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Introduction by the Organisers

The Arbeitsgemeinshaft on the Kadison–Singer conjecture was organized by Adam
W. Marcus. The most notable attribute of the workshop was the wide variety
of fields represented by the participants. The solution to the Kadison–Singer
conjecure drew from a number of different areas, and because of this, the workshop
contained a mix of researchers that might not normally interact.

The talks were intended to cover three areas. The first area was the origin
and evolution of the Kadison–Singer conjecture. The original Kadison–Singer
conjecture came from a paper in C∗-algebras, and a sequence of papers over 50
years reduced it to a question on finite vector spaces that led to the eventual
solution. The first day of talks was dedicated to that reduction.

The second area was an introduction to polynomial geometry, as this was the
area that many of the techniques that went into the solution came from. While the
area of polynomial geometry has a long history, a number of recent advances were
incorporated into the solution of Kadison–Singer. For historical reasons, the more
recent developments in the area came from two somewhat independent fields. The
theory of stable polynomials, which was born out of statistical physics, had the
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primary focus of understanding the locations of roots polynomials. The theory of
hyperbolic polynomials, which was born out of partial differential equations, had
the primary focus of exploiting the convexity properties that these polynomials
inherit.The second and third days focused on presenting each of these areas and
then showing how techniques from each could be used to solve the Kadison–Singer
conjecture.

The final area was an attempt to suggest further areas of exploration across
various areas. This included talks on problems in combinatorics, statistical physics,
optimization, and computer science which involved the use of either hyperbolic
or stable polynomials. The fourth and fifth day were dedicated to these areas.
On that day, there was also an open problem session, where the participants of
the Arbeitsgemeinschaft could present open problems related to the proof of the
Kadison-Singer-Conjecture.

A number of the participants were from areas in harmonic analysis and real
algebraic geometry. As many of the previous attempts to solve the Kadison–
Singer conjecture were based in harmonic and functional analysis, there was a
particular interest in whether (and how) the techniques of polynomial geometry
could be used in attacking other problems. Attempts to extend the techniques of
polynomial geometry, on the other hand, lead quickly into the area of real algebraic
geometry, and so there was also a good interest in that direction. In all it was
a good mix of people, spanning the range from those who wished to apply the
techniques to those who wished to extend them.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Introduction to the problem

Jianchao Wu

The talk aimed at introducing the original form of the Kadison-Singer problem,
as well as some necessary background, in particular the developments in quantum
mechanics and operator algebra that led up to the formulation of the problem. The
main references of the talk include [1] and [2]. Quantum mechanics differs from
classical mechanics in that the observables under study, e.g. momentum, position,
energy, etc., are no longer real functions on the (classical) state space —the space
of all possible configurations of the system, but are self-adjoint operators on a
Hilbert space, or more generally, self-adjoint elements of a C*-algebra A, while the
quantum state space takes the form of the space of all bounded linear functionals
f : A → C that are

• positive: positive elements are mapped to non-negative real numbers;
• unital: the unit of A is mapped to 1 (all the C*-algebras in this talk are
assumed to be unital).

Such functionals are called states. The state space as a whole is a compact convex
subset of the dual Banach space of A, equipped with the weak-* topology. Of
great importance are the extreme points of this convex set. They are called pure
states. Moreover, if there is an unital inclusion of C*-algebras A ⊂ B, then each
state of A extends to a state of B.

To illustrate the concept of states, we explicitly calculated the state space of
M2(C), the C*-algebra of complex-valued 2×2 matrices, as well as that of its sub-
C*-algebra D ⊂ M2(C) consisting of the diagonal matrices (see [1, Section 2]).

Note that D is generated by the unit and the self-adjoint element σ1 =

(
1 0
0 −1

)
.

In quantum mechanics, this mathematical setting underpins the Pauli model for
the spin of an electron, where the observable σ1 may represent one of the three
directional spin quantum number of the electron.

In this simple example we observe an interesting phenomenon: any pure state of
D extends uniquely to a pure state of M2(C). This fact is of physical significance:
it means that after measurement of the observable σ1 (the generator of D), the
state of the system at that moment can be precisely determined.

A natural question is whether such a phenomenon can be found in other pairs of
C*-algebras A ⊂ B. We are particuarly interested in the case where B = B(H) is
the C*-algebra of all bounded linear operators on a separable Hilbert space H, and
A is commutative. It is not hard to see that in order to get a positive answer, A
must be a maximal abelian self-adjoint algebra, and in particular a von Neumann
algebra. By the classification of separable abelian von Neumann algebras, we only
need to investigate the following three cases:
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(1) Dn ⊂Mn(C), n ∈ N, where Dn consists of diagonal matrices;
(2) l∞(N) ∼= DN ⊂ B(l2(N)), where DN consists of diagonal operators;
(3) l∞([0, 1]) ⊂ B(l2([0, 1])).

It is straightforward to check that the answer is affirmative for the first case, for
any n ∈ N, i.e. every pure state of Dn extends uniquely to a pure state of Mn(C).
On the other hand, Kadison and Singer [3] showed that the answer is negative in
the third case. The second case was left open and became the famous Kadison-
Singer problem.

The Kadison-Singer Problem: Does every pure state on the C∗-algebra of
bounded diagonal operators on l2(N) extend uniquely to a pure state on the C*-
algebra of all bounded linear operators on l2(N)?

References

[1] Nicholas Harvey, An introduction to the Kadison-Singer problem and the paving conjecture,
preprint: http://www.cs.ubc.ca/ nickhar/Publications/KS/KS.pdf, 2013.

[2] Palle Jorgensen, Kadison-Singer from mathematical physics: an introduction, preprint:

http://www.aimath.org/WWN/kadisonsinger/PJIntroduction.pdf, 2006.
[3] Richard V. Kadison and I. M. Singer, Extensions of pure states, American Journal of Math-

ematics, 81(2):383–400, 1959.

From C* algebras to vector spaces, Ultrafilters

Safdar Quddus

The Kadison-Singer Conjecture was a question in functional analysis about unique-
ness of the (pure) state extension of a (pure) state on D(l2) to B(l2). As a question
over infinite dimensional spaces it posed severe difficulties. In this talk we discussed
the background to the recent proof [4] which changed the question from one that
on infinite dimesional space to problem on matrices. It was through the work of
Akemann, Anderson and Weaver ([5] and [1]) that the problem was reduced to
one estimating norm of vectors in Cn.

Ultrafilters

My part of the Arbeitsgemeinschaft was to introduce the concept of ultrafilters
and to reduce the the Kadison-Singer Conjecture using this tool.

For a non-empty set Y , F ⊂ 2Y satisfying the criterion below is a filter.

• φ /∈ F , Y ∈ F .
• If A ∈ F and B ∈ F , then A ∩B.
• If A ∈ F and A ⊆ B, then B ∈ F .

A filter F in which exactly one of A,Ac belongs to F is called an ultrafilter. For
example: Uj := {A ⊂ N|j ∈ A} is an ultrafilter over N, infact these ultrafilters are
called as principal ultrafilters at j.

It is to note that by using axiom of choice we can construct a non-principal
ultrafilter but in ZF setup all the ultrafilters are principal.
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Lemma 1. Every filter is contained in an ultrafilter.

Proof. By Zorn’s lemma on poset of filters on Y containing F we get a maximal
element. We need to check the following:

• The union of chain of filters is a filter. (easy)

• A maximal filter is an ultrafilter. (If not then, let F̂ be a maximal filter,

there exists A such that A /∈ F̂ , Ac /∈ F̂ . Then F̂ ∪ {A} is a filter strictly

containing F̂ , a contradiction to maximality.)

�

Hence the maximal filter containing the cofinite filter Fcf := {A ⊂ N|Ac is
infinite} is a non-principal ultrafilter as it is not contained in any principal ultra-
filter Uj for j ∈ N. Infact all non-principal ultrafiters contain Fcf .

Ultrafilters on N

Let βN denote the set of all ultrafilters on N. We can topologise βN by declaring

that sets of the type Â := {U|A ∈ U} are the open sets. We can easily check that
the following properties hold:

• Â is clopen.

• the set A := {Â|A ⊂ N} is indeed a base for the topology.
• βN is compact.
• βN is Hausdorff.
• Principal ultrafilters are dense in βN.

U − lim and D(l2)

For any U ∈ βN we can define a corresponding U − lim. Formally, for a ∈ CN

define aU to the U − lim a if, for all neighbourhoods S of aU the set {i|ai ∈ S} is
contained in U .

We can easily check that this limit has the following properties:

• If a ∈ l∞ then, U − lim a exists.
• U − lim a is unique.
• If I ∈ U , then aU ∈ ¯{ai|i ∈ I}.
• c · U − lim a+ d · U − lim b = U − lim(ca+ db). ∀ c, d ∈ C.
• (U − lim a) · (U − lim b) = U − lim (a · b).
• (U − lim a)∗ = U − lim (a∗). Where (a∗)i = (ai)

∗

Using the diagonal map, Diag : D(l2) → l∞, we have an isomorphism of D(l2) with
l∞. The following results, give an ultrafilter description of the pure states of D(l2).

Theorem 2. The Banach spaces l∞ and C(βN) are isometric isomorpic.

Proof. Define a map φ : l∞ → C(βN) as φ(a) = fa, where fa(U) = U − lim a.
Conversely, define ψ : C(βN) → l∞ as ψ(f) = af , where (af )i = f(Ui). It can
be easily seen that these are indeed maps and agree on principal ultrafilters and
preserve norms. �



934 Oberwolfach Report 17/2015

Theorem 3. The pure states on D(l2) are precisely the functionals of the form
fU for U ∈ βN, where

fU (z) = U − lim(Diag(z)).

Proof. Let f be pure state on D(l2), let U := {A ⊂ N|f(PA) = 1}, it can be seen
that U is an ultrafilter on N. To show that f = fU , it suffcies that they agree on
the dense set of projections on D(l2). Since pure states are multiplicative we can
see that f(PA) = 1 or 0. If f(PA) = 1 then A ∈ U hence, fU(PA) = 1. Else if
f(PA) = 0 then A /∈ U so, fU(PA) = U − lim d = 0.

