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Introduction by the Organisers

Algebraic geometry is a vast and thriving subject with a countless number of re-
searchers in the field worldwide. While most conferences focus on more specialized
topics, this workshop was designed to give a broader view on various aspects of
algebraic geometry with the aim to spread ideas across subfields. To make this
really happen we targeted researchers with a broad range of interests, working
on topics that usually require a mix of different techniques. The result was an
intense exchange of ideas, with a very attentive and lively audience throughout
the 21 talks of 50 minutes each, and continuing with productive discussions in
the lunch breaks and after dinner, often late into the evening. The schedule was
sufficiently relaxed to permit free time and to consent to recover energy for dis-
cussions. This worked out perfectly well and the atmosphere was generally felt
to be extremely stimulating and productive. In fact, many participants expressed
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their satisfaction about the design of the workshop and the new mix of topics and
people. The fact that many young participants got the chance to present their
work was generally very appreciated.

The big success of the workshop was due to the high quality of the participants,
with a large number of prime players together with many young but already very
visible participants. The level of the workshop is also illustrated by the fact that
half of the participants came from overseas.

A larger number of talks was devoted to derived categories of coherent sheaves,
addressing questions of semi-orthogonal decompositions for a particularly inter-
esting class of Fano manifolds (Alexander Kuznetsov), non-commutative enhance-
ments and deformations related to rational curves in Calabi-Yau varieties (Will
Donovan), spaces of stability conditions on abelian and Calabi-Yau varieties (Arend
Bayer), a conceptually new approach to stability of objects (Daniel Halpern-
Leistner), derived categories of moduli spaces under wall crossing (Matthew Bal-
lard) and moduli spaces of stable objects in derived categories (Yukinobu Toda).

New results on moduli spaces of sheaves on surfaces were presented in talks
by Giulia Saccà. In a joint work with Arbarello, she describes the singularities
of the moduli space of sheaves on K3 surfaces in strictly semistable points in
terms of quiver varieties, which is important for the understanding of wall crossing
phenomena. Aspects of mirror symmetry were highlighted in the talks by Helge
Ruddat (mirror symmetry for conifold transitions) and Alessio Corti (classification
of Fano surfaces via their mirror Landau-Ginzburg potentials).

Talks by János Kollár (Numerical flatness and stability criteria ), Zsolt Patak-
falvi (Projectivity of moduli spaces of KSBA stable pairs) and Chenyang Xu (De-
generation of Fano Kähler-Einstein manifolds) concentrated more on foundational
problems related to moduli theory of algebraic varieties.

In her talk, Enrica Floris explained a recent result with Paolo Cascini addressing
deformation invariance of plurigenera for foliations of surfaces. This is in analogy
to Siu’s result, one of the central results in classification theory, but the case of
foliations turns out to be considerably more involved.

The talk by Bhargav Bhatt reported on ongoing work with Peter Scholze that
transports a well-known result on the structure of the affine Grassmannian as an
ind-projective scheme in characteristic zero to the p-adic case. Besides its fun-
damental importance, the role of Keel’s criteria for basepoint freeness in positive
characteristic made this of particular interest to participants working in classifica-
tion theory.

Rationality questions have always been of special interest to algebraic geome-
ters. In his talk Burt Totaro reported on very recent results on hypersurfaces of
not too small degree not being stably rational, which strengthens earlier results
by Kollár proving non-rationality.

François Charles explained his new approach to the Tate conjecture for K3
surfaces which is based on a version of Zarhin’s trick for K3 surfaces via moduli
spaces of stable sheaves and which uses boundedness results for birational equi-
valence classes of hyperkähler manifolds. The method eventually shows finiteness
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of (unpolarized) K3 surfaces over finite fields which had been shown to imply the
Tate conjecture.

Although not giving talks themselves, the presence of more senior participants
like Paolo Cascini, Gerard van der Geer, Ludmil Katzarkov, Jun Li, Mircea Mus-
tata, Mihnea Popa, and Karl Schwede was important for the success of the work-
shop. There was a lively exchange of ideas between the generations which was
appreciated by all.

The Mathematische Forschungsinstitut Oberwolfach provided an excellent en-
vironment and inspiring atmosphere for this workshop and we are grateful for its
hospitality.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Numerical flatness and stability criteria

János Kollár

The lecture reported on some new numerical flatness and stability criteria.
Recall the projective case of a theorem of Hironaka [Hir58].

Theorem 1. Let T be a regular, 1-dimensional scheme and X ⊂ PN
T a closed

subscheme, flat over T . Then

(1) t 7→ deg(redXt) is a lower semicontinuous function on T .
(2) If the reduced fibers redXt are normal then the following are equivalent.

(a) t 7→ deg(redXt) is locally constant on T ,
(b) t 7→ χ

(
redXt,OredXt

(m)
)
is locally constant for every m and

(c) the fibers Xt are reduced.

We are looking for theorems of this type. The first part should be a general
assertion that some invariants related to Hilbert functions are lower or upper
semicontinuous on the base. Then, under some geometric assumptions, we aim
to show that constancy of the leading coefficient implies constancy of the whole
Hilbert function, hence flatness.

Simultaneous canonical models.
The following two results will be treated in [Kol15].

Theorem 2 (Simultaneous canonical models I). Let S be a seminormal scheme
of char 0 and f : X → S a morphism of pure relative dimension n. For s ∈ S let
Xr

s be any resolution of the fiber Xs. Then

(1) s 7→ vol(KXr
s
) is a lower semicontinuous function on S and

(2) the canonical models of the Xr
s form a flat family iff this function is locally

constant (and positive).

Part (1) was first observed and proved in [Nak86].
The following is a similar result for normal lc pairs, but the lower semicontinuity

of Theorem 2 changes to upper semicontinuity.

Theorem 3 (Simultaneous canonical models II). Let S be a seminormal scheme
of char 0 and f : (X,∆) → S a flat morphism with log canonical fibers (Xs,∆s).
Then

(1) s 7→ vol(KXs
+ ∆s) is an upper semicontinuous function on S and

(2) the canonical models of the fibers form a flat and stable family iff this
function is locally constant.

See [Kol13b] for the definition and explanation of the stability condition.
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Families of Cartier divisors.

Example 4. Consider the family of quadric surfaces

X :=
(
x21 − x22 + x23 − t2x20 = 0

)
⊂ P3

x
× A1

t .

The fiber X0 is a cone, the other fibers are smooth. Consider the Weil divisors

D :=
(
x1 − x2 = x3 − tx0 = 0

)
and E :=

(
x1 + x2 = x3 − tx0 = 0

)
.

The fibers Dt, Et form a pair of intersecting lines on Xt for every t. It is easy to
compute that

(1) (aD0 + bE0)2 = 1
2 (a+ b)2 ≥ 2ab = (aDt + bEt)

2 and
(2) equality holds ⇔ a = b ⇔ aD + bE is Cartier.

We aim to prove that this example is quite typical, as far as intersection numbers
are concerned. The following result was conjectured in [Kol13a] and proved there
for log canonical fibers. The extension to normal fibers is done in [BdJ14]. Non-
normal versions are proved in [Kol14].

Theorem 5 (Relative Cartier criterion). Let C be a smooth curve and f : X → C
a proper, flat family of normal varieties of dimension n. Let D be a Weil divisor
on X such that its restriction Dc is an ample Cartier divisor for every c. Then

(1) c 7→
(
Dn

c

)
is an upper semicontinuous function on C and

(2) D is a Cartier divisor on X iff the above function is constant.

Ampleness is needed for n ≥ 3, the main reason is that
(
(−D)n

)
= (−1)n

(
Dn

)
.

Thus, on a 3–fold, ample divisors behave anti-symmetrically while divisors pulled-
back form a surface behave symmetrically.

Grothendieck–Lefschetz theorems for the local Picard group.
Let us recall the form given in [Gro68].

Theorem 6 (Grothendieck–Lefschetz). [Gro68, XIII.2.1] Let (x ∈ X) be an excel-
lent local scheme, x ∈ D ⊂ X a Cartier divisor. Set U := X \ {x}, UD := D \ {x}
and let L be a line bundle on U such that L|UD

∼= OUD
.

Then L ∼= OU , provided depthx OD ≥ 3.

We would like to apply this to families of varieties over a smooth curve f : X →
C with D being a fiber. In this context assuming that the fibers are S2 is natural
but S3 is not. The following strengthening was conjectured in [Kol13a] and proved
there for log canonical fibers. The extension to normal fibers is done in [BdJ14]
and the form below is established in [Kol14].

Theorem 7. Let (x ∈ X) be a local scheme that is essentially of finite type over
a field and x ∈ D ⊂ X a Cartier divisor. Set U := X \ {x}, UD := D \ {x} and
let L be a line bundle on U such that L|UD

∼= OUD
.

Then L ∼= OU , provided depthx OD ≥ 2 and dimxD ≥ 3.
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Variation of R-divisors.
Let X be a proper, normal algebraic variety of dimension n over a field K and

D an R-divisor on X . Set h0(D) := dimK H0(X,OX(⌊D⌋)) and define the volume
of D as vol(D) := lim suph0(mD)/(mn/n!). The volume is preserved by R-linear
equivalence, but the individual h0(mD) are not; see Example 9. We claim that,
although the volume does not determine h0(mD), the only way to change it by
subtracting or adding an effective divisor is to change the volume.

Theorem 8. [FKL15] Let X be a proper, normal algebraic variety over a perfect
field, D a big R-divisor on X and E an effective R-divisor on X. Then

(Subtraction version.) The following are equivalent.

(1−) vol(D − E) = vol(D).
(2−) h0(mD −mE) = h0(mD) for all m > 0.
(3−) E ≤ Nσ(D); the negative part of the Zariski–Nakayama decomposition.

(Addition version.) The following are equivalent.

(1+) vol(D + E) = vol(D).
(2+) h0(mD +mE) = h0(mD) for all m > 0.
(3+) Supp(E) ⊆ Bdiv

+ (D), the divisorial part of the augmented base locus of D.

Example 9. Let S → P1 be a minimal ruled surface with a negative section E ⊂ S
and a positive section C ⊂ S that is disjoint from E. Let F1, . . . , F4 be distinct
fibers. Then C ∼R C + (F1 − F2) +

√
2(F3 − F4).

Note that ⌊mC +m(F1 − F2) +m
√

2(F3 − F4)⌋ has negative intersection with
E for all real m > 0. This implies that, for every m > 0 we have

h0
(
mC +m(F1 − F2) + m

√
2(F3 − F4)

)
< h0

(
mC

)
.
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Moduli of Bridgeland semistable objects on 3-folds and
Donaldson-Thomas invariants

Yukinobu Toda

(joint work with Dulip Piyaratne)

1. Introduction

Let X be a smooth projective variety over C. In [Bri07], Bridgeland introduced
the complex manifold

Stab(X)(1)

called the space of stability conditions on Db Coh(X). Roughly speaking, a point of
Stab(X) is given by data (Z,A), where Z : K(X)→ C is a group homomorphism,
A ⊂ Db Coh(X) is the heart of a bounded t-structure, satisfying some axioms.
In particular, it gives the notion of Z-semistable objects in A. The space (1)
is important in connection with mirror symmetry, birational geometry, counting
invariants, etc. However in general, the space (1) is a difficult object to study. At
least we need to settle the following issues for the applications:

• We need to prove Stab(X) 6= ∅.
• We need to show the existence of nice moduli stacks of semistable objects.

The above issues are settled for dimX ≤ 2, but open in dimX = 3. When dimX =
3, the first issue was addressed in [BMT14], and reduced to proving Bogomolov-
Gieseker (BG for short) type inequality conjecture among Chern characters of
certain two term complexes. The purpose of this study is to solve the second issue
for 3-folds satisfying the BG inequality conjecture in [BMT14].

