
Mathematisches Forschungsinstitut Oberwolfach

Report No. 13/2015

DOI: 10.4171/OWR/2015/13

Discrete Differential Geometry

Organised by
Alexander I. Bobenko, Berlin
Richard Kenyon, Providence
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Introduction by the Organisers

Discrete Differential Geometry is a very productive research area on the border
between differential and discrete geometry. It aims to develop discrete equivalents
of various notions and methods from classical differential geometry. The focus
on discretization problems ensures strong connections to mathematical physics,
numerical analysis, computer graphics and other applications.

This was the fourth Discrete Differential Geometry conference at Oberwolfach.
The subject has evolved significantly since its beginning a decade ago. This years’s
conference higlighted advances in particular in the areas of discrete uniformiza-
tion, discrete surface theory, mathematical structures of integrability and cluster
algebras, discretizations of PDEs and analysis on manifolds with applications to
computer graphics.

The workshop featured many talks on discrete differential geometry problems
motivated by applications in computer graphics. This area becomes an increas-
ingly important source of inspiration for theoretical advances in discrete differential
geometry. Some systems have natural discretizations which have even more math-
ematical structure then their continuous counterparts, and often finding the right
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discretizations makes a huge difference in efficiency. This phenomenon was demon-
strated in many talks. The variety of problems varied from new ideas on generating
of strip patterns with constant spacing in the talk by Pinkall, and on modelling of
(piecewise) developable surfaces in the talk by Wallner to a representation of dis-
crete vector fields as linear operators by Ben-Chen. Further topics directly related
to applications included spectral analysis on meshes (Tong), seamless mappings
between meshes (Lipman), linear operators on surfaces of revolution (Kazhdan),
surfaces with nested layers (Jacobson), topological data analysis of shapes from
sampled data (Bauer), consequent optimization with various norms (Zorin).

Traditionally for this workshop new results on discrete uniformization theory
were presented. This includes a new uniformization theorem of surfaces with poly-
herdal metric (Luo), dealing with meshes with changing combinatorics. Discrete
conformal maps for general polyhedral surfaces and in particular experimental
results on their convergence to smooth conformal maps were discussed by Spring-
born. Other talks on harmonicity (discrete enharmonic functions) and holomor-
phicity (discrete s-holomorphic functions appearing in the Ising model) were due
to Kenyon and Chelkak. A description of inscribed polytopes related to discrete
uniformization theory was given by Schlenker. Sanyal developed a quite different
side of the polytope theory based on convex algebraic geometry.

Discrete surface theory is another traditional topic at this workshop. This
year there was an emphasis on merging of the methods from the general the-
ory of simplicial surfaces and from integrable geometry: We had talks on simpli-
cial (non-parametrized) special classes of surfaces (Lam) as well as on quadrilat-
eral (parametrized) rather general surfaces (Sageman-Furnas). Rörig described a
piecewise smooth extension of nets with planar quadrilateral faces. A completely
different approach of modelling surfaces as origami tesselations was presented by
Vouga.

Mathematical structures of integrability and cluster algebras was another hot
topic of the workshop. Here we heard talks by Schief, King and Fock on distin-
guished discrete integrable models as well as on various approaches aiming at their
classification.

A solution of a classification problem coming from Riemannian geometry was
presented in the talk by Brehm. There were also a few talks (Akopyan, Nilov,
Tabachnikov) on concrete geometric problems including line nets with circum-
scribed quadrilaterals, circular webs and the circumcenter of mass.

The organizers are grateful to all participants for all the lectures, discussions,
and conversations that combined into this very lively and successful workshop -
and to everyone at Research Institute in Oberwolfach for the perfect setting.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Some small theorems about discrete conformal maps

Boris Springborn

(joint work with A. Bobenko, S. Sechelmann, U. Bücking, and S. Born)

We consider polyhedral surfaces made from gluing convex euclidean polygons that
are inscribed in circles. Two such surfaces are considered discretely conformally
equivalent if they are combinatorially equivalent and the lengths ℓij and ℓ̃ij of

corresponding edges are related by ℓ̃ij “ e
ui`uj

2 ℓij , where ui are logarithmic scale
factors associated to the vertices. For triangulations, inscribability of faces is no
restriction and this notion of discrete conformal equivalence is well known [4], [3].

The first part of the talk is concerned with observations and results [2] about the
similarities and differences of discrete conformal equivalence for triangulations and
for general polyhedral surfaces, in particular if all face degrees are even, or equal
to four. Two triangulations are discretely conformally equivalent if and only if the
length cross ratios for corresponding interior edges are equal [3]. Two quadrangu-
lations are discretely conformally equivalent, if and only if the complex cross ratios
of corresponding faces are equal. Like in the triangle case, the discrete conformal
mapping problem (find a discretely conformally equivalent surface with prescribed
angle sums at vertices) is variational: The unknown logarithmic scale factors min-
imize a convex functional. This implies that solutions are unique if they exist.
We comment on a couple of phenomena that are particular to quadrangulations
and connected to the the edge graph being bipartite: the occurrence of orthogonal
circle patterns among the solutions, and necessary conditions on angle sums at
the boundary that have to hold for “black” and “white” vertices separately. We
discuss examples of discrete conformal maps and experimental results on the rate
of convergence to smooth conformal maps (which is conjectured).

The second part of the talk, which had to be cut due to lack of time, was to
deal with results on the quasiconformal distortion of projective maps and appli-
cations to discrete conformality [1]. The starting point of this research was the
observation that circumcircle preserving piecewise projective interpolation between
triangulations, which is continuous across the edges if and only if two triangula-
tions are discretely conformally equivalent, “looks better” than piecewise linear
interpolation [5]. Is this due to lower quasiconformal distortion? As it turns out,
the contour lines of the quasiconformal distortion of a projective transformation of
RP2 (that is not an affine transformation) form a hyperbolic pencil of circles. (We
identify RP2 with the union of C and a line at infinity.) The circles of this pencil
are the only circles that are mapped to circles. When a triangle is mapped to an-
other triangle by a circumcircle preserving projective transformation, the maximal
quasiconformal distortion is attained simultaneously at all three vertices, and this
value is equal to the constant quasiconformal distortion of the affine linear map
between the triangles. Of all projective transformations that map between two
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fixed triangles, the maximal quasiconformal distortion is minimal for the projec-
tive transformation that maps angle bisectors to angle bisectors. Angle bisector
preserving piecewise projective interpolation is also continuous across edges if and
only if the triangulations are discretely conformally equivalent. There is a one-
parameter family of piecewise projective interpolations with this property, of which
the circumcircle and angle bisector preserving ones are special cases.
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From isothermic triangulated surfaces to discrete holomorphicity

Wai Yeung Lam

(joint work with Ulrich Pinkall)

Isothermic surfaces are building blocks in classical differential geometry. They
include all surfaces of revolution, quadrics, constant mean curvature surfaces and
many other interesting surfaces. A smooth surface in Euclidean space is called
isothermic if it admits conformal curvature line parametrization around every
point. However there are various characterizations of isothermic surfaces that
do not refer to special parametrizations.

We propose a definition of isothermic triangulated surfaces which does not in-
volve the notion of conformal curvature line parametrizations. Its motivation is a
result from the smooth theory that a surface is isothermic if and only if locally it
admits an infinitesimal isometric deformation preserving the mean curvature. Let
Vin, Ein denote the sets of interior vertices and edges respectively.

Definition 1. A triangulated surface f : M Ñ R3 is isothermic if there exists a
R3-valued dual 1-form τ such that

ÿ

j

τp˚eijq “ 0 @vi P Vin

dfpeq ˆ τp˚eq “ 0 @e P Einÿ

j

xdfpeijq, τp˚eijqy “ 0 @vi P Vin.



Discrete Differential Geometry 667

Corollary 1. A simply connected triangulated surface immersed in Euclidean
space is isothermic if and only if there exists a non-trivial infinitesimal isometric
deformation preserving the integrated mean curvature H : Vin Ñ R defined by

Hi :“
ÿ

j

αijℓij @vi P Vin

where α and ℓ denote dihedral angles and edge lengths respectively.

These triangulated surfaces resemble isothermic surfaces in the smooth theory.
Isothermic triangulated surfaces can be characterized in terms of the theory of
discrete conformality: circle patterns and conformal equivalence. It is shown that
this definition generalizes isothermic quadrilateral meshes proposed by Bobenko
and Pinkall. In particular,

Theorem 1. The class of isothermic triangulated surfaces is Möbius invariant.

As a result, we obtain a discrete analogue of the Weierstrass representation for
minimal surfaces. We define discrete minimal surfaces as the reciprocal-parallel
meshes of triangulated surfaces with vertices on a sphere. The Weierstrass data
consists of an immersed planar triangular mesh and a discrete harmonic function.
Given an immersed planar triangular mesh, there is a 1-1 correspondence between
discrete harmonic functions and the reciprocal-parallel meshes of its spherical im-
age. Such harmonic functions appear in linear discrete complex analysis with
applications to statistical physics (see Smirnov [5]). Figure 1 shows that our con-
struction can be applied to minimal surfaces with umbilic points.

Figure 1. A discrete minimal surface with an umbilic point

Finally, we focus on planar triangular meshes. A simple relation among confor-
mal equivalence, circle patterns and the linear theory of discrete complex analysis
is found [3].
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Towards a curvature theory for general quad meshes

Andrew O. Sageman-Furnas

(joint work with Tim Hoffmann and Max Wardetzky)

Motivation from integrable geometry

Surfaces of constant (mean or Gauss) curvature are often expressed in special
parametrizations (e.g., conformal curvature line or asymptotic line), where their
integrability equations reduce to completely integrable (”soliton”) PDEs from the-
oretical physics. For each of these specially parametrized constant curvature sur-
faces, there exists a one parameter associated family that stays within the surface
class (e.g., minimal surfaces stay minimal), but the parametrization may change.

Discrete partial finite difference analogues for many of these integrable PDEs
have been discovered, where discrete integrability is encoded by a certain closing
condition around a 3D cube [5]. In this way algebraic constructions for discrete
analogues of different classes of surfaces (reviewed in [3]), such as minimal surfaces,
surfaces of constant mean curvature, and constant negative Gauss curvature, have
been described, together with their one parameter associated families. However, a
general notion of curvatures for these surfaces that is constant for the appropriate
algebraic constructions has been lacking.

Investigating the geometry of these algebraic families leads us to the following
curvature theory, which not only retrieves the thoroughly investigated curvature
definitions in the case of planar quads [8, 4], but extends to the general setting of
nonplanar quad meshes.

Quad meshes as discrete parametrized surfaces

A natural discrete analogue of a smooth parametrized surface patch is given by
a quad mesh patch, a map f : D Ă Z2 Ñ R3 with nonvanishing straight edges.
Notice, in particular, that the quadrilateral faces in R3 may be nonplanar. Piecing
together such patches defines a quad mesh with more general combinatorics and is
understood as an atlas for a surface. To every vertex of a quad mesh we associate
a unit ”normal” vector and define the corresponding map, written per patch as
n : D Ă Z2 Ñ S2, as the discrete Gauss map. An arbitrary Gauss map will not
be ”normal” to its quad mesh, so we only allow for those Gauss maps that satisfy
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a certain constraint along each edge. The resulting class of edge-constraint quad
meshes is our focus.1

Definition 1. A quad mesh f with Gauss map n is called edge-constraint if for
every edge of f in R3 the average of the normals at its end points is perpendicular
to f , i.e., for i “ 1, 2 we have pfi ´ fq ¨ 1

2
pni ` nq “ 0.

Curvatures from offsets. For an edge-constraint quad mesh f with Gauss map
n, the offset family is given by adding multiples of the Gauss map to each vertex,
i.e., f t :“ f ` tn. Notice that every mesh of the offset family is edge-constraint
with the same Gauss map. In the smooth setting, corresponding tangent planes
between a surface, its normal offsets, and common Gauss map are parallel. This
allows one to compare areas and derive curvatures.

In order to mimic this definition of curvatures in the discrete case, let Qn “
pn, n1, n12, n2q be a Gauss map quad with corresponding quad Qf “ pf, f1, f12, f2q
and offset quads Qft . Define the discrete Gauss map partial derivatives as the
midpoint connectors of Qn, i.e., nx :“ 1

2
pn12 `n1q ´ 1

2
pn2 ` nq and ny :“ 1

2
pn12 `

n2q ´ 1
2

pn1 ` nq. We define the common quad tangent plane between Qn, Qf , and

Qft as the plane spanned by nx, ny; and we call N :“ nxˆny

}nxˆny} the projection

direction.2 The midpoint connectors of Qf and Qft do not lie in this common
tangent plane, so we project them to the plane spanned by nx and ny. The partial
derivatives fx, fy and f t

x, f
t
y are each defined as the projection (induced by N) of

the corresponding midpoint connectors.
The curvature theory for edge-constraint quad meshes is now built per quad

and mimics the smooth setting.

Definition 2. The mixed area form per quad of two quad meshes g, h sharing a
Gauss map n is given by Apg, hq :“ 1

2
pdetpgx, hy, Nq ` detphx, gy, Nqq.

Note that when corresponding quads of g, h and n are in fact planar, lying in
parallel planes, and h “ g then the quantity Apg, gq coincides with the usual area
of a quad.

Lemma 1. The area of an offset quad satisfies the Steiner formula: Apf t, f tq “
Apf, fq ` 2tApf, nq ` t2Apn, nq.

As in the smooth setting, factoring out Apf, fq defines the mean and Gauss
curvature.

Definition 3. The mean and Gauss curvature per quad of an edge-constraint

quad mesh are given by H :“ Apf,nq
Apf,fq and K :“ Apn,nq

Apf,fq , respectively.

1We make use of shift notation to describe quantities per quad: f :“ fpk, ℓq, f1 :“ fpk`1, ℓq,
and f2 :“ fpk, ℓ ` 1q, so f12 :“ fpk ` 1, ℓ ` 1q; n, n1, n2, and n12 are defined similarly.

2To include the cases when nx and ny are parallel (corresponding to developable, i.e., vanishing
Gauss curvature, surfaces), we in fact define a family of projection directions U :“ tN P S2| N K
spantnx, nyuu. The mean and Gauss curvatures are invariant to the choice of N P U .
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Fundamental forms, shape operator, and principal curvatures. Funda-
mental forms of a parametrized surface can be written in terms of the partial
derivatives in the tangent plane at each point. The same formulas define these
objects per common quad tangent plane of an edge-constraint quad mesh.

Definition 4. The fundamental forms are defined as I :“
ˆ
fx ¨ fx fx ¨ fy
fy ¨ fx fy ¨ fy

˙
,

II :“
ˆ
fx ¨ nx fx ¨ ny

fy ¨ nx fy ¨ ny

˙
, and III :“

ˆ
nx ¨ nx nx ¨ ny

ny ¨ nx ny ¨ ny

˙
. The shape operator

is given by S :“ I´1II.

Observe that the Gauss map being normal to the surface guarantees the exis-
tence of principal curvatures and curvature lines.

Lemma 2. The edge-constraint implies that the second fundamental form is sym-
metric pfx ¨ ny “ nx ¨ fyq, so the shape operator is diagonalizable.

Definition 5. The real eigenvalues k1, k2 of the shape operator are the principal
curvatures per quad. The corresponding eigenvectors yield curvature directions in
each quad tangent plane.

The expected relationships hold between the principal curvatures, fundamental
forms, and the mean and Gauss curvatures defined via the Steiner formula.

Lemma 3. The following are true in the smooth and discrete case:
1. K “ k1 k2 “ det II{ det I, 2. H “ 1

2
pk1 ` k2q,

3. III ´ 2HII ` KI “ 0, and 4. Apf, fq2 “ det I.

Constant curvature quad meshes

It turns out that many integrable geometries are edge-constraint quad meshes of
the appropriate curvature; an example of non integrable geometry is recovered,
too. For more details see [6].