Conversely, for an ultrafilter U , fU is multiplicative hence a pure state. �

Hence we have reduced the Kadison-Singer Conjecture to problem on ultrafilters
on N. Subsequently in the next lectures in the Arbeitsgemeinschaft we saw how
this can be further reduced to problem on finite dimensional matrices.

References

[1] C. Akemann, J, Anderson Lyapunov type theorems for Operator Algebras, American Math-
ematical Society 94(458) (1991).

[2] J. Anderson, Extreme points in sets of positive linear maps on B(H), Journal of Functional
Analysis 31 (1979), 195–217.

[3] J. Kadison, R. Ringrose, Fundamentals of the Theory of Operator Algebras,Graduate Studies
in Mathematics 15 ISBN-13: 978-0821808191.

[4] A. Marcus, S. Speilman, N. Srivastava, Interlacing families II: Mixed characteristic polyno-
mials and the Kadison-Singer problems, Annals of Mathematics. 82-1 (2015), 327–350.

[5] N. Weaver, Kadosin-SInger problem in discrepancy theory, Discrete Mathematics 278
(2004), 227–239.

Proving the equivalence of the Kadison-Singer problem and
Anderson’s paving conjecture

Itay Londner

This presentation is essentially based on the paper [4] due to Harvey, sections 4
and 5. We begin by restating of the Kadison-Singer problem.

Problem ([5]). Is it true that every pure state f : D (ℓ2) → C can be uniquely
extended to a state g : B (ℓ2) → C?

Previously we have seen that the C∗-algebra of bounded diagonal operators
D (ℓ2) is isometrically isomorphic to the space ℓ∞ of infinite bounded sequences.
Furthermore, the space of ultrafilters βN was introduced, as well as the concept of
U -limits. We have also seen that the space C (βN) of continuous complex-valued
functions is isometrically isomorphic to ℓ∞ and to D (ℓ2). Using the fact that pure
states on C (βN) are precisely the multiplicative functionals ([5], Theorem 3.4.7
and proposition 4.4.1), we get the following.

Theorem 1. The pure states on D (ℓ2) are the functionals of the form

U 7→ U − lim (diag (D)) ,

where U ∈ βN, D ∈ D (ℓ2) and only those.
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One should notice that such states admit an immediate extension to the C∗-
algebra of bounded linear operators B (ℓ2) given by A 7→ U − lim (diag (A)), hence
the issue is around uniqueness of the extension rather than its existence.

Throughout the years the Kadison-Singer problem turned out to be equivalent
to many different problems in various areas of mathematics (see, for example [3]).
One of these equivalent forms is known as Anderson’s paving conjecture ([1, 2]).

Conjecture (Anderson’s Infinite-Dimensional Paving conjecture). For every ε >
0 there exists r ∈ N such that for every self-adjoint H ∈ B (ℓ2) with zero diagonal,
there exists a partition {A1, . . . , Ar} of N such that ‖PAi

HPAi
‖ ≤ ε ‖H‖ for every

i ∈ {1, . . . , r}.

Here PAi
: ℓ2 → ℓ2 denotes the orthogonal projection onto the coordinates in

Ai. The main result of this part is the following:

Theorem 2. The following are equivalent:

(1) The Kadison-Singer problem.
(2) Anderson’s Infinite-Dimensional Paving conjecture.
(3) For every ε > 0 and for every self-adjoint H ∈ B (ℓ2) with zero diagonal,

there exists r ∈ N and a partition {A1, . . . , Ar} of N such that

−εPAi
� PAi

HPAi
� εPAi

for every i ∈ {1, . . . , r}.

We point out that the difference between (2) and (3) above lays only in the
uniform choice of r with respect to the subspace of self-adjoint operators, which
turned out to be equivalent.

Another equivalent form of the Kadison-Singer problem is the conjecture known
as Feichtinger conjecture. For the precise formulation and proof of equivalence see
[3].
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From infinite dimensional pavings to finite dimensional pavings

Vadim Alekseev

In our talk we presented the reduction of the infinite-dimensional Anderson paving
conjecture (paving matrices in B(H) to various finite-dimensional paving conjec-
tures, including Weaver’s conjecture.

The reduction from infinite-dimensional to finite-dimensional Anderson paving
proceeds through paving of increasing sequence of corners of a given matrix; ituses
a variant of the Knig’s lemma about infinite graphs to establish the existence of
the required paving.

Next, we discussed the reduction of the finite-dimensional Anderson paving
conjecture to various finite-dimensional paving conjectures. Using the standard
relationships between self-adjoint matrices, reflections and projections, it is possi-
ble to reduce paving of self-adjoint matrices with zeroes on the diagonal to paving
of reflections with zeroes on the diagonal, and finally to paving of projections
with 1/2 on the diagonal. By using an amplification trick, one can further soften
the paving assumptions. Using the relationship between frames and projections,
the Anderson paving problem (and thus the Kadison–Singer conjecture) is finally
reduced to a problem about frames known as Weaver’s conjecture.

Univariate stable polynomials

Markus Schweighofer

In this talk we tried to give a very basic introduction to univariate stable polynomi-
als and to illustrate their usefulness in combinatorics. More complete introductions
into this subject are [7] and [8].

All polynomials will be real or complex polynomials in one variable X . We
denote the corresponding algebra of polynomials by R[X ] and C[X ], respectively.

1. Stable polynomials

We call f ∈ C[X ] stable if f is the zero polynomial or f has no complex roots with
positive imaginary part, i.e., f = 0 or ∀z ∈ C : (Im(z) > 0 =⇒ f(z) 6= 0).

There are many other notions of stability with the upper half plane replaced by
other regions. The term “stable” is motivated by control theory where the stable
behavior of a system can often be related to stability (in one sense or the other)
of a polynomial.

The Gauß-Lucas Theorem [3, Theorem 2.1.1] says that for a non-constant com-
plex polynomial the zeros of its derivative are convex combinations of its zeros:

∀p ∈ C[X ] \ C : {z ∈ C | p′(z) = 0} ⊆ conv{z ∈ C | p(z) = 0}.

As a corollary, derivatives of stable polynomials are stable.
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2. Real stable polynomials

Stable polynomials in R[X ] are called real stable (also real-rooted and sometimes
hyperbolic or real zero polynomial). These are the polynomials of the form

λ(X − a1) · · · (X − an) (n ∈ N0, λ, a1, . . . , an ∈ R).

To see that derivatives of real stable polynomials are real stable, one can simply
use Rolle’s theorem instead of the Gauß-Lucas Theorem.

If p = (X − a1) · · · (X − an) with λi ∈ C, then its reciprocal p∗ := Xnp
(

1
X

)
=

(1 − a1X) · · · (1 − anX) =: 1 − p♯ has the same coefficients in reversed order and
we have a formal identity

∞∑

k=1

1

k
(ak1 + · · ·+ akn︸ ︷︷ ︸

=:Nk

)Xk = − log p∗ = − log(1 − p♯) =

∞∑

k=1

1

k
p♯k

and therefore the k-th Newton sum Nk can be expressed polynomially in the
coefficients of p. Hence the Hermite-matrix

H(p) :=




N0 N1 N2 · · · Nn−1

N1 N2

...

N2

...
... N2n−3

Nn−1 · · · · · · N2n−3 N2n−2




= V (p)TV (p)

can be written easily in terms of the coefficients of p in contrast to the Vandermonde-
matrix

V (p) :=



1 a1 · · · an−1

1
...

...
...

1 an · · · an−1
n


 .

If p is stable, then H(p) is clearly positive semidefinite. By a theorem of Her-
mite and Sylvester [4, Theorem 4.57], the converse is also true. Since the positive
semidefiniteness of a real symmetric matrix can easily be decided without comput-
ing its eigenvalues, this gives a very efficient test for real stability of polynomials.

Since Descarte’s rule of signs [4, Theorem 2.33] is exact for real stable polynomials
[4, Corollary 2.49, Theorem 2.47], we have: If p = (X − a1) · · · (X − an) with
ai ∈ R, then #{i | ai > 0} is the number of signs in the coefficient sequence of p
(disregarding zero coefficients). As a special case, which is however trivial, a non-
zero real stable polynomial has no positive roots if and only if it has no negative
coefficients.
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By Edrei’s equivalence theorem [7, Theorem 4.9], a real non-zero polynomial
cnX

n + · · · + c0 (ci ∈ R) is stable without positive roots if and only if the in-
finite (lower triangular Toeplitz) matrix




c0
c1 c0
c2 c1 c0
. . .

. . .
. . .

. . .




is totally positive, i.e., all its minors are nonnegative.

3. Newton’s inequalities and unimodality

A sequence (c0, . . . , cn) of real nonnegative numbers is called unimodal if there
exists an m ∈ {0, . . . , n} such that c0 ≤ · · · ≤ cm−1 ≤ cm ≥ cm+1 ≥ · · · ≥ cn. We
say it has no internal zeros if {i | ai 6= 0} is an interval in {0, . . . , n}. We say it is
log-concave if it has no internal zeros and ck−1ck+1 ≤ c2k for all k ∈ {1, . . . , n− 1}.
One checks easily that the sequence

((
n
0

)
, . . . ,

(
n
n

))
of binomial coefficients is log-

concave. We say that (c0, . . . , cn) is ultra log-concave if it has no internal zeros
and satisfies Newton’s inequalities

ck−1(
n

k−1

) ck+1(
n

k+1

) ≤
(
ck(
n
k

)
)2

for k ∈ {1, . . . , n− 1}. One checks easily

“ultra log-concave =⇒ log-concave =⇒ unimodal”.

Looking at 2× 2 minors in Edrei’s theorem, one sees that a real stable polynomial
without negative coefficients has log-concave coefficient sequence. However, it
has even ultra log-concave coefficient sequence: This can be seen as follows: Fix
three consecutive terms in the given polynomial. Kill all terms of lower degree by
taking an appropriate higher derivative. To get rid of terms of higher degree, take
the reciprocal and take again a suitable higher derivative. All these operations
preserve stability. Now you end up with a real stable quadratic polynomial. Its
discriminant must be nonnegative and this gives exactly Newton’s inequalities.