2. BG type inequality conjecture

Let X be a smooth projective 3-fold over C, and take B,ω ∈ NS(X)Q such that ω
is an ample class. In [BMT14], we constructed the heart of a bounded t-structure

Bω,B ⊂ Db Coh(X)

given as a tilting of Coh(X) determined by the ω-slope stability on it. Furthermore,
we constructed a tilt slope function

νω,B(E) :=
chB

2 (E)ω − chB
0 (E)ω3/6

chB
1 (E)ω2

(2)

on Bω,B. Here chB(E) := e−B ch(E). Note that the numerator of the above slope
function is the imaginary part of the central charge

Zω,B(E) := −
∫

X

e−iω chB(E).

The slope function (2) defines the tilt semistable objects on Bω,B.
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Conjecture 1. ([BMT14]) For any tilt semistable object E ∈ Bω,B with νω,B(E) =
0, we have the inequality

chB
3 (E) ≤ 1

18
chB

1 (E)ω2.

The above conjecture is known to be true in the following cases: X = P3

(cf. [Mac14]), X is a smooth quadric (cf. [Sch]), and X is an etale quotient of an
abelian 3-fold (cf. [MP], [BMS]). One of the important observations on Conjec-
ture 1 is that it is equivalent to the following conjecture:

Conjecture 2. ([BMS], [PT]) For any tilt semistable object E ∈ Bω,B, we have
the inequality

(chB
1 (E)ω2)2 − 2 chB

0 (E)ω3 chB
2 (E)ω

+ 12(chB
2 (E)ω)2 − 18 chB

1 (E)ω2 chB
3 (E) ≥ 0.(3)

Conjecture 1 is proved to be equivalent to Conjecture 2 in [BMS] when B and
ω are proportional, and in [PT] in general. The advantage of the inequality (3) is
that it also ensures the support property after tilting. More precisely, let

Aω,B ⊂ Db Coh(X)

be the further tilting of Bω,B determined by the tilt stability constructed in
[BMT14]. Let Stabω,B(X) be the space of stability conditions on Db Coh(X)
whose central charges factor through the map

K(X) ∋ E 7→ (chB
0 (E)ω3, chB

1 (E)ω2, chB
2 (E)ω, chB

3 (E)) ∈ Q4.

The inequality (3) shows that

σω,B := (Zω,B,Aω,B) ∈ Stabω,B(X).(4)

Below we denote by Stab◦
ω,B(X) the connected component of Stabω,B(X) which

contains σω,B.

3. Results

Let X be a smooth projective variety over C. By the result of Lieblich [Lie06],
there is an algebraic stack M locally of finite type which parametrizes objects
E ∈ Db Coh(X) satisfying

Ext<0(E,E) = 0.

Suppose that there is a stability condition σ = (Z,A) on Db Coh(X). Then for
any v ∈ H∗(X,Q), we have an abstract substack

Mσ(v) ⊂M(5)

which parametrizes Z-semistable objects E ∈ A with ch(E) = v. A priori, it is
not obvious whether Mσ(v) is an algebraic stack nor it is of finite type. Indeed,
the inequality (3) is used to show the following:
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Theorem 3. ([PT]) Let X be a smooth projective 3-fold satisfying Conjecture 1.
Then for any σ ∈ Stab◦

ω,B(X), the stack Mσ(v) is a proper algebraic stack of finite
type over C, such that the embedding (5) is an open immersion.

Remark 4. A similar statement was proved in [Tod08] for K3 surfaces, and the
same argument is applied to any surface. The result of Theorem 3 is a 3-fold
generalization of these works.

The result of Theorem 3 is used to define the Donaldson-Thomas invariants
counting Bridgeland semistable objects on Calabi-Yau 3-folds, as predicted in [KS]:

Theorem 5. ([PT]) Let X be a smooth projective Calabi-Yau 3-fold satisfying
Conjecture 1. Then for any v ∈ H∗(X,Q), there is a map

DT∗(v) : Stab◦
ω,B(X)→ Q(6)

such that DTσ(v) virtually counts σ-semistable objects E ∈ Db Coh(X) with
ch(E) = v.

Remark 6. So far, the only known Calabi-Yau 3-folds satisfying Conjecture 1
are A-type Calabi-Yau 3-folds, that are given by etale quotients of abelian 3-
folds [BMS].
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Hypersurfaces that are not stably rational

Burt Totaro

A central problem of algebraic geometry is to determine which varieties are ra-
tional. In particular, we want to know which smooth hypersurfaces in projective
space are rational.

An easy case is that smooth hypersurfacesX of degree at least n+2 in Pn+1 have
nonzero sections of the canonical bundle KX = Ωn

X and hence are not rational.
There is no known example of a smooth hypersurface of degree at least 4 in any
dimension which is rational.

For all d ≥ 2⌈(n+3)/3⌉, Kollár showed that a very general complex hypersurface
of degree d in Pn+1 is not ruled and therefore not rational [4], [5, Theorem 5.14].
Very little is known about rationality in lower degrees, except for cubic 3-folds
and quintic 4-folds [1], [6, Chapter 3]. Kollár’s proof is based on degenerations
of hypersurfaces to singular Fano varieties Y in characteristic 2 which are not
separably uniruled. In particular, Y is not ruled. It follows that the hypersurfaces
in characteristic 0 which degenerate to Y are not ruled and hence are not rational.

Most methods for proving non-rationality give no information about stable ra-
tionality. By definition, a variety is stably rational if some product of the variety
with projective space is rational. Nonetheless, Voisin showed in 2013 that a very
general quartic double solid (a double cover of P3 ramified along a quartic surface)
is not stably rational [8]. Her method was to show that these varieties have Chow
group of zero-cycles which is not universally trivial; that is, the Chow group can
increase when the base field is increased.

Colliot-Thélène and Pirutka simplified and generalized Voisin’s method. They
deduced that very general quartic 3-folds are not stably rational [2]. This was im-
pressive, in that non-rationality of smooth quartic 3-folds was the original triumph
of Iskovskikh-Manin’s work on birational rigidity, while stable rationality of these
varieties was unknown [3].

We show that for all n ≥ 3 and all d ≥ 2⌈(n + 2)/3⌉, a very general complex
hypersurface of degree d in Pn+1 is not stably rational [7]. This covers all the
degrees in which Kollár showed that these hypersurfaces are non-rational, and
a bit more. In particular, very general quartic 4-folds are not stably rational,
whereas it was not even known whether these varieties are rational.
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Construction of line bundles on p-adic analogs of the affine
Grassmannian

Bhargav Bhatt

(joint work with Peter Scholze)

The affine Grassmannian (associated to the group G := GLn over C) is the set
Gr(C) := G(C((t)))/G(CJtK). This set has a natural algebro-geometric structure
as an ind-variety, and plays a fundamental role in geometric representation theory.
This talk discussed some geometric features of a p-adic analog recently constructed
by Zhu [3] by replacing the field C with Fp, and the discrete valuation ring CJtK
with the p-adic integers Zp.

1. The affine Grassmannian

As the construction of the p-adic analog is motivated by the classical picture, we
recall the latter first. Observe that the set Gr(C) parametrizes CJtK-lattices in
C((t))⊕n. Using this interpretation, one defines an algebro-geometric structure on
this set as follows:

Definition 1. Let Gr be the functor on C-algebras defined by setting Gr(R) to
be the set of isomorphism classes of pairs (E, φ), where E is a finite projective
RJtK-module, and φ : E[ 1t ]→ R((t))⊕n is an isomorphism.

It turns out that with these definitions, one has a good algebro-geometric prop-
erties:

Theorem 1. The functor Gr is represented by an ind-projective variety.

We briefly explain the source of projectivity. Consider the subfunctor Gr+ ⊂ Gr
defined by setting Gr+(R) to be those (E, φ) ∈ Gr(R) such that φ(E) is contained
in the standard lattice RJtK⊕n ⊂ R((t))⊕n. Using group actions, it is fairly easy to
reduce the projectivity question to that of Gr+. On Gr+, there is a universal map
Φ : E→ OGr+JtK⊕n. The cokernel Q of this map may be viewed as a OGr+ -module
via the canonical embedding OGr+ → OGr+JtK; viewed as such, Q is a vector bundle
on Gr+ (which has finite rank after pullback along any Spec(R)→ Gr+), and thus
has a well-defined determinant det(Q); using embeddings into Grassmannians, one
checks that this line bundle is ample on Gr+, proving projectivity.

Remark 1. One of the most fundamental features of the geometry of Gr is the
so-called geometric Satake isomorphism between representations of the Langlands
dual copy of GLn and certain equivariant perverse sheaves on Gr. More generally,
a similar picture exists once we replace the group GLn with any reductive group G
(although the corresponding affine Grassmannian is no longer projective).



Algebraic Geometry 797

2. The p-adic analog

One of the main ingredients necessary in endowing the set Gr(C) with an algebro-
geometric structure was the functor R 7→ RJtK which associates a flat CJtK-algebra
to any R-algebra. In order to replace C with Fp and CJtK with Zp in this story, one
must thus have functorial p-adic deformations for Fp-algebras. As it is not usually
possible to find a single p-adic deformation of a given finite type Fp-algebra, we
restrict to the following setting:

Definition 2. An Fp-algebra R is perfect if Frobenius is an isomorphism; likewise,
an Fp-scheme X is perfect if OX(U) is perfect for each affine U ⊂ X. Let Perf be
the category of perfect Fp-algebras.

Each Fp-schemeX admits a perfection Xperf characterized byXperf(R) = X(R)
for any R ∈ Perf; explicitly, the cover Xperf → X is purely inseparable, and
constructed by extracting all p-power roots of all (local) functions on X . Any
perfect ring R admits a unique (up to unique isomorphism) p-adic deformation
W (R) given by the Witt vector construction; this association globalizes to attach
a flat p-adic formal scheme W (X) to any perfect scheme X . Moreover, one can do
algebraic geometry in the world of perfect schemes: there exist robust notions of
finitely presented maps, proper maps, closed immersions, projective maps, ample
line bundles, algebraic spaces, etc; to a crude approximation, each notion may be
defined by applying the functor X 7→ Xperf to the corresponding notion in usual
algebraic geometry (though intrinsic definitions exist). In this world, Zhu defines:

Definition 3. Let Gr be the functor on Perf defined by setting Gr(R) to be iso-
morphism classes of pairs (E, φ) where E is a finite projective W (R)-module, and
φ : E[ 1p ]→W (R)[ 1p ]⊕n is an isomorphism.

It makes sense to ask if the analog of Theorem 1 is true in this setting. Zhu was
not quite able to prove this, but, using a quotient construction and some stack
theory, he showed:

Theorem 2 (Zhu). The functor Gr is representable by an ind-proper (in the
perfect sense) algebraic space.

Remark 2. Zhu has proved an analog of the geometric Satake isomorphism in the
p-adic setting; curiously, his proof uses geometric Satake in equicharacteristic p!

Zhu conjectured that Gr is ind-projective. The main obstruction here is the
lack of a ring homomorphism R → W (R) analogous to the map R → RJtK used
in §1. Indeed, in defining the line bundle det(Q) in §1, we relied crucially on the
ability to regard an RJtK-module as an R-module via restriction of scalars along
R → RJtK. This is not possible in the p-adic case, so one is naturally confronted
with the following question:

Question 1. Given a perfect ring R and a map f : M → N of finite projective
W (R)-modules that f [ 1p ] is an isomorphism, the cokernel Q is a finite W (R)-

module of projective dimension 1. Is there a well-defined determinant d̃et(Q) ∈
Pic(R) which coincides with the obvious definition when Q is killed by p?
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One of our main results is that the preceding question has a positive answer.
In order to explain why, it is convenient to work in a more general framework.
Hence, we introduce the following notation:

Notation 1. For any perfect scheme X, let Dperf(X) be the derived category of
perfect complexes on X, and similarly for the formal scheme Dperf(W (X)); let
Dperf,X(W (X)) ⊂ Dperf(W (X)) be the full subcategory spanned by those K that
become acyclic after inverting p. Let K(X) be the K-theory space of Dperf(X),
and write KX(W (X)) for the K-theory space of Dperf,X(W (X)). The association
K 7→ det(K), as defined by Knudsen-Mumford [2], extends naturally to give an
additive map det : K(X)→ Pic(X) of spaces1; here Pic(X) is viewed as a groupoid
or, equivalently, a 1-truncated space.