Theorem 1. The following previously defined algebraic quad meshes are edge-
constraint of the appropriate constant curvature:

1. Discrete minimal [2] and their associated families,
2. Discrete cmc [3] and their associated families,
3. Discrete constant negative Gauß curvature [1] and their associated families,

Theorem 2. Discrete developable quad meshes built from planar strips [7] can be
extended to edge-constraint quad meshes with vanishing Gauss curvature.
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Discrete line complexes and integrable evolution of minors

Wolfgang K. Schief

(joint work with Alexander I. Bobenko)

Two-parameter families of lines termed line congruences constitute fundamental
objects in classical differential geometry [1]. Their importance in connection with
the geometric theory of integrable systems has been well documented (see [2]
and references therein). Recently, in the context of integrable discrete differential
geometry [3], attention has been drawn to discrete line congruences [4], that is,
two-parameter families of lines which are combinatorially attached to the vertices
of a Z2 lattice. Discrete Weingarten congruences have been shown to lie at the
heart of the Bäcklund transformation for discrete pseudospherical surfaces [5, 6,
7]. Discrete normal congruences have been used to define Gaussian and mean
curvatures and the associated Steiner formula for discrete analogues of surfaces
parametrised in terms of curvature coordinates [8, 9, 10]. Discrete line congruences
have also found important applications in architectural geometry [11].

Here, we are concerned with the extension of discrete line congruences in a
three-dimensional complex projective space CP3 to three-dimensional “lattices of
lines”, that is, maps of the form

l : Z3 Ñ tlines in CP3u.
These three-parameter families of lines which may be termed discrete line com-
plexes admit remarkable algebraic and geometric properties if one imposes canon-
ical geometric constraints. Thus, a discrete line complex is fundamental if the two
lines combinatorially attached to the vertices of any edge of the Z3 lattice intersect
and the four points of intersection associated with any four edges of the same type
of an elementary cube are coplanar. This is illustrated in Figure 1. It is observed
that, equivalently, any four “diagonals” of the same type as depicted schematically
in Figure 1 may be required to be concurrent. Fundamental line complexes are
termed discrete rectilinear congruences in [4]. The following summary is based on
[12] and a forthcoming publication.
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Figure 1

It turns out that if one parametrises generic lines of a fundamental line complex
l in terms of homogeneous coordinates

V “ p1,M45,45,M44,M55,M54,M45q
of points in the classical (complexified) Plücker quadric Q4 embedded in a five-

dimensional complex projective space CP
5 then the condition xV,Vy “ 0 ô rVs P

Q4 shows that M45,45 is just the determinant of the matrix

M̂ “
ˆ
M44 M45

M54 M55

˙
,

the entries of which obey the algebraic system (with M ik
l “ M ik|nlÑnl`1)

M ik
l “ M ik ´ M ilM lk

M ll
, l P t1, 2, 3uzti, ku,

where the auxiliary quantities M ik, i, k R t4, 5u likewise satisfy the above system.
This system of discrete evolution equations for the entries M ik of the matrix
M “ pM ikqi,k“1,...,5 (and, in turn, its minors) is termed M -system in [12] and
is integrable in the sense of multi-dimensional consistency [3]. In fact, it plays a
privileged role in the algebraic and geometric theory of discrete and continuous
integrable systems.

The algebraic characterisation of fundamental line complexes in terms of the
M -system gives rise to the consideration of sub-geometries by virtue of admissible
constraints on the matrix M. If M is real then the Plücker quadric of signature
p3, 3q is real and real fundamental line complexes are obtained. If M is Hermitian,
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that is, M: “ M then the associated subset of points in the complex Plücker
quadric may be identified with the points of a real Lie quadric of signature p4, 2q.
Hence, the admissible lines in CP3 are now interpreted as oriented spheres in a
three-dimensional Euclidean space R3 and the intersection of lines becomes ori-
ented contact of spheres, resulting in fundamental sphere complexes. Fundamental
circle complexes on the plane are obtained by assuming that M is real and sym-
metric, that is, MT “ M, corresponding to the restriction of the Plücker quadric
to a Lie quadric of signature p3, 2q. These sphere and circle complexes may also
be defined geometrically due to a characterisation of fundamental line complexes
in terms of correlations of CP3.

Fundamental circle complexes may be parametrised in terms of Bäcklund-
related solutions of the master discrete CKP (dCKP) equation of integrable sys-
tems theory [13]. The latter was obtained by Kashaev [14] in the context of
star-triangle moves in the Ising model. It constitutes a canonical reduction of the
“hexahedron recurrence” proposed by Kenyon and Pemantle [15] which admits a
natural interpretation in terms of cluster algebras and dimer configurations. It is
noted that the dCKP equation interpreted as a local relation between the princi-
pal minors of a symmetric matrix M has been derived as a characteristic property
by Holtz and Sturmfels [16] in connection with the ‘principal minor assignment
problem’.

In the spirit of Klein’s Erlangen program, “deeper” reductions in Möbius, La-
guerre and “hyperbolic” geometry may be obtained by imposing appropriate geo-
metric constraints. These lead to the consideration of interesting classical and
novel “circle theorems” such as (analogues of) Miquel’s theorem and Clifford’s
chain of circle theorems. In the case of Möbius geometry, novel integrable hexag-
onal circle patterns have been brought to light.
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Supercyclidic nets

Thilo Rörig

(joint work with Emanuel Huhnen-Venedey and Alexander I. Bobenko)

We present the extension of discrete conjugate nets, i.e., nets with planar quadri-
lateral faces, to piecewise smooth surface patchworks consisting of supercyclidic
patches. Previously, such extensions have been studied for circular nets in [1] and
discrete A-nets in [5]. For a detailed study and further references we refer to [2].

2D supercyclidic nets. Supercyclides are surfaces with a characteristic conju-
gate parametrization consisting of two families of conics such that the tangent
planes along each conic envelop a quadratic cone.

Figure 1. Three different types of supercyclides.

The image of the restriction of the characteristic conjugate parametrization
to a rectangle yields a supercyclidic patch. These supercyclidic patches have the
property that the corners lie in a plane and hence they can be attached to a Q-
net, a discrete quadrilateral net with planar faces. We call a Q-net with adapted
supercyclidic patches such that neighboring patches have the same tangent cones
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at the common conic segment a supercyclidic net. For an entire 2-dimensional
Q-net with regular combinatorics we formulate the following Cauchy problem:

(1) Given the supporting Q-net x : Z2 Ñ RP3,
(2) two tangent congruences along two intersecting

coordinate lines for each coordinate direction, and
(3) two conic splines, one along each coordinate lines.

This problem has a unique solution and yields a piecewise smooth supercyclidic
net adapted to the Q-net. The obtained tangent congruences are line systems
adapted to Q-nets studied in [4] and fundamental line complexes in the sense
of [3].

Figure 2. A 2-dimensional supercyclidic net and a 3-dimensional
supercyclidic cube.

3D supercyclidic nets. In the 3-dimensional case we consider cubes with su-
percyclidic patches attached to the six faces. We show that three patches of a
supercyclidic cube that share one vertex and cyclically sharing a common bound-
ary curve each, determine the three opposite faces. Accordingly, the extension of
a cube with planar faces to a supercyclidic cube is uniquely determined by the
free choice of three patches. These supercyclidic cubes come with a refinement
in all coordinate directions and yield piecewise smooth 3-dimensional coordinate
systems.

Additionally, supercyclidic nets give rise to a 3D system. So from given initial
data on three coordinate planes we can construct 3-dimensional supercyclidic nets.
If we consider initial data on the coordinate axes as for 2D supercyclidic nets and
generate the corresponding nets on the coordinate planes, then all surface patches
will share the tangent cones along common edges in any 2D net parallel to the
coordinate planes. Furthermore, the system is multidimensionally consistent.

Motivated by the theories of cyclidic and hyperbolic nets, we define fundamental
transformations of supercyclidic nets by combination of the according smooth and
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discrete fundamental transformations of the involved SC-patches and supporting
Q-nets, respectively.

It turns out that two mD supercyclidic nets are fundamental transforms if and
only if they may be embedded as two consecutive layers of an pm`1q-dimensional
supercyclidic net.

Frames of supercyclidic nets. One essential aspect of the theory is the exten-
sion of a given Q-net in RPN to a system of circumscribed discrete torsal line
systems. We present a description of the latter in terms of projective reflections
that generalizes the systems of orthogonal reflections which govern the extension
of circular nets to cyclidic nets by means of Dupin cyclide patches.
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Discrete Tangent Vector Fields as Linear Operators

Mirela Ben-Chen

(joint work with Omri Azencot, Steffen Weißmann, Frederic Chazal, Maks
Ovsjanikov and Max Wardetzky)

Tangent vector fields on discrete surfaces are abundant in various applications
in geometry processing. For example, tangent vector fields are used for guiding
texture synthesis and quadrangular remeshing, as well as for representing the
fluid’s velocity in flow simulation on surfaces. Various choices are available for
representing tangent vector fields on triangle meshes, such as an arrow per vertex
or an arrow per face. In [1] we suggested instead to take the approach commonly
used in differential geometry, and represent discrete tangent vector fields as linear
operators on discrete functions. The main advantage of this approach is that
discrete scalar functions can be represented using a finite basis, and then a discrete
tangent vector field v can be represented by a square matrix Dv.

This methodology has a few immediate applications to geometry processing.
First, consider for example the computation of the flow lines of a discrete vector
field v, which is known to be a difficult problem. Using the operator Dv, we
can define the pushforward of a function f0 along the flow lines of v at time t as:
fptq “ expptDvqf0, where exp is the matrix exponential. Under a suitable choice of
basis for discrete functions, the matrix Dv is sparse, and the previous computation
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can be done efficiently. Furthermore, the operator Dv fulfills a discrete version
of integration by parts, and therefore this definition of pushforward guarantees
that the integral of fptq over the mesh is independent of t if the vector field v is
divergence free.

As an additional example, in [2] we showed how this approach can be used
for simulating incompressible fluids on surfaces. For such fluids, the equations of
motion can be formulated as Btωptq “ ´Dvptqωptq, where vptq is the divergence
free velocity of the fluid at time t, and ωptq is its vorticity. By taking a fixed
velocity vk per iteration k, we can similarly use the exponential of Dvk to derive
an efficient and simple simulation algorithm.
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Cluster categories from dimer models

Alastair King

(joint work with B.T. Jensen, X. Su, K. Baur, R. Marsh)

The homogeneous coordinate ring An
k of the Grassmannian of k-planes in Cn is

generated by Plücker coordinates (or minors) ∆J , for J P
`
n
k

˘
, subject to quadratic

Plücker relations. For example, in A4
2, there is the one short Plücker (or Ptolemy)

relation
∆13∆24 “ ∆12∆34 ` ∆14∆23

As a motivating example of their theory of cluster algebras, Fomin-Zelevinsky [4]
showed that An

2 has a cluster structure of finite (Dynkin) type An´3 in which the
‘cluster variables’ are the minors, arranged into ‘clusters’ each corresponding to a
triangulation of an n-gon and for which the ‘exchange relations’ are the Ptolemy
relations. Scott [6] generalised the cluster structure to all An

k , showing that the
only other finite type cases are for k “ 3 and n “ 6, 7, 8, where the Dynkin types
are D4, E6, E8.

One may observe that this numerology matches the fact that the plane curve
singularity xk “ yn´k is simple in precisely these finite type cases and of the same
type. One aim of this talk is to shed some light on this apparent coincidence.

Following the foundational work of Buan-Marsh et al [2], one looks for a cate-
gory behind any cluster algebra, which naturally encodes the cluster structure. In
particular, the cluster variables should be ‘characters’ of the rigid indecomposable
objects in the category and the clusters correspond to maximal rigid objects. Tech-
nically speaking, this category should be a stably 2-Calabi-Yau Frobenius category,
whose exact structure encodes the exchange relations in a particular way.

In the case of An
2 , it is possible to guess this category, inspired by the com-

binatorics of Coxeter-Conway frieze patterns [3], which can themselves now be
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understood in the broader context of cluster algebras. For example, for A5
2 a pic-

ture (technically, the Auslander-Reiten quiver) of the category is given in Figure 1.
Note that the labels ij and ji represent the same object, with character ∆ij , and
the dashed squares commute.

51

54

12

15

23 34 45

52

53

13

14

24

25

35´´

´´

´´

´´

´´

Figure 1. The cluster category for A5
2.

It is natural to ask how to realise this category as a module category and to
guess, as verified in [5], that it is the category CMpBq of Cohen-Macaulay modules
for the algebra B “ EndpP q, where P is the direct sum of the projective-injective
objects in the Frobenius category, e.g. the objects along the border of the ‘frieze’
in Figure 1. It can be easily checked that, in this An

2 case, B is the path algebra
of the quiver depicted on the right of Figure 2, modulo the relations xy “ yx and
x2 “ yn´2.

However, P must also be a summand of any maximal rigid object and so B will
be an idempotent subalgebra eCe of any ‘cluster tilted algebra’ C “ EndpXT q,
for the maximal rigid object XT associated to a cluster/triangulation T . The
question then arises as to how to determine the algebra C from the triangulation
T . It is shown in [1] that this can be done by associating a dimer model to the
triangulation, that is, a bipartite tiling of the dual n-gon, in the manner indicated
by the example in Figure 2: the tiling vertices are the midpoints of the diagonals
and there is one black triangular tile for each triangle in the triangulation. Next
convert the dimer model to a quiver with relations by orienting the edges of the
tiling so that they have black faces on the right and white faces on the left. The
relations are commutation relations p`

a ´ p´
a , for each internal arrow a, where the

paths p˘
a return from the head to the tail of arrow a around the left/right face of the

tiling. The algebra C is the path algebra of the quiver modulo the ideal generated
by these commutation relations. As expected, the algebra B is the idempotent
subalgebra for the dimer model boundary, independent of triangulation.

For the case of An
k for k ě 3, the above logic is run in reverse. We consider

the algebra B defined by the same boundary quiver, but with relations xy “ yx

and xk “ yn´k. Then the category CMpBq has indecomposable rigid modules
XJ , for each J P

`
n
k

˘
, which are the summands of a maximal rigid modules XT ,

for each cluster of minors T . The combinatorial object that determines a cluster
of minors T is a Postnikov alternating strand diagram, as illustrated in Figure 3.
The relevant minors are associated to the alternating regions of the diagram by
writing down the labels marking the beginning of the strands on the right of the
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Figure 2. A triangulation, its associated dimer model and
quiver, and the boundary quiver.

region. The quiver, and thus the associated dimer model, can be written down
(as in Figure 4) by joining those minors whose alternating regions share a crossing
point of two strands. In this case, one may prove that the algebra C “ EndpXT q
is, as before, the path algebra of the quiver modulo the ideal generated by the
commutation relations coming from the tiles of the dimer model.

1

2

3

4

5

6

7 567

671

712

123
234

345

456
156

157

145 147

245 124

Figure 3. A Postnikov diagram, labelled by minors.
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Flag configurations and integrable systems.

Vladimir Fock

The aim of this talk is to discuss certain the configuration spaces of flags. We are
convinced that these space play a central role in discrete differential geometry in
disguise of the space of lattices on a plane, configurations of points in a projective
spaces and many others. We try to introduce some structure which we hope will
be useful for discrete geometric applications.

Recall briefly a construction of [FG] of cluster parameterization of higher Te-
ichmller spaces and SLpNq local systems on 2D surfaces. The key ingredient is
the consideration of the configuration space of complete flags in an N dimensional
vector space H . Namely, associate a flag to every point of a rational projective
line QP 1. The space of such flag configurations is obviously infinite dimensional.
However one can impose a certain symmetry condition in order to make it finite
dimensional. Namely, let D P PSLp2,Zq be a finite index subgroup of the modu-
lar group such that the quotient of the upper half plane H2 by D is a surface S.
Consider now the configurations of flags invariant with respect to this subgroup.
By invariance we mean that if we denote codimension i subspace of a flag corre-
sponding to a point α P QP 1 by F i

α then we require that for any g P D there exists
a linear map ρpgq : H Ñ H such that F i

gpαq “ ρpgqF i
α for any i and α. Thus such

flag configuration defines a homomorphism ρ from the fundamental group of S to
the group PGLpNq and thus a local system on Σ. As it is proven in [FG], the map
from invariant flag configurations to local system is a finite covering in a general
point. Therefore the description of local system is reduced to the description of
flag configurations.
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The aim of the present talk is to consider a relative of this construction. We
claim that if we consider a finite flag configurations but in infinite dimensional
space we get a phase spaces of a large class of integrable systems, defined by
A.Goncharov and R.Kenyon in [GK] and (still conjecturally) the discrete integrable
systems considered by V.Adler, A.Bobenko and Y.Suris in [ABS].