As an example of this method, consider the unsigned Stirling numbers of the first
kind

[
n
k

]
:= #{σ ∈ Sn | σ has exactly k cycles} (k, n ∈ N0, 0 ≤ k ≤ n). Here

1-cycles, i.e., fixed points of the permutation count. We claim that
([

n
0

]
, . . . ,

[
n
n

])

is unimodal. To prove this, we show even that it is ultra log-concave. It suffices to
show that p :=

∑n
k=0

[
n
k

]
Xk is stable. But p = X(X + 1) · · · (X + n− 1) =: X(n)

(“rising factorial”). This can be seen easily by counting permutations whose cycles
are colored (thinking of X as the number of colors) in two different ways: One
way is by grouping together permutations with the same number of cycles. The
other way is by successively deciding for each number between 1 and n whether it
should go into a new cycle (in which case a color has to be chosen) or whether it
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should be inserted in one of the already existing cycles (in which case it has to be
inserted at some position in these cycles).

4. Stability preservers

Borcea and Brändén characterized in 2009 all linear stability preservers R[X ] →
R[X ] and C[X ] → C[X ] (an example of which is p 7→ p′). This involves however
a notion of multivariate stability and therefore goes beyond the scope of this talk
[5]. Brenti [2] proved in 1989 that the restriction of the linear map R[X ] →
R[X ], Xk 7→ X(k) (the “rising factorial” from above) to polynomials with only
nonnegative coefficients preserves stability (this is the correct part of [7, Theorem
4.6], the other part being trivially wrong as the counterexample (X + 1)(X + 2)
shows).

As an example of how to use stability preserving maps, consider a variant of the
above Stirling numbers: Define a cycle of a function f : {1, . . . , n} → {1, . . . , n} as
a connected component of the graph {{x, f(x)} | x ∈ {1, . . . , n}, x 6= f(x)}. For
k, n ∈ N0 with 0 ≤ k ≤ n, define

{
n
k

}
as the number of functions {1, . . . , n} →

{1, . . . , n} with exactly k cycles. We claim that
({

n
0

}
, . . . ,

{
n
n

})
is unimodal. Again,

we show even that it is ultra log-concave. Without loss of generality n ≥ 1.
Using the formula for the number of rooted forests on n vertices with exactly
k trees from [6, end of Chapter 30] (I am grateful to Benjamin Matschke for
showing me this formula and relating it to this), it is an exercise to show that{
n
k

}
=
∑n

i=1

(
n−1
i−1

)
nn−i

[
i
k

]
for n, k ∈ N0 with 0 ≤ k ≤ n. Hence

p :=
n∑

k=0

{
n

k

}
Xk =

n∑

i=1

(
n− 1

i− 1

)
nn−i

n∑

k=0

[
i

k

]
Xk

︸ ︷︷ ︸
=X(i)

.

But p is stable by Brenti’s result mentioned above since q :=
∑n

i=1

(
n−1
i−1

)
nn−iX i =

X(X + n)n−1 is stable.

5. Pólya-Schur multiplier sequences

Already in 1914, Pólya and Schur characterized in their fulminant work [1] all
linear stability preservers R[X ] → R[X ] andC[X ] → C[X ] of the formXk 7→ λkX

k

for some sequence (λk)k∈N. We mentioned the main facts of this beautiful work
similarly to the exposition in [7, Section 4.3]. A detailed account of this theory
can be found in [3, Sections 5.4 and 5.7]
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Multivariate stable polynomials

Mario Kummer

I talked about multivariate stable polynomials: A polynomial f ∈ C[z1, . . . , zn]
is called stable if f does not vanish on Hn where H ⊆ C denotes the upper half-
plane. A basic and important example of stable polynomials is the following: If
A0, . . . , An are positive definite Hermitian matrices of the same size, then

det(A0 +A1 · z1 + . . .+An · zn)

is a stable polynomial. The main focus of the talk was on operations that pre-
serve the class of stable polynomials. There are some basic operations for which
one can easily see that they preserve stability like dilation, permuting variables,
specialization, differentiation or taking limits [6, 7]. I presented some results of
Borcea and Brändén that characterize all linear operations on the vector space of
polynomials that preserve stability [1, 2, 3].

An interesting special case is the one where no variable appears in any mono-
mial with power two or higher. Such polynomials are called multiaffine polynomi-
als. Many problems on stable polynomials become easier if one restricts attention
to multiaffine polynomials. There is for example a nice characterization of mul-
tiaffine, real stable polynomials due to Brändén [4]: A multiaffine polynomial
f ∈ R[x1, . . . , xn] is stable if and only if the inequality

∂f

∂xi
(x) · ∂f

∂xi
(x) ≥ ∂2f

∂xi∂xj
(x) · f(x)

holds for every x ∈ Rn and all 1 ≤ i, j ≤ n. On the other hand, using an operation
called polarization which assigns to each polynomial a multiaffine polynomial and
which preserves stability one can reduce many problems to the multiaffine case
[5]. There is also an interesting and fruitful connection between multiaffine stable
polynomials and matroid theory [4, 5].

http://msr-waypoint.com/en-us/um/people/nvishno/site/Publications_files/ZerosIntro.pdf
http://msr-waypoint.com/en-us/um/people/nvishno/site/Publications_files/ZerosIntro.pdf
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Interlacers and mixed characteristic polynomials

Claus Scheiderer

We work towards the proof of the Kadison-Singer theorem, following [1]. Given
two real rooted monic polynomials f and g, we say that g interlaces f if deg(f) =
deg(g)+1 = n, and if αi ≤ βi ≤ αi+1 holds for i = 1, . . . , n−1, where αi (resp. βi)
is the i-th root of f (resp. of g) ordered in an increasing way. If f1, . . . , fk ∈ R[x]
are monic and real rooted polynomials of the same degree that have a common
interlacer, we first show that any convex combination f of f1, . . . , fk is real rooted
with maxroot(f) ≥ minj=1,...,k maxroot(fj).
The mixed characteristic polynomial of a sequence A1, . . . , Am of complex d × d
matrices is defined as the polynomial

µ[A1, . . . , Am](x) :=
( m∏

j=1

(1− ∂zj )
)
det
(
xI +

m∑

j=1

zjAj

)∣∣∣
z1=···=zm=0

in C[x]. The main result is the following. Let A1, . . . , Am be a sequence of inde-
pendent random matrices of rank ≤ 1 with finite support. Then

Eχ[A1 + · · ·+Am] = µ[E(A1), . . . , E(Am)](x),

that is, the expected characteristic polynomial of
∑

j Aj is the mixed characteristic

polynomial of the expectations E(A1), . . . ,E(Am). As a consequence we find that
when the Aj are positive semidefinite, the polynomial µ = µ[E(A1), . . . , E(Am)](x)
is real rooted, and if λ is a zero of µ, then

∑
j Aj has an eigenvalue ≤ λ with pos-

itive probability.
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Kadison-Singer via Real Stability

Thorsten Jörgens

This talk completes the topic Stability and finishes the proof of the Kadison-
Singer Conjecture using facts and properties learned in the previous ones. The
talk follows the paper ’Interlacing Families II: Mixed Characteristic Polynomials
and The Kadison-Singer Problem’ by Marcus, Spielman and Srivastava [1].

First, the following statement about the roots of the mixed characteristic poly-
nomial of matrices A1, . . . , Am is proven:

µ[A1, . . . , Am](x) :=

(
m∏

i=1

1− ∂zi

)
det

(
xI +

m∑

i=1

ziAi

)∣∣∣∣∣
z1=...=zm=0

=

(
m∏

i=1

1− ∂zi

)
det

(
m∑

i=1

ziAi

)∣∣∣∣∣
z1=...=zm=x

.

Theorem 1. Let A1, . . . , Am be Hermitian positive semidefinite matrices satisfy-
ing

∑m
i=1Ai = I and tr(Ai) ≤ ε for all i.

Then the largest root of the mixed characteristic polynomial is at most (1+
√
ε)2.

The idea of the proof is to gain the mixed characteristic polynomial by applying
operators of the form (1 − ∂zi) to det(

∑
ziAi) iteratively. A ’multivariate upper

bound’ of the arising polynomials can be observed. A term of a multivariate upper
bound is provided by the definition of ’above the roots’:

Definition 2. Let p(z1, . . . , zn) be a multivariate polynomial. We say that z ∈ Rn

is above the roots of p, z ∈ Abp, if

p(z + t) > 0 for all t = (t1, . . . , tm) ∈ R
m, ti ≥ 0.

Furthermore, by defining a suitable barrier function a sufficient ’safety distance’
(’cushion’) of a point z ∈ Abp to the roots of the corresponding polynomial p is
guaranteed. The following barrier function is used:

Definition 3. Let p be a real stable polynomial and z = (z1, . . . , zn) ∈ Abp. Our
barrier function of p in direction i at the point z is

Φi
p(z) = ∂zi log p(z) =

∂zip(z)

p(z)
.

These functions are for all i = 1, . . . , n non-increasing and convex in every
direction.

The proof of Theorem 1 uses the following lemma and the idea of iteratively
applying the (1− ∂zj )-operators mentioned above:

Lemma 4. Let p be real stable, z ∈ Abp, Φ
i
p(z) < 1. Then,

z ∈ Ab(1−∂zi
)p.

Furthermore, if δ > 0 and Φj
p(z) ≤ 1− 1

δ , then for all i,

Φi
(1−∂zj

)pp(z + δej) ≤ Φi
p(z).
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The second part proves the Kadison-Singer Conjecture by showing the equiva-
lent Weaver Conjecture. The following theorem is proven at the start:

Theorem 5. Let ε > 0 and v1, . . . , vm ∈ Cd be independent random vectors with
finite support so that

m∑

i=1

Eviv
∗
i = Id and E‖vi‖2 ≤ ε, i = 1, . . . ,m.

Then

P

(∥∥∥∥∥

m∑

i=1

vivi
∗

∥∥∥∥∥ ≤ (1 +
√
ε)2

)
> 0.

The theorem provides the existence of vectors w1, . . . , wm in the value sets of
v1, . . . , vm which have the property ‖∑m

i=1 wiwi
∗‖ ≤ (1+

√
ε)2, e.g., the eigenvalues

of
∑
wiw

∗
i are bounded by (1+

√
ε)2. The proof uses, beside Theorem 1, results of

the previous talks about mixed characteristic polynomials and interlacing families.
The following corollary states the existence of a certain partition of vectors and

forms the last step proof Weaver’s Conjecture:

Corollary 6. Let r be a positive integer, δ > 0 and let u1, . . . , um ∈ C
d be vectors

such that
∑m

i=1 uiu
∗
i = I and ‖ui‖2 ≤ δ, i = 1, . . . ,m.