In the notation of Question 1, the map f defines an object of DR,perf(W (R)).
Note that there is an obvious functor Dperf(R) → Dperf,R(W (R)), which induces
an additive map K(R) → KR(W (R)) of spaces. Hence, to answer the previous
question, it is enough to extend det across K(R) → KR(W (R)). This is indeed
the case:

Theorem 3. There is a natural additive map d̃et : KX(W (X))→ Pic(X) extend-
ing det : K(X)→ Pic(X).

To understand this, consider a special case: X = Spec(R) is affine, and R is the
perfection of a finitely presented Fp-algebra R0. Then any K ∈ Dperf,R(W (R))
admits a finite filtration with graded pieces being (shifted) R-modules Mi. If R is
smooth (so R0 is classically smooth), then, one can find such a filtration with the
Mi’s themselves being R-perfect. This implies that Dperf(R) → Dperf,R(W (R))

induces an isomorphism on K-theory, which immediately constructs d̃et in this

case; explicitly, one sets d̃et(K) := ⊗i det(Mi) ∈ Pic(R). If R0 is not smooth, this
recipe does not work. Instead, our proof of Theorem 3 reduces to the smooth case
using de Jong’s alterations, and the following non-flat descent result for glueing
line bundles along alterations:

Theorem 4. Vector bundles satisfy effective descent for the h-topology on Perf.

Here the h-topology on Perf is the Grothendieck topology where the covers
are generated by perfections of proper surjective finitely presented maps and fppf
covers. The analog of Theorem 4 is completely false in the classical setting: if X
is any scheme, then Xred → X is an isomorphism after h-sheafification, yet vector
bundles on X and Xred are typically inequivalent. With Theorem 4 in hand, the
following result is not unreasonable:

Theorem 5. The functor Gr is a represented by an ind-projective scheme.

1This map is monoidal (i.e., one has natural isomorphisms det(K ⊕L) ≃ det(K)⊗ det(L) for
K,L ∈ Dperf(X)), but not symmetric monoidal (i.e., we cannot switch K and L functorially);
this issue can be fixed by replacing Pic(X) with the groupoid of Z-graded line bundles, and will
be ignored in this report.
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This verifies Zhu’s conjecture, and our proof is independent of Theorem 2. For
the proof, note that Theorem 3 furnishes the line bundle on Gr, whose equicharac-
teristic analog gives projectivity via an embedding into Grassmannian, as indicated
in §1. In our case, however, we cannot reduce to classical Grassmanians to verify
the ampleness of this line bundle; instead, our proof2 is a direct inductive anal-
ysis of Gr in terms of the natural stratification (obtained by measuring relative
positions of lattices associated to points in Gr with respect to a standard lattice),
together with Keel’s theorem [1], which facilitates movements between strata.
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Degeneration of Fano Kähler-Einstein manifolds

Chenyang Xu

(joint work with Chi Li, Xiaowei Wang)

Constructing moduli spaces for higher dimensional algebraic varieties is a funda-
mental problem in algebraic geometry. For Fano varieties, it is a difficult question
in algebraic geometry what kind of general Fano varieties we should parametrize
in order for us to obtain a nicely behaved moduli space, especially if we aim to find
a compact one, and how to construct it. Nevertheless, the recent breakthrough in
Kähler-Einstein problem, namely the solution to the Yau-Tian-Donaldson Conjec-
ture ([1, 2, 3, 6]) is a major step forward, especially for understanding those Fano
manifolds with Kähler-Einstein metrics. Furthermore, it implies that the right
limits of smooth Kähler-Einstein manifolds form a bounded family.

In [4], we use the analytic results they established to investigate the geometry of
the compact space of orbits which is the closure of the space parametrizing smooth
Fano varieties. The first question is about the uniqueness of the degeneration,
which in general fails for Fano varieties. However, if we post the Kähler-Einstein
metric condition, the uniqueness of the degeneration holds.

More precisely, let X → C be a flat family over a pointed smooth curve (C, 0)
with 0 ∈ C. Suppose

(1) −KX/C is relatively ample;
(2) for any t ∈ C◦ := C \ {0}, Xt is smooth and X0 is klt;
(3) X0 is K-polystable.

2In fact, one may prove Theorem 5 directly along these lines, avoiding Theorem 3 and K-
theory, provided one proves and employs certain more refined descent results in perfect algebraic
geometry.
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Then

(1) after a possible shrinking of C around 0, we can conclude that Xt is K-
semistable for all t ∈ C◦ and K-stable if we assume further X0 has a
discrete automorphism group;

(2) for any other flat projective family X′ → C satisfying (1)-(3) as above and

X′ ×C C
◦ ∼= X×C C

◦,

we can conclude X′
0
∼= X0;

(3) X0 admits a weak Kähler-Einstein metric. If we assume further that Xt is
K-polystable, then X0 is the Gromov-Hausdorff limit of Xt endowed with
the Kähler-Einstein metric for any t→ 0.

With all this knowledge, then we can show that there is a well-behaved orbit
space for smoothable K-semistable Fano varieties. We show that for N ≫ 0, let Z∗

be the semi-normalization of the open set of Chow(PN ) parametrizing all smooth-
able K-semistable Fano varieties in PN . Then the algebraic stack [Z∗/SL(N + 1)]
admits a proper good moduli space KFN . Furthermore, for sufficiently large N ,
KFN does not depend on N .

In [5], we explore the projectivity of the CM line bundle ΛCM, which can be
showed to descend on KFN . It has a continuous metric coming from the Deligne
pairing which is the extension of the Weil-Petersson metric on the open locus KF

◦
N

parametrizing smooth Kähler-Einstein manifolds. For this reason, we expect ΛCM

is ample on KFN . However, our current method only yields that it is big and nef,
and its restriction to KF

◦
N is ample.
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On some Küchle fourfolds

Alexander Kuznetsov

In the classification of Fano threefolds the main role is played by threefolds X
with Pic(X) = Z · KX (called prime Fano threefolds). In this class there are 10
deformation families, distinguished by their anticanonical degree dX = (−KX)3,
which is even, does not exceed 22, and is not equal to 20. The bottom part of
the list, i.e., X with dX ≤ 8, is comprised by complete intersections in weighted
projective spaces, while the top part, i.e., X with dX ≥ 10, consists of zero loci of
regular sections of equivariant vector bundles on Grassmannians.

In 1995 Oliver Küchle has classified in [2] all prime Fano fourfolds which can be
realized as zero loci of regular sections of equivariant vector bundles on Grassman-
nians. His list consists of 21 examples among which 6 are not really prime fourfolds
(three of them have larger Picard group and three have divisible canonical class).
Geometry of some of these varieties was discussed in [3] and [1]. Moreover, in [4]
it was shown that two families of prime Küchle fourfolds actually coincide.

In the talk we discuss all these varieties with a special stress on the structure of
their derived categories. In particular, basing on results of Casagrande we showed
that the variety (b9) (the Hilbert scheme of lines on the intersection of two 5-
dimensional quadrics) has a full exceptional collection of length 48. The case of
the other fourfold which could have an exceptional collection (variety (c3)) is not
so clear.

We also discussed varieties which could have a K3 category as a semiorthogonal
component. In the original list there are three such varieties. We showed that the
variety (d3) is isomorphic to the blowup of (P1)4 along a K3 surface and that the
variety (c7) is isomorphic to the blowup of a cubic fourfold along a Veronese sur-
face. The main result of the talk is a birational description of the most interesting
of such varieties, i.e., variety (c5). We show that such X is a half-anticanonical
section of a fivefold Y which fits into a diagram

E //

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

Ỹ

π

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

π′

��❅
❅❅

❅❅
❅❅

❅ E′oo

��❅
❅❅

❅❅
❅❅

❅

F // Y Y ′ Zoo

where F = Fl(1, 2; 3) is the flag variety, Z is a P1-fibration over a del Pezzo surface
of degree 6, Y ′ is a hyperplane section of the symplectic Lagrangian Grassmannian
SGr(3, 6), and π and π′ are the blowups with centers F and Z and exceptional
divisors E and E′. We conjecture that Y has a full exceptional collection of
length 12 with a rectangular Lefschetz structure. This would imply existence of a
K3 category in the derived category of X . Finally, we conjecture that the Hilbert
scheme of rational twisted cubic curves in X is birational to a hyperkähler fourfold.
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Projectivity of moduli spaces of KSBA stable pairs and applications

Zsolt Patakfalvi

(joint work with Sándor Kovács)

In this talk, we will work over an algebraically closed base field k of characteristic 0.
Stable (log-)varieties are higher dimensional generalizations of stable ((weighted)
pointed) curves, where the latter were introduced by Mayer [May69] and Mumford
[Mum64], Knudsen [Knu83a, Knu83b] and Hassett [Has03]. The moduli space
of stable log varieties contains an open part parametrizing log-canonical models.
Hence it can be regarded as a compactification of a moduli space parametrizing
“birational equivalence classes”, where the quotes are warning that one should be
careful about what birational equivalence means for pairs.

Let us recall now carefully the definitions. Recall that a demi-normal variety
is an equidimensional S2 reduced scheme over k which has nodes in codimension
one.

Definition 1. A pair (Z,Γ) consist of an equidimensional demi-normal variety Z
and an effective Q-divisor Γ ⊂ Z. A stable log-variety (Z,Γ) is a pair such that

(1) Z is proper,
(2) (Z,Γ) has slc singularities, and
(3) the Q-Cartier Q-divisor KZ + Γ is ample.

For the definition of slc singularities the reader is referred to [Kol13, 5.10]

Definition 2. A family of stable log-varieties, f : (X,D) → Y over a normal
variety consists of a pair (X,D) and a flat proper surjective morphism f : X → Y
such that

(1) D avoids the generic and codimension 1 singular points of every fiber,
(2) KX/Y +D is Q-Cartier, and
(3) (Xy, Dy) is a connected stable log-variety for all y ∈ Y .

After having made the necessary definitions, we turn to the main statement.
Since there are multiple suggestions for the moduli functor at this point and more
our hoped, we make a flexible statement prescribing only the value of a functor
over normal test schemes. To do this precisely we need the next definitions, the
first of which has technical reasons: without a condition as there, the considered
functors would not be proper.

Definition 3. A set I ⊆ [0, 1] of coefficients is said to be closed under addition,
if for every integer s > 0 and every x1, . . . , xs ∈ I such that

∑s
i=1 xi ≤ 1 it holds

that
∑s

i=1 xi ∈ I.
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Definition 4. Fix 0 < v ∈ Q, 0 < n ∈ Z and a finite set of coefficients I ⊆ [0, 1]
closed under addition. A functor M : Schk → Sets (or to groupoids) is a moduli
functor of stable log-varieties of dimension n, volume v and coefficient set I, if for
each normal Y ,
(1)

M(Y ) =





(X,D)

f

��
Y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1) f is a flat morphism,
(2) D is a Weil-divisor on X avoiding the generic

and the codimension 1 singular points of Xy for
all y ∈ Y ,

(3) for each y ∈ Y , (Xy, Dy) is a stable log-variety
of dimension n, such that the coefficients of Dy

are in I, and (KXy
+Dy)n = v, and

(4) KX/Y +D is Q-Cartier.





,

and the line bundle Y 7→ det f∗OX(r(KX/Y + D)) associated to every family as
above extends to a functorial line bundle on the entire (pseudo-)functor for every
divisible enough integer r > 0.

Having made the necessary definitions we state our main theorem.

Theorem 1. Any algebraic space that is the coarse moduli space of a moduli
functor of stable log-varieties with fixed volume, dimension and coefficient set (as
defined above) is a projective variety over k.

The above theorem has been known for varieties (without log-, so without
boundary divisor) by the work of Kollár [Kol90] which was extended by Fujino
[Fuj12]. We also note that there are functors as above that yield a coarse moduli
space which is an algebraic space (e.g., [KP15, Sec 5]).