Let H be an infinite-dimensional vector space (with a topology of injective limit
of finite dimensional spaces). A complete flag in H is a collection of subspaces
. . . Ă F 1 Ă F 0 Ă F´1 Ă F´2 Ă . . . enumerated by integers and such that
F i{F i`1 is one dimensional, limnÑ`8 Fi “ 0, and limnÑ`8 Fi “ H . Let now F i

α

be a collection of such flags enumerated by a finite set S and such that XαF
0
α “ 0

and the intersection is transversal. The space of such configurations is obviously
infinite dimensional and in order to make it finite dimensional we need to impose
an invariance condition. For this purpose fix a convex polygon ∆ on the plane with
integer vertices and sides in bijection with our set S. Denote by aα P Z2 the sides
of this polygon. Now consider flag configurations such that they are invariant with

repect to an action of ρ of the Abelian group Z2 on H with ρpgqF i
α “ F

i`xg,aαy
α ,

where x, y is a nondegenerate pairing.
We claim that the space of such configurations is birationally equivalent to the

space of pairs (planar algebraic curve given by a polynomial with Newton polygon
∆, line bundle of degree g´ 1 on it). Here g is the number of integer points inside
∆ and at the same time the genus of the planar curve.

The construction of a curve and a line bundle on it starting from a flag config-
uration is essentially given by A.Goncharov and R.Kenyon in [GK]. The converse
construction is described in [F] and goes as follows. Let Σ be compactification of
an algebraic curve in pCˆq2 given by the equation P pλ, µq “

ř
pijqP∆ cijλ

iµj “ 0

and let L P Picg´1pΣq be a line bundle of degree g ´ 1 on it. Observe that for a
generic polynomial P pλ, µq the compactification points are in bijection with the
sides (intervals between integer points on the boundary) of ∆ and thus they are in
bijection with the set S. Let H be the space of meromorphic section of L having
poles only at the compactification points. Let F i

α be the space of sections having
zero of order at least i at the point α. The action of Z2 is given by multiplication
of sections by monomials λiµj .

The key observation to introduce coordinates on flag configurations is the fol-
lowing construction working both in finite and infinite dimensional cases. In both
cases the set S has a canonical cyclic order. Consider a lattice ZS generated by
labels of the flags. The symmetry group D acts on this lattice preserving degree.

A section of the lattice is two-dimensional D-invariant polygonal complex em-
bedded into RS and homeomorphic to the plane. The faces of this complex are
polygons with vertices rd ` α1,d ´ α2, . . . ,d ` α2l´1,d ´ α2ls, where α1, . . . , α2l

be any sequence of points of S such that αi ‰ αi`1 and d be any lattice point
of degree 0. We also require that the action of the group D on the section be
conjugated to the action of D on the upper half plane in the first case and on a
Euclidean plane in the second case. In particular it means that the quotient of the
section by the group D is a finite complex homeomorphic to the surface S in the
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first case and to a two-dimensional torus in the second. The vertices of a section
have either degree ´1 (we will call them white) or degree 1 (we will call them
black). One edge of every edge is white and another black.

For every white vertex w “ ř
α wαα associate a space Fw “ XαF

wα
α . For

every black vertex b associate a vector space ker‘w´b F
w Ñ H , where the direct

sum is taken over the neighbors of the vertex b. For flags in general position both
spaces are one dimensional and there is a natural map F b Ñ Fw for every edge
connecting b and w. Compositions of the maps around every face constitute a
collection of numbers invariant under the action group D. Therefore the collection
of numbers on the faces of the quotient of the section by the group D constitute
coordinates of the flag configuration.

The coordinate system is not unique since the choice of the section is not unique.
Any two sections are related by a sequence of elementary transformations called
mutations. Namely, every quadrilateral face rd ` α1,d ´ α2,d ` α3,d ´ α4s can
be replaced by a face rd1 ´α1,d

1 `α2,d
1 ´α3,d

1 ´α4s, where d1 “ d`α1 ´α2 `
α3 ´ α4, and the adjacent faces, for example r. . .d ´ α2,d

1 ` α1, . . .s replaced by
r. . .d´α2,d´α2 `α1 `α3,d`α2 `α1 ´α4,d`α1, . . .s. Sequences of mutations
leaving invariant the combinatorics of the section as a cell complex but changing
its embedding in the lattice form a group coinciding with the mapping class group
of the surface S in the first case and the group of discrete flows of the integrable
system — a Abelian group of rank #S ´ 3 in the second.
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Circle patterns and confocal conics

Arseniy Akopyan

(joint work with Alexander Bobenko)

1. IC-net

We consider maps of the square grid to the plane f : Z2 Ñ R2 and use the following
notations:

‚ fi,j “ fpi, jq for the vertices of the net,
‚ ˝c

i,j for the quadrilateral pfi,j , fi`c,j, fi`c,j`c, fi,j`cq which we call a net-
square,

‚ ˝i,j for the net-square ˝1
i,j which we call a unit net-square.
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Definition 1. An IC-net (inscribed circular net) is a map f : P Ñ R2 satisfying
the following conditions:

(i) For any integer i the points tfpi, jq|j P Zu lie on a straight line preserving the
order, i.e the point fpi, jq lies between fpi, j ´ 1q and fpi, j ` 1q. The same
holds for points tfpi, jq|i P Zu. We call these lines the lines of the IC-net.

(ii) all unit net-squares ˝i,j are circumscribed. We denote the inscribed circle of
˝i,j by ωi,j and its center by oi,j .

Theorem 1. Let f be an IC-net. Then the following properties hold:

(i) All lines of the IC-net f touch some conic α (possibly degenerate).
(ii) The points fi,j, where i ` j “ const lie on a conic confocal with α. As well

the points fi,j, where i´ j “ const lie on a conic confocal with α.
(iii) All net-squares of f are circumscribed.
(iv) In any net-square with even sides the midlines have equal lengths:

|fi´c,jfi`c,j| “ |fi,j´cfi,j`c|.
(v) The cross ratio

crpfi,j1 , fi,j2 , fi,j3 , fi,j4q “ pfi,j1 ´ fi,j2qpfi,j3 ´ fi,j4q
pfi,j2 ´ fi,j3qpfi,j4 ´ fi,j1q

is independent of i. The cross ratio crpfi1,j , fi2,j , fi3,j , fi4,jq is independent
of j.

(vi) Consider the conics Ck that contain the points fi,j with i` j “ k (see (ii)).
Then for any l P Z there exists an affine transformation Ak,l : Ck Ñ Ck`2l

such that Ak,lpfi,jq “ fi`l,j`l. The same holds for the conics through the
points fi,j with i´ j “ const.

(vii) The net-squares ˝c
i,j and ˝

c`2l
i´l,j´l are perspective.

(viii) Let ωi,j be the inscribed circle of the unit net-square ˝i,j. Consider the cone
in R3 intersecting the plane along ωi,j at constant oriented angle (all the
apexes ai,j of these cones lie in one half-space). Then all the apexes ai,j lie
on one-sheeted hyperboloid.

(ix) Let oi,j be the center of the circle ωi,j. Then all oi,j with i` j “ const lie on
a conic, and oi,j with i´ j “ const also lie on a conic.

(x) The centers oi,j of circles of an IC-net build a projective image of an IC-net.

Theorem 2 (Construction of IC-net). IC-nets considered up to Euclidean mo-
tions and homothety build a real four-dimensional family. An IC-net is uniquely
determined by two neighboring circles ω0,0, ω1,0 and their tangent lines ℓ0, ℓ1, ℓ2,
m0, m1.

2. Checkerboard IC-net

Definition 2. A checkerboard IC-net is a map f : P Ñ R2 satisfying the following
conditions:

(1) For any integer i the points tfi,j |j P Zu lie on a straight line preserving
the order, i.e the point fi,j lies between fi,j´1 and fi,j`1. The same holds
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for points tfi,j|i P Zu. We call these lines the lines of the checkerboard
IC-net.

(2) For any integer i and j, such that i ` j is even the quadrilateral with
verities fi,j , fi`1,j , fi`1,j`1, fi,j`1 is circumscribed.

We call quadrilaterals ˝i,j with vertices fi,j , fi`1,j , fi`1,j`1, fi,j`1 with even
i` j unit net-squares of checkerboard IC-net. The quadrilaterals ˝c

i,j with vertices
fi,j , fi`c,j, fi`c,j`c, fi,j`c with even i` j and odd c we call net-squares.

Theorem 3. Let f be a checkerboard IC-net. Then the following properties hold:

(i) All net-squares are circumscribed.

(ii) Net-squares ˝c
i,j and ˝

c`2l
i´l,j´l, where l is odd, are perspective.

(iii) The points fi,j, where i ` j “ const lie on a conic. The points fi,j, where
i ´ j “ const lie on a conic as well.

(iv) (Ivory-type theorem) We define the distance dCp˝a,b, ˝c,dq between two unit
net-squares ˝a,b and ˝c,d of a checkerboard net as the distance between the
tangent points on a common exterior tangent line to the circles ωa,b and ωc,d

inscribed in ˝a,b and ˝c,d respectively. In case a “ c or b “ d these tangent
lines are the lines of the checkerboard IC-net.

For any pi, jq P Z2, with even i` j and any integer even c one has

dCp˝i´c,j , ˝i`c,jq “ dCp˝i,j´c, ˝i,j`cq.
(v) Let ωi,j be the inscribed circle of the unit net-square ˝i,j. Consider the cone

in R3 intersecting the plane along ωi,j at constant oriented angle (all the
apexes ai,j of these cones lie in one half-space). Then all the apexes tai,j |i`
j “ 4n, n P Zu lie on one-sheeted hyperboloid. The the apexes tai,j |i ` j “
4n` 2, n P Zu lie on one-sheeted hyperboloid as well.

(vi) The centers oi,j of the incircles of a checkerboard IC-net build a circle-conical
net, i.e. a net that is simultaneously circular and conical. Recall that circular
nets are the nets with circular quadrilaterals poi,joi`1,j`1oi,j`2oi´1,j`1q and
conical nets in plane are characterized by the condition that the sums of two
opposite angles at a vertex are equal (and equal to π).

The construction of IC-nets is based on the following theorem.

Theorem 4 (checkerboard incircles incidence theorem). Consider a quadrilateral
which is cut by two sets of four lines in 25 quadrilaterals. Color the quadrilaterals
in a checkerboard pattern with black quadrilaterals at the corners. Assume that
all black quadrilaterals except one at a corner are circumscribed. The the the last
black quadrilateral at the corner (thirteenth quadrilateral) is also circumscribed.

3. Checkerboard inspherical nets in R3

There is a natural generalization of checkerboard IC-net in three (and higher)
dimension. Let P3 be a parallelepiped in Z3.

Definition 3. A checkerboard IS-net is a map f : P Ñ R3 satisfying the following
conditions:
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(i) All points of lines parallel to coordinate axis f maps to a point on a line with
the same order.

(ii) For any integer i the points tfi,j,k|k P Zu lie on a straight line preserving the
order, i.e the point fi,j,k lies between fi,j,k´1 and fi,j,k`1. The same holds
for points tfi,j,k|i P Zu and tfi,j,k|j P Zu. We call these lines the lines of the
checkerboard IS-net.

(iii) Image of any unit cube of P3 which all coordinate even or odd is circumscribed
polytope.

By �c
i,j,k we denote a net-cube with smallest vertex fi,j,k (having minimal

coordinate in each axis) and edge length c. Images of lines in Z3 parallel to
coordinate axis we denote by ℓxi,j , where x denote the axis (it could be y or z) and
i, j is coordinate of line in perpendicular plane.

Theorem 5. (i) All net-cubes of IS-net are circumscribed.
(ii) The net cubes �c

i,j,k and �c`4s`2
i´2s´1,j´2s´1,k´2s´1 are perspective.

(iii) All net-cubes are projective cubes, i.e. projective images of the standard cube.
(iv) The lines ℓzi,j, where i` j “ const lie on hyperboloid of one sheet. The same

holds for lines with i´ j “ const and for lines with other directions.

Theorem 6 (9 inspheres incidence theorem). Suppose combinatorial cube � in
R3 cut by 6 planes on 27 combinatorial cubes. Suppose the central and seven of
the corner cells are circumscribed. Then the last corner cell is also circumscribed.

We mention here a claim of independent interest which we used in the proof of
the Theorem 5.

Theorem 7. Suppose combinatorial cube � in Rd is cut by 2d hyperplanes on 3d

combinatorial cubes. Suppose the central and 2d corner cells are circumscribed.
Then the cube � is also circumscribed.

Remark. Everything from the previous theorems, works well in case of Hyperbolic
plane or on Sphere.

A discrete uniformization theorem for polyhedral surfaces

Feng Luo

(joint work with David Gu, Jian Sun, Tianqi Wu)

The Poincare-Koebe uniformization theorem for Riemann surfaces is one of the
pillars in the last century mathematics. It states that given any Riemannian metric
on any connected surface, there exists a complete constant curvature Riemannian
metric conformal to the given one. The uniformization theorem has a wide range
of applications within and outside mathematics. For instance, the uniformization
theorem provides a canonical way to parameterize a simply connected Riemann
surface. This special feature has been used in computer graphics and imaging pro-
cessing. Polyhedral surfaces are ubiquitous due to digitization. Classifying and
categorizing them appear to be an urgent task. On the other hand, algorithmically
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implementation of the classical uniformization theorem for polyhedral surfaces ap-
pears to be difficult. For instance there is no known algorithm to decide if the
boundaries of two tetrahedra, considered as Riemann surfaces, are related by a
conformal map preserving vertices. There has been much work on establishing
various discrete versions of the uniformization theorem for discrete or polyhe-
dral surfaces. A key step in discretization is to define the concept of discrete
conformality. The most prominent discrete uniformization theorem is probably
Andreev-Koebe-Thurston’s circle packing theorem [10], [9]. Unfortunately not all
polyhedral surfaces can be canonically packed by circles. The purpose of this re-
port is to introduce a discrete conformality for polyhedral metric surfaces and to
establish a discrete uniformization theorem within the category of polyhedral met-
rics. Two main features of the discrete conformality are the following. First, the
discrete conformality is algorithmic and second, there exists a finite dimensional
(convex) variational principle to find the discrete uniformization metric.

A closed surface S together with a non-empty finite subset of points V Ă S

will be called a marked surface. A triangulation T of a marked surface pS, V q is a
topological triangulation of S so that the vertex set of T is V . We use E “ EpT q,
V “ V pT q to denote the sets of all edges and vertices in T respectively. A
(Euclidean) polyhedral metric on pS, V q, to be called PL metric on pS, V q for
simplicity, is a flat cone metric on pS, V q with cone points in V . For instance
boundaries of convex polytopes are PL metrics on pS2, V q. The discrete curvature
of a PL metric d is the function Kd : V Ñ p´8, 2πq sending a vertex v to 2π less
the cone angle at v. For a closed surface S, it is well known that the Gauss-Bonnet
theorem

ř
vPV Kdpvq “ 2πχpSq holds. If T is a triangulation of pS, V q with a PL

metric d for which all edges in T are geodesic, we say T is geometric in d and d
is a PL metric on pS, V, T q. In this case, we can represent the PL metric d by the
length function ld : EpT q Ñ Rą0 sending an edge to its length.

Each polyhedral metric d on pS, V q has a natural Delaunay triangulation Td
which is a geometric triangulation with vertices V so that for each edge, the sum
of two opposite angles facing e is at most π.