Then there exists a partition {S1, . . . , Sr} of {1, . . . ,m} such that
∥∥∥∥∥∥

∑

i∈Sj

uiu
∗
i

∥∥∥∥∥∥
≤
(

1√
r
+
√
δ

)2

, for j = 1, . . . , r.

The proof uses a clever construction of independend random vectors v1, . . . , vn
such that each vi is uniformly distributed on wi,1 := (ui, 0d, 0d, . . . , 0d)

t
, wi,2 :=

(0d, ui, 0d, . . . , 0d)
t , . . . ∈ Crd. Theorem 5 can be applied and yields the existence

of an assignment of the vi to the wi such that ‖∑m
i=1 wiwi

∗‖ ≤ (1+
√
ε)2. Defining

the partition-sets as Sk := {i : vi = wi,k} provides the statement.
The talk ends with the proof of Weaver’s Conjecture:

Theorem 7. There exist universal contants η ≥ 2 and θ > 0 so that the following
holds. Let w1, . . . , wm ∈ Cd satisfy ‖wi‖ ≤ 1 for all i and suppose

m∑

i=1

| 〈u,wi〉 |2 = η(1)

for every unit vector u ∈ Cd. Then there exists a partition S1, S2 of {1, . . . ,m} so
that

∑

i∈Sj

| 〈u,wi〉 |2 ≤ η − θ,

for every unit vector u ∈ Cd and each j ∈ {1, 2}.
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The Conjecture is shown for the values η = 18 and θ = 2 and follows by applying
the last corollary to ui := wi/

√
η, i = 1, . . . , n. Then, Weaver’s Condition (1)

becomes
∑m

i=1 uiu
∗
i = I. The existence of the partition is obtained by the corollary

above. Finally,
∑

i∈Sj
| 〈u,wi〉 |2 ≤ 16 = η − θ is received back.
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Hyperbolic polynomials

Tom Drescher

The aim of this talk was to define hyperbolic polynomials and hyperbolicity cones,
and to prove some basic properties such as convexity.

Definition 1. A homogeneous polynomial h ∈ R[x1, . . . , xn] is called hyperbolic
with respect to a vector e ∈ Rn if h(e) 6= 0 and if for all x ∈ Rn the univariate
polynomial

hx(t) := h(−x+ t · e)
has only real roots.

hx is called the characteristic polynomial of x. It is easy to see, that hx has
leading coefficient h(e). Hence, there are functions

λi : R
n → R

for i = 1, . . . , n, such that

hx(t) = h(e) · (t− λ1(x)) · (t− λ2(x)) · · · (t− λn(x))

and

λmin(x) := λ1(x) ≤ λ2(x) ≤ · · · ≤ λn(x)

for all x ∈ Rn. From this definition we immediately get the following transforma-
tion rule:

λj(s · x+ r · e) =
{

s · λj(x) + r , s ≥ 0

s · λn−j(x) + r , s ≤ 0.

Example. Let h be a non-degenerate homogeneous quadratic. Then h is linearly
isomorphic to a polynomial of the form

x21 + · · ·+ x2p − x2p+1 − · · · − x2n

(i.e. there exists an invertible matrix T , such that h(Tx) has this form). Now
assume, that h is of this form, that p ≤ n − p, and that n ≥ 3. Then h is
hyperbolic with respect to e ∈ Rn if and only if p = 1 and h(e) > 0.
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Example. Let M1, . . . ,Mn be hermitian matrices, and let

e1M1 + · · ·+ enMn

be positive definite. Then the polynomial

h(x) := det(x1M1 + · · ·+ xnMn)

is hyperbolic with respect to e. The term characteristic polynomial from above and
also other terms regarding hyperbolic polynomials, are inspired by this example.

Definition 2. Let h be hyperbolic with respect to e. Then we define the following
subsets of Rn:

Λ++(h, e) := {x ∈ R
n |λmin(x) > 0} ,

Λ+(h, e) := {x ∈ R
n |λmin(x) ≥ 0} .

They are called open and closed hyperbolicity cone of h.

The following proposition gives some basic properties and equivalent definitions
of the hyperbolicity cone:

Proposition 3. Let h be hyperbolic with respect to e. Then

(1) Λ++(h, e) is basic open semi-algebraic. More precisely, if h has degree d
and Dk

eh denotes the k-th derivative of h in the direction e, then

Λ++(h, e) =

{
x ∈ R

n

∣∣∣∣
h(x)

h(e)
> 0,

Dk
eh(x)

h(e)
> 0 for k = 1, . . . , d− 1

}
.

(2) Λ++(h, e) is star-convex at e.
(3) Λ++(h, e) is the connected component of e in the set {x ∈ Rn |h(x) 6= 0}.
(4) Λ+(h, e) is the closure of Λ++(h, e).

The following theorem is the main step to prove the convexity of hyperbolicity
cones:

Theorem 4. Let h be hyperbolic with respect to e and let x ∈ Λ++(h, e). Then h
is hyperbolic with respect to x and Λ++(h, x) = Λ++(h, e).

The idea of the proof is to show, that the imaginary parts of the roots of the
polynomial

r 7→ h(iε · e+ r · x+ s · y)
have the same sign for all s ≥ 0 and ε > 0. By setting s = 1 and letting ε go to 0,
we can conclude, that the roots of the polynomial

r 7→ h(r · x+ y)

must be real, since this is a polynomial with real coefficients. See [2] for details.
With the above theorem at hand, it is not hard to prove the following theorem:

Theorem 5. Let h be hyperbolic with respect to e. Then Λ++(h, e) is convex.
Moreover, the function λmin : R

n → R is concave.
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Convexity Properties of Hyperbolic Polynomials

Eli Shamovich

The notion of hyperbolic polynomials was first studied in connection with hy-
perbolic partial differential operators with constant coefficients. The hyperbolic
polynomials arise as symbols of such differential operators, see for example [3]. A
homogeneous polynomial f ∈ R[x0, . . . , xn] of degree m is called hyperbolic with
respect to some point a ∈ Rn+1, if f(a) 6= 0 and for every x ∈ Rn+1, the roots of
the single variable polynomial f(ta + x) are all real. The convexity properties of
such polynomials were first considered by L. Gärding in [2]. We write:

f(ta+ x) = f(a)

m∏

j=1

(t+ λj(a, x)).

Assume without loss of generality that for every x we have λ1(a, x) ≥ λ2(a, x) ≥
· · · ≥ λm(a, x). Then we can define the following set:

C(a) =
{
x ∈ R

n+1 | f(ta+ x) 6= 0 for t ≥ 0
}
.

It is now obvious that C(a) =
{
x ∈ Rn+1 | λm(a, x) > 0

}
. Gärding showed that

λm(a, x) is concave and that C(a) is in fact a convex cone and that for every
b ∈ C(a), we have that f is hyperbolic with respect to b and that C(b) = C(a).

The goal of this talk is to present this and other convexity results on homoge-
neous hyperbolic polynomials. We follow mostly [1] throughout the talk. For a
vector u ∈ Rm we write u↓ for the same vector with the coordinates ordered in
a decreasing order. For U ⊂ Rm we write U↓ = {u↓ | u ∈ U}. In particular for a
homogeneous polynomial f of degree m hyperbolic with respect to some a ∈ Rn+1

we have a map λ : Rn+1 → Rm
↓ given by λ(x) = (λ1(a, x), . . . , λm(a, x)). We call

λ the characteristic map of f . We define the map σk(x) =
∑k

j=1 λj(a, x) and call
σm the trace of f .

First we will show that for every symmetric polynomial Ej in m variables the
function satisfies that Ej ◦λ is a homogeneous polynomial of n+1 variables and of
degree j hyperbolic with respect to a as well. In particular this implies that σm(x)
is a linear hyperbolic polynomial. Using this fact and some theory of symmetric
polynomials we will show that if q ∈ R[y1, . . . , ym] is a homogeneous symmetric
polynomial of degree k on Rm hyperbolic with respect to e = (1, 1, . . . , 1), with
characteristic map µ, then q ◦ λ is a homogeneous polynomial of degree k hyper-
bolic with respect to a and with characteristic map λ ◦ µ. Using this result we
obtain that for every convex and symmetric function g : Rm → [−∞,∞] we have
that g ◦ λ is convex. We will then see an example in the case of the space of
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Hermitian matrices and the determinant and derive some other corollaries. The
talk is concluded by stating the generalized Alexander-Fenchel inequalities for an
arbitrary homogeneous hyperbolic polynomial proved in [4].
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Kadison-Singer via hyperbolicity (Part II)

Nima Amini

Following Marcus, Spielman and Srivastava’s theorem, in particular resolving the
Kadison-Singer conjecture, Brändén [1] found a natural extension of the theorem
to hyperbolic polynomials making the proof more coherent in its general form.
The talk, which is the first out of two on this topic, centers around the statement
of Brändén’s theorem and to what extent it forms a generalization. A couple of
the main ingredients of the proof are developed, culminating in the hyperbolic
version of the mixed characteristic polynomial.

The theorem by Marcus, Spielman and Srivastava is a stronger version of the
Weaver KSk-conjecture, which in turn is known to imply a positive solution to the
Kadison-Singer problem.

Theorem 1 (Marcus, Spielman, Srivastava). Let k ≥ 2 be an integer. Suppose
v1, . . . ,vm ∈ Rd satisfy

∑m
i=1 viv

∗
i = I where I is the identity matrix. If ||vi||2 ≤ ǫ

for all 1 ≤ i ≤ m, then there is a partition of S1 ∪ · · · ∪ Sk = [m] such that
∣∣∣∣∣∣

∣∣∣∣∣∣

∑

i∈Sj

viv
∗
i

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ (1 +

√
kǫ)2

k
,

for each j ∈ [k], where || · || denotes the operator norm.