The above main theorem can be applied to prove a new version of the log-
arithmic subadditivity of Kodaira dimension conjecture. Earlier results on this
conjecture are [Fuj14a, Fuj15, Fuj14b, Nak04]. Recall also that the Kodaira dimen-
sion of an arbitrary (so not necessarily projective) algebraic variety X is defined
via finding a resolution X ′

0 of X with a projective compactification X ′ such that
D′ := (X ′\X ′

0)red is simple normal crossing, and then setting κ(X) := κ(KX′+D′).
Our theorem is roughly speaking the logarithmic version of [Kol87] and it is as
follows.

Theorem 2. (1) If f : (X,D) → (Y,E) is a surjective map of log-smooth
projective pairs with coefficients at most 1, such that D ≥ f∗E and KXη

+
Dη is big, where η is the generic point of Y , then

κ(KX +D) ≥ κ
(
KXη

+Dη

)
+ κ(KY + E).

(2) Let f : X → Y be a dominant map of (not necessarily proper) algebraic
varieties such that the generic fiber has maximal Kodaira dimension. Then

κ(X) ≥ κ (Xη) + κ(Y ).

Another application is a joint work with Chenyang Xu concerning the CM line
bundle. This line bundle was originally defined in differential geometry and it is
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connected to the existence of Kähler-Einstein metrics. In particular, its degree over
any (modular) curve yields the Donaldson-Futaki invariant of the corresponding
family.

Theorem 3. (joint with Chenyang Xu [PX15]) The CM line bundle on the moduli
space of stable log-varieties is ample.

Earlier, the above result was proven only for the locus parametrizing canonically
polarized manifolds [Sch12].
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Birational geometry of cluster varieties

Mark Gross

(joint work with Paul Hacking, Sean Keel)

The talk discusses aspects of the paper [2].
Cluster algebras were introduced by Fomin and Zelevinsky in [4]. Fock and

Goncharov introduced a more geometric point of view in [3], introducing the A

and X cluster varieties constructed by gluing together “seed tori” via birational
maps known as cluster transformations.

In this talk, motivated by our study of log Calabi-Yau varieties initiated in the
two-dimensional case in [1], we give a simple alternate explanation of basic con-
structions in the theory of cluster algebras in terms of blowups of toric varieties.
Each seed roughly gives a description of the A or X cluster variety as a blowup of
a toric variety, and a mutation of the seed corresponds to changing the blowup de-
scription by an elementary transformation of a P1-bundle. Certain global features
of the cluster variety not obvious from the expression as a union of tori are easily
seen from this construction. For example, it gives a simple geometric explanation
for the Laurent phenomenon (originally proved in [5]). From the blowup picture
it is clear that the Fock-Goncharov dual basis conjecture, particularly the state-
ment that tropical points of the Langlands dual A parameterize a natural basis of
regular functions on X, can fail frequently.

In the talk, we explained the basic philosophical point of view demonstrating
how a study of log Calabi-Yau varieties can naturally lead to the basic notions
of cluster algebras. We then describe how cluster transformations, which a priori
are birational maps between algebraic tori, can be viewed naturally as isomor-
phisms between blowups of certain associated toric varieties. In this manner,
cluster transformations can be interpreted as elementary transformations, a stan-
dard procedure for modifying P1-bundles in algebraic geometry. This procedure
blows up a codimension two center in a P1-bundle meeting any P1 fibre in at most
one point, and blows down the proper transform of the union of P1 fibres meeting
the center. The key result is a precise description of the X, principal A cluster
varieties and A cluster varieties with general coefficients up to codimension two
in terms of a blowup of a toric variety. The toric variety and the center of the
blowup is specified very directly by the seed data determining the cluster variety.
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Noncommutative enhancements of families of rational curves

Will Donovan

(joint work with Michael Wemyss)

Pairs of varieties with equivalent derived categories of coherent sheaves may now be
obtained by a range of different constructions. For a given such pair, characterising
the set of equivalences, taken up to isomorphism, is a deep and difficult problem.
This set is dependent on the automorphism groups of the varieties, and also on
phenomena intrinsic to the derived category, about which much remains to be
discovered. I report on new results in this area, for pairs of complex 3-folds
obtained by flops, making use of noncommutative deformation theory.

I begin by explaining the relevance of noncommutative deformations for simple
flops [DW1], before describing work in progress for general flops [DW2, DW3].

Simple flops. To illustrate how the non-uniqueness of equivalences can be inter-
esting in a well-known example, we consider a flop φ : X X ′ of smooth projec-
tive 3-folds, with indeterminacy locus C ∼= P1. In this case there exists a pair of
canonical derived equivalences

Φ : D(X)
∼←→ D(X ′) :Φ′

given by Fourier–Mukai transforms associated to the graph of φ [Bri02]. These
equivalences are not, however, mutually inverse. The following theorem charac-
terises the difference between Φ and (Φ′)−1 in terms of noncommutative deforma-
tions.

Theorem 1. [DW1] For a flopping C ∼= P1 as above, write EC for the universal
noncommutative deformation of EC = OC(−1) ∈ Coh(X). Then there exists a
distinguished triangle of Fourier–Mukai transforms

(1) FM(E∨
C

L

⊠
A
EC) −→ IdD(X) −→ (Φ′ ◦Φ)

−1 −→

acting on D(X), where A is a C-algebra representing an appropriate functor of
noncommutative deformations.

The use of deformations to understand the flop–flop functor Φ′ ◦ Φ was pio-
neered by Toda in the cases where C is a (−2, 0)-curve or (−1,−1)-curve [Tod07].
In these case, the sheaf EC has a 1-parameter deformation, or trivial deformations,
respectively. In the further case where C is a (−3, 1)-curve, we find that the defor-
mation algebra A in Theorem 1 has 2 generators, and is always noncommutative
[DW1, §3.4], showing the necessity of noncommutative deformations for proving
this general result.

Theorem 1 may be compactly reformulated in the language of spherical functors,
with the universal deformation EC inducing a spherical functor S : D(A)→ D(X)
with twist TS [ST01, Ann07, AL13]. We then have T−1

S
∼= Φ′ ◦Φ.
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General flops. There also exist 3-fold flops with indeterminacy locus a nodal
curve C, given by a tree of P1s. As above, there is an equivalence Φ associated to
such a flop. Furthermore, the connected components Ci of the (reduced) curve C
may flop individually, each yielding an equivalence Φi. We give a simple example,
before indicating results in the general case.

Example 1. Take a nodal curve C ⊂ X with two irreducible components Ci, each
flopping individually, and having no infinitesimal deformations. In this case the
corresponding flop functors Φi satisfy the braid relation expressed in the commu-
tative diagram below. Here X ′ is obtained by flopping the nodal curve C.

D(X) D(X ′)

Φ1

Φ2

Φ1

Φ2

Φ1

Φ2

The unlabelled vertices of the hexagon correspond to 3-folds obtained by flops of
the Ci, and their respective transforms.

Braiding. In the general case, where the curves Ci may have infinitesimal non-
commutative deformations, we establish braid relations as follows in [DW3].

(2) Φ1 ◦Φ2 ◦Φ1 ◦ · · ·︸ ︷︷ ︸
d

∼= Φ2 ◦Φ1 ◦Φ2 ◦ · · ·︸ ︷︷ ︸
d

(d ≥ 3)

The degree d of the relation is determined by the chamber structure of a certain
space of GIT stability conditions associated with a neighbourhood of the curve C,
as investigated in [W, §§5–7]. In the example above, this chamber structure comes
from the familiar A2 Coxeter hyperplane arrangement. In general, it comes from
a simplicial hyperplane arrangement which is not of Coxeter type.

Using the relations (2), we construct actions of certain generalised pure braid
groups on D(X), associated to the topology of the simplicial hyperplane arrange-
ment.

Deformations for nodal curves. The generalisation of Theorem 1 to a flop of a
nodal curve C, with n components Ci, proceeds as follows. We take

EC =
⊕

OCi
(−1) ∈ Coh(X).

The direct sum decomposition of EC means that it naturally has a noncommutative
deformation over the semisimple base ring Cn, with the corresponding universal
deformation EC being a module over a certain augmented Cn-algebra A. The
appropriate noncommutative deformation technology will be treated in [DW2],
following for instance [Lau02, Eri07, Seg08, ELO09]. Then the flop equivalences
Φ and Φ′ fit into a distinguished triangle as in (1) above, with the tensor product
now taken over the Cn-algebraA. We expect that the spherical functor formulation
also generalises to this setting, giving a spherical functor S : D(A)→ D(X).
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Noncommutative enhancements. We think of the Cn-algebra A as a non-
commutative enhancement of the disjoint union of n points corresponding to
the semisimple base ring Cn, arising from the geometry of the discrete family
of curves Ci. This enhancement is key for the construction of a spherical func-
tor S in the setting above, and it is hoped that such enhancements will play an
interesting role in other situations.

Continuous families. In 4-folds, and in higher dimensions, there exist flops of con-
tinuous families of rational curves. In this setting we expect a noncommutative
enhancement of the base of the family to yield a spherical functor. Such an en-
hancement, albeit for the case of a contraction of a divisor in dimension 3, is
studied in [W, §4.4].
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A proof of Morrison’s Conjecture

Helge Ruddat

(joint work with Bernd Siebert)

Introduction. A conifold is a three-dimensional Calabi-Yau variety Y which is
smooth outside of a set of ordinary double points (xy− zw = 0). We consider two
ways to associate to Y a smooth Calabi-Yau manifold, one via a small resolution
which we call X , the other by smoothing we denote Z.
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locally:
conifold

singularity
S3

resolution

flop

S2

replace by

replace by

conifold transition

Blx=z=0 Y

= Bly=w=0 Y

Bly=z=0 Y

Y Z

smoothing

xy − zw = ǫ

locally:

= Blx=w=0 Y

X+

X−

Resolutions exist analytically but not necessarily symplectically. Smoothings exist
symplectically but not necessarily analytically. A conifold transition X  Z is
the process of traversing from the left to the right in the above diagram. (Note
that there are two choices for the small resolution related by a flop.)

The significance of conifold transitions derives in part from the web conjecture
by Miles Reid [Re87]: Any two Calabi-Yau threefolds are connected by a sequence
of conifold transitions and their inverses.

The motivation for us has been to prove the following conjecture by Morrison
[Mo97]: For X  Z a conifold transition and X̌, Ž mirror symmetry duals of X,Z
respectively, one finds X̌, Ž are related by a conifold transition Ž  X̌.

XOO

MS
��

CT ///o/o/o/o ZOO

MS
��

X̌ Ž
CT

oo o/ o/ o/ o/

Obstructions. Let C1, ..., Cp denote the S2s replacing the conifold points in a
small analytic resolution X of Y . Let [Ci] ∈ H2(X,Z) denote the homology class
of Ci. Friedman [Fr86] and Tian [Ti92] proved that

∃ a smoothing Z of Y analytically ⇔ ∃λi 6= 0 : λ1[C1] + ...+ λp[Cp] = 0.

Mirror symmetry interchanges complex and symplectic moduli. Morrison’s con-
jecture inspired Smith-Thomas-Yau [STY02] to consider the S3s that replace the
conifold points in a symplectic smoothing Z of Y , denoting these L1, ..., Lp and
their classes in H3(Z,Z) by [Li]. They prove

∃ a resolution X of Y symplectically ⇔ ∃λi 6= 0 : λ1[L1] + ...+ λp[Lp] = 0.

Considering mirror symmetry with Ž  X̌ the conjectural mirror transition to
X  Z, we expect Ci to correspond to Li under mirror symmetry and this can
be explained geometrically with the Strominger-Yau-Zaslow picture and has been
suggested according to this by Gross and Ruan.
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Mirror symmetry for conifolds. Mirror symmetry is about maximal degen-
erations, so in order to even make sense of Morrison’s conjecture, we need to
study conifold transitions in maximally degenerating families. The most versatile
construction for mirror symmetry duals has been given by Gross-Siebert [GS11],
so we prove that their construction extends to the mirror symmetry of conifolds
Y ↔ Y̌ . This actually means that we start with a maximally degenerating family
Y→ Spf CJtK where the generic fibre is a projective conifold Y . We obtain a mirror

family Y̌→ Spf CJtK and obtain the mirror dual of Y as the generic fibre Y̌ . The
lifting of these families to analytic families is ongoing work.

