfies the Lie algebra rank condition at
(0, 0) ∈ Rn × Rm, x = 0 is locally continuously reachable in small time, and
n /∈ {2, 3}, then system (1) is locally stabilizable in small time by means of al-
most smooth periodic time-varying feedback laws. It should be emphasized that
the proofs of these stabilizability results are not constructive, so that there is no
universal control design scheme available for general controllable systems.

In this talk, we raise the question whether it is possible to construct a stabi-
lizing controller u = k(x, t) as a trigonometric polynomial with respect to t with
coefficients depending on x, provided that the conditions of Coron’s theorem are
satisfied. For a particular class of driftless control-affine systems, this problem can
be formulated as follows.

Open problem. Assume that

Liex=0{fj | 1 ≤ j ≤ m} = R
n.

Is it possible to construct a time-varying feedback law

(3) uj =

N
∑

k=−N

vkj(x)e
iωkt, j = 1, 2, ...,m,

for some N ≥ 0 and ω > 0, such that the trivial solution of the closed-loop sys-
tem (2), (3) is asymptotically stable? The functions vkj(x) are assumed to be
piecewise smooth, vkj(x) = v−kj(x) for all x ∈ D, and vkj(x) → 0 as x→ 0.

We treat the construction of controller (3) as an algorithm that computes vkj(x)
in terms of solutions of auxiliary algebraic systems whose coefficients depend on
f1(x), f2(x), ..., fm(x) and their Lie brackets at a point x ∈ D.

To justify the choice of parameterization in (3), we note that sinusoidal inputs
appear naturally as optimal controls for the nonholonomic integrator with the L2-
norm cost function [1]. Fast oscillating open-loop controls are known to be effective
in the motion planning problem for nonholonomic systems (see, e.g., [6, 5]).

In this talk, we illustrate the possibility of feedback design in the form (3)
for a class of systems (2) satisfying the controllability condition with the first
order Lie brackets [9]. To the best of our knowledge, the problem of constructing
such stabilizing controllers remains open for nonlinear systems under higher order
controllability conditions.
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