Definition 2. Let h be a hyperbolic polynomial w.r.t e ∈ Rn. Write

h(te− x) = h(e)

d∏

j=1

(t− λj(x))

where λmax(x) = λ1(x) ≥ · · · ≥ λd(x) = λmin(x) are called the eigenvalues of
x w.r.t e. The trace, rank and spectral radius of x ∈ Rn w.r.t e are defined
respectively by

tr(x) =

d∑

i=1

λi(x), rk(x) = #{i : λi(x) 6= 0}, ||x|| = max
1≤i≤d

|λi(x)|.
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Brändén showed that Theorem 1 can be naturally generalized to the realm of
hyperbolic polynomials (in fact with a slightly improved bound) as follows:

Theorem 3 (Brändén). Let k ≥ 2 be an integer and ǫ > 0. Suppose h is hyperbolic
with respect to ∈ Rn, and let u1, . . . ,um ∈ Λ+ be such that

rk(ui) ≤ 1 for all 1 ≤ i ≤ m,

tr(ui) ≤ ǫ for all 1 ≤ i ≤ m, and

u1 + u2 + · · ·+ um = e.

Then there is a partition of S1, · · · , Sk of [m] such that
∣∣∣∣∣∣

∣∣∣∣∣∣

∑

i∈Sj

ui

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ 1

k
δ(kǫ,m)

for each j ∈ [k], where

δ(α,m) :=

(
1− 1

m
+

√
α+

1

m

(
1− 1

m

))2

.

Remark. Note that the hypotheses of Theorem 1 translates into the hypotheses of
Theorem 1 by taking h = det and e = I so that Λ+(I) is the cone of symmetric
positive-definite matrices. Since ui = viv

∗
i we see that rk(ui) = 1 and so in

particular ui has a single real eigenvalue. This together with the fact that ||ui|| =
||viv

∗
i || = ||vi||2 ≤ ǫ implies that tr(ui) ≤ ǫ.

As a step towards proving Theorem 1 one generalizes the notion of the mixed
characteristic polynomial to the hyperbolic setting and prove that it forms a com-
patible family - a slightly less general definition than that of interlacing family but
one that is sufficient for our purposes.

Definition 4. Suppose S1, . . . , Sm are finite sets. A family of polynomials,

{f(s; t)}s∈S1×···×Sm

for which all non-zero members are of the same degree and have the same sign
of their leading coefficients is called compatible if for all choices of independent
random variables X1 ∈ S1, . . . , Xm ∈ Sm, the polynomial Ef(X1, . . . , Xn; t) is
real-rooted.

From what we know about polynomials, the roots of a weighted sum of polyno-
mials have in general little to do with the roots of its sum constituents. Perhaps a
bit surprisingly then one has the following relationship between the maximal root
of the expected polynomial of a compatible family with that of its family members.

Theorem 5. Let {f(s; t)}s∈S1×···×Sm
be a compatible family, and let X1 ∈ S1,

. . . , Xm ∈ Sm be independent random variables such that Ef(X1, . . . , Xm; t) 6≡ 0.
Then there is a tuple s = (s1, . . . , sn) ∈ S1 × · · · × Sm, with P[Xi = si] > 0 for
each 1 ≤ i ≤ m, such that the largest zero of f(s1, . . . , sm; t) is smaller than or
equal to the largest zero of Ef(X1, . . . , Xm; t).
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In analogy with the original theorem we now define the following special poly-
nomial

Definition 6. If h(x) ∈ R[x1, . . . , xn] and v1, . . . ,vm ∈ Rn let h[v1, . . . ,vm] be
the polynomial in R[x1, . . . , xn, y1, . . . , ym] defined by

h[v1, . . . ,vm] =

m∏

j=1

(1− yjDvj
)h(x).

When the vectors have rank at most one the polynomial takes on a more explicit
form

Lemma 7. If v1, . . . ,vm have rank at most one, then

h[v1, . . . ,vm] = h(x− y1v1 − · · · − ymvm).

Definition 8. The mixed characteristic polynomial is given by

t 7→ h[v1, . . . ,vm](te+ 1)

where h is hyperbolic with respect to e ∈ Rn and 1 ∈ Rm is the all ones vector, and
v1, . . . ,vm ∈ Λ+(e) satisfy v1 + · · ·+ vm = e and tr(vi) ≤ ǫ for all 1 ≤ i ≤ m.

Finally the following theorem show that the polynomials we have defined indeed
form compatible families.

Theorem 9. Let h(x) be hyperbolic with respect to e ∈ Rn. Let V1, . . . , Vm be finite
sets of vectors in Λ+ and let w ∈ Rn+m. For V = (v1, . . . ,vm) ∈ V1 × · · · × Vm,
let

f(V; t) := h[v1 . . . ,vm](te+w).

Then {f(V; t)}V∈V1×···×Vm
is a compatible family.

In particular if in addition all vectors in V1 ∪ · · · ∪ Vm have rank at most one, and

g(V; t) := h(te+w − α1v1 − · · · − αmvm),

where w ∈ R
n and (α1, . . . , αm) ∈ R

m, then {g(V; t)}V∈V1×···×Vm
is a compatible

family.
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Kadison-Singer via hyperbolicity (Part II)

Cordian Riener

In this talk we continued to present a generalization of the theorem by Marcus,
Spielman and Srivastava to hyperbolic polynomials given by Petter Brändén [2].
Using the nation of hyerbolic polynomials, which was introduced in previous talks,
Brändén’s Theorem is the following.

Theorem 1 (Brändén). Let k ≥ 2 be an integer and ǫ > 0. Suppose h is hyperbolic
with respect to e ∈ Rn, and let u1, . . . ,um ∈ Λ+ be such that

rk(ui) ≤ 1 for all 1 ≤ i ≤ m,

tr(ui) ≤ ǫ for all 1 ≤ i ≤ m, and

u1 + u2 + · · ·+ um = e.

Then there is a partition of S1, · · · , Sk of [m] such that
∣∣∣∣∣∣

∣∣∣∣∣∣

∑

i∈Sj

ui

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ 1

k
δ(kǫ,m)

for each j ∈ [k], where

δ(α,m) :=

(
1− 1

m
+

√
α+

1

m

(
1− 1

m

))2

.

Generalizing the idea of the proof of Marcus, Spielman and Srivastava, Brändén’s
Theorem can be deduced from the following theorem.

Theorem 2. Let h be hyperbolic with respect to e and let X1, . . . ,Xm be indepen-
dent random vectors in the hyperbolicity cone Λ+ with finite supports, of rank at
most one, and such that

E

m∑

i=1

Xi = e, and tr(EXi) ≤ ǫ for all 1 ≤ i ≤ m.

Then

P

[
λmax

(
m∑

i=1

Xi

)
≤ δ(ǫ,m)

]
> 0.

The proof of Theorem 2 relies on the notion of a compatible family, which was
introduced in the previous talk. Let Vi be the support of Xi then it was shown
previously that for each 1 ≤ i ≤ m, the family

{h(te− v1 − · · · − vm)}vi∈Vi

is compatible. Hence there are vectors vi ∈ Vi, 1 ≤ i ≤ m, such that the largest
zero of h(te− v1 − . . .− vm) is smaller or equal to the largest zero of

Eh(te− X1 − · · · − Xm) = Eh[X1, . . . ,Xm](te+ 1) = h[EX1, . . . ,EXm](te+ 1).
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It is then shown, that the largest zero of the polynomial t 7→ h[v1, . . . ,vm](te+1)
is indeed at most δ(ǫ,m).
These preparations allowed us to present the proof of Theorem 1 given by Brändén
in [2]:
Let y = {xij : 1 ≤ i ≤ k, 1 ≤ j ≤ n} and denote xi = (xi1, . . . , xin). Brändén
considers the polynomial

g(y) = h(x1)h(x2) · · ·h(xk) ∈ R[y].

Since h is hyperpolic with respect to e ∈ Rn one finds that g(y) is hyperbolic
with respect to e1 ⊕ · · · ⊕ ek, where ei denotes a copy of e relative to the xi,
for all 1 ≤ i ≤ k. The hyperbolicity cone of g then can be written as Λ+ :=
Λ+(e

1)⊕ · · · ⊕Λ+(e
k). Let ui

1, . . . ,u
i
m denote copies in Λ+(e

i) of u1, . . . ,um and
take random vectors X1, . . . ,Xm ∈ Λ+ such that

P
[
Xj = kui

j

]
=

1

k
for all 1 ≤ i ≤ k and 1 ≤ j ≤ m.

Then

EXj = u1
j ⊕ u2

j ⊕ · · · ⊕ uk
j ,

tr(EXj) = k tr(uj) ≤ kǫ, and

E

m∑

j=1

Xj = e1 ⊕ · · · ⊕ ek.

Theorem 2 above yields the existence of a partition S1 ∪ · · · ∪ Sk = [m] such that

λmax

(
∑

i∈S1

ku1
i + · · ·+

∑

i∈Sk

kuk
i

)
≤ δ(kǫ,m).

But

λmax

(
∑

i∈S1

ku1
i + · · ·+

∑

i∈Sk

kuk
i

)
= k max

1≤j≤k
λmax


∑

i∈Sj

uj
i




= k max
1≤j≤k

λmax


∑

i∈Sj

ui


 ,

and one can deduce a proof of Theorem 1.
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Ramanujan Graphs

Christoph Gamm

The purpose of this talk is to present an outline of the proof of the following
theorem from [1]:

Theorem 1. For every d ≥ 3 there is an infinite sequence of d-regular bipartite
Ramanujan graphs.

We will call a d-regular bipartite graph Ramanujan, if λ(G) ≤ 2
√
d− 1, where

λ(G) is the maximal absolute value of its non-trivial eigenvalues, i.e. the eigenval-
ues not equal to −d or d.

The basic idea of the proof is to take a Ramanujan graph and show that there
is a 2-lift that is again Ramanujan. Here a 2-lift of a graph is a 2 : 1 covering
graph. To each 2-lift we assign a signing and a signed adjacency matrix. Denote
by S the set of all 2-lifts and let fs be the characteristic polynomial of the signed
adjacency matrix corresponding to s ∈ S.