Definition 1. Two PL metrics d and d1 on a marked closed surface pS, V q are
discrete conformal if there is a sequence of PL metrics d1 “ d, d2, ..., dn “ d1 and
a sequence of triangulations T1, T2, ..., Tn of pS, V q so that

(a) each Ti is Delaunay in di,
(b) if Ti ‰ Ti`1, then there is an isometry hi from pS, V, diq to pS, V, di`1q so

that hi is homotopic to the identity map on pS, V q, and
(c) if Ti “ Ti`1, there is a function ui : V Ñ Rą0 so that for each edge e “ vv1

in Ti, the lengths ldi
pvv1q and ldi`1

pvv1q of e in di and di`1 are related by

(1) ldi`1
pvv1q “ ldi

pvv1quipvquipv1q.



Discrete Differential Geometry 687

The main theorems we proved are:

Theorem 1.([3]) Given any PL metric d on a closed marked surface pS, V q and
any K˚ : V Ñ p´8, 2πq so that

ř
vPV K

˚pvq “ 2πχpSq, there exists a PL metric
d˚, unique up to scaling, so that

(a) d˚ is discrete conformal to d, and
(b) the discrete curvature Kd˚ “ K˚.
Furthermore, the PL metric d˚ can be found by a finite dimensional variational

principle.

Theorem 2.([4]) Given two PL metrics on a closed marked surface pS, V q whose
edge lengths are algebraic numbers, there exists an algorithm to decide if they are
discrete conformal.

Theorem 2 is proved in our joint work with Ren Guo in [4]. Similar theorems
for hyperbolic polyhedral surfaces have been established in [4].

Recall that two PL metrics d, d1 on pS, V q are Teichüller equivalent if there ex-
ists an isometry h : pS, V, dq Ñ pS, V, d1q so that h is homotopic to the identity
on pS, V q. There are two major steps involved in the proof of theorem 1. In the
first step, we show that for any PL metric d, the space Dcpdq of all Teichmüller
equivalance classes of PL metrics d1 which are discrete conformal to d is C1 diffeo-
morphic to the Euclidean space RV . This step uses the work of Penner [6], Rivin
[7] and Bobenko-Pinkall-Springborn [2].

In the second step, we show that the discrete curvature map K : Dcpdq{Rą0 Ñ
p´8, 2πqV X tx P RV | ř

v xpvq “ 2πχpSqu is a homeomorphism. The local injec-
tivity of K is proved using a variational principle developed in [5]. A theorem of
Akiyoshi [1] together with a degeneration analysis shows that the map K is closed.
Therefore, by the standard continuity method, we conclude that K is a bijection
which is equivalent to theorem 1.

An interesting remaining issue is whether discrete conformality approximates
the smooth conformality. The situation is very similar to Thurston’s circle packing
approximation to smooth conformality. Thurston’s discrete Riemann mapping
conjecture was established by Rodin-Sullivan’s work [8].

A discrete Riemann mapping conjecture. Suppose Ω is a Jordan domain
in the complex plane. Take three distinct points p, q, r in the boundary of Ω. For
each ǫ ą 0, let Ωǫ be a maximum simply connected domain in Ω which has a tri-
angulation Aǫ by equilateral triangles of edge length ǫ. Take three vertices pǫ, qǫ, rǫ
in the boundary of Ωǫ so that Euclidean distances dpp, pǫq, dpq, qǫq and dpr, rǫq are
less than 2ǫ. Let the metric double of pΩǫ, Aǫq along the boundary be the polyhe-
dral 2-sphere pS2, Bǫ, dǫq. Using theorem 1, one produces a new polyhedral metric
pS2, Tǫ, d

˚
ǫ q so that (1) its area is

?
3{2, (2) d˚

ǫ is discrete conformal to dǫ, (3) the
discrete curvatures of d˚

ǫ at pǫ, qǫ, rǫ are 4π{3 and (4) the discrete curvatures of
d˚
ǫ at all other vertices are zero. Then as ǫ tends to 0, pS2, Tǫ, d

˚
ǫ q converges to

the metric double of the unit equilateral triangle.

Numerical evidences supporting this conjecture are very strong.
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Spectral Discrete Exterior Calculus

Yiying Tong

(joint work with Beibei Liu, Yuanzhen Wang, Gemma Mason, Julian Hodgson,
Mathieu Desbrun and Kun Zhou )

As a generalization of spectral analysis from regular grids in Euclidean spaces to
curved spaces, manifold harmonics (MH) [1] has been used in a wide range of
applications, including geometry processing and surface correspondences. Linking
analysis of scalar fields to vector fields and differential forms, discrete exterior
calculus (DEC) [2] has proven to be a flexible computational device for efficient
calculation performed on simplicial meshes. We propose to combine the power of
the two tools into an efficient and effective toolkit for spectral analysis on meshes.

On surfaces, we first build the basis functions of differential forms, through
manifold harmonics of scalar fields and harmonic 1-forms. Then, the basic op-
erators in exterior calculus reduce to simple matrices. Specifically, we start with
the scalar Laplacian ∆0 in DEC (the cotan formula) on a triangle surface mesh
containing a single genus-g connected component, and calculate the smallest m`1
eigenvalues of d˚dΦi “ κ́2i ˚Φi, where κi corresponds to the i-th smallest spatial
frequency (wave number), and Φi is the associated eigenfunction. For instance,
with the total surface area rescaled to 1, the 0-th frequency (κ0 “ 0) eigenfunction
is always Φ0 “ r1 1 . . . 1sT . The bases for the low frequency differential forms can
be assembled as

0-form basis: rΦ0 Φ1 . . . Φms,
1-form basis: rh1 . . . h2g dΦ1

κ1

. . . dΦm

κm

˚dΦ1

κ1

. . . ˚dΦm

κm
s,

2-form basis: r˚Φ0 ˚ Φ1 . . . ˚ Φms,
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where hi’s provide a basis for the harmonic 1-forms. The Hodge star ˚hi is a linear
combination of hi’s, which can be calculated through the period matrix [3] when
hi’s are computed based on the cohomology basis. For simplicity, we assume trivial
topology in the following discussion. The Hodge star operators ˚ for 0-forms and
2-forms become the identity matrix ˚0 “ ˚2 “ Im̀ 1, and ˚1 can be expressed as

˚1 “
ˆ

0 ´Im
Im 0

˙
.

By using the diagonal matrix assembled from the wave numbers, D “ diagrκ1 . . .
κms, we can express the exterior derivatives as

d0 “
ˆ

p0 . . . 0qT D

p0 . . . 0qT 0

˙
, d1 “

ˆ
0 0 . . . 0
0 D

˙
,

where 0 denotes a matrix of the same size as D with every entry equal to 0.
These operators reflect the fact that differential in spectral domain is achieved by
multiplication of frequencies.

In volumetric meshes, we cannot construct the bases solely from the 0-form
bases. Instead, we extend the bases proposed in [4] by solving for eigenvalues
of the 1-form Laplacian, ∆1Ψi “ ´µ2

iΨi. Note that the gradients of 0-form basis
functions dΦi{κi are eigen 1-forms since d∆ “ ∆d. Thus the lowestm0 frequencies
for 0-forms κi’s form a subset of the m1 frequencies for 1-forms µi’s, with m1

chosen as the smallest integer satisfying µm1
ě κm0

. For a typical tetrahedral
mesh, m1 « 3m0. Assuming trivial topology, we can reorganize the 1-form basis
by categorizing the basis 1-forms into those of the form dΦi{κi (the m0 gradient
fields) and the rest (the m1 ´m0 curl fields). Thus, the bases of all differential
forms can be expressed as

0-form basis: rΦ0 Φ1 . . . Φm0
s,

1-form basis: r dΦ1

κ1

. . .
dΦm0

κm0

Ψ1 . . .Ψm1´m0
s,

2-form basis: r˚ dΦ1

κ1
¨ ¨ ¨ ˚ dΦm0

κm0

˚Ψ1 ¨ ¨ ¨ ˚Ψm1´m0
s,

3-form basis: r˚Φ0 ˚ Φ1 . . . ˚ Φm0
s.

With these bases, all Hodge star ˚ operators become the identity matrices. As-
sembling the eigenvalues as D0 “ diagrκ1 . . . κm0

s and D1 “ diagrµ1 . . . µm1́ m0
s,

we can express the exterior derivatives as

d0 “
ˆ

p0 . . . 0qT D0

p0 . . . 0qT 0

˙
, d1 “

ˆ
0 0
0 D1

˙
, d2 “

ˆ
0 . . . 0 0 . . . 0
D0 0

˙
.

With the Hodge star and exterior derivative expressed in these simple forms, dif-
ferential and integral can be performed efficiently for the spaces of low frequency
differential forms. In addition, Helmholtz-Hodge decomposition becomes simple
projections to different subsets of the coefficients in the bases. Notice that, in 3D
or 2D case with boundaries, the boundary conditions for k-forms and n´ k-forms
must match to get simple operators.
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[1] Bruno Vallet and Bruno Lévy. Spectral geometry processing with manifold harmonics. In
Computer Graphics Forum, volume 27, pages 251–260. Wiley Online Library, 2008.

[2] M. Desbrun, E. Kanso, and Y. Tong. Discrete differential forms for computational modeling.
Discrete differential geometry, pages 287–324, 2008.

[3] Xianfeng Gu and Shing-Tung Yau. Computing conformal structure of surfaces. arXiv
preprint cs/0212043, 2002.

[4] Tyler De Witt, Christian Lessig, and Eugene Fiume. Fluid simulation using Laplacian eigen-
functions. ACM Trans. Graph., 31(1):10:1–10:11, February 2012.

Modelling of developables and curved folds

Johannes Wallner

(joint work with Helmut Pottmann, Chengcheng Tang, Pengbo Bo)

We have been studying the problem of interactive geometric modelling of piecewise
C2 surfaces which either consist of intrinsically flat (developable) pieces or are
entirely flat. This class of surfaces corresponds to shapes which can be made from
paper or from sheet metal, either with or without cutting along the creases. In
order to make this problem computationally tractable we use two facts:

— (i) developables decompose into ruled pieces definable by a correspondence
between space curves. This is a simplified statement of Hartmann and Nirenberg’s
theorem on existence of generators on intrinsically flat C2 surfaces;

— (ii) curves in space may be approximated, together with their derivatives,
by polynomial splines of degree ě 2.

These facts are the foundation of the following simplification of the modeling
problem. We study composite surfaces which are built from polygonal planar
faces and from spline developables. The latter is a parametric surface of the kind
x : r0, 1s2 Ñ R3, xpu, vq “ p1 ´ vqapuq ` vbpuq which has zero Gaussian curvature,
and where both a, b are polynomial spline curves contained in the same spline
space. The individual pieces of such a composite surface join each other either
along a spline curve or along a straight line segment.

The shape of such a surface is stored in the combinatorics of its decomposition
together with control points, i.e., coefficients of the boundary curves in the spline
basis. The control points are not arbitrary but must be chosen such that the
composite surface obeys the following conditions:

(1) developability of its smooth parts;
(2) if required, developability (intrinsic flatness) along creases;
(3) if required, developability in vertices, i.e., absence of cone points;
(4) further side conditions imposed by the problem at hand.

Since spline spaces are finite-dimensional, condition (1) amounts to a finite num-
ber of equations imposed on the control points of an individual spline developable.
The number of equations is determined by the polynomial degree of the condition

detp 9a, 9b, a ´ bq “ 0 expressing vanishing Gaussian curvature. Similar considera-
tions apply to conditions (2)–(4). We have thus turned the problem of modeling
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with developables into a finite number of equations. As it turns out, this system
can be solved at interactive speeds despite being nonlinear, under-determined, and
very likely inconsistent at the same time. This is due to the fact that by introduc-
ing auxiliary variables like spline normal vector fields, we can make all equations
quadratic while still retaining sparsity. Tang et al. [3] have shown how to solve
such a system of equations via “energy-guided projection”, which is essentially a
regularized Newton method.

Taking the above as a guide, we were able to implement a modeling system
for developables. Items such as the planar unfolding of surfaces are added via
appropriate numerical approximations (meshes). In particular we demonstrate
the capabilities of the implementation by recreating some of the popular curved-
folding objects of art created by David Huffman and by Erik Demaine, see e.g.
[1].
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Seamless Surface Mappings

Yaron Lipman

(joint work with Noam Aigerman, Roi Poranne)

We introduce a method for computing seamless homeomorphic piecewise-linear
(PL) mapping between two surface-meshes that interpolates a given set of point
correspondences.

A common approach for computing a map between surfaces is to cut the surfaces
to disks, flatten them to the plane, and extract the mapping from the flattenings
by composing one flattening with the inverse of the other. So far, a significant
drawback in this class of techniques is that the choice of cuts introduces a bias in
the computation of the map that often causes visible artifacts and wrong corre-
spondences.

In this work we develop a homeomorphic surface mapping technique that is
indifferent to the particular cut choice. This is achieved by a novel type of PL
surface flattening, named G-flattening that encodes this cut-invariance. Here, G
denotes a sub-group of affine transformations in the plane. The key idea is to use
an energy functional E that is invariant to compositions with transformations in
G. This implies that the energy landscape of E does not change when the cuts
are deformed homotopically on the surface. In turn, this implies that any map
produced from G-flattenings is ”blind” to the cut locations on the surfaces, up to
a choice of homotopy class.
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We present an algorithm based on these observations and demonstrate it is able
to produce high-quality seamless homeomorphic mappings of pairs of surfaces ex-
hibiting a wide range of shape variability, while using a small number of prescribed
point correspondences. We also use this framework to produce three-way, consis-
tent and seamless mappings for triplets of surfaces.

Polyhedra inscribed in a quadric and anti-de Sitter geometry

Jean-Marc Schlenker

(joint work with Jeffrey Danciger and Sara Maloni)

According to a celebrated result of Steinitz (see e.g. [13, Chapter 4]), a graph Γ
is the 1–skeleton of a convex polyhedron in R3 if and only if Γ is planar and 3–
connected. Steinitz [12] also discovered, however, that there exists a 3–connected
planar graph which is not realized as the 1–skeleton of any polyhedron inscribed
in the unit sphere S, answering a question asked by Steiner [11] in 1832. An un-
derstanding of which polyhedral types can or can not be inscribed in the sphere
remained elusive until Hodgson, Rivin, and Smith [7] gave a computable but non-
explict characterization in 1992, see below. Our first result is on realizability by
polyhedra inscribed in other quadric surfaces in R3. Up to projective transforma-
tions, there are two such surfaces: the hyperboloid H , defined by x21 `x22 ´x23 “ 1,
and the cylinder C, defined by x21 ` x22 “ 1 (with x3 free).

Definition. A convex polyhedron P is inscribed in the hyperboloid H (resp. in the
cylinder C) if P XH (resp. P X C) is exactly the set of vertices of P .

Theorem A [3]. Let Γ be a planar graph. Then the following conditions are equiv-
alent:

(C): Γ is the 1–skeleton of some convex polyhedron inscribed in the cylinder.
(H): Γ is the 1–skeleton of some convex polyhedron inscribed in the hyperboloid.
(S): Γ is the 1–skeleton of some convex polyhedron inscribed in the sphere and

Γ admits a Hamiltonian cycle.

The ball x21`x22`x23 ă 1 gives the projective model for hyperbolic spaceH3, with
the sphere S describing the ideal boundary B8H3. In this model, projective lines
and planes intersecting the ball correspond to totally geodesic lines and planes in
H3. Therefore a convex polyhedron inscribed in the sphere is naturally associated
to a convex ideal polyhedron in the hyperbolic space H3.

Following the pioneering work of Andreev [1, 2], Rivin [8] gave a parameteriza-
tion of the deformation space of such ideal polyhedra in terms of dihedral angles,
as follows.
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Theorem B (Andreev ’70, Rivin ’92). The possible exterior dihedral angles of ideal
hyperbolic polyhedra are the functions w : EpΓq Ñ p0, πq such that

‚ for each vertex v, the sum of the values of w on the edges adjacent to v is
equal to 2π,

‚ for each other closed path c in the dual graph Γ˚,
ř

ePc wpeq ą 2π.

Each such function gives the angles of a unique ideal polyhedron in H3.

As a corollary, Hodgson, Rivin and Smith [7] showed that deciding whether a
planar graph Γ may be realized as the 1–skeleton of a polyhedron inscribed in
the sphere amounts to solving a linear programming problem on Γ. To prove
Theorem A, we show that, given a Hamiltonian cycle in Γ, there is a similar linear
programming problem whose solutions determine polyhedra inscribed in either the
cylinder or the hyperboloid.