The proof of Morrison’s Conjecture. Our main result is the following. Let
S, Š denote the set of conifold points in S, Š. Equivalent are

(1) there is an analytic smoothing Z of Y,
(2) ∃α ∈ H1(Y \ S,Ω2

Y \S) that maps non-trivially to each summand in

H2
S(Y,Ω2

Y ) ∼= CS ,

(3) ∃α ∈ H1(Y̌ \ Š,ΩY̌ \Š) that maps non-trivially to each summand in

H2
Š

(Y̌ ,ΩY̌ ) ∼= CŠ ,

(4) there is a projective resolution X̌ of Y̌.

What we mean by (1) and (4) is that the families Z and X̌ are over Spf CJtK again
and their generic fibres are a smoothing and resolution of Y and Y̌ respectively.

It should be noted how this result identifies the Friedman-Tian obstruction with
the Smith-Thomas-Yau one under mirror symmetry. Given a conifold transition
X  Z with both ends projective, we thus obtain the mirror dual one Ž  X̌

proving Morrison’s conjecture.

Sketch of Proof. Let Θ denote the tangent sheaf. The proof is based on identifying
all of the following maps.

H1(Y \ S,Ω2
Y \S)→ H2

S(Y,Ω2
Y )

H1(Y \ S,ΘY \S)→ H2
S(Y,ΘY )

H1(B \ S, i∗Λ)→ H2
S(B, i∗Λ)

H1(Y \ S,Ω1
Y̌ \Š

)→ H2
S(Y̌ ,Ω1

Y̌
)

The first identification follows from Y being a Calabi-Yau threefold, so Ω2
Y
∼=

ΘY . The second is derived from Hodge theory of toric degenerations. Here, B
denotes the dual intersection complex of the central fibre of Y which is an affine
manifold with singularities in codimension two. The inclusion of its smooth locus
is denoted i : Bsm → B, Λ is the local system of integral tangent vectors on Bsm

and S ⊂ B denotes the set of four-valent points in Bsm \B. The third line controls
the smoothings Z of Y in the Gross-Siebert program linking (1) and (2). The
identification with the last row above is again Hodge theory of toric degenerations
so we find equivalence with (3) in the theorem. For (4) one checks that the classes
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in (3) give Weil divisors that one can blow up for a small resolution and any small
resolution comes from such a Weil divisor.

�
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Θ-reductive moduli problems, stratifications, and applications

Daniel Halpern-Leistner

For most moduli problems in algebraic geometry, the existence of a quasi-projective
fine moduli space fails in myriad ways. The language of stacks is necessary to deal
with the issue that objects can have (finite or infinite) automorphism groups, but
even then the moduli problem can be “too big.”

Example 1. Let MR,D be the moduli of vector bundles over a smooth curve C
or rank R and degree D. This algebraic stack is locally finite type but not quasi-
compact: indeed the quantity dimH0(C,E) is semicontinuous and obtains arbi-
trarily large values, so the moduli functor can not receive a surjective map from a
quasi-projective scheme.

The solution to this problem is the Harder-Narasimhan (HN) filtration: Every
unstable bundle admits a unique filtration whose associated graded pieces are
semistable with slopes arranged in decreasing order. This leads to the Shatz
stratification

(1) MR,D = M
ss
R,D ∪

⋃
Sα

where M ss
R,D admits a projective good moduli space, and Sα denotes the moduli

of vector bundles of a fixed HN type (indexed by the rank and degrees of the
associated graded pieces α = (r1, . . . , rp; d1, . . . ; dp)). Assigning a bundle to its
associated graded defines a map Sα → Zα := M ss

r1,d1
× . . . ×M ss

rp,dp
whose fibers

are affine spaces.
We present a program for “solving” other moduli problems in this manner, by

introducing a type of stratification which we call a Θ-stratification.
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0.1. Θ-reductive stacks. Our main character is the algebraic stack Θ := A1/Gm.
A vector bundle on Θ is the same as a vector space with a weighted descending
filtration. This leads to the observation that the mapping stack Map(Θ, BGLn) is
algebraic – it is an infinite disjoint union of quotients of partial flag varieties by
GLn. In fact, this is a special case of a more general result

Theorem 1. Let X be a (derived) locally finite type algebraic stack with quasi-
affine diagonal over a field. Then Map(Θ,X) is a locally finite type algebraic stack
with quasi-affine diagonal.

Example 2. In the example of MR,D, a T -point of Map(Θ,MR,D) a vector bundle
E on C×T along with a flat family of weighted descending filtrations, i.e. sequence
· · ·Ew+1 ⊂ Ew ⊂ · · · ⊂ E of vector bundles which stabilizes to E on the right and
0 on the left, and such that grwE• = Ew/Ew+1 is a vector bundle for all w.

Evaluation of a map Θ→ X at the point 1 ∈ A1 defines a map of algebraic stacks
ev1 : Map(Θ,X)→ X which corresponds to forgetting the data of the filtration in
the previous example.

Definition 1. [7] Let X be a locally finite type stack with quasi-affine diagonal
over a field. Then X is Θ-reductive if for any finite type k-scheme T over X, the
connected components of T ×X Map(Θ,X) are proper over T .

Example 3. If X is affine and G is a reductive group acting on X, then X = X/G
is Θ-reductive. However, this fails for more general quasi-projective X.

Example 4. Let X be a projective scheme, and fix a t-structure on Db Coh(X)
satisfying certain properties (Noetherian, generic flatness, boundedness of gener-
alized Quot-spaces; see [7]). Then the moduli stack of flat families of objects in
Db Coh(X)♥ is Θ-reductive. In particular, the usual moduli stack of flat families
of coherent sheaves is Θ-reductive.

The stack MR,D is not Θ-reductive, but it is an open substack of the Θ-reductive
stack Coh(C), the moduli of flat families of coherent sheaves on C. We hope to
study many more moduli problems by finding natural enlargements which are
Θ-reductive and then constructing Θ-stratifications as follows.

0.2. Θ-stratifications. It turns out that among all weighted descending filtra-
tions of an unstable vector bundle the numerical invariant

µ(f : Θ→MR,D) =

∑
w w (R deg(grwE•)−Drk(grwE•))√∑

w w
2rk(grwE•)

is maximized by a unique (up to simultaneous rescaling) choice of weights on
the Harder-Narasimhan filtration, which lets us canonically identify points on
Sα ⊂ MR,D with points on the mapping stack. On an arbitrary stack X, one
can construct a function generalizing the function µ from a pair of cohomology
classes in H2(X;Q) and H4(X;Q).

In general, we define a Θ-stratification to be an open substack S ⊂ Map(Θ,X)

such that ev1 : S → X is a locally closed immersion (satisfying some additional



Algebraic Geometry 813

nice properties). Note that in general Map(Θ,X) will have many more connected
components than X, and S plays the role of the disjoint union of Shatz strata.

Theorem 2. [3] Let X be a Θ-reductive stack. Then any locally convex, bounded
numerical invariant defines a Θ-stratification of X.

The notion of a Θ-stratification is a simultaneous generalization of the Shatz
stratification as well as the canonical stratification of the unstable locus in GIT.
Our theorem leads to new examples of Θ-stratifications, not known to be related
to GIT, such as a stratification of the stack of flat families of objects in the heart
of a Bridgeland stability condition on the derived category of a K3 surface.

0.3. Some applications. Kirwan’s surjectivity theorem [8] says that for a smooth
(local) quotient stack with Θ-stratification the restriction H∗(X;Q)→ H∗(Xss;Q)
is surjective. This leads to beautifully explicit formulas [9] expressing the difference
in the Poincare polynomial of X and Xss as a sum of contributions from each
stratum. Recently these results have been categorified to a structure theorem
[2, 1] for the derived category Db(X), where a direct sum decomposition of H∗(X)
is categorified by an infinite semiorthogonal decomposition of Db(X).

Using the modular interpretation as a mapping stack allows one to generalize
this result beyond the smooth global quotient situation.

Theorem 3. [5, 6] Let X be a locally finite type derived1 algebraic stack with a
quasi-affine diagonal. If X has a derived Θ-stratification, then there is an infinite
semiorthogonal decomposition

D− Coh(X) = 〈. . . , D− Coh(Xss),Awα
α ,Awα+1

α , . . . ,A
wα′

α′ , . . .〉
where Aw

α ≃ D− Coh(Zα)w. When X is quasi-smooth, then a version of this theo-
rem holds with Db Coh instead of D− Coh.

Here Zα are the “centers” of the strata (generalizing the example of the Shatz
stratification above), the categoryD− Coh(Zα)w is the full subcategory with weight
w with respect to a canonical generic Gm-stabilizer in Zα. Algebraic symplectic
stacks always satisfy the Db Coh version of the theorem, so we have

Corollary 3.1. Let X be an algebraic symplectic stack with a Θ-stratification.
Then K(Db Coh(X))→ K(Db Coh(Xss)) is a split surjection.

Specializing to global quotients over the ground field C, it is possible to recover
the Atiyah-Segal equivariant topological K-theory from Db Coh(X/G) [4]. This
leads to some surprising implications for the topology of singular stacks:

Corollary 3.2. Let µ : X → g∗ be an algebraic moment map for a Hamilton-
ian action of a reductive group G on a projective-over-affine algebraic symplectic
variety X, all over C. Let X0 = µ−1(0), and let Gc ⊂ G be a maximal compact

subgroup. Then Ktop
Gc

(X0)→ Ktop
Gc

(Xss
0 ) is a split surjection.

1Even if X is a classical (non-derived) stack, the derived structure on the strata Sα ⊂

Map(Θ,X) will differ from the naive structure as a classical locally closed substack.
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Wall crossing for derived categories of moduli spaces of sheaves on
rational surfaces

Matthew Robert Ballard

A central question in the theory of derived categories is the following: given a
smooth, projective variety X , how does one find interesting semi-orthogonal de-
compositions of its derived category, Db(cohX)? Historically, two different parts
of algebraic geometry have fed this question: birational geometry and moduli
theory.

This talk focuses on the intersection of birational geometry and moduli theory.
Namely, given some moduli problem equipped with a notion of stability, variation
of the stability condition often leads to birational moduli spaces. As such, it is
natural to compare the derived categories in this situation. Let us consider the
well-understood situation of torsion-free rank two semi-stable sheaves on rational
surfaces [EG95, FQ95, MW97]. The flipping of unstable strata under change of
polarization was investigated to understand the change in the Donaldson invari-
ants. It provides the input for the following result, which can be viewed as a
categorification of the wall-crossing formula for Donaldson invariants.

Theorem 1. Let S be a smooth projective rational surface over C with effective
anti-canonical bundle and let L− and L+ be ample lines bundles on S separated
by a single wall defined by unique divisor ξ satisfying

L− · ξ < 0 < L+ · ξ
0 ≤ ω−1

S · ξ.
Let ML±

(c1, c2) be the Gm-rigidified moduli stack of Gieseker L±-semi-stable
torsion-free sheaves of rank 2 with first Chern class c1 and second Chern class
c2.
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There is a semi-orthogonal decomposition

Db(cohML+
(c1, c2)) =

〈
Db(cohH lξ), . . . ,Db(cohH lξ)︸ ︷︷ ︸

µξ

, . . .

Db(cohH0), . . . ,Db(cohH0)︸ ︷︷ ︸
µξ

,Db(cohML−
(c1, c2))

〉

where

lξ := (4c2 − c21 + ξ2)/4

H l := Hilbl(S)×Hilblξ−l(S)

µξ := ω−1
S · ξ

with the convention that Hilb0(S) := SpecC.