It turns out that the eigenvalues of a 2-lift are exactly the eigenvalues of the
original graph together with the eigenvalues of the signed adjacency matrix. In
order to proof the theorem we therefore only need to find a lifting s for which the
roots of fs are all bounded in absolute value by 2

√
d− 1. As bipartite graphs have

symmetric spectrum it suffices to find an upper bound for the roots.
The next step is to make use of a relation between the signed characteristic

polynomials and the matching polynomial. The matching polynomial µG is a real
rooted polynomial that has roots bounded by 2

√
d− 1. The following theorem by

Godsil and Gutman implies that our desired statement is at least true in average:

Theorem 2. Es∈S [fs(x)] = µG(x)

To be able to conclude the statement for a single fs we need to introduce the
notion of interlacing families. The importance of interlacing families lies in the fact
that for an interlacing family fs1,...,sn there is one polynomial fs1,...,sn for which
the maximal root is smaller that the maximal root of the averaged polynomial.
All that is left to proof is that the signed characteristic polynomials {fs}s∈S form
an interlacing family.

Being an interlacing family is equivalent to the real-rootedness of certain convex
combination. Therefore the last statement follows easily from the main theorem
of the article:

Theorem 3. For all p1, . . . pn ∈ [0, 1] the following polynomial is real-rooted:

P (x) =
∑

s∈{±1}n

(
∏

i:si=1

pi

)(
∏

i:si=−1

1− pi

)
fs(x)

This theorem will not be proved in this talk and we will only make some remark
on the required methods. The proof makes use the theory of real stable polyno-
mials. In general the idea is to take a real stable polynomial and apply a series
of operations that preserve real stability until we end up with the polynomial P
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from the main theorem. As real stability and real-rootedness are equivalent in the
case of a single-variable polynomial the theorem follows.

References

[1] A. W. Marcus, D. A. Spielman, N. Srivastava, Interlacing families I: bipartite Ramanujan
graphs of all degrees, to appear (Ann. of Math.).

Further Applications: van der Waerden’s Conjecture

Michelle Delcourt

Despite the deceptively simple statement, for over 50 years van der Waerden’s
Conjecture remained unsolved, contributing to the reputation of the difficulty of
calculating permanents. The conjecture from 1926 states that the permanent of
an n× n doubly stochastic matrix A satisfies

per(A) ≥ n!

nn
,

and furthermore, we have equality if and only if all entries of A are equal to 1
n [8].

In 1981 this conjecture was solved by Egorychev [2] and Falikman [4] using a
classical inequality of Aleksandrov and Fenchel [1]; subsequently in 1982 Egorychev
and Falikman were awarded the Fulkerson Prize for this work. Along the way a
number of easier conjectures were formulated. For instance, Erdős and Rényi stud-
ied counting perfect matchings in k-regular, bipartite graphs with equal partition
size [3], and in the 1960s Erdős and Rényi asked if there exists a real value αk > 1
such that any integer valued n× n matrix A with all row and column sums equal
to k satisfies

per(A) ≥ αn
k .

Additionally, Erdős and Rényi asked [3]: what is the largest possible value such
an αk can achieve? If we assume van der Waerden’s Conjecture to be true, then
we see for all positive integers k

per(A) = knper

(
1

k
A

)
≥ kn

n!

nn
≥
(
k

e

)n

.

In 1966 Wilf [9] showed that

αk ≤ (k − 1)
k−1

kk−2
,

and in a paper from 1998 [7], Schrijver proved that this is in fact the correct value
for all positive integers k.
Given the difficulty of the proofs by Egorychev [2] and Falikman [4] as well as by
Schrijver, it came as a great surprise when in 2008 Leonid Gurvits published a
simple proof [5] of these results using H-stable polynomials. Interestingly, in both
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cases the bounds can be thought of as being best possible in different asymptotic
directions. Note that

inf
k
µ(k, n)1/n =

n!1/n

n
and

inf
n
µ(k, n)1/n =

(
k − 1

k

)k−1

where µ(k, n) is the minimum permanent of n×n doubly stochastic matrices with
all entries being integer multiples of 1

k .
In this talk, we explore Gurvits’s proofs [5] of both of these results. We follow

the exposition from the American Mathematical Monthly article from December
2010 written by Laurent and Schrijver [6].
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Negative dependence II

Guillaume Aubrun

The goal of this talk was to give an introduction to the links between negative
dependence and stable polynomials.

I started with defining positive association for probability measures on the
boolean hypercube and stating the FKG inequality.

I then defined the property of negative association: a measure µ on 2S (with S
a finite set) is negatively associated if for any pair of increasing functions F,G :
2S → R which depend on disjoint sets of coordinates, we have

∫
FGdµ ≤

∫
F dµ

∫
Gdµ.
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I gave some simple examples of negatively associated meaures: product measures,
uniform measure on subsets of a fixed cardinality.

Following [1] and [2], I introduced the (multi-affine) polynomial gµ associated to
a measure µ. I discribed how probabilistic operations such as products, marginals
and conditionning affect the corresponding polynomials.

The class of strongly Rayleigh measures is the class of measures for which the
corresponding polynomial is stable. I recalled the criterion by Brändén for stability
of multi-affine polynomials, which when applied to gµ implies immediately that µ
has pairwise negatively correlated coordinates.

I stated the main theorem: strongly Rayleigh measures are negatively associ-
ated. I described some operations on polynomials which preserve stability: ho-
mogeneization and symmetrization. This operations are used in the proof of the
main theorem.
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Negative dependence II

Jan Hladký

I showed an application of the notion of strongly Rayleigh measure introduced in
the previous talk “Negative dependence I” by Guillaume Aubrun to the theory
of stochastic processes. The main result of my talk is from [1, Theorem 5.2]. A
friendlier presentation of the same result is in the survey paper [2, Section 6].

Given a finite set S, a state of an exclusion process on the set S is an arbitrary
subset of S. We think of the elements of a state as particles occupying some of
the sites S. An (symmetric) exclusion process on S is a continuous time Markov
process, in which sites i and j exchange their particles at rate λij (lets say λij =
λji). Thus, starting with an initial distribution µ0 on 2S we denote by µt the law
of the process at time t.

(More generally, the set S is typically allowed to be countable. However, the
problem we consider here becomes non-trivial already for finite sets, and its resolu-
tion for finite sets actually implies the countable version by standard arguments.)
It was long conjectured that if µ0 is deterministic then µt is negatively associated
(see the abstract “Negative dependence I” for definition). To give a feeling to
what negative association amounts to in this context, we remark that it would for
example conclude that

PX∼µt
[A ⊂ X and B ⊂ X ] ≥ PX∼µt

[A ⊂ X ]PX∼µt
[B ⊂ X ]

for any two disjoint sets A,B ⊂ X . This is a plausible statement which can be
understood as “if there are particles in all of A then they are likely to miss B”.
(Note that there are easy counterexamples for general initial measures µ0.)
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All this is implied by the following result.

Theorem 1. Suppose that µ0 is a strongly Rayleigh measure. Then for any t > 0,
the measure µt is strongly Rayleigh.

Indeed this is a solution of the original conjecture in a stronger form as Dirac
measures are easily seen to be strongly Rayleigh, and Rayleigh measures are known
to be negatively associated. We reduce the theorem to a seemingly weaker state-
ment.

Proposition 2. Suppose that µ0 is a strongly Rayleigh measure. Suppose that
we consider an exclusion process in which the only exchanges occur between sites
1, 2 ∈ S, i.e., λi,j = 0 for {i, j} 6= {1, 2}. Then for any t > 0, the measure µt is
strongly Rayleigh.

The rigorous proof of the fact that the proposition implies the theorem goes
by Lie(-Trotter) product formula applied to the semigroup of the Markov process.
We can, however, provide a clear intuition even without introducing these notions,

as follows. Let us list all the
(
|S|
2

)
pairs {i, j} ⊂ S as {i1, j1}, {i2, j2}, . . . , {i(|S|

2 )
,

j(|S|
2 )

}. Let us divide the time interval into subintervals of length 1
N , where N →

∞. Within the 1st subinterval, let us consider a process in which only exchanges

between i1 and j1 are allowed, and at rate
(
|S|
2

)
λi1j1 . Within the 2nd subinterval,

let us consider a process in which only exchanges between i2 and j2 are allowed,

and at rate
(
|S|
2

)
λi2j2 . Similarly we proceed with further subintervals, where the

same type of exchanges repeats with period of
(
|S|
2

)
subintervals. It is clear that if

N → ∞, the law µN
t converges to the law of µt, for any fixed t > 0. At the same

time, the proposition tells us that within each subinterval the strongly Rayleigh
property was preserved, and thus was preserved globally, implying the theorem.

It thus remains to prove the proposition. We use the one-to-one correspondence
between probability measures and their generating functions, as showed in the
proceeding talk. That is, let g0(x1, . . . , x|S|) be the (real stable, multi-affine)
generating polynomial of the measure µ0. Let gt be the generating polynomial of
the measure µt from the above proposition. We need to show that gt is real stable.
To this end, it is key to observe that

(1) gt(x1, . . . , x|S|) = (1−Θ)g0(x1, x2, x3, . . . , x|S|) + Θg0(x2, x1, x3 . . . , x|S|) ,

where Θ is the probability that the number of swaps (between 1 and 2, which are
the only allowed swaps) is odd. Note that the number of swaps has a Poisson
distribution with parameter tλ12, of which we only need that Θ ∈ (0, 1). Thus, (1)
can be proved using tools for dealing with real stable polynomials developed in
the previous talk.
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Dithering frame vectors with Kadison-Singer

Joseph W. Iverson

To a finite collection of vectors Φ = {uj}j∈J ⊂ Cn, we associate the frame-like
operator

SΦ =
∑

j∈J

uju
∗
j .

That is,

SΦv =
∑

j∈J

〈v, uj〉uj (v ∈ C
n).

We call Φ a Bessel sequence if there is a constant B > 0 such that SΦ ≤ BI. The
constant B is a Bessel bound. We say Φ is a Parseval frame if SΦ = I.

Marcus, Spielman, and Srivastava have shown that any Parseval frame can be
partitioned into two sets, each of which does approximately half of the frame’s
work. Explicitly, they have proved the following:

Theorem 1 ([3]). Let Φ = {uj}j∈J be a finite Parseval frame for Cn such that

‖uj‖2 ≤ ǫ for some fixed ǫ > 0 and all j ∈ J . Then there is a partition of J into
two sets J1 and J2, such that

(1)

∥∥∥∥∥∥

∑

j∈Ji

uju
∗
j −

1

2
I

∥∥∥∥∥∥
≤ 2

√
ǫ+ ǫ (i = 1, 2).