The solid hyperboloid x21 ` x22 ´ x23 ă 1 in R3 gives a picture of the projective
model for anti-de Sitter (AdS) geometry. Therefore a convex polyhedron inscribed
in the hyperboloid is naturally associated to a convex ideal polyhedron in the anti-
de Sitter space AdS3, which is a Lorentzian analogue of hyperbolic space. Similarly,
the solid cylinder x21 ` x22 ă 1 (with x3 free) in an affine chart R3 of RP3 gives
the projective model for half-pipe (HP) geometry. Therefore a convex polyhedron
inscribed in the cylinder is naturally associated to a convex ideal polyhedron in
the half-pipe space HP

3. Half-pipe geometry, introduced by Danciger [4, 5, 6], is a
transitional geometry which, in a natural sense, is a limit of both hyperbolic and
anti-de Sitter geometry.

Figure 1. A polyhedron inscribed in the hyperboloid (left) and
a combinatorial equivalent polyhedron inscribed in the cylinder
(right). The 1–skeleton of any such polyhedron admits a Hamil-
tonian cycle which we call the equator (red/bold).
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Theorem C [3]. The possible exterior dihedral angles of ideal AdS polyhedra are the
functions w : EpΓq Ñ R‰0 such that

‚ w ă 0 on a Hamiltonian cycle γ, w ą 0 elsewhere,
‚ for each vertex v, the sum of the values of w on the edges adjacent to v is
equal to 0,

‚ for each “other” closed path c in Γ˚, crossing γ exactly twice, the sum of
the values of w on the edges of c is strictly positive.

Each such function gives the dihedral angles of a unique ideal polyhedron in AdS3.
The equivalence between conditions (H) and (S) in Theorem A follows from a

direct argument comparing the conditions occuring in Theorem A and in Theorem
C. For condition (C), one has to use instead of Theorem C its analog n half-pipe
geometry.

Related results determine the possible induced metrics on ideal polyhedra. In
the hyperbolic setting the following result is known.

Theorem D (Rivin ’93). Let h be a hyperbolic metric of finite area on S2 with at
least 3 cusps. There exists a unique ideal polyhedron H3 with induced metric h on
its boundary.

We have a similar result in the anti-de Sitter setting.

Theorem E [3]. Let h be a hyperbolic metric of finite area on S2 with at least 3
cusps, and let γ be a Hamiltonian cycle through the cusps. There exists a unique
ideal polyhedron in AdS3 with induced metric h on its boundary and and equator
γ.

In spite of the close analogy between the hyperbolic and AdS statements, the
proofs in the AdS case must be done along very different lines. The reason is that
the hyperbolic proofs are largely based on the concavity of the volume of ideal
hyperbolic polyhedra (in particular ideal simplices), while this property doesn’t
hold for ideal AdS polyhedra. Other arguments must therefore be developed.

There are a number of open questions stemming from those results on ideal AdS
polyhedra. For instance, do the description of their dihedral angles and induced
metrics extend to hyperideal AdS polyhedra, that is, polyhedra with all vertices
outside AdS3 but all edges intersecting it? This basically happens in the hyperbolic
setting [9, 10].
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Stripe patterns

Ulrich Pinkall

(joint work with Keenan Crane, Felix Knöppel, Peter Schröder)

This talk reports on recent results in [2] and how they are related to an earlier
algorithm [1] concerning the approximation of velocity fields in space by fields that
are generated by a collection of vortex filaments.

Many natural phenomena (animal skin, sand ripples...) exhibit stripe patterns
on surfaces. We give an algorithm that generates such a pattern on a surface M
based on the following data:

(1) An unoriented direction field defined away from finitely many points p1, . . . ,
pn P M where the field fails to be orientable (i.e. to be representable by a
continuous unit vector field in some neighborhood).

(2) A function ρ :M Ñ R` that specifies the desired spacing of the stripes.

In the end the stripe pattern will be obtained in the form of a function α :
M̃ ´ tq1, . . . , qnu where M̃ is the double cover of M branched over p1, . . . , pn.

Here q1, . . . , qn P M̃ are points (which include the branch points) where α might
be discontinuous. So this is there we will find singularities of the stripe pattern.

Specifically, we find α in the form

α “ argψ

where ψ : M̃ Ñ C minimizes the energy

Epψq :“
ż

M̃

|dψ ´ iωψ|2

under the constraint
ş
M

|ψ|2 “ 1. Here ω is the 1-form on M that encodes the
prescribed direction and spacing.
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Figure 1. Stripe patterns in nature often exhibit nonorientable singularities.

The question in which sense the resulting stripe pattern realizes the prescribed
data as closely as possible leads to non-trivial open problems concerning the sta-
tistical properties of the zeros of random sections of complex line bundles over
surfaces.
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Fast and Exact (Poisson) Solvers on Surfaces of Revolution

Michael Kazhdan

We consider the problem of solving Poisson-like systems on surfaces of revolution.
On the one hand, these geometries contain sufficient regularity to enable the design
of an efficient exact solver. On the other, they include surfaces with varying
curvature – so an efficient solver makes it possible to interactively explore how the
surface metric interacts with the Laplace-Beltrami operator.

The key to our approach derives from the observation that isometry invariant
operator must commute with the symmetry group of the geometry, and hence the
linear operator becomes block-diagonal in the irreducible representations of the
group, with (at least) one block associated with each class of irreducible represen-
tations. Thus, rather than having to solve one large linear system of equations,
we obtain the solution to the linear system by solving multiple smaller ones.
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Figure 2. A stripe pattern with constant prescribed spacing.
Note the additional singularities that are generated by the algo-
rithm.

In the particular case of a surface of revolution, sampled on an N ˆ N grid,
this implies that when the linear operator commutes with the cyclic group we can
solve the N2 ˆN2 system by solving N different sub-systems, each of size N ˆN .
Furthermore, we show that if the linear operator also commutes with the dihedral
group, then the same approach extends to surfaces with boundary, obtained by
sweeping the generating curve by an angle ă 360˝ about the axis of revolution.

This generalizes the approach proposed by Hockney [Hoc65] for solving the
discrete Poisson equation in the plane to the solution of general linear systems on
surfaces of revolution that commute with rotation about the axis of revolution. It
also extends earlier methods for block-circulant systems [Dav79, BB06] to more
general groups.

Representation Theoretic Perspective. We begin by recalling a basic theo-
rem from representation theory ([Ser77, FH91]).
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Theorem (Canonical Decomposition). Given a representation ρ of a finite/com-
pact group G onto a vector space V , the vector space can be decomposed as the
direct sum of irreducible representations, with multiplicity:

V “
à

ωPΩ

V ω with V ω “
mωà

k“1

V ω
k

where V ω
k are irreducible representations, mω are the multiplicitices, and V ω

k « V ω̃

k̃
iff. ω “ ω̃.

Using the uniqueness of the decomposition, it follows (by Schur’s Lemma and
Maschke’s Theorem) that:

Lemma 1. Given a representation pρ, V q of a group G, if L is a G-linear map
then LpV ωq Ă V ω for all ω.

Corollary 1. If L is G-linear and tvω1 , . . . , vωdω
u is a basis for V ω, then L is block

diagonal in the basis tvω1 , . . . , vωdω
uωPΩ. In particular, solving the system Lx “ b

can be done by solving |Ω| systems each of size dω ˆdω, rather than solving a single
system of size

ř
dω ˆ ř

dω.

Without loss of generality, we will assume that V “ V ω and write V “
Àm

k“1 Vk
where the Vi « Vj . We set n to the dimension of Vk and we set ιk : V1 Ñ Vk to
the isomorphism between the irreducible representations.

Definition We say that a basis tvkj upj,kqPr1,msˆr1,ns with vkj P Vk is consistent if

vkj “ ιkpvkj q.
It is not hard to show that as G becomes more complicated (and irreducible

representations are no longer one-dimensional) there is further opportunity to take
advantage of symmetry in designing an efficient solver:

Lemma 2. If V is a complex vector space and L : V Ñ V is G-linear, then the
matrix representation of L in a consistent basis consists of m ˆ m blocks where
each block is a multiple of the identity.

Corollary 2. If we choose a consistent basis, then each dimpV ωq ˆdimpV ωq block
of the matrix representation of L further decomposes into a block diagonal matrix
with dimpV ω

1 q identical blocks, each of size mω ˆmω.

Implications for Surfaces of Revolution (Sampled on an N ˆ N Grid).
The above discussion has immediate implications for solving linear systems over
surfaces of revolution.
Rotations: Taking G “ CN to be the cyclic group, we obtain a decomposition of
the space of functions on the surface of revolution F with respect to the irreducible
representations of G:

F “
N{2à

ω“´N{2

Fω
C

where Fω
C is the space of functions which, restricted to any parallel of the surface

of revolution, are complex exponentials of frequency ω.
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By Corollary 1 it follows that if L is G-linear, there exist linear operators
tLω : Fω

C Ñ Fω
Cu|ω|ďN{2 such that if f “ ř

ω f
ω, with fω P Fω

C then:

Lpfq “
N{2ÿ

ω“´N{2

Lωpfωq.

Rotations + Reflections: Taking G “ D2N to be the dihedral group, we obtain a
decomposition of the space of functions on the surface of revolution F with respect
to the irreducible representations of G:

F “
N{2à
ω“0

Fω
D with Fω

D “ Fω`
D ‘ Fω´

D

where Fω`
D (respectively Fω´

D ) is the space of functions which, restricted to any
parallel of the surface of revolution, are multiples of the cosine (respectively sine)
functions of frequency ω.

By Corollary 2 it follows that if L is G-linear, there exist linear operators
tLω : Fω˘

D Ñ Fω˘
D u0ďωďN{2 such that if f “ ř

ω f
ω, with fω P Fω`

D (respectively

fω P Fω´
D ) then:

Lpfq “
N{2ÿ

ω“0

Lωpfωq.

Surfaces of Revolution with Boundaries. We can extend the results for surfaces of
revolution to surfaces of revolution with boundary, obtained by rotating a gen-
erating curve by angle ă 360˝, despite the fact that there is no group action.
Specifically, taking a double-covering of the surface with boundary, where we at-
tach a second copy of the domain at the angular boundaries, we obtain a surface
of revolution on which we have an action of D4N .

Decomposing the space of functions on the double-covering into even/odd func-
tions (functions which have the same/negative values on the two pre-images of a
point), we can associate these with the spaces of functions on the initial surface
with boundary satisfying Neumann/Dirichlet constraints. Thus, if L is a linear
operator on the double-covering that commutes with the action of D4N , it fol-
lows that it will map the even/odd subspaces back into themselves, giving a block
diagonalization of the corresponding linear operator on the surface with boundary.

Applications. Incorporating our solver in systems performing wave simulation
using implicit time integration, we are able to process signals on high-resolution
surfaces of revolution (with boundary) at interactive rates. For example, sampling
such a surface at resolution N ˆ N “ 1024 ˆ 1024, we can solve the system of
equations with roughly one million unknowns at a rate of 20 frames-per-second,
significantly outperforming both the running time and memory usage of standard
solvers [CDHR08].
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Approximating Curved Surfaces with Miura-Ori Origami

Etienne Vouga

(joint work with L. Dudte, L. Mahadevan)

Because of their simplicity and geometric properties, origami tessellations – par-
ticularly those generated by folding along creases that tile the plane periodically,
such as the Miuri-ori pattern formed by tiling the plane with a unit cell of four
congruent parallelograms – are highly suitable for engineering deployable or fold-
able structures. The Miura pattern in particular has four important geometric
properties, in addition to its high degree of symmetry: (a) it can be rigidly folded
isotopically from its flat, planar state to a folded state; (b) has only one isometric
degree of freedom, with the shape of the entire structure determined by the folding
angle of any single crease; (c) exhibits negative Poisson’s ratio: folding the Miura
decreases its extent in both planar directions; and (d) is flat-foldable: when the
Miura has been maximally folded along its one degree of freedom, all faces of the
pattern are coplanar.

Given an arbitrary surface with intrinsic curvature, does there exist a Miura-
like tessellation of the plane that, when folded, approximates that surface? Can
this pattern be made rigidly foldable with one degree of freedom? Building on
the existing mathematics of rigid foldability, the mechanics of folded structures,
and existing exploration of the forward problem of how modifying the pattern
modifies the folded geometry [1, 2], we demonstrate that the inverse problem of
fitting Miura-like origami tessellations to surface with intrinsic curvature can be
solved for a large variety of such surfaces.

The simplest case is that of generalized cylinders – developable surfaces formed
by extruding a planar curve along the perpendicular axis. For such surfaces an
explicit construction exists for how to approximate them using a modified Miura
tessellation, and moreover, it can be shown that the constructed pattern is rigid-
foldable. For doubly-curved surfaces, Miura patterns can be found computation-
ally to fit the surface; our experiments with this tool reveal that the space of
possible Miura designs is extremely rich, with most surfaces admitting many dif-
ferent Miura approximations. While the Miura tessellations found using our tools
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Figure 1. A Miura pattern approximating a generalized cylin-
der: the planar fold pattern (left) folds isotopically with one de-
gree of freedom to the target shape (middle-right) and, since the
pattern is flat-foldable, to a flat fully-folded configuration (right).

Figure 2. Some example generalized Miura patterns, generated
using numerical optimization, approximating curved surfaces.

are not necessarily flat-foldable, with suitable modification of the optimization
process, the strain needed to fold the pattern can be reduced.

Geometry of the Miura

It is clear that the space of shapes that can be approximated by perfectly peri-
odic tilings of the plane is very limited. We therefore study Miura-like general-
ized origami tessellations, whose unit cells are not necessarily congruent but vary
smoothly in shape across the tessellation. An embedding of such a pattern in
space can be represented as a quadrilateral mesh: a set of vertices; edges connect-
ing the vertices and representing the pattern creases; and faces, with exactly four
faces meeting at each interior vertex. A quadrilateral mesh of regular valence four
must satisfy two additional constraints to be an embedding of a generalized Miura
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tessellation: each face must be planar, and the neighborhood of each vertex must
be developable, i.e. the interior angles around that vertex must sum to 2π.

A generalized Miura tessellation is guaranteed to possess some, but not all, of
the four geometric properties of the regular Miura pattern. A unit cell in gen-
eral position has only one degree of freedom, and this local property guarantees
that the Miura pattern, if it is rigid-foldable at all, must have only one degree of
freedom. Moreover, since each unit cell must consist of three valley and one moun-
tain crease, or vice-verse, it must fold with negative Poison’s ratio. That leaves
flat- and rigid-foldability. Unfortunately, no local condition is known for whether
an origami pattern is flat-foldable, and it has been shown [3] that the problem
of determining flat-foldability is NP-complete. However, several necessary flat-
foldability conditions do exist, including Kawasaki’s Theorem that if a generalized
Miura tessellation is flat-foldable, each pair of opposite interior angles around each
vertex must sum to π. In practice, enforcing Kawasaki’s theorem does improve
the degree to which a generalized Miura tessellation is flat-foldable. Finally, a
non-trivial flat-foldable generalized Miura is always rigid-foldable [1], and in the
case where a flat-foldable configuration cannot be found, one can characterize the
degree of non-rigid-foldability by measuring the maximum strain required to snap
the tessellation through from its flat to its embedded state.