Theorem 1 follows from the general technology that goes under the heading of
windows in derived categories. Windows provide a framework for addressing the
central question put forth above; they are a machine for manufacturing interesting
semi-orthogonal decompositions of Db(cohX). They have a rich history with
contributions by many mathematicians and physicists. Here we build off the ideas
of [H-L15, BFK12] to extend the semi-orthogonal decompositions of [BFK12] in the
setting of smooth Artin stacks using an appropriate type of groupoid in Bia lynicki-
Birula strata.
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Invariance of plurigenera for foliations on surfaces

Enrica Floris

(joint work with Paolo Cascini)

Let X be a smooth algebraic surface. A foliation F on X is, roughly speaking, a
locally free coherent subsheaf TF of the tangent bundle of X . The dual of TF is
called the canonical bundle of the foliation KF. In the last few years birational
methods have been successfully used in order to study foliations. More precisely,
geometric properties of the foliation are translated into properties of the canoni-
cal bundle of the foliation. One of the most important invariants describing the
properties of a line bundle L is its Kodaira dimension κ(L), which measures the
growth of the global sections of L and its tensor powers. The Kodaira dimension of
a foliation F is defined as the Kodaira dimension of its canonical bundle κ(KF). In
their fundamental works, Brunella and McQuillan give a classfication of foliations
on surfaces on the model of Enriques-Kodaira classification of surfaces.

The next step is the study of the behaviour of families of foliations. Brunella
proves that, for a family of foliations (Xt,Ft) of dimension one on surfaces, satis-
fying certain hypotheses of regularity, the Kodaira dimension of the foliation does
not depend on t.

By analogy with Siu’s Invariance of Plurigenera, it is natural to ask whether
for a family of foliations (Xt,Ft) the dimensions of global sections of the canonical
bundle and its powers depend on t. During the talk we discussed to which extent
an Invariance of Plurigenera for foliations is true and under which hypotheses on
the family of foliations it holds. After giving basic definitions and some examples,
we presented the following result

Theorem 1 (Cascini, Floris). Let (Xt,Ft)t∈∆ be a family of foliations with reduced
singularities. Then, for any sufficiently large positive integer m, the dimension
h0(Xt,OXt

(mKFt
)) is constant for all t ∈ ∆.
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(Uni)-rationality of Ueno-type manifolds and complex dynamics.

Fabrizio Catanese

(joint work with Keiji Oguiso and Alessandro Verra)

1. Ueno type varieties

Let k be any field of characteristic 6= 2, 3 containing a primitive third root of unity
ω, respectively a primitive fourth root of unity i.

Let E be either the anharmonic elliptic curve E4, with affine equation

E4 = {(x, y)|y2 = x(x2 − 1)},
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which admits the following order 4 automorphism:

g4 : (x, y) 7→ (−x, iy),

(the field of g4-invariant rational functions is the field k(x2)).
Or let E be the equianharmonic elliptic curve E6, with affine equation

E6 = {(x, y)|y2 = x3 − 1},
birational to the curve with affine equation

E′
6 = {(x, y)|y6 = x2(x− 1)},

which admits the following order 6 automorphism:

g6 : (x, y) 7→ (x,−ωy)

(such that the field of g6-invariant rational functions is the field k(x)).
The Ueno-type manifolds are the minimal resolutions of singularities Xn,m

of the quotient of En
m by the diagonal action of gm.

It is classical that these manifolds are rational for n ≤ 2, and the arguments of
Ueno ([10])show that

• the Kodaira dimension of Xn,6 is 0 if n ≥ 6 and −∞ if n ≤ 5,
• the Kodaira dimension of Xn,4 is 0 if n ≥ 4 and −∞ if n ≤ 3.

Later Kollár showed a more general result: if Z has trivial canonical bundle
and a finite group G acts on Z, either the quotient Z/G has Kodaira dimension
0, or it is uniruled.

Ueno asked about separable unirationality of the manifold X3,4, and Oguiso
asked the similar question for Xn,6, 3 ≤ n ≤ 5 .

Interest for these open questions was revived by Campana, who showed that
X3,4 is rationally connected.

The rebirth of interest in the rationality of these manifolds stems also from
complex dynamics and entropy, since these manifolds admit an action by GL(n,Z)
(and indeed by GL(n,Rm), where Rm is the cyclotomic ring Z[i], resp. Z[ω]).

In fact, GL(n,Z) and GL(n,Rm) act on the product En
m and since we divide

by a central automorphism the action descends to the quotient, and then extends
biregularly to Xn,m since the resolution is just obtained by blowing up the singular
points of the quotient.

2. Recent results and questions

In the case of the Ueno manifolds, Oguiso and Truong proved in [4] that X3,6 is
rational. They not only proved the rationality of X3,6, but also showed that in this
way one gets a rational variety with a primitive automorphism of positive entropy.
Here, according to a concept introduced by De-Qi-Zhang, an automorphism f :
X → X is said to be birationally inprimitive if there is a nontrivial rational
fibration π : X → Y , and a birational automorphism φ of Y such that π ◦ f =
φ ◦ π. De-Qi-Zhang showed that if a threefold X admits a primitive birational
automorphism of positive entropy, then either X is a torus, or it is a Q-Calabi-
Yau manifold, or X is rationally connected.
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Campana proved that X3,4 is rationally connected, unirationality was proven by
Catanese, Oguiso and Truong in [1], and later Colliot-Thélène proved rationality
in [2] using the conic bundle description of [1].

Unirationality of X3,4 was proven in a joint work with Oguiso and Truong, later
Colliot Thelene showed, using our conic bundle realization, that X3,4 is indeed
rational (even if the conic bundle is a non trivial element of the Brauer group).

Together with Oguiso, I proved recently the following

Theorem 1. X4,6 is unirational.

Open questions are:

Question 1. Is X4,6 rational ?
Question 2. Is X5,6 unirational ?

3. Methods of proof

In my talk I explained the methods of proof for the cases of X3,4 and X4,6.
The first step is computational, and consists in finding a minimal system of

generators for the field of invariant rational functions on En
m: for instance, in the

case of X3,6 one finds three generators, hence these three elements are algebraically
independent and the variety is k-rational.

In the case of X3,4 one finds 4 generators t1, t2, u1, u2 and one equation, which
can be written as a diagonal quadratic form of the form

u21 −A(t1, t2)u22 −B(t1, t2) = 0.

We get, birationally, a conic bundle over the projective plane, and the method of
[1] consisted in showing that the conic bundle has a bisection Z which is rational:
then the pull back of the conic bundle to Z is a conic bundle with a section hence
it is rational.

Colliot-Thélène proved that the conic bundle does not have a section: in fact, if
K is the function field of the plane, A,B ∈ K and to such a diagonal conic over K
one associates a central algebra over K, MA,B, generated by 1, i, j, ij = −ji and
defined by i2 = A, j2 = B.

By a general theorem the algebra is a division algebra if and only if the conic
does not have any K-rational point (in the contrary case MA,B

∼= M(2, 2,K)).
Moreover, two such conics are K-isomorphic if and only if the corresponding alge-
bras are isomorphic (they yield the same element of the Brauer group).

Colliot-Thélène proved also that in this case the conic is isomorphic to one of
the form

u21 + t1u
2
2 + t2 = 1,

hence the function field is generated by t1, u1, u2 and X3,4 is rational.
We proved the unirationality of X4,6 , showing that it is birational to a diagonal

cubic surface S over the function field K := k(t1, t2)

A(t1, t2)(u31 − 1) +B(t1, t2)(u32 − 1) + C(t1, t2)(u33 − 1) = 0.

The surface S admits 27 rational points ( just let uj be a cubic root of 1).
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Then, by a theorem of B. Segre, it follows that S is unirational, and we observe
that the unirational degree is at most 6.

Using other classical results of B. Segre, Swinnerton-Dyer and Colliot-Thélène
on cubic surfaces and on diagonal cubic surfaces we show that the surface S is K-
unirational, but it is not K- rational.

Is it possible, like it was done for the conic bundle case, to change the cubic
surface birationally and prove the rationality of X4,6?

Sandro Verra observed that the coefficients A(t1, t2), B(t1, t2), C(t1, t2) corre-
spond to a very special system of plane cubics, yielding the Del Pezzo surface of
degree 2 which is the double cover of P2 branched over a complete quadrilateral.
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[3] Colliot-Thélène, Jean-Louis; Kanevsky, Dimitri; Sansuc, Jean-Jacques Arithmétique des

surfaces cubiques diagonales. Diophantine approximation and transcendence theory (Bonn,
1985), 1–108, Lecture Notes in Math., 1290, Springer, Berlin, 1987.

[4] K. Oguiso and T. T. Truong, Explicit Examples of rational and Calabi-Yau threefolds with
primitive automorphisms of positive entropy, J. Math.Sci.Univ. Tokyo 22 (2015), 361-385,
ArXiv:1306.1590.

[5] Kollár, Janos Unirationality of cubic hypersurfaces, J. Inst. Math. Jussieu 1 (2002) 467–476.
[6] Segre, Beniamino, A note on arithmetical properties of cubic surfaces. J. London Math.

Soc 18, (1943). 24–31.
[7] Segre, Beniamino, Arithmetic upon an algebraic surface.Bull. Amer. Math. Soc. 51, (1945).

152–161.

[8] Segre, Beniamino, On the rational solutions of homogeneous cubic equations in four vari-
ables. Math. Notae 11, (1951). 1–68.

[9] Swinnerton-Dyer, H. P. F. The birationality of cubic surfaces over a given field. Michigan
Math. J. 17 1970 289–295.

[10] K. Ueno, Classification theory of algebraic varieties and compact complex spaces. Notes
written in collaboration with P. Cherenack, Lecture Notes in Mathematics, 439 Springer-
Verlag, Berlin-New York, 1975.

[11] Zhang, De-Qi, Dynamics of automorphisms on projective complex manifolds, J.Diff. Geom-
etry 82, (2009), 691-722.

Curve counting on abelian surfaces and threefolds

Qizheng Yin

(joint work with Jim Bryan, Georg Oberdieck, Rahul Pandharipande)

In the past 20 years, much progress has been made in the study of curve count-
ing invariants on K3 surfaces, and their connections to modular forms. This
includes the Yau-Zaslow formula for genus 0 invariants, proven by Klemm-Maulik-
Pandharipande-Scheidegger [2], and the Katz-Klemm-Vafa formula governing in-
variants in all genera, recently proven by Pandharipande-Thomas [4]. More re-
cently, the work of Oberdieck-Pandharipande [3] reveals a beautiful (conjectural)
link between curve counting on K3× E and the Igusa cusp form χ10.
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Our joint project [1] deals with analogous problems for abelian surfaces and
threefolds. As in the K3 case, reduced theories are required in the presence of
holomorphic 2-forms. Some additional difficulty is brought by the translation
action of the abelian variety: one needs to define and compute invariants that
count curves up to translation.

For abelian surfaces, we prove the analogue of the KKV formula evaluating cer-
tain reduced up-to-translation Gromov-Witten invariants in primitive classes. We
also conjecture a multiple cover formula expressing imprimitive invariants in terms
of primitive ones (analogue of the full KKV formula), and prove it in genus 2 (ana-
logue of the full Yau-Zaslow formula). Other results include the (quasi-)modularity
of all descendent invariants in primitive classes, and the counts of hyperelliptic
curves in those classes.

For abelian threefolds, based on the GW/Pairs correspondence, the multiple
cover formula, and stable pairs calculations in base curve classes, we give a con-
jectural formula for the reduced up-to-translation Gromov-Witten invariants in
all primitive classes. Crucial evidence is provided by stable pairs calculations be-
yond base classes. We also discuss connections between the surface and threefold
theories.

The circle of ideas involves reduced theories (especially the Kiem-Li cosection),
degeneration and localization, the counts of polarized isogenies, the link between
abelian surfaces and Kummer K3’s, the GW/Pairs correspondence, and motivic
and toric stable pairs calculations.
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Generic vanishing and compact Kähler manifolds

Christian Schnell

(joint work with Giuseppe Pareschi, Mihnea Popa)

The term “generic vanishing” refers to a collection of results about the cohomology
of line bundles with trivial first Chern class. The first results of this type were
obtained by Green and Lazarsfeld [3, 4]; they were proved using Hodge theory
and are therefore valid on arbitrary compact Kähler manifolds. About 10 years
ago, Hacon [5] found a more algebraic approach, using vanishing theorems and the
Fourier-Mukai transform, that has led to many additional results in the projective
case. In joint work with Giuseppe Pareschi and Mihnea Popa, we show that the
newer results are in fact also valid on arbitrary compact Kähler manifolds.
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In my talk on Thursday morning, I first explained how generic vanishing can
be used to prove the following theorem by Chen and Hacon [1].