Here and throughout, ‖·‖ is the operator norm. Remarkably, the upper bound
in Eqn. (1) does not depend on the dimension n. Theorem 1 was known to imply
a positive answer to the Kadison-Singer problem [3], through previous work by
Akemann and Anderson [1] and Weaver [6].

The current undertaking is an extension of Theorem 1 due to Akemann and
Weaver. Their goal was to replace 1

2I in Eqn. (1) with other operators A ≤ I.
The main result is as follows:

Theorem 2 ([2]). Let Φ = {uj}j∈J ⊂ C
n be a finite Bessel sequence with bound

B = 1. Suppose there is a fixed ǫ > 0 such that ‖uj‖2 ≤ ǫ for all j ∈ J . Then for
any choice of scalars tj ∈ [0, 1], j ∈ J , there is a subset J ′ ⊂ J such that

∥∥∥∥∥∥

∑

j∈J′

uju
∗
j −

∑

j∈J

tjuju
∗
j

∥∥∥∥∥∥
= O(ǫ1/8).

The theorem is proved in stages. Starting from Theorem 1, the operator 1
2I in

Eqn. (1) is replaced with increasingly generic A ≤ I, while the hypothesis that
SΦ = I is slowly relaxed to SΦ ≤ I.
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Several interpretations of Theorem 2 are given below. Of these, the second and
third appeared in [2].

(1) The numbers tj ∈ [0, 1] can be viewed as scalings of the vectors in our

Bessel sequence: if we let Φ̃ = {t1/2j uj}j∈J , then

SΦ̃ =
∑

j∈J

tjuju
∗
j .

It is as if the Bessel sequence Φ is a vast orchestra of instruments, each
of which has its own channel in a recording studio. An engineer carefully
sets the level of each instrument by moving the “slider” tj . The theorem
says that, in terms of the frame-like operator, approximately the same
effect could have been achieved by just muting some of the instruments
and leaving the others at full blast. Hans Feichtinger has remarked that
this is also like a dithering: we can approximate the “gray scale” of Φ̃
using only black and white dots from Φ.

(2) Let Ω ⊂ B(Cn) be the convex hull of the frame-like operators

SJ′ =
∑

j∈J′

uju
∗
j

as J ′ ranges over all subsets of J . The theorem says that any point

T =
∑

j∈J

tjuju
∗
j ∈ Ω (0 ≤ tj ≤ 1)

is close to one of the vertices SJ′ , and we can control the error using only
the size of the vectors uj ∈ Φ. In other words, the operators SJ′ do a
good job of policing Ω, and we can help them do a better job just by using
smaller vectors in Φ.

(3) Denote [0, 1]J for the set of all J-tuples t = (tj)j∈J with tj ∈ [0, 1] for all
j. Let Ω be as above, and let ψ : [0, 1]J → Ω be given by

ψ(t) =
∑

j∈J

tjuju
∗
j (t = (tj)j∈J ∈ [0, 1]J).

Then ψ maps the extreme points of [0, 1]J (the vertices) to the operators
SJ′ described above. The theorem says that the image of the extreme
points is nearly the entire image of [0, 1]J .

A classical theorem of Lyapunov [4] describes a certain affine-linear map
ϕ : Q → V from a convex set Q to a linear space V , and concludes that
ϕ(ext(Q)) is all of ϕ(Q). In [1], Akemann and Anderson have called any
theorem of this form a Lyapunov theorem. This is not exactly the situation
in Theorem 2, since the image of [0, 1]J is only approximated by the image
of the extreme points. Nevertheless, it is clear that Theorem 2 belongs
roughly in this camp.

We end with an open problem. At the seminar in Oberwolfach, Itay Londner
called this “the million dollar question”.
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Problem. Find a constructive algorithm for the subset J ′ ⊂ J in Theorem 2.
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Kadison–Singer conjecture for strongly Rayleigh measures

Benjamin Matschke

1. Introduction

Marcus, Spielman and Srivastava [5] proved the following theorem. It implies the
long-standing Kadison–Singer conjecture [4, 1, 6], which asserts that every pure
state on the abelian von Neumann algebra D(ℓ2) of bounded diagonal operators
on ℓ2 has a unique extension to a pure state on B(ℓ2).

Theorem 1 (MSS). Let V1, . . . , Vk be independent random vectors in Rd, each of
which take only finitely many values, and let ε > 0 be such that

∑
E[ViV

t
i ] = idd

and E
[
||Vi||2

]
≤ ε for all i = 1, . . . , k. Then

P
[
||
∑

ViV
t
i || ≤ (1 +

√
ε)2
]
> 0.

Anari and Oveis Gharan [2] proved a version of the MSS theorem (see Section 3)
in which in some sense they managed to weaken the independence assumption for
the random vectors V1, . . . , Vk. This allowed them to apply this technique to the
Asymmetric Traveling Salesman Problem. In particular they proved a new upper
bound for the integrality gap of its natural LP-relaxation.

2. Strongly Rayleigh measures.

Borcea, Brändén and Liggett [3] recently introduced the notion of strongly Rayleigh
measures. Let Pn denote the set of all probability measures on 2[n]. For such a
measure µ ∈ Pn, let gµ :=

∑
S⊆[n] µ(S)x

S ∈ R[x1, . . . , xn] denote its generating

function. We say that µ ∈ Pn is homogeneous of degree d if and only if gµ is.
Homogeneous µ ∈ Pn of degree 1 are the same as probability measures on [n].
There is a product map Pn1 × Pn2 → Pn1+n2 , the product of µ1 and µ2 being
given via gµ1×µ2(x1, . . . , xn1+n2) := gµ1(x1, . . . , xn1) · gµ2(xn1+1, . . . , xn1+n2). We
call µ ∈ Pn strongly Rayleigh if gµ is a real stable polynomial, i.e. when gµ has
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no complex roots (x1, . . . , xn) with im(xi) > 0 for all i. A basic example of ho-
mogeneous strongly Rayleigh measures are homogeneous µ ∈ Pn of degree 1, and
products of such measures.

3. MSS theorem for strongly Rayleigh measures.

Anari and Oveis Gharan [2] proved the following version of the MSS theorem.

Theorem 2 (AO). Let µ be a homogeneous strongly Rayleigh probability measure
on 2[m] that satisfies PS∼µ[i ∈ S] ≤ ε1 for all i = 1, . . . ,m. Let v1, . . . , vm ∈ Rd

such that
∑
viv

t
i = idd and ||vi||2 ≤ ε2 for all i. Then

PS∼µ

[
||
∑

i∈S

viv
t
i || ≤ 4(ε1 + ε2) + 2(ε1 + ε2)

2
]
> 0.

Theorems 1 and 2 are related as follows. The random vectors V1, . . . , Vk from
Theorem 1 have finite supports and can thus be considered as homogeneous mea-
sures on 2[ni], respectively. Let µ ∈ Pm be their product measure according to the
previous section, with m =

∑
ni. Thus µ is supported on (some of) the k-subsets

of the multiset {v1, . . . , vm} := [n1] ∪̇ . . . ∪̇ [nk]. With this correspondance we see
that Theorem 2 holds for more general probability measures, but in turn it needs
a bound on each ||vi|| and not only on some expected norms, and the assertion is
also not exactly the analog of the one in Theorem 1.

4. Motivation: Asymmetric Travelling Salesman Problem.

Let G = (V,E) be a directed graph on n vertices with cost function c : E → R≥0.
The Asymmetric Travelling Salesman Problem (ATSP) askes for the shortest tour
in G that visits each vertex at least once. (Equivalently one can write “exactly
once” instead of “at least once” if one further requires the triangle inequality for
c.) If c is symmetric, c(u, v) = c(v, u), then this is called the Symmetric TSP, for
which it is considerably easier to find approximate solutions. On the other hand,
the associated decision problems for both ATSP and STSP are NP-complete.

The ATSP has a natural LP relaxation (by Held and Karp ’70). The integrality
gap is defined as the quotient between the costs of the optimal tours for the LP
relaxation and for the original ATSP. It is known that this gap can be at least 2.
It is unknown whether it is bounded from above by a constant. The prevous best
upper bound was O(log(n)/ log log(n)), and Anari and Oveis Gharan were able
to improve it to O((log log(n))a) for some a. Their approach was via so-called
α-spectrally thin trees, which are defined as follows.

Let LG denote the discrete Laplace operator on G, now regarded as an undi-
rected graph. A matrix representation of LG is LG =

∑
e∈E beb

t
e ∈ Rn×n, where

be is the vector 1u − 1v ∈ Rn. Similarly for a spanning tree T ⊆ G, define
LT =

∑
e∈T beb

t
e ∈ Rn×n. Now, a spanning tree T ⊆ G is called α-spectrally thin,

α ∈ R>0, if LT � αLG.
A sufficient condition for T being α-spectrally thin is ||∑e∈T vev

t
e|| ≤ α, where

ve := L
†/2
G · be, L†/2

G denoting the square root of the pseudo inverse of LG. This
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is precisely a condition that can be obtained from Theorem 2. For this one needs
further an adequate probability distribution on the set of spanning trees of G.
In [3] it was proved that for any γ : E → R the measure µ supported on the
spanning trees of G and given via Pµ(T ) ∼

∏
e∈T exp(γ(e)) is a homogeneous and

strongly Rayleigh measure in P|E|.

5. Mixed characteristic polynomials

Let µ ∈ Pm be a homogeneous probability distribution on 2[m] of degree dµ. For
m given vectors v1, . . . , vm ∈ Rd, the mixed characteristic polynomial of µ at
v1, . . . , vm is defined as

µ[v1, . . . , vm](x) = ES∼µχ
[∑

i∈S

2viv
t
i

]
(x2) ∈ R[x].

where χ[M ] denotes the ordinary characteristic polynomial of a square matrix M.

Theorem 3 ([2]). µ[v1, . . . , vm](x) equals

xd−dµ ·
(∏

(1− ∂2zi)
)
·
(
gµ(x · 1+ z) · det(x · idd +

∑
ziviv

t
i)
)∣∣∣∣

z1=...=zm=0

∈ R[x].

Here, z1, . . . , zm are m further variables. In the formula of the theorem, the
differential operators (1 − ∂2zi) are applied to gµ(. . .) det(. . .) before the variables
zi are put to zero. Note that both factors gµ(. . .) and det(. . .) are are linear in
each zi, whence each operator ∂2zi gets “distributed”, one ∂zi for each factor.