Curvilinear Miura Patterns

For arbitrary curved surfaces, fitting a generalized Miura pattern is a difficult
nonlinear optimization problem, with convergence far from guaranteed absent a
good initial guess for how the pattern should be laid out. An alternative to brute-
force optimization is suggested by the following observations: 1) the edges of the
generalized Miura fold pattern can be grouped into eight equivalence classes, corre-
sponding to the eight fold lines that make up a unit cell. Edges in each equivalence
class vary smoothly over the surface, suggestive of a discrete vector field on the
surface; 2) generalized Miura patterns come in scale-invariant families, with corre-
sponding edges in two members of the family nearly parallel and uniformly scaled.
A Miura pattern approximating a surface M can thus be specified on the surface
M by eight vector fields ui, a scalar thickness field η, and a length scale ǫ. From a
starting point p P M , the first vertex of the Miura pattern is at p` ηǫn̂ppq, where
n̂ is the surface normal. To get the second point, flow along u0 for time ǫ to get a
new “base point” p0 P M , then place a vertex at p0 ´ ηǫn̂pp0q. By continuing in
this way, alternating which vector field is used for the flow, and choosing the sign
of the normal displacement appropriately, the entire pattern can be constructed.
The pattern is valid if all faces are planar, and if all vertices have zero angle
deficit; analyzing these constraints for finite ǫ is intractable, but in the limit of an
infintesimal Miura pattern, when ǫ Ñ 0, satisfying the constraints to first-order
in ǫ can be expressed in terms of ui, η, and the surface metric and curvatures.
In the special case of ruled surfaces, the faces of the generalized Miura pattern
can be made parallelograms, greatly simplifying these equations and allowing a
direct construction where the vector fields ui follow ruling and curvature lines;
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the general case for positively-curved surfaces remains open, though naive degree-
counting and numerical evidence using optimization tools suggest such patterns
should exist.
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Strict minimizers

Denis Zorin

(joint work with Zohar Levi)

A variety of problems in geometry processing are solved by minimizing a global
measure of distortion over a surface or volume. For example, computing the defor-
mation of an object to a new pose can be achieved by setting a few target locations
to new positions and minimizing a measure of isometric distortion; parameterizing
a surface, or computing surface-to-surface map via an intermediate domain may
be done by computing a pair of maps minimizing deviation from conformality.

In most cases, the global functional is obtained by making two choices: (1)
a local, pointwise measure of distortion (for example, deviation from isometry or
quasiconformal distortion); (2) a way to aggregate pointwise distortion into a single
scalar measuring global distortion.

The second choice determines how distortion is distributed on the surface. L2-
norm of the distortion, viewed as a function on the surface emphasizes the decrease
in average distortion, but allows arbitrarily high local distortion. On the opposite
end of the spectrum, L8-norm ensures the tightest possible control on the worst-
case distortion. Unfortunately, it does not, in general, yield a unique solution.
Moreover, below the maximal distortion, it does not distinguish between solutions
with just one or all elements (triangles or tets) with high distortion. We describe a
different approach of controlling distortion distribution. We use the notion of strict
minimizers that appeared in a variety of contexts, in particluar in economics as
one of possible models of fairness; these minimizers do not correspond to a globally
defined energy. Rather, they are minimal with respect to an ordering of pointwise
distortion distributions on a surface. Computing strict minimizers using a precise
algorithm that follows the definition can be impractically expensive. We introduce
two approximate algorithms representing different accuracy-performance tradeoffs.

The algorithms are applicable to a number of applications, such as deformation,
surface-to-surface mapping, and shape interpolation.

This work is described in [1].
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Nested Cages

Alec Jacobson

(joint work with Leonardo Sacht, Etienne Vouga)

Many tasks in geometry processing and physical simulation benefit from multires-
olution hierarchies: efficient PDE solving, collision detection culling, physically
based simulation, and cage-based geometric modeling. As a motivating example,
consider solving a Poisson equation Ax “ b via finite-element method inside a
non-convex subregion Ω P R3 approximated by 7M-tetrahedra mesh. In-core di-
rect solvers are out of the question when memory is limited. Multiresolution solves
this problem efficiently with the following recursive algorithm1 operating over a
sequence of progressively coarser mesh approximations of the domain:

(1) Relax initial guess x according to A,
(2) Compute residual r “ Ax ´ b,
(3) Restrict residual from fine mesh to coarser mesh rc “ PTr,
(4) Solve Acuc “ rc for “update” on coarser mesh,
(5) Prolongate “update” and add to running guess x Ð x ` Puc,
(6) Relax x according to A,

where Relax typically means applying a few Jacobi or Gauss-Seidel iterations,
Restrict approximates a function defined on fine mesh vertices by one on coarse
mesh vertices, Solve applies these six steps recursively, and Prolongate takes a
function back up to the fine mesh. If the fine-mesh vertices lie strictly inside the
coarse mesh, then the P is simple linear interpolation. To ensure that equations
on coarser levels faithfully approximate lower frequencies of the original problem,
meshes should have the same topology and similar geometry.

Existing techniques such as surface mesh decimation, voxelization, or contour-
ing distance level sets, violate one or more of three characterstics: strict nesting,
homeomorphic topology and geometric closeness. Instead, our methods succes-
sively constructs each next-coarsest level of the hierarchy, using a sequence of
decimation, flow, and contact-aware optimization steps. From coarse to fine, each
layer then fully encages the next while retaining a snug fit and respecting the
original surface topology.

The input to our method is a sequence of decimations of the original mesh which
match its topology, but, in general, overlap. The output is a new embedding for
each mesh (i.e. new vertex positions) such that each tightly contains all finer
meshes. Our approach works pairwise, from the finest layer to coarsest. Each
inductively contains all finer layers.

1Known as “rediscretization multiresolution” as opposed to “Galerkin multiresolution” which
is intractable on unstructured hierarchies in R3.
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The pairwise problem is broken down into two stages: flow the fine mesh inside
the coarse mesh and then re-inflate the fine mesh to its original position while
pushing the coarse mesh outward.

Flow To attract the fine mesh F inside the coarse mesh pC we flow it opposite
the gradient of an energy integrating signed distance to the coarse mesh. In the
continuous setting we write this as:

(1) ΦpsFq “
ż

F

spspqdpspq dA,ÝÑ Bsf
Bt “ ´∇sfΦpsFq,

where sp is a point on the fine mesh, s and d compute the sign (1 outside, -1 inside)
and distance to the coarse mesh.

This flow is non-trivial to discretize. We first approximate the integral with
higher-order quadrature points sampled inside fine mesh facets. Then we employ
a technique common to surface registration. During each small step of the flow,

for each point sp we freeze its associated closest point on pC, therefore linearizing
its signed distance gradient direction. We continue along this flow until the fine
mesh is full inside the coarse mesh. In contrast to normal flows, this flow guides
the fine mesh toward the medial axis of the coarse mesh.

Re-inflation Next we reverse the flow, marching the fine mesh back along its
path, but now we resolve collisions with the coarse mesh à la physically based sim-
ulation. There are many feasible embeddings for the coarse mesh so we regularize,
treating the problem as a constrained optimization:

(2) min
C

E pCq subject to: C does not intersect itself or sF .

In physics parlance, we find a static solution for each reverse time step as sF moves
like an infinite mass obstacle toward its original position and pushes the deformable
C outward.

We leverage state-of-the-art physically-based simulation contact mechanics
methods to satisfy these constraints. There are a variety of reasonable choices
for E: total volume, total displacement, surface deformation, volumetric deforma-
tion.

This pairwise method operates iteratively to create sequences of strictly nested,
yet tightly fitting cages. We demonstrate the effectiveness of these cages for: im-
proving convergence of geometric multiresolution (especially for Neumann bound-
ary conditions), improving collision culling (especially for very non-convex shapes),
and enabling cage construction for simulation and cage-based deformation where
detailed shapes are embedded inside a deforming coarse cage.

Our heuristic is only a first step toward solving a very difficult problem. It is
easy to find impossible cases (where no embedding of the coarse mesh will strictly
nest a given fine mesh), but a general test of feasibility is elusive, much less an
algorithm with strong guarantees of success. We excitedly look forward to im-
proving upon our method by considering optimizing all layers simultaneously. We
would also like to analyze our multiresolution solver and determine whether there
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exists a concept of “nested enough.” Finally, we would like to apply our multireso-
lution hierarchies to more complicated, harder problems: quadratic programs and
second-order conic programs.
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On the Blaschke-Bol problem in the plane

Fedor Nilov

We find several essentially new constructions of hexagonal 3-webs based on a com-
bination of quadratic and linear families of circles. They are used to construct 5
new types of hexagonal 3-webs, which is an advance in the solution of the Blaschke-
Bol problem (1938) on the classification of such webs. Unlike many known exam-
ples, in our proofs we give an explicit parallelizing diffeomorphism. We give a
brief survey of all known examples of hexagonal 3-webs and their properties. In
conclusion, we formulate several conjectures and open problems.

The circumcenter of mass

Serge Tabachnikov

This talk is a survey of the recent work on an interesting geometrical construction,
the circumcenter of mass [8, 3].

Consider a plane polygon P . Triangulate it, and assign the circumcenter to
each triangle of the triangulation. Take these points with the weights equal to the
(signed) areas of the respective triangles, and consider the center of mass of this
system of point-masses. This center of mass does not depend on the triangulation;
this is the circumcenter of mass of P , denoted by CCMpP q.

This construction resembles that of the center of mass, CMpP q, of a polygonal
lamina P . That the result does not depend on the triangulation, follows from
the Archimedes Lemma: if an object is divided into two smaller objects, then the
center of mass of the compound is the weighted sum of the centers of mass of the
two smaller objects. The same applies to CCMpP q.

This construction is not new. In [5], it is attributed to an Italian algebraic
geometer G. Bellavitis. It was rediscovered by V. Adler as an integral of his
polygon recutting transformation [1, 2] and, independently, by B. Grünbaum and
G. Shephard [4]. It is also an integral of the discrete bicycle transformation [7],
a.k.a. a discrete analog of the smoke ring flow [6].

Here are some properties of CCMpP q:
‚ if P is an equilateral polygon then CCMpP q “ CMpP q;
‚ the continuous limits of CCMpP q and CMpP q coincide;
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‚ if a ‘center’ is assigned to every polygon such that it commutes with di-
lations, satisfies the Archimedes Lemma, and depends analytically on the
polygon, then it is an affine combination of CCMpP q and CMpP q.

The construction extends to simplicial polytopes in higher dimensions. The
following result is due to A. Akopyan: if the sums of squared edge lengths of
all facets of P are the same then CCMpP q “ CMpP q. One can also extend the
construction to the spherical and hyperbolic geometries.

In search of an axiomatic approach, one has the following result, see [9]: assign
to every non-degenerate simplex ∆ a ‘center’ Cp∆q so that:

(1) The map ∆ ÞÑ Cp∆q commutes with similarities;
(2) The map ∆ ÞÑ Cp∆q is invariant under the permutations of the vertices

of the simplex ∆;
(3) The map ∆ ÞÑ Volp∆qCp∆q is polynomial in the coordinates of the vertices

of the simplex ∆.

Then Cp∆q is an affine combination of the center of mass and the circumcenter:

Cp∆q “ tCMp∆q ` p1 ´ tqCCMp∆q,
where the constant t depends on the map ∆ ÞÑ Cp∆q (and not on the simplex ∆).
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Grassmann Orbitopes

Raman Sanyal

An orbitope is the convex hull of the orbit of a point under the action of a compact
group. This particular class of highly symmetric convex bodies was explored in
collaboration with Frank Sottile and Bernd Sturmfels [5]. With the additional
assumption that the group G is algebraic and the linear action of G on the ambient
real vector space V is rational, the orbit G ¨ v for v P V is a real-algebraic variety
and the orbitope Ov “ convpG ¨ vq is a semi-algebraic set. Thus orbitopes are
prime examples of the field convex algebraic geometry, the intersection of convex
geometry, real-algebraic geometry, and optimization.
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If G is finite, then Ov is a convex polytope. This very general construction
yields many well-known polytopes, including the regular solids. A particular class
of examples are the generalized permutahedra: For a point λ “ pλ1, . . . , λdq P Rd,
the generalized permutahedron is the polytope

Πpλq “ convtpλσp1q, . . . , λσpdqq : σ permutationu.
Generalized permutahedra occur in many areas including geometric combinatorics,
representation theory, and algebraic geometry.

For general groups G, orbitopes Ov are typically proper convex bodies with in-
finitely many extreme points. An interesting class of examples are the Schur-Horn
orbitopes that yield a continuous generalization of permutahedra: Let G “ Opdq
be the orthogonal group acting on real dˆd-matrices Sym2R

d by conjugation, that
is, g ¨B :“ gAgt for g P G and B P Sym2R

d. For a symmetric matrix B, we write
λpBq “ pλ1 ě λ2 ě ¨ ¨ ¨ ě λdq for its vector of real eigenvalues. For A P Sym2R

d,
the orbit G ¨ A is the collection of symmetric matrices B with λpBq “ λpAq. The
Schur-Horn orbitope is SpAq :“ convpG ¨Aq. There are many striking similarities
between permutahedra and Schur-Horn orbitopes (see [5, Sect. 3]) most of which
are a result of the following application of the well-known Schur-Horn theorem:
Let us denote by π : Sym2R

d Ñ Rd the linear projection onto the diagonal. Then
the following holds

πpSpAqq “ ΠpλpAqq.
A class of convex bodies that is computational tractable is that of spectrahedra.

A spectrahedron is an affine section of the cone of semidefinite matrices (also known
as the PSD-cone). Equivalently, a spectrahedron is a set of the form

S “ tx P Rd : A0 ` x1A1 ` ¨ ¨ ¨ ` xdAd positive semidefiniteu
for some symmetric matrices A0, . . . , Ad. Spectrahedra are exactly the feasible
regions of semidefinite programs, a powerful extension of linear programming.
Choosing all Ai diagonal yields the usual definition of polyhedra. In [5] we show
that the Schur-Horn orbitopes are spectrahedra.

Interesting and important in differential geometry are the Grassmann orbitopes.
Let V “ ^kRn be the k-th exterior power of Rn. The standard action of G “ Opnq
on Rn induces an action on V . For v “ e1 ^ e2 ^ ¨ ¨ ¨ ^ en, the points of the orbit
Gk,n :“ G ¨ v are in bijection with oriented k-dimensional linear subspaces of Rn.
The Grassmann orbitope (or mass ball) is defined as Gk,n :“ convpGk,nq. An
exposed face of Gk,n is the set of points maximizing a linear function ℓ over Gk,n.
If the maximal value of ℓ over Gk,n is 1, then ℓ is called a calibration. According
to the Fundamental Theorem of Calibrations [2], calibrations give certificates for
manifolds to be area minimizing with given boundary. The points Gk,n X tℓ “ 1u
are the calibrated geometries.

For k P t1, n ´ 1u, the Grassmann orbitopes are just n-dimensional balls Bn.
The Grassmann orbitope G2,4 is linearly isomorphic to B3 ˆB3. For k P t2, n´2u,
the Grassmann orbitopes are skew-symmetric versions of the Schur-Horn orbitopes
and hence spectrahedra. This implies that calibrated geometries and calibrations
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can be explored experimentally using the standard software for semidefinite pro-
gramming.

For 2 ă k ă n ´ 2, our knowledge of the faces of Gk,n is very scarce. The
Grassmann orbitope G3,6 was described by Dadok and Harvey [1] and Morgan [4].
The results were extended to G3,7 by Harvey and Morgan [3]. It can be shown
that these Grassmann orbitopes are not spectrahedra.

In joint work with Philipp Rostalski, we used state-of-the-art methods from
polynomial optimization to explore Grassmann orbitopes computationally. The
basic idea is the following: Maximizing a linear function ℓ over Gk,n is equivalent to
finding the minimal δ such that δ´ℓppq ě 0 for all p P G¨v. It is in general difficult
to assert that a (linear) function δ´ ℓ is nonnegative. A tractable relaxation is to
replace it with the weaker condition of being a sum-of-squares: find the minimal
δ such that

(1) δ ´ ℓppq “ h1ppq2 ` h2ppq2 ` ¨ ¨ ¨ ` hmppq2 for all p P Gk,n

for some polynomials h1, . . . , hm. The Grassmannian Gk,n is a compact real variety
with vanishing ideal Ik,n Ă RrpI : I Ď rns, |I| “ ks consisting of the Plücker
relations plus the equation of the unit sphere. Hence, (1) is equivalent to the
condition that δ ´ ℓ ´ ř

i h
2
i P Ik,n. For an upper bound D on the degree of the

polynomials hi, the relaxed optimization problem can be cast into a semidefinite
programming problem. This is computationally tractable if D is small. For n ď 7,
we found that D “ 1 suffices. That is, every calibration is a sum-of-squares of
linear polynomials relative to Ik,n. We conjecture that this holds true for all
Grassmann orbitopes. It turns out that our conjecture is equivalent to a question
of Harvey and Lawson [2, Question 6.5].
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The Classification of compact Nil-manifolds up to isometry

Ulrich Brehm

Nil is one of the eight 3-dimensional Thurston geometries. We give a complete
classification of all compact Nil-manifolds up to isometry. A compact Nil-manifold
is by definition a compact 3-dimensional connected Riemannian manifold such that
its universal cover is isometric to Nil. There is a canonical bijection between the
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isometry classes of compact Nil-manifolds and the conjugacy classes of cocom-
pact fixed-point free discrete subgroups G of the isometry group IsopNilq of Nil.
The isometry group of the Nil-manifold Nil{G is isomorphic to NorpGq{G, where
NorpGq denotes the normalizer of G.