Theorem. Let X be a smooth projective algebraic variety over the complex num-
bers. Then X is birational to an abelian variety if and only if dimH1(X,C) =
2 dimX and P1(X) = P2(X) = 1.

The two most important ingredients in the proof are:

(1) Results by Green and Lazarsfeld [3, 4] about the structure of the set

S0(X,ωX) =
{
L ∈ Pic0(X)

∣∣ H0(X,ωX) 6= 0
}
,

in particular that every irreducible component is a translate of a subtorus.
(2) Results by Hacon and Chen and Jiang about the direct image alb∗ ωX

of the canonical bundle under the Albanese mapping alb: X → Alb(X).
More precisely, Hacon [5] showed that alb∗ ωX is a GV-sheaf (“nef”), and
Chen and Jiang [2] showed that it is a direct sum of pullbacks of M-regular
sheaves (“semi-ample”).

Then I explained how one can generalize the theorem of Chen and Jiang to
higher direct image sheaves of the form Rjf∗ωX , where f : X → T is any morphism
from a compact Kähler manifold to a compact complex torus. One application of
this new result is that the theorem of Chen and Hacon remains true in the larger
class of compact Kähler manifolds.

A brief outline of the proof goes as follows. Using Saito’s version of the decom-
position theorem, one can reformulate the problem in terms of polarizable real
Hodge modules on the torus T . By a theorem of Deligne, the underlying regular
holonomic D-module of a polarizable real Hodge module is semi-simple; we then
show that each simple factor is, up to tensoring by a flat line bundle, the pullback
of a simple regular holonomic D-module with positive Euler characteristic on a
projective subvariety of some quotient torus. (The observation that Hodge mod-
ules on compact tori come from abelian varieties is due to Botong Wang.) The
above decomposition into simple factors is compatible with the Hodge filtration,
and therefore induces the desired decomposition

Rjf∗ωX ≃
n⊕

k=1

(
q∗kFk ⊗ Lk

)
,

where qk : T → Tk is surjective with connected fibers, Fk is M-regular and sup-
ported on a projective subvariety of the torus Tk, and Lk ∈ Pic0(T ) is a holomor-
phic line bundle of finite order.

After the talk, Kollár raised the question of whether it is really necessary to use
Hodge modules in this context. As far as we know, there is no elementary proof
(without Hodge modules) of the above result; moreover, what is known about
the structure of compact Kähler manifolds of Kodaira dimension 0 is not enough
to reduce the problem directly to the projective case. Instead, the point of our
approach is that one can compute the cohomology of X in terms of the cohomology
of subvarieties of T , with polarizable real Hodge modules as coefficients. In this
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context, it is now possible to reduce to the case of abelian varieties, basically
because every subvariety of T is a torus bundle over a projective variety.
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Zarhin’s trick for K3 surfaces

François Charles

It is well-known that the moduli space of polarized K3 surfaces is not of finite
type: indeed, the degree of a polarization can take any even positive integer value,
and thus gives rise to infinitely many connected components of the moduli space.
In particular, working over a given finite field k, this moduli space might have
infinitely many points – though each of its component only has finitely many.

In contrast with this geometric argument, it has been shown by Lieblich-Maulik-
Snowden in [3] that, assuming finiteness of the Brauer group of K3 surfaces over
finite fields, there exist only finitely many K3 surfaces over any given finite field,
up to isomorphism. Since then, finiteness of the Brauer group has been proven for
K3 surfaces over finite fields of characteristic at least 3 in [5, 2, 4].

A similar situation holds for abelian varieties, and – as it is usually called –
Zarhin’s trick gives a simple geometric explanation. Zarhin indeed showed that if
A is an abelian variety over an arbitrary field, then the abelian variety (A×A∨)4

admits a principal polarization. From this fact, it can be proved that there exist
only finitely many abelian varieties of given dimension over a given fight field.

Zarhin’s trick for K3 surfaces refers to the fact that there exists a similar con-
struction for K3 surfaces. Indeed, we show in [1] that if X is a projective K3
surface over a field, then there exists a moduli space of stable sheaves on X of low
dimension with a big line bundle of low degree, even if the degree of X is large
– precise estimates can be given in terms of lattice theory. Furthermore, over a
field of characteristic zero or a finite field, we prove boundedness results for the
binational equivalence class of holomorphic symplectic varieties that occur from
such a construction. Such binational boundedness results for unbounded families
of K3 surfaces do in turn make it possible to prove finiteness of Brauer groups
without using abelian varieties.
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Symplectic singularities of moduli spaces of sheaves and quiver
varieties

Giulia Saccà

(joint work with E. Arbarello)

A number of examples of symplectic varieties and symplectic resolutions come
from representation theory or from moduli spaces of sheaves on K3 or abelian sur-
faces. In the first category, we find the nilpotent cone of a complex semisimple Lie
algebra and its Springer resolution, quotients of C2 by a finite group of symplectic
automorphism and their minimal resolution, and Nakajima quiver varieties. As
for the case of moduli spaces, the singularities arise in two circumstances, when
the Mukai vector is not primitive, or when the polarization (more generally, the
stability condition) is not general. The Hilbert–Chow morphism, from the Hilbert
scheme of points on a holomorphic symplectic surface to the symmetric product
of the surface itself, is an example of extremely fruitful interaction between the
two worlds.

Two instances of singularities due to a non primitive Mukai vector were stud-
ied by O’Grady [5], [6], who found two new examples of irreducible holomorphic
symplectic manifolds by exhibiting symplectic resolutions of two singular moduli
spaces on a K3 and on an abelian surface, respectively. Subsequently, Kaledin,
Lehn, and Sorger showed in their inspiring paper [2] that in the remaining cases
with non primitive Mukai vector there is no symplectic resolution. The aim of [1]
is to continue their investigation, and study the case when the singularities of a
moduli space of sheaves arise from the choice of a non generic polarization. In
certain cases, moving slightly the polarization to a general one induces a symplec-
tic resolution the singular moduli space; to be more specific, our aim is to find a
local analytic model of these singularities, as well as of these natural symplectic
resolutions.

The case we will be considering is the one of pure dimension one sheaves on
a K3 surface S. By definition, these are sheaves whose support, as well as that
of any non trivial sub sheaf, has dimension one. Yoshioka showed that, letting v
be the Mukai vector of a pure dimension one sheaf on S, the ample cone Amp(S)
admits a finite wall and chamber structure relative to v: for polarizations lying
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outside of the walls (i.e., in a chamber) the moduli space MH(v) is smooth, while
if the polarization H0 is contained in a wall, then the corresponding moduli space
MH0

(v) is singular. We consider the case of pure dimension sheaves because, if H
is in a camber containg H0 in its closure, then there is natural regular morphism
h : MH(v) → MH0

(v), which is a symplectic resolution. Given a singular point
x ∈ MH0

(v), we use quiver varieties to describe the structure of h : h−1(U)→ U ,
where U ⊂MH0

(v) is an analytic neighborhood of x.
A quiver, denoted by Q, is an oriented graph. Let I = {1, 2, . . . , s} be the set of

vertices and denote by E the set of edges. For an edge e ∈ E, let s(e), t(e) ∈ I be
the source and target of e, respectively. For a dimension vector n = (n1, . . . , ns) ∈
Zs
≥0, let Vi be an ni–dimensional complex vector space and let

Rep(n) =
⊕

e∈E

Hom(Vs(e), Vt(e))⊕Hom(Vt(e), Vt(e))

be the space of n–dimensional representions of Q. This vector space has a natural
symplectic form, preserved by the obvious action of G := GL(n) =

∏
GL(Vi); in

this context there is a moment map with values in the Lie algebra g of G

µ : Rep(n)→ g,
∑

(xe, ye) 7→
∑

[xe, ye]

which allows one to consider sympectic reduction. Roughly speaking, this means
that the smooth locus of the quiver variety M0 := µ−1(0) // G has a holomorphic
symplectic form. Let χ ∈ Hom(G,Z) be a rational character of G. If n is primitive,
by considering the variation of GIT quotient Mχ := µ−1(0)//χG we get a projective
morphism

(1) ξ : Mχ →M0.

As showed by Nakajima [4], there is a wall and chamber decomposition of
Hom(G,Z) ⊗ Q, so that if χ is chosen in a chamber then (1) is a symplectic
resolution.

Recall that given a singular point x ∈MH0
there is a unique up to isomorphism

polystable sheaf F in the S–equivalence class represented by x. We can now state
the main theorem.

Theorem 1. Let v be a primitive Mukai vector, and let x ∈ MH0
(v) be a sin-

gular point corresponding to a polystable sheaf F . There exists a quiver Q and a
dimension vector n such that

i) If the differential graded Lie algebra (dgla) RHom(F, F ) is formal, then,
here is a local (analytic) isomorphism ψ : (M0, 0) ∼= (MH0

(v), x);
ii) If, in addition, F is pure of dimension one. Then for every polarization

H lying in a chamber containing H0 in its closure, there is a character χ
lying in a chamber of Hom(G,Z)⊗Q such that the symplectic resolutions

ξ : Mχ(n)→M0(n), and h : MH(v)→MH0
(v),

correspond to each other via ψ.
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A few remarks are in order. First of all, the statement of ii) holds, more generally,
whenever the map MH(v)→MH0

(v) is a regular morphism. In higher rank, this
is not always the case, and one looks instead at resolutions arising from Matsuki–
Wentorth twisted stability or from Bridgeland stability conditions. This is work
in progress (in the case of ideal sheaves we recover Nakajima’s description of the
Hilbert–Chow morphism).

If F = ⊕s
i=1F

ni

i , with the sheaves Fi pairwise non isomorphic and H0–stable,

then the quiver Q has s vertices, and for every i < j, it has dim Ext1(Fi, Fj)

vertices from i to j, and if i = j it has dim Ext1(Fi, Fi)/2 loops at the vertex i.
This can be defined for arbitrary polystable sheaf, but if F is pure of dimension
one, then Q is “essentially” the dual graph of its support. Notice that Aut(F ) = G.

By definition, the dgla RHom(F, F ) is called formal if it is quasi–isomorphic to
its cohomology algebra Ext∗(F, F ). From our point of view, what this means is
that deformation space DefF is isomorphic to a complete intersection of quadrics
in Ext1(F, F ). A subtle point in the proof of i) is that this isomorphism can be
chosen to be Aut(F )–equivariant. With our choice of Q and n, we see that this
intersection of quadrics is isomorphic to µ−1(0) ⊂ Rep(n) and we conclude with
a G–equivariant version of Artin’s approximation due to Bierstone and Milman.
It is conjectured by Kaledin and Lehn [3] that any polystable sheaf F = ⊕s

i=1F
ni

i

on a K3 surface satisfies this formality condition. In the case when all the Fi

are locally free sheaves, the conjecture was proved by Zhang [7], using results by
Kaledin and Verbitsky. The idea is therefore to use a Fourier–Mukai equivalence
in order to send the torsion sheaves Fi to locally free sheaves Mi, so that in the
cases where the Mi are stable one can apply Zhang’s theorem to the polystable
sheaf ⊕Mni

i . For example, when the equivalence is the spherical twist associated
to OS , then Mi is the dual of the Lazarsfeld–Mukai bundle of Fi. We prove the
stability of the Mi in a number of cases, thereby proving the conjecture of Lehn
and Zhang for the corresponding pure dimension one sheaves.