This representation of the mixed characteristic polynomial opens the way to
apply the theory of stable polynomials. Using the lemmas from [5] the following
corollary follows immediately.

Corollary 4. If µ is strongly Rayleigh, then µ[v1, . . . , vm] is real rooted.

6. Interlacing families

Let F := {S ⊆ [n] | µ(S) 6= 0}. Let {qS}S∈F denote the family of polynomials
given by qS(x) = µ(S) · χ

[∑
i∈S 2viv

t
i

]
(x2). The characteristic polynomial at

v1, . . . , vm is clearly the sum of the qS . In fact {qS}F is a so-called interlacing
family (in the sense of [2]; the proof uses the previous corollary), by which one
obtains the following theorem.

Theorem 5. There exists an S ∈ F such that the largest root of qS is less or
equal to the largest root of µ[v1, . . . , vm](x).

7. Proof scheme for Theorem 2.

By an extension of the so-called multivariate barrier argument of [5], Anari and
Oveis Gharan proved that the largest root of µ[v1, . . . , vm](x) is at most 4(2ε+ε2),
where ε = ε1+ε2. We omit this part, as this is given in large detail in the next talk
by Romanos Malikiosis. Then one applies Theorem 5 and obtains the existence of
some S ∈ F such that all roots of qS are bounded from above. As qS is essentially
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the characteristic polynomial of a matrix
∑

i∈S viv
t
i , this bounds the operator

norm of that matrix. And this finishes the proof of Theorem 2.
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The Anari–Oveis-Gharan version of the Marcus–Spielman–Srivastava
theorem for strongly Rayleigh measures

Romanos-Diogenes Malikiosis

In this talk we show the idea and some technical details behind the proof of the
following [1]: Let v1, . . . , vm ∈ Rd be such that

m∑

i=1

viv
T
i = Id,

and let µ : 2[m] −→ R be a homogeneous strongly Rayleigh measure [2] such that
PS∼µ[i ∈ S] ≤ ε1 and ‖vi‖2 ≤ ε2 for all i ∈ [m] for some ε1, ε2 > 0. Then, there is
some S ⊆ [m] with µ(S) > 0 such that

∥∥∥∥∥
∑

i∈S

viv
T
i

∥∥∥∥∥ ≤ 4ε+ 2ε2,

where ε = ε1 + ε2.
The above norm is the maximal root of the characteristic polynomial of

∑
i∈S viv

T
i

which is real rooted. Furthermore, all such polynomials form an interlacing fam-
ily, hence there is one such norm which is smaller than the maximal root of the
mixed characteristic polynomial µ[v1, . . . , vm](x) of the measure µ with respect to
v1, . . . , vm.
The mixed characteristic polynomial is defined as

µ[v1, . . . , vm](x) = ES∼µ

[
∑

i∈S

2viv
T
i

]
(x2),
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and satisfies

µ[v1, . . . , vm](x) = xd−dµ

m∏

i=1

(1− ∂2yi
)

(
gµ(y) · det

(
m∑

i=1

yiviv
T
i

)) ∣∣∣∣∣
y1=···=ym=x

,

where gµ is the generating function of the measure µ defined by

gµ(z) =
∑

S⊆[m]

µ(S)zS ,

and dµ is the degree of gµ. Defining

Q(y1, . . . , ym) =

m∏

i=1

(1 − ∂2yi
)

(
gµ(y) · det

(
m∑

i=1

yiviv
T
i

))
,

our task is to bound above the maximal root of Q(x, . . . , x), which as it turns out
is real rooted.
In order to bound this maximal root, Anari and Oveis-Gharan [1] refine the tech-
niques of Marcus, Spielman, and Srivastava [3], regarding barrier functions of real
stable polynomials. Starting with the polynomial p(y) = gµ(y)·det

(∑m
i=1 yiviv

T
i

)
,

we observe that the positive orthant is a zero-free region; actually, something
stronger is true, namely, that p(y) > 0 in this region. Applying the differential
operators 1 − ∂2yi

one by one, this zero-free region is moved in the positive direc-
tion on all axes. How far it is moved can be controlled by the so called barrier
functions, defined by

Φi
p(z) =

∂zip(z)

p(z)
, Ψi

p =
∂2zip(z)

p(z)
.

This eventually proves the main result. The difference between this version and the
original version by Marcus–Spielman–Srivastava [3] is that they are using only the
first barrier function Φi

p(z), as the formula for the mixed characteristic polynomial

in this case involves first order partial differential operators 1− ∂zi , not 1− ∂2zi .
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Problem Session

Edited by Adam Marcus

(joint work with Daniel Dadush, Guilaumme Aubrun)

1. Daniel Dadush

(1) Can we get a matrix version of Spencer’s “six standard deviations suffice”
theorem? That is, given n × n matrices A1, . . . , An with ‖Ai‖ ≤ 1 does
there exist a signing s1, . . . , sn ∈ {±1} such that

∥∥∥∥∥

n∑

i=1

siAi

∥∥∥∥∥ ≤ O(
√
n)?

If you allow m > n matrices, the bound should extend to
∥∥∥∥∥

n∑

i=1

siAi

∥∥∥∥∥ ≤ O(
√
n
√
log (m/n) + 1)

(2) A similar conjecture is due to Komlos: let a1, . . . , an be vectors in Rn with
‖ai‖ ≤ 1. Do there exist signs si ∈ {±1} such that

∥∥∥∥∥
∑

i

siai

∥∥∥∥∥
∞

< C

for some universal (not depending on the ai or n) constant C? Currently,
the best that can be proved is

∥∥∥∥∥
∑

i

siai

∥∥∥∥∥
∞

< O(
√

logn)

2. Guilaumme Aubrun

Here is an open problem which shares some flavour with the Kadison–Singer prob-
lem: Does every n-dimensional subspace of L1 linearly embeds with distortion
(1 + ε) into ℓN1 with N = Oε(n) ?

Given two sets A,B ⊂ Rn, denote A + B = {a + b : a ∈ A, b ∈ B}. Given
u ∈ Rn, we denote by [−u, u] the line segment joining u and −u (i.e. the convex
hull of {u,−u}).

A geometric reformulation of the initial problem is as follows: given ε > 0 and
a finite family (ui)1≤i≤k of vectors in Rn, for which value of N = N(n, ε) can we
find a family (vj)1≤j≤N of vectors in Rn such that, denoting

K = [−u1, u1] + · · ·+ [−uk, uk],

L = [−v1, v1] + · · ·+ [−vN , vN ],

the inclusions K ⊂ L ⊂ (1 + ε)K hold?
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Convex sets obtain as sums of segments are called zonotopes. The best result
is due to Talagrand and achieves N = (ε)n logn. It is based on the idea of
cleverly selecting the (vj) as a random subfamily of the (ui). Howover, as in other
Kadison–Singer-like problems, random constructions cannot go below n logn.

It could be interesting to consider the Steiner polynomial: the quantity

vol (t1[−u1, u1] + · · ·+ tk[−uk, uk])
is a polynomial in t1, . . . , tk ≥ 0.

3. Michelle Delcourt

(1) The Ihara zeta function of a k-regular connected graph is defined as

1

ζ(u,G)
= (1− u2)|E|−|V | det

[
I −Au+ (k − 1)u2I

]

where A is the adjacency matrix of G. Ihara showed that G is Ramanujan
if and only ζ(u,G) satisfies a type of “graph Riemann Hypothesis”. Can
the techniques discussed in this workshop be used to give other information
about the Ihara zeta function?

4. Adam Marcus

(1) If u1, . . . , un are line segments in Rn, is the polynomial

p(x1, . . . , xn) = Vol

(
∑

i

xiui

)

hyperbolic? (Here again the sum is a Minkowski sum).
(2) Many of the methods discussed in this workshop rely on the qualitative

property of real-rootedness. Can we find a quantitative version of these?
That is, can we find a way to define a “distance from real-rootedness” in
a way that the inequalities guaranteed by real-rootedness can be extended
by adding a penalty that depends on this “distance”?

(3) While many of the results that come from the method of interlacing poly-
nomials involve bounding norms (which typically requires bounding the
largest and smallest eigenvalues), the method itself can only bound one
eigenvalue. To achieve two bounds, we essentially have to “cheat” in vari-
ous ways (using bipartiteness, for example, in finding Ramanujan graphs).
Is there a way to extend the method (possibly requiring more structure)
to capture two eigenvalues simultaneously?

(4) The current best bounds on the number of blocks needed to pave within
a factor of ǫ is that r = O(1/ǫ4) suffices. It is known that r ≥ Ω(1/ǫ2) is
needed. The extra factor of 1/ǫ2 comes in the reduction from partitioning
to paving in a place where we have to create two partitions (one to bound
the top eigenvalue and one to bound the bottom one). Normally we would
try to acoid doing this by cheating (except we have already cheated to get



966 Oberwolfach Report 17/2015

the partitioning bound). Is there a way to “suspend the cheat” so that we
can get both sides of the paving bound as well?

Reporter: David James
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Université de Neuchatel
Rue Emile-Argand 11
2000 Neuchatel
SWITZERLAND

Bram Westerbaan

Institute f. Computing & Information
Sciences
Radboud Universiteit Nijmegen
Postbus 9010
6525 ED Nijmegen
NETHERLANDS

Dr. Jianchao Wu

Mathematisches Institut
Universität Münster
Einsteinstr. 62
48149 Münster
GERMANY




	References
	References
	References
	1. Stable polynomials
	2. Real stable polynomials
	3. Newton's inequalities and unimodality
	4. Stability preservers
	5. Pólya-Schur multiplier sequences
	References
	References
	References
	References
	References
	References
	References
	References
	References
	References
	References
	References
	References
	1. Introduction
	2. Strongly Rayleigh measures.
	3. MSS theorem for strongly Rayleigh measures.
	4. Motivation: Asymmetric Travelling Salesman Problem.
	5. Mixed characteristic polynomials
	6. Interlacing families
	7. Proof scheme for Theorem 2.
	References
	References
	1. Daniel Dadush
	2. Guilaumme Aubrun
	3. Michelle Delcourt
	4. Adam Marcus