We use the linear model of Nil which has been introduced by K. Brodaczewska
in her thesis [1]. In this model, Nil is R3 with the Riemannian metric
ds2 “ dx2 ` dy2 ` py

2
dx´ x

2
dy ` dzq2. The isometry group IsopNilq is in this

model a 4-dimensional subgroup of the group of affine transformations of R3. Nil

has a natural filtration by parallels to the z-axis. The space of fibres is canonically
isometric to the Euclidean plane. IsopNilq preserves the filtration and operates
on the space of fibres as the full isometry group (of Euclidean motions).

Iso(Nil) contains the rotations Rφ around the z-axis, and the reflection ρ at
the x-axis, and the Nil-translations Tpa,b,cq with

Tpa,b,cq

¨
˝

x

y

z

˛
‚“

¨
˝

x` a

y ` b

z ` c` 1
2

pay ´ bxq

˛
‚.

Each element of IsopNilq has a unique representation of the form Tpa,b,cqRφ or
Tpa,b,cqRφρ. Note that the group of Nil-translations operates simply transitive on
Nil and that

T´1
pa,b,0qT

´1
pc,d,0qTpa,b,0qTpa,b,0q “ Tp0,0,ad´bcq.

We first consider the conjugacy classes of elements of IsopNilq. Each element
of IsopNilq is conjugate to exactly one of the following elements: The identity, a
z-translation Tp0,0,uq with u ą 0, a Nil-translation Tpa,0,0q with a ą 0, a rotation
Rφ with φ P p0, πs around the z-axis, a screw Tp0,0,uqRφ with φ P p0, 2πq and u ą 0,
the line reflection ρ, or a line glide reflection Tpa,0,0qρ with a ą 0.

Let G be a cocompact fixed point free discrete subgroup of IsopNilq. Let N
denote the group of z-translations in G. Then G{N operates canonically on the
space of fibres as a discrete cocompact group of Euclidean motions containing no
reflections. Thus G{N is isomorphic to one of the seven crystallographic groups
p1, p2, p3, p4, p6, pg, pgg.

A crucial observation for the classification of compact Nil manifolds is that each
cocompact group of Nil-translations is conjugate to a group of the form

xTpa,0,0q, Tpb,c,0q, Tp0,0,ac
k

qy,
where 0 ă a ď c and 0 ď b ď a

2
and a2 ď b2 ` c2 and k P N. These a, b, c, k are

uniquely determined by the conjugacy class. This is the classification in the case
p1 and the basis for the classification in each of the other cases p2, p3, p4, p6, pg
and pgg.

Note that Tp0,0,acq is the commutator of Tpa,0,0q and Tpb,c,0q. The number k is
crucial for the topology of the Nil-manifold.
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Table 1. Complete classification / summary

type para-
meters

fundamentalgroup and homology group condition

p1 3 tS, T, U | S´1T´1ST “ Uk,

SU “ US, TU “ UT u
Z ‘ Z ‘ Zk

k P N

p2 3 tA1, A2, A3 | A2
1 “ A2

2 “ A2
3,

pA1A2A3q2 “ A
2p3`kq
1 u

Z2 ‘ Z2 ‘ Z2k

k ” 0 pmod2q

p3 1 tB1, B2 | B3
1 “ B´3

2 , pB1B2q3 “ B
3kq
1 u

tB1, B2 | B3
1 “ B3

2 , pB1B2q3 “ B
3p2˘kq
1 u

two different types
Z3 ‘ Z3k in each case

k ı 0 pmod3q
k ” 0 pmod3q

k P N

p4 1 tA,C | C4 “ A2, pAC´1q4 “ A2p1`kqu
and a different type

tA,C | C4 “ A2, pAC´1q4 “ A2p1´kqu
Z2 ‘ Z4k in each case

k ” 0 pmod2q

k ” 0 pmod4q
k ” 0 pmod2q

p6 1 tA,B | B3 “ A2, pBAq6 “ A2p5`kqu

and a different type

k ” 0 pmod6q or
k ” 2 pmod6q

tA,B | B3 “ A2, pBAq6 “ A2p5´kqu

Z6k in each case

k ” 0 pmod6q or
k ” 4 pmod6q
k ” 0 pmod2q

pg 2 tP, S, U | SPS “ PUk, PU “ U´1P,

SU “ USu
Z ‘ Z2 ‘ Z2

Z ‘ Z4

k P N

k ” 0 pmod2q
k ” 1 pmod2q

pgg 2 tP,Q,U | pQP q2 “ pP´1Qq2 “ Uk,

UPU “ P, UQU “ Qu
Z4 ‘ Z4

k ” 1 pmod2q

k ” 1 pmod2q
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Some infinite sequences of Nil-manifolds have been investigated before (e.g. [2],
[3]), but not systematically.

The same methods and ideas can be applied to get also a complete classification
of Nil-orbifolds up to isometry, but this has is not yet been completed.

The present work is part of the joint research project on Nil geometry between
TU Dresden and Budapest Univ. Techn. Econ.
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Kac-Ward formula and discrete boundary value problems coming from
the critical Ising and double-Ising models in 2D

Dmitry Chelkak

1. Kac-Ward formula

1.1. Ising model. We begin this talk, based on a joint work in progress with
D. Cimasoni and A. Kassel [1], with a new proof of the Kac-Ward formula [6, 5, 8]

(1) rZIsingpG, pxeqePEpGqqs2 “ ˘ detrKWpG, pxeqePEpGqqs
for the partition function of the spin Ising model on a planar graph G. In fact,
we work with the low-temperature representation of the model so that the spins
σf “ ˘1 are assigned to faces of G and parameters xe “ expr´2Jes describe their
nearest-neighbor interactions across edges e P EpGq. The particularly important
setup is simply connected discrete domains Ω drawn on some fixed (e.g., square
or honeycomb) planar grid, with constant interactions xe “ x. In this setup one
can always assume that the big ‘outer’ face of G “ Ω carries the spin `1, which
is equivalent to say that all the boundary grid cells σf , f P BΩ, carry the spin `1.

1.2. Double-Ising model. The important feature of our proof comparing to
other known ones, besides its simplicity and minimal number of cancellations in-
volved, is that it provides a way to analyze the so-called double-Ising model in
discrete domains via solutions to some special discrete boundary value problems;
see Section 2.2. The double-Ising model on Ω is obtained by superimposing two
copies of the Ising model: each face of Ω is in one of the four states ‘1’=‘++’,
‘2’=‘+–’, ‘3’=‘– –’, ‘4’=‘–+’, and the interactions across edges are given by xe for
pairs 1|2, 1|4, 2|3 and 2|4, and by x2e for 1|3 and 2|4. Assigning the state ‘1’=‘++’
to all boundary faces f P BΩ of Ω, we can reformulate (1) as follows:

(2) Z``
dbl-IpΩq “ rZ`

IsingpΩqs2 “ ˘ detrKWpΩqs ,
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where superscripts denote boundary conditions and we omit xe “ x in the notation.

Now let us split the boundary BΩ into two complementary arcs pabq, pbaq, and
impose the following boundary conditions: the states of faces along pabq are either
‘1’=‘++’ or ‘3’=‘– –’, while the faces along pbaq are ‘2’=‘+–’ or ‘4’=‘–+’. We call
these Dobrushin boundary conditions since they generate an interface (domain
wall) from a to b which separates the phase ‘1 or 3’ from ‘2 or 4’. It is worth
noting that we do not specify the state of any particular boundary face neither on
pabq nor on pbaq, and include the possible x2 interactions between those into the
partition function. Then the following generalization of (1) holds:

(3) Z
13|24
dbl-I pΩ, a, bq “ ˘ rKWpΩ, a, bqs´1

a,b ¨ detrKWpΩ, a, bqs ,

where the superscript ‘13|24’ stands for Dobrushin boundary conditions described
above and KWpΩ, a, bq is a modified Kac-Ward matrix defined below.

1.3. The matrices KWpΩq, KWpΩ, a, bq and proofs of identities (1)–(3).
The entries of Kac-Ward matrices are labeled by oriented edges of G, we denote
this set by EpGq. When working with discrete domains Ω, it is also convenient to
include all ‘normal to BΩ’ edges (i.e., those separating faces on the boundary of Ω)
into EpΩq. Then, for e, e1 P EpΩq, we set rKWpΩqse,e1 :“ 0 except

rKWpΩqse,e1 :“
#
1, if ē1 “ e,

´pxexe1 q1{2 ¨ expr i
2
αpe, ē1qs, if ē1 prolongates e and e1 ‰ e,

where ē1 denotes e1 with the orientation inverted and αpe, ē1q is the turning angle
from e to ē1. It is worth noting that the classical Kac-Ward matrix [6] slightly
differs from the matrix KWpΩq defined above. Namely, the former can be obtained
by multiplying the latter by the trivial matrix rJse,e1 “ δe,ē1 with detJ “ ˘1.

Sketch of the proof of identity (2). We consider the so-called terminal graph T pΩq
whose vertices are in 1-to-1 correspondence with oriented edges of Ω. Note that
KWpΩq is a weighted adjacency matrix of T pΩq which has edges of two sorts:
‘long’ edges linking e with ē and ‘short’ ones linking e with e1, if ē1 prolongates e.
Expanding detKWpΩq, one gets terms labeled by coverings of T pΩq by oriented
cycles and double-edges. It is easy to see that two opposite orientations of a cycle
produce a cancellation for odd-length cycles and a factor 2 for even-length ones.

For simplicity, let us assume that Ω is a trivalent graph; see [1] for the general
case. A covering of T pΩq consisting of even cycles and double edges can be in-
terpreted as a double-Ising model configuration (on faces of Ω) as follows: cycles
correspond to interfaces separating ‘1 or 3’ from ‘2 or 4’, short double edges form
interfaces 1|3 or 2|4, while long double edges mean no change of the states ‘1’–‘4’
across them. Moreover, the additional factors 2 per cycle exactly correspond to
the remaining ambiguity of assigning the face states given all the interfaces. l

The modified Kac-Ward matrix KWpΩ, a, bq is defined as

rKWpΩ, a, bqse,e1 :“
#

¯ixe, if e “ e1 is ‘outward normal’ to BΩ, e ‰ a, b,

rKWpΩqse,e1 , otherwise,
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where the sign is ´ for ‘outward normal’ edges on pabq and ` for those on pbaq.
Sketch of the proof of identity (3). The proof goes along the same lines as above.
Expanding the minor of KWpΩ, a, bq labeled by EpΩqzta, bu, one interprets all
non-canceling terms (a path from a to b + even-length cycles + double-edges) as
double-Ising configurations with Dobrushin boundary conditions. l

2. Boundary value problems and convergence for x “ xcrit

2.1. Ising model. It was noticed in [7] that, at the critical temperature x “ xcrit,
the entries of KWpΩq´1 can be interpreted as discrete s-holomorphic functions [4]
satisfying some special boundary conditions on BΩ. In particular, let a, b be two
‘outward normal to BΩ’ edges, and b be oriented horizontally to the right. Let

Fapzeq :“ rKWpΩqs´1
a,e ` rKWpΩqs´1

a,ē ,

where ze denotes a midpoint of an edge in Ω and e, ē stand for two possible
orientations of this edge. Two crucial facts which eventually allow one to prove
the convergence of interfaces in the critical Ising model to conformally invariant
limits given by Schramm’s SLE(3) curves are the following (see [2] for details):

‚ For each midedge ze in Ω, the ratio Fapzeq{Fapzbq is a martingale with
respect to the interface (separating ‘–’ and ‘+’ states) running from a to b in the
Ising model with Dobrushin boundary conditions (‘–’ on pabq, ‘+’ on pbaq).

‚ The function Fap¨q{Fapzbq is s-holomorphic inside Ω. Moreover, for each
‘outward normal to BΩ’ edge c ‰ a, one has ImrFapzcq{Fapzbq ¨ ?

c s “ 0 , and this
discrete boundary value problem determines the function Fap¨q uniquely.

Also, note that the analysis of similar boundary value problems and the con-
vergence of their solutions to continuous counterparts are the core ingredients in a
series of recent papers (see [2, 3] and references therein) devoted to the conformal
invariance phenomenon in the critical 2D Ising model on bounded planar domains.

2.2. Double-Ising model with Dobrushin boundary conditions. Denote

Fa,bpzeq :“ rKWpΩ, a, bqs´1
a,e ` rKWpΩ, a, bqs´1

a,ē .

‚ Then, for each midedge ze in Ω, the ratio Fa,bpzeq{Fa,bpzbq is a martingale
with respect to the interface (13|24 domain wall) running from a to b in the double
Ising model with Dobrushin boundary conditions (‘1 or 3’ on pabq, ‘2 or 4’ on pbaq).

‚ The function Fa,bp¨q{Fa,bpzbq is s-holomorphic inside Ω. Moreover, one has
ImrFa,bpzcq{Fa,bpzbq ¨ p1 ¯ ixq?

c s “ 0 for each ‘outward normal’ edge c ‰ a, where
the sign is ´ on pabq and ` on pbaq. These properties determine Fa,bp¨q uniquely.

2.3. Wilson’s conjecture on double-Ising interfaces. In [9], D. Wilson con-
jectured that ‘13|24’ domain walls at the critical temperature x “ xcrit converge
to Schramm’s SLE(4) curves with drifts depending on boundary conditions. A
striking part of the conjecture is that, even for Dobrushin boundary conditions,
these scaling limits are not expected to satisfy the so-called domain Markov prop-
erty despite their discrete precursors doing so. It means that solutions to discrete
boundary value problems from Section 2.2 are somehow sensitive to ‘boundary ef-
fects’, on the contrary to the fact that their analogues from Section 2.1 are not. At
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the moment, we do not know how to analyze such a dependence using the language
of discrete s-holomorphic functions, which seems to be a challenging problem.
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The Morse theory of Čech and Delaunay complexes

Ulrich Bauer

(joint work with Herbert Edelsbrunner)

Given a finite set of points in Rn and a radius parameter, we study the Čech,
Delaunay–Čech, Delaunay (or alpha), and Wrap complexes in the light of gen-
eralized discrete Morse theory. Establishing the Čech and Delaunay complexes
as sublevel sets of generalized discrete Morse functions, we prove relationships
between the functions that imply that the four complexes are simple-homotopy
equivalent. Our results have applications in topological data analysis and in the
reconstruction of shapes from sampled data.

1. Background

1.1. Discrete Morse theory. Let K be a finite simplicial complex. Recall that
an interval in the face relation of K is a subset of the form

rP,Rs “ tQ | P Ď Q Ď Ru.
We call a partition V ofK into intervals a generalized discrete vector field. Suppose
now that there is a function f : K Ñ R that satisfies fpP q ď fpQq whenever P is
a face of Q with equality iff P and Q belong to a common interval in V . Then
f is called a generalized discrete Morse function and V is its generalized discrete
gradient. If an interval contains only one simplex, then we call the simplex a
critical simplex and the value of the simplex a critical value of f . A generalized
discrete gradient can encode a simplicial collapse.
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Theorem 1 (Generalized Collapsing Theorem [1, 4]). Let K be a simplicial com-
plex with a generalized discrete gradient V , and let K 1 Ď K be a subcomplex. If
KzK 1 is a union of non-singular intervals in V , then K collapses to K 1.