The proof of ii) uses the geometry of the Quot scheme, of an étale slice around
a point corresponding to F , and natural determinant line bundles. In view of this,
the assignment H 7→ χ, though not unique (as the isomorphism classes of the
moduli spaces are constant within each chamber!), can be chosen to be given by
the following formula

G ∋ (g1, . . . , gs) 7→ χ(g1, . . . , gs) =

s∏

i=1

det(gi)
(Di·H−Di·H0), where Di := c1(Fi).

Moreover, this assignment preserves the wall and chamber structure of both sides,
in the sense that it maps the walls in Amp(S) to the walls of Hom(G,Z).
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Stability conditions on abelian threefolds, and some Calabi-Yau
threefolds

Arend Bayer

(joint work with Emanuele Macŕı, Paolo Stellari)

In this talk, I described by the main result of [1]: a description of a connected
component on the space of Bridgeland stability conditions on abelian threefolds,
and on Calabi-Yau threefolds obtained as (crepant resolutions of) quotients of
abelian threefolds by a finite group action.

The existence of stability conditions on three-dimensional varieties in general,
and more specifically on Calabi-Yau threefolds, is an important open problem
in the theory of Bridgeland stability conditions. Until recent work by Maciocia
and Piyaratne [4, 5], they were only known to exist on threefolds whose derived
category admits a full exceptional collection.

Our approach is based on [3]. The construction is based on the auxiliary notion
of tilt-stability for two-term complexes, and a conjectural Bogomolov-Gieseker type
inequality for the third Chern character of tilt-stable objects. It was shown in [3]
that this conjecture would imply the existence of Bridgeland stability conditions,
and, in the companion paper [2], a Reider-type theorem, including a version of
Fujita’s conjecture, on very ampleness of adjoint line bundles on threefolds.

Conjectural inequality and main result: Our first result is a better under-
standing of the conjectural inequality proposed in [3]. Let (X,H) be a polarized
threefold, and α, β ∈ R with α > 0. We define the twisted slope by

µβ(E) =
H2chβ

1 (E)

H3ch0(E)

where chβ
1 is defined via the twisted Chern character chβ(E) = e−βH(E). The main

technical construction is the definition of the following subcategory of D(X) =
Db(CohX):

Cohβ(X) =

{
E−1 →d E0 ∈ D(X) :

{
µβ(F ) > 0 for all quotients F of cok d

µβ(G) ≤ 0 for all subobjects F of ker d

}
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This is an abelian subcategory. We use the following function to define a slope-like
notion of stability on Cohβ(X), which we call tilt-stability:

να,β =
Hchβ

2 − 1
2α

2H3chβ
0

H2chβ
1

.

We propose the following conjecture:

Conjecture 1. Let (X,H) be a smooth polarized threefold. Assume that E ∈
Cohβ(X) is να,β-semistable. Then
(1)

α2
((
H2chβ

1 (E)
)2

−2H3ch0(E)Hchβ
2 (E)

)
+4

(
Hchβ

2 (E)
)2

−6H2chβ
1 (E)chβ

3 (E) ≥ 0.

We prove that this conjecture is equivalent to a seemingly more special conjec-
ture proposed in [3], which only treated objects with να,β = 0.

Our main result is the following:

Theorem 2. Conjecture 1 holds when (X,H) is an abelian threefold, or a smooth
quotient of an abelian threefold.

The case of abelian varieties of Picard rank one was proved previously in [4,
5]. The case of étale quotients includes some Calabi-Yau threefolds with infinite
fundamental group and H1 = 0, called Calabi-Yau threefolds of abelian type.

Main Application: Space of stability conditions. Let X be an abelian
threefold, of a Calabi-Yau threefold of abelian type, or a Calabi-Yau threefold
of Kummer type (a crepant resolution of a singular quotient Y/G of an abelian
threefold Y ). The main application of Theorem 2 is a description of a connected
component of the space of stability conditions on X . More precisely, we consider
stability conditions whose central charge factors via the map

(2) vH : K(X)→ Q4, E 7→
(
H3ch0(E), H2ch1(E), Hch2(E), ch3(E)

)
.

(In the case of Kummer threefolds, we apply the BKR-equivalence before taking
the Chern character.)

Inside the space Hom(Q4,C), consider the open subset V of linear maps Z
whose kernel does not intersect the (real) twisted cubic C ⊂ P3(R) parameterized
by (x3, x2y, 12xy

2, 16y
3); it is the complement of a real hypersurface. Such a linear

map Z induces a morphism P1(R) ∼= C → C∗/R∗ = P1(R); we define P be the
component of V for which this map is an unramified cover of topological degree

+3 with respect to the natural orientations. Let P̃ be its universal cover.
We let StabH(X) be the space of stability conditions for which the central

charge factors via the map vH in (2), and which satisfy the support property.

Theorem 3. Let X be an abelian threefold, or a Calabi-Yau threefold of abelian

or Kummer type. Then StabH(X) contains P̃ as a connected component.

These stability conditions are obtained by deforming tilt-stability via a contri-

bution of chβ
3 that is “small” compared to the contributions of chβ

≤2; this can be

made precise due to inequality (1).
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Other applications. The above-mentioned Reider-type theorems are based
on the following cohomology vanishing statement:

Corollary 4 ([2]). Let X be a Calabi-Yau threefold of abelian type. Given a ∈ Z>0,
let L be an ample line bundle on X satisfying

• L3 > 49a,
• L2D ≥ 7a for every integral divisor class D with L2D > 0 and LD2 < a,

and
• L.C ≥ 3a for every curve C ⊂ X.

Then H1(L ⊗ IZ) = 0 for every 0-dimensional subscheme Z ⊂ X of length a.
In addition, if L = A⊗5 for an ample line bundle A, then L is very ample.

As a special case of Conjecture 1, we also get new inequalities for Chern classes
of slope-stable vector bundles:

Corollary 5. Let X be one of the following threefolds: projective space, the quadric
in P4, an abelian threefold, or a Calabi-Yau threefold of abelian type. Let H be a
polarization, and let c ∈ Z>0 be the minimum positive value of H2D for integral
divisor classes D. If E is a sheaf that is slope-stable with respect to H, and with
H2c1(E) = c, then

3cch3(E) ≤ 2 (Hch2(E))
2
.

The assumptions hold when NS(X) is generated by H , and c1(E) = H . Even
for vector bundles on P3, this result is new for rank bigger than three.

Both Corollaries would hold similarly for any threefold on which Conjecture 1
can be proved.

Proof strategy. The proof of Theorem 2 for abelian threefolds starts by a
reducing the conjecture to the following statement:

(*) If E is να,β-stable for (α, β) near (0, 0), and if E satisfies Hch2(E) = 0,
then it also satisfies ch3(E) ≤ 0.

This reduction uses wall-crossing for tilt-stability as (α, β) vary, and that tilt-
stability is preserved under pull-back by n : X → X , the multiplication by n.

We then prove statement (*) via very classical methods: further pull-backs
under n as n ≫ 0, stability of line bundles (and the associated Hom-vanishing),
restriction of global sections to divisors, and finally bounds on the cohomology of
sheaves on surfaces given by the Grauert-Mülich theorem.
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Mirror Symmetry and Classification of Orbifold del Pezzo Surfaces

Alessio Corti

(joint work with Mohammad Akhtar, Tom Coates, Liana Heuberger, Alexander
Kasprzyk, Alessandro Oneto, Andrea Petracci, Thomas Prince, Ketil Tveiten)

I stated the four conjectures that follow. More detail can be found in [1]

Conjecture 1. There is a one-to-one correspondence between:

• the set P of mutation equivalence classes of Fano polygons; and
• the set F of qG-deformation equivalence classes of locally qG-rigid class TG

del Pezzo surfaces with cyclic quotient singularities.

The correspondence sends P to a (any) generic qG-deformation of the toric surface
XP .

Conjecture 2. Let P be a Fano polygon and let X be a generic qG-deformation
of the toric surface XP . Let LT

P denote the affine space of maximally-mutable
Laurent polynomials with Newton polygon P and T -binomial edge coefficients, and
let H ts

X ⊂ HX denote the twisted sectors of age less than 1:

H ts

X =

r⊕

i=1

Cui

There is an affine-linear isomorphism ϕ : LT
P → H ts

X , the mirror map, such that

the regularized quantum period ĜX of X and the classical period πP of P satisfy1

ĜX ◦ ϕ = πP .

Conjecture 3. Let P1 and P2 be Fano polygons with the same singularity con-
tent. Suppose that there is an affine-linear isomorphism ϕ : LT

P1
→ LT

P2
such that

πP1
(a, t) = πP2

(ϕ(a), t). Then P2 is obtained from P1 by a chain of mutations.

Conjecture 4. Let X1 and X2 be del Pezzo surfaces of class TG with the same
set of qG-rigid cyclic quotient singularities, and let ϕ : H ts

X1
→ H ts

X2
be the obvious

identification. Suppose that ĜX1
= ĜX2

◦ϕ. Then X1 and X2 are qG-deformation
equivalent.
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The Nash problem on families of arcs

Tommaso de Fernex

(joint work with Roi Docampo)

Let X be a complex algebraic variety. The arc space X∞ of X is the scheme
parametrizing formal arcs on X ; the K-valued points of X∞ are K-valued arcs

α : SpecK[[t]]→ X.

The natural projection πX : X∞ → X is defined by setting t = 0. Note that α
defines a valuation

valα : OX,πX(α) → K[[t]]→ Z ∪ {∞}
which extends to the function field of X if and only if α maps the generic point of
SpecK[[t]] to the generic point of X .

If X is a smooth variety, then X∞ is the inverse limit of a tower of affine bundles,
and thus it is irreducible. The following theorem of Kolchin shows that the same
conclusion holds even if X is singular.

Theorem 1 (Kolchin [4]). For any variety X, the arc space X∞ is irreducible.

In [5], Nash proposed to look at the set of arcs through the singularities of X

π−1
X (SingX) = {α ∈ X∞ | πX(α) ∈ SingX}.

Theorem 2 (Nash [5]). There is a finite decomposition

π−1
X (SingX) =

s⋃

i=1

Ci

into irreducible components Ci.

The proof of this theorem uses resolution of singularities. It shows, in particular,
that if f : Y → X is a high enough resolution and f∞ : Y∞ → X∞ is the map
induced by f , then there are prime divisors E1, . . . , Es on Y such that

Ci = f∞(π−1
Y (Ei)).

This implies that if αi ∈ Ci is the generic point, then valαi
is the divisorial valua-

tion associated to Ei. We call the valuations valα1
, . . . , valαs

the Nash valuations
over X .

Nash Problem. Describe the Nash valuations in terms of resolutions of singu-
larities.

Nash observed that every Nash valuation over X is essential, which means that
its center on any resolution of singularities g : X ′ → X is an irreducible component
of g−1(SingX). This yields the definition of the Nash map, which associate an
essential valuation to any irreducible component of π−1

X (SingX).
Our main theorem provides a sufficient condition for a valuation to be a Nash

valuation. We say that a divisorial valuation valE centered in X is a terminal
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valuation over X (in the sense of the minimal model program) if E can be realized
as an exceptional divisor on a minimal model f : Y → X .

Theorem 3 (de Fernex–Docampo [1]). Every terminal valuation over X is a Nash
valuation.

If dimX ≤ 2, then terminal valuations are the same as essential valuations,
and therefore the theorem implies that the Nash map is surjective. This is an
elementary fact in dimension one. In dimension two, it gives a new proof of the
following theorem.

Theorem 4 (Fernandez de Bobadilla–Pe Pereia [2]). Nash valuations over a sur-
face are the same as essential valuations (and thus the Nash map is surjective).

Another sufficient condition to be a Nash valuation is to be minimal (in the
valuative sense) among divisorial valuations centered in the singular locus of X .
By showing that every essential valuation on a toric variety is a minimal valuation,
Ishii and Kollár proved that the Nash map is surjective for toric varieties.

Theorem 5 (Ishii–Kollár [3]). Nash valuations over a toric variety are the same
as essential valuations (and thus the Nash map is surjective).

Apart from curves, surfaces, and toric varieties, only very few other examples are
known where the Nash map is surjective, and there are examples in all dimensions
greater than two where the Nash map is not surjective.
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