1.2. Čech and Delaunay complexes. For r ě 0, letBrpxq “ ty P Rn | dpx, yq ď
ru be the closed ball of radius r centered at x P X . The Čech complex of a finite
set X Ď Rn for radius r ě 0,

CechrpXq “
"
Q Ď X |

č

xPQ

Brpxq ‰ H
*
,

is isomorphic to the nerve of the collection of closed balls.
For a finite set X Ď Rn and a point x P Rn, the Voronoi domain of x with

respect to X , and the Voronoi ball of x with respect to X for a radius r ě 0 are,
respectively,

Vorpx,Xq “ ty P Rn | dpy, xq ď dpy, pq for all p P Xu and

Vorrpx,Xq “ Brpxq X Vorpx,Xq.
The Delaunay complex of X for radius r ě 0,

DelrpXq “
"
Q Ď X |

č

xPQ

Vorrpx,Xq ‰ H
*
,

often also called alpha complex, is isomorphic to the nerve of the collection of
Voronoi balls.

The Delaunay–Čech complex for radius r ě 0 is the restriction of the Čech
complex to the Delaunay triangulation. It contains all simplices in the Delaunay
triangulation such that the balls of radius r centered at the vertices have a non-
empty common intersection:

DelCechrpXq “
"
Q P DelpXq |

č

xPQ

Brpxq ‰ H
*
.

2. Selective Delaunay complexes and their discrete gradients

Generalizing the Čech and Delaunay complexes, the selective Delaunay complex
of E Ď X and r contains all simplices over X whose vertices have Voronoi balls
for the subset E with non-empty common intersection:

DelrpX,Eq “
"
Q Ď X |

č

xPQ

Vorrpx,Eq ‰ H
*
.

The Čech and Delaunay complexes appear as special cases CechrpXq “ DelrpX,Hq
and DelrpXq “ DelrpX,Xq.

There is an equivalent definition of selective Delaunay complexes in terms of
radius functions. We write SpQ,Eq for the smallest pn´ 1q-dimensional sphere S
such that all points of Q lie on or inside S and all points of E lie on or outside S,
if such a sphere exists, referring to it as the Delaunay sphere of Q for E, and
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we write spQ,Eq for its squared radius. The radius function for E is defined by
sEpQq “ spQ,Eq. Now a subset Q Ď X is a simplex in DelrpX,Eq iff sEpQq ď r2.

A finite set X P Rn is in general position if every subset Q Ď X of at most
n ` 1 points is affinely independent and no point of XzQ lies on the smallest
circumsphere of Q.

Let S be an pn´ 1q-sphere, write InclS,ExclS Ď X for the subsets of included
and excluded points, and set OnS “ InclS X ExclS. Assuming that S is the
smallest circumsphere of OnS, we can write the center z as an affine combination
z “

ř
ρxx of OnS. If X is in general position, the affine combination is unique,

and ρx ‰ 0 for all x P OnS. We call

FrontS “ tx P OnS | ρx ą 0u,
BackS “ tx P OnS | ρx ă 0u

the front face and the back face of OnS, respectively. Using these definitions,
we can state combinatorial conditions characterizing the Delaunay spheres. These
conditions are derived from the Karush–Kuhn–Tucker conditions, using the ob-
servation that Delaunay spheres are defined as minimizers of a certain convex
optimization problem.

Theorem 2 (Combinatorial KKT Conditions). Let X be a finite set of weighted
points in general position. Let Q,E Ď X for which there exists a sphere S with
Q Ď InclS and E Ď ExclS. It is the smallest such sphere, S “ SpQ,Eq, iff
(i) S is the smallest circumsphere of OnS,
(ii) FrontS Ď Q, and
(iii) BackS Ď E.

Corollary 1 (Selective Delaunay Morse Function Corollary). Let X be a finite
set of weighted points in general position, and E Ď X. Then the radius function

sE : DelpX,Eq Ñ R

is a generalized discrete Morse function whose gradient consists of the intervals
rFrontS, InclSs over all Delaunay spheres S “ SpQ,Eq with Q P DelpX,Eq.
Corollary 2 (Critical Simplex Corollary). Let X be a finite set of weighted points
in general position. Independent of E, a subset Q Ď X is a critical simplex of sE,
with critical value spQ,Qq, iff Q is a centered Delaunay simplex.

3. Collapses

Given E Ď F Ď X , we can refine the generalized discrete gradients of the two
radius functions sE and sF to a discrete gradient that induces a sequence of col-
lapses.

Theorem 3. DelrpX,Eq Œ DelrpX,Eq X DelpX,F q Œ DelrpX,F q.
In particular, we obtain a collapse of the Čech complex through the Delaunay–

Čech complex to the Delaunay complex.

Corollary 3. CechrpXq Œ DelCechrpXq Œ DelrpXq.
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The face relation induces a partial order on the generalized gradient VX of the
Delaunay function sX . The lower set of a subset A Ď VX in this partial order is
denoted by ÓA. We can now give a very simple definition of the Wrap complex
[3] for r ě 0, consisting of all simplices in the lower sets of all singleton intervals
with Delaunay sphere of radius at most r:

SingrpXq “ trQ,Qs P VX | sXpQq ď r2u,
WraprpXq “

ď
ÓSingrpXq.

The Wrap complex is used in commercial software for surface reconstruction. The
original definition of the Wrap complex corresponds to Wrap8pXq, which we sim-
ply denote as WrappXq. The following collapse is immediate from the definition.

Theorem 4. DelrpXq Œ WrappXq.
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Fixed-energy harmonic function

Richard Kenyon

(joint work with Aaron Abrams)

We study the map from conductances to edge energies for harmonic functions on
graphs with Dirichlet boundary conditions. We prove that for any compatible
acyclic orientation and choice of energies there is a unique choice of conductance
such that the associated harmonic function realizes those orientations and energies.
We call the associated function enharmonic. For rational energies and boundary
data the Galois group of Qtr (the totally real algebraic numbers) over Q permutes
the enharmonic functions, acting (generically transitively) on the set of compatible
acyclic orientations.

For planar graphs there is an enharmonic conjugate function; together these
form the real and imaginary parts of a “fixed energy” analytic function, or axilytic
function. In the planar scaling limit for Z2, these functions satisfy an analog of
the Cauchy-Riemann equations, the axilytic equations

uxvy “ 1

uyvx “ ´1.

We give an analog of the Riemann mapping theorem for injective axilytic functions,
as well as a variational approach to finding solutions in both the discrete and
continuous settings.



Discrete Differential Geometry 719

Open Problems in Discrete Differential Geometry

Collected by Günter Rote

PROBLEM 1 (Sergei Tabachnikov). Paper Möbius strip and paper cylin-

der eversion

One can make a smooth Möbius strip from a paper rectangle if its aspect ratio is
sufficiently large, but not from a square.

Question 1. What is the smallest length λ such that a smooth Möbius band can
be made of a 1 ˆ a paper rectangle if a ą λ?

The known bounds are π
2

ď λ ď
?
3 [1, 2], and it is conjectured that λ “

?
3. For

smooth immersions, the answer is λ “ π{2. See [3, 4, 5] and the references there for
developable Möbius bands. A related problem concerns the eversion of a cylinder:

Question 2. What is the least perimeter µ of a paper cylinder of height 1 that
can be turned inside out in the class of embedded smooth developable surfaces.

The known bounds are π ď µ ď π ` 2, and for smooth immersions, the answer
is µ “ π [2].
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PROBLEM 2 (Sergei Tabachnikov). Commuting billiard maps

Given a smooth convex plane domain, the billiard ball map sends an incoming
ray (the trajectory of the billiard ball) that hits the boundary from inside to an
outgoing ray according to the law of reflection: the angle of incidence equals the
angle of reflection.

Consider two nested convex domains. The two billiard ball maps, T1 and T2,
act on the oriented lines that intersect both domains. If the domains are bounded
by confocal ellipses, then the respective billiard ball maps commute; see, e.g., [4].

Question. Assume that the two maps commute: T1 ˝T2 “ T2 ˝T1. Does it follow
that the two domains are bounded by confocal ellipses?

For piecewise analytic billiards, this conjecture was proved in [2]. For “outer
billiards”, an analogous fact is proved in [3]. Of course, this problem has a multi-
dimensional version, open both for inner and outer billiards; see, e.g., [1] on multi-
dimensional integrable billiards.
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[1] V. Dragović, M. Radnović. Poncelet porisms and beyond. Integrable billiards, hyperelliptic
Jacobians and pencils of quadrics. Birkhäuser, Basel, 2011.
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PROBLEM 3 (Mikhail Skopenkov). Inverse problem for alternating-

current networks

An alternating-current network [2, Section 2.4] is a (not necessarily planar) graph
with a fixed subset of b vertices (boundary vertices) and a complex number cxy
with positive real part (conductance) assigned to each edge xy. A voltage is a
complex-valued function vx on the set of vertices such that for each nonboundary
vertex y we have

ř
xy cxypvx ´ vyq “ 0, where the sum is over the edges containing

the vertex y. One can see that the voltage is uniquely determined by its boundary
values [2, Section 5.1]. The current flowing into the network through a boundary
vertex y is ipyq :“

ř
xy cxypvx ´ vyq. The network response is the matrix of the

linear map taking the vector of voltages at the boundary vertices to the vector of
currents flowing into the network through the boundary vertices.

The general electrical-impedance tomography problem is to reconstruct the net-
work from its response. For direct-current planar networks, meaning that all
conductances are real and positive, the problem has been solved [1].

Teaser. There is a matrix realizable as the response of the network in the figure
to the right, for the boundary vertices N1, N2, N3 and some edge conductances
R1, R2, R3, but not by the network to the left.

Denote by Ψb the set of complex bˆ b matrices Λ having the following 4 prop-
erties:

(1) Λ is symmetric;
(2) the sum of the entries of Λ in each row is zero;
(3) ReΛ is positive semidefinite;
(4) if U “ pU1, . . . , Ubq P Rb and UT pReΛqU “ 0 then U1 “ ¨ ¨ ¨ “ Ub.

Question 1. Prove that the set of responses of all possible connected alternating-
current networks with b boundary vertices is the set Ψb.

It is known that Conditions (1–4) are necessary. Sufficiency is known for b “ 2
and b “ 3 [2, Theorem 4.7].
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Question 2. Provide an algorithm to reconstruct a network and edge conductances
for a given response matrix.

Note: Questions 1 and 2 have been solved by Günter Rote.

Question 3. Describe the set of responses of all series-parallel networks.

Question 4. Describe the set of responses of all planar networks that have the
boundary vertices on the outer face.

Question 5. Let the conductance of each edge be either ω or 1{ω, where ω is a
variable. Describe the set of possible responses of such networks as functions in ω.

This is known for b “ 2 boundary vertices — Foster’s reactance theorem [2, The-
orem 2.5].
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PROBLEM 4 (Nina Amenta). Are face angles determined by dihedral

angles?

Stoker’s conjecture says that, for a convex 3-polytope with given combinatorics, if
all dihedral angles are specified (different from 0 and π), then all face angles are
also determined.

Question. Is this also true for a non-convex polytope?

One may assume that the polytope is triangulated and that it is homeomorphic
to a sphere.

PROBLEM 5 (Günter Rote). Existence of offset polytopes

We are given a non-convex three-dimensional polytope P whose boundary is home-
omorphic to a sphere. We want to construct an offset polytope Pε in which every
face is translated outward by the same small distance ε. Pε should not have other
faces than the faces coming from P , and the boundary of Pε should remain home-
omorphic to a sphere. If P has a saddle-like vertex of degree 4 or larger, the result
is not unique.

Question. Does such an offset polytope always exist for sufficiently small ε ą 0?

It is enough to solve the problem locally for each vertex v of degree d ě 4. Such
a vertex will be blown up into d´ 2 new vertices, connected by edges that form a
tree. The faces of Pε should be simply connected when clipped to a neighborhood
of v.

PROBLEM 6 (Ulrich Bauer). Subdivision of discrete conformal struc-

tures

Let T be a triangulated surface, and let λ, µ : ET Ñ Rą0 be two discrete confor-
mally equivalent metrics on T , represented as edge lengths of the triangulation.
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Here, discrete conformal equivalence means that the edge lengths of λ and µ for
any edge ij between two vertices i, j are related by µij “ e

1

2
pui`ujqλij for some

function u : VT Ñ R on the vertices.

Question. Is there a metric subdivision scheme that preserves the conformal
equivalence?

Specifically, a subdivision of a simplicial complex K is a complex K 1 such that
|K| “ |K 1| and each simplex of K 1 is contained in some simplex of K. A metric
subdivision scheme is a map sending each simplicial complex K equipped with
a metric λ to a subdivision K 1 of K equipped with a metric λ1. A particular
example is the barycentric subdivision. The question is whether there exists a
metric subdivision scheme such that the subdivided metrics λ1 and µ1 are still
conformally equivalent.
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PROBLEM 7 (Jim Propp, Richard Kenyon). Disk packings of maximum

area

Consider two disks of radius 1 with centers at p˘1, 1q. Together with the x-
axis, they enclose at curved triangular region. Into this region, we want to place
infinitely many non-overlapping disks that touch the x-axis, such that their total
area is maximized.

Question. Is it true that the greedy method of successively placing each new circle
into the interstices such that they touch two previously placed circles will give the
maximum area?

PROBLEM 8 (Günter Rote). A curious identity on self-stresses

Take the wheel graph G (the graph of a pyramid) embedded in the plane in general
position, with a central vertex p0 that is connected to vertices p1, . . . , pn (n ě 3)
forming a cycle. On the 2n edges of this graph, we define the following function:

ωi,i`1 :“ 1

rpipi`1p0srp1p2 . . . pns , ω0,i :“
rpi´1pipi`1s

rpi´1pip0srpipi`1p0srp1p2 . . . pns .

for i “ 1, . . . , n, where rq1q2 . . . qks denotes signed area of the polygon q1q2 . . . qk,
and pn`1 “ p1. This function is a self-stress : the equilibrium condition

ř
j ωijppj´

piq “ 0 holds for every vertex i, where the summation is over all edges ij incident
to i. Pick two arbitrary points a and b and define another function fij on the
edges of G:

fij :“ rapipjsrbpjpjs,
Then we have the following identity, which was used (and proved) for n “ 3 in [1].

(1)
ÿ

ijPEpGq

ωijfij “ 1
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A different formula for fij that fulfills (1) is given by a line integral over the
segment pipj , see [1, Lemma 3.10]:

f 1
ij :“ 3

2
¨ ‖pi ´ pj‖ ¨

ż pj

x“pi

‖x‖2 ds “ 1
2

¨ ‖pi ´ pj‖
2 ¨

`
‖pi‖

2 ` ‖pj‖
2 ` xpi, pjy

˘

Question 1. Are there other graphs with n vertices and 2n´ 2 edges, for which a
self-stress ω satisfying (1) can be defined? The next candidates with 6 vertices are
the graph of a triangular prism with an additional edge, and the complete bipartite
graph K3,3 with an additional edge.

Question 2. What is the meaning of the identity (1)? Is it an instance of a more
general phenomenon? What are the connections to homology and cohomology?
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PROBLEM 9 (Hao Chen and Arnau Padrol, reported by Günter M. Ziegler).
Approximately inscribed polytopes

Steinitz proved in 1928 [3] that not every combinatorial type of 3-polytope can be
inscribed, that is, realized with all vertices on a sphere. However, a weak version
of this is true: Due to the Koebe–Andreev–Thurston circle packing theorem (see
e.g. [2, 4]), every 3-polytope can be realized with all edges tangent to the sphere
– and thus it has a representation with

‚ all vertices outside a sphere
‚ all facets cutting into the sphere.

The question is whether this extends to higher dimensions:

Question. Does every combinatorial type of d-polytope have a realization with
‚ vertices outside a pd ´ 1q-sphere,
‚ facets cutting into the same pd ´ 1q-sphere.

Our conjecture is that this is false for d ą 3, perhaps already for d “ 4, but
certainly for high dimensions d, where we know that there are infinitely many
projectively unique polytopes. The examples constructed in [1] are essentially
inscribable, but there should be other such polytopes whose “shape” is far off
from that of a sphere/quadric. However, we have not been able to construct such
a polytope yet.
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